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Abstract
Epigenomics is the study of molecular signatures associated with discrete regions within genomes, many of which are
important for a wide range of nuclear processes. The ability to profile the epigenomic landscape associated with genes, re-
petitive regions, transposons, transcription, differential expression, cis-regulatory elements, and 3D chromatin interactions
has vastly improved our understanding of plant genomes. However, many epigenomic and single-cell genomic assays are
challenging to perform in plants, leading to a wide range of data quality issues; thus, the data require rigorous evaluation
prior to downstream analyses and interpretation. In this commentary, we provide considerations for the evaluation of
plant epigenomics and single-cell genomics data quality with the aim of improving the quality and utility of studies using
those data across diverse plant species.

Introduction
High-throughput sequencing has revolutionized the study of
plant epigenomes. The cost of sequencing has never been
cheaper, which has shifted the bottleneck to sample collec-
tion, epigenomic assays, sequencing library preparation, and
data analysis. Plant samples are readily evaluated for transcript
and small RNA (smRNA) abundance, as well as the patterns
and distribution of transcription factor (TF) binding sites,

DNA methylation, histone modifications, and chromatin ac-
cessibility. Some of these assays have even been adopted for
use in single cells. However, with the democratization of se-
quencing, challenges arise with regard to the proper evalua-
tion of experimental and data quality. Data quality can have
numerous definitions, but here we use this term to refer to
the quality and outcome of the overall experiment and its
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usefulness for uncovering biological phenomena and not to
the “sequencing quality” scores generated by sequencing
instruments. The aim of this commentary is to raise aware-
ness of data quality standards, define common pitfalls and
issues associated with large-scale experiments, and provide
considerations that we suggest colleagues embrace when gen-
erating and analyzing plant epigenomics data.

What distinguishes transcriptome and epigenome assays
from genome sequencing is biological (as opposed to geno-
typic) and experimental variability (dependent on endoge-
nous and exogenous stimuli as well as the complexity of the
assay itself). As a result, whole-genome sequencing (WGS)
typically does not require biological replicates, whereas the
quantitative nature of transcriptomics and epigenomics typi-
cally does. For example, for genome sequencing, the identifi-
cation of single-nucleotide (nt) polymorphisms can be
viewed as a qualitative difference at a single position be-
tween two genotypes. Given sufficient sequencing depth
and uniform genome coverage, these binary differences be-
tween genotypes are readily identified in the absence of rep-
lication. However, comparisons of transcript or smRNA
abundance between samples are often used in a quantitative
manner and, as a result, must be accompanied by biological
replication to support the major claims.

Replicates from distinct biological samples are required to
exclude technical and biological variance not associated with
the variable of interest, especially in the context of studies
that draw conclusions based on quantitative changes in gene
expression (Schurch et al., 2016). Technical replicates (within
an experiment) provide insight into variation associated with
an assay, but they do not describe the range of results
expected within a population (Vaux et al., 2012). While unre-
plicated studies have been published for many types of “-seq”
data, such as single-cell transcriptome sequencing and early
studies of chromatin immunoprecipitation (ChIP) coupled
with sequencing, most fields have matured to the point in
which the need for proper biological replication outweighs
the “wow factor” of the new technology; similar shifts have
occurred going back to microarray studies, RNA-seq, and a
wide variety of “-seq” studies. That is, the first few papers de-
scribing a new technology were often accepted with minimal
biological replication, because the method is novel, likely to
be of high value to the scientific community, and therefore
deemed worthy of rapid publication. Scientific advances often
require a delicate balance between the development and ap-
plication of new methods. In the early days of most technolo-
gies and data-rich approaches, costs are high. However, at a
certain point, as the approach becomes more routine for bio-
logical exploration and the associated costs (typically) decline,
the essential components of good experimental design, in-
cluding biological replication, must come to the fore.

Evaluation of enrichment and additional
quality controls
A distinguishing feature of transcriptome/epigenome se-
quencing approaches compared to genome sequencing is

the reliance on the enrichment of molecules from a larger
pool, often using biochemical approaches. For example,
most RNA-sequencing (RNA-seq) experiments rely on the
enrichment of mRNA from total RNA by the capture of
mRNA via poly(A) tails. For smRNAs, size exclusion is used
as a form of enrichment. To detect TF binding or histone
modification abundance using ChIP-sequencing (ChIP-seq),
antibodies are required to capture specific protein : DNA
interactions. Similarly, the detection of accessible chromatin
requires the isolation of chromatin, followed by enzymatic
treatment to enrich nucleosome-depleted regions. The need
to enrich for RNA, smRNA, and/or chromatin increases the
complexity of these assays, resulting in an increase in both
technical and biological variability in the data linked to the
assay materials (i.e. kit components, chemicals, or plant tis-
sue quality), the individual experimenter(s), or the location
where the experiment was performed.

In this commentary, we provide some useful considera-
tions for replication and quality control metrics that can be
used to evaluate enrichment/data quality for common tran-
scriptome and epigenome assays (Table 1). The evaluation
of these metrics will help researchers determine if experi-
ments should be repeated or if caution should be taken
with interpretation of the data. Adding quality control met-
rics to supplemental material is commonly accepted by jour-
nals for some assays, yet lacking for others. We strongly
believe that including some of these quality control metrics
for high-throughput sequencing-based experiments will im-
prove the ability of readers to accurately evaluate the results
both pre and postpublication. We describe several issues
that are common among multiple types of assay, followed
by a description of data type-specific considerations.

PCR bias
When possible, the amount of input material used for
each epigenomic library should be standardized to reduce
variation that can be attributed to polymerase chain reac-
tion (PCR) bias. The number of PCR cycles should be mini-
mized to reduce PCR bias and duplicate reads. Duplicate
reads are commonly used as a measure of library quality
and complexity. A duplicate read is one that has the same
start and end point and is often the result of PCR duplica-
tion as opposed to an independent biological event. In-
depth analyses of sequenced libraries require careful inspec-
tion of the level of enrichment achieved. Unfortunately, al-
though there are methods to evaluate enrichment and data
quality, they are rarely included in the presentation of data
in manuscripts, which shifts the burden of evaluating data
quality to the reader or user, postpublication.

Sequence alignments
For all transcriptome and epigenome data types generated
from sequencing, it is important to have an understanding
of the limitations of sequence alignments. There are numer-
ous strategies for the alignment of sequenced reads, depend-
ing on the scientific question being pursued as well as
downstream analyses and data interpretation. Arguably, just
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as important is an understanding of the limitations of
current genome assemblies and annotations as well as com-
putational packages designed to work with well-assembled
genomes. We are fortunate to be able to conduct these
experiments in an era when high-quality reference genomes
exist for many plants, and new assemblies and versions are
continually being released. However, even for these high-
quality genomes, assembly and annotation errors still exist
that can lead to erroneous results (Mendieta et al., 2021).

Challenges with “peak” identification
Analysis of transcriptomic and epigenomic data requires
dedicated pipelines for which the subject of the analysis dic-
tates how the data should be processed. For example, in
RNA-seq, comparisons are typically made at the level of
transcripts or gene loci, which provides a fixed set of regions
that are generally uniquely mapped and supported by prior
analysis and data, such as genome assembly, annotation,
cDNA support from Expressed Sequence Tags, and previous
RNA-seq data. Analysis of epigenomic data is typically more
challenging, given that regions of sequencing coverage en-
richment (i.e. regions that resolve into peaks) have rarely
been preidentified using a gold standard approach and can
be associated with repetitive DNA regions that are difficult
to assemble. That is, an epigenomic experiment may identify
novel peaks that were not previously observed and reported,
thus making it challenging to cross-check or validate those
results using existing data.

Another major consideration is the evaluation of peak
quality and quantity between samples. The main goal of
smRNA-seq, ChIP-seq, and chromatin accessibility mapping
experiments is to identify regions in the genome that are
enriched for biological signals (i.e. have a significant density
of stacked sequenced reads; Figure 1). Upon sequencing,

these regions are often referred to as peaks; an array of soft-
ware packages have been designed to identify these regions
in a genome wide-fashion (Ji et al., 2008; Zhang et al., 2008;
Rozowsky et al., 2009; Heinz et al., 2010; Guo et al., 2012; Xu
et al., 2014; Ibrahim et al., 2015; Meers et al., 2019). These
software packages perform signal processing steps in an
attempt to approximate human judgment and generally in-
volve smoothing and cutoff parameters. Given the wide vari-
ety of signal shapes that can occur within and between data
types, there is no gold standard for these parameter selec-
tions. However, when biological replicates are available, there
are recommended procedures to perform after a peak
caller is applied. When biological replicates are sequenced,
correlations between datasets can be used to evaluate data
quality and to estimate high-confidence target peaks. For
example, it is common practice to use correlation analyses
between biological replicates to evaluate RNA-seq samples.
Comparisons of genome-wide transcript abundance from
entire organs for each gene often reveal correlations 40.95.
However, for epigenomic assays, such as ChIP-seq and chro-
matin accessibility mapping, correlations of reads in peaks
(as opposed to genes) should be used to evaluate consis-
tency between biological replicates, because read coverage
of large predefined genomic bins (e.g. 10 or 100 kilobase
[kb]) obfuscates technical and experimental variation.

Another method used to evaluate peak quality and
sample-to-sample variation involves the irreproducible dis-
covery rate (IDR; Li et al., 2011). This method uses a statisti-
cal framework to compare the signal ranks of peaks,
providing IDR values for all peaks across biological replicates.
A comparison of the number of peaks passing the deter-
mined IDR threshold between true and re-sampled pseudo-
replicates allows the numeric quality of replicated enrich-
ment experiments to be assessed. According to the

Table 1 Recommendations for important checks and controls for plant epigenome assays

Important Checks and Controls RNA-seq smRNA-seq WGBS ChIP-seq Chromatin
Accessibility

Single-cell
RNA-seq

Single-cell
ATAC-seq

Low level of duplicate reads x x x x x x x
Appropriate normalization x x x x x x x
Report number of sequenced and aligned reads x x x x x x x
Show representative genome browser screen shots (including replicates) x x x x x x x
Evaluate RNA/DNA quality x x x
High and/or consistent alignment rates x x x x x x x
Show Venn diagram or Upset plots of identified

clusters/regions/peaks between replicates
x x x x

Aligned smRNA sequences are enriched for 21–24 nt sizes x
Report bisulfite conversion rates x
Report read coverage of the genome x
Report SPOT or FRiP scores x x x
Implement IDR with replicates x
Include input or IP background control x
Plot read coverage around genomic features (genes/TEs/TSSs, etc.) x x x
Consider a spike-in control x x
Evaluate enzymatic bias using genomic DNA control x
Report number of cells targeted x x
Report number of unique transcripts/Tn5 integrations per cell x x
Evaluate marker genes x x
Filter cells with high proportion of organellar reads x
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standards set by the ENCODE project, the ratio between
peaks enriched in replicates and pseudo-replicates should be
between 0.5 and 2.0 (Landt et al., 2012). A large proportion
of peaks above the IDR threshold indicate substantial dis-
crepancies between signals among replicates, which is indic-
ative of poor reproducibility. We note that large variation in
the number of sequencing reads between biological repli-
cates can result in variable “peak” detection due to the sen-
sitivity of identification of rare or cell-type-specific peaks
(Jung et al., 2014).

Controls that account for assembly quality and the
sequence alignment strategy
Some of the most challenging-to-study regions of any ge-
nome are the repeats (e.g. transposons [TEs] or centromeric
regions), as they confound most assembly algorithms and
are often collapsed into single units in assemblies, even
though they exist as complex arrays in the genome. Due to
their repetitive nature, these regions often appear as “peaks”
in any coverage-based assay such as ChIP-seq and chromatin
accessibility mapping, even if the actual result is not an en-
richment or peak. In other words, the collapse of the repeats
in the genome assembly can yield misleading artifacts. Peaks
occurring as a result of a genome assembly or sequence
alignment strategy obscure true peaks that result from bio-
logical signals. One strategy to evaluate the sequence align-
ment approach and to manage these problematic regions of
the genome is to determine sequence mappability using a
k-mer-based approach that matches the read length from a
library (Derrien et al., 2012). An alternative approach is to
compare these problematic regions that result from mis-
assembly or repeat regions to a genomic DNA sequencing li-
brary, such as WGS or ChIP-seq/chromatin accessibility
mapping input (Figure 1). Next, for coverage-based enrich-
ment assays, determine how many “peaks” are identified
from the genomic DNA library (Figure 1). Any peaks found
in this control library within mappable regions of the ge-
nome are likely artifacts of the alignment strategy and/or
the genome assembly (Figure 1; Pickrell et al., 2011). An

alternative approach is to use the input or WGS alignments
as a baseline to measure enrichment (Figure 1). By knowing
which regions of the genome behave in this manner, those
regions can be excluded from downstream analyses, reduc-
ing associated erroneous results.

Data visualization
A valuable tool that should be used to quickly assess the
quality of transcriptomic and epigenomics data is a genome
browser, such as the Integrative Genomics Viewer
(Thorvaldsdottir et al., 2013) or JBrowse (Buels et al., 2016;
Hofmeister and Schmitz, 2018). These genome browsers al-
low aligned data and/or processed files to be visualized. The
visualized data can be used to roughly evaluate the unifor-
mity of coverage or the enrichment of transcripts, smRNAs,
DNA methylation, or peaks around expected genomic
regions. The data can also be used to evaluate the accuracy
of software used to identify differentially methylated regions
and/or differential peaks. It should be noted that genome
browsers and associated screenshots do not supplant quan-
titative measurements of the data, but they are important
tools for data presentation and are recommended for the
additional evaluation of data quality.

Data type-specific considerations

RNA-seq
There are numerous applications of RNA-seq technologies,
but in this section, we will focus specifically on the sequenc-
ing of mRNAs. Quantitative and qualitative measurement of
RNA is a cornerstone of genome biology. Measuring mRNAs
is the most common: the data are used to annotate
genomes, discover splice isoforms, and most often to
estimate steady-state transcript levels. The estimates of tran-
script levels are typically compared across treatments, geno-
types, or tissue types to infer or determine which genes
contribute to key differences in the compared materials.

Important checks and controls

First and foremost, RNA integrity should be evaluated prior
to library preparation (e.g. with a fragment bioanalyzer), as
poor-quality RNA can lead to erroneous artifacts. In most
cases, biological triplicates are sufficient for the identification
of differentially expressed genes, although the number can
vary depending on the study system, the question being
posed, and the sensitivity needed from the analysis. Key
indicators of high-quality RNA-seq libraries include high
and consistent sequence alignment percentages, low levels
of duplicate reads, and uniform distribution of reads across
transcript annotations. Low or inconsistent alignment per-
centages between samples likely indicate a problem with
RNA quality. These types of libraries often possess many
more nonpoly(A)-tailed RNAs compared to high-quality li-
braries. One emerging method that is useful for evaluating
duplicate reads is to use unique molecular identifiers, which
are commonly used in single-cell genomics. In parallel, incor-
porating spike-in RNAs is useful for estimating transcript

 gene repeat  gene

kmer
(mappability)

gDNA input
(ATAC-seq)

ATAC-seq

collapsed repeat

false peak

Figure 1 Accounting for mappability and genome assembly artifacts.
A schematic diagram of typical aligned data obtained by ATAC-seq.
Regions of chromatin accessibility are indicated by peaks. A region
that appears enriched for sequencing coverage (labeled “false peak”) is
actually due to a collapsed repeat in the genome assembly. Tn5-
treated genomic DNA helps to identify these problematic regions. A
k-mer-based approach is used to reveal regions of the genome that
are uniquely mappable for a given sequence fragment length.
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abundance. A variety of methods are used to normalize
RNA-seq data, but the two main approaches are normalizing
by library size and transcript length or implementing a
quantile normalization approach. The latter is typically used
when changes in transcript abundance are not normally
distributed.

smRNA-seq
Plant smRNAs (here defined as RNAs produced by Dicer-like
[DCL] proteins and bound to Argonaute [AGO] effector
proteins) are categorized into discrete classes based on their
size (generally 21- 24-nt long) and mode of action. The two
major classes are small interfering RNAs (siRNAs) and
microRNAs (miRNAs). The functions of siRNAs in RNA-
directed DNA methylation (to silence repeats and TEs) and
miRNAs or secondary siRNAs in the posttranscriptional reg-
ulation of mRNAs have been extensively reviewed (Axtell,
2013a; Holoch and Moazed, 2015).

Important checks and controls

Upon sequence alignment, the majority of DCL/AGO-
related smRNAs from most plants range between 21- and
24-nt long. The absence of discernible peaks of 21- and/or
24-nt RNAs in the total size distribution of a smRNA-seq
alignment could indicate issues with the quality of the input
RNA or library (Mathioni et al., 2017). smRNA library prepa-
ration is often accompanied by a size exclusion step to sepa-
rate these RNAs from mRNAs, tRNAs, and rRNAs. However,
poor RNA quality can lead to the degradation of these lon-
ger RNAs, which leads to their abundance within fractiona-
tions of smRNA populations. These RNAs can easily be
filtered, especially for tRNAs and rRNAs; however, degraded
mRNAs are more challenging to filter, as genes are often po-
tential targets of the smRNAs under investigation. Therefore,
to evaluate if an mRNA is a true source of siRNAs, the
strandedness and size of the aligned RNAs can be examined.
For example, a sign of mRNA degradation versus true
smRNAs is the presence of numerous sequenced reads that
are outside the expected size ranges (21–24 nt) that are de-
rived primarily from the sense strand of the transcript.
Computational analyses can be performed to identify indi-
vidual loci where aligned smRNAs are not predominantly in
the 21–24 nt size range (Axtell, 2013b; Johnson et al., 2016).
A handful of such loci does not necessarily indicate a fatal
flaw in the library; some mRNAs, especially highly abundant
ones, likely have a true in vivo population of semi-degraded
fragments.

Other possible issues include amplification bias, which is
observed as a paucity of distinct or unique reads; this is
most commonly observed when the input quantities of
RNA are well below the levels recommended for the proto-
col (Wright et al., 2019). Differential expression of smRNAs
using sequencing should require a minimum of three biolog-
ical replicates and the use of proper statistical procedures
that robustly model dispersion and control the false discov-
ery rate (Schurch et al., 2016). Additionally, the choice of an
appropriate normalization method is critical when

quantifying smRNAs and identifying differentially accumu-
lated smRNAs between samples. While normalization
against total smRNA reads or rRNA/tRNA-filtered total
smRNA reads is most common, this can generate biased
results when changes in a class of smRNAs are found in a
particular genotype or sample. In fact, rRNA/tRNA frag-
ments constitute a fair proportion of total smRNA reads
and can serve as an internal control for normalization
(McCormick et al., 2011), provided that all samples were
prepared at the same time with the same methodology and
sequenced in the same sequencing run. When sRNA-seq
data are to be used quantitatively, we recommend that sev-
eral normalization methods be applied and the outcomes
validated by qRT-PCR or northern blotting against select
miRNAs or siRNAs known to be stable across all samples be-
ing analyzed.

Cytosine DNA methylation
DNA methylation can be examined at single nt resolution
using whole-genome bisulfite sequencing (WGBS) or enzy-
matic methyl-seq (Cokus et al., 2008; Lister et al., 2008; Feng
et al., 2020). These single-base resolution technologies are es-
pecially useful in plants, as DNA methylation occurs in three
distinct contexts (CG, CHG, and CHH, where H = A, C, or
T) that reflect the activities of distinct DNA methylation
pathways (Law and Jacobsen, 2010). DNA methylation is
highly enriched at transcriptionally silent regions of plant
genomes such as TEs and repeats (Cokus et al., 2008; Lister
et al., 2008; Feng et al., 2010; Zemach et al., 2010;
Niederhuth et al., 2016). It is also found within gene bodies
of a subset of actively transcribed genes in angiosperms as
well as some ferns and gymnosperm species (Tran et al.,
2005; Takuno and Gaut, 2012; Takuno et al., 2016; Bewick
et al., 2017). Methylome data are useful for a variety of rea-
sons; their intended use for describing qualitative versus
quantitative aspects of the samples influences the need for
biological replication. For example, methylome data that
accompanies a genome assembly and is used to broadly
characterize and annotate the methylation patterns around
genes, transposon, repeats and other genomic features
doesn’t typically require replication. However, the identifica-
tion of differentially methylated regions requires biological
replication. Here, the analysis is often focused on comparing
the same genomic region across a variety of samples derived
from a different genotype (mutant or natural isolate), a dif-
ferent tissue, or subjected to different environmental condi-
tions. Similar to other quantitative methods like RNA-seq, a
variety of software packages are publicly available that are
specifically tailored to process, align, and identify differen-
tially methylated positions and/or regions between samples
from a treatment versus control group and/or a population
(Xi and Li, 2009; Krueger and Andrews, 2011; Schultz et al.,
2015).

Important checks and controls

Input genomic DNA used for methylome sequencing should
be of high quality, although it does not need to be as pure
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as samples that are prepared for genome assemblies. Poor
input quality of genomic DNA can lead to uneven unifor-
mity of coverage across the genome, making comparisons
between samples and biological replicates challenging.
WGBS depends on either the chemical or enzymatic conver-
sion of unmethylated cytosine to uracil (Frommer et al.,
1992; Feng et al., 2020). Upon PCR, uracil is converted to
thymine. An important consideration for methylome se-
quencing is the conversion rate of the treatment. This can
be measured by evaluating the percentage of cytosines
detected as “methylated” in the chloroplast genome or in
an unmethylated spike-in DNA control, such as lambda
phage DNA. To detect small changes in methylation, con-
version rates should be 499%. If using unmethylated plastid
genomes as controls, one should be certain to ensure that
sequences are not duplicated in the nuclear genome, as this
could interfere with measuring the conversion efficiency.
This conversion rate, along with sequence alignment rates
(most often for uniquely aligned reads), should always be
reported, typically in a supplemental table. Lastly, the
expected genome coverage per sample will depend on the
experiment. Typically, 415� coverage per biological repli-
cate is sufficient for most analyses, as suggested by the
Human Epigenome Roadmap Consortium (http://www.road
mapepigenomics.org/protocols). As a reminder, because
methylome sequencing results in strand-specific data, 15�
coverage corresponds to 7.5� per strand. Measuring the
percentage of duplicate reads is also useful in evaluating li-
brary complexity. For low input or low-quality genomic
DNA, a higher rate of duplicate reads is often observed. In
most cases, duplicate reads should be reduced to a single
read for downstream analyses, and coverage estimates
should be calculated after they are removed. Otherwise, the
genome coverage will be artificially inflated due to technical
issues.

ChIP-seq
ChIP-seq is a useful method for evaluating the enrichment
of protein–DNA interactions (Johnson et al., 2007). In this
method, plant tissue is treated with formaldehyde to cross-
link and preserve protein–DNA interactions. After crosslink-
ing, antibodies or epitope tags specific to the protein or
hybrid protein of interest are used to detect and isolate the
protein along with the associated DNA, which is then se-
quenced. This assay is commonly used to detect TF DNA
binding sites or locations of posttranslationally modified or
variant histones. The most important consideration for
ChIP-seq is recognizing that it is an enrichment assay and
that the quality of the enrichment is dependent on numer-
ous experimental factors, such as the quality of the antibody
and/or the precipitation protocol, in addition to biological
factors such as the tissue specificity of the signal or its re-
sponse to biological variation. A key goal of this assay is to
maximize the antibody-tagged DNA signal over background.
In the ideal experiment, there would be no background,
meaning that no sequenced reads were detected from

regions of the genome that were not associated with the
protein being assayed. Unfortunately, background is essen-
tially impossible to eliminate from this procedure, and there-
fore it must be accounted for using an input or other
control library.

A high-quality ChIP-seq experiment typically results in a
high coverage of sequenced reads at discrete regions
throughout the genome, again referred to as “peaks,”
although in low-quality ChIP-seq datasets, peaks are hard
to distinguish from background signal (Figure 2). The shape,
location, magnitude, and sensitivity to identify peaks differ
depending on the protein–DNA interaction being measured
and the complexity and sequencing coverage of the se-
quencing library (Hower et al., 2011; Jung et al., 2014). For
example, TF peaks are typically sharp and enriched near the
transcriptional start site (TSS), upstream and downstream of
genes, whereas histone modifications and histone variant
peaks are generally broader. The patterns and distribution of
histone modifications have been well characterized in cer-
tain plant genomes (Zhang et al., 2007; Bernatavichute et al.,
2008; Zhang et al., 2009; Li et al., 2019; Lu et al., 2019; Ricci
et al., 2019; Montgomery et al., 2020; Zhao et al., 2020).
There is a high similarity in the patterns and distributions of
histone modifications among plant genomes. For example,
trimethylation of lysine 4 of histone 3 (H3K4me3) is highly
enriched around the TSS in plant genomes, whereas
H3K4me2 and H3K4me1 are found within gene bodies
(Zhang et al., 2009). These expected patterns and distribu-
tions at genes or other genomic features can be used to
evaluate the quality of the enrichment. A novel method re-
ferred to as Cleavage Under Targets and Release Using
Nuclease or Cleavage Under Targets and Tagmentation was
recently developed to measure protein–DNA interactions
(Skene and Henikoff, 2017; Kaya-Okur et al., 2019). Although
the method is unique, most of the same methods used for
the evaluation of data quality are the same as ChIP-seq.
Additionally, Tn5-based chromatin profiling methods are
biased toward detecting accessible chromatin, which
requires extra scrutiny in downstream analyses (Wang and
Zhang, 2021).

Important checks and controls

Sequence alignment percentages should be evaluated and
reported for each sample. The percentage of duplicate reads
can be used to determine if the sample is of low complexity.
This is a common issue with ChIP-seq, as sub-nanogram
amounts of DNA are typically immunoprecipitated from
each ChIP, especially in the case of TF mapping. The prepa-
ration of a sequencing library does not necessarily indicate
that the assay worked as intended; it only indicates that in-
put DNA was used in the library preparation. To evaluate
the quality of the ChIP experiment, the enrichment of se-
quenced reads relative to known genomic regions such as
genes, repeats, promoters, and so on should be used.
Additionally, genome-wide metrics for measuring signal-to-
noise, such as Signal Portion of Tags (SPOT) and Fraction of
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Reads in Peaks (FRiPs), are used to establish the extent of
enrichment, where greater values indicate lower background
(Ji et al., 2008). However, SPOT/FRiP scores are largely quali-
tative and dependent on the heterogeneity of the sample,
varying widely depending on the species, tissue, or cell type.
In cases where biological replicates are performed, IDR can
be implemented to establish the reproducibility of the
experiments by comparing the ratio of identified peaks be-
tween and within biological replicates (see Landt et al.
(2012) for more information on IDR and recommended
thresholds). It is useful to present a meta-analysis of the
coverage distribution of reads across these features for all bi-
ological replicates, as well as heat maps, which reveal locus-
specific patterns of enrichment. These two data types are
complementary in that one provides an average score across
all genomic features, whereas the other shows individual
data points for the studied features. It is also recommended
that authors present representative genome browser screen-
shots of the biologically replicated data, typically as a supple-
mental figure. Together, this information can be used by
readers to rapidly evaluate the quality of the experiment, as
strong signals are expected compared to background regions
of the genome. Lastly, the goal of most ChIP-seq experi-
ments is peak identification, which often requires an input
control for comparative purposes. It is typically recom-
mended that a portion of the isolated chromatin be used as
an input control for mapping TFs. To identify peaks from
histone modifications, the use of an antibody to unmodified
Histone H3 is recommended, as this reflects the distribution
of nucleosomes across the genome. In both cases, the input
DNA can be used to control for “mappability” of the ge-
nome as described above. In certain cases, adding spike-in
chromatin from another species (e.g. fruit fly [Drosophila
melanogaster] or mouse [Mus musculus]) to each sample

prior to performing the ChIP experiment can be useful for
absolute measurements of enrichment, particularly in
genomes of lesser quality. A spike-in ChIP approach is in-
valuable for quantifying global changes in features
across biological samples, for example, when comparing a
reduction in a given histone modification between strongly
affected mutants and wild-type plants.

Chromatin accessibility
Regions of the genome that are depleted of nucleosomes of-
ten reflect accessible chromatin; these regions are enriched
for cis-regulatory elements (CREs) and TF binding (Stalder
et al., 1980). A variety of methods are used to identify chro-
matin accessibility, such as micrococcal nuclease (MNase)
sequencing (Liu et al., 2015; Zhang et al., 2015), DNase I se-
quencing (Zhang et al., 2012b; Cumbie et al., 2015), and
Assay for Transposase Accessible Chromatin sequencing
(ATAC-seq; Buenrostro et al., 2013; Lu et al., 2017; Maher
et al., 2018). Each of these methods utilizes an enzyme that
releases accessible chromatin fragments, either via enzymatic
digestion (MNase or DNase) or sequencing adapter integra-
tion (ATAC-seq; Zhang et al., 2012b; Zhang et al., 2012a;
Sullivan et al., 2014). These assays have been invaluable dur-
ing the last decade at improving the ability to investigate
the noncoding regions of the genome for candidate CREs
(Rodgers-Melnick et al., 2016; Reynoso et al., 2019; Ricci
et al., 2019). They are especially useful in plants with large
genomes in which CREs can be located 4100 kb away from
their target gene(s) (Oka et al., 2017; Lu et al., 2019). These
assays are similar to ChIP-seq in that they are evaluated
based on sequencing coverage at distinct regions through-
out the genome, again referred to as “peaks.” These peaks
represent DNA fragments released from accessible chroma-
tin and are highly enriched at TSSs of genes in plant

Figure 2 Visualization of ChIP-seq enrichment of histone modifications. Low-quality/failed versus high-quality ChIP-seq data are shown for
H3K4me3 and H3K27me3 from soybean (Glycine max) leaves. The first and third tracks show low-quality and/or failed ChIP-seq data, whereas
tracks 2 and 4 show high-quality data. Box 1 shows a region of H3K27me3 enrichment in track 4, whereas the same region shows almost no en-
richment in track 3. As is typical for H3K27me3, enrichment is present throughout the gene body into the upstream region. Boxes 2 and 3 show
enrichment for H3K4me3 at TSSs in track 2, whereas weak enrichment is detected in track 1.
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genomes. However, as mentioned above, the identified
regions can be proximal or distal to their target gene(s).
They can even be located in introns, exons, 50- or 30-
untranslated regions, or downstream of their target genes
and interact with the target promoter through 3D chroma-
tin interactions.

Important checks and controls

Unlike other epigenomic assays, accessible chromatin pro-
filing techniques capture the signal from the ends of se-
quencing fragments rather than the center (e.g. ChIP-seq).
As such, aligned reads from accessible chromatin profiling
must be reformatted prior to the identification of peaks.
For example, analysis of ATAC-seq data often includes
post alignment steps that identify Tn5 integration sites at
base resolution by initially collecting 50-coordinates. These
coordinates are then shifted by + 5/–4 for forward and re-
verse alignments, respectively, to account for the 9-bp
binding footprint of Tn5. As most peak callers assume
that the biological signal originates from the centers of
paired reads, naı̈ve application on unprocessed chromatin
accessibility sequencing data will lead to false-positive
peaks, especially for sequencing libraries with generally
larger insert sizes.

The percentage of aligned reads and the duplication read
rate are again useful metrics. Similar to ChIP-seq, high-qual-
ity chromatin accessibility assays have a high signal-to-
background ratio, often measured using FRiPs. For a detailed
explanation of how to evaluate data quality from chromatin
accessibility mapping assays, this article provides useful
guidelines (Bubb and Deal, 2020). A key consideration is
that genomic DNA should be treated with the appropriate
enzyme (MNase, DNase I, or Tn5) for each new species un-
der study to evaluate enzymatic bias and the overrepresen-
tation of specific fragments. Another key point is that high-
quality ATAC-seq data from Arabidopsis thaliana typically
has a FRiP score 435%, whereas in maize (Zea mays), a suf-
ficient score is typically 420%. The evaluation of FRiP scores
is dependent on the species being studied, but in general, a
higher percentage of reads in peaks reflects a higher quality
experiment. FRiP scores or other metrics that evaluate
signal-to-noise ratios are often influenced by the genome
size and the number of sequenced reads. With a greater ge-
nome size, there is a higher probability of background reads,
given that the number of chromatin-accessible regions does
not scale with genome size. A sufficient number and com-
plexity of sequenced reads should be generated such that
the number of identified peaks becomes saturated. Another
way to evaluate chromatin accessibility data is to plot the
enrichment of read coverage around the TSSs of genes, as
most expressed genes possess chromatin. If a TSS-
sequencing method has not been applied to precisely iden-
tify TSS locations in a sample, they can be roughly approxi-
mated using annotated TSSs. A strong enrichment should
be observed around the TSSs of genes compared to input
controls. This should be performed for all biological

replicates of all samples. Displaying data in a genome
browser for all biological replicates are also a highly recom-
mended approach to quickly evaluate the quality of the
data and to present it to a broader audience.

Single-cell genomics
The advent of single-cell genomics is one of the most excit-
ing recent technological developments in genomics that will
significantly influence plant biology research. The ability to
survey molecular profiles of populations of individual cells
from any plant species without the need to generate trans-
genic reporter lines will undoubtedly lead to breakthrough
discoveries. Single-cell RNA-seq (scRNA-seq; Denyer et al.,
2019; Jean-Baptiste et al., 2019; Ryu et al., 2019; Shulse et al.,
2019; Zhang et al., 2019; Satterlee et al., 2020; Xu et al., 2021;
Zhang et al., 2021b, 2021a) and single-cell ATAC-seq
(scATAC-seq; Dorrity et al., 2021; Farmer et al., 2021;
Marand et al., 2021) have been applied to a few plant spe-
cies and tissue types. This work has thus far demonstrated
the ability to resolve cell type information from bulk popula-
tions by aggregating cells of the same type, typically leverag-
ing dimensionality reduction (principal component analysis,
non-negative matrix factorization, t-distributed stochastic
neighbor embedding, uniform manifold approximation and
projection, etc.) and graph-based clustering techniques
(Leiden and Louvain) (Blondel et al., 2008; van der Maaten
and Hinton, 2008; McInnes et al., 2018; Traag et al., 2019).
Single-cell methods are particularly useful for pinpointing
genes expressed in a cell-type-specific manner and identify-
ing cell-type-specific CREs. Together, scRNA-seq and
scATAC-seq hold great promise for studying gene regulatory
networks at cellular resolution.

There are numerous methods for preparing single-cell ge-
nomic libraries, but the most commonly used thus far in
plants relies on instrumentation and reagents provided by
10� Genomics. Unlike other sequencing libraries described
above, the cost of preparing single-cell libraries easily varies
by 10- to-20-fold depending on the type of library. As a re-
sult, preparing the sequencing library can be more expensive
than the sequencing itself, which has major implications for
experimental design. Unfortunately, single-cell genomics is
susceptible to both biological and technical variation, even
more so than bulk cell-based assays, considering that cellular
heterogeneity is masked in bulk assays by averaging signals
across profiled cells. To resolve this variation, biological repli-
cates are required, especially for studies that rely almost
solely on single-cell data as the core of the story. The cur-
rent standard of reproducibility for single-cell approaches
relies on qualitative evaluation of replicate mixing in re-
duced dimensional representations (e.g. within PCA/tSNE/
UMAP embeddings), or quantitatively through comparisons
of cell-type proportions per biological replicate. Additional
quantitative metrics of reproducibility for single-cell techni-
ques are likely to emerge as costs continue to fall and
single-cell methods become more widely adopted by the
plant science community.
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Important checks and controls

Single-cell genomic analysis results in sparse data across
thousands of individual cells. As a result, single-cell genomic
libraries are often sequenced to saturation, for example,
more than 500 million reads per 10,000 cells/nuclei, resulting
in a high rate of read duplication. The percentage of aligned
sequences should be reported for all samples. Additionally,
due to the single-cell resolved nature of the data, the num-
ber of target cells profiled and the number of recovered cell
profiles as well as the number of processed reads per cell
must be reported. For example, a typical high-quality
scRNA-seq or scATAC-seq library from plants using the
10� Genomics platform will capture 440% of input cells/
nuclei with at least 1,000 unique transcripts or Tn5 integra-
tions per cell. However, lower numbers of events per cell are
acceptable for species with fewer genes (e.g. the liverwort
Marchantia polymorpha). We also recommend the quantifi-
cation of ambient RNA and chromatin from lysed cells and
nuclei to distinguish true cells from background noise
(Young and Behjati, 2020). Additionally, scRNA-seq experi-
ments in plants have generally relied on generating proto-
plasts to create single-cell suspensions. For such approaches,
it is imperative to generate bulk-scale RNA-seq control data-
sets to account for enzyme treatment-induced changes to
cell states. Caution should be taken to minimize the number
of droplets and/or barcodes that possess multiple nuclei or
cells, which can be evaluated empirically by genotype/spe-
cies mixing (Marand et al., 2021) or through the use of cell
hashing (Stoeckius et al., 2018) prior to scaling up library
preparations. Additionally, for scATAC-seq, the FRiP score
and enrichment of reads around the TSSs of genes can be
used to evaluate the quality of the data (Marand and
Schmitz, 2021). Data quality from scATAC-seq is often
much better than that of bulk ATAC-seq experiments, and
FRiP scores 475% and 445% have been achieved for
scATAC-seq in Arabidopsis and maize, respectively (Dorrity
et al., 2021; Marand et al., 2021). The exact reason for the
superior data quality is not known, but the ability to ex-
clude cells that do not have enrichment of reads around the
TSS or within peaks improves downstream analyses. Lastly,
cells with high amounts of reads that align to the chloro-
plast and/or mitochondria from scATAC-seq data can be re-
moved, as they likely represent broken nuclei or supernatant
generated from the isolation of cells. The ability to remove
data from suspect cells is likely one reason for the superior
data quality and improved downstream analyses using sin-
gle-cell compared to bulk ATAC-seq approaches.

Conclusions
Transcriptomics and epigenomics are revealing features of
plant genomes at an unprecedented pace and providing a
major source of as-yet untested hypotheses. The ability to
produce high-quality sequencing libraries from these assays
ranges in difficulty from relatively straightforward (RNA-
seq) to challenging (ChIP-seq). However, the production of
a sequencing library from any of these assays does not

ensure the assay worked as intended; it only indicates that
a library has been prepared and is ready for sequencing.
Appropriate computational analysis of the sequenced li-
brary is required to evaluate the quality of the experiment
used to produce the input RNA and/or DNA for library
preparation. The major goal of this commentary is to raise
awareness of the complexity of data quality issues associ-
ated with plant epigenomics research. We recognize that
many of the techniques and/or considerations will need to
be modified or adapted over time as novel technological
and/or computational/statistical methods are developed.
The considerations presented above are common methods
that are currently used by many in the field to assess exper-
iment and data quality. Presenting these key metrics as sup-
plemental data during manuscript submission and
publication will assist in the reader’s ability to appropriately
evaluate interpretations pre and postpublication. Finally,
just as the range of “-seq” experiments has exploded over
the last decade, along with the ways to isolate tissues or
cells for these methods, there are surely many new data
types and acquisition approaches yet to emerge. These are
likely to come with their own pitfalls, analysis quirks, and
statistical challenges. We hope that authors will rise to the
occasion, deeply probing and questioning the quality of
their data and including their tests, concerns, and conclu-
sions within their manuscript files to assist readers in un-
derstanding the limits of their observations and claims.
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