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ABSTRACT OF THE DSSERTSATION 

 

Experimental and Computational Studies on Human Visual Perception of 

 Structure from Motion and Natural Scenes 

 

By 

 

Xiaoyang Yang 

Doctor of Philosophy in Psychology 

University of California, Los Angeles, 2012 

Professor Zili Liu, Chair 

 

 

In this dissertation, we used computational models to answer two questions about human 

perception. First, what is the underlying computational mechanism of the stereokinetic effect in 

human structure from motion perception? Second, what is the functional nature of the boundary 

extension effects in human natural scene perception?  

 

To answer the first question, we extended the motion coherence theory in two-dimensional (2D) 

space (Yuille and Grzywacz, 1988) and the minimal total motion theory in 3D space (Rokers, 

Yuille, and Liu, 2006). We framed the underlying computational mechanism as an optimization 

problem. We proposed that among all the 2D and 3D structure interpretations, the one that gives 
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rise to the minimal and spatially smoothest motion is preferred by the visual system, and such 

structure interpretation is perceived by human observers. We also found that it is important to 

take into account the higher order motion spatial smoothness. The computational model we 

proposed was able to predict human 2D and 3D structure from motion perception in varies 

scenarios. We concluded that the perceptual ambiguity of structure and related motion can be 

resolved using the minimal total motion and spatially smooth motion principle alone, and any 

additional assumptions are not necessary. 

 

To answer the second question, we designed two visual memory experiments that made use of a 

modified test procedure that allowed us to explore boundary extension in terms of signal 

detection theory. We asked questions about the perceived viewing distance change between 

study and test scenes from two different psychological dimensions: in terms of close or wide or 

in terms of change or no change. We found that a criterion bias could explain the boundary 

extension effects when we asked the perceived viewing distance change in terms of close or 

wide. In contrast, both discrimination sensitivity and bias contributed to the boundary extension 

effects when we asked the perceived viewing distance change in terms of change or no change. 

Remarkably, these results could be explained in a straightforward manner by the multisource 

model (Intraub, 2010; 2012), with a simple assumption that the view-angle of a memorized scene 

widened. 
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CHAPTER 1 

INTRODUCTION 

 

The visual system combines the prior knowledge with the sensory information to make an 

inference about the distal stimulus. Computationally, how the prior knowledge is combined with 

sensory information remains an open question. In this dissertation, I will develop computational 

models to explain the stereokinetic effect (Musatti, 1924; Wallach and O'Connell, 1953). I will 

also use the signal detection theory to investigate the boundary extension effects (Intraub and 

Richardson, 1989). It is important to investigate human perception from a computational 

perspective because the computational theory is the most fundamental level of any visual 

processing (Marr, 1982). In this dissertation, I built computational models that can predict 

phenomena in human visual perception of structure from motion and natural scenes.   

 

In Chapter 1, I explained why a three-dimensional (3D) structure can be perceived when a 2D 

shape is rotated in the image plane. We tested the hypothesis that a motion interpretation is 

preferred if it gives rise to a slower and spatially smoother motion field (Yuille and Grzywacz, 

1988; Weiss, Simoncelli, and Adelson, 2002).  We used a rotating ellipse as an example since it 

had been studied with in 2D (Weiss, Simoncelli, and Adelson, 2002) and in 3D (Rokers, Yuille, 

and Liu, 2006), which were never compared, however.  We first replicated the model by Weiss, 

Simoncelli, and Adelson (2002) and confirmed that the motion field from a 2D deforming ellipse 

interpretation has a smaller total motion than that from a rigidly rotating ellipse interpretation.  

We then computed the 2D motion field under the interpretation of a 3D wobbling disk, and 
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found that the total motion was even smaller than that of a 2D deforming ellipse.  Finally, we 

verified Yuille’s proof (Rokers, 2006) which showed that the slowest motion field results from 

2D, rather than 3D motion, when there is no spatial smoothness constraint.  The resultant motion 

field is not spatially smooth, and is never perceived. Hence, the necessity of smoothness 

constraint in motion perception is supported. Our results suggested that the perceptual transition 

from a 2D deforming ellipse to a 3D wobbling disk can be explained by the slow and smooth 

constraints alone. Neither the rigidity nor the better gestalt of a circle than an ellipse is needed, 

since these leaves unexplained the specific perceived motion.   

 

In Chapter 3, we further investigated the stereokinetic effect examined in Chapter 2. Human 

observers, when presented with a rotating ellipse of large aspect ratio, typically briefly perceive a 

rotating 2D structure at the beginning, followed by the reliable percept of a 3D wobbling disk. 

When a rotating ellipse with small aspect ratio is presented however, human observers perceive a 

2D ellipse instead. Theoretically speaking, a rotating rigid ellipse in a 2D image plane, no matter 

if it is fat (large aspect ratio) or narrow (small aspect ratio), can be interpreted as a deforming 

rotating ellipse tilted in 3D (Notice that an ellipse in the image plane is an ellipse with tilted 

angle 0 and the tilted wobbling 3D disk is also a special case of tilted ellipse) or even all kinds of 

non-planar structures tilted in 3D. So it is interesting to examine how the visual system solves 

this ambiguity in structure and related motion. Another interesting phenomenon is that if the 2D 

ellipse is rocking instead of rotating, it is more difficult for human observers to reliably perceive 

a wobbling 3D disk. In addition to that, if there is a dot on the 2D ellipse, the position of the dot 

has a major effect on the perceived structure. More specifically, a wobbling 3D cone is perceived 
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if the dot is on the ellipse’s minor axis whereas a wobbling tilted 3D disk with a dot sliding on 

the disk is perceived if the dot is on the major axis. In this chapter, we answered three questions: 

1) why a tilted wobbling 3D disk is preferred among all alternative planar structure 

interpretations; 2) why it is more difficult to perceive a 3D wobbling disk if the ellipse is rocking 

or if it is narrow; and 3) why the dots at different positions on the 2D ellipse lead to different 

structure percepts. We developed a computational model that combined the slow and smooth 

priors in 3D so that the structure ambiguity in 3D can be solved. The computational model we 

proposed provided answers to all the three questions we asked above using one unique principle, 

that is, the 3D structure interpretation that gives rise to the slowest and spatially smoothest 

motion is preferred by the visual system. We also demonstrated that it is necessary to take into 

account the higher order motion spatial smoothness.   

 

In Chapter 4, we investigated another type of stereokinetic stimulus consisted of two objects. 

Specifically, we measured the perceived depth of a tilted cylinder percept generated from two 

rotating circles. We designed two perceptual tasks and one visuomotor task to quantify this 

stereokinetic effect, and the measurements from all three tasks had qualitatively identical 

characteristics. In addition to quantifying this stereokinetic effect, we also investigated the 

computational mechanism underlying this phenomenon. We asked the question: Why human 

observers do not perceive a cylinder of either zero depth, or on the other extreme, of infinite 

depth, but instead a cylinder of a finite depth? Previous theories mostly focused on using the 

rigidity prior to explain the stereokinetic effect (Wallach and O'Connell, 1953). However, the 

rigidity prior cannot explain the phenomenon in this study. To explain the stereokinetic effect 
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investigated in the current study, we developed a computational model from Yuille and 

Grzywacz’s (1988) motion coherence theory in 2D and Rokers, Yuille, and Liu’s (2006) minimal 

motion principle in 3D. We framed the computational question as an optimization problem, and 

we hypothesized that the 3D structure interpretation that has the minimal and spatially smoothest 

motion in 3D is preferred by the visual system. And we demonstrated that such preferred 

structure interpretation will give rise to a finite depth of the perceived cylinder. The 

computational model’s predictions are consistent with the empirical results, indicating that the 

visual system is taking into account the slowness and the spatially smoothness of the motion 

field to achieve a unique optimal structure interpretation.  

 

In Chapter 5, we investigated the boundary extension in the signal detection theory framework. 

After viewing a natural scene, people often remember having seen more of the world than was 

originally visible, an error referred to as boundary extension. Despite the large number of studies 

on this phenomenon, performance has never been considered in terms of signal detection theory. 

We reported two visual memory experiments that made use of a modified test procedure that 

allowed us to explore boundary extension in terms of signal detection theory. In Exp.1, 

participants first studied pictures presented at close or wide view-angles.  At test the same view 

was never shown, instead the closer or wider counterparts of the studied pictures were presented 

and participants rated each on a six-point scale to indicate how much closer or wider the view 

appeared to be.  In Exp.2, at test, either the alternate view (as in Exp. 1) or the identical view was 

presented.  Participants rated whether a test image was exactly the same as or different from the 

studied in view-angle.  We found that a criterion bias could explain the boundary extension 
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effects in Exp.1, whereas in Exp.2 both discrimination sensitivity and bias contributed to the 

boundary extension effects.  Remarkably, these results could be explained in a straightforward 

manner by the multisource model proposed by Intraub (2010, 2012), with a simple assumption 

that the view-angle of a memorized scene widened. 

 

To summarize, the work in this dissertation shed light on the computational theory for human 

visual perception of structure from motion and natural scenes. We showed that computationally 

the visual processing can be framed as an optimization problem. The work in this dissertation 

supported the idea that the visual percept is an optimal solution achieved by the visual system’s 

combining of the prior knowledge with the sensory input information. 
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CHAPTER 2 

A COMPUTATIONAL EXPLANATIN OF THE STEREOKINETIC EFFECT 

 

 

2.1. Introduction 

 

The visual system has the capability of perceiving a three-dimensional (3D) structure from a 2D 

stimulus. One example is the Musatti effect, or the stereokinetic effect (Musatti, 1924, 1975; 

Wallach and O'Connell, 1953), that is, a rotating ellipse is perceived as a “true circle gyrating in 

three-dimensional space” (Duncan, 1975). Duncan (1975) further suggested that in order that a 

disk in 3D is perceived, the ellipse has to be fat (with aspect ratio larger than .49). To describe 

the phenomenon in more details, when presented with a rotating fat ellipse, human observer first 

perceives a 2D deforming ellipse, then reliably perceive a 3D wobbling circular disk. Once the 

percept of a 3D disk is achieved, it becomes nearly impossible for human observers to perceive 

the original 2D deforming ellipse. On the other hand, if the rotating ellipse is narrow (with small 

aspect ratio), the stimulus remains to be perceived as a 2D rigid ellipse, rather than a 2D 

deforming ellipse or a 3D wobbling disk. In this chapter, we aimed to explain these phenomena 

with a single principle, and we proposed a computational theory that can predict the empirical 

observations. 

 

Inferring an object’s structure and motion from a 2D image sequence is a difficult problem. First 

of all, there are infinite 3D structures and related motion that can give rise to the identical 2D 
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projection. The possible 3D structures include an infinite number of ellipses, tilted in 3D space 

and rotating around the line of sight, generating the same movie. This ambiguity is stemmed 

from the information loss due to the image projection from 3D space to 2D plane. When object 

motion is involved, different structure interpretations will give rise to different motion fields, and 

consequently the property of the motion field provided the visual system with additional cues 

about the object structure. In this chapter we investigated if the motion field property alone is 

sufficient to provide a unique solution to the object structure inference problem. 

 

As a matter of fact, making inference about object structure from motion is still a difficult 

problem. Even if the structure and motion are restricted to a 2D plane, there are still multiple 

possible interpretations. As discussed above, a rotating 2D ellipse can be perceived as either a 

rigid ellipse or a deforming one. This ambiguity comes from the intertwined nature of motion 

and structure perception. More specifically, the inferred structure determines the motion 

correspondence, and on the other hand the inferred motion determines the inferred object 

structure. Weiss, Simoncelli, and Adelson (Weiss, 1998; Weiss, Simoncelli, and Adelson, 2002) 

approached this puzzle by proposing a “slow and smooth” principle developed from the motion 

coherence theory (Yuille and Grzywacz, 1988).  That is, an object structure interpretation that 

gives rise to a slowest and spatially smoothest motion flow is favored by the visual system.  Note 

that the classic aperture problem illusion can be reinterpreted as the visual system favors the 

slowest possible motion. Intuitively, in the ellipse example we discussed at the beginning of the 

chapter, since local curvature of a fat ellipse is similar from one location to it neighbors, there is 

much ambiguity to establish motion correspondence (Ullman, 1979) compared to the scenario 
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when a narrow ellipse is involved. Hence, according to “slow and smooth”, the motion 

correspondence is established by taking into account the motion slowness motion and spatially 

smoothness. Weiss and his colleagues rephrased the motion coherence theory under the 

framework of probability distribution and Bayesian theory. They assumed that local motion 

measurements have independent Gaussian noise with standard deviation    and the slow prior is

),0(
2

pN  . The maximum a posteriori (MAP) estimation of the 2D motion is determined by the 

spatial-temporal derivatives of the image sequence as well as pl  / :      
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where xI , yI  and tI  are the spatial and temporal derivatives of the image sequence and the 

summations are taken over all locations translate together. In the mathematical sense, the slow 

and smooth prior is independent of the rigidity assumption. Weiss and colleagues were able to 

predict a wide range of motion perception related phenomena in 2D using the “slow and smooth” 

principle. 

 

Rokers, Yuille, and Liu (2006) were perhaps the first to generalize this “slow and smooth” 

principle from 2D to 3D. They studied a similar rotating ellipse stimulus consisted of dashed 

lines, and the stimulus was perceived to be a 3D wobbling disk. Theoretically, there are two 

motion components on the wobbling disk: the rotation perpendicular to the image plane and the 
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spinning on the disk plane (Figure 2.2.). Rokers et al. studied the perceived spinning component 

experimentally and computationally. Specifically, they asked the participants to adjust the 

spinning component on the disk so that no spinning was visible. In the meanwhile, they also 

theoretically derived the optimal spinning so that a minimum motion is achieved. Remarkably, 

the theoretical prediction of the spinning that gave rise to slowest motion quantitatively matched 

the empirical data obtained in Rokers et al. (2006).  This was evidence for the first time showing 

that humans used the “slow and smooth” principle in 3D as well. 

 

 

 

Figure 2.1. Schematic illustration of the percept generated by a rotating ellipse. The stimulus is 

an ellipse on the x-y plane, and the ellipse it is rotating around its center at angular speed ω. The 

observer is looking down at the stimulus from above (the observer’s line of sight is parallel to the 
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z axis). The generated percept is a tilted 3D disk, which is not only rotating along z axis, but also 

spinning around its surface at angular speed ψ. Figure adapted from Rokers, et al. (2006). 

 

Rokers et al. (2006) investigated the minimal total motion principle in 3D on a stereokinetic 

stimulus, and demonstrated that among all the 3D disk interpretations, the one with minimum 

total motion is preferred by the visual system. However, it remains an open question why human 

observers perceived a 3D wobbling disk rather than a 2D ellipse when a fat ellipse is presented, 

and why a 2D ellipse is perceived when a narrow ellipse is presented. In order to answer this 

question from the perspective of minimal total motion principle, we need to know which 

structure interpretation gives rise to a minimal total motion: the 3D wobbling circular disk, the 

2D rigid ellipse, or the 2D deforming ellipse. We hypothesized that the visual system preferred 

the structure interpretation with minimal total motion, and consequently such structure is 

perceived by human observers. Specifically, the 3D disk interpretation has the minimal total 

motion when the ellipse is fat, so that a tilted 3D wobbling circular disk is perceived upon a fat 

ellipse stimulus. In contrast, the 2D ellipse interpretation has the minimum total motion when the 

ellipse is narrow, and as a result a 2D ellipse is perceived upon a narrow ellipse stimulus. 

Besides, the aforementioned total motion calculated by Rokers et al. (2006) assumed rigid 

motion, which is ensured by the circular disk interpretation. However, when 2D interpretations 

are also taken into account, the rigidity is no longer guaranteed, and as a result the resultant 

motion field is not necessarily spatially smooth. In this chapter, in addition to the discussion 

about minimal motion principle in 3D, we will also investigate the importance of spatially 

smooth motion field. 
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2.2. Methods 

 

We used as an example an ellipse with an angular speed 1 deg/s and with standard notations. The 

total motion is defined as:                 

 

                    dssvvF yx )()(
22
  (2.2.) 

 

Here ),( yxss   is the ellipse parametric equation in this example. The identical rotation of the 

2D ellipse can be interpreted as: (1) a 2D non-rigid rotating ellipse; (2) a 2D rigid rotating 

ellipse; and (3) the 2D projection of a 3D rigid rotating circular disk. We want to compute the 

total motions under different interpretations in a fair way so that we can make a comparison.  

 

 

2.2.1. Compute 2D non-rigid ellipse slow and smooth optical flow 

 

We put a 64 × 64 equally spaced grid on each image frame, and these grid points are the centers 

of 64 × 64 windows covering the entire image frame without overlapping. We assume that within 

each window motion is translational. So Equation (2.1.) can be used to compute the local MAP 

motion under slow prior.  

 

In order to implement the smooth constraint, we assume that the interaction (smoothness) is 

Gaussian with standard deviation   . Yuille and Grzywacy (1989) proposed that the in order that 
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the motions computed locally are representative of the overall probability distribution of the 

motion flow, the density of the local motion measurements need to be large enough relative to 

the spatial scale of the interaction i . More specifically, the local motion are representative if 

1
2
i . In our case, we selected the standard deviation of the interaction to be three times of 

the window size, so that 3.28
2
i .  

 

The only free parameter left for the MAP solution is pl  / , which is the ratio between the 

spatial scale of the local measurement noise and the slow prior. To have a better sense of what 

that free parameter means, assume that the distribution of the prior is fixed, the more accurate the 

local measurements (i.e., the smaller l ) the closer the MAP motion to the center of the local 

measurement in the velocity space, and an example is the contrast-induced biases in speed 

perception (Figure 2.2.(a) and 2.2.(b)). On the other hand, assume that the spatial scale of the 

local measurement noise is fixed, the stronger the slower prior (i.e., the smaller p ) the closer 

the MAP motion to the center of slow prior, that is, slower motion estimation (Figure 2.2.(b) and 

2.2.(c)). When both the local measurement noise and slower prior are taken into account, it is 

their ratio that affects the MAP estimate of the motion.  

 



14 

 

 

 

Figure 2.2. The MAP estimate of motion depends on the ratio between the spatial scale of the 

local measurement noise and the slow prior ( pl  / ). In (a), (b), and (c), the Gaussian 

distribution in red depicts the slow prior (leftmost) and the Gaussian distribution in green is the 

local measurement likelihood (rightmost). The curve in blue is the posterior distribution 

(middle). The prior distribution centers at zero. The dashed lines indicate the centers of the other 

two distributions. Specifically, the center of the likelihood distribution is the physical speed of 

the stimulus, whereas the center of the posterior distribution is the MAP estimate of perceived 

speed, which is slower than the physical one. (a) A weak prior (large p ) and an inaccurate local 

measurement (large l ); (b) A weak prior (large p ) and an accurate local measurement (small 

l ); (c) A strong prior (small p ) and an accurate local measurement (small l ). 

 

A number of empirical studies have been done to determine the proper range of this free 

parameter. Hurlimann et al. (2002) found that empirically ),0(
2

pN   is flat and pl  /  is at the 

level of 10
-3

, though individual difference exists. Stoker and Simoncelli (2006) used a two 

alternative force choice (2AFC) protocol to test one dimensional human motion perception and 
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used the empirical data to fit the shape of the prior distribution as well as the local measurement 

likelihood function. They found that for high contrast stimulus moving at the speed level of 1 

deg s
-1

 the standard deviation of the local measurement noise ( l ) is around 0.2. On the other 

hand, the prior probability density at the speed level of 1 deg s
-1

 for such stimulus is at level of 

10
-2

, which means if the prior distribution is assumed to follow ),0(
2

pN   then p  is at the level 

of 40, and as a result pl  /  is at the level of 10
-3

. Everything else being the same, the motion 

flow increases as pl  /  decreases, and we selected pl  /  = 0.01 to be conservative, i.e., if a 

smaller pl  /  is chosen, the total motion for the slow and smooth estimate will be larger than 

that obtained in our simulation. 

 

In our example, we used image sequence of 128 × 128 pixels × 5 frames in which an ellipse with 

major semi-axis 43 pixels and aspect ratio of either 0.8 or 0.2 is rotating counter-clockwise at 

angular speed of 1 deg s
-1

. The width of the ellipse is 2 pixels on average and the contrast is 

100% (the back ground with lowest pixel value and the ellipse with highest).  

 

 

2.2.2. Compute 2D rigid ellipse optical flow 

 

Here we briefly derive the motion flow under the interpretation of a rigid rotating 2D ellipse. The 

ellipse in this example is:                             
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For the rigid rotation at angular speed  , the only motion component on the elliptical contour is 

the rotation, which is: 
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Following the definition in Equation (2.4.), the motion flow under the interpretation of a rigid 

rotating ellipse is: 

 

                  
 




2

0

22222

_ )()sincos( dbaF EllipseRigid  (2.5.) 

 

where 


 2222

2

2 cossin)( ba
d

ds









  . 

 

In all the numerical integrations here and after, we consider in a 2D Euclidean space with the 

origin at the center of the image. We put exactly the same 64 × 64 equally spaced grid as we 

used in the slow and smooth simulation on the center image frame, and these grid points are the 

centers of 64 × 64 windows covering the entire image frame without overlapping. If a window 

covers part of the ellipse, then the average horizontal coordinate and the average vertical 
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coordinate of all the pixels belonging to the ellipse and covered by this window is computed. The 

total motion integration element is computed at the obtained average coordinates using the total 

motion solution we got as the local movement measurement. The smoothing (interaction) is 

defined exactly the same as that was used in the slow and smooth simulation, namely, Gaussian 

distributions with the standard deviation ( i ) to be three times of the window size. In a word, 

using slow and smooth motion flow simulation method as a benchmark, all other motion flows 

were calculated accordingly and identically, except that the appropriate local motion vectors 

under different interpretations were used instead. 

 

It is noteworthy that when no rigidity constraint is applied, a motion flow field with even smaller 

total motion (Eq. 2.6.) can be obtained (derived by Yuille. Rokers, 2006):  
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This minimal motion is identical to the motion flow acquired by greedily searching for the 

nearest neighbor in the second frame for every point on the contour in the first frame.  However, 

this motion field that gives rise to the minimal total motion is not spatially smooth (Figure 

2.4(b)), and is never perceived by human subjects. As a result it is sensible to conclude that the 

human visual system not only take into account the minimal motion prior, but also prefers the 

spatially smooth motion field. 
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2.2.3. Compute 3D rigid circular disk optical flow 

 

In the 3D scenario, the circular disk is rotating around the image plane normal as well as 

spinning around its surface, so the total motion computation should take into account both the 

rotation and spinning. Assume that the circular disc is spinning at angular speed  , and we want 

to find the minimal total motion with respect to  . We denote the spinning at which the total 

motion reaches its minimum using m . The 3D motion flow projected onto the 2D image plane, 

and integrated along the 3D contour. It is the conventional practice that integration along the 

interpreted (or 3D) contour is used when considering an extremum principle (in this case 

minimal total motion) for shape from contour (Brady and Yuille, 1984). Under the interpretation 

of a wobbling 3D disk is (Rokers, Yuille, and Liu, 2006): 

 

   



2

0

2222222

Pr_2__ sincos2)( adbaabF mmojecionDDiskRigid   (2.7.) 

 

Solving the integral we get: 

 

    babaaF ojecionDDiskRigid

22222

Pr_2__ 4  (2.8.) 

 

We solve for m   by setting 0
md

dF


, and found: 
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Notice that for the slow and smooth optic flow computation in section 2.2.1, any local motion 

vector is computed following only the slow principle, and after that the local motions were 

smoothed using Gaussian bases. So in order that the optic flow comparison between section 2.2.1 

and here is fair, we only consider the slow principle when computing the local motion vectors 

and the vectors were then smoothed using exactly the same method as we used in previous 

sections. We used exactly the same method as was used for EllipseRigidF _  to compute the total 

motion in the 3D scenario, except that the appropriate local motion vectors under different 

interpretations were used instead. 

 

 

2.2.4. Minimal motion principle versus dimensionality preference 

 

In the previous sections we showed that the minimal total motion principle alone can explain the 

perceptual preference of 3D disk interpretation over 2D ones when a fat ellipse is shown, and 2D 

rigid ellipse over its counterparts when a narrow ellipse is shown. However, it might be argued 

that a preference of dimensionality can also give explanation to this example. In this section, we 

further elucidate that it is the minimal motion rather than the preference of a percept in certain 

dimensionality that plays significant role. We provide evidence in two steps. First, we show 

another example in which a 2D percept with minimal motion is preferred by the visual system 
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over its corresponding 3D counterpart, indicating that it is not the preference of 3D percept that 

leads to the interpretation of an ambiguous visual stimulus. Second, we further discuss why the 

visual system does not prefer to go to an even higher dimensionality (4D) in order to find a better 

interpretation of the visual stimulus discussed in the previous sections.  

 

As we discussed above, a rotating ellipse on the image plane can be interpreted as either a 2D 

rotating ellipse or a 3D tilted disk. Analogously, a rotating 2D circle can be interpreted as either 

a 2D rotating disk or a 3D rotating tilted ellipse. Assume that a tilted ellipse standard following 

standard notations is rotating at speed   around an axis perpendicular to the image plane and 

crossing a point O1 on the image plane. At the same time, the ellipse is spinning at speed   

around an axis orthogonal to the image plane and crossing the center of the ellipse. The distance 

between two axes is d, so the time dependence of the projected circle in the image plane can be 

parameterized as: 
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So the velocity of the points on the contour can be obtained by differentiation with respect to 

time t: 
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The total motion is the integral of velocity along the contour. If the integration is along the 2D 

projected contour in the image plane, any tilted ellipse will have the same integral, and 

consequently leaves the visual system ambiguity.  However, if the integration is along the 3D 

contour, the integral depends on the shape of the interpretation, and a unique solution favoring 

minimal total motion is possible. As a result, we consider the integral along the 3D contour. 

Substitute   for t  so the total motion is: 

 

       



2

0

2222

_ cos2 dbddbF EllipseTilted  (2.12.) 

 

When the interpretation is a 2D circle,    bdd  , so:  

 

  2222

_ 2  dbbF EllipseTilted   (2.13.) 

 

We solve for solve for m   by setting 0
md

dF


, and found: 

 m  (2.14.) 

 

And the minimal motion is just the rotational component of the projection: 

 

22

_ 2 bdF EllipseTilted   (2.15.) 
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On the other hand, if the interpretation is a 3D tilted ellipse, the contour will be longer than that 

in the 2D circle case and     d  will be larger than bd . As a result the total motion is larger 

than what we have obtained under the 2D circle interpretation. Since the 2D circle interpretation 

has the minimal total motion among all the possible 2D and 3D interpretations, it is favored by 

the visual system. Here we see another example in which a 2D interpretation with minimal 

motion is favored over any 3D counterparts. To summarize, an interpretation with the minimal 

total motion is favored by the visual system, no matter it is a 2D or 3D. 

 

If we consider an even higher dimensionality (4D), there are several reasons why the visual 

system does not seek for a 4D interpretation over the lower dimensional ones. First, analogous to 

the discussion of a 2D disk interpretation versus a 3D tilted ellipse example, having the same 

projected motion on the 2D image plane, total motion integrated along the 4D contour which is 

longer will have at least the same magnitude as that obtained along the 3D contour, and 

consequently the 4D (and even higher dimensional) interpretation is not favored based on 

minimal total motion principle. Second, it is well accepted that the visual system is not likely to 

adopt an interpretation assuming an accidental view point of a visual stimulus and statistically it 

is almost zero probability that even the simplest symmetric 4D object, namely, a 4D sphere (3-

sphere) will give rise to a projection of a disk from a specific view point (for the projection and 

visualization of a 3-sphere, refer to Peter, 1979). And in general a 4D object needs an accidental 

and rarely happened view point in order that a disk projection is obtained, and thus a 4D 

interpretation is not preferred by the visual system based on the non-accidental view principle. 
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To summarize, both principles leads to the conclusion that going to higher dimensionality 

beyond 3D will not provide a better interpretation, and it is consistent with empirical evidence. 

 

 

2.3. Results 

 

As discussed in the previous section, we used as an example an ellipse rotating in the image 

plane around its center with an angular speed 1 deg s
-1

. The total motion is defined as the sum of 

each velocity components (x and y) squared at all positions in the image where motion 

measurement is available. We discuss two types of ellipses, specifically, a fat one with aspect 

ratio 0.8 and a narrow one with aspect ratio 0.2. 

 

The identical rotation of the 2D ellipse can be interpreted as: (1) a 2D non-rigid rotating ellipse; 

(2) a 2D rigid rotating ellipse; and (3) the 2D projection of a 3D rigid rotating circular disk. 

Empirical study showed that when a fat ellipse is shown, human observers perceive shortly a 

deforming 2D non-rigid ellipse, followed by the stable and similar percept of a 3D rotating rigid 

circular disk tilted to the image plane (Rokers, Yuille, and Liu 2006). However, when a narrow 

ellipse is shown, human observers tend to perceive rigid rotating 2D ellipse (Weiss, 1998). We 

hypothesized that given this ambiguous 2D stimulus the visual system’s preference of the stable 

percepts (rigid 3D disk in fat ellipse case and rigid 2D ellipse in the narrow case) can be 

explained by the minimal total motion principle alone. In order to test our hypothesis, we want to 
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compute the total motions under different interpretations in a fair way so that we can make a 

comparison.  

 

Mathematically, neither the 2D nor 3D motion can be deterministically inferred based on the 2D 

stimuli, so additional constraints have to be applied by the visual system to reach a unique 

motion and structure percept. In the 2D scenario, either the rigidity or the slow and smooth 

constrain can be applied with sensory input to achieve the Bayesian motion estimate. The rigidity 

assumption predicts a rotating rigid ellipse percept, which is not perceived by human observer. 

And the slow and smooth constraint leads to a deforming non-rigid ellipse interpretation which is 

perceived by human observer for a short period of time. In the 3D scenario, the circular disk is 

rotating around the image plane normal as well as spinning around its surface, so the total motion 

is the sum of the rotation and spinning. Although the total motion in 3D disk interpretation can 

be analytically solved, neither the 2D rigid motion nor 2D slow and smooth motion of an ellipse 

has analytical solution. We designed a way to compute the total motions under these three 

interpretations in a fair way so that comparisons among them are possible.    

   

In our example, we used image sequence of 128 × 128 pixels × 5 frames. The fat ellipse has a 

major semi-axis of 43 pixels and aspect ratio of 0.8 is rotating counter-clockwise at angular 

speed of 1 deg s
-1

. The narrow ellipse has the same major semi-axis and rotation, whereas the 

aspect ratio is 0.2. The width of the ellipse is 2 pixels on average and the contrast is 100% (the 

back ground with lowest pixel value and the ellipse with highest). We put a 64 × 64 equally 

spaced grid on each image frame, and these grid points are the centers of 64 × 64 windows. In 
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the interpretation of a slowly and smoothly rotating 2D ellipse, it is worth noting that the total 

motion depends on a free parameter pl  / which describes the relative emphasis on the slow 

prior (Figure 2.3.). We used a conservative selection of the free parameter to control the slow 

regulation (details in Methods). 

 

 

pl  /  

Figure 2.3. The slow and smooth total motion for a rotating ellipse (aspect ratio = 0.8) as a 

function of the free parameter pl  / , where l  and p  are standard deviations of the slow and 

smooth prior Gaussian probability distributions, respectively.  This calculation was replicating 

Weiss (1998), where a value in the order of 10
-3 

was typically used.  In the current paper, the 

value was conservatively selected as 0.01. 

 

 



26 

 

2.3.1. Fat ellipse with aspect ratio 0.8 

 

The three motion interpretations for a rotating ellipse movie will be: 1) a rotating rigid ellipse, 2) 

a deforming rotating ellipse (Weiss et al., 2002), and 3) a wobbling 3D circular disk (Rokers et 

al., 2006).  The total motion in 1) and 3) could be analytically derived and their numerical 

calculations can be arbitrarily precise.  However, the total motion in 2) can only be simulated 

with a free parameter, which is the variance ratio of slow and smooth prior probability 

distributions that are modeled as Gaussians.  We replicated the simulations of Weiss (1998), 

chose the parameters conservatively so that the total motion flow was even slower than in Weiss 

(1998) (Fig. 2.3.), and replaced the motion correspondence in order to calculate the motion flows 

in 1) and 3).  We now show the calculation results for the ellipse with an aspect ratio of 0.8 first, 

and then show results from all aspect ratios.  

 

For the 2D non-rigid slow and smooth scenario, the total motion is 31.2 (unit is the squared 

velocity, as defined in Equation (2.2.)). And such structure interpretation has a spatially smooth 

motion field (Figure 2.4.) from the conservative free parameter selection. 
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Figure 2.4. The motion field of a rotating ellipse under slow and smooth prior following the 

interpretation of a 2D deforming ellipse. The computation replicated Weiss (1998) and Weiss et 

al. (2002). The recovered motion field is spatially smooth. 

 

For the 2D rigid ellipse motion scenario the total motion is 108.8 with a spatially smooth motion 

field (Figure 2.5(a)). Yuille (2006) proved that a minimal 2D motion can be obtained without the 

rigidity assumption, and the field is essentially obtained by computing the minimal motion 

locally at every point where motion information is available. This motion is computationally 

identical to that from greedily search for the spatially closest correspondence. The total motion 

from this greedy search is the minimal motion in the 2D scenario (it is even smaller than the 

motion from the 3D disk interpretation), which is 2.7. However, the motion in this case has a 

spatially unsmooth motion field (Figure 2.5(b)), and such motion is never perceived by the 

human observer.  
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(a)                                                        (b) 

  

 

Figure 2.5.The motion field of a rotating ellipse under: (a) rigidity prior and (b) non-rigid greedy 

nearest neighbor search, following the interpretation of 2D structure. The motion from greedy 

nearest neighbor search has a spatially non-smooth motion field, and is never perceived by 

human observer. 

 

In the 3D scenario, the 2D projection of the 3D total motion for a rigid circular disk is smaller for 

any integration ways. From the comparison of the total motion from different interpretations it is 

clear that the rigid 3D disk percept give rise to the minimal total motion with smooth motion 

field (Figure 2.5.). Notice that here we used conservative selection of the free parameter  pl  /  

to compute the slow and smooth 2D motion, and the total motion in this case will be even larger 

if the value of the parameter is set to be close to the previous empirical findings.  
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Figure 2.6. The total motion of a rotating ellipse stimulus (aspect ratio = 0.8) calculated 

numerically and identically in three structure interpretations.  The only difference was that the 

motion vector field was different between the conditions. Human observers reliably perceive a 

tilted 3D wobbling disk, which is consistent with the model prediction that a 3D disk 

interpretation gives rise to the minimum total motion among all smooth motion fields.  

 

 

2.3.2. Narrow ellipse with aspect ratio 0.2 

 

We used exactly the same conservative free parameter selection as in the previous section. For 

the 2D non-rigid slow and smooth scenario, the total motion is 94.3 and for the 2D rigid ellipse 
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motion scenario the total motion is 38.3, both with a spatially smooth and qualitatively similar 

motion field (Figure 2.7.). In the 3D scenario, the 2D projection of the 3D total motion for a rigid 

circular disk is 66.0, 3D-3D motion was 71.5, 2D-2D motion was 32.2 and 2D-3D motion was 

34.3.  

 

 

 

Figure 2.7.The motion field of a rotating narrow ellipse under the rigid 2D interpretation. The 

motion field is spatially smooth.  

 

From the comparison of the total motion from different interpretations it is clear that the rigid 2D 

ellipse percept give rise to the minimal total motion with smooth motion field (Figure 2.8.) if the 

motion of the disk is integrated along the 3D contour. 

 



31 

 

 

 

Figure 2.8.   The total motion of a rotating ellipse (aspect ratio = 0.2) calculated numerically and 

identically in three structure interpretations.  The only difference was that the motion vector field 

was different between the conditions. Human observers reliably perceive rigid rotating 2D 

ellipse, which is consistent with the model prediction that a 2D rigid ellipse interpretation gives 

rise to the minimum total motion among all smooth motion fields.  

 

 

2.3.3. Total motion for ellipses with aspect ratio of 0.1 to 0.9 

 

We used exactly the same conservative free parameter selection as in the previous sections. We 

found that (Figure 2.9.) the total motion under 2D rigid ellipse interpretation monotonically 
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increases with the increasing aspect ratio. The total motion in 2D non-rigid slow and smooth 

scenario fluctuates at small aspect ratio, and then decreases as the ellipse gets larger. The total 

motion in the 3D disk scenario first increases then decreases with the raise of the ellipse aspect 

ratio. In general, for narrow ellipse with small aspect ratio, the rigid 2D ellipse interpretation 

leads to the minimal total motion, indicating that a rigid rotating 2D ellipse percept is preferred, 

which is consistent with human percept. On the other hand, for fat ellipse with large aspect ratio, 

the rigid 3D disk interpretation has the minimal total motion, so that a tilted rigid rotating disk 

percept is favored, which is again consistent with human percept. For the ellipses with aspect 

ratios between the two extremes, the non-rigid slow and smooth interpretation results in the 

minimal total motion, indicating that it is possible to perceive such percept at certain aspect ratio. 

Please note that the slow and smooth total motion is achieved with a conservative selection of the 

free parameter. As a result, the slow and smooth total motion computed with a free parameter 

suggested by empirical results can be larger than the data we got in our simulation (As an 

example, refer to Figure 2.3.). 
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Figure 2.9. The total motion under three different interpretations (rigid 2D, non-rigid 2D, and 

rigid 3D) for ellipses with aspect ratio from 0.1 (narrow) to 0.9 (fat). At the right end of the 

graph, the tilted 3D wobbling disk is predicted by the model, which is consistent with the human 

observer’s report that a disk is reliably perceived for fat ellipse. In the left end of the graph, the 

rigid 2D rotating ellipse is predicted by the model, which is consistent with human percept of a 

rigid narrow ellipse. Between the two ends, a deforming ellipse is predicted by the model, which 

is also consistent with human observations. 

 

 

2.4. Discussion 

 

In this chapter, we investigated the visual system’s capability of perceiving a 3D structure from a 

2D stimulus. When presented with a rotating fat ellipse, human observers reliably perceive a 3D 
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wobbling circular disk. However, if the rotating ellipse is narrow, a 2D rigid ellipse, rather than a 

2D deforming ellipse is perceived. In this chapter, we aimed to explain these phenomena with a 

single principle, and we proposed a computational theory that can predict the empirical 

observations. 

 

Inferring an object’s structure and motion from a 2D image sequence is a difficult problem, and 

this difficulty is stemmed from the information loss due to the image projection from 3D space to 

2D plane. Motion field provided the visual system with additional cues about the object 

structure. But it remains an open question if the motion field property alone is sufficient to 

provide a unique solution to the object structure inference problem. We found that motion alone 

can solve the ambiguity of the structure interpretation in 3D.  

 

Yuille and Grzywacz (1988) first proposed the motion coherence theory to solve the structure 

ambiguity from motion in 2D plane. Weiss, Simoncelli, and Adelson (Weiss, 1998; Weiss, 

Simoncelli, and Adelson, 2002) rephrased the motion coherence theory into the Bayesian 

framework, and proposed a “slow and smooth” principle. However, all these work only deal with 

structure from motion in 2D. Rokers, Yuille, and Liu (2006) generalized this “slow and smooth” 

principle from 2D to 3D. However, no comparison on motion field across different structure 

interpretations was performed by Rokers et al., so it remains an open question why human 

observers perceived a 3D wobbling disk rather than a 2D ellipse when a fat ellipse is presented, 

and why a 2D ellipse is perceived when a narrow ellipse is presented.  
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We hypothesized that the visual system preferred the structure interpretation with minimal total 

motion, and consequently such structure is perceived by human observers. In order to test this 

hypothesis we computed the total motion of the following three structure interpretations in a fair 

manner: the 3D wobbling circular disk, the 2D rigid ellipse, or the 2D deforming ellipse. We 

found that the 3D disk interpretation has the minimal total motion when the ellipse is fat, and the 

2D rigid ellipse interpretation has the minimum total motion when the ellipse is narrow. It is also 

noteworthy that if local minimal motion is allowed without taking into account the spatial 

smoothness of the motion field, an even smaller total motion can be achieved. However, the 

motion field that gives rise to this smaller total motion is not spatially smooth, and is never 

perceived by human observers. This indicated that human visual system not only take into 

account the slowness of the total motion, but also the spatially smoothness.  

 

In summary, we hypothesized that given an ambiguous 2D stimulus, the visual system favors a 

percept with the minimal total motion and a smooth motion field. Any additional assumptions 

such as shape compactness, rigidity, or preference for 3D are not necessary in order that a unique 

percept is reached. We demonstrated this principle using an example of a rotating ellipse. When 

a rotating 2D fat ellipse is presented, human observers stable percept is a rigid 3D wobbling 

circular disk tilted to the image plane. Whereas when a rotating 2D narrow ellipse is shown, 

human observers perceive rigid 2D ellipse, showing that human observers do not simply prefer 

more symmetric (or compact) shape over less symmetric one. Additionally, when a rotating 2D 

disk is sown, human observers perceive a rigid 2D disk instead of a tilted 3D ellipse or even 

higher dimensional contours, revealing that the preference for certain dimensional percept cannot 
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explain this behavior phenomenon. We demonstrated in this chapter that all these human 

percepts can be explained by the minimal total motion and smooth motion field principle. We 

made a fair comparison among the 2D non-rigid, 2D rigid, and 3D rigid motions by developing a 

way to numerically solve the 2D rigid as well as the 3D rigid motion integrations so that the 

approach is mathematically comparable to the image processing method used for 2D non-rigid 

solution. We found that the 3D rigid percept gives rise to minimal smooth total motion in the fat 

ellipse case, whereas the 2D rigid elliptical rotation generates the minimal smooth total motion in 

the narrow ellipse case. In the meanwhile, the interpretation that gives rise to a spatially smooth 

motion field is preferred. These results indicated that the perceptual ambiguity of motion and 

related structure can be resolved using the minimal total motion and smooth motion field 

principle alone, and any additional assumption is not necessary. 
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CHAPTER 3 

SLOW AND HIGH ORDER MOTION SMOOTHNESS IN 3D 

 

 

3.1. Introduction 

 

 

Human visual system has the capability of recovering three-dimensional (3D) structure from 2D 

sensory input. Because of such capability, human can behave properly in a 3D environment. 

Accommodation, convergence, binocular disparity, linear perspective projection, familiar size, 

texture and occlusion are important depth cues for the visual system to make inference about the 

3D structure. It is surprising that human visual system is even capable of recovering 3D structure 

when all of the cues above are not applicable. As a matter of fact, human observers are able to 

recover 3D structure from impoverished monocularly presented stimulus. For example, human 

observers perceive a tilted wobbling 3D disk when they are monocularly exposed to a rotating 

2D ellipse stimulus. In this example, the only information available for the visual system to make 

inference about the 3D structure is the motion and shape of the 2D contour. The human visual 

system recovers the 3D structure so quickly and accurately, so it appears that the problem of 

making 3D structure inference from 2D sensory input seems to be trivial. Actually, such problem 

is surprisingly a very complicated puzzle because in theory, there are infinite possible 

interpretations about the object’s 3D structure, each giving rise to a particular motion 

interpretation.  
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The inference of the structure and the motion of the stereokinetic object is an ill-posed inverse 

problem, so additional priors have to be imposed in order that a definitely answer can be found. 

Since the measurement of object motion is directly relevant to the interpretation of object 

structure, previous research has been focused on both priors regarding the object shape and the 

object motion. The interesting question is what assumptions the human visual system deploys 

that turns a problem with many alternative solutions into one with a unique answer. The rigidity 

assumption is one candidate that directly provides constraint to the object shape (Ullman, 1979, 

1983), namely, an interpretation with maximal rigidity is favored by the visual system. And since 

the object structure is inherently connected with the perceived object motion, the slow and 

smooth assumption (Horn and Schunck, 1981; Hildreth and Ullman, 1982; Yuille and Grzywacz, 

1988; Weiss, Simoncelli, and Adelson, 2002) is another example of the priors, that is, the 

structure interpretation in which a slow and smooth motion field can be obtained is favored by 

the visual system. Specifically, the slow and smoothness prior comes from the insight that 

discontinuous motion is rare in the world if no object collusion happens. In the mathematical 

sense, the smoothness constrain penalizes the magnitude of the optical flow gradient as well as 

the sum of squared of the Laplacians of the optical flow. More generally, smoothness constrain 

penalizes all orders of derivatives on the optical flow, known as the motion coherence theory 

(Yuille and Grzywacz, 1988), so the regularization term is:  
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Here v


is the estimated optical flow at a certain location,  0  and 0mc  are constants, and 

m  essentially is the m
th

 order gradient along all orthogonal directions (starting at the 0 order). 

And the integration is over the entire field where local motion information is available. The 

constant can be set as )2!/(2 mm

m mc   to obtain a Gaussian interaction. So the only free 

parameter remains is   which mediates the relative impact strength on the global motion estimate 

from the local measurements and the smoothness regularization. For the zero order derivatives, 

the penalty term is restricting the magnitude of the optical flow so that it was explicitly defined 

as the slow constrain (Weiss, 1998; Weiss, Simoncelli and Adelson, 2002). And the first order 

term restricts the gradient of the optical flow and as a result referred to as the smoothing term. So 

the motion measurement can be formally described as minimizing the following energy function: 
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Here )( irv


is estimated velocity field and )( il rv


is the local velocity measurement or data. And 

)2!/(
2 mm

lm mc  , where l is the standard deviation of the local measurement noise assuming 

Gaussian distribution. Specifically, larger l indicates more noise in the local velocity 

measurement whereas smaller l  means less noise. Notice that the second order regularization 

vanishes in the following situations: the pure translational motion parallel to surface, the pure 

translational motion along surface normal and the pure rotation about surface normal. Free 

parameter  quantifies the emphasis on slow and smooth regularization relative to local 

measurement, and   depicts the weight between slow and smoothness constrains. And in general, 
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the first term of the equation’s right-hand side penalizes incompatibility with the data and the 

second term emphasized slow and smooth prior. Weiss and Adelson (1998) rephrased the motion 

coherence theory under the framework of probability distribution and Bayesian theory. They 

assumed that local motion measurements have independent Gaussian noise with standard 

deviation    and the slow prior is ),0(
2

pN  . The MAP of the 2D motion is determined by the 

spatial-temporal derivatives of the image sequence as well as  pl  /  (Weiss, 1998):      
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where xI , yI  and tI  are the spatial and temporal derivatives of the image sequence and the 

summations are taken over all locations translate together. In mathematical sense, the slow and 

smooth prior is independent of the rigidity assumption, so we want to investigate if the slow and 

smooth motion prior alone suffice or the rigidity prior is necessary in order that a definitely 

answer consistent with human percept can be obtained for the motion and structure of a 

stereokinetic object.  

 

The human visual system possesses the ability of inferring a unique and stable 3D structure of an 

object from its 2D motion, and the phenomenon that a 3D percept is perceived from a moving 

2D stimulus is called the stereokinetic effect (Duchamp, 1920s, more details see Shearer and 

Gould, 1999; Musatti, 1924; Wallach, 1953). The percept of 3D disk from a rotating ellipse we 
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described above was referred to as the Musatti effect, that is, a rotating ellipse is perceived as a 

“true circle gyrating in three-dimensional space” (Duncan, 1975). Duncan (1975) further claimed 

that in order that a “true circle” in 3D is perceived, the ellipse has to be fat (more specifically, 

ellipse with eccentricity less than .87, which is equivalent to with aspect ratio larger than .49). 

Human observers, when presented with a fat rotating ellipse, typically briefly perceive a moving 

2D pattern at the beginning, followed by stable percept of a 3D wobbling disk. When a narrow 

ellipse is presented, human observers perceive a 2D ellipse instead. Theoretically speaking, a 

rotating rigid ellipse on a 2D image plane, no matter if it is fat or narrow, can be interpreted as a 

deforming rotating ellipse tilted in 3D (Notice that an ellipse on the image plane is an ellipse 

with tilted angle 0 and the tilted wobbling disk is also a special case of a ellipse tilted in 3D) or 

even all kinds of non-planar shapes tilted in 3D. If the visual system only relies on the sensory 

input from the 2D stimulus, there is no way to achieve one unique solution among all the 

alternatives. Empirically, on the other hand, human observers appear not to suffer from this 

ambiguity, and always reach the stable percept of a wobbling disk tilted in 3D when a fat ellipse 

is present and the stable percept of a 2D ellipse when a narrow ellipse is presented. Another 

interesting observation is that if the 2D ellipse is rocking instead of rotating, it is more difficult 

for human observers to reliably perceive a wobbling 3D disk. Besides, when there is a dot on the 

2D ellipse, the position of the dot will have a major effect on the perceived structure, more 

specifically, a wobbling 3D cone is perceived if the dot is on the minor axis whereas a wobbling 

tilted 3D disk with a dot sliding on it is perceived if the dot is on the major axis. In this chapter, 

we aimed to answer three questions: 1) why a tilted wobbling 3D disk is preferred among all 

alternative planar interpretations; 2) why it is more difficult to perceive the 3D disk if the ellipse 
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is rocking or if the ellipse is narrow; And 3) why the dots at different positions on the 2D ellipse 

will lead to totally different percepts.  

 

Yuille and Grzywacz’s (1988) motion coherence theory and Weiss, Simoncelli, and Adelson’s  

(2002) slow and smooth Bayesian framework tried frame the 2D motion and structure from 

motion question into an optimization problem, and proposed that among all possible 2D motion 

interpretations, the one that gives rise to slowest and spatially smoothest motion is preferred by 

the visual system. Yuille and Grzywacz (1989) further suggested that to deal with motion that 

not only composed of pure translation and rotation, higher order regularization terms are 

necessary. However, previous work focused on 2D motion and structure and as a result could not 

resolve the 3D motion and structure problem. In this chapter, we developed a computational 

model that that combines the slow and smooth priors in 3D so that the structure from motion 

problem in 3D can be solved. The computational model we proposed provided answers to all 

three questions we described above using one unique principle, that is, the 3D interpretation that 

gives rise to the slowest and spatially smoothest motion is preferred by the visual system. When 

motion smoothness is concerned, previous usually took into account the zero order (slowness) 

and the first order (1
st
 order spatial smoothness) motion smoothness regulation term for 

computational simplicity, although Yuille and Grzywacz (1989) theoretically elaborated the 

significance of higher order regulation terms. In this chapter, we also demonstrated that it is 

necessary to take into account the higher order motion spatial smoothness so that the visual 

system can determine the optimal structure interpretation.   
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3.2. Question 1: Why a tilted wobbling 3D disk is perceived? 

 

3.2.1. Methods 

 

An ellipse rotating on the image plane can be interpreted as a deforming rotating ellipse tilted in 

3D space. Assume that the stimulus is a 2D ellipse on the x-y plane with the semi-major axis a 

on x axis and semi-minor axis b on y axis, and the ellipse can be expressed as: 
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And the ellipse on the x-y plane can be interpreted as the projection of a tilted 3D ellipse with 

tilted angle of   (the angle between the semi-minor axes of the x-y plane ellipse and the tilted 

ellipse), so that the tilted ellipse can be expressed as: 
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There is a rotation  around the z axis, so considering the rotation: 
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From Equation (3.6.), when only the rigid rotation is considered, the tilted ellipse at time t can be 

expressed as: 
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So the rigid motion is simply the temporal derivative of Equation (3.7.), which is: 
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In addition to the rigid rotation, we assume that there is a spin along the contour, and the spin is 

always in the direction of the contour tangent that cancels part of the rigid rotation: 
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So the motion is the rigid rotation combined with the spin: 
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Recall that the regularization theory proposed that the motion measurement is the motion field 

that gives rise to a minimum value of the loss function: 
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Here in our example given the ellipse on the x-y plane, )(vE


is a function of tilted angle   and 

spin  . We first calculated the values for each of the regularization terms up to the 3
rd

 order 

defined in Equation (3.1.) as a function of the spin   for different tilted angles. This calculation 

will give us a better understanding about the significance of motion smoothness regulation terms 

at different orders. Then we combined the penalty resulted from each order regularization term, 

and calculated the lost function. We calculated the loss function value at different tilted angle  , 

given the ellipse on the x-y plane, and checked which tilted angle gives rise to the global 

minimum of the loss function value. 
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3.2.2. Results 

 

For a given x-y ellipse, we first calculated the values for each of the regularization terms up to 

the 3
rd

 order defined in Equation (3.1.) as a function of the spin   under  different interpretations 

of tilted angles. We did this so that we can have a good understanding about the significance of 

the regularization terms on the overall lost function. More specifically, if the regularization term 

preferred a rigid structure interpretation, then a spin close to zero will give rise to a minimum in 

the term. In contrast, if a regularization terms focuses more on the slowness of the total motion, 

then a spin that can maximally cancel the rotational component gives rise to the minimum in this 

term. We followed the definition in Equation (3.1.), and used in all the following computations   

= 2, which is about the mid-point of the suggested range of the parameter selection (Yuille and 

Grzywacz 1988, 1989). Figure (3.1.), (3.2.), (3.3.), and (3.4.) showed the lost function value for 

different order regulation terms under structure interpretations of tilted ellipses at different 

angles, from smaller tilted angle to larger ones, given an x-y elliptical stimulus with aspect ratio 

0.8. 
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Spin (in radians) 

 

Figure 3.1. The values of 0 to 3 orders of regularization terms assuming that the x-y plane ellipse 

is projected from an ellipse tilted at angle 0 degree (2D ellipse on the image plane). Blue: 0 order 

derivation (total motion); Red: 1
st
 order derivative of motion; Green: 2

nd
 order derivative of 

motion; Black: 3
rd

 order derivative of motion. Lower order regularization terms tend to prefer the 

interpretation that gives rise to a slower total motion (so that high spinning to cancel the rotation 

is preferred) whereas higher order regularization terms tend to prefer a rigid structure (so no 

spinning is preferred). 
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We can clearly see from Figure (3.1.) that with a certain range of spin   the 0 order 

regularization term (blue) and 1
st
 order regularization term (red) can be very small. However, at 

this point, the motion is highly non-rigid which leads to high penalty from the 2
nd

 and 3
rd

 order 

regularization terms (especially the 3
rd

 order term). This graph demonstrated the significance of 

the higher order regularization terms, especially when the motion is not simply consist of 

translation and rigid rotation. Many previous works emphasized only the first order 

regularization (for example, Horn and Schunck 1981) or only zero and first order regularizations 

(for example Weiss et al., 2002). The current study showed that the 3
rd

 order regularization term 

can play a significant role in the motion estimation, especially when the object motion has non-

rigid components. Figure (3.2.) below showed similar pattern when the interpretation is a tilted 

ellipse with a small tilted angle (  = 22.9
o
).  
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Spin (in radians) 

 

Figure 3.2. The values of 0 to 3 orders of regularization terms assuming that the x-y plane ellipse 

is projected from an ellipse tilted at angle 22.9 degree. Legends follow Figure (3.1.). Similarly, 

lower order regularization terms tend to prefer the interpretation that gives rise to a slower total 

motion (so that high spinning to cancel the rotation is preferred) whereas higher order 

regularization terms tend to prefer a rigid structure (so no spinning is preferred). 

 

We can see from Figure (3.3.) that when the interpretation is a tilted disk (tilted angle   = 36.9
o
), 

the higher order regularization term no longer put penalty to the spin, more specifically, since 

under this interpretation, the spin will not introduce non-rigidity, so that the higher order 
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regularizations will tolerate the spin. More importantly, different orders of regularization terms 

reach global minimum with the same spin magnitude.  

 

 

Spin (in radians) 

 

Figure 3.3. The values of 0 to 3 orders of regularization terms assuming that the x-y plane ellipse 

is projected from an ellipse tilted at angle 36.9 degree (tilted disk). Legends follow Figure (3.1.). 

This interpretation (a 3D tilted wobbling disk) is special because both the lower order and the 

higher order regularization terms reach the global minimum at the same optimal spinning.  
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We can also see that when the interpretation is an ellipse with a large angle (tilted angle   = 

55.4
o
) as shown in Figure (3.4.), the higher order regularization term again put high penalty to 

the non-rigidity introduced by the spinning, and favors no spin. In general, we can see that the 

interpretation of a tilted disk is a very special interpretation where the minimum of “slow” 

regularization meets the minimum of different orders of “smooth” regularizations.  

 

 

Spin (in radians) 

 

Figure 3.4. The values of 0 to 3 orders of regularization terms assuming that the x-y plane ellipse 

is projected from an ellipse tilted at angle 54.4 degree. Legends follow Figure (3.1.) Similarly, 
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lower order regularization terms tend to prefer the interpretation that gives rise to a slower total 

motion (so that high spinning to cancel the rotation is preferred) whereas higher order 

regularization terms tend to prefer a rigid structure (so no spinning is preferred). 

 

To summarize, for all elliptical structure interpretations, the lower order regularization terms 

tend to prefer the interpretation that gives rise to a slower total motion (so that high spinning to 

cancel the rotation is preferred) whereas higher order regularization terms tend to prefer a rigid 

structure (so that no spinning is preferred). This might provide an answer to why if only slow and 

1
st
 order smooth is taken into account, then a 2D deforming ellipse is preferred for fat ellipse as 

suggested by Weiss (1998). In general, the higher order motion smoothness regularization term 

put high penalty on non-rigid structure interpretation. After understanding what regularization 

term plays a significant role in the motion estimate, we then calculated the combined 

regularization cost functions value defined by Equation (3.1.). Figure (3.5.) shows the loss 

function value when the x-y plane image is a circle, the minimum point is at tilted angle   = 0
o
, 

namely the static circle on the x-y plane is the optimal solution from the motion coherence theory 

in 3D, consistent with human observer’s experience.  
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Tilted angle (degree) of the ellipse interpretation 

 

Figure 3.5. The loss function value assuming that the x-y plane circle is projected from an ellipse 

tilted at different angles. The loss function is a weighted combination of 0 to 4 order 

regularization terms, and the weights were defined following Grzywacz and Yuille, 1988. The 

global minimum is located right at tilted angle   = 0
o
, and the loss value increases monotonically 

as the tilted angel deviates from zero. The model predicts that a static 2D circle is perceived, 

which is consistent with the human percept.  
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When the x-y plan image is not a circle, but an ellipse, human observers reliably report 

perceiving a 3D tilted wobbling disk, after a brief percept of 2D ellipse. Figure 3.6. shows the 

loss function value when the x-y plane image is an ellipse with aspect ratio 0.8. It is clear that the 

minimum point is no longer at tilted angle   = 0
o
, instead the minimum points are at   = ±33.2

o
. 

And when the interpretation is a tilted disk, the tilted angle is   = ±36.9
o
. It is noteworthy that 

the theoretical predicted   giving rise to the minimal loss function value depends on the selection 

of free parameter   (in our case we selected   = 2), more specifically, smaller   will put more 

weights on lower order regularization terms and thus favors the interpretation on the x-y plane, 

whereas larger   will but more weights on higher order regularization terms and thus favors the 

interpretation of a tilted disk. In our case, if a larger   is selected (value up to 4 is reasonable, 

more details in Yuille and Grzywacz, 1989) our theoretical predicted interpretation will be even 

more close to the prediction of a tilted disk. Our theoretical prediction is quantitatively very close 

to the interpretation of a tilted disk, and it predicts the empirical observation that when a rotating 

ellipse is presented human observers reliably perceive a tilted wobbling disk.  
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Tilted angle (degree) of the ellipse interpretation 

 

Figure 3.6. The loss function value assuming that the x-y plane ellipse (with aspect ratio 0.8) is 

projected from an ellipse tilted in space at different angles. The loss function is defined in a same 

way as described before. The global minimum are located at   = ±33.2
o
, and the loss value first 

decreases monotonically as the tilted angel deviates from zero until the global minimum points 

are reached, and then increase monotonically as the tilted angle is further increased. The model 

predicts that a static 3D wobbling disk is perceived, which is consistent with the human percept.  
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3.3. Question 2: Why a 3D disk is difficult to see if the ellipse is narrow or 

rocking?  

 

3.3.1. Methods 

 

We first calculated the loss function for narrower ellipse to make a comparison to the loss 

function obtained from fat ellipse. The definition of the loss function was identical to that was 

described above. We then hypothesized that the when the 2D ellipse is presented, the visual 

system starts with an interpretation that the structure is an ellipse on the 2D image plane. Then 

the visual system keeps updating the interpretation so that the loss function value will keep 

decreasing until a global minimum is reached, and the stable precept is the one correspond to the 

interpretation with globally minimum loss.  

 

To simulate the inference process, we adopted the gradient descent algorithm (Morse and 

Feshbach, 1953) with fixed step size. Assuming that the interpretation starts at angle   = 0
o
, 

which is a 2D ellipse on the image plane, then   is updated in the direction that decreases the 

loss function value defined in Equation (3.1.) following the update rule: 

 

                                      






E
nn 1  (3.12.) 
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where   is the step size and we used   = .1
o 

in this study. It is sensible to assume that the 

more step it takes for the gradient descent algorithm to converge, the more difficult it is for the 

visual system to achieve a stable percept, so the number of steps can be a measurement of how 

difficult it is to form a stable percept.   

 

 

3.3.2. Results 

 

When the x-y plan image is a narrower ellipse, though it is still likely that human observers can 

perceive a tilted wobbling disk after longer observation, it is more difficult for them to achieve 

such a 3D percept, instead, a 2D rotating ellipse is easier to perceive. Figure 3.7. shows the loss 

function value when the x-y plane image is a narrower ellipse with aspect ratio 0.5. It is clear that 

the minimum point is still not at tilted angle   = 0
o
, instead the minimum points are at   = 

±58.4
o
. And when the interpretation is a tilted disk, the tilted angle is   = ±60

o
.  
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Tilted angle (degree) of the ellipse interpretation 

 

Figure 3.7. The loss function value assuming that the x-y plane ellipse (with aspect ratio 0.5) is 

projected from an ellipse tilted in space at different angles. The loss function is defined in a same 

way as described before. The global minimum are located at   = ±58.4
o
, and the loss value first 

decreases monotonically as the tilted angel deviates from zero until the global minimum points 

are reached, and then increase monotonically as the tilted angle is further increased. The model 

predicts that a static 3D wobbling disk is perceived given that the visual system is provided 

sufficient time to reach the global minimum. Human observers need longer observation time and 

feel more difficult to perceive a 3D wobbling disk, instead a 2D rotating ellipse is easier to 

perceive. This discrepancy is explained in details below.  
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Aspect Ratio of the x-y plane ellipse 

 

Figure 3.8. The number of iterations for a gradient descent algorithm to reach global minimum 

when the x-y plane image is ellipse with different aspect ratios. Number of iterations increases as 

the aspect ratio gets smaller, more specifically, when the aspect ratio is smaller than 0.6, the 

number of interactions increases dramatically as aspect ratio decreases. Number of iterations in 

the simulation can indicate the time it takes for a biological visual system to achieve an optimal 

visual interpretation of structure and motion. The simulation is consistent with the empirical 

evidence that it takes longer (and more difficult) for human observers to perceive a tilted 3D 

wobbling disk if the x-y plane ellipse is narrow.  
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Why it takes longer and more difficult for human observers to perceive a 3D tilted wobbling disk 

in a narrow ellipse case? If we hypothesize that the visual system is trying to minimize the loss 

function value starting from a interpretation of ellipse on the x-y image plane (tilted angle   = 

0
o
) following a method similar to the gradient descent (Morse and Feshbach, 1953), since 

compared to the loss function shown in Figure 3.6., the loss function in Figure 3.7. decreases 

slower from the point of tilted angle   = 0
o
, more specifically, starting from the point of   = 0

o
 

the gradient of the loss function for a narrow ellipse is smaller than that for a fat ellipse. Using 

the gradient descent algorithm described in the previous section, we found that it takes the 

algorithm more steps to converge to the global minimum for narrower ellipse than that for fat 

ellipse. Figure (3.8.) showed the number of iterations that is needed when a global minimum of 

the loss function is reached, if starting from the interpretation that the tilted angle   = 0
o
. It is 

clear that when the ellipse is narrower, it takes longer to reach the optimal solution. Actually 

when the aspect ratio is small enough (for example, smaller than 0.6), the number of iterations 

needed to converge to global minimum increases dramatically as the x-y plane ellipse aspect 

ratio gets smaller. This fact indicates an optimal solution (tilted 3D disk) for very narrow ellipse 

is practically impossible to achieve if starting from the interpretation of an x-y plane ellipse. 

Empirically, Duncan (1975) found that in order that a rotating ellipse can be perceived as a 

wobbling 3D disk, the eccentricity of the ellipse should be 0.87, which is equivalent to requiring 

that the aspect ratio of the ellipse being larger than 0.49. It is clear in Figure (3.8.) that the 

number of steps needed for a gradient descent algorithm to converge to a global minimum slowly 

increases as the aspect ratio decreases from 1.0, until around 0.55. Then around the point of 
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aspect ratio 0.50, the steps needed starts increasing dramatically as the aspect ratio decreases, 

which means practically it is impossible for the visual system to perceive a 3D wobbling disk 

beyond aspect ratio of 0.5. Our computational model quantitatively matches the empirical results 

by Duncan (1975).  

 

The same logic can explain the interesting empirical fact that even for ellipse with aspect ratio 

that human observers can reliably perceive a tilted 3D wobbling disk when the ellipse is 

continuously rotating, it is more difficult for the human observers to perceive the disk if the 

ellipse is rocking. Our computational model and gradient descent simulation shed lights on this 

phenomenon as well. More specifically, if we assume that human observers have an initial 

interpretation that the shape is 2D (tilted angle   = 0
o
), and then evaluates the loss function value 

and aim to decrease the loss by adopting new interpretations (different tilted angle). As we have 

shown above, the global minimum of the loss function lies on the tilted angle that gives rise to a 

tilted 3D wobbling disk (Figure 3.6. and 3.7.), and at the same time it takes time to reach the 

global minimum (as number of steps shown in Figure 3.8). When the ellipse is continuously 

rotating, it is possible for the visual system to actively update the interpretation to decrease the 

loss and ultimately reach the global minimum. However, when the ellipse is rocking, the updated 

interpretation is disturbed when the ellipse stopped and reversed rotation abruptly so that it is 

hard for the visual system to update the interpretation until a global minimum is achieved. In the 

meanwhile, it is still not clear what the interpretation will be right after the point when motion 

abruptly changes direction.  
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3.4. Question 3: Why the dot position on the ellipse affects structure 

perception?   

 

3.4.1. Methods 

 

In this section, we aimed to model the percept when there is a dot on either the major or minor 

axis of the ellipse. Empirically, when the dot is on the minor axis, human observers perceive a 

tilted rigid 3D cone whereas when the dot is on the major axis, human observers perceive a tilted 

rotating 3D disk with a dot sliding on the disk.  

 

Following the definitions from Equation (3.4.) to (3.10.), a tilted disk can be expressed as: 
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where 
22 bac  . There is a rotation  around the z axis, so considering the rotation: 
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From Equation (3.14.), when only the rigid rotation is considered, the tilted ellipse at time t can 

be expressed as: 
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So the rigid motion is simply the temporal derivative of Equation (3.15.), which is: 
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In addition to the rigid rotation, we assume that there is a spin along the contour, and the spin is 

always in the direction of the contour tangent that cancels part of the rigid rotation: 
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When the dot is on the minor axis, the position taking into account rotation is: 
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where d is a constant describing the distance from the dot to the ellipse center, and h is a variable 

depicting the perceived distance from the dot to the x-y image plane.  

 

Given that human observers perceive a rigid 3D cone when the dot is on the minor axis, it is 

sensible to assume that the visual system ‘fills in’ implied surface in the space between the tip 

and the base of the perceived cone, so that the inferred structure is no longer an isolated tilted 

disk and a dot. As a result, we assumed that while making inference about the 3D structure of the 

stimulus, the visual system also take into account motion on the implied contours in the space 

between the dot and tilted disk. Figure (3.9.) demonstrated the perceived tilted cone. The black 

contour and the black dot are perceived base and tip of the cone from the 2D ellipse with a dot on 

it, and the three green contours are implied contours on the surface of the cone. Note that there 

are two motion components for the 3D cone, one is a rotation ω along the z-axis, and the other is 

the spinning ψ along an axis going through the center of the tilted disk and normal to the tilted 

disk plane. In Figure (3.9.) the 3 contours in planes parallel to the tilted disk plane, and are of a 

quarter, a half and three quarters of the cone’s height away to the disk plane.  
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Figure 3.9. The perceived tilted cone from a rotating ellipse with a dot on the minor axis. The 

stimulus is an ellipse with aspect ratio .8 on the x-y plane. A dot is located on the minor axis with 

distance .6a from the ellipse center, where a is the ellipse’s major half axis. The black contour 

and the black dot are the perceived base and tip of the cone from the 2D ellipse with a dot on it, 

and the three green contours are implied contours on the surface of the cone. Note that there are 

two motion components for the 3D cone, one is a rotation ω along the z-axis, and the other is the 

spinning ψ along an axis going through the center of the tilted disk and normal to the tilted disk 

plane. The 3 contours in planes parallel to the tilted disk plane, and are of a quarter, a half and 

three quarters of the cone’s height away to the disk plane. 
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So the position of the green contour in the midway is: 
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And the rotational components of the same contour in the mid-way are: 
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In Equation (3.18.) and (3.19.) )(tx , )(ty , and )(tz represent position of the tiled disk, which are 

defined in Equation (3.15.). )(tvx , )(tv y and )(tvz are the rotational components for the tilted 

disk, which are defined in Equation (3.16.). )(0 tx , )(0 ty and )(0 tz represent the position of the 

dot, which are defined in Equation (3.18.).  

 

To calculate the spinning component of this green contour, we first calculate the spinning center 

on the same green contour plane: 
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So the spinning component of this contour is: 
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And the motion of this contour is a combination of rotational and spinning components. 

Similarly we can get the motion of the other two green contours.  

 

If the dot is on the major axis of the ellipse, then the position of the dot is: 
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And we can compute the motion for three implied contours following similar logic above. 
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Recall that the regularization theory proposed that the motion measurement is the motion field 

that gives rise to a minimum value of the loss function: 
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 (3.24.) 

 

Here in our example given the ellipse on the x-y plane, )(vE


is a function of cone height h and 

spin   in Equation (3.17). We first calculated the values for each of the regularization terms up 

to the 3
rd

 order defined in Equation (3.24.) as a function of the spin   for different cone height h 

and for each h we select the spin that gives rise to a global minimum of the loss function. Then 

we compare the loss function value with optimal spin across different cone height h to determine 

the optimal cone height that gives rise to the minimum loss function value. We hypothesized that 

the optimal cone height h in our computational model is preferred by the visual system.  

 

 

3.4.2. Results 

 

Figure (3.10) showed the loss function when the dot is on the minor axis, as a function of the 

cone height h. The ellipse’s major half axis was 100 (arbitrary unit), minor half axis was 80, and 

distance between the dot and the ellipse center was 60. The model predicted that the cone height 

that gives rise to a global minimum of the loss function is hmodel = 75. Form straightforward 
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geometrical derivation, we know that the symmetric cone that gives rise to the 2D projection on 

the x-y plane has a height hgeo = 80. Prediction from our computational model is quantitative 

close to the geometrical solution.  

 

 

 

Figure 3.10. Loss function as a function of cone height (dot on minor axis). The stimulus is an 

ellipse on the x-y plane with a dot on the minor axis, and σ = 2 was used in the simulation. The 

ellipse has major half axis a = 100, aspect ratio = .8, the distance from ellipse center to the dot d 

= 60. The computational model predicted hmodel = 75, and geometrical derivation results in hgeo = 

80. Prediction from our computational model is quantitative close to the geometrical solution.  
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When manipulating the distance between the dot and the ellipse center, we found that when the 

distance was 40 hmodel = 33, and geometrical derivation results in hgeo = 53, and when the 

distance was 20, hmodel = 14, and geometrical derivation results in hgeo = 27. The predictions 

from our model reflected the qualitative trend of results from geometrical derivation. When 

manipulating the aspect ratio of the ellipse while fixing the distance between the dot and the 

ellipse center to be 60, we found that when aspect ratio was .7 hmodel = 12, and geometrical 

derivation results in hgeo = 19, and when the aspect ratio was 20, hmodel = 9, and geometrical 

derivation results in hgeo = 15. Again the predictions from our model reflected the qualitative 

trend of results from geometrical derivation. To summarize, when the dot is on the minor axis of 

the ellipse, our computational model predicted that a tilted 3D cone is the optimal structure 

interpretation, which is consistent with human observer’s percept.  

 

When the dot is on the ellipse’s major axis, the computational model predicted hmodel = 0 for any 

d. The loss function as a function of cone height is shown in Figure (3.11.). This means that the 

optimal solution is when the dot is on the tilted disk. And given that the dot has smaller spinning 

component relative to the rotational component compared to that on the contour, and that the 

motion is a combination of the spin and rotation (note that the spinning and rotational 

components are in the opposite directions), so the computation model predicted that the optimal 

structure interpretation is a dot slipping on a tilted wobbling disk. The model prediction is again 

consistent with human observer’s percept. 
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Figure 3.11. Loss function as a function of cone height (dot on major axis). The stimulus is an 

ellipse on the x-y plane with a dot on the major axis, and σ = 2 was used in the simulation. The 

ellipse has major half axis a = 100, aspect ratio = .8, the distance from ellipse center to the dot d 

= 60. The computational model predicted hmodel = 0, meaning the dot is on the tilted disk. And 

given that the dot has a smaller spin component than on the contour, so the dot is perceived to be 

slipping on the tilted disk at a faster speed than the disk. The model prediction is consistent with 

human observer’s percept.  
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3.5. Discussion 

 

To answer the question why a tilted 3D wobbling disk is perceived when a rotating ellipse is 

presented, we invested the motion properties of the 3D percepts generated by a 2D stereokinetic 

stimulus. We hypothesized that the perceived 3D shape is an optimal structure interpretation with 

certain motion properties. More specifically, we hypothesized that among all the possible 3D 

interpretations, the one with slowest and spatially smoothest motion field is proffered. We 

framed the 3D structure from motion question into an optimization problem. To solve the 3D 

structure and motion problem from the stereokinetic stimuli, additional priors have to be imposed 

in order that a unique answer can be found. The rigidity assumption on 2D is widely used that 

directly provides constraint to the object shape (Ullman, 1979, 1983). And 2D regularizations on 

motion are also popular (Yuille and Grzywacz, 1988; Weiss, Simoncelli, and Adelson, 2002). 

We showed that 3D motion regularization provide sufficient constraints for solving the motion 

and structure of 3D object. We also showed that when higher order smoothness of motion is 

adopted, there is no need to further impose the rigidity assumption to solve the structure from 

motion.  

 

Human observers, when presented with the stereokinetic stimulus, typically perceive a rigid 

moving 2D pattern at the beginning and in the end a stable percept of a 3D moving object is 

achieved. In our study, we investigated a rotating rigid ellipse on a 2D image plane, which leads 

to the percept of a rigid ellipse rotating on the image plane when the aspect ratio is small and a 

tilted wobbling disk in 3D when the aspect ratio is large. We showed that the interpretation of a 
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wobbling 3D disk is the global optimal solution when the ellipse is fat, which is consistent with 

human observer’s percept. On the other hand, when the ellipse is narrow, although the global 

optimal is still a tilted 3D disk, our computational model suggests that it takes longer for the 

visual system to reach the global optimal. Siegel and Andersen (1988) found that the temporal 

integration is important in the structure from motion perception for both human and monkey. So 

longer processing time required to converge for narrow ellipse suggested that it is more difficult 

for human to perceive a 3D disk in this scenario, which is also consistent with human observer’s 

experience. Following the same logic, our model also predicted that given a rocking ellipse 

stimulus, the human visual system may not have sufficient time to achieve an optimal solution 

that gives rise to a 3D wobbling disk interpretation.  

 

Yuille and Grzywacz (1988) proposed the regularization theory to explain human motion 

perception in 2D. They hypothesized that, among all possible motion interpretations, the one that 

gives rise to slowest and spatially smoothest motion best explains human percept. Weiss, 

Simoncelli, and Adelson (2002) rephrased the regularization theory using a Bayesian 

probabilistic framework, and explicitly introduced the idea of “slow and smooth” prior, and 

essentially their framework is special case of the regularization theory taking into account the 

zero (slow) and first order (smooth) of the regularization terms. Yuille and Grzywacz (1989) 

suggested that to deal with motion that not merely composed of translation and rotation, higher 

order regularization terms are necessary. In our study, we found that lower order regularization 

terms focused more on the slowness of total motion, whereas the higher order regularization 

terms penalize heavily the spatially non-smoothness of the motion field, and consequently the 
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non-rigid structure interpretation. To achieve a motion and structure interpretation that is moving 

slowly and smoothly, higher order regularization terms needed to be imposed. In addition to that, 

it is important to understand that the optimal solution is not achieved immediately upon the 

visual stimuli. Instead, it takes time for the visual system to update the structure and related 

motion interpretation until an optimal solution is found. Based on the empirical evidence and the 

computational modeling, we believe that the slow and higher order spatially smooth prior 

account for both the 2D and 3D percept generated by this stereokinetic stimulus, and that the 

perceived shape and motion by human observer is an optimal solution from our computational 

model. 
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CHAPTER 4 

QUANTIFYING AND MODELING A STEREOKINETIC PERCEPT 

 

 

4.1. Introduction 

 

The goal of visual perception is to make accurate and precise inference about the environment so 

that an organism can behave properly and survive. Visual perception is an inverse problem, 

namely, the information from the external world is insufficiency and as a result cannot lead to a 

unique inference that can direct the proper behavior. Because of the insufficient sensory input 

information, ambiguity inevitably exists in visual perception. The perception of depth is an 

example for such ambiguity in visual perception. A two-dimensional (2D) image on the retina 

conveys indirect depth information about the 3D environment, but any direct measurement of the 

depth in space is inevitably lost in the process of the projecting information from the external 

environment to the retina. Although the projection from outside world to retina follows 

straightforward optics principle, the reversal puzzle, namely recovering the 3D depth from a 2D 

retina image is much more complex. The complexity of such puzzle finds its roots in the fact that 

there are infinite 3D structures that can give rise to exactly the same 2D projection on the retina. 

The human visual system, on the other hand, does not suffer from the ambiguity from the 

projection and information loss. In most cases, the human visual system recovers the 3D depth of 

the external environmental accurately. 
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In the meanwhile, although the human visual system can always achieve a unique inference 

about the external world, such inference is not guaranteed to be consistent with the physical 

environment, and visual illusion happens in these scenarios. A good example is the Benussi 

effect (Benussi, 1916), specifically, when a circle is rotating on an image plane and the center of 

the circle is displaced from the rotating axis, the circle seems to be at different depth as the 

image plane (either floating above or recede below). Musatti (1924) independently discovered 

this illusion around the same time. In addition to the science society, some artists independently 

discovered similar visual illusion and used in their arts creations (Duchamp, 1920s; Duncan, 

1970s; For review, Shearer and Gould, 1999). If there are multiple eccentric circles rotating on 

the plane, each of the circles will be perceived at a certain depth. As a matter of fact, it is the 

same inference process that enables the human visual system to solve the 3D depth ambiguity as 

the one that makes the visual system subject to the visual illusions described above. Specifically, 

this inference process consists of combining certain assumptions with the 2D sensory 

information on retina. The assumptions applied by the visual system are critical in overcoming 

the inherently ambiguous problem of depth. Depth perception is thus a heuristic process in which 

inference is not only based on well-defined input sensory information, but prior assumptions as 

well. In most cases, the prior assumption leads to veridical visual inference that makes us behave 

properly in the environment and in other cases it leads us to visual illusions. 

 

Previous studies suggested that there are multiple cues and assumptions about the 3D depth that 

can be used by the visual system. One of the important principles used for monocular depth 

perception is the linear perspective principle. Based on linear perspective, the projected image 
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size of an object is inversely proportional to the distance from the observer to object. It is 

noteworthy that the application of linear perspective principle is directly related to the perceived 

viewing distance (and the perceived size of the distant object) which is not necessarily the same 

as the physical measurements. The second important assumption that can assist the visual system 

to recover the depth is the rigidity prior (Ullman, 1983): all else being equal, if there is an 

interpretation that is consistent with the motion of a rigid objects, such interpretation will be 

most likely accepted by the visual system. The rigidity prior is consistent with the statistical 

distribution of the object shape in the real world. Since a majority of the real world objects 

preserve rigidity, it is sensible for the visual system to assume that an object of interest is also a 

rigid object. For a strictly rigid object, the relative distance between different parts of the object 

remain the same as the object moves. In perception studies, the rigidity is commonly defined as a 

continuous measurement rather than a yes-or-no decision. In general, a shape that is more rigid is 

preferred by the rigidity prior.   

 

 

 

Figure 4.1. A linear perspective projection example. The projected image size of an object is 

inversely proportional to the distance from the object to the observer. In this example, the 
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horizontal distance between the left and right handrails are identical no matter at a point closer to 

the observer or at a point further away. However, the distance looks longer at closer point 

whereas it looks shorter at further away points, because of the linear perspective projection.  

 

In addition to linear perspective and rigidity, Wallach and O'Connell (1953) described a depth 

precept derived from motion cues, which they called the kinetic depth effect (KDE). In KDE, the 

depth is recovered from the rigidity heuristic and motion cues, and motion is estimated given 

such rigid shape interpretation. Gibson (1966) also emphasized that that depth information can 

also arise from motion, more specifically, form points moving at different retinal velocities. And 

the pattern of the apparent retinal velocity is called the optic flow. In general, this is called depth 

from motion. For example, if an object is moving, object parts will move in different manners 

because the parts are at different depth from the observer, and the difference in motion for 

different object parts is called the motion parallax. The depth from motion problem seems 

straightforward if the motion measurement is well defined, but the measurement of motion turns 

out to be a difficult question in the first place. The biggest challenge is the correspondence 

problem, namely, the problem of deciding in the retina image which part at time point t1 

correspondent to which part at time t2. When the retina image has salient features, it is less 

difficult to solve the correspondence problem. However, if no salient feature is available, 

correspondence problem can bring ambiguity to motion perception. One example is the aperture 

problem. When a human observer is looking at the stimuli through an aperture the motion is 

always perceived to be perpendicular to the stripes no matter what the “real” motion is (Figure 

4.2.). In general, the measurement of depth and the measurement of motion are tightly 
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intertwined questions, because the depth determines the correspondence for motion perception 

and in the meanwhile motion decides the depth interpretation. 

 

 

 

Figure 4.2. Schematic illustration of the aperture problem. For any of the three “real” motion of 

the board, if a human observer looks through the circular aperture, the observer will report that a 

motion perpendicular to the stripes is perceived. Adapted from Movshon et al. (1985). 

 

In the current study, we planned to quantify a stereokinetic effect similar to the one Benussi and 

Musatti discovered. More specifically, when two circles are rotating on an image plane and both 

circular centers are displaced from the rotation axis, the two circles seem to be each at a different 

depth. The two circles form a tilted cylinder with a specific depth, and we plan to quantify the 

depth of the perceived cylinder. Quantitative empirical studies on the stereokinetic effect relied 

on the participant’s reported estimate of the depth, for example, using ruler (Zanforlin, 1988). 

Such measurements usually involve the observer’s motor system which may complicate the 
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interpretation of the measurement (Goodale and Milner, 1992; Króliczak et al., 2006; Knill, 2005; 

Hartung et al., 2005).  

 

Rokers, Yuille, and Liu (2006) used a new measurement to quantify a stereokinetic stimulus 

without asking the subject heavily deploy the motor system. Instead, the task was pressing 

buttons to adjust a visual stimulus. Their quantitative study showed reliable results with small 

between and within subject variance. In the current study, we developed a new method to 

measure the perceived depth of the rotating circles that has heavy reliance on the motor system. 

More specifically we designed a stimulus that composed of two eccentric rotating circles, one of 

which has its radius adjustable. The observers adjust the radius of one circle until they perceive a 

uniformly rotating cylinder, namely, the two circles are perceived to be same size in 3D. Based 

on linear perspective, the circle that perceived to be further away will have a smaller retina 

image, and the relative depth can be calculated from the ratio between the two circular radii on 

the retina image assuming that the absolutely distance from observer to one circle in known. 

Since the ratio between the two radiuses is identical to the ratio of the two radiuses on the image 

plane, the relative depth can be calculated from the physical radius ratio.  

 

The interesting fact is that human observers reliably report that they perceive a cylinder of a 

definite depth. Why they do not perceive a cylinder of zero depth? And why on the other extreme, 

they do not perceive a cylinder of infinite length? These questions touched the underlying 

essence of the stereokinetic effect’s mechanisms. In addition to the empirical studies aiming to 

quantify the stereokinetic effect, researchers also have been trying to explore the underlying 
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mechanism of the phenomenon in the hope that a computational theory will explain the 

stereokinetic effect. Previous theories tried to explain this effect using the rigidity prior (Wallach 

and O'Connell, 1953). However, the rigidity prior cannot provide the visual system with a unique 

solution in the stereokinetic stimulus investigated in the current study. The rigidity prior only 

gives rise to a family of rigid truncated cone-shape interpretations, but there are still infinite 

possibilities on the relative depth between circles. On the other hand, human observers not only 

perceive a unique truncated cone (cylinder is a special truncated cone), but also perceive a cone 

with a definite depth. Why such depth is perceived remains an open question.  

 

Yuille and Grzywacz (1988) proposed the regularization theory claiming that a motion 

interpretation with the slowest and spatially smoothest 2D motion is preferred by the visual 

system. Rokers, Yuille, and Liu (2006) further demonstrated that perceptual ambiguity in a 

stereokinetic stimuli composed by a single ellipse can be resolved using slow motion constraints 

in 3D. In the current study, we hypothesized that the visual system groups the two circles to form 

a cylinder percept, and the cylinder structure interpretation that gives rise to the slowest and 

spatially smoothest motion in 3D is preferred by the visual system, and such preferred 

interpretation will give rise to a definite depth of the perceived cylinder. From the hypothesis, we 

developed a computational model that explains the mechanism of the stereokinetic effect. We 

tested the computational model with the empirical finding from the current study and found that 

the model qualitatively predicted the empirical results.  
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4.2. Experiments 

 

4.2.1. Experiment 1: Radius ratio adjustment and distance pointing 

 

4.2.1.1. Participants 

 

19 students and faculty (9 female, 10 male) from UCLA participated in the experiment. 

 

 

4.2.1.2. Apparatus and stimuli 

 

The computer graphical stimuli are rendered using OpenGL and PsychToolBox 3 in MATLAB 

pixels and refresh rate of 75 Hz. A vision cube is used to mask of the edges of the screen, and a 

chin rest is also used to fix the viewing distance at 40 cm. 

 

A light-emitted diode (LED) sensor was attached to the tip of the participant’s index finger, and 

its position was accurately tracked by a Precise Position Tracking (PPT) recording system 

manufactured by WorldWizard (accuracy = ±.5 cm, precision = ±.1 cm). This system can track 

the position of the LED at a very high frequency (latency < 20 milliseconds), and the participants 

pressed a button to control the recording system. 
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Two white circles are displayed on a black background, rotating around a common axis. One of 

the two circles is always of a fixed size, and the size is randomly chosen from five possible radii. 

The radius of the other circle is rendered by adding to the fixed radius a random real number 

(may be positive or negative). The participants observe the stimuli monocularly using their 

dominant eyes.  

 

 

 

Figure 4.3. Experiment stimuli consist of two rotating white circles in a dark background. The 

two circles are rotating along a common axis perpendicular to the image plane going through the 

mid-way of the two circular centers. The participant observes the stimulus monocularly using the 

dominant eye through a viewing tube in a dark testing room. 

 

 



87 

 

4.2.1.3. Procedure 

 

In each experimental trial, participants first adjusted the size of the variable circle so that a 

uniform cylinder can be perceived. It was emphasized to the participants that, by uniform 

cylinder, we meant that the two circles were perceived to be of identical size in 3D (they were 

perceived to be at different distance from the participants).  More specifically, because of the 3D 

percept from stereokinetic effect, two circles of identical size but at different distance from 

observer will be have different sizes on the retina because of linear perspective projection (more 

generally, on any projection plane perpendicular to the participant’s sightline). Besides, all 

participants were asked to indicate if the variable circle is perceived to be in front (close to the 

observer) or at back. Since all the participants reliably indicated that the larger circle is always in 

front, we define the larger circle to be the one in front and the smaller one at back in our analysis. 

 

After the participants had finished adjusting the radius of the variable circle so that a uniform 

cylinder was perceived, they were asked to use their index fingers to point to the front end of the 

perceived cylinder, and they were told make sure that their index finger tips were at same 

distance as the cylinder end to themselves. A blue LED was attached to the finger tip of the 

participant, and the participants controlled the PPT system described in the previous session by 

clicking a button to record the LED’s position. The LED’s position was recorded by taking 5 

recordings within one second, and the median of five groups of tracking coordinates will be used 

as a measurement. And then they were asked to point to the back end of the cylinder and the 
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position of the LED on the finger tip was recorded as well. There are 60 trials in the experiment, 

and it takes the participant about 45 minutes to finish the test.  

 

 

4.2.1.4. Results 

 

We first analyzed the ratio between the smaller circle radius and the larger circle radius. Suppose 

that the front end of the perceived uniform cylinder is at distance D from the observer, and the 

two circles are of radius r1 and r2 respectively (Figure 4.4.), then the height of the perceived 

cylinder (h) can be obtained follow the linear perspective projection principle: 
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From (4.2.) we know that with a constant D, the depth of the perceived cylinder can be obtained 

from participants’ radius adjustment ratio (r), more specifically, the larger the r, the shorter the 

perceived cylinder.   
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The reported ratio of the two radius was .904 ± .003 (standard error), which is significantly 

different from 1 (t(18) = 35.56, p < .001). That means participants reliably perceive a 3D 

uniform cylinder in the experiment, because a ratio of 1 should be expected if percept was 2D. 

The ratio for trials with inter-circular distance (ICD) 2.24 cm was .920 ± .003, and the ratio for 

trials with ICD = 4.48 cm was .888 ± .004. The effect of the ICD was highly significant: F(1, 18) 

= 57.921, p < 0.001 (see Figure 4.5.). The fact that condition of ICD = 4.48 cm has smaller ratio 

means that the perceived cylinder is significantly longer than that in the ICD = 2.24 cm 

condition, assuming that the viewing distance are identical in both conditions.  
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Figure 4.4. Schematic illustration of the percept from the stimuli of two rotating circles. The two 

circles are at the same distance from the observer. They are rotating around an axis perpendicular 

to the screen plane at rotational speed  . Without loss of generality, the larger circle (r1) was 

perceived to be at distance D from the observer whereas the smaller circles (r2) was perceived to 

be a projection of the hypothetical circle at distance D + h from the image plane (green dashed 

circle). The dashed green line starting from the observer depicts the linear perspective projection.  
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Figure 4.5. Adjustment radius ratio for the inter-circular distance factor (N = 19). Error bar 

represents standard error. Note that the vertical axis starts from .8 and ends at 1.0. Adjustment 

ratio under condition ICD = 4.48 cm is significantly smaller than that under condition ICD = 

2.24 cm, indicating that the perceived cylinder is longer in ICD = 4.48 condition, assuming that 

the viewing distance are identical in both conditions.  

 

The adjustment ratio for trials with fixed circle radius 2.85 cm was .902 ± .005, for trials with 

radius 3.70 cm was .897 ± .006, for trials with radius 4.56 cm was .904 ± .006, for trials with 

radius 5.41 cm was .909 ± .006, and for trials with radius 6.27 cm was .908 ± .007. The effect of 

the radius was significant: F(4, 72) = 3.035, p = 0.023 (see Figure 4.6.). The pattern of the ratio 

depending on circle radius is not clear, more specifically, all radii except 3.70 cm has statistically 

same adjustment ratio. Compared to the effect of ICD on the adjustment ratio, the effect of circle 
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radius was minor. In addition to the main effects of the ICD and circle radii factors, the 

interaction was significant: F(4, 72) = 14.029, p < 0.001 (see Figure 4.7.). 

 

 

 

Figure 4.6. Adjustment radius ratio for the circle radii factor (N = 19). Error bar represents 

standard error. Note that the vertical axis starts from .8 and ends at 1.0. There is no clear trend to 

demonstrate if the adjustment ratio is changing monotonically with the circle radii factor.  
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Figure 4.7. Adjustment radius ratio vs. two independent variable (IVs): ICD and circle radii (N = 

19). Error bar represents standard error. Note that the vertical axis starts from .8 and ends at 1.0. 

It is clear that the adjustment ratio decreases as ICD gets larger, whereas there is no clear trend to 

demonstrate if the adjustment ratio is changing monotonically with the circle radii factor. 

 

As we have discussed, the adjustment ratio can be used to compute the perceived cylinder depth 

by assuming that the center of the perceived cylinder is at a known viewing distance. From 

equation (4.2.) it is clear that the viewing distance serves as a constant, and we assumed that the 

viewing distance is identical to the physical viewing distance from the observer to the monitor 

screen, which is 40 cm. The converted cylinder depth for the 17 participants was 4.094 ± .118 

(cm). The converted cylinder depth for trials with ICD = 2.24 cm was 3.566 ± .126 (cm), and the 

ratio for trials with ICD = 4.48 cm was 4.822 ± .171 (cm). The effect of the ICD was highly 

significant: F(1, 18) = 55.551, p < 0.001. The converted cylinder depth for trials with fixed 
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circle radius 2.85 cm was 4.182 ± .232 (cm), for trials with radius 3.70 cm was 4.397 ± .256 

(cm), for trials with radius 4.56 cm was 4.096 ± .273 (cm), for trials with radius 5.41 cm was 

3.865 ± .273 (cm), and for trials with radius 6.27 cm was 3.930 ± .292 (cm). The effect of the 

radius was significant: F(4, 72) = 2.882, p = 0.028 (see Figure 4.8.). Compared to the effect of 

ICD on the converted cylinder depth, the effect of circle radius was minor. The converted 

cylinder depth increases as ICD gets larger, whereas there is no clear trend to demonstrate if the 

converted cylinder depth is changing monotonically with the circle radii factor. In addition to the 

main effects of the ICD and circle radii factors, the interaction was significant: F(4, 72) = 

13.581, p < 0.001. 

 

 

 

 

Figure 4.8. Converted cylinder depth (in centimeters) vs. two independent variable (IVs): ICD 

and circle radii (N = 19). The center of the perceived cylinder was assumed to be at the physical 
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viewing distance of 40 cm. Error bar represents standard error. Note that the vertical axis starts 

from 0 and ends at 10 cm. It is clear that the converted cylinder depth increases as ICD gets 

larger, whereas there is no clear trend to demonstrate if the converted cylinder depth is changing 

monotonically with the circle radii factor. 

 

In addition to the ratio adjustment measurement, 17 of the 19 participants (7 females, 10 males) 

did the task of pointing to both ends of the perceived cylinder after ratio adjustment in each trial. 

The observers’ finger tip positions (more specifically, the LED attached to their index finger tip) 

were recorded as a measurement of the perceived distance from themselves to the stimuli. The 

pointed front circle distance for the 17 participants was 31.669 ± .652 (cm). The pointed front 

circle distance for trials with ICD = 2.24 cm was 32.267 ± .938 (cm), and the pointed distance 

for trials with ICD = 4.48 cm was 31.072 ± .906 (cm). The effect of the ICD was significant: 

F(1, 16) = 8.187, p = 0.011. The pointed front circle distance for trials with fixed circle radius 

2.85 cm was 32.415 ± 1.480 (cm), for trials with radius 3.70 cm was 31.750 ± 1.410 (cm), for 

trials with radius 4.56 cm was 31.775 ± 1.545 (cm), for trials with radius 5.41 cm was 31.221 ± 

1.437 (cm), and for trials with radius 6.27 cm was 31.185 ± 1.489 (cm). The effect of the radius 

was significant: F(4, 64) = 3.910, p = 0.007. And there was no interaction. The larger the ICD 

the closer the pointed front circle distance and the larger the circle radius the smaller the 

distance, but all the difference are small, that is, the deviation of distance in different conditions 

are around 1 cm. Given the accuracy of the PPT recording system (±.5 cm,), we can see that 

there was no very big variance in the pointed distance for the front circle.  
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The pointed back circle distance for the 17 participants was 41.326 ± .729 (cm). The pointed 

front circle distance for trials with ICD = 2.24 cm was 40.951 ± 1.045 (cm), and the pointed 

distance for trials with ICD = 4.48 cm was 41.700 ± 1.020 (cm). The effect of the ICD was not 

significant, though the trend was the distance was larger when the ICD was larger. The pointed 

back circle distance for trials with fixed circle radius 2.85 cm was 41.913 ± 1.672 (cm), for trials 

with radius 3.70 cm was 41.054 ± 1.671 (cm), for trials with radius 4.56 cm was 41.798 ± 1.691 

(cm), for trials with radius 5.41 cm was 41.227 ± 1.536 (cm), and for trials with radius 6.27 cm 

was 40.636 ± 1.656 (cm). The effect of the radius was not significant and there was no 

interaction.  

 

The average of the pointed distance for front circle and that for the back circle can be used as a 

measurement of the viewing distance from the observer to the center of the perceived cylinder. 

The viewing distance for the 17 participants was 36.474 ± .669 (cm), indicating that the center of 

the perceived was actually closer to the participant compared to the physical viewing distance of 

40 cm (t(16) = 5.274, p < .001). The viewing distance with ICD = 2.24 cm was 36.609 ± .969 

(cm), and the pointed viewing distance with ICD = 4.48 cm was 36.338 ± .927 (cm). The effect 

of the ICD was not significant. The viewing distance for trials with fixed circle radius 2.85 cm 

was 37.164 ± 1.529 (cm), for trials with radius 3.70 cm was 36.402 ± 1.489 (cm), for trials with 

radius 4.56 cm was 36.787 ± 1.573 (cm), for trials with radius 5.41 cm was 36.105 ± 1.424 (cm), 

and for trials with radius 6.27 cm was 35.911 ± 1.536 (cm). The effect of the radius was 

significant: F(4, 64) = 3.282, p = 0.016. The fact that the larger the circle radius the smaller the 

distance indicated that participants tend to perceive larger circles to be closer to themes. But still 
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all the difference was small relative to the recording system recording accuracy of ±.5 cm. And 

there was no interaction. 

 

The difference of the pointed distance for back circle and that for the front circle can be used as a 

measurement of the perceived cylinder depth. The perceived cylinder depth for the 17 

participants was 9.752 ± .341 (cm), which is longer than the converted depth from the adjustment 

ration of 4.094 ± .118 (cm). It is noteworthy that the converted depth was calculated using the 

physical viewing distance of 40 cm, and if we use the viewing distance from the average 

pointing distance of the front and back circle in the experiment which was 36.474 ± .669 (cm), 

the converted cylinder depth will be even shorter than 4.094 ± .118 (cm). The perceived cylinder 

depth with ICD = 2.24 cm was 8.684 ± .430 (cm), and the perceived cylinder depth with ICD = 

4.48 cm was 10.820 ± .505 (cm). The effect of the ICD was significant: F(1, 16) = 27.570, p < 

0.001. The perceived cylinder depth for trials with fixed circle radius 2.85 cm was 9.498 ±.788 

(cm), for trials with radius 3.70 cm was 9.305 ± .830 (cm), for trials with radius 4.56 cm was 

10.023 ± .775 (cm), for trials with radius 5.41 cm was 10.484 ± .744 (cm), and for trials with 

radius 6.27 cm was 9.451 ± .691 (cm). The effect of the radius was significant: F(4, 64) = 2.650, 

p = 0.041 (Figure 4.9.). There was no clear pattern showing how the perceived cylinder depth 

changed monotonically with the circle radii. And there was no interaction. 
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Figure 4.9. Perceived cylinder depth (in centimeters) from pointing vs. two independent variable 

(IVs): ICD and circle radii (N = 17). Error bar represents standard error. Note that the vertical 

axis starts from 0 and ends at 15 cm. It is clear that the perceived cylinder depth increases as ICD 

gets larger, whereas there is no clear trend to demonstrate if the converted cylinder depth is 

changing monotonically with the circle radii factor. 

 

 

4.2.2. Experiment 2: Radius ratio adjustment and stereo matching 

 

4.2.2.1. Participants 

 

27 students from UCLA participated in the experiment. 
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4.2.2.2. Apparatus and stimuli 

 

The computer graphical stimuli are rendered using OpenGL and PsychToolBox 3 in MATLAB 

pixels and refresh rate of 75 Hz. A vision cube is used to mask of the edges of the screen, and a 

chin rest is also used to fix the viewing distance at 40 cm. 

 

The participant observed the stimuli through a viewing tube and the participant’s head was 

restricted by a chinrest. The participant wore a pair of red/green stereoscopic goggle, more 

specifically, in front of the participant’s right-eye there was a green light pass filter and in front 

of the participant’s left eye there was a red light pass filter. On the monitor screen 40 cm from 

the observer, two green circles were displayed on a black background, rotating around a common 

axis. One of the two circles was always of a fixed size, and the size was randomly chosen from 

two possible radii. A red circle was on the right of the green fixed size circle, with the same 

radius as its green counterpart, so that the circle pair formed a stereographical circle. The center 

for the red circle is vertically at the same level as the fixed size green circle whereas horizontally 

.337 cm to the right. So the perceived viewing distance of the fixed size stereo circle can be 

obtained from: 

 

                                            D
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In equation (4.3.), di is the interpupillary distance (IPD), and we used the average IPD for the 27 

participants which equals to 6.04 cm in our analysis. d is the binocular stereo disparity of the 

green and red circle, which was -.037 cm (without loss of generality and for the convenience in 

following derivations, we defined the red on the right to be negative). D is the viewing distance 

from the observer to the monitor screen, and it was 40 cm in this experiment. So the fixed size 

cylinder is perceived to be 2.11 cm in front of the monitor screen, which is 37.89 cm from the 

observer. The radius of the other circle is rendered by adding to the fixed radius a random real 

number (may be positive or negative). This circle can only be seen monocularly by the 

observer’s right eye because of the red pass filter on the left eye. 

 

The green circular pair stimulus when measured through the red pass filter had the CIE 

coordinate of (0.05, .51, .32).  When measured through the green pass filter the luminance was 

0.19 cd/m
2
 with color coordinate (.19, .58).  The green diamonds stimuli when measured through 

the red pass filter had CIE coordinate of (0.05, .46, .32).  When measured through the green pass 

filter the luminance was 0.19 cd/m
2
 with color coordinate (.20, .64).  The red diamonds stimuli 

when measured through the red pass filter, the CIE coordinate was (0.19, .66, .30).  When 

measured through the green pass filter the luminance was 0.06 cd/m
2
 with color coordinate (.23, 

.42).  The photometer reading of the background was 0.03 cd/m
2 
with color (.50, .27) through red 

pass filter and 0.05 cd/m
2 
with color (.05, .68) through green pass filter.  The measurements were 

made using the Minolta CS-100 photometer. 
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Figure 4.10. Experiment stimuli used in Experiment 2. The two circles were rotating along a 

common axis perpendicular to the image plane going through the mid-way of the two circular 

centers. The circle with fixed radius had a red counterpart on its right with fixed stereo disparity 

of .337 cm. With the viewing distance from the observer to the screen to be 40 cm, the fixed size 

stereographic circle was perceived to be 37.89 cm away from the observer. It is noteworthy that 

during the ratio adjustment task, only the circles were present. After the participant had finished 

the ratio adjustment so that a uniform cylinder was perceived, they pressed a button so that the 

stereographical diamond set on the other side of the screen was displayed. Participants then 

adjusted the binocular stereo disparity between the green and red counterparts in the diamond set 

to first match the distance of the cylinder’s front end then that of the cylinder’s back end. The 
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binocular stereo disparity of the diamond set was recorded as a measurement of the perceived 

viewing distance of the cylinder’s two ends.  

 

 

4.2.2.3. Procedure 

 

In each experimental trial, participants first adjusted the size of the variable circle so that a 

uniform cylinder was perceived. It was emphasized to the participants by instructions that, by a 

uniform cylinder, we meant that the two circles were perceived to be of identical size in 3D (they 

were perceived to be at different distance from the participants).  More specifically, because of 

the 3D percept from stereokinetic effect, two circles of identical size but at different distance 

from observer will be have different sizes on the retina because of linear perspective projection 

(more generally, on any projection plane perpendicular to the participant’s sightline). Besides, all 

participants were asked to indicate if the variable circle is perceived to be in front (close to the 

observer) or at back. All the participants reliably indicated that the larger circle was always in 

front, and as a result we define the larger circle to be the one in front and the smaller one at back 

in our analysis. 

 

After the participant had finished the ratio adjustment task so that a uniform cylinder was 

perceived, they were asked to press a button to bring out a binocular stereographical diamond set 

on the other side of the screen (Figure 4.10.). The participants were able to adjust the binocular 

disparity between the green and red counterparts in the stereograph to make the diamond to be 
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perceived as closer to the participant or further away. The participants first adjusted the diamond 

set so that it matches the distance of perceived cylinder’s front end, then they repeated the same 

task but to match the distance of the perceived cylinder’s back end. The binocular stereo 

disparity was recorded as a measurement of the perceived distance of the cylinder’s two ends. 

There are 60 trials in the experiment, and on average it took the participant about 45 minutes to 

finish the test.  

 

 

4.2.2.4. Results 

 

The adjustment ratio for the 27 participants was .83 ± .01. When the fixed circle radius was 2.85 

cm, the adjustment ratio for ICD = 1.12 cm was .85 ± .01, and for ICD = 3.36 cm the adjustment 

ratio was .82 ± .01. And the difference was significant: t(26) = 2.70, p = 0.01. When the fixed 

circle radius was 6.27 cm, the adjustment ratio for ICD = 2.24 cm was .83 ± .01, and that for ICD 

= 4.48 cm was .81 ± .01. And the difference was also significant: t(26) = 2.11, p = 0.04. The 

results showed that with the same circle radius, the larger the ICD, the smaller the adjustment 

ratio which is consistent with the results obtained in Experiment 1.  

 

Given that the stereographical circle was 37.89 cm away from the observer, the converted 

cylinder depth can be calculated using equation (4.2.). For the 27 participants the converted 

cylinder depth was 8.33 ± .35 (cm). When the fixed circle radius was 2.85 cm, the converted 

cylinder depth for ICD = 1.12 cm was 6.95 ± .55 (cm), and that for ICD = 3.36 cm was 8.62 ± 
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.88 (cm). And the difference was significant: t(26) = 2.35, p = 0.03. When the fixed circle radius 

was 6.27 cm, the converted cylinder depth for ICD = 2.24 cm was 8.46 ± .66 (cm), and that for 

ICD = 4.48 cm was 9.28 ± .65 (cm). The difference in the circle radius = 6.27 cm condition was 

not significant. 

 

The distance from the observer to the front end of the cylinder for the 27 participants was 37.62 

± .29 (cm), which is statistically the same as the theoretically anticipated viewing distance of 

37.89 cm. This result indicated that all the participants were capable of matching the distance of 

the stereographical circle with the distance of the stereographical diamond set. When the fixed 

circle radius was 2.85 cm, the converted cylinder depth for ICD = 1.12 cm was 37.63 ± .22 (cm), 

and for ICD = 3.36 cm was 37.25 ± .34 (cm). The difference between viewing distances in two 

ICDs is not significant. When the fixed circle radius was 6.27 cm, the converted cylinder depth 

for ICD = 2.24 cm was 37.98 ± .49 (cm), and for ICD = 4.48 cm was 37.60 ± .38 (cm). The 

difference between viewing distances in two ICDs is not significant either. These results 

demonstrated that the participants’ stereo vision is reasonably good and they can match the 

distance of cylinder’s front end with the diamond set very well. 

 

When analyzing the viewing distance of the back end of the cylinder, we found that 4 of the 27 

participants had trouble matching the viewing distance of the diamond set and the back circle, 

more specifically, they adjusted the viewing distance of the diamond to be more than 100 cm 

away from the observer. The data from these 4 participants were excluded because they were not 

able to match the viewing distance of the cylinder’s back end. The distance from the observer to 



105 

 

the back end of the cylinder for the remaining 23 participants was 54.56 ± 2.02 (cm). When the 

fixed circle radius was 2.85 cm, the converted cylinder depth for ICD = 1.12 cm was 50.16 ± 

1.35 (cm), and for ICD = 3.36 cm was 53.41 ± 2.56 (cm). The difference between viewing 

distances in two ICDs is not significant. When the fixed circle radius was 6.27 cm, the converted 

cylinder depth for ICD = 2.24 cm was 57.06 ± 2.57 (cm), and for ICD = 4.48 cm was 57.59 ±2 

.88 (cm). The difference between viewing distances of the cylinder’s back end in two ICDs is not 

significant. The trend was that if the circle radius was the same, the perceived viewing distance 

of the cylinder’s back end was further away with larger ICD. 

 

 

The difference between the viewing distance of the back end and that of the front end of the 

cylinder is the measurement of the depth of the perceived cylinder. The data from those 4 

participants excluded in the previous analysis was also excluded in the perceived depth analysis. 

The perceived cylinder depth for the remaining 23 participants was 17.13 ± 2.09 (cm). When the 

fixed circle radius was 2.85 cm, the converted cylinder depth for ICD = 1.12 cm was 12.58 ± 

1.41 (cm), and for ICD = 3.36 cm was 16.15 ± 2.72 (cm). The difference between viewing 

distances in two ICDs is not significant. When the fixed circle radius was 6.27 cm, the converted 

cylinder depth for ICD = 2.24 cm was 19.48 ± 2.61 (cm), and for ICD = 4.48 cm was 20.31 ±2 

.93 (cm). The difference between viewing distances of the cylinder’s back end in two ICDs was 

not significant. The trend was that if the circle radius was the same, the perceived cylinder depth 

was longer with larger ICD. 
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4.3. Computational model 

 

4.3.1. The model 

 

Without loss of generality, we put the two circles on the x-y plane and assume that one of the 

two circles is centered at origin (0, 0, 0) with radius    whereas the other circle is centered at (0, 

d, 0) with radius   . The two circles are rotating around the z axis at rotational speed  and the 

observer is looking from position (0, d, - D). The circle centered at (0, d, 0) was perceived to be 

at distance h from the image plane (see Figure 4.4. for more details). Because of linear 

perspective projection, the perceived circle is centered at (0 ,  
 

 
     , h), and with radius: 
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The circle on the x-y plane can be described as: 
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There is a rotation  around the z axis, so considering the rotation: 
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By taking the temporal derivative of Equation 4.3., we get the motion of the first circle: 
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 (4.7.) 

 

The other circle perceived away from the x-y plane can be described as: 
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Similarly, there is a rotation  around the z axis, so considering the rotation: 
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By taking the temporal derivative of Equation 4.6., we get the motion of the perceived circle: 
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            (4.10.) 

 

We proposed that the motion and structure interpretation in 3D that gives rise to the slowest and 

spatially smoothest motion is perceived by the visual system. Mathematically, we define the loss 

function of a certain motion interpretation as: 
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We calculated the loss function including the 0 order cost and the 1
st
 order cost. The 0 order cost 

is the magnitude of motion in 3D, or a measurement of the slowness of the motion. The 1
st
 order 

cost is the first order gradient of the motion in x, y, and z direction, which is a measurement of 

the spatial smoothness of the motion. The constant mc  controls the relative strength of the 

slowness term and the spatially smoothness term’s contribution to the loss function. We followed 

Yuille and Grzywacz’s (1988) definition on the constant, which was widely used in the 

computational work on motion perception: 

                                            m
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  (4.12.) 

We used λ = 2, which in the range of the appropriate parameter setting (Yuille and Grzywacz, 

1989).  
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Figure 4.11. Schematic illustration of the perception from two rotating circles. The two circles 

are on the x-y plane: the circle with stereo disparity information (larger black solid circle) is 

centered at origin (0, 0, 0) whereas the other circle (smaller black solid circle) is centered at (0, d, 

0). The two circles are rotating around the z axis at rotational speed  and the observer (the 
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black dot at the bottom) is looking from position (0, 0, - D). The smaller back circles was 

perceived to be a projection of the hypothetical circle at distance h from the image plane (green 

dashed circle). The dashed green line starting from the observer depicts the linear perspective 

projection. The center of the hypothetical circle is at (0 ,  
 

 
     , h). 

 

Before looking at the simulation results, here we explained the intuition of the computational 

model. The optimal motion and structure interpretation is the one that gives rise to the global 

minimum of the loss function. First for simplicity, let us assume that the loss function only takes 

into account the motion slowness term, and that means only the magnitude of the motion is 

considered in the computational model. From equation (4.7.) and equation (4.10.), we can see 

that the magnitude of motion increase as the perceived cylinder depth (h) increases. As a result, 

the globally optimal solution will be a cylinder that has zero depth. On the other hand, if we 

assume that the loss function only takes in to account the motion smoothness term, and that 

means only the first order gradient was considered by the computational model. By definition it 

is clear that when the motion field is the same, the longer the cylinder depth (h), the smaller the 

first order motion gradient in the z direction, and thus the smaller then first order cost term. As a 

result, the globally optimal solution will be a cylinder that has infinite depth. To summarize, 

motion slowness constraint term will prefer a cylinder that is as short as possible, but such short 

cylinder will have spatially non-smooth motion field (in other words, the corresponding structure 

form such motion interpretation will be non-rigid) and as a result such interpretation is not 

preferred by the motion smoothness constraint term. Since the motion slowness and spatially 

smoothness terms are both taken into account in the computational model, a balance between the 
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two constraints will lead to an interpretation that is neither a cylinder of 0 depth nor one with 

infinite depth, but one with a definite depth. 

 

 

4.3.2. Model predictions 

 

We investigated the model predicted cylinder depth as a function of circle radius and ICD. 

Figure (4.12.) showed the loss function value (vertical axis) as a function of the interpreted 

cylinder depth (horizontal axis). As we have discussed, the optimal cylinder depth that gives rise 

to the global minimum is neither zero depth nor infinite depth, but a definitely depth of 3.0 cm in 

this case (circle radius = 2.85 cm, ICD = 1.12 cm, viewing distance = 40.00 cm). It is noteworthy 

that the loss function decreases quickly as the cylinder depth (h) increases from 0, a result mainly 

because of the quick improving of spatial smoothness of the interpreted motion field. As the 

interpreted cylinder depth gets longer, the spatial smoothness change less dramatically compared 

to increasing from h = 0. Figure (4.13.) showed the loss function value as a function of h when 

the circle radius = 2.85 cm, ICD = 1.12 cm and viewing distance = 40.00 cm, and the 

computational model predicts the cylinder depth of 8.20 cm.  
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Figure 4.12. Loss function value as a function of the interpreted cylinder depth. The vertical axis 

represented the loss function value and the horizontal axis is the interpreted cylinder depth. 

Circle radius = 2.85 cm, ICD = 1.12 cm, viewing distance = 40.00 cm, and λ = 2. The model 

predicts that the optimal cylinder depth is hmodel = 3.00.  
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Figure 4.13. Loss function value as a function of the interpreted cylinder depth. The vertical axis 

represented the loss function value and the horizontal axis is the interpreted cylinder depth. 

Circle radius = 2.85 cm, ICD = 3.36 cm, viewing distance = 40.00 cm, and λ = 2. The model 

predicts that the optimal cylinder depth is hmodel = 8.20.  
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Figure (4.14.) showed the loss function value as a function of the interpreted h. Similarly, the 

optimal cylinder depth that gives rise to the global minimum is neither zero depth nor infinite 

depth, but a definitely depth of 2.90 cm in this case (circle radius = 6.27 cm, ICD = 2.24 cm, 

viewing distance = 40.00 cm). Figure (4.15.) showed the loss function value as a function of h 

when the circle radius = 6.27 cm, ICD = 4.48 cm and viewing distance = 40.00 cm, and the 

computational model predicted a cylinder depth of 5.40 cm. Again, when the circle radius are the 

same (both are 6.27 cm), the computational model predicts longer cylinder with larger ICD.  

 

In Experiment 1, empirical data showed that ICD had a major impact on the converted cylinder 

depth (F(1, 18) = 55.551, p < 0.001), and larger ICD leads to longer converted cylinder. In 

Experiment 2, when the fixed circle radius was 2.85 cm, the converted cylinder depth for ICD = 

3.36 cm (8.62 ± .88 cm) was significantly longer (t(26) = 2.35, p = 0.03) than the depth for ICD 

= 1.12 cm (6.95 ± .55 cm). When the fixed circle radius was 6.27 cm, the converted cylinder 

depth for ICD = 4.48 cm (9.28 ± .65 cm) was also longer than that for ICD = 2.24 cm (8.46 ± .66 

cm), though the difference was not statistically significant. Note that when the circle radius is the 

same, the computational model predicts longer cylinder with larger ICD, which is qualitatively 

consistent with the empirical findings obtained in Experiment 1 and 2.  
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Figure 4.14. Loss function value as a function of the interpreted cylinder depth. The vertical axis 

represented the loss function value and the horizontal axis is the interpreted cylinder depth. 

Circle radius = 6.27 cm, ICD = 2.24 cm, viewing distance = 40.00 cm, and λ = 2. The model 

predicts that the optimal cylinder depth is hmodel = 2.90.  
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Figure 4.15. Loss function value as a function of the interpreted cylinder depth. The vertical axis 

represented the loss function value and the horizontal axis is the interpreted cylinder depth. 

Circle radius = 6.27 cm, ICD = 4.48 cm, viewing distance = 40.00 cm, and λ = 2. The model 

predicts that the optimal cylinder depth is hmodel = 5.40 cm.  
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Another question was how the perceived cylinder depth varies with the circle radius change, or 

how the visual angle of the stimuli affects the perceived cylinder when the viewing distance is 

fixed. In Experiment 1, we have found that even though the effect of the circle radius on the 

converted cylinder depth was significant (F(4, 72) = 2.882, p = 0.028), but compared to the 

effect of ICD on the converted cylinder depth (F(1, 18) = 55.551, p < 0.001), the effect of circle 

radius was minor. A closer look at the conditions of circle radius = 2.85 cm (h = 4.182 ± .232 

cm) and the condition of circle radius = 6.27 cm (h = 3.930 ± .292 cm) showed that the cylinder 

depth difference under these two conditions was not statistically significant. In Experiment 2, we 

found that if the circle radius was smaller (2.85 cm), the converted cylinder depth increases more 

(from 6.95 ± .55 cm to 8.62 ± .88 cm, or 1.67 cm increase) than if the circle radius was larger 

(from 8.46 ± .66 cm to 9.28 ± .65 cm, or .82 cm increase if circle radius = 6.27 cm) when the 

ICD increases identical amount (increase 2.24 cm). Further analysis showed that if we use the 

circle radius as a normalization factor, then ICD increase of 2.24 cm was .36 increase of the 

radius = 6.27 cm and .79 increase of the radius = 2.85 cm. When the ICD increase was .36 of the 

circle radius the cylinder depth increase was .82 cm and when the ICD increase was .79 radius 

the depth increase was 1.67 cm. Combining the findings in Experiment 1 and Experiment 2, we 

hypothesized that the increase of ICD/radius ratio will lead to an increase of the cylinder depth, 

whereas the circle radius alone would not affect the cylinder depth. 

 

Figure (4.16.) showed the model predicted cylinder depth as a function of ICD/radius ratio under 

two different circle radius conditions. The horizontal axis is the ICD/radius ratio and the vertical 

axis is the model predicted cylinder depth. The upper and lower curves are quantitatively close in 
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shape, indicating that the circle radius alone does not affect the predicted cylinder depth, which 

is consistent with the empirical findings from Experiment 1 and 2. The predicted cylinder depth 

increases monotonically as the ICD/radius ratio increases, and the increase is not linear. This is 

also consistent with the findings on the converted cylinder depth from the two empirical 

experiments described in this chapter. To summarize, the computational model predicted the 

characteristics of the human percept we observed in the empirical studies.   

 

It is also noteworthy that we used λ = 2 in all the simulations in this chapter. A larger λ value will 

make the loss function receive more penalty from a spatially non-smooth motion field whereas a 

smaller λ value will make the loss function receive more penalty from the fast motion. 

Consequently, the computational model with a larger λ value will predict a longer cylinder depth 

whereas a smaller λ value will predict a shorter cylinder. Nevertheless, different λ values will not 

change the qualitative predictive power of the computational model on the characteristics of the 

human percept on this stereokinetic stimulus, although quantitatively the parameter value will 

affect the simulation results.  
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Figure 4.16. Model predicted cylinder depth as a function of the ICD/radius ratio. Viewing 

distance = 40.00 cm, and λ = 2. Upper: circle radius = 2.85 cm; lower: circle radius = 6.27 cm. 

The horizontal axis is the ICD/radius ratio and the vertical axis is the model predicted cylinder 
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depth. The circle radius does not affect the predicted cylinder depth. The predicted cylinder 

depth increases monotonically as the ICD/radius ratio increases. 

 

 

4.4. Discussion 

 

In the current study, we quantified a stereokinetic effect, more specifically, we measured the 

perceived depth of a tilted cylinder consisted of two rotating circles. In Experiment 1, we 

manipulated the ICD and circle radius as independent variables and asked the participants to 

adjust the size of one circle so that the two circles forms a uniform cylinder. In addition to using 

the circle radii ratio to calculate the perceived cylinder depth based on linear perspective 

projection, we also investigated the participant’s capability of pointing to the perceived distance 

of both ends of the cylinder. Both the circle radii ratio and the finger printing measurements 

indicated that human observers reliably perceived a tilted 3D cylinder from the stereokinetic 

stimuli, and the perceived cylinder depth was affected by both the ICD and circle radius, while 

the effect of circle radius was minor. We also found that the perceived cylinder depth measured 

by circle radii ratio and linear perspective projection was not quantitatively the same as the 

perceived cylinder depth measured by the finger printing, and such inconsistency cannot be 

contributed to the difference between the physical viewing distance and the perceived viewing 

distance. Previous studies in perception and motor control suggested that the measurement from 

a perceptual task (circle radius adjustment) is arguably not necessarily identical to the 

measurement from a visuomotor task (finger printing) on the same stimuli, due to the nature of 



121 

 

the separate visual pathways (Goodale and Milner, 1992; Króliczak et al., 2006; Knill, 2005; 

Hartung et al., 2005). In Experiment 2, we modified the stimuli used in Experiment 1 so that the 

perceived viewing distance is well defined and the complication from motor control system was 

ruled out by introducing another perceptual task to measure the perceived cylinder depth. Again 

we found that circle radius ratio data showed that longer ICD leads to longer perceived cylinder. 

The binocular stereo disparity measurement also suggested the same trend, though the result was 

not significant. To summarize, in Experiment 1 and 2, we designed two perceptual tasks and one 

visuomotor task to quantify a stereokinetic effect, the measurements from all three tasks had 

qualitatively identical characteristics.  

 

In addition to quantifying this stereokinetic effect, we also investigated the computational 

mechanism underlying the phenomenon. We asked the question: Why human observers do not 

perceive a cylinder of either zero depth, or on the other extreme, of infinite length, but instead a 

cylinder of a definite depth? These questions touched the underlying essence of the stereokinetic 

effect’s mechanisms. Previous theories mostly focused on using the rigidity prior to explain the 

stereokinetic effect (Wallach and O'Connell, 1953). However, the rigidity prior cannot explain 

the phenomenon in this study. More specifically, the rigidity prior can only give rise to a set of 

rigid truncated cone-shape interpretations, but possible depth range from zero to infinity. To 

explain the stereokinetic effect investigated in the current study, we developed a computational 

model from Yuille and Grzywacz’s (1988) regularization theory in 2D and Rokers, Yuille, and 

Liu’s (2006) minimum motion principle in 3D. We framed the computational question as a 

optimization problem, and hypothesized that the 3D structure interpretation that has the minimal 
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loss function value is the one preferred by the visual system. We formulated the loss function so 

that it takes into account both the minimum motion and the spatially smooth motion in 3D. So 

the structure interpretation that gives rise to the slowest and spatially smoothest motion in 3D is 

preferred by the visual system, and we demonstrated that such preferred structure interpretation 

will give rise to a definite depth of the perceived cylinder. Our computational model predicted 

that a definite cylinder depth is the optimal solution, and longer ICD will lead to longer 

perceived cylinder depth. The ratio between circle radius and ICD on the other hand, does not 

affect the perceived cylinder depth. These simulation results from our computational model are 

consistent with the empirical study results obtained in this study, indicating that the visual 

system is taking into account both the slowness and the spatially smoothness of the motion in 3D 

to achieve a unique structure interpretation for this stereokinetic stimulus.  

 

In conclusion, we designed three tasks to quantify the human perception on a stereokinetic effect. 

The empirical results from all three measurements qualitatively converge. In addition to the 

empirical studies, we also investigated the underlying computational mechanism of stereokinetic 

effect. We hypothesized that the visual system takes into account the motion slowness and the 

spatially smoothness to interpret the stereokinetic stimulus. We developed a computational 

model that can predict all the empirical findings we got in the current study. Our work suggested 

that the essential mechanism of this stereokinetic effect is that the human visual system prefers a 

structure interpretation that has a slowest and spatially smoothest motion in 3D.  
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CHAPTER 5 

BOUNDARY EXTENSION: INSIGHTS FROM THE SIGNAL DETECTION THEORY 

 

 

5.1. Introduction 

 

After viewing a photograph of a natural scene, human participants tend to remember having seen 

more of the world than was shown, as if the boundaries of the view had extended outward in 

memory. This error is called boundary extension (Intraub and Richardson, 1989).  A direct 

behavioral consequence of this effect is that when a scene is first shown from a close-angle and 

then a wider-angle view, the perceived change of the viewed scene is less than when the 

sequence order is reversed.  This asymmetry between the perceived wide-close and close-wide 

changes has been one of the signature effects in boundary extension studies.   

 

Despite the robustness of this phenomenon across numerous durations and types of memory tests 

(see Hubbard, Hutchison, and Courtney (2010) and Intraub (2010) for reviews), whether 

boundary extension is due to, in signal detection terms, criterion bias, or discrimination 

sensitivity, or both, remains uncertain. 

 

To illustrate this uncertainty, consider the following experiment by Park, Intraub, Yi, Widders, 

and Chun (2007).  The stimulus images were paired.  Each pair showed a same natural scene, 

one with closer-angle view and the other with wider-angle view.  In the study phase of the 
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experiment, participants were shown one image from each pair such that half of these images 

were close up views and half wider angle views.  In the subsequent test phase, half of the studied 

scenes were shown exactly as before, and half were shown in the opposite version (e.g., a close-

up stimulus and wider-angle test picture).    Participants rated whether the test scene was too 

close or too wide with respect to the studied version of that scene.  The rating results replicated 

the diagnostic asymmetry typical in boundary extension studies.  When close-wide and wide-

close changes between study and test were presented, results indicated that the change from close 

to wide was rated as a smaller change than the change from wide to close. Although the same 

pair of pictures was presented, the difference between them was rated differently depending upon 

the order of presentation. The typical interpretation of this pattern of results is that boundary 

extension in memory for the close-up stimuli causes it to be more similar to the wide-angle test 

picture than vise versa. However, these results cannot distinguish whether the asymmetrical 

response was due to a criterion bias favoring a wider view of the initial scene, or to 

discrimination sensitivity in visual memory, or both.  The current study was designed to answer 

this question. 

 

 

5.2. Experimental design and theoretical assumptions 

 

The key design of the new experiment was to create two probability distributions that correspond 

to the standard “noise” and “signal” distributions in signal detection theory, as follows.  The 

close-wide paired images in Park et al. (2007) were randomly divided into two halves, such that 
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no pair was in the same half.  One half was designated as study images, and the other half as test 

images.  This guaranteed that a studied image was never shown in the test, so that the viewing 

distance change from study to test was either wider or closer.  Consequently, there were two 

distributions regarding viewpoint change from study to test: close-wide and wide-close.  The 

division between the study and test images was also randomized across participants, such that the 

two distributions on average will be symmetric with one another, even if each distribution was 

asymmetric in itself.  This property of mirror-symmetry is therefore a property of the physical 

stimuli, and has nothing to do with visual memory (Figure 5.1.). 

  

 

 

Figure 5.1.  A schematic illustration of the objective probability distributions of viewing distance 

change: close-wide and wide-close, before any brain processing.  The mirror symmetry between 

the two distributions can be obtained by randomly assigning study and test images across 

participants, given sufficiently large number of participants.  We assumed that, after brain 

processing, each of the two distributions was a Gaussian, an assumption that could be 
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empirically verified.  Our research question was: does the brain processing break the mirror 

symmetry such that the two Gaussians have different variances? 

 

When visual memory is involved, however, there are two possible consequences.  The first is 

that the mirror-symmetry between the two distributions is broken.  This means that the visual 

memory has effectively changed the shape of one distribution relative to the other, resulting in a 

shape change of the Receiver Operating Characteristic (ROC).  Consequently, the area under the 

ROC will also change, in general.  Because the area under the ROC is one definition of 

discrimination sensitivity, this may mean that discrimination sensitivity has changed (note that 

another definition of discrimination sensitivity, d’, is undefined because of the asymmetry 

between the two distributions).   

 

The second possibility is that the two distributions remain mirror symmetric with each other. 

This leads to the following two alternatives.  1) The distance between the two distributions is 

changed, as a result of the memory process.  For example, the close-wide viewing distance 

change could be registered in memory as less than the opposite change of the same magnitude, 

giving rise to a sensitivity change that is specific to the asymmetry between wide-close and 

close-wide memorization.  2) There is no distance change between the two distributions, and that 

criterion bias is responsible for the boundary extension effect.  Naturally, the two possibilities 

above are not mutually exclusive, so it is possible that both sensitivity change and bias are 

responsible for boundary extension. 
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To further explain the possible distance change between the two distributions, we illustrate this 

with two Gaussians distributions of equal variance.  This distance change is simply 

discrimination sensitivity d’ change, which can result from either the distance change between 

the Gaussian centers or from the variance change even when the distance between the two 

centers is unchanged.  The latter case can be illustrated by the following simple example. Let us 

assume that the internal noise in the memory system is additive Gaussian with zero-mean.  Then 

the resultant distributions are two wider Gaussians, whereas the distance between the two centers 

remains unchanged.  As a result, d’ is reduced.   

 

The above example is simple in the sense that it is expected that internal noise in the memory 

system will decrease sensitivity as compared to an ideal observer without internal noise (Geisler, 

1989; Knill and Kersten, 1991).  What is difficult to know is whether there is any asymmetric 

change when the two distributions are mapped from the physical to the psychological dimension 

of the change between the study and test view.  For example, if as a result of the memory process 

one distribution is shifted more with respect to the origin along the axis than the other 

distribution, the resultant sensitivity change will be due to the memory process that codes wide-

close and close-wide viewpoint changes asymmetrically.  However, because the mapping of the 

origin from the physical to the psychological dimension is unknown, we cannot determine 

whether the mirror symmetry between the two distributions is broken.  That is to say, without the 

broken symmetry, we cannot be sure whether discrimination sensitivity is responsible for the 

boundary extension effects. 
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Therefore, if the mirror symmetry between the two distributions remains after the mapping, any 

discrimination sensitivity change may or may not have anything to do with the boundary 

extension effect.  In other words, if the two distributions remain symmetric with each other, we 

will not have enough evidence to determine whether the boundary extension effect is due to 

sensitivity change or due to bias.  

 

We now specify a single assumption underlying the upcoming test of the hypothesis.  We 

assumed that the wide-close and close-wide distributions obtained after the visual memory test 

were Gaussians with possibly unequal variance. This assumption could be partially 

experimentally verified, because two Gaussian distributions always give rise to a linear ROC in 

the z-space.  This verification is partial because two Gaussian distributions are a sufficient but 

not a necessary condition.   

 

The research question then became whether the ROC could be better explained by two Gaussians 

of equal or unequal variance, because these two possibilities amounted to whether the slope of 

the ROC was unitary or not.  The data were collected in the following rating experiment with six 

scales to obtain the ROC: whether the scene in test was wider or closer with respect to the 

studied scene.  From the data, we could also quantify the subject’s bias.   

 

To anticipate, in Exp.1, we verified that the ROC was well approximated by two Gaussian 

distributions, but could not reject the hypothesis that the two Gaussians shared the same 

variance.  We therefore ruled out the possibility that boundary extension is due solely to a 
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sensitivity change, because the response was strongly biased.  However, we could not rule out 

the possibility that, accompanying the bias, there was also sensitivity change, because any 

sensitivity change that retained symmetry is undetectable by our method.  In Exp.2, we kept the 

original Park et al. (2007) experiment nearly unchanged.  The only thing different was that we 

changed the nature of the decision, instead of asking for a rating of how much closer or wider the 

test view looked, we asked for an old/new rating.  This change made it possible for the data to be 

analyzed in signal detection terms, whereas the data in Park et al. (2007) could not be analyzed 

in signal detection terms.  There, we found indeed that the boundary extension effects were due 

to both discrimination sensitivity change and criterion bias.  In the discussion, we consider what 

these results  imply about scene memory and in what way they are consistent with a recent model 

that characterizes scene representation in terms of multiple sources of information (Intraub, 

2010, 2012).  

 

 

5.3. Experiment 1: close-wide rating experiment 

 

5.3.1. Stimuli 

 

The stimuli were 121 pairs of color photographs similar to that in Park et al. (2007). It included 

many of the same single-object scenes and others of the same kind.  Each pair included both a 

closer and a wider angle view of the same single object on a natural background. The resolution 

was 640 × 480 pixels.  For any given participant, 96 pairs from the 121 available were randomly 
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selected as the experimental stimuli.  These 96 pairs were split up into two groups, one of which 

contained 48 wide and 48 close views.  The second group contained the remaining 96 partner 

images.  One group was randomly assigned to each participant as the study photos (stimuli), and 

the second group as the test photos.  For the next participant, the selection and assignment were 

again randomized. 

 

 

5.3.2. Procedure 

 

The experiment consisted of three blocks.  Each block had a study and a test phase. In a study 

phase, 18 wide and 18 close images were shown.  The presentation began with a 1000 ms green 

fixation dot at the center of the screen, and then a photo was presented for 500 ms. Each photo 

was followed by a 500 ms image mask, then a white fixation dot for 4000 ms, and the cycle 

continued until all 36 stimuli were shown.  The participants were instructed to spread their 

attention across each image and remember it in as much detail as possible, including the objects, 

their layout in the scene, and the background.  The participants were informed that the 

background was as important to remember as the foreground object and they were instructed to 

try to remember the image photographically.   
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Figure 5.2.  Examples used in experimental instructions illustrating a close up (left) and a wide 

angle scene (right) between the first study and test phases. 

 

After the first study phase and prior to the test phase, participants were shown an example of a 

closer and a wider image of the same scene to illustrate the meaning of “viewing distance” in the 

instruction for the memory task (Figure 5.2.).  During the test phase, the 36 photos that were 

partners of the 36 studied images were shown.  Each test image was shown with unlimited time, 

and with a six-point rating scale underneath.  Below the scales were the following terms: `Much 

Closer’, `Closer’, `A Little Closer’, `A Little Further’, `Further’, and `Much Further’.  Thus a test 

picture always differed from its studied counterpart.  It was either too wide or too close.  It 

should be noted that not until this illustration (Figure 5.2.) in the first block did participants know 

the nature of the memory test (as is common in boundary extension tasks).  However in the 

following blocks, they knew exactly what would be tested. It took about 45 minutes for the 

participants to complete all three blocks. 

  

 

5.3.3. Participants 
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Seventy-one psychology undergraduate students from University of California Los Angeles 

(UCLA) participated for course credits.  

 

 

5.3.4. Apparatus 

 

The display was a 17 inch Dell E773c CRT monitor, with a resolution of 1024 × 768 pixels, 32 

bit color, and 85 Hz refresh rate.  The images were rendered using MatLab (Math Works, Inc.) 

and Psychophysics Toolbox (Brainard, 1997; Pelli, 1997) .  The experiment was conducted in a 

dim room lit from indirect natural light.  The viewing distance was 57 cm. 

 

 

5.3.5. Results 

 

5.3.5.1. Testing behavioral asymmetry 

 

We first computed response accuracy by converting the six-scale rating data into the binary close 

and wide responses (three scales each).  The accuracy of the wide-close condition was 0.85, and 

that of the close-wide condition was 0.68.  A t-test (all t-tests in this paper were two-tailed) 

confirmed that this difference was highly significant (t(70) = 7.62, p < 0 .001).  This mirrors the 

asymmetry observed in earlier studies.  
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Recall that in the experimental instructions, boundary expansion or contraction were never 

explicitly mentioned during this phase of the experiment, participants were not informed that 

boundaries were manipulated from study to test in Block 1.  In Blocks 2 and 3, however, the 

participants’ uncertainty about the change from study to test was likely reduced.  Consequently, 

we asked whether there was any behavioral change as a result of this reduced uncertainty, and 

measured the asymmetry between close-wide and wide-close changes.  In Block 1, the difference 

between the wide-close and close-wide response accuracies was 0.28 ± 0.03 (standard error).  

The t-test confirmed that this difference was statistically significant (t(70) = 9.01, p <  0.001).  

In Blocks 2, this difference became 0.13 ± 0.03, and was also statistically significant (t(70) = 

4.49, p < 0.001).  In Block 3, the corresponding numbers were 0.10 ± 0.03, p = 0.001.  The 

reduced asymmetry from Block 1 to 2 was statistically significant: t(70) = 3.90, p < 0.001.  

However, the reduced asymmetry from Block 2 to 3 was no longer statistically significant (t(70) 

< 1).  This implies that participants may have attended more selectively to the photo boundaries 

in Blocks 2 and 3, which reduced the size of the effect.   

 

This reduced uncertainty also co-varied with sequential order, so we could not rule out the role 

of instruction-independent learning from data in this experiment.  Nevertheless, Intraub and 

Bodamer (1993) used a between-subjects design to compare participants who were explicitly told 

about boundary extension and challenged to prevent it and participants without explicit 

instructions.  They found that advance knowledge indeed attenuated, but did not eliminate 
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boundary extension.  Therefore, sequential order in this experiment is unlikely to be the only 

explanation. 

 

 

5.3.5.2. Testing distribution asymmetry 

 

We now address the question whether this behavioral asymmetry was due to mirror-asymmetry 

between the two distributions.  In other words, we asked whether the two distributions, wide-

close and close-wide, shared the same variance when both were assumed to be Gaussian.  

Without loss of generality, we assumed that the wide-close distribution was N(0, 1), and the 

close-wide distribution was N(μ, σ).  The question was therefore whether σ was unitary. 

 

There are two methods one can use to answer this question.  The first is to plot the ROC in the z-

space, which should be linear if the two distributions are Gaussian.  Then the question becomes 

whether the slope of this ROC line is unitary.  Testing of a unitary slope, however, turned out to 

be technically difficult.  This is because a substantial number of hit and false-alarm rates across 

participants were 1’s and 0’s, causing the corresponding z-scores to be infinity.  The standard 

correction is to subtract or add a small number (e.g., 1/(2n), where n is the number of signal or 

noise trials) to avoid the infinity.  However, this correction is arbitrary and hence problematic in 

hypothesis testing.  We nevertheless carried out this analysis using the 1/(2n) correction in a 

hope to obtain converging results with the second method.  We first checked the goodness of 

linear fit from each participant’s data.  The mean R
2
 = 0.94 ± 0.005 (range: 0.82 to 1.00), 
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indicating reasonably good fit for all participants.  The average linear slope (1/σ) thus calculated 

was 0.98 ± 0.016.  The t test could not reject the null hypothesis that σ = 1 (t(70) = 1.46, p = 

0.15) (Figure 5.3.).   

 

 

Figure 5.3.  The solid black line is ROC in z-space, the dashed red lines are 95% confidence 

intervals.  In order to avoid the problem of an infinity z value, when a rate number was 1 or 0, 

the rate was corrected by subtracting or adding 1/(2n), respectively, where n was the number of 

“signal” or “noise” trials. 

 

The second method is to fit the ROC in the hit and false-alarm rate space.  The fitting is 

nonlinear, but does not suffer from the infinity problem above and hence needs no arbitrary 

corrections.  We were aware of the well-known “error-in-variables” problem (Griliches and 

Ringstad, 1970).  That is, both the hit and false-alarm rates had error bars.  Accordingly, we 
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minimized the sum of the squared shortest distance from each datum point to the parameterized 

ROC model curve.  In the unitary square of hit and false-alarm rate space, the fitting residuals 

had a mean of 0.0009, with a standard error of 0.00014.  The average σ thus obtained was 0.95, 

with a standard error 0.04.  A t test could not reject the null hypothesis that σ was unitary (t(70) 

= 1.29, p = 0.20) (Figure 5.4.). 

 

 

 

Figure 5.4.  The solid black line is ROC in hit and false-alarm rate space.  The dashed red lines 

indicate the 95% confidence interval.  The dashed green line is obtained when the “signal” 

distribution is assumed to have a unitary variance, as compared to the black line where the 

variance of the “signal” distribution was calculated from the fitting data. 
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Given that the two Gaussian distributions shared comparable variance, the bias free criterion was 

where the two distributions intercepted.  Any deviation from it would be the bias.  The mean 

distance from the origin to the intersection was 0.80 ± 0.05.  The participants’ decision criteria 

were recovered from their false alarm rates.  The mean distance from the origin of z = 0 to the 

criterion was 1.13 ± 0.05.  This difference from bias-free location was statistically significant 

(t(70) = 8.04, p < 0.001) (Figure 5.5.).   

 

To conclude Exp.1, we found no evidence that the mirror-symmetry between the two 

distributions, “noise” and “signal,” was broken.  This means that any possible sensitivity change 

that retained the mirror symmetry could not be found by our method.  Examples of such change 

from the physical to psychological dimension mapping include relative distance change between 

the two distributions, and equal increase or decrease of the variance of both distributions.  On the 

other hand, the participants’ bias could fully explain the results of boundary extension if no 

discrimination sensitivity was changed.  It is worthwhile to emphasize that this bias in signal 

detection terms is not necessarily the same as a preference to respond to any stimulus image as 

being too close.  We will elaborate this in the discussion. 
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Figure 5.5.  The average decision criterion location and its 95% confidence interval.  

 

 

5.4. Experiment 2: old-new experiment 

 

In Exp.1, we studied boundary extension effects along the dimension of view-angle change, and 

found no evidence that discrimination sensitivity was responsible for the effects.  However, that 

dimension (from too close to too wide) is but one of many possible dimensions along which one 

can study visual memory of natural scenes.  Another possible dimension, commonly studied in 

memory research in general and in boundary extension in particular, is whether a test scene is the 

same as or different from the study scene.  Exp.2 studied boundary extension along this 

dimension.  We first provide an overview of experimental design before describing the details.  

During the study, half of the images were close and half were wide.  During test, half of the 
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images were identical to the studied view and half were changed to the alternate view so that if 

the stimulus was close the test item was wide, and if the stimulus was wide the test item was 

close.  To be concrete, we first consider the close studied images.  During test, either the same 

images were shown, or their wider counterparts were shown.  Participants responded either “old” 

(image unchanged from study) or “new” (image changed from study).  Therefore, the two 

objective stimulus categories and two subjective responses made up the standard 2 × 2 

contingency table in signal detection theory (Green and Swets, 1974).  So discrimination 

sensitivity d’ can be calculated.  Likewise, d’ could also be calculated for wide studied images.  

With these two sensitivities, one can ask whether there is any difference between them. 

 

Technically, though, d’ may not be definable, because the “signal” and “noise” distributions may 

not be Gaussian or may not be of equal variance.  Accordingly, a rating experiment, rather than a 

binary old-new experiment, was used to obtain an ROC function.  In this way, the Gaussian and 

equal variance assumptions could be verified, as in Experiment 1. 

 

5.4.1. Experimental design 

 

The stimulus images, apparatus, design, procedure, experimental instructions, and experimental 

duration were nearly identical to Experiment 1.  Here we specify only the differences. 

1) After the study phase and prior to the test phase in Block 1, participants were shown the 

same example in Figure (5.2.) of a closer and a wider image.  The only difference was 

that participants were instructed to respond “old” (at one of three scale points) if a test 
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image was exactly the same as in the study, or “new” if the test was wider or closer than 

the studied. 

2) Unlike Experiment 1, in which the test views always differed from the study view, in this 

experiment half the time they were the same, and half the time they differed as describe 

earlier. The memory task was to rate whether the test image was exactly the same as the 

studied image.  A six point rating scale was provided from ‘Sure Old’ (-3), ‘Guess Old’ (-

1), ‘Guess New’ (+1), to ‘Sure New’ (+3). 

 

5.4.2. Participants 

 

Twenty-four undergraduate students from UCLA participated for course credits.  

 

5.4.3. Results 

 

We first looked at the overall accuracy by collapsing the three “old” and three “new” responses 

into binary responses.  The overall accuracy of the task was 0.61, with standard error ± 0.02 (the 

reported errors below will also be standard errors).  

 

We now look at the data in more detail.  When the studied images were wide views, the hit rate 

in test was 0.73 (± 0.02), and the false alarm rate was 0.45 (± 0.03).  In comparison, when the 

studied images were close views, the corresponding rates were 0.72 (± 0.03) and 0.57 (± 0.02).  

Apparently, the signature asymmetry between close and wide study images was mainly reflected 
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in the higher false alarm rate for the close studied images.  This means that wider test images 

were more often mistakenly identified as exactly the same as the studied, closer images, which is 

the boundary extension effect. 

 

We now compute discrimination sensitivities.  Without loss of generality, we assumed that the 

wide-wide distribution was N(0, 1), and the wide-close distribution was N(μ, σ).  We similarly 

assumed two distributions for the close-close and close-wide.  The research question remains 

whether the two discrimination sensitivities thus separately obtained, measured in either d’ or 

area under the ROC curve, were the same.  It should be noted that whether the wide-wide and 

close-close distributions are identical in shape or not is unknown, but is irrelevant to the research 

question. 

 

We used the first method to obtain each participant’s ROC in the z-space.  The mean R
2
 for 

linear fitting was 0.90 ± 0.02, indicating reasonably good fit for all participants.  The average σ 

calculated from linear slope for wide-close was 1.18 ± 0.10, which was marginally significantly 

different from unitary (t(23) = 1.83, p = 0.08).  The average σ for close-wide was 1.17 ± 0.09, 

which was also marginally significantly different from unitary (t(23) = 1.88, p = 0.07).  Because 

of the marginal significance, we decided to use the area under the ROC to calculate 

discrimination sensitivities.  The areas were 0.683 ± 0.019 and 0.603 ± 0.022, and the difference 

was statistically significant, t(23) = 2.52, p < 0.02.  (The d’ values would have been 0.77 ± 0.09 

and 0.43 ± 0.09, giving rise to a significant difference between them, t(23) = 2.73, p = 0.009.) 
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Using the second method of ROC curve fitting in the hit and false-alarm rate space, the mean 

residual error was 0.006 ± 0.002, indicating reasonably good fit for all participants.  The average 

σ for the wide-close trials was 1.20 ± 0.14, the t test could not reject the null hypothesis that σ = 

1, t(23) = 1.41, p = 0.17.  The average σ for the close-wide trials was 1.23 ± 0.13, the t test could 

not reject the null hypothesis that σ = 1 either, t(23) = 1.73, p = 0.10.  The areas under the ROC 

became 0.684 ± 0.019 and 0.610 ± 0.026, and the difference was statistically significant, t(23) = 

2.13, p < .05.  (If the equal-variance model were applied, the resultant d’ values would have be 

0.79 ± 0.10 and 0.39 ± 0.12, giving rise to a statistically significant difference, t(23) = 2.78, p = 

0.01.)  An important point here was that discrimination sensitivities were statistically 

significantly different, irrespective of the measures used. 

 

We looked next at the decision criteria for close and wide studied images, respectively.  We 

again defined a bias-free criterion as the intersection between the “signal” and “noise” 

distributions.  In the case of close studied images, these two distributions correspond to close-

close and close-wide distributions, respectively.  The bias-free criterion obtained from the rate-

space fitting was 0.21 ± 0.14, and was 0.28 ± 0.15 from the z-space linear fitting.  The actually 

criterion calculated from the participants’ false-alarm rate was 0.63 ± 0.08.  There was therefore 

indeed bias (t(23) = 3.45, p = 0.002; and t(23) = 2.91, p = 0.008), in that a wider test image was 

more likely to be considered as the same as the closer studied image, in agreement with the 

boundary extension effect.   
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Figure 5.6.  Top: The recovered “noise” (close-close) and “signal” (close-wide) distributions for 

close studied images, and the participant’ decision criterion.  Bottom: The corresponding 

distributions and criterion in the case of wide studied images.  Along the horizontal z-axis, the 

two “noise” distributions are centered at the origin per convention.  The two decision criteria 

were located at approximately the same location.  Nevertheless, the “signal” distribution in the 

case of close studied images was closer to the “noise” distribution, resulting both in a smaller d’ 

and a statistically significant bias as compared to the case of wide studied images, where the bias 

was not significant. 

 

In the case of wide studied images, the bias-free criterion obtained from the rate-space fitting 

was 0.52 ± 0.12, and was 0.55 ± 0.10 from the z-space linear fitting.  The actually criterion 

calculated from the participants’ false-alarm rate was 0.65 ± 0.08.  This bias was statistically not 

significant (t(23) = 1.48, p = 0.15; and t(23) = 1.12, p = 0.27).  It is interesting to note that the 
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criterion locations in the two cases were very similar to each other (0.63 and 0.65, respectively).  

We will discuss the possible implications in the next section. 

 

 

5.5. Discussion 

 

We modified the typical boundary rating procedure used to test boundary extension in order to 

assess the functional nature of the boundary error as suggested by signal detection theory.  In 

both experiments, we were able to replicate boundary extension in memory for photographs of 

scenes.  However, in Exp.1 when participants had to determine whether the change in the 

expanse of the view from study to test was close-up to wider-angle or wider-angle to close-up, 

we obtained no evidence that boundary extension was due to a change in discrimination 

sensitivity.  Rather, decision criterion bias (in signal detection terms) could well explain the 

behavioral results.  In comparison, in Exp.2 participants determined whether a test image was 

exactly the same as studied or different in viewing angle (either wider or closer).  Here, as 

compared to the wider studied images, the closer ones gave rise to a sensitivity reduction and a 

bias shift, both of which promoting boundary extension effects. 

 

Although these results are straightforward in signal detection terms, their implications in terms of 

inferring the nature of scene representations in memory remain an open question.  This is 

because signal detection theory (SDT) is based on functional characterizations of uncertainties 

among various categories that need to be separated, irrespective of the mechanistic processes 
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involved.  SDT is therefore agnostic about the origin of the sensitivity or criterion.  Nevertheless, 

a widespread misconception exists that equates the bias to “decision” bias or “response” bias, 

suggesting that the bias is necessarily high level in nature.  However, as Georgeson (2012) 

pointed out, bias could be also perceptual, or lower level.  Georgeson used the motion aftereffect 

as an example, whose perceptual nature is questioned by few.  Motion aftereffect is nevertheless 

characterized as a shift of the psychometrical function, but not a slope change.  This shift is 

indistinguishable from a response bias.  This example hence illustrates that bias in SDT is not 

necessarily equivalent to high level decision or response bias.  It remains an open question 

nevertheless what exactly bias and sensitivity mean in psychological terms.  In what follows, we 

speculate what our experimental results imply in boundary extension effects. 

 

One theoretical explanation of  boundary extension, is provided by the multisource model of 

scene representation (Intraub 2010; 2012)..  The model assumes that the representation of a 

visual scene is formed by visual stimulus information, amodal completion, as well as 

expectations and constraints from contextual scene classifications.  The definition of amodal 

completion is that visual fragments in a scene perceptually complete behind occlusion to connect 

into a single object (Michotte, 1954).  In the context of amodal completion, Lu and Liu (2008, 

2009) used an experimental technique similar to the current study to investigate memory 

representations of objects and scenes, and their results were consistent with the multisource 

model.  In the context of boundary extension, this aspect of amodal perception is better 

characterized as amodal continuation.  Here is an example to illustrate.  When a photo of a 

natural scene is viewed, the photo necessarily has a boundary, making the scene limited in spatial 
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expanse.  The multisource model assumes that when a scene with limited spatial expanse is 

viewed, it is analogous to viewing the scene through a window with the surrounding scene being 

occluded.  The memory system automatically fills in, to a limited spatial extent, the missing 

boundary scene using the available sensory data and generic knowledge of natural scenes, for 

example, grassland should continue with similar texture statistics, and a partially visible object at 

the boundary should be a complete object.  Therefore, if the traditional amodal completion can 

be considered as spatial interpolation, boundary extension may be analogously considered as 

spatial extrapolation. 

 

In this way, according to the multisource model, the memorized scene is not a photographic 

replica, but expanded beyond the initially visible (yet artificial) boundary.  We now start from 

this hypothesis to interpret results in Exp.1 and 2.  From the outset, another assumption is 

apparently needed.  We assume that the representation of a studied scene has an extended 

boundary, but that the representation of a test scene has no boundary extension.  This assumption 

is reasonable because, in both experiments, a test image disappeared only after a participant had 

selected a rating response.  Therefore, no expansion of the test image representation is expected 

because the constantly available and unambiguous stimulus information should overwhelm all 

other sources.  In other words, if study and test images shared similar boundary extension, there 

should be no difference in behavioral results between wide-close and close-wise study-test 

sequences. 
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In Exp.1, we assume that the representation of a studied image was extended in such a way that 

the effective viewing distance was lengthened.  For simplicity, we start by considering this 

lengthening as a constant.  Now, let us consider the horizontal axis in Figure (5.7.) as the 

physical viewing distance change from study to test.  The corresponding subjectively perceived 

horizontal axis is simply shifted to the right by a constant.  This means that the mirror symmetry 

was not broken between the two distributions, close-wide and wide-close.  As a result of this 

constant shift, the decision criterion was effectively closer to the distribution on the right (wide-

close), giving rise to the boundary extension effects. 

 

 

Figure 5.7.  Schematic illustration of what might have happened in Exp.1.  During to boundary 

expansion of the representation of a studied image, the studied image’s viewing distance was 

effectively lengthened.  For illustration and for simplicity, we assume that this lengthening is 

constant (see text when this lengthening is not considered as a constant).  Therefore, the 

perceived viewing distance change, shown as the horizontal axis at the bottom, shifted to the 

right with respect to the physical viewing distance change from study to test.  This means that the 
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symmetry between the close-wide and wide-close distributions was not broken.  In effect, there 

was a decision criterion shift along the axis.  This simple mechanism could explain the results in 

Exp.1. 

 

More generally, the extension of the representation of a studied image may not be a constant, but 

depends on the view-angle.  This means that the effective lengthening of the viewing distance 

varies as a function of the view-angle.  The lengthening of all the close study images follows 

some distribution.  So the psychological distribution of close-wide viewing distance change is 

the convolution of this distribution and the physical close-wide distribution.  We can similarly 

obtain the psychological wide-close distribution.  In theory, these two psychological distributions 

may or may not share the same variance, since the lengthening of the psychological close and 

wide distributions may not necessarily share the same variance.  In practice, however, our data 

indicate that the two variances are nearly identical.  The distance between the psychological 

close-wide and wide-close distributions may also differ from the corresponding distance in the 

physical dimension.  So the combined consequence of greater variance and a possible change in 

relative distance may change the discrimination sensitivity index d’.  What is certain is that these 

two psychological distributions will move to the right with respect to their physical counterparts, 

effectively creating a bias (when everything else is held unchanged) promoting boundary 

extension. 

 

In Exp.2, the relevant axis was changed to a psychological dimension of same or different.  

Because of the constant shift, the hit rates for the close-close and wide-wide conditions should be 
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comparable, which is confirmed by the data (.72 and .73, respectively).  However, in the wide-

close condition, the perceived difference became larger because the wide studied images became 

even wider.  In comparison, in the close-wide condition, the perceived difference became smaller 

because the close studied images became wider.  In effect, and relatively speaking, this means 

that the wide-close distribution moved away from the wide-wide distribution, whereas the close-

wide distribution moved toward the close-close distribution.  Hence, the discrimination 

sensitivity was higher for the wide than for the close studied images.  Figure (5.8.) illustrates this 

explanation. 

 

Given that the close and wide study images were randomly interleaved, that all test conditions 

were also randomly interleaved, and that wider and closer viewing angles were relative terms, it 

is sensible for the participants to hold a single decision criterion location.  This location was also 

consistent with the behavioral boundary extension effects.  Nevertheless, we do not have a 

theoretical explanation why this criterion was necessarily located there, as opposed to be, for 

example, midway between the two original distributions before boundary extension happened.  

In other words, boundary extension could still occur by the sensitivity difference alone, without 

resorting to bias. 

 

In conclusion, we have designed two new experiments to study boundary extension using signal 

detection theory.  Although these new designs made only small changes to rating task often used 

to test boundary extension in the literature, it should be noted that these changes made it 

possible, for the first time, for boundary extension to be examined in terms of sensitivity and 
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bias.  Our two new experiments were also very similar to each other.  Yet, with a minimal 

change, one can ask whether the study-test view-angle change was too close or too wide, or 

whether there was any change at all.  With this small change, one effectively asked a question 

from a different psychological dimension: the perceived viewing distance change either in terms 

of close or wide or in terms of change or no change.  Interestingly, simply by changing the 

question being asked, one could find that discrimination sensitivity was unneeded or playing a 

major role in the behavioral boundary extension effects.  It is remarkable, we believe, that a 

single, simple assumption could explain most of the diverse results in a straightforward fashion.  

This assumption, that the memory representation of a natural scene extends its boundary by a 

constant extent, is consistent with the multisource model of visual scene memory by Intraub 

(2010, 2012). 
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Figure 5.8.  Schematic illustration of what might have happened in Exp.2, where the horizontal 

axis indicates difference between study-test image matching.  Due to boundary expansion of the 

representation of a studied image, the study-test matching between close-close and wide-wide 

conditions would change.  But the changes were comparable, giving rise to comparable hit rates 

in these two conditions (shown as the two blue distributions on the far left, in top and bottom 

panels).  Interestingly, the close-wide matching would reduce the matching difference, making 

the psychological close-wide distribution shifted to the left (top panel, dashed blue to red).  In 

contrast, the wide-close matching would enhance the matching difference, making the 

psychological wide-close distribution shifted to right (bottom panel, dashed blue to red).  These 
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two shifts could explain the discrimination sensitivity difference between the close and wide 

study image conditions.   
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