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Abstract

This study investigates some of the benefits and drawbacks of assimilating Terrestrial Water 

Storage (TWS) observations from the Gravity Recovery and Climate Experiment (GRACE) into a 

land surface model over India. GRACE observes TWS depletion associated with anthropogenic 

groundwater extraction in northwest India. The model, however, does not represent anthropogenic 

groundwater withdrawals and is not skillful in reproducing the interannual variability of 

groundwater. Assimilation of GRACE TWS introduces long-term trends and improves the 

interannual variability in groundwater. But the assimilation also introduces a negative trend in 

simulated evapotranspiration whereas in reality evapotranspiration is likely enhanced by irrigation, 

which is also unmodeled. Moreover, in situ measurements of shallow groundwater show no trend, 

suggesting that the trends are erroneously introduced by the assimilation into the modeled shallow 

groundwater, when in reality the groundwater is depleted in deeper aquifers. The results 

emphasize the importance of representing anthropogenic processes in land surface modeling and 

data assimilation systems.
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1 Introduction and Background

India is the world’s largest user of groundwater resources [Aeschbach-Hertig and Gleeson, 

2012], and irrigation accounts for more than 85% of its groundwater withdrawals [FAO, 

2013]. The current rate of groundwater consumption is unsustainable and may eventually 

increase poverty and food insecurity in rural India [Zaveri et al., 2016]. Monitoring these 

risks is essential in this era of rapid socio-economic growth and climate change. This will 

require an improved understanding of the factors that affect groundwater and of the 

relationship between groundwater and other components of the water cycle such as soil 

moisture, vegetation, precipitation and evapotranspiration.

Global assessment of groundwater depletion and variations has been facilitated by 

observations from the Gravity Recovery and Climate Experiment (GRACE) satellite mission 

[Tapley et al., 2004]. GRACE provides monthly, vertically-integrated estimates of terrestrial 

water storage (TWS) anomalies (departures from the long-term mean), at coarse spatial 

scales (~300 km). TWS comprises groundwater, soil water, surface water, snow, and ice. 

GRACE observations have been used to estimate groundwater depletion rates around the 

world [Famiglietti and Rodell, 2013]. In particular, Rodell et al. [2009]; Tiwari et al. [2009]; 

Shamsudduha et al. [2012]; Panda and Wahr [2016], studied groundwater depletion in India 

based on GRACE TWS observations. In these studies, groundwater was isolated from the 

observed (GRACE) TWS by subtracting independent estimates of surface water and offline 

(land-only) model estimates of soil water, snow, and ice. The effects of groundwater 

depletion and irrigation on soil moisture and evapotranspiration were not assessed.

Assimilation of GRACE observations into a land surface model permits investigation of the 

impacts of groundwater depletion on other water storage compartments and the fluxes 

between them. It also enables spatial, vertical, and temporal disaggregation of the TWS 

components, including groundwater, surface and root zone soil moisture and snow [Zaitchik 
et al., 2008], while preserving the internal consistency of the modeled storages and fluxes 

and taking into account uncertainties due to model and observational errors. Model 

uncertainty is caused by errors in surface meteorological forcing, model parameters, and 

model structural errors. Some of the uncertainty is related to unmodeled processes, most 

notably human impacts such as pumping from aquifers, irrigation, or water management 

[Ozdogan et al., 2010]. Further, it is common to rescale the observations prior to data 

assimilation in order to address model and observation biases (e.g., Reichle and Koster 
[2004]). However, such rescaling may discard important signals in the observations [Kumar 
et al., 2015]. Thus, a remaining challenge in data assimilation is to isolate errors caused by 

unmodeled processes so that the true observational features are not excluded during data 

assimilation [Kumar et al., 2015].

In this study, we investigate the extent to which GRACE data assimilation can overcome 

modeling errors, including errors that arise from the lack of representation of groundwater 

extraction and irrigation. Simulated TWS, groundwater, and evapotranspiration are evaluated 

over India, where the assimilated GRACE TWS observations contain trends due to the 

ongoing groundwater depletion, an anthropogenic and unmodeled process. Benefits and 
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drawbacks of the assimilation scheme are evaluated in terms of its ability to improve 

simulated seasonal and interannual variability and trends.

2 Methods and Data

2.1 Model and Forcings

Consistent with Girotto et al. [2016], this work uses the Catchment land surface model 

(CLSM, Koster et al. [2000]) and Modern Era Retrospective Analysis for Research 

Application (MERRA) meteorological forcing data [Rienecker et al., 2011]. CLSM is one of 

the few widely used land surface models that includes a basic representation of shallow 

(unconfined) groundwater storage variations (Koster et al. [2000]; their Figure 2). However, 

it does not simulate deeper multilayer aquifers or dynamic surface water hydrology (e.g., 

lakes and rivers). The study domain encompasses India and Bangladesh and covers January 

2003 to December 2015. The simulations are performed on a 36-km Equal Area Scalable 

Earth (version 2) grid [Brodzik et al., 2012].

2.2 GRACE Terrestrial Water Storage Observations

The Level-3, monthly, 1 ×1 gridded, spherical harmonic based GRACE TWS product 

available from the Jet Propulsion Laboratory (http://grace.jpl.nasa.gov) is used. The data are 

a truncated and smoothed [Landerer and Swenson, 2012] version of the RL05 solution from 

the Center for Space Research at the University of Texas. Prior to data assimilation, we 

rescale the GRACE TWS observations to match the long-term mean and standard deviation 

of the model [Girotto et al., 2016]. This does not imply that the climatology of the model is 

more correct than that of the observations; it is done to remove the long-term systematic bias 

in the mean and variance between the model and the observations while preserving trends 

and seasonal-to-interannual variations in the rescaled observations.

2.3 Data Assimilation

The assimilation system is fully described in Girotto et al. [2016]. Here, only the key points 

and differences are noted. A 3D ensemble Kalman Filter (EnKF) is used, where the “3D” 

notation refers to the fact that the filter distributes information horizontally as well as 

vertically [Reichle and Koster, 2003; De Lannoy et al., 2010]. The assimilation method is 

similar to an ensemble smoother approach, i.e., it is a “two-step” scheme in which the land 

model integration is performed twice over the course of the same month: first to collect 

monthly TWS observation-minus-forecast differences (i.e., innovations), and a second time 

to update that month’s simulated TWS using increments computed from the observation-

minus-forecast residuals obtained in the first integration. The observation predictions are 

computed by spatially aggregating the monthly TWS estimates from the 36-km model grid 

using a Gaussian smoothing average function with a 300-km half-width distance (to match 

the resolution of the GRACE TWS observations; Section 2.2). The ensemble forecast 

perturbation parameters used here match those reported in Girotto et al. [2016] except that 

we doubled the standard deviation associated with the uncertainty in the “catdef” model 

prognostic variable (Table S1). This was done because the innovation statistics [Desroziers 
et al., 2005] indicated that the data assimilation approach required increased model 

uncertainties (not shown).
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2.4 Groundwater in Situ Measurements

The Central Ground Water Board of India measures groundwater levels four times a year 

during January, April/May, August and November [CGWB, 2014]. The data used in this 

work cover the period from January 2005 to December 2013. Groundwater levels are 

measured using piezometers in non-pumping wells that are typically located in the 

shallowest (water table) aquifer and thus represent unconfined or perched aquifers, but not 

deeper aquifers. Consequently, these measurements are not directly representative of deep 

aquifers from which groundwater may be extracted, but the data are informative about the 

human-induced shallow water recharge by irrigation. The data represent equivalent heights 

of water (i.e., the product of water elevation and specific yield) as described in Bhanja et al. 
[2016]. The data have been quality controlled for temporal continuity and outliers. We 

aggregated the in situ groundwater measurements from the 3297 well locations to the 36-km 

model grid, resulting in groundwater validation measurements for 1452 grid cells (out of 

2899) within the simulation domain (Figure 1d). This abundance of in situ measurement 

locations is unprecedented for GRACE assimilation studies.

2.5 Trend Analysis and Evaluation Metrics

A modified version of the nonparametric Mann-Kendall test was used to identify the 

statistical significance of trends in observed and simulated TWS, groundwater, and 

evapotranspiration, taking into account the temporal autocorrelation in the time series 

[Hamed and Ramachandra Rao, 1998]. The trend magnitude is computed as the median of 

the slopes calculated from consecutive pairs of sample points [Sen, 1968].

Simulated TWS and groundwater are evaluated in terms of time series correlation (R) and 

anomaly correlation (anomR) with observations, and their 95% confidence intervals. The 

anomR values are calculated after removing both the long-term trends and the mean 

seasonal cycle from the time series, where the seasonal cycle is calculated as the multi-year 

average for each calendar month. That is, the R metric is sensitive to trends as well as the 

seasonal and interannual variability, whereas the anomR metric is sensitive only to the 

interannual variability. Spatially averaged metrics are computed using a clustering algorithm 

[Girotto et al., 2016].

3 Results and Discussion

3.1 Trends in TWS and Groundwater

GRACE TWS observations suggest that a significant negative trend exists in northwest India 

with a maximum rate of −1.7 cm/year near Delhi, a region with intense irrigation (compare 

trends in Figure 1a with areas equipped for irrigation in Figure 2). This is consistent with 

earlier studies [Rodell et al., 2009; Tiwari et al., 2009; Chen et al., 2014], which attributed 

the trend to groundwater extraction for irrigating crops. A negative trend in TWS (−0.7 cm/

year) in the state of Tamil Nadu in southern India (Figure 1a) is also ascribed to irrigated 

agriculture (Chinnasamy and Agoramoorthy [2015]). TWS has increased during the study 

period in west-central India (Maharashtra, Gujarat, and Madhya Pradesh; Figure 1a). This 

region relies more heavily on surface water reservoirs than on groundwater to meet its 
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freshwater needs [Soni and Syed, 2015]. The positive trend reflects both a recent increase in 

precipitation and the filling of reservoirs [Tiwari et al., 2009].

There are no consistent patterns of shallow groundwater trends seen in the in situ data, 

except in the region of Tamil Nadu (southern India, Figure 1d), where a weak negative trend 

is also present in the TWS observations (Figure 1a). On average, trends in the in situ 

groundwater measurements are mixed to positive, which is in disagreement with GRACE 

indicating larger areas with a stronger decrease in TWS than increase.

This discrepancy can likely be attributed to differences in the exact quantities observed by 

GRACE and the situ measurements. Groundwater pumping for irrigation mainly depletes 

water from the deep aquifers into which most agricultural wells are installed. GRACE 

cannot distinguish shallow from deep groundwater or other TWS components and lumps 

them all together as a single quantity. Hence the intense depletion of deep aquifers in 

northern India dominates the GRACE signal in that region. The in situ groundwater 

measurements, on the other hand, sample only shallow groundwater (Section 2.4). 

Moreover, rain and irrigation drainage rapidly percolate to the water table or flow directly 

into the open wells [Panda and Wahr, 2016]. As a result, the in situ measurements do not 

reflect the long-term changes occurring in the deep aquifers but are useful for evaluating 

short-term processes (i.e., meteorologically-driven or irrigation enhanced-recharge in 

shallow aquifers).

The model-only simulation also does not replicate the negative TWS trend in northwest 

India (Figure 1b). By construction, trends are visible in the assimilation case (Figure 1c), 

consistent with those in the assimilated GRACE TWS observations (Figure 1a). For 

example, the depletion rate in Delhi is −0.75 cm/year in the assimilation case, which is about 

half of the maximum rate of change in the observed TWS (−1.7 cm/year). Thus, the 

assimilated result is a compromise between the absence of a trend in the modeled TWS and 

the GRACE-observed TWS trend.

Likewise, there are no significant trends in the model-only groundwater estimates (Figure 

1e). GRACE TWS assimilation introduces patterns of groundwater trends (Figure 1f) that 

are comparable to those seen in TWS (Figure 1c). For lack of deep aquifers in the 

Catchment model, the assimilation (perhaps erroneously) introduces the trends in the 

shallow groundwater, and also (correctly, as will be shown later) updates the groundwater 

simulations for seasonal and short-term errors. The trend patterns in the assimilation, 

however, are different from those of the in situ (shallow) groundwater measurements (Figure 

1d). While there is some agreement in Tamil Nadu (negative trends) and in Madhya Pradesh 

and Andhara Pradesh (positive trends), no trend is present in the in situ groundwater 

measurements in northwest India (Figure 1d), where the assimilation results indicate strong 

negative trends (Figure 1f).

Figure 3 illustrates, for the location in northwest India with the strongest TWS trend, the 

assimilated GRACE TWS observations along with groundwater estimates from the 

independent in situ measurements, the model-only, and the assimilation estimates. All time 

series show a similar amplitude and phase of the seasonal cycle (Figure 3a). GRACE 
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indicates a strong negative TWS trend, which is not simulated by the model and is also not 

observed in the shallow groundwater measurements. The assimilation corrects the overly dry 

modeled groundwater estimates during 2003-2005, but it fails to adjust the overly wet model 

estimates towards the very dry TWS observations during 2010-2016. The latter is a 

consequence of a lower limit in modeled TWS, which is determined by the prescribed depth-

to-bedrock [Houborg et al., 2012; Li et al., 2012].

Anomalies in GRACE TWS and in situ groundwater measurements (after removing secular 

trends and the seasonal cycle) indicate dry conditions (negative anomalies) during 2007, 

2009 and 2010, while the model-only experiment indicates near-normal conditions in those 

years (Figure 3b). GRACE data assimilation induces negative TWS and groundwater 

anomalies in those years, thereby improving the agreement between simulated and observed 

groundwater. Likewise, the GRACE-observed wet period during winter 2003-2004 is 

underestimated by the model and corrected by the assimilation (Figure 3b).

3.2 Trends in Evapotranspiration Fluxes

We evaluated trends in additional water budget components. For example, an analysis of soil 

moisture yields similar conclusions to those found for the model-only and assimilation 

groundwater results (Section 3.1). Important additional insights are gained by investigating 

evapotranspiration. While there are no significant trends in the model-only 

evapotranspiration (Figure 1h), significant trends are seen in the assimilated 

evapotranspiration (Figure 1i) which mimic the TWS trends (Figure 1c). Trend patterns 

based on independent evapotranspiration datasets, e.g., Jung et al. [2009] (Figure 1g) 

contradict the assimilation results. The negative evapotranspiration trends in northern India 

in Figure 1i are a direct consequence of the water deficit induced by the assimilation of the 

GRACE-observed negative TWS anomalies. In reality, irrigation likely sustains root-zone 

moisture (as indirectly suggested by the shallow groundwater measurements) and allows 

evapotranspiration to continue at a steady (or even increased) rate. While the assimilation of 

TWS for areas with a natural water budget should, in theory, improve the accuracy of 

evapotranspiration variations (provided natural processes are adequately represented in the 

model), the inability of the model to simulate groundwater-supported irrigation in this case 

caused a degradation of simulated evapotranspiration when TWS was assimilated.

3.3 Correlation Metrics

In this section we report correlation (R, anomR) metrics of model-only and assimilation 

results versus the assimilated GRACE TWS observations and versus the independent in situ 

groundwater measurements. For reference, the supplemental material provides maps of the 

long-term precipitation and TWS climatologies (Figure S1). We refer to wet and dry areas 

where the annual mean precipitation is more or less, respectively, than the average over India 

(Figure S1a).

3.3.1 Terrestrial Water Storage—In general, higher R values between modeled and 

GRACE TWS are found in the wetter parts of India (compare Figure 4a with Figure S1a), 

where the seasonal and inter-annual variability is stronger and where weaker or no human-

induced trends from groundwater pumping and irrigation are expected. An exception is the 
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wet region of southern India, where the seasonal cycle of precipitation is bimodal, resulting 

in higher errors in the modeled TWS time series, and thus lower R. Lower R values are 

generally found in the drier regions, where (i) the interannual and seasonal variability of 

both the GRACE and modeled TWS are lowest, as suggested by their long-term standard 

deviation (Figure S1b-c), or where (ii) trends and interannual variability are affected by 

anthropogenic processes which are not modeled, but reported by the GRACE observations 

(Figure 1a). By design, the GRACE data assimilation increases the R between the 

simulations and GRACE to a domain-average of 0.96, compared to 0.83 prior to 

assimilation, with the largest increase in R in drier regions (compare Figure 4b with Figure 

S1a), where the model fails to represent human-induced trends.

The highest TWS anomR values are in the central wetter regions of India (e.g., Maharashtra, 

Madhya Pradesh, Orissa, West Bengal; compare Figure 4c with Figure S1a). The lowest 

anomR values are in the northwest (e.g., Punjab, Haryana, New Delhi) and in the south 

(Tamil Nadu). Low anomR values indicate poor model interannual variability representation, 

possibly due to the lack of irrigation modeling. By design, the assimilation strongly 

increases the anomR over the entire region (Figure 4d) to a domain average value of 0.90, 

versus 0.51 prior to assimilation. The largest increases are in the northwest and in Tamil 

Nadu, where anthropogenic processes affect the hydrologic interannual variability. The 

assimilation only marginally increases the anomR in the wet regions of the domain, where 

irrigation is less likely to regulate the water budget (Figure 2).

3.3.2 Groundwater—The domain-average (with 95% confidence interval) R between 

model-only groundwater estimates and independent, in situ groundwater measurements 

equals R=0.51±0.05 (Figure 4e). The lowest correlations are in the north (i.e., Rajasthan, 

Haryana, Delhi), south (i.e., Tamil Nadu), and east (i.e., Assam) of India. Similar to the 

TWS evaluation (Figure 4a), model performances are higher in the wet regions (compare 

Figure 4e with Figure S1a), where the seasonal and interannual variability is less affected by 

antropogenic interventions and where the model can reproduce the natural variability.

GRACE TWS assimilation improves groundwater R in a majority (73%) of the in situ 

locations, such as Tamil Nadu (Figure 4f), but it degrades groundwater fidelity in some 

locations (e.g., northwest Orissa, north Rajasthan). Overall, the domain-average 

improvement in R is 0.05 (not statistically significant), resulting in R=0.56±0.05 for the 

assimilation estimates. Improvements may be attributed to better representation of seasonal 

and interannual variability. This positive increase in the statistics corroborates the findings of 

Girotto et al. [2016], who demonstrated that the downscaling of vertically integrated and 

spatially coarse-scale GRACE TWS generally improves the simulation of groundwater at 

finer scales.

The anomR between model-only groundwater and in situ measurements is consistently very 

low, with a domain average anomR=0.13±0.06 (Figure 4g). Higher values (anomR >0.4) are 

found in the states of Gujarat and Maharashtra, where irrigation intensity is low (Figure 2). 

The interannual variability of the in situ groundwater measurements is, in general, not well 

replicated by the model, possibly because the model does not simulate irrigation. The 

strongest improvements in simulated groundwater induced by GRACE data assimilation are 
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in north-central India (Madhya Pradesh, Bihar Jharkhand) and in south-central India (Tamil 

Nadu, Kernataka; Figure 4h). Skill is degraded at some locations scattered throughout the 

country, including a cluster in the western states of Assam, Orissa and Gujarat (Figure 4h). 

Nonetheless, on average the skill of the assimilation estimates is improved to 

anomR=0.23±0.06. These improvements imply that GRACE data assimilation can enhance 

the interannual variability of simulated groundwater in the presence of anthropogenic 

processes. However, despite the relatively large anomR increase of 0.10, the improvement is 

still not statistically significant, because of the low anomR values and the limited number of 

monthly sample points for validation. In any case, the very low skill highlights the urgent 

need to improve the model representation of deep groundwater and of pumping and 

irrigation processes.

4 Conclusions

Anthropogenic processes are often not included in global land surface modeling systems, but 

regional patterns in groundwater extraction and irrigation over India are observed by the 

GRACE satellite mission. This paper investigates the extent to which GRACE data 

assimilation can correct (or not) for errors due to missing model processes.

The GRACE observations show strong negative TWS trends in northwest India, and weaker 

negative trends in Tamil Nadu. These trends are caused by the depletion of groundwater for 

irrigation purposes (e.g., Rodell et al. [2009]). In situ shallow groundwater measurements 

show clear trends only in southern India (Tamil Nadu). In general, the in situ groundwater 

trends are not regionally uniform and are inconsistent with the GRACE TWS observations. 

We attribute this difference to the fact that groundwater used for irrigation is extracted 

primarily from deep aquifers, which are observed by GRACE, but not by the (shallow) in 

situ groundwater measurements.

The model-only simulation does not include groundwater extraction and therefore does not 

reproduce the significant GRACE-observed TWS trends in India. The assimilation of 

GRACE TWS observations introduces trends in the modeled TWS and groundwater. But the 

model does not simulate deeper aquifers, and, consequently, the assimilation assigns the 

water storage updates to the model’s shallow groundwater compartment. The result is a 

crude but not entirely inaccurate accounting of vertically integrated groundwater storage 

variations. One unintended consequence, however, is that the GRACE assimilation 

unrealistically reduces evapotranspiration, because the model also does not simulate 

irrigation.

The highest correlations (R) and anomaly correlations (anomR) between the model-only and 

GRACE-observed TWS are in the wetter parts of India, where the seasonal and interannual 

variability is more dominated by natural, rather than anthropogenic, processes. By 

construction, GRACE data assimilation leads to better correlations with GRACE TWS 

observations.

We further evaluated the results in terms of the R and anomR values versus the (shallow) in 

situ groundwater measurement, which sample about half of the domain. Both the model-
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only and assimilation estimates have very low anomR versus the groundwater observations. 

We attribute this to: (1) the lack of simulation by the model of irrigation and irrigation return 

flows, (2) the fact that the in situ measurements observe only shallow groundwater and thus 

are not representative of the total column groundwater changes observed by GRACE, and 

(3) the limitation in the dynamic range of the modeled groundwater that is imposed by its 

depth-to-bedrock parameter.

Despite the model’s shortcomings, GRACE data assimilation produces improvements (not 

statistically significant) in groundwater R and anomR even in areas that are strongly affected 

by anthropogenic and unmodeled processes. Finally, these results should motivate the land 

surface modeling and data assimilation community to better represent anthropogenic 

impacts on the water cycle by adding the relevant processes into the model, including the 

simulation of irrigation, groundwater extraction, and deep subsurface water storage 

variations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Key Points

• GRACE observations of terrestrial water storage (TWS) in northwest India 

show trends likely associated with groundwater extraction.

• Land models in global assimilation systems do not usually represent 

anthropogenic processes such as groundwater extraction and irrigation.

• Assimilation of GRACE observations introduces realistic trends in TWS and 

groundwater along with an erroneous trend in evapotranspiration.
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Figure 1. 
Trends in the (a,d,g) observed, (b,e,h) model-only, and (c,f,i) data assimilation estimates of 

(a,b,c) TWS, (d,e,f) groundwater, and (g,h,i) evapotranspiration rate. The “star” marker in 

(a) indicates the location of the time series shown in Figure 3. Grey colors indicate non-

significant trends (p<0.05).
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Figure 2. 
Percentage of land area equipped for irrigation, around the year 2005 [Siebert et al., 2013].
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Figure 3. 
(a) (Green circles) GRACE TWS observations, (red triangles) in situ groundwater 

measurements, (thick grey line) model-only groundwater, and (black line) groundwater 

estimates from data assimilation for the location with the maximum TWS trend in GRACE 

observations (marked in Figure 1a). (b) As in (a) but for anomalies (with trends and the 

mean seasonal cycle removed). For this illustration, all data are aggregated from the 36 km 

model grid to the resolution of GRACE TWS observations.
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Figure 4. 
(a,e) Correlation (R) and (c,g) anomaly correlation (anomR) for model-only (a,c) TWS and 

(e,g) groundwater. Differences in (b,f) correlation (ΔR) and (d,h) anomaly correlation 

(ΔanomR) between the assimilation and the model-only experiment for (b,d) TWS and (f,h) 

groundwater. Blue colors in skill difference plots (b,d,f,h) indicate that assimilation 

estimates are improved compared to model-only estimates, and red colors indicate that 

assimilation estimates are degraded. Numerical values provide area-average statistics 

(Section 2.5).
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