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ABSTRACT OF THE THESIS 
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Independent Component Analysis (ICA) is an unsupervised machine learning 

algorithm which models a complex multivariate dataset as a linear combination of 

statistically independent hidden factors. Applied to high-quality gene expression data, it 

effectively reveals these hidden factors of the transcriptional regulatory network as sets 

of co-regulated genes and their corresponding activities across diverse growth 
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conditions. The two main variables affecting the output of ICA are the data itself and the 

user-defined number of components to compute. High quality transcriptomic data has 

become more accessible as high-throughput technologies have advanced while 

dimensionality selection remains open to research interest. Several methods for 

optimally selecting dimensionality have been proposed previously and two are tested 

herein, but were found to provide inconsistent results, ostensibly under-decomposing a 

dataset in some cases while over-decomposing in others. A new method for effectively 

setting dimensionality is proposed in this study which aims to consistently maximize the 

number of biologically relevant components revealed while minimizing the potential for 

over-decomposition. 
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INTRODUCTION 
 

Independent Component Analysis (ICA) is an unsupervised machine learning 

algorithm which models a multivariate dataset as a linear combination of statistically 

independent hidden factors or components. Modeling data in this way is useful when 

the goal is signal deconvolution or separation of mixed signals into their individual 

sources and corresponding strengths. An illustrative example of ICA’s utility is the 

widely referenced cocktail party problem, in which multiple mixed audio signals (i.e. 

people speaking simultaneously at a cocktail party) are recorded by microphones 

dispersed throughout a room. Each device records a unique linear mixture of the 

original signals depending on its proximity to each speaker. Applying ICA to this set of 

mixed recordings could effectively recover the independent audio signals which mix to 

produce the different recordings. 

 Beyond deconvoluting audio signals, ICA is widely applicable to several other 

fields involving signal separation or feature extraction and with the advancement of 

high-throughput gene expression profiling, ICA has proven to be useful in analyzing 

highly multivariate microarray gene expression and RNA sequencing (RNA-seq) 

datasets [1][2]. The coalescence of expression profiles across diverse conditions into 

repositories, such as the Gene Expression Omnibus (GEO) with over 400,000 

microarrays, has provided a rich source of data for these efforts [3]. Additionally, high-

quality RNA-seq profiles from E. coli K-12 MG1655 and BW25113 across hundreds of 

diverse growth conditions have been compiled into PRECISE, Precision RNA-seq 

Expression Compendium for Independent Signal Exploration, for the explicit purpose of 

probing the transcriptional regulatory network through the application of ICA [1].  
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The diverse gene expression profiles contained in these compendia can be 

thought of as the mixed recordings and each profile’s associated growth condition is 

equivalent to the placement of a microphone. Application of ICA then reveals groups of 

co-regulated genes as the independent signals and their associated strengths across 

each growth condition. Prior ICA studies of human microarray data have often identified 

groups of co-regulated genes which map readily to known metabolic pathways [3]. The 

activities of these gene sets can then be evaluated to classify tumor samples or disease 

states, for example [4]. ICA decomposition of PRECISE revealed 92 independently 

modulated gene sets, termed iModulons, many of which contained significant overlap 

with known regulons and could be directly linked to a single transcription factor [1]. 

Similar analysis has since been carried out on a B. subtilis microarray dataset with 269 

expression profiles and has revealed 83 similarly informative iModulons [5]. 

As compendia of such gene expression data incorporate more individual growth 

conditions it becomes possible to develop a comprehensive model of transcriptional 

regulation. To achieve this, the output of ICA decompositions depends on two primary 

inputs – high quality data sources across diverse growth conditions such as those 

described and the number of independent components to compute. While the former 

has become more accessible, the latter remains an area of open research interest. 

Unlike other forms of matrix decomposition, such as PCA, which computes a 

component for each data dimension, ICA decomposes a dataset into a user-specified 

number of dimensions. In the context of the cocktail party problem, this can be a trivial 

specification as the sources are potentially visible and countable. In the context of gene 
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expression data, where source signals are not visible, how many dimensions should be 

computed?  

Several methods have been suggested and employed to answer this question.  

One such method entails setting the ICA dimensionality equal to the number of principal 

components, determined through principal component analysis (PCA), which account 

for a certain level of variance in the data. Other means devised specifically for 

transcriptomic data, such as selecting the Maximally Stable Transcriptome Dimension 

(MSTD), defined as the maximum dimension before ICA begins to produce a large 

proportion of unstable components, have also been suggested [6].  

In this study, these methods are evaluated and the effects of dimensionality 

variation on ICA decomposition of transcriptomic data are clarified. In several cases, 

previously proposed dimensionality selection methods were found to be inconsistent, 

resulting in over-decomposition in one case while under-decomposing a different 

dataset. Based on this result a new method of ICA dimensionality selection is proposed 

for transcriptomic data, which aims to maximize the biologically relevant components 

while minimizing the biologically meaningless single gene components discovered in the 

resulting ICA decomposition. 
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METHODS 
 

2.1. Conducting independent component analysis on gene expression data 
 

 Independent component analysis decomposes a matrix of gene expression data 

(X, m genes by n growth conditions) into a matrix of independent components (S, m 

genes by y components) and each components activity across conditions (A, y 

components by n growth conditions). 

𝑿 = 𝑺 ∗ 𝑨 

For each data set, ICA was performed as detailed by Sastry et al. across a range of 

dimensionalities 100 times with random seeds and with convergence tolerance set to 

10-5 [1]. For PRECISE 1.0, which contains 278 expression profiles, ICA was run from 2 

dimensions up to 276 dimensions. For PRECISE 2.0, it was done from 5 dimensions up 

to 815, at intervals of 5 dimensions and for the B. subtilis data set, from 5 to 265, at 

intervals of 5 dimensions. 

 

2.2 Building dimensionality trees and comparison of final, conserved components to the 
components of preceding dimensions 
 
 The cosine distance between components of each subset and those at the 

subsequent dimension was computed. Where this value was greater than 0.3 a 

connection was established between those components to build the dimensionality tree. 

Components from the highest dimension from each subset were similarly correlated to 

components of each preceding dimension. The highest of these values was used to 

associate a final component with each preceding component to build the heat maps of 

final component occurrence in each subset. Where the cosine distance was greater 
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than an established threshold a final component was said to exist in a preceding 

decomposition. 

 

2.3 Establishing thresholds for final components 

 The components in the highest dimension decomposition were compared 

pairwise to all components computed at lower dimensions. Cosine distance was 

calculated for each pair and histograms of these values were plotted, resulting in a 

bimodal distribution of highly correlated and uncorrelated components. The elbow point 

of the higher mode was used to establish a threshold correlation to classify a 

component as a final component. 

 

2.4 Classification of components as robust, regulatory, single gene or non-single gene 
 

 The total number of components computed from a particular ICA decomposition 

were classified as robust. A component was classified as single gene if the highest 

gene weight was more than twice the next highest; the number of non-single gene 

components was determined by subtracting the number of single gene components 

from the number of robust components. The two-sided Fisher’s exact test (FDR < 10-5) 

was used to compare significant genes in each component to regulon gene sets to 

classify components as regulatory. 

 

2.5 Determining the PC-VA, MSTD and novel method dimensions 

 Principal component analysis was conducted on each expression matrix, the 

principal components were ordered by their associated percentage of explained 

variance, the point at which cumulative explained variance equaled 99% determined the 

PC-VA dimensionality. The MSTD, or dimension at which ICA begins to compute a high 



 6 

proportion of unstable components, was determined as previously described [6]. The 

new method dimension was defined as the point where the number of non-single gene 

components was equal to the number of final components in that decomposition. 
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RESULTS 
 

3.1. The S-matrix structure varies across dimensionalities while individual components 
are conserved  
 

Several RNA-seq and microarray datasets were utilized for this analysis including 

the original version of PRECISE (PRECISE 1.0), an expanded version (PRECISE 2.0), 

and the B. subtilis microarray dataset referenced above [7]. These datasets were 

decomposed by independent component analysis from low dimensionality up to 

essentially fully decomposed (one dimension for each expression profile) to produce 

dimensionality trees such as the one shown in Figure 1, which convey the evolution of 

the S-matrix structure across dimensionalities.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the case of PRECISE 1.0, at low dimensions, as components merge, split and appear 

there is a net increase in total robust components until a stable decomposition structure 

is reached. The appearance of additional components beyond this stable region 

Figure 1. Dimensionality tree of PRECISE 1.0 reveals how the S-matrix evolves as the decomposition is carried out 

at higher dimensions. (a) Initially, the number of robust components increases roughly linearly until (b) an 

essentially stable structure is reached. (c) Beyond this stable region over-decomposition appears to occur as 

additional components are revealed at higher dimensions. Connections between components of subsequent 

dimensionality subsets where established where the cosine distance was at least 0.3. 
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suggests the commencement of over-decomposition. Connections between 

components of adjacent subsets were established where the cosine distance between 

components was greater than 0.3. 

 These dimensionality trees demonstrate how the overall structure of the ICA 

decomposition evolves as more components are computed. To gain a clearer 

understanding of how the individual components themselves evolve across dimensions 

all components in each decomposition were compared to those in the final, fully 

decomposed S-matrix. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Cosine distance between the components in the final decomposition of PRECISE 1.0 and 

the components discovered in each preceding decomposition. Once a component is discovered, it is 

well conserved as it continues to appear in the majority of decompositions at higher dimensionality 

and does not materially change beyond that threshold. 
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Figure 3. A binarized heatmap revealing the presence of final components in each preceding 

decomposition and ordered by their first appearance in a particular decomposition. 

Components in the final decomposition were said to be present in a preceding decomposition if 

the cosine distance between the two was greater than the established threshold. Components 

first revealed at lower dimensionality were well conserved while those at higher are primarily 

single gene suggesting the commencement of over-decomposition. 

With few exceptions, once a component was discovered at a particular dimension it 

proved to be conserved in decompositions at higher dimensions. In the case of 

PRECISE 1.0, this realization suggests that across the stable decomposition region, 

both the overall S-matrix structure and the individual components do not materially 

change.   

 

 

 

 

 

 

 

 

 

 

 

 

 

    

 

 

A component present in the final decomposition was said to be present in earlier 

decompositions if the cosine distance between the two vectors was greater than the 
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established threshold. In the majority of cases, once a component was discovered in an 

early subset it remained stable, rarely dropping below even a cosine distance of 0.9 

when compared to the synonymous component in the final decomposition. In addition, 

the majority of components found at higher dimensionalities contain only a single gene, 

suggesting the commencement of over-decomposition rather than any biological 

relevance. 

 

3.2. Dimension selection methods often result in over- or under-decomposition 
 

 Two commonly utilized methods of setting ICA dimensionality were evaluated on 

PRECISE 1.0 initially.  The first involves setting the ICA dimensionality based on the 

number of principal components which explain a certain level of variance in the data 

(referred to as PC-VA herein); the other, determining the point at which ICA begins to 

reveal a high proportion of unstable components or the Maximally Stable Transcriptome 

Dimension (MSTD). The initial ICA studies of PRECISE and the B. subtilis datasets 

were carried out using the PC-VA method. 

(a) (b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. The resulting dimension based on two methods of ICA dimensionality selection.  (a) Setting the ICA 

dimensionality based on the number of principal components which explain 99% of the variance in the data (PC-VA).  

(b) The Maximally Stable Transcriptome Dimension (MSTD). Notably, the two methods select for drastically different 

dimensions. 
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Components were classified across all dimensions to visualize where these 

points occur in the evolution of the S-matrix structure, shown in Figure 5. Robust 

components are the total number of components present in a particular decomposition, 

final components are the ones which also occur in the final decomposition, regulatory 

components are those that contain groups of genes which are known to be regulated by 

a common transcription factor, single gene components are those whose highest gene 

weight is more than twice the next highest, and non-single gene components are those 

that are robust but not single gene. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the case of PRECISE 1.0, these two methods resulted in the selection of 

drastically different optimal dimensionalities. The MSTD of 67 dimensions appears to be 

an under-decomposed point before the stable S-matrix structure is reached; while, the 

PC-VA method appears to select an appropriate dimension in the stable region before 

over-decomposition begins. 

Figure 5. Classification of PRECISE 1.0 components across all dimensions and the points selected by the 

PC-VA and MSTD methods. MSTD appears to pick an under-decomposed point; while, 99PCA appears to 

select an appropriate decomposition in the stable S-matrix structure region before over-decomposition 

begins. 
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The PC-VA method was then evaluated using the B. subtilis and PRECISE 2.0 

datasets to ensure efficacy across different datasets; however, this method proved to be 

unreliable in both cases. Components were classified and tallied across 

dimensionalities in the same manner as PRECISE 1.0. In the B. subtilis dataset, the 

PC-VA method appeared to select a point of under-decomposition. This finding is 

consistent with the fact that many of the initially characterized iModulons were noted to 

contain gene groups regulated by different transcription factors in the same component, 

suggesting under-decomposition [7].   

 
(a) (b) 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. (a) Comparison of the final decomposition components of the B. subtilis dataset with those in all preceding 

decompositions. Again, components are largely conserved over the range of dimensionalities and the emergence of 

single gene components primarily occurs at the highest dimensions. (b) Component classification across dimensions 

and the resulting dimensionality selected by the PC-VA method. 
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Figure 7. (a) Comparison of the final decomposition components of PRECISE 2.0 with those in all preceding 

decompositions. Again, components are largely conserved over the range of dimensionalities and the 

emergence of single gene components primarily occurs at higher dimensions. (b) Component classification 

across dimensions and the resulting dimensionality selected by the PC-VA method. 

Notably, the S-matrix structure of this dataset does not evolve in the same manner 

as PRECISE 1.0. There is a consistent increase in new components across 

dimensionalities and there is no point where the S-matrix appears to reach a stable 

structure before over-decomposition begins. Similar to PRECISE 1.0, comparison of the 

fully decomposed components with each of those in the preceding decompositions 

demonstrates that once a component is revealed at low dimensionality it remains fairly 

consistent at higher level decompositions. Analysis of PRECISE 2.0 revealed similar 

insights; however, the PC-VA method selected an over-decomposed dimension, 

marked by a high proportion of single gene (51) to total robust components (211) or 

around 24%. Components revealed at lower dimensionalities were again conserved at 

higher levels. 

(a) (b) 
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Across the studied transcriptomic datasets, the two tested methods for setting 

dimensionality resulted in inconsistencies. The MSTD method selected an under-

decomposed point for PRECISE 1.0; while the PC-VA method appeared to select an 

appropriate dimension. This method was then applied to the B. subtilis and PRECISE 

2.0 datasets to confirm consistent efficacy but was found to select an under-

decomposed point in one case and an over-decomposed point in the other. 

 

3.3. A newly proposed method for selecting ICA dimensionality   
 
 The method presented herein improves upon these inconsistencies by selecting 

a point of dimensionality where the number of final components in that decomposition is 

equal to the number of non-single gene components; thereby filtering out most 

biologically irrelevant single gene components and maximizing the number of conserved 

components across dimensions. In all cases, this method results in an improved 

decomposition or in the case of PRECISE 1.0 selects a similar dimensionality to the PC-

VA method yielding a similarly high-quality decomposition. 

(a) (b) (c) 
 

 

 

 

 

 

 

  

 

Figure 8. Component classifications across the corresponding dimension range for (a) PRECISE 1.0, (b) PRECISE 

2.0 and (c) B. subtilis. The new method resulted in selecting a lower dimension for PRECISE 2.0 improving over-

decomposition and a higher dimension for B. subtilis resolving under-decomposition. It selected a slightly lower 

but comparable point for PRECISE 1.0 yielding a similar S-matrix structure to that from PC-VA decomposition.   



 15 

The PRECISE 1.0 components calculated from the PC-VA method were 

previously characterized and serve as a useful point of comparison for the MSTD and 

new method decompositions [1]. These components, termed iModulons, were named in 

most cases by the primary regulator that controls the highly weighted genes within 

each. The highest correlation between each iModulon and the components of the MSTD 

and new method decomposition are shown in Figure 9. The MSTD method resulted in 

selecting a dimension which does not reconstitute many of these well characterized 

iModulons; whereas, the new method results in a decomposition containing all but two 

iModulons, SgrT, a single gene component containing only the sgrT gene and FecI. 

  

 

 

 

 

 

 

 

In the case of PRECISE 2.0, over-decomposition was improved as the new 

method selected a dimensionality which reduces the number of single gene 

components to 20 or 11% of total components (from 51 or 24% in the PC-VA method 

decomposition). At the lower dimension selected by this new method, there was no loss 

in information from the regulatory components as well. Top F1 scores, or the harmonic 

average of precision and recall between the component and its associated regulon were 

Figure 9. Comparing previously characterized iModulons, named for the transcription factors that regulate their gene 

enrichments in most cases, from PRECISE 1.0 reveals that the decomposition from the new method reconstituted 

the vast majority of those components with high fidelity. As expected the under-decomposed MSTD S-matrix did 

not reproduce many of the well characterized iModulons. 
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slightly improved from 0.55 at the PC-VA dimension to 0.59 at the dimension selected 

by the new method. 

(a) (b) 

 

 

 

 

 

 

 

 

Additionally, the under-decomposition seen in the B. subtilis dataset was 

improved through the new dimensionality selection technique. iModulons for this dataset 

have been previously characterized as well and again, serve as a useful point of 

comparison [6].  

 

 

 

 

 

 

 

 

Figure 11. Several previously characterized B. subtilis iModulons contained gene 

groups that are regulated by different transcription factors, suggesting under-

decomposition. The new method split most of these iModulons into components 

containing genes more consistent with a single regulatory mechanism resolving 

the under-decomposition. 

Figure 10. Top F1 scores for regulatory components of PRECISE 2.0 decompositions at the (a) PC-VA dimension and (b) 

the dimension selected by the new method. Average F1 scores were slightly improved from 0.55 to 0.59 at the lower 

dimension selected by the new method.  
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Many of the originally characterized iModulons appeared to be merged, containing 

multiple gene sets that are known to be regulated by disparate transcription factors. In 

many cases, the decomposition resulting from the new method did, in fact, split these 

independently regulated gene sets into different components. For example, the 

originally characterized CymR/NsrR component was split into components 30 and 64 in 

the decomposition that resulted from the new method. Component 30 was enriched with 

genes regulated by NsrR and component 64 contained genes regulated by CymR. In 

some cases, these splits did not divide the component by regulator but the higher 

dimension decomposition did improve consistency between the component genes and 

associated regulon. The average F1 score of the merged iModulons increased from 

0.40 using the PC-VA method to 0.55 using the new dimensionality selection method. 

(a) (b) 

 

 

 

 

 

 

 

 

In addition, across all regulatory components the average F1 score increased from 0.50 

to 0.58 (p-value=0.049).  Again, suggesting increased consistency between 

Figure 12. Top F1 scores, the harmonic mean of precision and recall between regulatory components and its 

associated regulon for (a) the iModulons resulting from PC-VA method of dimensionality selection and (b)  the 

components resulting from the new dimensionality selection technique. 
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components and their associated regulon and improvement to the problem of under-

decomposition. 
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DISCUSSION 
 

Two important factors greatly influence the output of an ICA decomposition—the 

dataset of interest and the user-defined number of components to compute. Several 

methods have been suggested to optimally set this value in a parameter-free manner, 

including the MSTD and PC-VA methods previously described. These methods were 

tested on three transcriptomic datasets and, in some cases, were found to select 

dimensions which under- or over-decompose the datasets evaluated, necessitating 

alternative methods for setting ICA dimensionality.  

The results presented herein reveal several insights to more optimally select this 

specification for transcriptomic datasets. ICA was conducted on several RNA-seq 

datasets across a range of dimensions and as expected, the overall structure of the S-

matrix evolves as more components are computed. In other words, as the 

dimensionality is increased new robust components are revealed; additionally, once a 

component is revealed at lower dimensions, it is well conserved across higher 

dimensions. This realization essentially sets a lower dimension limit for an informative 

decomposition which should reveal as many of these conserved components as 

possible. 

Alternatively, an upper limit for an informative decomposition would minimize the 

chance for over-decomposition, which is signified by an increase in the proportion of 

single gene components revealed. The dimensionality selection method presented here 

achieves both by finding the point across the dimensionality range where the number of 

conserved components is equal to the number of non-single gene components in that 

decomposition. Because components are well conserved across dimensions and single 
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gene components are most often revealed at higher dimensions when over-

decomposition has set in, the decomposition at this point is likely to capture primarily 

the conserved, biologically relevant components. 

In the case of PRECISE 1.0, the MSTD method resulted in selecting an under-

decomposed dimension; while the PC-VA method appeared to select an appropriate 

dimensionality with limited single gene components and readily characterizable 

iModulons, designated by the common transcription factor of their enriched genes. The 

PC-VA method was tested on a B. subtilis and expanded E. coli transcriptomic dataset, 

PRECISE 2.0 to ensure efficacy; however, in these cases under- and over-

decomposition occurred, respectively. 

The method described herein improved these issues in both cases. The B.subtils 

dataset appeared to be under-decomposed by the PC-VA method selecting a relatively 

low dimensionality. The original characterization of the components into iModulons 

supported this notion as several contained disparate gene sets known to be regulated 

by different mechanisms. The new method selected a higher dimension which split 

many of these merged components thereby improving the decomposition. In the case of 

PRECISE 2.0 which was over-decomposed by the PC-VA method, the new method 

improved dimensionality selection evidenced by the lower proportion of single gene 

components in the decomposition. Lastly, applied to PRECISE 1.0 the method resulted 

in the reconstitution of all but two of the original iModulons, one of which was a single 

gene component. 
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