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iConsol.js: A Javascript Implicit Finite Difference Code for Nonlinear Consolidation and Secondary 1 

Compression 2 

By, Scott J. Brandenberg, M. ASCE1 3 

Abstract 4 

An implicit finite difference code for nonlinear consolidation and secondary compression is 5 

developed and implemented in a publicly available Javascript web application. The rate of secondary 6 

compression is defined based on the distance in e-log10(σv’) space between a current point and a 7 

corresponding point on a reference secondary compression line (RSCL). Modeling secondary 8 

compression in this manner enables simultaneous occurrence of primary consolidation and secondary 9 

compression. The finite difference code is first verified by comparison with three benchmarks. The 10 

influence of secondary compression on settlement-versus-time is then studied, and shown to be 11 

important for thick and/or low permeability layers for which primary consolidation requires significant 12 

time. Overconsolidated soil is observed to result in an apparent increase in Cα with time, which is also 13 

observed in experimental data. Finally, secondary compression is shown to be capable of generating 14 

excess pore pressure in soils with impeded drainage boundaries.  15 

Introduction 16 

Terzaghi (1925) was the first to formulate the theory of one-dimensional consolidation for constant 17 

compressibility and hydraulic conductivity, and zero secondary compression. A primary benefit of 18 

Terzaghi’s formulation is the ease of solving the governing second order partial differential equation. 19 

However, compressibility is known to depend on overconsolidation ratio and vertical effective stress, 20 

and hydraulic conductivity is known to depend on void ratio, both of which change during consolidation. 21 
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Furthermore, soil exhibits secondary compression behavior in which the void ratio constantly decreases 22 

even when effective stress is constant. Introducing nonlinear constitutive behavior and secondary 23 

compression complicates the governing differential equation, necessitating numerical solutions. Early 24 

approaches utilized rheological models involving a combination of sub-components, such as springs and 25 

dashpots, in various configurations [e.g., Taylor (1940), Taylor and Merchant (1942), Gibson and Lo 26 

(1961), Barden (1965)]. Though capable of being calibrated to match observed soil behavior, these 27 

models typically involved input parameters that were unfamiliar to users, and were not widely used 28 

(Perrone 1998). Computer codes developed to solve nonlinear consolidation problems using more 29 

traditional input parameters include Illicon (Mesri and Choi, 1985), CS1 (Rajot, 1992), CS2 (Fox and 30 

Berles, 1997), CONSOL97 (Perrone 1998), SETTLE3D (Rocscience 2007) as well as unnamed codes by 31 

Niemunis and Krieg (1996) and Yin and Graham (1996).  32 

The various nonlinear codes vary significantly in the manner in which they treat secondary 33 

compression. Illicon incorporates secondary compression based on the assumption that “the end-of-34 

primary void ratio-effective stress relationship is practically independent of the duration of the primary 35 

consolidation stage.” Secondary compression settlement is then computed for the post-primary-36 

consolidation phase based on the observation that Cα/Cc is a constant, where Cc is interpreted as the 37 

compressibility at the end of consolidation, and Cα is the coefficient of secondary compression. Similarly, 38 

SETTLE3D requires users to input a specific degree of consolidation (e.g., 95%) after which the solution is 39 

governed by secondary compression. A fundamental conclusion from these approaches is that 40 

secondary compression does not influence the evolution of excess pore pressures, and secondary 41 

compression becomes less important as the time required to reach the end of primary consolidation 42 

increases. CONSOL97 challenges this notion by including secondary compression concurrently with 43 

primary consolidation such that strains that occur during primary consolidation increase as the time 44 

required to reach the end of primary consolidation increases. Therefore, a thin laboratory specimen will 45 
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exhibit less strain at the end of primary consolidation than a thicker field deposit, resulting in a scale 46 

effect. This is consistent with Bjerrum’s (1967) time-line theory in which different consolidation lines 47 

would be measured for consolidation tests conducted with load stages of different duration. 48 

A fundamental problem with nonlinear consolidation codes is that they are typically not readily 49 

available, and typically only utilized by the code developers. Perrone (1998) summarized 13 different 50 

nonlinear consolidation codes that include secondary compression, only one of which was commercially 51 

available. Fox (1999) used CS2 to develop chart solutions to make nonlinear consolidation solutions 52 

tangible to engineers without access to such codes. There is a significant need for a widely available, 53 

efficient code for routine use by researchers, engineers, and instructors.  54 

This paper presents an implicit finite difference code for primary consolidation and secondary 55 

compression written in Javascript and deployed through an HTML user interface. The code is publicly 56 

available at www.uclageo.com/Consolidation, and is quick and efficient. The code is nonlinear in that it 57 

accounts for changes in hydraulic conductivity and compressibility as consolidation progresses. 58 

Furthermore, the code incorporates secondary compression in a manner that is based on soil state in e-59 

logσv’ space rather than depending on an arbitrary time reference. A discussion of secondary 60 

compression behavior is presented first, followed by development of the governing differential equation 61 

and the implicit finite difference scheme used to solve the equation. The code is then validated by 62 

comparing with benchmark solutions by Fox and Pu (2015) and an essentially linear problem is 63 

compared with Terzaghi’s theory. The influence of overconsolidation ratio on the predicted rate of 64 

secondary compression is then discussed, and the influence of secondary compression on settlement 65 

versus time and excess pore pressures is then explored.  66 

http://www.uclageo.com/Consolidation
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Shortcomings of Traditional Approach to Evaluating Secondary Compression 67 

Secondary compression is traditionally evaluated by plotting void ratio, e, versus the logarithm of 68 

time, log10(t), for a particular stage from a laboratory oedometer test (Fig. 1). Permitted adequate time, 69 

such curves have been observed to exhibit a linear secondary compression region in which the reduction 70 

in void ratio during one log-cycle of time is equal to the secondary compression index (Cα). Casagrande 71 

(1936) developed a procedure for evaluating laboratory oedometer curves to compute the coefficient of 72 

consolidation, cv. This procedure identifies a time at the end of primary consolidation, tp, for the purpose 73 

of computing the time at when 50% consolidation has completed. Primary consolidation is often 74 

interpreted as occurring before tp whereas secondary compression occurs after tp, which is termed the 75 

“traditional” approach herein. 76 

 77 

Figure 1. (a) Consolidation curve showing traditional primary consolidation and secondary compression 78 
behavior; (b) nonlinear secondary compression behavior when a vanishingly small load stage is applied 79 
and benchtop clock is reset such that t* = 0 at Point a; (c) linear secondary compression when t* + ta = 0 80 
at Point a. 81 

 82 

The traditional approach for evaluating secondary compression is problematic for two fundamental 83 

reasons. First, primary consolidation and secondary compression occur simultaneously rather than 84 

occurring in distinct regions of time (e.g., Borja 1992, Niemunis et al. 1996, Yin and Graham 1996, 85 

Perrone 1998, Handy 2002, Leroueil 2006). Some secondary compression occurs prior to tp, and some 86 
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primary consolidation occurs after tp. During a laboratory consolidation test, the amount of secondary 87 

compression that occurs before tp may be small because the drainage path length is short and primary 88 

consolidation occurs rapidly. However, significantly more secondary compression may occur 89 

simultaneously with primary consolidation in the field, where drainage path lengths are much longer. 90 

The notion of tp as a time dividing primary consolidation from secondary compression is therefore a 91 

false construct borne of convenience rather than rigor, and may result in errors when extrapolating 92 

laboratory observations to field behavior. Bjerrum (1967) explained this scale effect using a time-line 93 

idea in which different consolidation curves are associated with different amounts of time. 94 

The second problem with the traditional approach to modeling secondary compression is that the 95 

benchtop clock provides an arbitrary time reference that is not fundamentally related to the state of the 96 

soil (e.g., Kutter and Sathialingam 1992). As an illustration, imagine that a vanishingly small load 97 

increment is applied at point a in Fig. 1 at the same instant that the benchtop clock is set to zero. Two 98 

different time references now exist; the symbol t denotes the time reference at the start of the load 99 

stage (Fig. 1a), whereas t* denotes the clock that is reset at point a. The secondary compression rate 100 

does not change at point a because a vanishingly small load increment induces no change to the soil. 101 

However, the plot of e vs. log10(t*) is nonlinear simply because t* is not the correct time reference. 102 

Rather, the e vs. log10(t*) is concave downward, and asymptotically approaches a straight line with slope 103 

Cα as t*→∞ (Fig. 1b). If ta is added to t*, linear secondary compression behavior is recovered (Fig. 1c). 104 

Applying a vanishingly small load increment would be an unreasonable experimental approach, but it 105 

nevertheless illustrates the arbitrariness of the benchtop clock. Furthermore, the concept explains why 106 

nonlinear secondary compression behavior is observed for overconsolidated soils, as discussed later. 107 

An Alternative Approach to Secondary Compression 108 
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An alternative approach suggested by Kutter and Sathialingam (1992) defines the secondary 109 

compression rate based on position in e-log10(σv') space rather than in e-log10(t) space. Their formulation 110 

follows the visco-plasticity formulation of Perzyna (1963), but differs because plastic volumetric strains 111 

occur for all soil states rather than only for stress states on the yield surface. Kutter and Sathialingam 112 

implemented this procedure in a Cam-Clay type plasticity model, but the implementation herein focuses 113 

only on one-dimensional consolidation and therefore utilizes different terminology. Mapping from the 114 

traditional e-log10(t) space to e-log10(σv') follows Bjerrum’s time-line notion as illustrated in Fig. 2. The 115 

notion of a reference secondary compression line(RSCL) is introduced, where the RSCL is associated with 116 

a specific reference time, tref, as well as a single point on the line defined by a reference void ratio and 117 

vertical effective stress, ecα,ref, and σv’cα,ref, respectively. The RSCL may be selected to be coincident with 118 

the normal consolidation line (NCL), in which case tref = tp. The NCL and RSCL are assumed to be parallel, 119 

which is consistent with experimental observations that the ratio Cα/Cc is constant (Mesri and Godlewski 120 

1977).   121 

 122 

Figure 2. Consolidation curve for an initially lightly overconsolidated soil: (a) in e-log10(t) space; (b) in e-123 
log10(σ'v) space. 124 

The load stage in Fig. 2a follows a characteristic e-log10(t) consolidation curve for an initially lightly 125 

overconsolidated soil, and Fig. 2b shows the corresponding stress path in e-log10(σv') space. The stress 126 

path drops below the NCL before the end of primary consolidation because some secondary 127 
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compression is assumed to occur during primary consolidation. The soil eventually reaches a condition 128 

wherein primary consolidation is negligible, resulting in essentially a straight line in e-log10(t) space with 129 

a slope Cα, and a vertical line in e-log10(σv') space. The void ratio at which the stress path crosses the 130 

RSCL is ecα,ref – Cclog(σv'/σv'cα,ref). Assuming secondary compression controls the void ratio change during 131 

the essentially linear portion of the e-log10(t) curve, the void ratio during secondary compression, esc, is 132 

defined by Eq. 1. 133 

α α
α

σ
σ

   
= − −      

   
, 10 10

,

'log log
'

v
sc c ref c

v c ref ref

te e C C
t

 
(1) 

 134 

 135 

Differentiating Eq. 1 with respect to t results in the rate of change of void ratio due to secondary 136 

compression, as shown in Eq. 2, where α = Cα/ln(10). 137 

α α
= − = −

⋅


ln(10) tsc
Ce

t
 

(2) 

 138 

Solving Eq. 1 for t, substituting into Eq. 2 and noting that 𝜀𝜀𝑣̇𝑣,𝑠𝑠𝑠𝑠 = −𝑒̇𝑒𝑠𝑠𝑠𝑠/(1 + 𝑒𝑒) results in the secondary 139 

compression volumetric strain rate given by Eq. 3. 140 

( )
α

α

σαε
α α σ

  −
= +    +   



,
,s 10

,

'
exp log

1 '
c ref c v

v c
ref v c ref

e e C
t e

 
(3) 

 141 

Eq. 3 defines the secondary compression volumetric strain rate at any point in e-log10(σv') space 142 

based on the material constants tref, ecα,ref, σv'cα,ref, and cα, all of which can be measured in a traditional 143 

oedometer test for which the secondary compression behavior is linear in e-log10(t) space. This 144 



8 
 

formulation permits simultaneous occurrence of secondary compression with primary consolidation by 145 

simply integrating the secondary compression strain rate for a particular consolidation increment. 146 

Furthermore, Eq. 3 is formulated based on the state of the soil rather than an arbitrary benchtop clock. 147 

The approach therefore overcomes the two fundamental shortcomings of the traditional approach to 148 

quantifying secondary compression that were described in the previous section. Specifically, the 149 

secondary compression strain rate no longer depends on a specific time reference, and can easily be 150 

included during primary consolidation.  151 

Derivation of Differential Equation Governing Nonlinear Consolidation 152 

Consider a layer of “uniform” saturated clay of thickness H with an initial vertical effective stress at 153 

the surface qo exposed to a vertical pressure increment ∆q (Fig. 3). In this context, a “uniform” clay has a 154 

constant specific gravity, Gs, constant e-log10(k) and e-log10(σv’) relationships, constant Cα, and one of the 155 

following is constant: overconsolidation ratio, OCR, initial void ratio, eo, or maximum past pressure, σp’. 156 

The initial water table is assumed hydrostatic. The top and bottom of the layer may be either free 157 

draining or impermeable, resulting in three possible drainage conditions: double drained, single drained 158 

through the top, or single drained through the bottom.  159 

 160 

 161 

Figure 3. A uniform soil layer of initial thickness H with initial vertical effective stress qo at the top 162 
exposed to a vertical stress change ∆q illustrating node numbering for the finite difference scheme. 163 
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Derivation of the governing differential equation proceeds by additive decomposition of the 164 

volumetric strain rate, vε , into components from primary consolidation, ,v pcε , and secondary 165 

compression, ,v scε , as indicated in Eq. 4. The expression for ,sv cε is given by Eq. 3, whereas the 166 

expression for vε is obtained from Darcy’s law, and ε ,pv c  is derived from rate-independent elasto-167 

plasticity. 168 

 169 

, ,sv v pc v cε ε ε= +    (4) 

 170 

Expression for vε  by Darcy's law 171 

Flow out of and into an infinitesimal element of porous material is shown in Fig. 3 and the rate of 172 

flow is given by Eqs. 5 and 6. 173 

=

out z zQ k i dxdy  (5) 

+ +=

in z dz z dzQ k i dxdy  (6) 

Noting that kz+dz = kz + (∂k/∂z)dz, iz = 1/γw·∂u/∂z , and iz+dz = iz + (∂i/∂z)dz, , and neglecting the dz2 term 174 

arising from multiplication of kz+dz and iz+dz, the volumetric strain rate is defined in Eq. 7. The z-subscripts 175 

have been omitted from Eq. 7, though it is implied that this equation holds at a particular depth. 176 

( )
ε

γ
−  ∂ ∂ ∂

= = − + ∂ ∂ ∂ 

 



2

2

1out in
v

w

Q Q u u kk
dxdydz z z z

 
(7) 

Many experimental studies have shown that void ratio is linearly related to the logarithm of hydraulic 177 

conductivity (e.g., Taylor 1948, Tavenas et al. 1983, Mesri and Choi 1985, Fox 1999). Therefore, the 178 

constitutive relation shown in Fig. 4 is utilized, and is characterized by the slope of the e-log10(k) relation, 179 

Ck, and a reference point (ek,ref, kref) lying anywhere on the line.  180 
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 181 

Figure 4. Constitutive relation for hydraulic conductivity. 182 

 183 

Expression for ,v pcε  by elasto-plasticity 184 

Compressibility due to primary consolidation is governed by conventional consolidation theory, as 185 

shown in Fig. 5, where σv'ref and eref define a point on the NCL, Cc and Cr are the slopes of the NCL and 186 

unload-reload lines, respectively, and σp' is the maximum past pressure. The NCL is considered to be a 187 

stationary yield surface, and a stress state is not permitted to lie to the right of the NCL.  188 

 189 

Figure 5. Constitutive relation for compressibility. 190 

 191 

The maximum past pressure, σp', is a variable that evolves as loading progresses beyond the initial 192 

value of σp’, and σv’ can never be larger than σp’. The value of σp' is computed based on the current 193 

stress condition by Eq. 8. 194 
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( ) ( ) ( )σ σ
σ

− + −
=

−

' '
10 , 10'

10

log log
log ref c v ref r v

p
c r

e e C C

C C
 

(8) 

The change in void ratio for a particular load increment depends on whether the specimen is normally 195 

consolidated, begins and remains over-consolidated, or begins overconsolidated and becomes normally 196 

consolidated, as defined in Eq. 9. A secant value of the coefficient of compressibility can then be 197 

computed as av = -de/dσv' for a particular load increment. 198 

NormallyConsolidated (NC)

Overconsolidated (OC)

Initially OC, Becomes NC

σ σ
σ σ

σ

σ σ
σ σ σ

σ

σ σ σ
σ σ
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= = 

 
 +

= + < 
 

   +
= +        

' '
log ' '

'

' '
log ' d ' '

'

' ' '
log log

' '

v v
c v p

v

v v
r v v p

v

p v v
r c

v p

d
de C if

d
de C if

d
de C C otherwise

 

(9) 

The volumetric strain rate due to primary consolidation is expressed in terms of the coefficient of 199 

compressibility as indicated in Eq. 10, where, du/dt = -dσv’/dt, and εv,pc = -de/(1+e) (i.e., compressive 200 

volumetric strain is positive). 201 

, 1
v

v pc
a u

e t
ε ∂

= −
+ ∂

  
(10) 

 202 

Governing differential equation 203 

Substituting Eqs. 3, 7, and 10 into Eq. 4 results in the governing differential equation for one-204 

dimensional consolidation of an elasto-plastic porous solid (Eq. 11), including nonlinear compressibility 205 

and permeability properties along with the effects of secondary compression. 206 

( )
α

α

σα
γ α α σ

  − ∂ ∂ ∂ ∂
+ − + + =      ∂ ∂ + ∂ +∂    

2
,

2
,

'1 exp log 0
1 1 '

c ref cv v

w o ref o v c ref

e e Cau u k uk
z z e t t ez

 (11) 
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 207 

Finite Difference Solution Scheme 208 

An implicit finite difference scheme utilizing the midpoint rule (Crank and Nicolson, 1947) is adopted 209 

to solve Eq. 11, where i denotes discretization in space (Fig. 3) and j denotes discretization in time with 210 

∆tj = tj – tj-1. In general, values of the internal variables are different at the beginning and end of the time 211 

step. Incremental strains are computed based on the values of the variables at the beginning and those 212 

at the end, and the average of these strains is utilized in implementing the midpoint rule. Note that (av)i,j 213 

is the secant value of av for the time step computed as dei,j/(σv
’
i,j – σv

’
i,j-1). The value of ∆z is computed as 214 

0.5·(zi+1,j – zi-1,j), except at the top and bottom boundaries, where ∆z is computed as z1,j – z0,j and 215 

zN,j - zN-1,j, respectively. The resulting incremental form is indicated in Eq. 12, where Ri,j is a residual that 216 

must be minimized. 217 
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(12) 

 218 

Equation 12 contains i+1 and i-1 terms for u, and k, which requires consideration of boundary 219 

conditions at the top and bottom of the domain (i.e., when i=0 or i=N). Values of hydraulic conductivity 220 

that lie beyond the domain are set to k-1,j = k0,j and kN+1,j = kN,j. For a free-draining boundary at the top 221 

ui-1,j = u0,j = 0, and at the bottom uN+1,j = uN,j = 0. For an impermeable drainage boundary, a zero flow 222 

condition is obtained by forcing the hydraulic gradient to be zero by setting u-1,j = u0,j at the top or uN+1,j = 223 

uN,j, and subsequently solving for the pressure at the impermeable boundary.224 
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The solution proceeds by first initializing σv', e, av, k, and ∆z for pre-load conditions. The initial 225 

element height is set to H/(N-1). The initial vertical effective stress at the top of the layer is qo. The 226 

known initial profile of either e, OCR, or σp' is then used to initialize the remaining internal variables. If 227 

the initial profile of e is assumed constant, the saturated unit weight is computed as γsat = 228 

γw(Gs+e)/(1+e), and the vertical total stress profile is computed by integrating this unit weight with 229 

depth. If the initial profile of OCR or σp' is set to be constant, the initialization procedure is slightly more 230 

complicated because γsat varies with depth because e is not constant. First, the value of eo at the top 231 

boundary is computed using Eq. 9 after substituting σvo’ = qo, and the value of γsat is computed at the 232 

surface. The value of γsat is then computed at the i+1 node by iteration since γsat depends on void ratio, 233 

and hence on vertical effective stress. The average value of γsat is then used to compute effective stress 234 

at the i+1 node and the procedure is repeated to the bottom of the domain. 235 

The next step is to define a time vector based on the desired number of increments, Ntime, and the 236 

maximum value of time to be analyzed, tmax. Following initialization, values of cv are computed at each 237 

node, and the maximum value is selected. The first time increment is selected to be tmin = α·∆z2/cv 238 

where α = 0.025, and ∆z is the initial element height. Note that explicit integration finite difference 239 

algorithms require α<0.5 for numerical stability when solving linear problems (e.g., Fox and Berles 240 

1997). The value α = 0.025 was found to provide a reasonable initial starting point, and avoid problems 241 

associated with very large strains at the top and bottom elements that may occur during the first time 242 

step. The time vector is then set to be logarithmically distributed between tmin and tmax.  243 

The solution for the j components of u proceeds by making an initial guess by setting the j 244 

components of av, k, ∆z, e, and σv' equal to the j-1 components, and algebraically isolating the j 245 

components of u in Eq. 12. The system of equations can be expressed as [A]{u}={x}, where A is a 246 

tridiagonal matrix. Components of A and x are defined by Eq. 13. The guess values are then computed as 247 
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u = A-1x, and A-1 is computed using an efficient tridiagonal matrix algorithm (Thomas 1949), wherein the 248 

number of computations scales linearly with the dimension of A, whereas Gaussian elimination scales 249 

with the cube of the dimension of A. 250 
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(13) 

Following calculation of the trial values of u, residuals are computed using Eq. 12. If the maximum of 251 

the absolute value of any residual exceeds a tolerance, the values of u are updated using Newton-252 

Raphson iteration. The values of dR/du must be computed for the Newton-Raphson scheme, and are 253 

defined by the partial derivative chain rule in Eq. 14. Expressions for the partial derivatives are provided 254 

in the appendix.  255 
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(14) 

After assembling the tridiagonal dR/du matrix, the values of u are updated using Eq. 15, where the 256 

superscript <m> denotes the mth iteration. Updated values of σv', av, k, and ∆z are computed, and a new 257 

residual vector R<m> is computed. Iterations proceed until the maximum of the absolute value of R is less 258 

than the tolerance. Note that R is the error in strain increments, and is therefore dimensionless. The 259 
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convergence rate for the algorithm is approximately linear, and accurate solutions can be computed on 260 

a personal computer in less than a second for 500 time steps and 100 elements.  261 

−< − >
< > < − > < − > 

= −  
 

11
1 1

m
m m mdRu u R

du
 

(15) 

 262 

Comparison with Benchmark Solutions 263 

Three benchmark solutions are utilized to verify implementation of the nonlinear primary 264 

consolidation portion of the code (such benchmarks are not available for non-zero secondary 265 

compression). The first two were presented by Fox and Pu (2015) for the expressed purpose of verifying 266 

nonlinear consolidation codes. The third involves a comparison with Terzaghi's (1926) one-dimensional 267 

consolidation theory for a case in which av and k (and therefore cv) are essentially constant. Input 268 

parameters for the benchmark cases are provided in Table 1. Fox and Pu (2015) utilized the same soil 269 

profile for Benchmark 1 and 2, with Benchmark 1 corresponding to a profile of normally consolidated 270 

soil and Benchmark 2 corresponding to a profile of initially overconsolidated soil that subsequently 271 

becomes normally consolidated as a result of loading. For Benchmark 3, the compressibility and 272 

permeability remain essentially constant throughout because (i) the specimen height is very small, self-273 

weight of the soil is negligible, therefore compressibility is constant, (ii) the load increment very small, 274 

the void ratio change is negligible, therefore av and k remain essentially constant during loading, (iii) the 275 

value of Ck is large resulting in essentially constant hydraulic conductivity, and (iv) Cα is set to zero to 276 

facilitate a comparison of primary consolidation only. 277 

Figure 6 shows comparisons between benchmark solutions for nonlinear consolidation codes 278 

presented by Fox and Pu (2015) with those computed using the implicit algorithm. Agreement is good 279 

for both benchmarks, though there are some visible differences in the pore pressure and void ratio 280 
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isochrones and minor differences in the settlement versus time plot for benchmark 1. The cause of 281 

these small differences is not currently understood, but is not due to the temporal or spatial 282 

discretization. Increasing Ntime or Nele from 100 to 500 or 1000 steps results in essentially no difference in 283 

the computed solutions. The important behavior trends are identical between the two solutions, and 284 

they are similar enough to conclude that the validation study is successful. 285 

 286 

 287 

Figure 6. Comparison of Fox and Pu (2015): (a) Benchmark 1 settlement versus time; (b) Benchmark 1 288 
excess pore pressure versus depth; (c) Benchmark 1 void ratio versus depth; (d) Benchmark 2 settlement 289 

versus time; (e) Benchmark 2 excess pore pressure versus depth; (f) Benchmark 2 void ratio versus 290 
depth. 291 

 292 

Figure 7 shows comparisons of Uave vs. Tv and Uz vs. Z for benchmark 3. Excellent agreement is 293 

achieved between Terzaghi’s solution and the numerical solutions for the Uave vs. Tv curve for all values 294 
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of Ntime. Furthermore excellent agreement is achieved for Uz vs. Z for all cases except Ntime = 20, where 295 

errors appear in the isochrones near the drainage boundaries. In all cases, the solutions required a 296 

computation time of only a fraction of a second, so the poor performance at Ntime = 20 is of little 297 

practical consequence. Rather, the purpose of including this solution is to demonstrate the stability of 298 

the implicit integration algorithm. Explicit algorithms that utilize the forward Euler method suffer 299 

instability problems when ∆t > 0.5∆z2/cv (e.g., Fox and Berles 1997), whereas the implicit algorithm used 300 

herein is stable and accurate for very large time steps, thereby improving computational efficiency. 301 

 302 

Figure 7. Comparison with Terzaghi's 1D consolidation theory for Benchmark 3: (a) dimensionless depth 303 
versus degree of consolidation; (b) time versus degree of consolidation. 304 

 305 
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Influence of Secondary Compression on Settlement 306 

Because secondary compression occurs simultaneously with primary consolidation, it influences 307 

settlement rate in a manner that depends on the rate of primary consolidation. All other factors being 308 

equal, a soil layer that consolidates slowly will exhibit more secondary compression during primary 309 

consolidation than a soil layer that consolidates quickly. Figure 8 shows normalized settlement, S/Sc,ult, 310 

versus normalized time, t/t50, for a soil with the same properties as Benchmark 1, but with H = 0.02, 0.2, 311 

2.0, and 20.0m, and with Cα = 0.0 and 0.025. This range of thickness values was selected because 0.02m 312 

is a common thickness for a laboratory oedometer specimen, while 20m is in the reasonable range for a 313 

thick natural clay deposit. The values of Sc,ult and t50 were computed from the analyses with Cα = 0 to 314 

identify the settlement arising only from primary consolidation. In defining the secondary compression 315 

parameters, the NCL for Benchmark 1 was assumed to have been derived from a laboratory oedometer 316 

test. The value of tref was therefore computed at the end of primary consolidation for the 0.02m thick 317 

soil layer using Casagrande’s procedure. Because tref was computed at the end of primary consolidation, 318 

the RSCL is coincident with the NCL and values of σv’ca,ref and ecα,ref were selected to be identical to σv’,ref 319 

and eσv,ref, respectively, as included in Fig. 8.  320 

 321 

Figure 8. Normalized settlement versus time for soil layers with various thickness. 322 

 323 
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For Cα = 0, the dimensionless settlement plots are essentially identical, regardless of layer thickness. 324 

Although it appears only a single line is plotted for Cα = 0 in Fig. 8, lines are in fact plotted for all four 325 

thicknesses, but the differences between the lines are smaller than the line thicknesses. However, for Cα 326 

= 0.025, settlement increases as layer thickness increases. For H=0.02m, very little secondary 327 

compression occurs during primary consolidation, and conceptualizing secondary compression and 328 

primary consolidation as occurring in distinct regions of time (i.e., the traditional interpretation) is 329 

reasonable. However, the rate of primary consolidation is much slower for thicker soil layers, therefore 330 

more secondary compression occurs during primary consolidation, rendering the traditional 331 

interpretation increasingly erroneous as H increases. For H=20m, the settlement at the “end” of primary 332 

consolidation is approximately 1.8·Sc,ult. Utilizing the traditional interpretation would therefore 333 

significantly under-predict settlement at the “end” of primary consolidation. 334 

Influence of OCR on Secondary Compression 335 

Overconsolidated soil has long been recognized as exhibiting less secondary compression than 336 

normally consolidated soil (e.g., Mesri and Ajlouni 2007, Lambrechts et al. 2004). Furthermore, studies 337 

have indicated that the slope of the secondary compression line in e-log10(t) space increases with time 338 

for overconsolidated soil, whereas it is linear for normally consolidated soil (Mesri et al. 1997, Fox et al. 339 

1992). Fox et al. (1992) postulated the existence of “tertiary compression” in peat samples due to an 340 

increase in the rate of secondary compression with time. The vanishingly small load stage in Fig. 1 also 341 

exhibited an apparent increase in Cα with increasing log10(t) when the incorrect time reference was 342 

used. 343 

To explore the influence of OCR on nonlinearity in secondary compression in e-log10(t) space, 344 

consider the data presented by Mesri et al. (1997) for load stage T15 and corresponding prediction in 345 

Fig. 9. Input parameters for the prediction were selected based on Figures 4, 6, 7, and 8 in Mesri et al., 346 

and are summarized in Table 2. This particular load stage began with qo = 24 kPa, and finished with 36 347 
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kPa, which also happens to be the maximum past pressure. The slope of the consolidation curve in this 348 

region was steeper than the unload-reload region, but less steep than the virgin compression region. A 349 

secant slope for Cr was computed as 3.0 in this region. The secondary compression behavior for this load 350 

stage was nonlinear, so the normally consolidated load stage T14 was used to select Cα because its 351 

secondary compression was much more linear. Furthermore, tp was found to be 40 min. for stage T14 352 

based on pore pressure measurements at the bottom of the single-drained specimen, and tref was 353 

computed as being equal to tp in this case. 354 

 355 

Figure 9. Measured and predicted volumetric strain versus time for Load Stage T15 imposed on a peat 356 
specimen by Mesri et al. (1997). 357 

 358 

The measurements exhibit an initial consolidation stage followed by a secondary compression stage 359 

in which the slope of the data in e-log10(t) space increases with time. The prediction exhibits the same 360 

qualitative behavior, and agrees quite well with the measurements. The prediction exhibits a flatter 361 

slope immediately after the end of primary consolidation. Furthermore, the data exhibit a steeper slope 362 

near the end of the load stage. A number of factors may be at work in explaining the observed behavior, 363 

including biological degradation, micromechanical behavior of the fibers, or others. However, a portion 364 
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of the nonlinear behavior is clearly explained by defining secondary compression rate as a function of 365 

soil state (i.e., in e-log10(σv’) space) rather than using an arbitrary time reference. 366 

Influence of Secondary Compression on Pore Pressure 367 

In a free-draining condition, the plastic volumetric strains that accumulate during secondary 368 

compression manifest as total volumetric strain, and hence soil settlement. However, plastic volumetric 369 

strains arise from secondary compression regardless of drainage conditions, and therefore may result in 370 

an increase in excess pore pressure (e.g., Borja 1992). To illustrate this concept, an isotropic 371 

consolidation test was performed on a specimen of reconstituted Sherman Island peat from the 372 

Sacramento / San Joaquin Delta, after which the drainage taps were closed and pore pressure was 373 

measured. This sample was taken from a depth of 3.0m from a site on Sherman Island where a field test 374 

was conducted (Reinert et al. 2013), and Shafiee (2016) measured consolidation characteristics reported 375 

in Table 2. The sample was first mixed as a slurry, and subsequently consolidated in a Shelby tube to a 376 

vertical stress of 10 kPa. The specimen was then extruded, trimmed, and placed in a triaxial cell. The 377 

isotropic consolidation test involved first consolidating the sample to 10 kPa in the device. Subsequently, 378 

the specimen was consolidated to 20 kPa in stage 1, and 40 kPa in stage 2. Drainage was provided 379 

through the top of the specimen while pore pressure was monitored at the bottom to ascertain the time 380 

at the end of primary consolidation, which can be difficult to measure based on volume change versus 381 

time for soils with high secondary compression. The drainage tap was then closed at the end of 382 

consolidation in stage 2, and the pore pressure was monitored. 383 

The volumetric strain versus time measured in stage 1 is presented in Fig. 10 up to a time near 384 

70,000 seconds at which point the burette filled with water thereby preventing further expulsion of 385 

water from the peat. Water was subsequently removed from the burette, and consolidation progressed 386 

to the final desired effective stress. However, the volume change-versus-time relationship could no 387 

longer be plotted due to the interruption. A prediction using the one-dimensional consolidation code is 388 
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also shown. To facilitate a comparison between an isotropic consolidation stress path and a one-389 

dimensional stress path involving only vertical strains, the volumetric strains were divided by three 390 

based on the assumption that the strains are equal in the vertical and both horizontal directions. This 391 

assumption is not strictly correct because soil may exhibit anisotropy. However, agreement between the 392 

measurements and prediction is very good. 393 

 394 

Figure 10. Sherman Island peat behavior: (a) measured versus predicted volumetric strain versus time 395 
for the consolidation stage; (b) pore pressure versus time during the postconsolidation undrained stage. 396 

 397 

After closing the drainage tap, the clock was set to zero and pore pressure in the sample was 398 

monitored. The pore pressure increased with time, eventually reaching 8 kPa after about 250,000s when 399 

the test was terminated. Pore pressure was predicted by solving Eq. 12 for zero flow conditions, such 400 

that the terms associated with d2u/dz2 were set to zero. The predicted pore pressure increase agrees 401 

quite well with the measured pore pressure. 402 

Having established that secondary compression can cause an increase in pore pressure when 403 

drainage is impeded, I now demonstrate that this mechanism can also occur for field conditions when 404 

the soil layer thickness is large enough to effectively impede drainage at the center for an adequate 405 
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amount of time. For the example problem in Fig. 8, pore pressure isochrones are plotted at an average 406 

degree of consolidation near 10%, as shown in Fig. 11. Excess pore pressure is generated in the middle 407 

of the thicker layers because a significant amount of time is required for pore pressure to begin to 408 

dissipate. However, for the thinner layers, the rate of consolidation is fast enough that the excess pore 409 

pressure generated by secondary compression is negligible. 410 

 411 

Figure 11. Isochrones at average degree of consolidation near 10% for the consolidation stage in Fig. 6. 412 

 413 

An important consideration is that Fig. 11 presents a case in which the soil is initially normally 414 

consolidated. However, this is an unrealistic condition for natural soil deposits, even those that have not 415 

been mechanically loaded to a higher pressure. Secondary compression that occurs during the time 416 

required for the deposit to come into hydrostatic equilibrium would result in the void ratio being lower 417 

than the NCL, hence resulting in an overconsolidated condition. Therefore, deposits that have naturally 418 

aged are not likely to generate excess pore pressure due to secondary compression. Selecting an 419 



24 
 

appropriate overconsolidation ratio therefore must consider the combined effects of mechanical pre-420 

loading and secondary compression. 421 

Conclusions 422 

A nonlinear one dimensional implicit finite difference code for primary consolidation and secondary 423 

compression has been developed. Innovations associated with the code are (1) it is a publicly accessible 424 

web application, (2) it includes secondary compression simultaneously with primary consolidation by 425 

modeling the plastic volumetric strain rate due to secondary compression as a function of position in e-426 

logσv’ rather than making it a function of an arbitrary time reference, (3) nonlinear secondary 427 

compression behavior that has been observed for overconsolidated soils is accurately predicted, and (4) 428 

excess pore pressures generated by secondary compression for soils with impeded drainage is modeled, 429 

and agrees with experimental data.  430 

Several limitations of the code must be considered for proper interpretation of analysis results. First, 431 

the code presented herein is one-dimensional, but field consolidation problems are typically three-432 

dimensional and involve complex drainage boundary conditions. Second, as currently implemented the 433 

code permits only a single “uniform” soil layer, and does not permit users to input layered profiles. 434 

Many sites exhibit distinct geologic units that deviate from the boundary conditions currently permitted 435 

in the code. Third, the compressibility of soil is known to be nonlinear in e-log10(σv’) space (i.e., Cc 436 

depends on e), but Cc is assumed constant in the code. This is reasonable for many engineering 437 

problems, but can result in unreasonable results in some cases, particularly at high σv’ where the 438 

predicted values of e may even become negative (a physically impossible condition). Fourth, the code 439 

predicts very low secondary compression rates for highly overconsolidated soil, which does not agree 440 

well with laboratory observations. Solving this problem lies beyond the scope of this manuscript, but the 441 

framework is amenable to future modifications to better match observed behavior. Fifth, the code 442 
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permits only a single instantaneous application of vertical load, and assumes that the change in pore 443 

pressure is equal to the change in vertical total stress. Real problems often involve time-dependent 444 

loading conditions due to construction time-lines, and unsaturated soil conditions for which the change 445 

in vertical stress is not equal to the change in pore pressure. Finally, the code has not been compared 446 

with a wide range of experimental data, and doing so is beyond the scope of this manuscript. Future 447 

studies are being planned by the author, and hopefully the publicly available code will also be used by 448 

others to provide future validation. Due to these limitations engineers are encouraged to use judgment 449 

in interpreting their numerical predictions, and perhaps use a different code (such as those cited early in 450 

this paper) that is better suited to the particular problem at hand if any of the limitations are deemed 451 

unacceptable. 452 
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Appendix 531 

The implicit algorithm requires evaluation of the partial derivatives in Eq. 14. The derivatives are 532 

provided below. 533 
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