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ABSTRACT OF THE DISSERTATION

Towards Ultra-Efficient Machine Learning for Edge Inference

by

Bingqian Lu

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, June 2022

Dr. Shaolei Ren, Chairperson

Deep neural networks (DNNs) have been increasingly deployed on and integrated

with edge devices, such as mobile phones, drones, robots and wearables. To run DNN in-

ference directly on edge devices (a.k.a. edge inference) with a satisfactory performance,

optimizing the DNN design (e.g., neural architecture and quantization policy) is crucial.

However, designing an optimal DNN for even a single edge device often needs repeated de-

sign iterations and is non-trivial. Worse yet, DNN model developers commonly need to serve

extremely diverse edge devices. Therefore, it has become crucially important to scale up the

optimization of DNNs for edge inference using automated approaches. In this dissertation,

we come up with several solutions to scalably and efficiently optimize the DNN design for

diverse edge devices, with increasingly flexible design consideration. Firstly, consider the

fact that a large number of diverse DNN models can be generated by navigating through

the design space in terms of different neural architectures and compression techniques, we

look into the problem that how to select the best DNN model out of many choices for each

individual edge device. We propose a novel automated and user-centric DNN selection en-
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gine, called Aquaman, which leverages users’ Quality of Experience (QoE) feedback to guide

DNN selection decisions. The core of Aquaman is a machine learning-based QoE predictor

which is continuously updated online, and neural bandit learning to balance exploitation

and exploration. However, the assumption of a pre-existing DNN model pool in Aquaman is

essentially limited and may not suit any given edge device’s best interest. Therefore, we take

into consideration the design freedom of neural architectures by resorting to hardware-aware

neural architecture search (NAS) for optimizing the DNN design for a given target device.

NAS can thoroughly explore the model architecture search space, and automatically dis-

cover the optimal combination of building blocks, namely a model, for any target device. A

key requirement of efficient hardware-aware NAS is the fast evaluation of inference latencies

in order to rank different architectures. While building a latency predictor for each target

device has been commonly used in state of the art, this is a very time-consuming process,

lacking scalability in the presence of extremely diverse devices. We address the scalability

challenge by exploiting latency monotonicity – the architecture latency rankings on different

devices are often correlated. When strong latency monotonicity exists, we can re-use archi-

tectures searched for one proxy device on new target devices, without losing optimality.

In the absence of strong latency monotonicity, we also propose an efficient proxy adapta-

tion technique to significantly boost the latency monotonicity. Our results highlight that,

by using just one proxy device, we can find almost the same Pareto-optimal architectures

as the existing per-device NAS, while avoiding the prohibitive cost of building a latency

predictor for each device, reducing the cost of hardware-aware NAS from O(N) to O(1).

Further, besides the design flexibility of neural architectures brought by NAS (i.e. software
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design), exploring the hardware design space such as optimizing hardware accelerators built

on FPGA or ASIC, as well as the corresponding dataflows (e.g., scheduling DNN compu-

tations and mapping them on hardware), is also critical for speeding up DNN execution.

While hardware-software co-design can further optimize DNN performance, it also exponen-

tially enlarges the search space to practical infinity, presenting significant challenges. By

settling in-between the fully-decoupled approach and the fully-coupled hardware-software

co-design approach, we propose a new semi-decoupled approach to reduce the size of the

total co-search space by orders of magnitude, yet without losing design optimality. Our ap-

proach again builds on the latency and energy monotonicity – neural architectures’ ranking

orders in terms of inference latency and energy consumption on different accelerators are

highly correlated. Our results confirm that strong latency and energy monotonicity exist

among different accelerator designs. More importantly, by using one candidate accelerator

as the proxy and obtaining its small set of optimal architectures, we can reuse the same

architecture set for other accelerator candidates during the hardware search stage.
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Chapter 1

Introduction

In this chapter, we first introduce the background and motivation of optimizing

DNN for edge inference, and state-of-the-art works and their limitations. Then we math-

matically formulate the DNN optimization problem in Section 1.3, and propose two general

approaches or frameworks to solve the problem in Sections 1.4 and 1.5, where Chapter 3

and Chapter 4 in this dissertation fall into category of the first framework. At the end

of the chapter, we summarize main contribution of this thesis and briefly introduce the

following chapters.

1.1 Background and Motivation

Deep neural networks (DNNs) have been increasingly deployed on and integrated

with edge devices, such as mobile phones, drones, robots and wearables. Compared to cloud-

based inference, running DNN inference directly on edge devices (a.k.a. edge inference) has

several major advantages, including being free from the network connection requirement,
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saving bandwidths and better protecting user privacy as a result of local data processing.

For example, it is very common to include one or multiple DNNs in today’s mobile apps [121].

To achieve a satisfactory user experience for edge inference, an appropriate DNN

design is needed to optimize a multi-objective performance metric, e.g., good accuracy while

keeping the latency and energy consumption low. A complex DNN model involves multi-

layer perception with up to billions of parameters, imposing a stringent computational and

memory requirement that is often too prohibitive for edge devices. Thus, the DNN models

running on an edge device must be judiciously optimized using, e.g., neural architecture

search (NAS) and model compression [20,23,24,71,79,106,115].

The DNN design choices we focus on in this chapter mainly refer to the neural ar-

chitecture and compression scheme (e.g., pruning and quantization policy), which constitute

an exponentially large space. Note that other DNN design parameters, such as learning rate

and choice of optimizer for DNN training, can also be included into the proposed framework.

For example, if we want to consider learning rate and DNN architecture optimization, the

accuracy predictor can take the learning rate and architecture as the input and be trained

by using different DNN samples with distinct architectures and learning rates.

Given different design choices, DNN models can exhibit dramatically different per-

formance tradeoffs in terms of various important performance metrics (e.g., accuracy, la-

tency, energy and robustness). In general, there is not a single DNN model that performs

Pareto optimally on all edge devices. For example, with the same DNN model in Face-

book’s app, the resulting latencies on different devices can vary significantly [121]. Thus,

device-aware DNN optimization is mandated [79,81,112,121].
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Figure 1.1: Statistics of the year mo-

bile CPUs are designed as of late

2018 [121].

Designing an optimal DNN for even a sin-

gle edge device often needs repeated design iterations

and is non-trivial [28, 120]. Worse yet, DNN model

developers often need to serve extremely diverse edge

devices. For example, the DNN-powered voice as-

sistant application developed by a third party can

be used by many different edge device vendors, and

Facebook’s DNN model for style transfer is run on

billions of mobile devices, more than half of which

still use CPUs designed in 2012 or before (shown in Fig. 1.1) [121]. In the mobile market

alone, there are thousands of system-on-chips (SoCs) available. Only top 30 SoCs can each

take up more than 1% of the share, and they collectively account for 51% of the whole

market [121]. Thus, the practice of repeatedly optimizing DNN models, once for each edge

device, can no longer meet the demand in view of the extremely diverse edge devices.

Therefore, it has become crucially important to scale up the optimization of DNNs

for edge inference using automated approaches.

1.2 State of the Art and Limitations

Network architecture is a key design choice that affects the resulting performance of

DNN models on edge devices. Due to the huge space for network architectures, traditional

hand-tuned architecture designs can take months or even longer to train a DNN with a

satisfactory performance [42,133]. Thus, they have become obsolete and been replaced with
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automated approaches [106]. Nonetheless, the early NAS approaches often require training

each DNN candidate (albeit usually on a small proxy dataset), which hence still results in

a high complexity and search time. To address this issue, DNN optimization and training

need to be decoupled. For example, the current “once-for-all” technique can generate nearly

unlimited (> 1019) DNN models of different architectures all at once [23]. Consequently,

DNN model developers can now focus on the optimization of network architecture, without

having to train a DNN for each candidate architecture. Thus, instead of DNN training, we

consider scalability of optimizing DNN designs with a focus on the neural architecture.

NAS on a single target device cannot result in the optimal DNN model for all

other devices, motivating device-aware NAS. In general, the device-aware NAS process is

guided by an objective function, e.g., accuracy_loss+weight1 ∗energy+weight2 ∗ latency.

Thus, it is crucial to efficiently evaluate the resulting inference accuracy/latency/energy

performance given a DNN candidate [80, 87, 95, 101, 114]. Towards this end, proxy models

have been leveraged to calculate latency/energy for each candidate, but they are not very

accurate on all devices [120]. Alternatively, actual latency measurement on real devices for

each candidate is also considered, but it is time-consuming [106].

More recently, performance predictors or lookup tables have been utilized to assist

with NAS (and model compression) [20, 79, 80, 87, 95, 101, 104, 114, 115]: train a machine

learning model or build a lookup table to estimate the resulting accuracy/latency/energy

performance for a candidate DNN design on the target device. Therefore, by using search

techniques aided by performance predictors or lookup tables, an optimal DNN can be iden-

tified out of numerous candidates for a target edge device without actually deploying or
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…
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… …

Figure 1.2: The existing device-aware DNN optimization (i.e., once for a single device)
[23,34,115].

running each candidate DNN on the device [23,115].

Nonetheless, as illustrated in Fig. 1.2, the existing latency/energy predictors or

lookup tables [23, 24, 34, 87, 101, 115] are device-specific and only take the DNN features as

input to predict the inference latency/energy performance on a particular target device. For

example, according to [24], the average inference latencies of 4k randomly selected DNNs

are measured on a mobile device and then used to train an average latency predictor for that

specific device (plus additional 1k samples for testing). Assuming that each measurement

takes 30 seconds, it takes a total of 40+ hours to just collect training and testing samples

in order to build the latency predictor for one single device, let alone the additional time

spent for latency predictor training and other performance predictors. Likewise, to estimate

the inference latency, 350K operator-level latency records are profiled to construct a lookup

table in [34], which is inevitably time-consuming. Clearly, building performance predictors

or lookup tables incurs a significant overhead by itself [23, 24,34,87,101,115].

More crucially, without taking into account the device features, the resulting per-

formance predictors or lookup tables only provide good predictions for the individual device
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on which the performance is measured. For example, as shown in Fig. 4 in [34], the same

convolution operator can result in dramatically different latencies on two different devices

— Samsung S8 with Snapdragon 835 mobile CPU and Hexagon v62 DSP with 800 MHz

frequency.

In addition, the optimizer (e.g., a simple evolutionary search-based algorithm or

more advanced exploration strategies [80,87,95,101]) to identify an optimal architecture for

each device also takes non-negligible time or CPU-hours. For example, even with limited

rounds of evolutionary search, 30 minutes to several hours are needed by the DNN opti-

mization process for each device [23, 57, 115]. In [34], the search time may reduce to a few

minutes by only searching for similar architectures compared to an already well-designed

baseline DNN model, and hence this comes at the expense of very limited search space and

possibly missing better DNN designs. Therefore, combined together, the total search cost

for edge devices is still non-negligible, especially given the extremely diverse edge devices

for which scalability is very important.

There have also been many prior studies on DNN model compression, such as

pruning and quantization [7, 29, 32, 37, 51, 52, 71, 73, 83, 93], matrix factorization [?, 36], and

knowledge distillation [100]. Like the current practice of NAS, the existing optimizer for

compression techniques are typically targeting a single device (e.g., optimally deciding the

quantization and pruning policy for an individual target device), making the overall opti-

mization cost linearly increase with the number of target devices and lacking scalability [115].

In summary, the state-of-the-art device-aware DNN optimization still takes a large

amount of time and efforts for even a single device [23, 24, 34, 115], and cannot scale to
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extremely diverse edge devices. Therefore, the device-aware DNN optimization process

itself needs to scale up, in view of extremely diverse edge devices.

1.3 Problem Formulation

A common goal of optimizing DNN designs is to maximize the inference accuracy

subject to latency and/or energy constraints on edge devices. Mathematically, this problem

can be formulated as

min
x∈X
−accuracy(x) (1.1)

s.t., latency(x;d) ≤ Ld, (1.2)

energy(x;d) ≤ Ed, (1.3)

where x is the representation of the DNN design choice (e.g., a combination of DNN ar-

chitecture, quantization, and pruning scheme), X is the design space under consideration,

and d is the representation of an edge device (e.g., CPU/RAM/GPU/OS configuration).

Our problem formulation is not restricted to energy and latency constraints; additional con-

straints, such as robustness to adversarial samples, can also be added. Note that we use

“−accuracy(x)” as the objective function to be consistent with the standard “min” operator

in optimization problems.

The constrained optimization problem in Eqns. (1.1)–(1.3) is called primal problem

in the optimization literature [17]. It can also be alternatively formulated as a relaxed
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problem parameterized by λ = (λ1, λ2):

min
x∈X
−accuracy(x) + λ1 · energy(x;d) + λ2 · latency(x;d), (1.4)

where λ = (λ1, λ2) are non-negative weight parameters (i.e., equivalent to Lagrangian mul-

tipliers) corresponding to the energy and latency constraints, respectively. By increasing a

weight (say, λ2 for latency), the optimal design x∗(d, λ) by solving (1.4) will result in bet-

ter performance corresponding to that weight. If the performance constraint is very loose,

then λ = (λ1, λ2) can approach zero; on the other hand, if the constraint is very stringent,

λ = (λ1, λ2) will be large. Thus, given a set of latency and energy constraints Ld and Ed,

we can choose a set of weight parameters λ1 and λ2 such that the constraints in (1.2)(1.3)

are satisfied and the accuracy is maximized.

Strictly speaking, some technical conditions (e.g., convexity) need to be satisfied

such that the optimal solution to the relaxed problem in (1.4) is also the optimal solution

to the constrained problem in (1.1)–(1.3). Nonetheless, the goal in practice is to obtain a

sufficiently good DNN design rather than the truly global optimum, because of the usage

of a (non-convex) performance predictor as a substitute of the objective function [23,24,34,

79,115]. Thus, with proper weight parameters λ, the relaxed version in (1.4) can be seen as

a substitute of the constrained optimization problem (1.1)–(1.3).

While the constrained problem in (1.1) –(1.3) is intuitive to understand, it may

not be straightforward to optimize when using search-based algorithms. On the other hand,

when using the relaxed formulation in (1.4), one needs to find an appropriate set of weight

parameters λ = (λ1, λ2) to meet the performance constraints in (1.2)(1.3). In the literature,
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both constrained and relaxed problems are widely considered to guide optimal DNN designs

[34,115].

In this chapter, we choose to solve the relaxed problem in (1.4) while using effi-

cient searches to identify an optimal λ = (λ1, λ2) such that the performance constraints in

(1.2)(1.3) are satisfied and the resulting optimal DNN design x minimizes the accuracy loss

(i.e., maximize the accuracy).

1.4 Approach 1: Reusing Performance Predictors for Many

Devices

A key bottleneck that slows down the DNN optimization process is the high cost

of building performance predictors for each device. In our first approach, we propose to

reuse the performance predictors built on a proxy device denoted as d0. While the predictor

cannot accurately estimate the performance on a different device, it maintains performance

monotonicity (e.g., if DNN design xA has a lower latency than xB on the proxy device, xA

should still be faster than xB on a new device) in many cases. We leverage the performance

monotonicity to scale up the DNN optimization without re-building performance predictors

for each different device.

1.4.1 Stage 1: Training Performance Predictors on a Proxy Device

To speed up the DNN optimization process, we need to quickly evaluate objective

function given different DNN designs. Instead of actually measuring the performance for each

DNN design candidate (which is time-consuming), we utilize performance predictors. In our
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example, we have accuracy/latency/energy predictors. Concretely, the accuracy predictor

can be a simple Gaussian process model as used in [34] or a neural network, whose input is

the DNN design choice represented by x, and it does not depend on the edge device feature

d. We denote the trained accuracy predictor by AccΘA
(x), where ΘA is learnt parameter

for the predictor.

On the other hand, the latency/energy predictors depend on devices. Here, we

train the latency/energy predictors on a proxy device following the existing studies [34,115].

For example, to build the latency predictor offline, we can measure the latency for each

operator in a DNN candidate and then sum up all the involved operators to obtain the total

latency. We denote the latency and energy predictors as latencyd0
(x) and energyd0

(x),

where the subscript d0 is to stress that the performance predictors are only accurate (in

terms of the absolute performance prediction) for the proxy device d0.

Given the latency/energy predictor for an edge device, one can easily follow [34,115]

and adopt an evolutionary search process to obtain the optimal DNN design. Nonetheless,

in [34], the performance predictor cannot transfer to a different device, because the la-

tency/energy performance on one device can change dramatically on a different device: [34]

directly uses the absolute performance constraints Ld and Ed in its (modified) objec-

tive function and hence needs accurate performance prediction for each individual device.

In [23,115], the weight parameters λ = (λ1, λ2) are simply treated as hyperparameters. How

to tune λ = (λ1, λ2) to meet the performance constraints for a target device is not specified.

Since it aims at making weighted objective function in (1.4) as close to the true value as

possible on a target device, it needs accurate performance prediction for that target device.
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Figure 1.3: Overview of “reusing performance predictors” to scale up DNN optimization.
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Figure 1.4: The measured and predicted average latencies of a set of 40 DNN models with
different architectures on Google Pixel 1 and Pixel 2. The latency predictor is built based
on Google Pixel 1. The latency values are released accompanying the publication [24].

Thus, performance predictors are needed for each individual device in [23,115]. In our work,

instead of building a latency/energy predictor for each device, we will reuse the predictor

for other devices as described in the next subsection.

1.4.2 Stage 2: Optimizing DNN Designs on New Devices

In this framework, we avoid the cost of building performance predictors for each

individual device by leveraging the performance monotonicity of DNNs on different devices.

To better explain our idea, we only consider the latency constraint and illustrate our ap-

proach in Fig. 1.3.

In many cases, DNNs’ latency performances are monotone on two different devices,

which we formally state as follows.
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Algorithm 1 DNN Optimization on a New Device

1: Input: Accuracy predictor AccΘA
(x), proxy device’s latency predictor latencyd0

(x), latency
constraint on the target device Ld, already considered T and corresponding optimal DNN designs
X ∗ = {x∗(t),∀t ∈ T }, small δ > 0 for checking latency constraint satisfaction, and maximum
iteration Max_Iterate

2: Output: Optimal DNN design x∗

3: Initialize: Set tmin = 0 and tmax = 1;
4: for i= 1 to Max_Iterate do
5: t = tmin+tmax

2 ;
6: if t 6∈ T then
7: Solve (1.6) and obtain x∗(t);
8: T ← T ∪ {t} and X ∗ ← X ∗ ∪ {x∗(t)}
9: end if

10: Measure latency latency(x∗(t∗);d);
11: if latency(x∗(t∗);d) ≥ Ld + δ then
12: tmin = t;
13: else if latency(x∗(t∗);d) ≤ Ld − δ then
14: tmax = t;
15: else
16: Break;
17: end if
18: end for
19:
20: return x∗(t);

Performance monotonicity. Given two different devices d0 6= d and two dif-

ferent DNN designs xA 6= xB, if latency(xA;d0) ≥ latency(xB;d0), then latency(xA;d) ≥

latency(xB;d) also holds. We say that the two DNN designs xA and xB are performance

monotonic on the two devices d0 and d.

With performance monotonicity, the relative ranking of different DNNs’ latency

performances is preserved between the two devices. For example, as shown in Fig. 4 in [34],

for different convolution operators, latency performance monotonicity is observed between

Samsung S8 with Snapdragon 835 mobile CPU and Hexagon v62 DSP with 800 MHz fre-

quency, although the absolute performances are very different. We also show in Fig. 1.4

the performance monotonicity of a set of 40 DNN models with different architectures on
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Google Pixel 1 and Pixel 2. These two devices have major differences in terms of several

specifications, such as operating systems (Android 7.1 vs. Android 8.0), chipset (Qualcomm

MSM8996 Snapdragon 821 with 14 nm vs. Qualcomm MSM8998 Snapdragon 835 with 10

nm), CPU (Quad-core 2x2.15 GHz Kryo & 2x1.6 GHz Kryo vs. Octa-core 4x2.35 GHz Kryo

& 4x1.9 GHz Kryo) and GPU (Adreno 530 vs Adreno 540), which can affect the latencies. As

a result, the absolute latency values on these two devices are very different and not following

a simple scaling relation. Nonetheless, on these two devices, many of the DNNs preserve

performance monotonicity very well. Moreover, we see that the latency predictor built on

Google Pixel 1 is quite accurate compared to the true value. This demonstrates that the

latency predictor on Google Pixel 1 can also be reused for Pixel 2, although the authors build

another latency predictor for Pixel 2 in their released files [24]. More extensive discussion

and measurements regarding performance monotonicity are introduced in Chapters 3 and 4.

As a result, the latency constraint latency(x;d) ≤ Ld can be transformed into

latency(x;d0) ≤ L
′
d. That is, there exists another latency constraint L′d such that if the

latency of a DNN design x on the proxy device d0 satisfies latency(x;d0) ≤ L
′
d, then

the latency of the same DNN design x on our target device d will meet is actual latency

constraint, i.e., latency(x;d) ≤ Ld.

Consequently, we convert the original latency constraint latency(x;d) ≤ Ld into

an equivalent latency constraint expressed on the proxy device latency(x;d0) ≤ L
′
d, which

we can reuse the proxy device’s latency predictor to approximate (i.e., latencyd0
(x) ≤ L′d).

Therefore, based on proxy device’s predictor, the DNN design problem for our new target

13



device can be re-written as

min
x∈X
−AccΘA

(x), s.t., latencyd0
(x) ≤ L′d. (1.5)

Nonetheless, without knowing L′d a priori, we cannot directly solve the constrained

optimization problem (4.5). Thus, we reformulate the problem (4.5) as

min
x∈X
−(1− t) ·AccΘA

(x) + t · latencyd0
(x), (1.6)

where t ∈ [0, 1] plays an equivalent role as λ2 in the original relaxed problem in (1.4). With

a larger value of t, the resulting latency will be smaller (predicted for the proxy device), and

vice versa. Importantly, because of performance monotonicity, a larger t will also result in

a smaller latency on the new target device. Given each value of t, the problem (1.6) can

be quickly solved (e.g., using search-based algorithms), because the objective function can

be efficiently evaluated based on accuracy/latency predictors built on the proxy device. For

each t, there exists a corresponding optimal x∗(t).

Now, the problem reduces to finding an optimal t∗ such that the actual latency

constraint latency(x;d) ≈ Ld is satisfied1 and the accuracy is also maximized (i.e., minimiz-

ing −AccΘA
(x)). Then, given t∗, we can obtain x∗(t∗). Specifically, for each t, we measure

the actual latency latency(x∗(t∗);d) and check if it just meets the actual latency constraint

Ld. Since t is a scalar, we can efficiently search for the optimal t∗ using bi-section methods.

For example, even with a granularity of 0.001 (i.e., 1001 possible values of t ∈ [0, 1]), we only
1If the latency constraint is very loose (i.e., Ld is sufficiently large), then the actual latency latency(x;d)

will always be smaller than Ld. In this case, we have t∗ → 0.
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need at most 10 = dlog2(1001)e searches and latency measurements on the target device.

This can reduce the significant cost of building a latency predictor for the target device.

The algorithm is described in Algorithm 6.

1.4.3 Remarks

We offer the following remarks on our first approach.

Proxy latency with monotonicity. Essentially, the proxy device’s latency pre-

dictor latencyd0
(x) serves as a proxy latency for the actual target device. Nonetheless, a key

novelty and difference from the FLOP-based proxy latency function is that latencyd0
(x) can

preserve performance monotonicity for a large group of devices (i.e., a larger latencyd0
(x)

also means a large actual latency on the target device), whereas FLOP-based proxy latency

does not have this desired property and a higher FLOP can commonly have a smaller latency

on a target device.

When performance monotonicity does not hold. The core idea of our first

approach is to leverage the performance monotonicity of DNNs on different devices. But,

this may not hold for all devices: a DNN model with the lowest latency on one device

may not always have the best latency performance on another device [81]. The violation

of performance monotonicity can be found when the actual latency of a new DNN design

becomes significantly higher while it is expected to be lower. If the performance monotonicity

does not hold between the proxy device and the new target device, then we will train a new

performance predictor for the new target device and treat it as a new proxy device (for

possible future reuse); when another device arrives, we will match it with the best suitable

proxy devices based on their similarities, and if performance monotonicity does not hold
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between the new target device and any of the existing proxy devices, we will train a new

performance predictor for this new device.

Note that performance monotonicity is not required to strictly hold for all DNNs,

as long as it approximately holds for optimal DNN designs x∗(t) for a sufficiently large

set of t. The reason is that the DNN design problem is non-convex and we only expect

to find a reasonably good DNN design, rather than the truly global optimal design. We

expect performance monotonicity at least among a group of devices that are not significantly

different from each other (e.g., see Fig. 1.4 for latencies on Google Pixel 1 and Pixel 2, which

have different operating systems, chipsets, CPUs and GPUs). In any case, our approach will

not be slower than the existing predictor-aided DNN optimization that requires performance

predictors for each different device [34], since our approach can always roll back to the

existing approaches by treating each target device as a new proxy device.

Energy constraint. If we also want to factor energy into the objective function,

we need to consider a new objective function parameterized by t = (t1, t2) where t1 ≥ 0,

t2 ≥ 0, and t1 + t2 ≤ 1:

min
x∈X
−(1− t1 − t2) ·AccΘA

(x) + t1 · latencyd0
(x) + t2 · energyd0

(x), (1.7)

where energyd0
(x) is the proxy device’s energy predictor. Accordingly, we need to extend

Algorithm 6 to consider a search process over t1 and t2. While this is more complicated

than bi-section on a scalar value, there exist efficient search methods over a multi-dimension

space [44]. Regardless, searching over a low-dimensional parameter space (t1, t2) is much

easier than searching over the DNN design space (e.g., architecture space).
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1.5 Approach 2: Learning to Optimize

In this section, we introduce our second framework to scale up DNN design opti-

mization.

1.5.1 Overview

While our first approach aims at avoiding training performance predictors for each

individual device, we still need to take a small number of actual latency/energy measure-

ments on each target device, because the proxy device’s performance predictor can only

provide a relative/ordered performance instead of the absolute performance. To scale up

the optimization of DNNs for edge inference and generate an optimal DNN design instantly

for each target device, we now present our second approach.

Our key idea is learning to optimize: instead of performing DNN design optimiza-

tion repeatedly (once for an individual device), we first learn a DNN optimizer from DNN

optimization on sample devices, and then apply the learnt DNN optimizer to new unseen

devices and directly obtain the optimal DNN design.

More specifically, we take a departure from the existing practice by: (1) leveraging

new performance predictors that can estimate the resulting inference latency/energy per-

formance given a DNN-device pair; and (2) using an automated optimizer which takes the

device features and optimization parameters as input, and then directly outputs the optimal

DNN design. This is illustrated in Fig. 2.3. Our latency/energy performance predictors take

as explicit input both the DNN features and device features, and hence they can output the

resulting performance for new unseen devices. Note that appropriate embedding of DNN
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Figure 1.5: Overview of “learning to optimize” to scale up DNN optimization for edge
inference. Once the optimizer is trained, the optimal DNN design for a new device is done
almost instantly (i.e., only one inference time).

and device features will be very helpful to facilitate training the performance predictors and

DNN optimizer.

Our automated optimizer utilizes a neural network to approximate the optimal

DNN design function, and is intended to cut the search time that would otherwise be incurred

for each device. The initial overhead of training our performance predictors and optimizer is

admittedly higher than the current practice of only training device-specific predictors, but

the overall overhead is expected to be significantly lower, considering the extreme diversity

of edge devices.

1.5.2 Training Performance Predictors and Optimizer

Our proposed design builds on top of two-stage training as described below.

Stage 1: Training performance predictors. The accuracy predictor is the

same as the one used in our first approach, since it is measured on a reference dataset
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without dependence on devices. On the other hand, the latency/energy predictor neural

network will use both device feature d and DNN design representation x as input, and output

the respective performance. They are each trained by running DNNs with sampled designs

on training devices and using mean squared error (i.e., the error between the predicted

performance and the true measured value) as the loss function. The key difference between

our design and [34,115] is that our latency/energy performance predictors use device features

as part of the input and hence can apply to new unseen devices without training new

performance predictors.

We denote the set of training edge device features as D′T , where each element d ∈

D′T corresponds to the feature of one available training device. To generate training samples,

we can randomly sample some DNN designs (e.g., randomly select some architectures) plus

existing DNN designs if available, and then measure their corresponding performances on

training devices as the labels. We denote the trained accuracy/energy/latency predictor

neural network by AccΘA
(x), EnergyΘE

(x;d), and LatencyΘL
(x;d), respectively, where

ΘA, ΘE , and ΘL are learnt parameters for the three respective networks. Thus, the predicted

objective function f̂(x;d, λ) can be expressed as

f̂(x;d, λ) = −AccΘA
(x) + λ1 · EnergyΘE

(x;d) + λ2 · LatencyΘL
(x;d). (1.8)

The accuracy/energy/latency predictor neural networks are called performance networks, to

be distinguished from the optimizer network we introduce below.

Since collecting energy/latency performances on real training devices is time-consuming,

we can use iterative training to achieve better sample efficiency. Specifically, we can first
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choose a small training set of DNN designs at the beginning, and then iteratively include

an exploration set of new DNN designs Xexplore to update the performance networks. This

is described in Algorithm 2. The crux is how to choose the exploration set Xexplore. Some

prior studies have considered Bayesian optimization to balance exploration vs. exploita-

tion [95,101], and we leave the choice of Xexplore in each iteration as our future work.

Stage 2: Training the automated optimizer. Given an edge device repre-

sented by feature d and optimization parameter λ, the representation of the corresponding

optimal DNN design can be expressed as a function x∗(d, λ). The current practice of DNN

optimization is to repeatedly run an optimizer (e.g., search-based algorithm), once for a

single device, to minimize the predicted objective function [34,115]. Nonetheless, obtaining

x∗(d, λ) is non-trivial for each device and not scalable to extremely diverse edge devices.

Thus, we address the scalability issue by leveraging the strong prediction power of another

fully-connected neural network parameterized by Θ to approximate the optimal DNN design

function x∗(d, λ). We call this neural network optimizer network, whose output is denoted

by x̂Θ(d, λ) where Θ is the network parameter that needs to be learnt. Once Θ is learnt,

when a new device arrives, we can directly predict the corresponding optimal DNN design

choice x̂Θ(d, λ).

For training purposes, in addition to features of real available training devices D′T ,

we can also generate a set of additional synthetic device features DS to augment the training

samples. We denote the combined set of devices for training as DT = D′T ∪ DS , and the

training set of optimization parameters as ΛT which is chosen according to practical needs

(e.g., latency may be more important than energy or vice versa). Next, we discuss two
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Algorithm 2 Training Performance and Optimizer Networks
1: Input: Real training devices D′T , synthetic training devices DS , training set of optimization

parameters ΛT , trained DNN models and their corresponding design space X , initial exploration
set of Xexplore, initial training sets of sampled DNN designs XT ⊂ X and the corresponding ac-
curacy/energy/latency labels measured on real training devices, and maximum iteration rounds
Max_Iterate

2: Output: Performance network parameters ΘA,ΘE ,ΘL, and optimizer network parameter Θ
3: Initialize: Randomize ΘA,ΘE ,ΘL, and Θ;
4: for i = 1 to Max_Iterate do
5: for x ∈ Xexplore ⊂ X and d ∈ D′T do
6: XT ← XT ∪ {x};
7: Measure accuracy(x) for a new accuracy label;
8: Measure energy(x;d) and latency(x;d) for new energy and latency labels, respectively;
9: Update ΘA,ΘE , and ΘL by training performance networks as described in Stage 1;

10: end for
11: Choose a new Xexplore;
12: end for
13: if Training method 1 is used then
14: Fix ΘA,ΘE ,ΘL, and obtain x∗(d, λ) = arg minx f̂(x;d, λ), ∀(d, λ) ∈ (DT ,ΛT );
15: Update Θ by training the optimizer network using Method 1;
16: else
17: Fix ΘA,ΘE ,ΘL, and update Θ by training the optimizer network using Method 2;
18: end if
19:
20: return ΘA,ΘE ,ΘL, and Θ;

different methods to train the optimizer network.

Training Method 1: A straightforward method of training the optimizer

network is to use the optimal DNN design x∗(d, λ) as the ground-truth label for input

sample (d, λ) ∈ (DT ,ΛT ). Specifically, we can use the mean squared error loss

min
Θ

1

N

∑
(d,λ)∈(DT ,ΛT )

|x̂Θ(d, λ)− x∗(d, λ)|2 + µ‖Θ‖, (1.9)

where N is the total number of training samples, µ‖Θ‖ is the regularizer to avoid over-

fitting, and the ground-truth optimal DNN design x∗(d, λ) is obtained by using an ex-

isting optimization algorithm (e.g., evolutionary search in [34, 115]) based on the pre-
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dicted objective function. Concretely, the optimal DNN design used as the ground truth

is x∗(d, λ) = arg minx f̂(x;d, λ), where f̂(x;d, λ) is the predicted objective function with

parameters ΘA, ΘE , and ΘL learnt in Stage 1.

Training Method 2: While Method 1 is intuitive, generating many training

samples by obtaining the optimal DNN design x∗(d, λ), even based on the predicted ob-

jective function, can be slow [34, 115]. To reduce the cost of generating training samples,

we can directly minimize the predicted objective function f̂(x;d, λ) = −AccΘA
(x) + λ1 ·

EnergyΘE
(x;d) + λ2 · LatencyΘL

(x;d) in an unsupervised manner, without using the op-

timal DNN design choice x∗(d, λ) as the ground-truth label. Specifically, given the input

samples (d, λ) ∈ (D,Λ) including both real and synthetic device features, we optimize the

optimizer network parameter Θ to directly minimize the following loss:

min
Θ

1

N

∑
(d,λ)∈(DT ,ΛT )

f̂(x̂Θ(d, λ);d, λ) + µ‖Θ‖. (1.10)

The output of the optimizer network directly minimizes the predicted objective function,

and hence represents the optimal DNN design. Thus, our training of the optimizer network

in Method 2 is guided by the predicted objective function only and unsupervised. When

updating the optimizer network parameter Θ, the parameters for performance predictors ΘA,

ΘE , and ΘL learnt in Stage 1 are fixed without updating. In other words, by viewing the

concatenation of optimizer network and performance predictor networks as a single neural

network (illustrated in Fig. 2.3), we update the parameters (Θ) in the first few layers while

freezing the parameters (ΘA,ΘE ,ΘL) in the last few layers to minimize the loss expressed

in Eqn. (1.10).
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Finally, we can search for appropriate weight parameters λ to obtain the optimal

DNN design subject to performance requirement. The key difference between our second

approach and the first one is that in the second approach, there is no need to measure the

performance for each candidate DNN design on the target device. Note that in our first

approach, for each target device, there are only a few candidate DNN designs due to the

high efficiency bisection methods.

1.5.3 Remarks

In this section, we propose a new approach to scaling up DNN optimization for

edge inference and present an example of training the optimizer. The key point we would

like to highlight in this chapter is that performing DNN optimization for each individual

device as considered in the existing research is not scalable in view of extremely diverse

edge devices. We now offer the following remarks (mostly regarding our second approach —

learning to optimize).

• DNN update. When a new training dataset is available and the DNN models

need to be updated for edge devices, we only need to build a new accuracy predictor on (a

subset of) the new dataset and re-train the optimizer network. The average energy/latency

predictors remain unchanged, since they are not much affected by training datasets. Thus,

the time-consuming part of building energy/latency predictors in our proposed approach is

a one-time effort and can be re-used for future tasks.

• Generating optimal DNN design. Once the optimizer network is trained,

we can directly generate the optimal DNN design represented by x̂Θ(d, λ) given a newly

arrived edge device d and optimization parameter λ. Then, the representation x̂Θ(d, λ)
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is mapped to the actual DNN design choice using the learnt decoder. Even though the

optimizer network may not always result in the optimal DNN designs for all edge devices,

it can at least help us narrow down the DNN design to a much smaller space, over which

fine tuning the DNN design becomes much easier than over a large design space.

• Empirical effectiveness. Using performance predictors to guide the optimizer

is relevant to optimization from samples [10,11]. While in theory optimization from samples

may result in bad outcomes because the predictors may output values with significant errors,

the existing NAS and compression approaches using performance predictors [23,34,80,87,115]

have empirically shown that such optimization from samples work very well and are able to

significantly improve DNN designs in the context of DNN optimization. This is partly due

to the fact that the predicted objective function only serves as a guide and hence does not

need to achieve close to 100% prediction accuracy.

• Relationship to the existing approaches. Our proposed design advances

the existing prediction-assisted DNN optimization approaches [34,115] by making the DNN

optimization process scalable to numerous diverse edge devices. If our approach is applied

to only one edge device, then it actually reduces to the methods in [34, 115]. Specifically,

since the device feature d is fixed given only one device, we can remove it from our design

illustrated in Fig. 2.3. As a result, our performance predictors are the same as those in

[34, 115]. Additionally, our optimizer network can be eliminated, or reduced to a trivial

network that has a constant input neuron directly connected to the output layers without

any hidden layers. Thus, when there is only one edge device, our approach is essentially

identical to those in [34,115]. Therefore, even in the worst event that the optimizer network
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or performance predictor network does not generalize well to some new unseen edge devices

(due to, e.g., poor training and/or lack of edge device samples), we can always optimize

the DNN design for each individual device, one at a time, and roll back to state of the

art [34, 115] without additional penalties.

•When scalability is not needed. It has been widely recognized that a single

DNN model cannot perform the best on many devices, and device-aware DNN optimization

is crucial [23, 34, 112, 115, 121]. Thus, we focus on the scalability of DNN optimization for

extremely diverse edge devices. On the other hand, if there are only a few target devices

(e.g., a vendor develops its own specialized DNN model for only a few products), our second

approach does not apply while our first appraoch (i.e., re-using proxy device’s performance

predictors is more suitable).

• GAN-based DNN design. There have been recent attempts to reduce the

DNN design space by training generative adversarial networks [60]. Nonetheless, they only

produce DNN design candidates that are more likely to satisfy the accuracy requirement,

and do not perform energy or latency optimization for DNN designs. Thus, a scalable perfor-

mance evaluator is still needed to identify an optimal DNN design for diverse edge devices.

By contrast, our second approach is inspired by “learning to optimize” [9]: our optimizer

network takes almost no time (i.e., only one optimizer network inference) to directly produce

an optimal DNN design, and can also produce multiple optimal DNN designs by varying

the optimization parameter λ to achieve different performance tradeoffs.

• Ensemble. To mitigate potentially bad predictions produced by our optimizer

or performance networks, we can use an ensemble in our second approach. For example,
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an ensemble of latency predictors can be used to smooth the latency prediction, while an

ensemble of the optimizer network can be used to generate multiple optimal DNN designs,

out of which we select the best one based on (an ensemble of) performance predictors.

• Learning to optimize. Our proposed optimizer network is relevant to the con-

cept of learning to optimize [9], but employs a different loss function in Method 2 which

does not utilize ground-truth optimal DNN designs as labels. The recent study [66] consid-

ers related unsupervised learning to find optimal power allocation in an orthogonal problem

context of multi-user wireless networks, but the performance is evaluated based on theoret-

ical formulas. By contrast, we leverage performance predictors to guide the training of our

optimizer network and use iterative training.

• Public datasets for future research. Finally, the lack of access to many

diverse edge devices is a practical challenge that prohibits many researchers from study-

ing or experimenting scalable DNN optimization for edge inference. While there are large

datasets available on (architecture, accuracy) [103], to our knowledge, there do not exist

similar publicly-available datasets containing (architecture, energy, latency, device) for a

wide variety of devices. If such datasets can be made available, they will tremendously help

researchers build novel automated optimizers to scale up the DNN optimization for hetero-

geneous edge devices, benefiting every stakeholder in edge inference be it a gigantic player

or a small start-up.
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1.6 Thesis Contribution

In this dissertation, we explore automated approaches to scalably and efficiently

optimize DNN design for diverse edge devices, towards achieving ultra efficient machine

learning for edge inference. Our proposed approaches include an automated DNN model

selection engine to maximize edge users’ Quality of Experience (QoE) utilizing neural bandit

learning, efficient hardware-aware NAS and software-hardware co-design of neural accelera-

tors based on the "Resuing Performance Predictors for Many Devices" framework introduced

in Section 1.4.

In Chapter 2, we target the automated and user-centric DNN selection problem

considering three facts: (1) given an inference task, a large number of diverse DNN models

can be generated by navigating through (even a small part of) the huge design space in terms

of neural architectures and compression techniques (e.g., pruning, quantization, and knowl-

edge distillation), and different DNN models can exhibit dramatically different tradeoffs

among performance metrics, such as accuracy, inference latency and energy consumption;

(2) edge devices are extremely diverse, ranging from high-end devices with state-of-the-art

CPUs/GPUs and dedicated accelerators to low-end devices powered by CPUs of several

years old; (3) optimizing standard performance metrics (e.g., accuracy and latency) may

not translate into improvement of users’ actual subjective QoE. Speicifically, we propose a

novel automated and user-centric DNN selection engine, called Aquaman, which keeps users

into a closed loop and leverages their QoE feedback to guide DNN selection decisions. The

core of Aquaman is a neural network-based QoE predictor, which is continuously updated

online. Additionally, we use neural bandit learning to balance exploitation and exploration,
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with a provably-efficient QoE performance. Our evaluation on a 15-user experimental study

as well as synthetic simulations demonstrates that Aquaman outperforms the static DNN

selection while approaching the optimal oracle in terms of users’ QoE.

Complementary to DNN selection from a pre-existing model pool for given edge

devices, we relax this assumption by studying hardware-aware NAS in Chapter 3. In-

stead of simply selecting a pre-trained DNN from a model pool, NAS brings flexibility to

model design by fully exploring the neural architecture search space and discovering the

optimal combination of building blocks for a target device. Specifically, we focus on re-

ducing the total latency evaluation cost for scalable hardware-aware NAS in the presence

of diverse target devices across different platforms (e.g., mobile platform, FPGA platform,

desktop/server GPU, etc.). Concretely, we show that latency monotonicity commonly exists

among different devices, especially devices of the same platform. Informally, latency mono-

tonicity means that the ranking orders of different architectures’ latencies are correlated

on two or more devices. Thus, with latency monotonicity, building a latency predictor for

just one device that serves as a proxy – rather than for each individual target device as in

state of the art – is enough. In the absence of strong latency monotonicity, we propose an

efficient proxy adaptation technique to significantly boost the latency monotonicity. Finally,

we validate our approach and conduct experiments with devices of different platforms on

multiple mainstream search spaces, including MobileNet-V2, MobileNet-V3, NAS-Bench-

201, ProxylessNAS and FBNet. Our results highlight that, by using just one proxy device,

we can find almost the same Pareto-optimal architectures as the existing per-device NAS,

while avoiding the prohibitive cost of building a latency predictor for each device.
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Besides the automatically-designed DNN models generated by NAS (i.e. soft-

ware design), optimizing hardware accelerators built on FPGA or ASIC, as well as the

corresponding dataflows (e.g., scheduling DNN computations and mapping them on hard-

ware), is also critical for speeding up DNN execution (i.e. hardware design) and has been

increasingly studied. Therefore, in addition to the freedom brought to model design by

NAS, we further explore the hardware design space in Chapter 4. That is, instead of

running hardware-aware NAS to obtain Pareto-optimal models for a given target device,

we consider the hardware design space together with model search space, in an effort to

discover the ultimately efficient accelerator-architecture pairs, which is commly known as

hardware-software co-design. While hardware-software co-design can further optimize DNN

performance, it also exponentially enlarges the total search space to practically infinity and

presents substantial challenges. By settling in-between the fully-decoupled approach and

the fully-coupled hardware-software co-design approach, we propose a new semi-decoupled

approach to reduce the size of the total co-search space by orders of magnitude, yet without

losing design optimality. Particularly, we first perform neural architecture search to obtain a

small set of optimal architectures for one accelerator candidate. Importantly, this is also the

set of (close-to-)optimal architectures for other accelerator designs based on the property

that neural architectures’ ranking orders in terms of inference latency and energy consump-

tion on different accelerator designs are highly similar. Then, instead of considering all

the possible architectures, we optimize the accelerator design only in combination with this

small set of architectures, thus significantly reducing the total search cost. We validate our

approach by conducting experiments on various architecture spaces for accelerator designs
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with different dataflows. Our results highlight that strong latency and energy monotonicity

exist among different accelerator designs. More importantly, by using one candidate accel-

erator as the proxy and obtaining its small set of optimal architectures, we can reuse the

same architecture set for other accelerator candidates during the hardware search stage.
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Chapter 2

Improving QoE of Deep Neural

Network Inference on Edge Devices:

A Bandit Approach

2.1 Introduction

Edge devices, such as smart phones and tablets, are gaining a strong momentum

and emerging as a crucial platform for deep neural network (DNN) inference [102, 122].

For example, DNN models have been commonly integrated with mobile apps for various

functions (e.g., real-time style transfer in Facebook app [121]). Compared to cloud-based

inference, running DNN inference directly on these devices (referred to as edge inference)

is much less reliant on network connection and also better protects user privacy because of

local data processing, thus driving the quick adoption of DNN-powered mobile inference.
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To enable a satisfactory user experience of edge inference, numerous DNN opti-

mization techniques for neural architecture search as well as model compression have been

recently proposed [23,50,106]. Thus, given an inference task, a large number of diverse DNN

models can be generated by navigating through (even a small part of) the huge design space

in terms of different neural architectures and compression techniques (e.g., pruning, quan-

tization, and knowledge distillation) [23, 51, 71, 73, 115]. Generally, different DNN models

can exhibit dramatically different tradeoffs among performance metrics, such as accuracy,

inference latency and energy consumption [74,115].

On the other hand, edge devices are extremely diverse, ranging from high-end

devices with state-of-the-art CPUs/GPUs and dedicated accelerators to low-end devices

powered by CPUs of several years old. For example, the existence of thousands of unique

system-on-chips (SoCs) running on over ten thousand different types of mobile phones and

tablets further explains the extreme heterogeneity of mobile devices. Importantly, not a

single SoC dominates the market: only top 30 SoCs can each have more than 1% of the

market share and, when combined, cover 51% of the whole market [121].

Consequently, how to select the best DNN model out of many choices for each edge

device arises a significant challenge. The DNN selection/optimization for edge inference must

be: (1) automated for scalability; and (2) optimizing user’s quality of experience (QoE) of

edge inference.

Many studies have considered optimally selecting the neural architecture, compres-

sion scheme, and/or compiler design for running DNN on a target device [34, 72, 106, 115].

The key idea is to formulate the DNN design as an optimization problem with a pre-
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determined objective function, such as minimizing a weighted sum of the accuracy loss,

inference energy and latency. Nonetheless, the pre-determined objective function is essen-

tially a proxy for subjective QoE, without necessarily reflecting the users’ true QoE. While

it is true that users are generally more satisfied if the latency/energy is lower and the ac-

curacy is higher, using a weighted sum of the accuracy loss, inference energy and latency

can be over-simplified for modelling QoE, because users’ satisfaction may not be linear in

these metrics (as supported by our experimental results in Section 2.5). Even when the

actual QoE is indeed a linear function of inference accuracy, energy and latency, the relative

weights for these three metrics may not be known in advance and needs online learning

based on users’ QoE feedback.

More generally, the QoE can be a very complicated function of the DNN perfor-

mance metrics. Importantly, the QoE function may not be known or accurately estimated in

advance without sufficiently collecting the users’ QoE feedback. Thus, properly selecting an

objective function in advance to identify the QoE-optimal DNN model for a device is very

challenging. Additionally, the same DNN model running on different devices can lead to

dramatically different performance metrics. As a result, QoE-optimal DNN models can be

very different for different devices, thus mandating an automated DNN selection algorithm

rather than manual designs for each device.

In this chapter, we advocate a different approach — automated and user-centric

DNN selection — which keeps users into a closed loop and leverages their QoE feedback to

guide DNN selections. Specifically, we focus on mobile devices as a concrete platform for edge

inference and propose a novel provably-efficient DNN selection engine, called Aquaman, to
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Figure 2.1: (a) Performances of MobileNet_V2_1.0_224_quant on four devices: Vankyo
Matrixpad z1 (Vankyo), Samsung Galaxy Tab A (TabA), Samsung Galaxy Tab S5e (S5e),
and Vivo V1838A (Vivo). Energy and average latency are normalized to the maxi-
mum values on these four devices. (b) and (c) Performances of five DNN models on
two devices: Inception_V3_quant (I3Q), MobileNet_V2_1.0_224_quant (M2Q), Mo-
bileNet_V1_0.75_192_quant (M1Q), Inception_V4 (I4F), and MobileNet_V2_1.0_224
(M2F). Energy and average latency are normalized to their respective maximum values of
the five models on each device. In our experiment, we run image classification 2000 times
in our lab for each DNN model, and obtain the percentage of correct classification as the
accuracy here.
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Figure 2.2: Distribution of user ratings regarding six DNN models on four devices. Each
rating is normalized to 0-1. “NL” refers to NASNet_large in [47], and the abbreviations for
the other five models are shown in Fig. 2.1.

achieve QoE-optimal mobile inference. To address the key challenge of the a priori unknown

QoE, we leverage a machine learning model to approximate the QoE function based on users’

QoE feedback that serves as “labels” for training the model.

The core of Aquaman is to exploit the universal approximation capability of a

neural network-based QoE predictor, which estimates the expected QoE for each DNN

selection decision and is updated online using users’ QoE feedback. While Aquaman can

predict the QoE function with good accuracy after collecting a sufficiently large number of

users’ feedback/labels, its prediction errors can be large at the beginning (i.e., a cold-start
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problem). To avoid being trapped in a local optimum due to initially large prediction errors

and continuously selecting sub-optimal DNN models, Aquaman employs the bandit-based

reinforcement learning framework to balance exploitation and exploration. In particular, we

can view each DNN model as an arm (or action), while the QoE is our reward. The key idea

of bandit algorithms is to give higher priorities to those under-explored arms such that they

can be explored more and potentially produce higher rewards in the long run. Concretely,

we formulate the DNN selection problem into neural bandit learning with delayed feedback,

which is also a novel setting in the emerging context of neural bandit [131]. We also provide

rigorous analysis for Aquaman, proving that Aquaman can asymptotically maximize the

users’ average QoE even compared to an optimal oracle.

Finally, we evaluate Aquaman by using an image classification app built on top

of the official example of TensorFlow Lite [47]. We consider a 15-user experimental study

as well as synthetic simulations, demonstrating that Aquaman outperforms the static DNN

selection while approaching the optimal oracle in terms of the users’ QoE.

Our main contributions can be summarized as follows:

• We advocate the motivation and necessity of QoE optimal edge inference and user-

centric DNN selection approaches.

• We formulate automated user-centric DNN model selection as a multi-armed bandit

problem with delayed feedback, and propose an efficient neural bandit approach to

balance exploration and exploitation.

• We provide rigorous theoretical analysis, proving that Aquaman can asymptotically

maximize the users’ average QoE even compared to an optimal oracle.
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• We experimentally evaluate our algorithm on a dataset collected via a user study

as well as synthetic simulations, demonstrating its effectiveness over the static DNN

selection while approaching the optimal oracle in terms of the users’ QoE.

2.2 Motivation for User-Centric DNN Selection

We present two existing approaches to DNN selection and explain the necessity of

a user-centric approach for QoE-optimal mobile inference.

Device-unaware DNN selection. A straightforward approach to DNN selection

is to test on a number of mobile devices and then conservatively select a single model that

can meet the performance requirement for most devices. Although simple, its drawbacks

are also obvious: first, the selected DNN model is optimal only for certain devices and can

perform poorly on others; and second, there is not a single DNN model that performs the

best on all mobile devices.

We take the model of MobileNet_V2_1.0_224_quant as an example and deploy

it on four mobile devices for image classification (the details of our experimental setup are

provided in Section 2.5). We show in Fig. 2.1(a) the three widely-considered performance

metrics for each inference execution: average energy consumption, average latency, and

average inference accuracy. The “accuracy" metric in this work is measured in terms of how

often the model correctly classifies an image. In our experiment, we run image classification

2000 times in our lab for each DNN model, and obtain the percentage of correct classification

as our accuracy. While the model performs well on the high-end device Vivo V1838A, its
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performance is not satisfactory on low-end devices such as Vankyo Matrixpad z1 (whose

average latency is around 1.2s). Our observation is also corroborated by a Facebook study

[121], which finds that the same DNN model can result in a large performance variation by

a factor of 10x on different devices.

We further test five different DNN models hosted on the official TensorFlow website

and show their resulting performances on two mobile devices in Figs. 2.1(b) and 2.1(c), re-

spectively. We notice that different models exhibit different performance tradeoffs on differ-

ent devices. Among the five tested models on Vankyo Matrixpad z1, the MobileNet_V2_1.0_224

model is the most appealing one, because of its low energy and latency while achieving a

reasonably high accuracy. We notice that the latency of I4F is much larger than other mod-

els in Figs. 2.1(b) and 2.1(c). The reasons are: first, I4F is a floating-point model compared

to other quantized models; second, I4F has a more complicated model structure than the

other floating-point model M2F. This aligns with the official latency measurements released

in [48].

Device-aware DNN selection. To overcome the drawbacks of the one-for-all

approach, many prior studies have considered device-aware DNN optimization/selection

[3, 24, 34, 51, 71, 72, 79, 82, 85, 106, 115]. While the existing approaches can produce an op-

timal DNN model for a given device, it lacks scalability when facing a large number of

heterogeneous mobile devices. Specifically, even using prediction-assisted optimization, the

often lengthy process of building an offline performance predictor (e.g., profiling the perfor-

mance of many sample models on the target device) is required for each individual target

device [34,115,129].
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More importantly, optimizing a pre-determined objective function (such as a weighted

sum of accuracy loss, inference energy and latency [72,115]) does not necessarily lead to im-

provement in users’ QoE. For example, for mobile devices with limited battery capacities,

users may generally prefer more energy-efficient DNN models while willing to accept a lower

accuracy and/or increased latency. In fact, the QoE can be a very complicated function that

may not be accurately known in advance without sufficiently collecting the users’ feedback.

A survey of users’ QoE. To see how satisfied users feel when using DNN-based

mobile inference, we recruit 15 participants into our survey to test six different DNN models

on four different mobile devices (i.e., a total of 24 DNN-device pairs for each participant)

and provide QoE feedback in the form of numeric ratings in 1-10. Each participant is asked

to use each of the DNN models for a while and then provide a numerical rating for its QoE

with each device-model pair on a scale of 1-10 (more details are in Section 2.5). In addition

to the five DNN models shown in Fig. 2.1, we include another model — NASNet_large (NL)

— to verify our intuition that it should score the worst QoE, especially on low- and mid-end

devices since it is an overly large and slow model for these devices. While our survey size

is small due to limited resources to admit more participants, the key point is that users’

QoE is subjective and not a simple linear combination of the three widely-considered met-

rics (accuracy, energy and latency) in the existing DNN optimization approaches. Fig. 2.2

shows the survey results (normalized to 0-1), including the average rating, 25/75 percentile,

minimum/maximum rating as well as outliers. Based on the average rating, each device

has its own QoE-optimal DNN model: MobileNet_V2_1.0_224 on Vankyo Matrixpad z1,

MobileNet_V2_1.0_224_quant on Samsung Galaxy Tab A, and Inception_V3_quant on
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Figure 2.3: Overview of Aquaman. Aquaman is implemented on the server/cloud side
and works as a middleman between a pool of available DNN models and usersâĂŹ devices.
Aquaman focuses on the selection of already pre-trained DNN models (each having different
architectures and/or compression schemes) for mobile inference. Aquaman mainly consists
of QoE prediction and DNN model selection: for a given device, the QoE predictor first
outputs the QoE of each device-model pair; then, Aquaman selects the candidate model that
generates the highest QoE upper confidence bound for the device.

Samsung Galaxy S5e and Vivo V1838A. Moreover, a common observation is that the overly

large model NASNet_large yields almost the worst QoE on all the devices.

To truly optimize the users’ QoE of mobile inference, we advocate a different ap-

proach — automated and user-centric DNN selection — which keeps users into a closed loop

and leverages their QoE feedback to refine future DNN selections.

2.3 Overview of Aquaman

As illustrated in Fig. 2.3, Aquaman is implemented on the server/cloud side and

works as a middleman between a pool of available DNN models and users’ devices. Aquaman

focuses on the selection of already pre-trained DNN models (each having different architec-

tures and/or compression schemes) for mobile inference, and hence model training is orthog-
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onal. In practice, the selected model is integrated with a DNN-powered mobile app. The

workflow of Aquaman is summarized as follows.

Initialization. The QoE function may not be accurately known in advance with-

out enough feedback from the users. Thus, before running online, Aquaman first initializes

a QoE prediction model that takes both DNN model and device features as input and out-

puts the estimated average QoE. Here, we leverage a fully-connected neural network-based

QoE predictor due to its universal capability to approximate any functional relationship

(i.e., QoE in our study). In our work, Aquaman focuses on optimizing the users’ average

QoE. Nonetheless, Aquaman can be extended to optimize user-specific QoE by including

user features (e.g., preferences and usage behaviors, if available) into the QoE predictor.

Online DNN selection. During the online stage, Aquaman selects DNN models

for mobile devices and gradually updates its QoE predictor based on users’ feedback.

QoE prediction. Whenever a mobile user requests a DNN model, Aquaman takes

the DNN feature and user’s device feature (e.g., CPU and RAM) as input into its QoE

predictor and then estimates the resulting average QoE for each DNN in the model pool.

DNN selection. After predicting the QoE for each DNN on the given device,

Aquaman selects the DNN that has the highest QoE upper confidence bound (UCB), bal-

ancing exploration and exploitation.

QoE predictor update. In our work, QoE is a subjective score modeled as an

unknown function of the device and model features. To learn the QoE model/predictor,

users are kindly requested to provide feedback regarding their experiences with the selected

DNN model in the mobile app after using the models for a while. This can be achieved by
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prompting a simple interface to solicit users’ rating in a numeric scale or simply “like/not

like”, as commonly used by many of today’s mobile apps. If users choose to provide QoE

feedback, their QoE values will be leveraged by Aquaman to update the QoE predictor and

improve future DNN selections, thus keeping users into a closed loop. Note that Aquaman

aims at maximizing the average QoE, while individual QoE values are highly subjective.

Thus, we can take the average of a few QoE values (from different users that have the same

selected DNN and device) as one average QoE sample to update the QoE predictor.

2.4 Formulation, Algorithm, and Analysis

2.4.1 Preliminaries on Multi-armed Bandits

The multi-armed bandit (MAB) problem models a process of sequential decision

making with the tradeoff between exploration and exploitation. In each round t, an action

is chosen from a pool of candidate actions (called arms), each of which corresponds to an a

priori unknown reward. The actual reward is not known until the arm is chosen and played.

The goal is to maximize the accumulated expected rewards over T rounds. With more rounds

being played, some arms’ rewards become better known to us. The tradeoff is a balance

between sticking to the arm with the currently known maximal reward (exploitation), or

exploring new arms which might give higher rewards in the long run (exploration). MAB

models have been widely applied to practical problems, including as ad placement, source

routing, computer game-playing, among others [19].
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2.4.2 Problem Formulation

Consider that Aquaman needs to perform online DNN model selection over T

rounds, each corresponding to a mobile device. Let At be the set of pre-trained DNN

candidate models to be selected at round t and the number of candidate DNNs at round t

is |At|. Note that available DNN model set At can be volatile from round to round, because

new DNN models may be added and/or only a subset of DNN models can be deployed on

the given mobile device due to QoS constraints. The context/feature with respect to a DNN

model a ∈ At at round t is denoted as xt,a ∈ Rd, which can be obtained by concatenating the

mobile device features at round t (e.g. device’s CPU and RAM capacity) and the features

of DNN model a (e.g., DNN model size, million MACs, million parameters [34,115]).

Considering the QoE yt,a is a random variable depending on context xt,a, we model

it as

yt,a = h(xt,a) + ηt (2.1)

where the average QoE function h(xt,a) is a deterministic yet unknown function of xt,a with

a normalized range [0, 1], and ηt is a ν-sub-Gaussian noise with zero mean conditioned on

filtration Ft−1 = {xτ , ητ−1, aτ , τ = 1, · · · , t− 1}, i.e. ∀ς ∈ R,E [eςηt | Ft−1] ≤ exp
(
ς2ν2/2

)
.

There is usually a random delay in QoE feedback since users cannot give useful

feedback until their models are used for a while. Formally, assuming that if a DNN model

is selected for a target mobile device at round s, its corresponding QoE feedback is received

after ds rounds. Then, the set of rounds with QoE fed back at the beginning of round

t is expressed as T r
t = {s | s = t− ds}. Also, we assume that the QoE feedback for any

s = 1, · · · , T satisfies ds ≤ dm, i.e., the largest delay is dm after which users are no longer
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requested for QoE feedback. A larger QoE feedback delay will cause less QoE data collected,

whose impact will be analyzed in Theorem 2.4.1. In practice, some users may not provide

any QoE feedback (i.e., missing feedback). This will slow down the QoE predictor updating

in Aquaman but does not affect the asymptotic optimality of Aquaman.

The goal of Aquaman is to select DNN models to optimize the average QoE. This is

also equivalent to minimizing the regret, which is the difference between the optimal average

QoE and the average QoE achieved by Aquaman. More formally, we consider the cumulative

regret as the performance metric for DNN model selection, which is expressed as

RT = E

[
T∑
t=1

(
yt,a∗t − yt,at

)]

= E

[
T∑
t=1

yt,a∗t

]
− E

[
T∑
t=1

yt,at

]
,

(2.2)

where a∗t = arg maxa∈At E [yt,a] = arg maxa∈At h(xt,a) is the optimal DNN model with

respect to the expected QoE chosen by the oracle and at is the DNN model selected by

Aquaman at round t. If the cumulative regret RT increases sub-linearly with T , the resulting

average QoE achieved by Aquaman will be asymptotically optimal as T →∞ [16].

In our problem, the QoE predictor predicts the extent of user satisfaction towards

DNN models at device level. That is, we optimize the average QoE among each group of

users using the same type of device, while individual users’ personal preferences are modeled

as noise in Eqn. (2.1). Nonetheless, we can extend our QoE predictor by including user-level

features (e.g., gender, hobby, etc.) if available. This will make the DNN model selection

more personalized to individual users (not only devices), although this requires user-level

features and might raise user privacy concerns that are beyond the scope of our study.
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2.4.3 Algorithm for Online DNN Selection

At the beginning of each round, the QoE predictor is updated when at least one new

QoE feedback is received, i.e., the set of rounds with QoE feedback at the beginning of round

t is T r
t = {s | s = t− ds} 6= ∅. Considering the powerful representation capacity of neural

networks, a fully-connected neural network is used as the QoE predictor to approximate the

unknown QoE function h(xt,a). Let f(x, θ) be the QoE neural network with respect to input

x and network parameter θ. The network can be trained by Algorithm 4.

The input of Algorithm 4 is prepared as follows. Denote the set of rounds whose

delayed QoE feedback is received before round t as Tt =
⋃t
i=0 T r

i . The training data of the

QoE predictor neural network is an input matrix Xt of size |Tt|×d, with each row being the

context vector xs,as for s ∈ Tt and a |Tt|-dimensional output vector yt, with each element

being the corresponding received QoE feedback ys,as , for s ∈ Tt. With input Xt and yt, the

QoE predictor is trained by, e.g., gradient descent with a loss function

L(θt) =
1

2

∑
s∈Tt

(f(xs,as ;θt)− ys,as)2 +
1

2
λ||θt − θ0||22, (2.3)

where θ0 is the initialized neural network parameters.

With θt being the updated QoE neural network parameter, the QoE at round t

is predicted as f(xt,a,θt) where xt,a is the context which concatenates device features with

DNN model features. To balance the exploitation and exploration without being trapped

in a local optimum, Aquaman selects the DNN model to maximize the corresponding QoE
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Algorithm 3 Aquaman: Online DNN Model Selection with Delayed QoE Feedback
1: Initialize Neural network parameter is initialized as θ0. Let Z0 = λI. X0 and y0 are

empty matrix and empty vectors.
2: for t = 1, ..., T do
3: if the set of feedback rounds at round t is T r

t 6= then
4: ∀s ∈ T r

t , append xs,as to Xt and append ys,as to yt.
5: Update θt by Algorithm 4;
6: Update Zt = Zt−1 +

∑
s∈T r

t
g(xs,a;θt)

Tg(xs,a;θt)
7: else
8: θt = θt−1; Zt = Zt−1

9: end if
10: if the set of feedback rounds before round t is Xt = ∅ then
11: Randomly choose a DNN model at;
12: else
13: Compute UCB pt,a for a ∈ At by Eqn. (2.9)
14: Select DNN model at = arg max

a∈At

pt,a;

15: end if
16: end for

UCB, which is approximated as [131]:

pt,a = f(xt,a,θt) + γt−1‖g(xt,a,θt)‖Z−1
t

(2.4)

where g(xt,a,θt) is gradient of the neural network of the QoE predictor,

Zt = λI+
∑

s∈Tt g(xs,a;θt)
Tg(xs,a;θt), and γt−1 is a hyperparameter to balance exploration

(the first term) and exploitation (the second term): the larger γt−1, the more emphasis on

exploration. Then, the DNN model is selected as:

at = arg max
a∈At

pt,a, (2.5)

where at is the selected model with the largest QoE UCB, and At is the candidate DNN
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Algorithm 4 QoE Predictor Neural network Updating
1: Input Step size ρ, number of gradient descent steps G, current context matrix Xt,

current reward matrix yt, initialized network parameter θ0

2: Compute the gradient ∇L(θt) of loss function L(θt) in Eqn. (2.3);
3: for j = 0, 1, 2, ..., G− 1 do
4: θj+1

t = θjt − ρ∇L(θjt )
5: end for
6: return θt = θGt .

model pool at time t.

2.4.4 Theoretical Analysis

We now prove an upper bound of the cumulative regret RT achieved by Aquaman

in Theorem 2.4.1, whose proof is available in the appendix.

Theorem 2.4.1 Assuming that in neural bandit with delayed QoE feedback, the feedback

delay satisfies dt ≤ dm, and neural network satisfying the assumptions in the appendix is

used as the QoE predictor. Then, with probability 1 − δ, δ ∈ (0, 1), the cumulative regret of

Aquaman satisfies

RT ≤ 2γT

√
Tdm

(
2d̃ log(1 + bT/dmcK/λ) + 3

)
+ 2dm, (2.6)

where b·c is the floor function, d̃ is the effective dimension of the neural tangent kernel

matrix which is defined in Definition 4.3 of [131] and there exists a constant C such that

γT ≤ Cν
√
d̃ log (1 + TK/λ) + 2− 2 log δ where ν is the parameter of sub-Gaussian noise.�

Theorem 2.4.1 extends the performance analysis of the standard neural bandit

setting in [131] where no feedback delay is considered. The key point is that, despite the

QoE feedback delay, the cumulative regret is sub-linear in T , meaning that Aquaman is
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asymptotically optimal in terms of the average QoE as T → ∞. Like in the existing

bandit learning literature [61, 131], the regret upper bound quantifies the worst-case QoE

gap between Aquaman and the optimal oracle, and is mostly accurate in asymptotic cases

when T → ∞. Even when T is finite, however, we can empirically observe the shrinking

gap between online learning-based Aquaman and the optimal oracle (i.e., the average QoE

achieved by Aquaman is approaching that of the oracle).

Now, let us discuss how Aquaman handles delayed QoE feedback. For each round, if

there is delayed feedback arriving, Aquaman accumulates it to the previous feedback history

and uses the entire history as training data to update the QoE predictor. For the training

data, input or feature is the context vectors for each previous rounds, while the labels are the

corresponding (potentially delayed) QoE feedback. For the initial rounds when no feedback

has arrived yet, Aquaman faces cold-start issues like any other recommendation systems and

hence focuses more on exploration. When QoE feedback arrives, we can use it to supervise

the learning of the QoE predictor. Naturally, the larger the feedback delay, the potentially

worse the QoE (mostly at the beginning). Nonetheless, as time goes on, the impact of

feedback delays also becomes less significant, because enough QoE feedback, albeit with

delays, has been collected.

2.4.5 Practical Considerations

While Aquaman is provably-efficient with a sub-linear cumulative regret, it is es-

tablished based on a set of simplifying assumptions for the sake of theoretical analysis. We

now discuss some practical considerations. that can be addressed by extending Aquaman

accordingly.
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QoS constraint. In practice, a quality-of-service (QoS) constraint may be im-

posed in terms of, e.g., latency constraint for mobile inference. To handle the QoS con-

straint, we first estimate the resulting QoS-related performance for DNN models on an

incoming device. Unlike QoE, the QoS-related performance does not depend on users’ sub-

jective evaluation, and hence can be measured offline based on the DNN developer’s own

device pool or estimated using performance models [34, 77, 115]. Then, Aquaman will only

select those DNNs that meet the QoS constraint.

Updating QoE predictor online. For the ease of analysis, Algorithm 3 states

that the QoE predictor is updated whenever new QoE feedback from an individual user is

received. In practice, as described in Section 2.3, we can calculate the average QoE feedback

from multiple users using the same device and DNN model and consider the average value

as one QoE sample to reduce the variation due to individual users’ subjective QoE values.

Moreover, we can update the QoE predictor neural network using stochastic gradient decent

whenever receiving a batch of average QoE values.

Selection of multiple DNNs. In practice, a mobile app may include multiple

DNN models, each for one function in the app. This can be addressed by either viewing

multiple DNN models as a “super-DNN” ensemble using our current design of Aquaman, or

implementing multiple Aquaman in parallel each for one DNN selection. To reduce annoyance

to users, the users’ QoE feedback is shared for all the selected DNNs.

Malicious user feedback. For any online services, malicious user feedback is an

unavoidable problem [86]. In practice, Aquaman can take the average of multiple individual

QoE values as one data sample. Thus, the QoE predictor is expected to work well, provided

48



that malicious users are not dominant. Additionally, this issue can be mitigated by using

robust online learning [61] and/or removing likely malicious feedback via anomaly detection,

which is beyond our focus.

Computational complexity and overhead. Aquaman serves as a middleman

selection engine at the server or cloud side. There are many large-scale recommendation

systems (e.g., YouTube recommender, Amazon recommender) running in the cloud and

serving billions of user requests each day. These systems are also frequently updated based

on users’ feedback (e.g., click rates). Compared to them, DNN model selection in Aquaman

occurs much less frequently, and training our QoS predictor has a much lower complexity.

Thus, the computational complexity of Aquaman is affordable and less of a concern. The

runtime overhead of Aquaman involves communications (for collecting device features) and

QoE prediction. While the communications overheads are addressed by some bandit studies

considering rate-limited channels [91], they are not a major concern for our problem. This

is because we only need to collect device features (e.g., CPU speed, number of cores, RAM

frequency and battery size) for each incoming request. Compared to downloading the DNN

model itself which is typically in the order of megabytes or more, transmitting the device

features to Aquaman takes negligible bandwidth. Additionally, upon receiving the device

features, running the QoE predictor only takes one forward inference, which is in the order

of milliseconds. Therefore, the total runtime overhead is negligible for Aquaman.
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2.5 Evaluation Methodology

2.5.1 Experimental Setup

Experiment Platform. We set up our experiment platform by building an image

classification app for Android based on the official example provided by Tensorflow Lite [47].

We can modify the app by deploying different pre-trained DNN models. We use Android

Studio Profiler [46] to measure the energy and latency performance of a DNN running on

a mobile device. For each DNN-device pair, we run more than 2,000 inferences to obtain

average performance of energy consumption, inference latency, and inference accuracy. Some

examples of performance profiling results for five DNN models and four mobile devices are

shown in Fig. 2.1.

Devices and DNN Models. To profile DNN model runtime metrics and collect

QoE data, we deploy six DNN models on four different devices. The models are: Mo-

bileNet_V2_1.0_224_quant, Inception_V3_quant, MobileNet_V2_1.0_224_quant, Mo-

bileNet_V1_0.75_192_quant, Inception_V4, and MobileNet_V2_1.0_224. The devices

are Vankyo Matrixpad z1, Samsung Galaxy Tab A, Samsung Galaxy Tab S5e, and Vivo

V1838A.

QoE Predictor. Our QoE predictor consists of four fully-connected layers. It

takes features of DNN-device pair as input, and outputs the predicted QoE. The input fea-

tures include device features (i.e., CPU speed, number of cores, RAM size, RAM frequency

and battery size) and DNN model features (i.e., million MACs, million parameters, model

size, number of nodes and number of layers). After predicting the QoE, the QoE UCB can

be computed to select the DNN model according to Eqn. 2.5. We train the QoE predictor
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Figure 2.4: (a)(b)(c) Average normalized QoE fitting results for three regression methods,
compared to the average QoE of 15 users. RBF: α = 0.001 and γ = 4. Laplacian: α = 0.01
and γ = 1. (d) Importance of different performance metrics.

for 100 epochs for every 100 QoE feedback collected, and our learning rate is set as 0.001.

Datasets. We conduct two types of experiments: experiment on the actually

collected user QoE data, and experiment on our synthetic data. For our collected QoE

dataset, we run Aquaman for T=20000 rounds. In each round, one of four mobile devices

arrives randomly. More details of conducting our user survey, and utilizing the survey

results to build the training dataset and gain QoE labels are introduced in Sections 2.5.2

and 2.6.1, respectively. Furthermore, our methodology to synthesize the dataset is presented

in Section 2.5.3.

2.5.2 User Study

As stated in Section 2.2, we recruit 15 participants into our survey to test six

different DNN models on four different mobile devices (i.e., a total of 24 DNN-device pairs

for each participant) and provide QoE feedback in the form of numeric ratings in 1-10. Each

participant is asked to use each of the DNN models for a while and then provide a numerical

rating for its QoE with each device-model pair on a scale of 1-10. The survey result is shown

in Fig. 2.2.
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2.5.3 Generation of Synthetic Data

Because of limited resources, it is practically impossible for us to evaluate Aquaman

on a large scale, which requires interaction with many more mobile users. To circumvent

this hurdle, we resort to synthetic data generated as follows.

The idea for generating synthetic QoE values is to utilize our user study to build

a synthetic QoE generator that outputs user’s average QoE given a DNN-device pair. This

synthetic QoE generator is unknown to Aquaman during the evaluation. Specifically, we first

build a synthetic performance generator based on our profiling results, and then feed the

synthetic performance values to our synthetic QoE generator for producing QoE. The reason

we use this indirect approach to generating synthetic QoE instead of directly utilizing DNN-

device features as input is that the QoE data we have is not adequate. We consider three

widely-considered performance metrics — average energy consumption, inference latency,

and inference accuracy — in our synthetic data generation. That is, we mainly consider

that the users’ QoE depends on these three runtime metrics of a DNN model on a device,

which further depend on features of the device-model pair. Thus, the QoE is a function of

the DNN and device features. While other factors such as latency variability can affect a

user’s QoE, they are essentially captured by the noise term in our QoE function in Eqn. (2.1).

To build our synthetic performance generator, we augment the energy/latency performance

predictor used the existing research [34,115] by including device features as additional input.

Here, the device features include CPU speed, number of cores, RAM size, RAM frequency

and battery size, while additional features such as GPU and operating system version can

also be added. To represent DNN models, one can use high-level features such as million
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Figure 2.5: Experiment on collected data. Feedback delay is uniformly distributed on 1-100
rounds.

MACs, million parameters, model size, number of nodes and number of layers. Alternatively,

a finer-grained DNN embedding representation on a block basis can also be used as input

for performance generator.

We use kernel ridge regression to fit the relationship between DNN-device features

and the resulting performance metrics due to limited mobile devices we have. Next, based

on the energy/latency/accuracy values, we build the synthetic QoE generator denoted by

QoE = mQoE(energy, latency, accuracy). Again, because of limited QoE data we have,

we consider regression methods to approximate QoE = mQoE(energy, latency, accuracy):

linear regression, and kernel ridge regression with RBF and Laplacian kernels. Fig. 2.4 shows

the average QoE fitting results, along with importance of different performance metrics. We

see that Laplacian kernel ridge regression can almost fully fit into our limited average QoE

data, whereas linear regression performs poorly (which also implies that the existing DNN

design maximizing linear combination of accuracy, energy and latency [34,115] may not lead

to optimal QoE). We use permutation importance (a.k.a. mean decrease accuracy) as the

indicator of feature importance [18,41]. Fig. 2.4(d) shows that different regression methods

impose different feature importance, but all the three methods gives the top priority to the
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Figure 2.6: Experiment on collected data. “Aquaman-x” means the QoE feedback delay is
uniformly distributed between 1 and x.
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Figure 2.7: Simulation on synthetic data. “Aquaman-x” means the QoE feedback delay is
uniformly distributed between 1 and x.

latency metric feature.

Finally, we note that Aquaman is oblivious of the QoE generator we use; instead,

it tries to learn it online (and learn the true user QoE if deployed in the real world).

2.5.4 Baseline Approaches

We consider the following representative baselines.

- Static: It selects a single DNN model regardless of the actual mobile devices. The

single DNN model is chosen such that the average QoE of all the users is maximized. The

assumption is that Static knows a priori which model will result in the maximum average

QoE of all the users, and selects that one in all rounds regardless of incoming devices.

- Oracle: The oracle is assumed to know the best DNN that results in the highest

expected QoE for each mobile device. In reality, there does not exist such an oracle, and
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no practical algorithms can outperform the oracle in terms of the expected QoE for mobile

inference.

In principle, the existing device-aware DNN optimization/selection approaches [3,

24, 34, 51, 71, 72, 79, 82, 85, 106, 115, 116] could also result in the QoE-optimal DNN model,

had the exact QoE function been known for each mobile device in advance and used as the

optimization objective. Nonetheless, this is equivalent to assuming an Oracle (one of our

baselines). On the other hand, if we fix a proxy objective function in the DNN selection

process to select a single DNN, it can be even worse than Static, since the proxy objective

function may not reflect the actual QoE whereas Static directly optimize for the average

QoE. For these reasons, we do not compare Aquaman against the existing approaches that

focuses on optimizing (proxy) objective functions. Our two baselines, Oracle and Static,

cover the ideal case and a fairly strong case.

2.6 Evaluation Results

We conduct two types of experiments: on the actually collected user QoE, and on

our synthetic dataset.

2.6.1 Experiment on the User Study

We first evaluate Aquaman using the collected QoE data from our user study.

We exclude the NASNet_large model from consideration as it is overly slow and has the

worst QoE on three of the four devices in our experiment. Thus, for each device, Aquaman

selects one out of five pre-trained DNN models. Instead of using average QoE of 15 users
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as one sample, we utilize bootstrapping to randomly pick 8 samples out of 15 QoE data

each time and use their average value as one ground-truth QoE sample for training. We run

Aquaman for T=20000 rounds. For each round (with a given device), the QoE for each of

the five DNN-device pairs is calculated as the average of eight random samples out of 15

QoE data collected by our user study. The training details and other settings are reported

in Section 2.5.

We present the results in Figs. 2.5 and 2.6(a), where Fig. 2.5 is for the case

when users’ QoE feedback delay is distributed uniformly between 1 and 100, while Fig.

2.6(a) shows more results on different feedback delays. While the absolute value of QoE

improvement is subjective, we see clearly that Aquaman gradually improves the time-average

QoE, approaching Oracle and outperforming Static. The count breakdown of every single

DNN model in Fig. 2.5(b) shows that the distribution of selected DNNs by Aquaman is

similar to that of Oracle. As for the training loss of our QoE predictor, we show in Fig.

2.5(c) the last-epoch loss. The total training rounds is about 200 because we train the neural

network whenever the number of collected QoE feedback reaches 100 and the total learning

rounds is T=20000. Additionally, in Figs. 2.5(a), 2.6(a) and 2.6(b), the time-average QoE is

calculated in terms of all devices. As Aquaman takes the device features into account when

selecting DNN models, it also achieves higher QoE than Static for each individual type of

device.

To see if Aquaman can handle longer QoE feedback delay effectively, we show in

Fig. 2.6 the time-average QoE, CDF of QoE, and last-epoch training loss of Aquaman under

increasingly larger feedback delay – uniformly distributed delays of 1-100, 1-250 and 1-500
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– respectively. It shows that Aquaman is not sensitive to the feedback delay and still better

than Static.

2.6.2 Simulation on Synthetic Data

Synthesising DNNs and Mobile Devices

For synthetic evaluation, each DNN is represented by a feature vector, and so

is each mobile device. Thus, by randomly generating device features, we simulate the ar-

rival process of different mobile devices. Concretely, besides the five DNN models used in

Section 2.6.1, we synthesize another 10 DNN models. We still run Aquaman for T=20000

rounds, in each of which we synthesize a device feature vector to denote a group of mobile

devices. Combining the device feature and with DNN feature as input, our synthetic QoE

generator produces the average QoE value. To mimic real cases, we will also add noise to

the synthetic QoE value.

Results

We show the results in Fig. 2.7, by considering that the synthetic QoE is generated

using the RBF kernel ridge regression (Section 2.5.3). The time-average QoE and QoE CDF

achieved by Aquaman gradually approaches those of Oracle with an increasingly smaller

gap. The reason is that by exploiting the history information, Aquaman can learn the QoE

predictor neural network parameter θt with an improved accuracy over time, which is helpful

for future DNN model selection. On the contrary, Static constantly yields the lowest QoE,
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because it does not adapt its DNN model selection to an incoming mobile device’s feature.

We also show in Fig. 2.7(b) the percentage of time when the selected DNN is among the

top-3 models in terms of the average QoE. It can be observed that Aquaman is much more

likely to select a top-3 DNN model than Static. Note that Aquaman keeps on exploring in

order to avoid be trapped in local optimum and keep up with the potentially changing QoE

statistics. Hence, the top-3 DNN hit ratio is increasing by using Aquaman but not 100%.

Like in Section 2.6.1, we see that Aquaman is not sensitive to the QoE feedback delays.

We also consider the case when the synthetic QoE values are generated using the

Laplacian kernel and a random mixture of two different kernels (Section 2.5.3). The results

are similar: because of the strong prediction power of neural networks, Aquaman learn the

average QoE for a DNN-device pair over time and hence gradually improve the average QoE

for mobile inference. Thus, we omit the results for space limitation.

2.6.3 Complexity Analysis

As discussed in Section 2.4.5, Aquaman is deployed in the cloud with an affordable

computational complexity in practice. More concretely, the QoE predictor consists of four

fully-connected layers in our experiment, and is updated for 100 epochs whenever a batch of

100 QoE feedback values are collected. The training is very fast and each takes less than 10

seconds on Google Colab platform configured with a regular CPU. For online inference, given

each incoming device, we only need to run one forward inference, which is in the order of

milliseconds. Even considering large-scale deployment, due to the smaller input features and

much less frequent model updating, Aquaman is still much less computationally demanding

58



than industry-level recommendation systems that are frequently updated and serve tens of

thousands of users every minute.

2.7 Related Work

To turn DNN-based mobile inference into reality, it is crucial to reduce the size of

otherwise overly large and computationally prohibitive DNN models by using efficient model

compression techniques, such as pruning and quantization [83], matrix factorization [36],

compact convolution filters [54], and knowledge distillation [100], among many others. Fur-

thermore, automated neural architecture search is also necessary to identify an appropriate

network architecture for mobile inference [115]. The survey [113] comprehensively covers

accelerating the training process for large machine learning models in IoT. These studies are

complementary to Aquaman: the lightweight DNN models produced by these studies can be

included into the DNN pool and selected by Aquaman for QoE-optimal mobile inference.

For device-aware DNN optimization, latency/energy predictors have been utilized

for optimization speed-up [20, 115]. : pre-train a machine learning model to predict the

resulting latency/energy for a candidate DNN on the target device. Nonetheless, these

average latency/energy performance predictors do not incorporate device features. As a

result, for every new device, new latency/energy predictors need to be built, which can

be time-consuming. More crucially, these studies as well as other relevant approaches [72]

focus on optimizing an objective function, which may not improve the users’ actual QoE.

By contrast, we advocate a scalable user-centric DNN selection approach which keeps users

into a closed loop and leverages their QoE feedback to optimize DNN selections.
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There have also been studies on runtime DNN model selection/adaptation in view

of time-varying environmental/input conditions [90, 109]. While they focus on dynamic se-

lection/adaptation of already-deployed DNN models on mobile devices, Aquaman is different

and focuses on DNN model selection during the deployment stage. Moreover, [92] studies

model selection and switching between a subset of the machine learning models from a super-

set of models for Industrial IoT. The goal is to maximize the level of model trustworthiness,

which is orthogonal to our study.

Bandit is a classic online learning setting [16,25,65,99], and our work extends the

neural bandit [131] by considering delayed feedback. A recent study [75] briefly addresses

DNN selection for mobile inference using a linear function as a toy example. By contrast, we

propose a provably-efficient online algorithm, leverage a neural network-based QoE predictor

with strong representation power, and conduct both experiments and synthetic simulations

for evaluation. In a different context, [127] proposes to build a neural network to predict

user QoE for video applications, whereas we not only predict QoE but also propose a bandit

algorithm to balance exploration and exploitation.

2.8 Conclusion

In this chapter, we propose an automated and user-centric DNN selection engine,

called Aquaman, which leverages QoE feedback to optimize DNN selection decisions. The

core of Aquaman is a neural network-based QoE predictor, which is updated online based

on QoE feedback. More specifically, Aquaman consists of two integrated parts: QoE predic-

tion and DNN model selection. To balance exploitation and exploration, Aquaman selects
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DNN models for diverse devices based on the QoE UCB, resulting in provably-efficient QoE

performance compared to the oracle. Finally, we evaluate Aquaman on a user study as well

as synthetic simulations. We demonstrate the effectiveness of Aquaman by showing that it

outperforms the static DNN selection approach while being close to the oracle in terms of

users’ QoE.

Appendix

Proof of Theorem 2.4.1

Assumptions. Without loss of generality, we assume that each hidden layer has

the same width m, and the parameter matrix of layer l at time t is Wl,t, then the dimension

of Wl,t is W1,t ∈ Rd×m,Wl,t ∈ Rm×m for l = 2, ..., L− 1, and WL,t ∈ Rm×1. Assume that

the width m can be sufficiently large. In the neural network, each hidden layer is followed

by activation operations σ(·), such as Rectified Linear Unit (ReLU) function defined as

σ(x) = max(0, x). Thus the predicted QoE of arm a in round t is

f(xt,a;θt) =
√
mσ(σ(σ(σ(xt,aWt,1)Wt,2) · ··)Wt,L−1)Wt,L. (2.7)

We vectorize each of Wl,t and get vector W
′
l,t ∈ Rk×1, where k = m×d if l = 1, k = m×m

if l = 2, ..., L − 1, and k = m if l = L. Thus neural network parameter at round t in

Algorithm 4 can be written as θt = [W
′
1,t;W

′
2,t; ...;W

′
L,t] ∈ R(m×d+m×m+...+m×m+m)×1.

The same initialization method of the neural network as in [131] is adopted. Wl,0
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is initialized as

W 0

0 W

 for 0 ≤ l ≤ L− 1 with each entry of W sampled from Gaussian

distribution N (0, 4/m). WL,0 is initialized as
[
wT ,−wT

]
with each entry of w sampled

from Gaussian distribution N (0, 2/m). And thus the initialized neural network parameters

θ0 is acquired.

The neural network is trained by gradient descent with loss function

L(θt) =
1

2

∑
s∈Tt

(f(xs,as ;θt)− ys,as)2 +
1

2
mλ||θt − θ0||22, (2.8)

where θ0 is the initialized neural network parameters and m is the width of the neural

network. UCB for each arm pt,a in algorithm 3 can be computed as:

pt,a = f(xt,a,θt) + γt−1‖g(xt,a,θt)/
√
m‖Z−1

t

(2.9)

where g(xt,a,θt) is gradient of the neural network of the QoE predictor,

Zt =
∑

s∈Tt g(xs,a;θt)
Tg(xs,a;θt)/m, and the parameter γt is set in the same way as the

exploration rate in Algorithm 1 of [131] to get a provable sub-linear regret.

Proof. Since the maximum feedback delay is dm, we consider the cumulative regret

of the first dm rounds and the cumulative regret from dm + 1 to T rounds separately. That

means the regret can be written as:

RT =

T∑
t=1

[h(xt,a∗t )− h(xt,at)]

=

dm∑
t=1

[h(xt,a∗t )− h(xt,at)] +

T∑
t=dm+1

[h(xt,a∗t )− h(xt,at)]

(2.10)
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Since we assume that QoE of any model satisfies 0 ≤ h(xt,a) ≤ 1, the starting regret∑dm
t=1[h(xt,a∗t ) − h(xt,at)] ≤ dm. Denote the continuing regret as RcT =

∑T
t=dm+1[h(xt,a∗t ) −

h(xt,at)]. According to Lemma 5.3 in [131], with probability 1− δ, delta ∈ (0, 1), we have

RcT ≤ 2
T∑

t=dm+1

γt min
{∥∥g(xt,at ;θt)/

√
m
∥∥
Z−1
t
, 1
}

+ C1

(
Sm−

1
6

√
logmT

7
6λ−

1
6L

7
2 +m−

1
6

√
logmT

5
3λ−

2
3L3

)
,

(2.11)

where C1 is a constant and S is a constant about the neural tangent kernel matrix de-

fined in Theorem 4.5 of [131]. So the challenge is to bound
∑T

t=dm+1 ‖g(xt,a; θt)/
√
m‖Z−1

t

where Zt = λI +
∑

s∈Tt g (xs,as , θs+ds)g
T (xs,as , θs+ds) /m in the case of delayed feedback.

For compactness, we denote gradients as gt = g(xt,at ; θt) and delayed gradients as ḡt =

g(xt,at ; θt+dt).

Devide the T − dm rounds into dm groups, each with I = T−dm
dm

elements. Thus,

the nth round set, n ∈ Z+, n ∈ [1, dm], is Ωn = {dm + n, 2dm + n, · · · , Idm + n}. Corre-

spondingly, the delayed gradients are also devided into dm groups, each with I elements. In

this way, the nth context group is
{
gdm+n,g2dm+n, · · · ,gIdm+n

}
. For each group n, define

I matrices as

V n
i = λI +

i∑
s=1

ḡsdm+nḡ
T
sdm+n/m,

i, n ∈ Z+, n ∈ [1, dm], i ∈ [1, I].

(2.12)
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By directly using Lemma 11 in [1], there exists a constant C2 such that

I∑
i=1

min

{
‖ḡidm+n/

√
m‖2

(V n
i−1)

−1 , 1

}
≤ 2 log

det (V n
I )

det (λI)

≤ 2d̃ log(1 + IK/λ) + 2 + C2m
−1/6

√
logmL4T 5/3λ−1/6

(2.13)

where K is the number of candidate arms, the second inequality is from Lemma 5.4 in [131]

and d̃ is the effective dimension of the neural tangent kernel matrix which is defined in

Definition 4.3 of [131].

Since the feedback delay is not larger than dm, we have ∀t > dm, Tt−dm ⊆ Tt.

Let Ωn
i = {dm + n, 2dm + n, · · · , idm + n} for i, n ∈ Z+, i ≤ I. If t = idm + n, then

Ωn
i−1 ⊂ Tt−dm ⊆ Tt. Since Zt and V n

i are both positive-definite matrix, for t = idm + n,

i ≤ I, we have

‖ḡt/
√
m‖Z−1

t
= ḡTt

(
λI +

∑
s∈Tt

ḡsḡ
T
s /m

)−1

ḡt/m

≤ ḡTt

λI +
∑

s∈Ωn
i−1

ḡsḡ
T
s /m

−1

ḡt/m

= ‖ḡt/
√
m‖

(V n
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(2.14)

Therefore, we have the following
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(2.15)
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By Eqn. (2.13), we have

T∑
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{
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√
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t
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≤
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√

logmL4I5/3λ−1/6

)

Next, since ‖gt‖Z−1
t
≤ ‖ḡt‖Z−1

t
+ ‖gt − ḡt‖Z−1

t
according to triangle ineuqality, it

is necessary to bound ‖gt − ḡt‖Z−1
t
.

By triangle inequality, with probability at least 1 − δ, there exists a constant C3

such that

‖gt − ḡt‖2 ≤ ‖gt − g (xt,at , θ0)‖2 + ‖ḡt − g (xt,at , θ0)‖2

≤ C3

√
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(
τ

1/3
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1/3
2

)
L3 ‖g (xt,at , θ0)‖2

where τ1 = 2
√
t/(mλ) and τ2 = 2

√
(t+ dt)/(mλ), and the second inequality holds due

to Lemma B.5 in [131]. Further, since the maximum eigenvalue of Z−1
t is λ−1, we have

probability at least 1− δ,
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√
m
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√
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(2.16)

where the second inequality comes from Eqn. (2.16), Lemma B.6 in [131] and the fact that
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τ2 ≥ τ1. Now, with probability at least 1− δ, we have

T∑
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By Eqn. (2.11), we have with probability at least 1− δ,
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where U = C2m
−1/6
√

logmL4I5/3λ−1/6 and the third equation holds with a sufficiently

large m.

Remind that I = bT/dmc, we have with probability at least 1− δ,

RT =

dm∑
t=1

[h(xt,a∗t )− h(xt,at)] +RcT

≤ 2γT

√
Tdm

(
2d̃ log(1 + bT/dmcK/λ) + 3

)
+ 2dm.

(2.17)
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By Lemma 5.4 in [131], there exists a constant C4 such that

γT ≤ C4ν
√
d̃ log (1 + TK/λ) + 2− 2 log δ where ν is the parameter of sub-Gaussian noise.
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Chapter 3

One Proxy Device Is Enough for

Hardware-Aware Neural Architecture

Search

3.1 Introduction

Convolutional neural networks (CNNs) are a most commonly used class of deep

neural networks, offering human-level inference accuracy for numerous real-world appli-

cations such as vision-based autonomous driving and video content analysis [45]. Going

beyond the contentional server-only platforms, CNNs have been deployed on increasingly

diverse devices and platforms, including mobile, ASIC and edge devices [121]. As the foun-

dation of a CNN, the neural architecture can greatly affect the resulting model perfor-

mance such as accuracy, latency, and energy consumption. Thus, optimizing the architec-
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ture through hardware-aware neural architecture search (NAS) is crucial and being actively

studied [13,15,30,107,108,120].

The exponentially large search space consisting of billions of or even more architec-

tures renders NAS a very challenging task [34,107,108,115,120,125]. The key reason is that

evaluating and ranking the architectures in terms of metrics of interest (e.g., accuracy and

latency) can be extremely time-consuming. As a result, many studies have been focused on

reducing the cost1 of training and evaluating the architecture accuracy, including reinforce-

ment learning-based NAS with accuracy evaluated based on a small proxy dataset [133],

differentiable NAS [120], one-shot or few-shot NAS [12,23,130], NAS assisted with an accu-

racy predictor [34, 115], among many others.

In addition to speeding up accuracy evaluation, reducing the cost of assessing

the inference latency on a target device is equally important for efficient hardware-aware

NAS [23, 40, 79, 107]. The naive method of measuring the latency for each architecture

can lead to a total search time exceeding several weeks or even months, whereas using the

floating-point operations (FLOPs) as a device-agnostic proxy may not accurately reflect

the true inference latency on different devices [107]. As a result, state-of-the-art (SOTA)

hardware-aware NAS has mainly relied on device-specific latency lookup tables or predictors

[13,15,24,30,34,40,115,125].

Nonetheless, building a latency predictor for a target device requires significant

engineering efforts and can be very slow. For example, [24] measures average inference

latencies for 5k sample DNNs on a mobile device and uses the results to build a latency
1In this chapter, “cost” also interchangeably refers to computational complexity: a higher complexity

requires more computational resources (measured in, e.g., machine hours) and hence a higher monetary
cost, too.
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lookup table for that specific device. Assuming the ideal scenario of 20 seconds for each

measurement (to average out randomness per the TensorFlow guideline [47]) and non-stop

measurement, it can take 27+ hours to build the latency predictor for one single device [24].

Similarly, it is reported by [34] that 350k records are collected for building a latency predictor

for just one device. Even by measuring latencies on six devices in parallel, the authors

of [64] report on OpenReview that they spent one month to collect latency data on the

small NAS-Bench-201 space and build latency predictors for another two datasets on the

FBNet space. More recently, kernel-level latency predictors that capture complex processing

flows of different neural execution units are proposed, but it takes up to 4.4 days for just

collecting the latency measurements on one edge device [129]. All these facts highlight the

crucial point that building a latency predictor for a target device — a key step of SOTA

hardware-aware NAS — is costly and cannot be taken for granted as free lunch.
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Figure 3.1: Device statistics for

Facebook users as of 2018 [121].

Worse yet, the target devices for CNN deploy-

ment are extremely diverse, ranging from mobile CPUs,

ASIC, edge devices to GPUs. For example, even for the

mobile devices alone, as shown in Fig. 3.1, there are more

than two thousand system-on-chips (SoCs) available in the

market, and only top 30 SoCs can each have over 1% of

the share [121]. Importantly, the diverse set of devices

have different latency collection pipelines, programming

environment, and/or hardware domain knowledge require-

ment [64]. Thus, in the presence of extremely diverse tar-
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get devices, the combined cost of building device-specific

latency predictors for hardware-aware NAS is prohibitively

high and increasingly becoming a key bottleneck for scalable hardware-aware NAS. In ad-

dition, this challenge is further magnified by the fact that building device-specific latency

predictors is not a one-time cost: varying the input resolution and/or output classes also

requires new latency predictors (e.g., two device-specific latency predictors are built, each for

one dataset, on the FBNet space [64]). Consequently, how to efficiently scale up hardware-

aware NAS for extremely diverse target devices has arisen as a critical challenge.

Contributions. In this chapter, we focus on reducing the total latency evaluation

cost for scalable hardware-aware NAS in the presence of diverse target devices across different

platforms (e.g., mobile platform, FPGA platform, desktop/server GPU, etc.). Concretely,

we show that latency monotonicity commonly exists among different devices, especially

devices of the same platform. Informally, latency monotonicity means that the ranking

orders of different architectures’ latencies are correlated on two or more devices. Thus, with

latency monotonicity, building a latency predictor for just one device that serves as a proxy

— rather than for each individual target device as in state of the art [23,34,64] — is enough.

Even when a target device has a weak monotonicity with the default proxy device (e.g., a

mobile phone proxy vs. a target edge TPU), we use an efficient adaptation technique which,

by measuring latencies of a small number of architectures on the target device, significantly

boosts the latency monotonicity between the adapted proxy device and the target device.

We validate our approach by considering various search spaces and running exper-

iments with devices of different platforms, including mobile, desktop GPU, desktop CPU,
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edge devices and FPGA. Our results show that, using just one proxy device, there is almost

no Pareto optimality loss compared to architectures specifically optimized for each target

device. In addition, we also consider the recent latency datasets [40, 64, 129], and confirm

further that one proxy device is enough for hardware-aware NAS.

3.2 State of the Art and Limitations of Hardware-Aware NAS

In this section, we provide an overview of the existing (hardware-aware) NAS

algorithms as well as SOTA approaches to reducing the performance evaluation cost, and

highlight their limitations.

3.2.1 Overview

Neural architecture is a key design hyperparameter that affects the inference ac-

curacy and latency of DNN models. In Fig. 3.2, we show an example architecture, which

is found by searching over the possible layer-wise kernel sizes, expansion ratio, and block

depth in the MobileNet-V2 search space using evolutionary search [23].
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Figure 3.2: An example architecture in the MobileNet-V2 search space, which achieves 70.2%
accuracy on ImageNet and 71ms average inference latency on S5e. The text “Z1 x Z2 x Z3”
the input size for each layer.
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The available architecture space is exponentially large, often consisting of billions

of or even more choices (e.g., >1019 in [23]). To address the complexity challenge, NAS

has recently been proposed to efficiently automate the discovery of neural architectures that

exceed the performance of expert-designed architectures [133]. Next, we provide a summary

of existing NAS algorithms.

NAS Without a Supernet

Many prior NAS algorithms can be broadly viewed as “NAS without a supernet”,

where the search process is entangled with the model training process [96,107,133]. Specif-

ically, as illustrated in the left subfigure of Fig. 3.3, the NAS process is governed by a con-

troller (e.g., a reinforcement learning agent): given each candidate architecture produced by

the controller, the model is trained on the training dataset and then evaluated for its perfor-

mance, based on which the controller produces another candidate architecture. This process

repeats until convergence or the maximum search iteration is reached. Techniques to reduce

the search cost include training on part of the training dataset, a small proxy dataset, using

Bayesian optimization or reinforcement learning to reduce the number of sampled candidate

architectures, parameterizing the architectures and using gradients of the loss to guide the

search and training simultaneously, among others [15,70,101,105,107,133]. Nonetheless, the

search cost for even a single device can still take up to 100+ GPU hours, lacking scalability

in the presence of numerous heterogeneous devices [24,120].
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Figure 3.3: Overview of NAS algorithms. Left: NAS without a supernet. Right: One-shot
NAS with a supernet.

One-shot NAS

In view of the extremely diverse devices and platforms for model deployment, one-

shot NAS and its variants such as few-shot NAS have recently been proposed to reduce

the search cost by exploiting the weight sharing mechanism [12, 13, 23, 33, 49, 97, 126, 130].

Concretely, as illustrated in the right subfigure of Fig. 3.3, the key idea of one-shot NAS

is to decouple the training process from the search process: pre-train a super large model

(called supernet) whose weight is shared among all the candidate architectures, and then

use a separate search process to discover optimal architectures that inherit the weights from

the supernet. For example, in SOTA algorithms such as APQ, ChamNet, BigNAS and

FBNet-V3 [23, 33, 34, 115, 126], a supernet is pre-trained first, which is then followed by a

search process based on evolutionary algorithms or reinforcement learning to find an optimal

architecture.

While pre-training the supernet is more costly than training an individual network,

the training cost is one-time2 for each learning task and, when amortized over hundreds of
2With the optimal architecture found by NAS, additional model updates (e.g., by training over the entire

dataset or fine-tuning the weights) may still be needed to further improve the accuracy, but this will typically
not affect the accuracy rankings of different architectures [15] and is orthogonal to NAS whose goal is to
decide an optimal neural architecture.
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target devices, will be much more affordable. For example, with the recent once-for-all

algorithm [23], the amortized training cost for each target device is around 12 hours given

a modest size of 100 devices, and further less given more devices.

3.2.2 Current Practice for Reducing the Cost of Performance Evaluation

With a O(1) model training cost incurred by one-shot NAS, the cost of performance

evaluation — accuracy and latency evaluation — increasingly becomes a bottleneck.

Accuracy evaluation. For each candidate architecture, the time needed to eval-

uate the inference accuracy (even on a small proxy/validation dataset) is in the order of

minutes. Thus, to expedite the accuracy evaluation, SOTA NAS algorithms have leveraged

an accuracy predictor: first measuring the accuracies of sample architectures (extracted

from the supernet) and then building a machine learning model [33,34,115]. Therefore, the

candidate architectures can be ranked based on their predicted accuracies, speeding up the

runtime process for NAS. Since the inference accuracy is evaluated based on the testing

dataset, the accuracy predictor is device-independent and can be re-used for different target

devices, incurring a fixed one-time cost of O(1).

Latency evaluation. Similarly, latency evaluation of candidate architectures is

also very costly. Concretely, measuring the actual latency for each candidate architecture

takes about 20 seconds or more (to average out the random variations as per TensorFlow-

Lite guideline [47] and also suggested by [24]). Meanwhile, the total number of candidate

architectures sampled by a NAS algorithm is typically in the order of 10k or even more

[28, 34, 107], thus settling the total latency evaluation time to be 50+ hours for just one

target device.
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Table 3.1: Cost Comparison of Hardware-aware NAS Algorithms for n Target Devices.

Algorithm Search Model Accuracy Latency Total Cost
Method Training Evaluation Evaluation (Machine-hours)

MNasNet [107] RL O(n) O(n) O(n) 6912n
FBNet [120] Gradient O(n) O(n) O(n) 216n
ProxylessNAS [24] Gradient O(n) O(n) O(n) (200 + cL)n
NetAdapt [125] Loop O(1) O(n) O(n) cT + (cA + cL)n
APQ [115] Evolutionary O(1) O(1) O(n) 2400 + cA + cLn
ChamNet [34] Evolutionary O(1) O(1) O(n) cT + cA + cLn
Once-for-All [23] Evolutionary O(1) O(1) O(n) 1200 + cA + cLn

Using the FLOPs as a device-agnostic proxy cannot accurately reflect the true

latency rankings of different architectures on a target device [107]. Instead, to reduce the

latency evaluation cost, SOTA hardware-aware NAS algorithms have most commonly used

latency predictors — profiling/measuring the latencies for sample architectures in advance

and then building a latency predictor (either a lookup table or machine learning model)

[23, 24, 34, 129]. Then, the latency predictor is utilized to guide the NAS process, without

measuring the actual latency on the target device.

3.2.3 Limitations

Despite the recent progress, SOTA hardware-aware NAS algorithms still cannot

scale up in view of the extremely diverse target devices for model deployment.

Summary of total search cost. Given n target devices, we summarize in Ta-

ble 3.1 the total search costs, measured in machine-hours, of a few representative hardware-

aware NAS algorithms. If the quantitative evaluation cost is not reported for an algorithm,

we use cT , cA, cL to denote its model training cost, accuracy evaluation cost, and latency

evaluation cost, respectively. Empirically, for each device, cL is in the order of at least a few

tens of hours [24,40] or even hundreds of hours [64,129]. Thus, we can see that the latency
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evaluation cost is a significant or even dominant part of the total search cost, especially

when n increases.

While the actual execution time of NAS may be further reduced by parallel pro-

cessing, the total cost in terms of machine-hours does not decrease. For example, latency

measurements on multiple devices in parallel and assigning more GPUs for supernet train-

ing can both speed up the overall NAS process, but the total resources needed by NAS still

remain unchanged (or possibly even higher due to communications overheads among GPUs

for distributed training). For this reason, machine-hour is a more accurate and widely-used

metric for total resource expenditure in NAS [23,107,115,120].

Challenges. In the current practice, building a latency predictor for each target

device requires significant engineering efforts and can be very slow, while it is often excluded

from the total cost calculation [34, 68, 112, 115, 120, 125]. Moreover, the diverse set of tar-

get devices have different latency collection pipelines, programming environment, and/or

hardware domain knowledge requirement, all of which add to the significant challenges of

building a latency predictor [64].

The challenges of building latency predictors have been increasingly recognized

and motivated some latest studies on latency predictors to facilitate hardware-aware NAS

research. For example, [64] releases latency datasets/predictors for six devices on the NAS-

Bench-201 space and FBNet space. Even by measuring latencies in parallel, the authors

of [64] report on OpenReview that they spent one month to collect latency measurement.

Another recent study [129] builds a kernel-level latency predictor, taking up 1–4.4 days for

latency measurement on each device depending on how powerful the device is. Nonetheless,
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these approaches are not scalable, and the latency predictors built by these studies are all

specific to their limited set of devices.

We can conclude that, in the presence of extremely diverse target devices, the

combined cost of building latency predictors for hardware-aware NAS is prohibitively high

at O(n). This has increasingly become a bottleneck for scalability.

3.3 Problem Formulation, Insights, and Practical Considera-

tion

We present the problem formulation for hardware-aware NAS, show the key insights

for when we can reduce the latency evaluation cost to O(1), and finally discuss practical

considerations.

3.3.1 Problem Formulation

The general problem of hardware-aware NAS can be formulated as follows:

max
x∈X

max
ωx

accuracy(x, ωx) (3.1)

s.t., latency(x;d) ≤ Ld (3.2)

where x represents the architecture, X is the search space under consideration, ωx is the

network weight given architecture x, Ld is the average inference latency constraint, and

d ∈ D denotes a device with D being the device set. Note that accuracy(x, ωx) is measured

on a dataset independent of the device d, and can also be replaced with a certain loss
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function (e.g., cross entropy). By varying Ld between its feasible range [Ld,min, Ld,max], we

can obtain a set of Pareto-optimal architectures, denoted by Pd = {x∗(Ld;d), for Ld ∈

[Ld,min, Ld,max]}.

Remark. We offer the following remarks on the problem formulation. First,

due to the non-convexity and combinatorial nature, the obtained architectures by using

approximate methods (e.g., evolutionary search [115]) to solve Eqns. (4.1)(3.2) may not

be globally Pareto-optimal in a strict sense; instead, the notation of Pareto-optimality (or

simply, optimality) in the context of NAS usually means a satisfactory architecture that

outperforms or is very close to SOTA results [2, 33, 107]. Second, as recently shown in [64],

the inference latency and energy of an architecture on a device are very strongly correlated.

That is, an energy constraint can be implicitly mapped to a corresponding latency constraint.

Thus, like in [13, 30, 107, 120, 125], we only consider the inference latency constraint in our

formulation for the convenience of presentation.

3.3.2 Key Insights

By observing the NAS problem in Eqns. (4.1)(3.2), achieving O(1) latency evalu-

ation cost may seem very unlikely. The reason is that the inference latency latency(x;d)

is highly device-specific — with a new device, the latency function will change in gen-

eral, and so will the Pareto-optimal architectures accordingly. We notice, however, that

the Pareto-optimal architectures for two different devices can actually be identical if their

latency functions are monotonic, as formally defined and proved below.

Definition 1 (Latency Monotonicity) Given two different devices d1 ∈ D and d2 ∈ D,
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if latency(x1;d1) ≥ latency(x2;d1) and latency(x1;d2) ≥ latency(x2;d2) hold simultane-

ously for any two neural architectures x1 ∈ X and x2 ∈ X , then the two devices d1 and d2

are said to satisfy latency monotonicity. �

Proposition 1 If two devices d1 ∈ D and d2 ∈ D strictly satisfy latency monotonicity,

then they have the same set of Pareto-optimal architectures, i.e., Pd1 = Pd2, where Pdi
=

{x∗(Ldi
;di), for Ldi

∈ [Ldi,min, Ldi,max]} for i = 1, 2.

Proof. Define XLd1
,d1

as the set of architectures satisfying latency(x;d1) ≤ Ld1 . By

latency monotonicity, we can find another constraint Ld2 such that XLd1
,d1

= XLd2
,d2

. In

other words, the latency constraint latency(x;d1) ≤ Ld1 is equivalent to latency(x;d2) ≤

Ld2 . Therefore, device-aware NAS formulated in Eqns. (4.1)(3.2) for devices d1 and d2 are

equivalent, sharing the same set of Pareto-optimal architectures.

Proposition 1 guarantees that, for any two devices satisfying latency monotonicity,

we only need to run device-aware NAS on one device, avoiding the cost of numerous latency

measurements and building a separate latency predictor for each device. The key reason is

that in NAS, it is the architecture’s accuracy and latency performance ranking that really

matters for Pareto-optimality. Consequently, if latency monotonicity is satisfied among all

the target devices, the latency evaluation cost can be kept as O(1).

3.3.3 Practical Consideration

To quantify the degree of latency monotonicity in practice, we use the metric of

Spearman’s Rank Correlation Coefficient (SRCC), which lies between -1 and 1 and assesses

statistical dependence between the rankings of two variables using a monotonic function.
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The greater the SRCC of CNN latencies on two devices, the better the latency monotonicity.

SRCC of 0.9 to 1.0 is usually viewed as strongly dependent in terms of monotonicity [5].

While Proposition 1 does not strictly hold when the SRCC is less than 1.0, we note

that a sufficiently high SRCC (e.g., around 0.9 in our experiments) is already good enough in

practice. This is due in great part to imperfection/approximation in other aspects of the NAS

process. Concretely, in SOTA hardware-aware NAS algorithms [34, 107, 115], the accuracy

predictor (or the accuracy measured on a small proxy dataset) only has a SRCC value of

around 0.9 with the true accuracy. Thus, given the imperfection of accuracy evaluation,

strictly satisfying the latency monotonicity does not offer substantial benefits.

3.4 Latency Monotonicity in the Real World

We now investigate latency monotonicity in the real world and show that it com-

monly exists among devices, especially of the same platform.

3.4.1 Intra-Platform Latency Monotonicity

We empirically show the existence of strong latency monotonicity among devices

of the same platform, including mobile, FPGA, desktop GPU and CPU.

Mobile platform. We first empirically measure the actual latencies of CNN

models on four mobile devices: Samsung Galaxy S5e, TabA, Lenovo Moto Tab, and

Vankyo MatrixPad Z1 (a low-end device). The details of deveice specifications are listed

in Table 3.2. We randomly sample 10k models from the MobileNet-V2 space [98] (details in

Section 3.6). Then, we deploy these models on the four devices and calculate their average
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Device Abbrev. Chipset CPU
(GHz) Cores RAM

(GB)
RAM Freq.

(MHz)
Peak Perf.

(GFLOPs/sec)
Mem. Bandwidth

(GB/sec)
Samsung Galaxy Tab S5e S5e Snapdragon 670 2 8 4 1866 40.6 14.93
Samsung Galaxy Tab A TabA Snapdragon 429 2 4 2 933 15.3 7.46
Lenovo Moto Tab Lenovo Snapdragon 625 2 8 2 933 26.5 7.5
Vankyo MatrixPad Z1 Vankyo N/A 1.5 4 1 933 N/A N/A

Table 3.2: Device specifications. Full details are not available for Vankyo.
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Figure 3.4: Empirical measurement of latency monotonicity. (a)(c) Black vertical lines de-
note the standard deviation of latency data points within each bin, with the center denoting
the average. (b)(d) SRCC of 10k sampled model latencies on different pairs of devices.

inference latencies. We show the actual latencies on S5e, Lenovo, Vankyo versus TabA in

Fig. 3.4(a), where each dot represents one CNN model.

We see that when the sampled CNN models run faster on TabA, they also become

faster on the other devices. In Fig. 3.4(a), the maximum standard deviation (denoted by the

vertical line within each bin) is 1.3% for Vankyo, while it is negligibly 0.6% and 0.84% for

Lenovo and S5e. Thus, latency monotonicity is well preserved on these devices. We further

show the SRCC values of these 10k sampled model latencies on our four mobile device in

Fig. 3.4(b) with heatmap. We see that SRCC between any pair of our mobile devices is

larger than 0.98, implying strong latency monotonicity.

AI-Benchmark data. To examine latency monotonicity at scale, we resort to the

AI-Benchmark dataset showing DNN inference latency measurements on diverse hardware

[4]. Considering top-300 smartphones (ranging from Huawei Mate 40 Pro to Sony Xperia Z3)
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Figure 3.5: CDF of SRCC values of DNN models on mobile phones and SoCs. The annota-
tion “high/mid/low” represents the highest/middle/lowest 33.3% of the devices.

and top-150 mobile SoCs (ranging from HiSilicon Kirin 9000 to MediaTek Helio P10) ranked

by the metric “AI-Score” [55], we show in Fig. 3.5 the SRCC values of latency rankings based

on the 22 DNN models including both floating-point and quantized models (e.g., MobileNet-

V2-INT8 and MobileNet-V2-FP16) listed in the dataset. We see that latency monotonicity

is well preserved at scale. For example, among the top-100 mobile phones, SRCC values

among 50+% of any device pairs are higher than 0.9 (a very strong ranking correlation).

While the AI-Benchmark dataset is built for orthogonal purposes and includes models from

different search spaces, the resulting SRCC values, along with our own experiments, still

provide a good reference and show reasonable latency monotonicity for mobile devices at

scale.

Other platforms. Going beyond the mobile platform, we also perform experi-

ments to show latency monotonicity on other platforms: desktop CPU, desktop GPU, and

FPGA.
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Index Computation Design Communication Design
Tm Tn Tm(d) Ip Op Wp

1 160 12 576 11 8 13
2 160 12 576 5 5 22
3 160 12 576 12 13 17
4 160 12 576 10 10 10
5 130 12 832 10 10 10
6 100 16 832 10 10 10
7 220 8 704 10 10 10
8 100 16 832 6 14 10
9 100 18 704 10 10 10

Table 3.3: Nine FPGA specifications on Xilinx ZCU 102 board.

We build latency lookup tables for three desktop CPUs: Intel Core i7-4790, Intel

Core i7-4770 HQ, and E5-2673 v3. In addition, we consider four NVIDIA GPUs: Tesla

T4, Tesla K80, Quadro M4000, and Quadro P5000. For the FPGA platform, we config-

ure nine subsystems for an Xilinx ZCU 102 FPGA board to create nine different FPGAs

following the hardware design space in [58]. The detailed configuration for FPGAs is shown

in Table 3.3. “Computation Design" is the computation subsystem design, Tm, Tn are loop

tiling parameters for input and output feature maps, and Tm(d) denotes the parameter for

depth-wise separable convolution. “Communication Design" represents the communication

subsystem design, where Ip, Op, andWp are communication ports allocated for input feature

maps, output feature maps and weights, respectively. We measure CNN model latency on

nine Xilinx ZCU 102 boards shown in Table 3.3, using the performance model in [58].

We consider latencies for the same set of 10k models as in Fig. 3.4, and plot

the results in Figs. 3.6 and 3.7, respectively. We see that within each platform, latency

monotonicity is generally very well preserved, with most SRCC values close to or above

0.9+. In addition, we also show in Fig. 3.7 the SRCC between the model FLOPs and the

actual inference latency, confirming the prior observation that FLOP may not accurately
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(a) Desktop CPU (b) Desktop GPU (c) FPGA

Figure 3.6: Latency monotonicity on non-mobile platforms. Black vertical lines denote the
standard deviation of latency data points within each bin, with the center denoting the
average.
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Figure 3.7: SRCC of 10k sampled model latencies on different pairs of non-mobile devices.
Specification of nine FPGAs in Fig. 3.7(c) is listed in Table 3.3.

reflect the true latency performance [64,120,129].

Next, to complement our own measurement, we also examine latency monotonicity

by leveraging third-party latency predictors and measurements results on other devices. The

results are available in Appendix 3.10.1 and further corroborate our finding.
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3.4.2 Inter-Platform Latency Monotonicity

We choose one FPGA (Xilinx ZCU 102), one desktop CPU (Intel Core i7-4790),

and one desktop GPU (Tesla T4) as cross-platform devices. We show the latency monotonic-

ity results and SRCC values for the same set of 10k models in Figs. 3.4(c) and 3.4(d), respec-

tively. It can be seen that latency rankings are only moderately correlated for cross-platform

devices. The SRCC values are lower than in the case of mobile device pairs (Fig. 3.4(b)),

since mobile devices often differ significantly from desktops/FPGAs.

Our finding is also confirmed in the appendix by considering the six cross-platform

devices on the NAS-Bench-201 [38] and FBNet [120], and four devices on MobileNet-V3

using nn-Meter [129].

3.4.3 Roofline Analysis

We now explain the empirically observed latency monotonicity based on roofline

analysis, which is a methodology for visual representation of hardware platform’s peak per-

formance as a function of the operational intensity, which identifies the bottleneck of the

system [118]

Fig. 3.8(a) shows the theoretical roofline model of two mobile devices (Samsung

Galaxy S5e and TabA) plotted according to their reported hardware specification listed in

Table. 3.2. When operational intensity is low (linear slope region in Fig. 3.8(a)), memory

bandwidth is the limiting factor for program speed (i.e., memory-bound); when operational

intensity is high (horizontal region), peak FLOPs rate becomes the bottleneck (i.e., compute-

bound).
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Suppose that we have two devices d1 and d2 with memory bandwidths Bd1 and

Bd1 , respectively, and two CNN models of architectures x1 and x2 with operational inten-

sities OIx1 and OIx2 , respectively. Next, we show that latency monotonicity is guaranteed

to hold for two devices if CNN models are either memory-bound or compute-bound on both

devices.

Memory-bound. In the memory-bound region, the slope in the roofline model of a

device is the bandwidth, and the resulting performance is the bandwidth multiplied by the

program’s operational intensity. Assuming that x1 is slower than x2 on device d1 without

loss of generality, we have FLOPx1
OIx1 ·Bd1

>
FLOPx2
OIx2 ·Bd1

. Then, by multiplying both sides by Bd1
Bd2

,

we obtain FLOPx1
OIx1 ·Bd2

>
FLOPx2
OIx2 ·Bd2

, i.e., x1 is also slower than x2 on device d2. Thus, latency

monotonicity holds for the two devices d1 and d2.

Compute-bound. Likewise, if CNN models fall into the compute-bound region for

two devices, then we can also establish latency monotonicity using a similar logic.

For search spaces with models that span across both memory-bound and compute-

bound regions, the latency monotonicity may not be strong (which we shall address in

this work). Moreover, the roofline analysis only provides a sufficient condition for latency

monotonicity under the assumption that devices run at their peak performances (in terms

of FLOPs/sec). Thus, we experimentally show the actual performance of CNN models on

our four mobile devices shown in Table 3.2.

We measure the actual attainable peak performance of our four devices with the

tool in [53], a roofline model specially for mobile SoCs. Our results show that the sampled

CNN models (with 2.6 to 5.4 FLOPs/Byte) are all in the compute-bound region for the de-
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Figure 3.8: (a) Theoretical roofline model is plotted according to hardware specification of
S5e and TabA. (b) Black vertical lines denote the standard deviation of data within each
bin, with the center denoting the average.
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Figure 3.9: Empirical roofline models of devices in Table 3.2 measured with Gables [53].

vices. We randomly sample 10000 models from the MobileNet-V2 [98] (detailed experiment

setup is presented in Section 3.6). The empirical roofline results are shown in Fig. 3.8(b).

It can be seen that the operational intensity of the sampled models ranges from 2.6 to 5.4

FLOPs/Byte, while the devices’ actual performances as shown in Fig. 3.9 are much lower

than their peaks and vary for different models. Specifically, the ridge operational intensity of

S5e, Lenovo, and Vankyo are less than or around 2 FLOPs/Byte, while TabA has a threshold

of 3 FLOPs/Byte. Thus, most of our sampled models reside in the compute-bound region

of these devices, except for those with operational intensity less than 3 FLOPs/Byte on
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TabA. This partially explains the strong latency monotonicity that we empirically observe

in Fig. 3.4(b).

3.5 Hardware-Aware NAS With One Proxy Device

Section 3.4 demonstrates good latency monotonicity among devices of the same

platform, but this is not always the case, especially for devices across different platforms.

To address the cases of low monotonicity, we propose efficient transfer learning based on the

proxy device.

3.5.1 Necessity of Strong Latency Monotonicity

We first highlight the necessity of strong latency monotonicity for finding optimal

architectures on the target device. An interesting and challenging case is when latency

monotonicity is not satisfied, and this is not uncommon in practice as shown in Section 3.4.

In such cases, the optimal architectures searched on one device can be far from optimality

on another device. To see this point, we show in Fig. 3.11(a) the performance of archi-

tectures found on different devices using the MobileNet-V2 search space. All latencies are

measured on S5e (Mobile), and the architectures directly found for S5e are Pareto-optimal

ones. Nonetheless, when performing NAS on two other (proxy) devices — 4790 (Desktop

CPU) and T4 (Desktop GPU) — which both have low SRCC values with S5e, the searched

architectures are highly sub-optimal. Thus, given weak latency monotonicity, the Pareto

optimality of Pd0 on the proxy device d0 does not hold on the target device d, calling for
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Algorithm 5 Hardware-Aware NAS With One Proxy Device
1: Inputs: Target device d, proxy device d0 with its latency predictor Ld0(x) and Pareto-

optimal architecture set Pd0 , small sample architecture set A, SRCC threshold Sth
2: Output: Pareto-optimal architecture Pd
3: Measure latency(x;d) for x ∈ A;
4: Estimate SRCC Sd,d for sample architectures in A;
5: if Sd,d0 ≥ Sth then
6: Set Pd = Pd0 , or re-run NAS (e.g., evolutionary search) based on Ld0(x) to obtain

Pd;
7: else
8: Use Eqn. (3.3) to obtain Ld0,d(x) based on measured latency(x;d) for x ∈ A;
9: Run NAS based on Ld0,d(x) to obtain Pd;

10: end if
11: Measure latencies for architectures x ∈ Pd on device d, and remove non-Pareto-optimal

ones from Pd;

remedies to boost the latency monotonicity.

3.5.2 Overview

Our scalable hardware-aware NAS approach is illustrated in Fig. 3.10 and described

in Algorithm 6.

Measure 
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Figure 3.10: Overview of using one proxy device for hardware-aware NAS.

Prerequisite. The prerequisite step is to select a proxy device d0 and run SOTA

hardware-aware NAS to find a set Pd0 of Pareto-optimal architectures for the proxy.
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Checking latency monotonicity. Given a new target device, we check whether

strong latency monotonicity is satisfied between the proxy device and the target device,

by estimating the SRCC based on a small set of sample architectures A and comparing it

against a threshold.

• When strong latency monotonicity holds. With strong latency monotonicity, the

target device’s Pareto-optimal architecture set Pd is also likely the same as proxy device’s

Pd0 . Alternatively, we can also re-run evolutionary search based on the proxy device’s

latency predictor to obtain more architectures, which are in turn also likely optimal ones for

the target device.

•When strong latency monotonicity does not hold. We propose an efficient transfer

learning technique — adapting the proxy’s latency predictor to the target device. By doing

so, we can quickly find optimal architectures for the target device, yet without first measuring

latencies of thousands of architectures and then building a latency predictor.

Removing non-Pareto-optimal architectures. We measure the actual laten-

cies of Pareto-optimal architectures (obtained for either the paroxy or adapted proxy device)

on the target device, and remove non-Pareto-optimal architectures.

3.5.3 Prerequisite and Checking Latency Monotonicity

Prerequisite

We first select a proxy device d0 that preferably has good latency monotonicity with

other target devices. To do so, we can first measure the latencies of a small set A of sample

architectures (e.g., 30-50 sample architectures in our experiments) on all the target devices,
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Figure 3.11: (a) Architectures by evolutionary search in the MobileNet-V2 search space. All
latencies are measured on S5e (Mobile). Architectures searched on 4790 (Desktop CPU)
and T4 (Desktop GPU) are highly sub-optimal compared to those searched specifically on
S5e. These two devices have SRCC of 0.78 and 0.72 with S5e, respectively. (b)(c) SRCC
estimation. X-axis denotes the number of sample architectures we randomly select per run.
We use 1000 runs to calculate the mean and standard deviation. “x-y” means the device
pair is (x, y).

and calculate the resulting SRCC values for each pair of devices based on the measured

latencies. We only need to measure the overall inference latency, unlike building latency

predictors which typically needs profiling the latency of each operator/layer for thousands

of architectures [68,129].

Then, we can obtain a SRCC matrix like the one shown in Fig. 3.4(d). Latency

measurement of a small set of sample architectures is also needed to check latency mono-

tonicity (Section 3.5.3) and hence is not an extra step. Next, we can choose a proxy device

that has high SRCCs with a good number of other devices. Note that proxy device selection

does not need to be very precise; instead, even though we choose a proxy device that does

not have high SRCCs with many other devices, our proposed proxy adaptation technique

can still significantly boost the SRCC between the selected proxy device and target devices.

For the selected proxy device, we run SOTA hardware-aware NAS to find Pareto-

optimal architectures. Specifically, following the one-shot NAS approach [23, 115], we first

92



pre-train a supernet and build an accuracy predictor. We then build a latency predictor

denoted by Ld0(x) based on extensive latency profiling and SOTA methods for latency

prediction [40, 129]. Finally, we apply evolutionary search [34, 115], which quickly produces

the Pareto-optimal architecture set Pd0 by varying different latency constraints. Once the

accuracy predictor and latency predictor are built, running evolutionary search takes at

most a few minutes and hence is negligible.

Checking latency monotonicity

To check whether strong latency monotonicity is satisfied between the selected

proxy device and a target device, we estimate the SRCC based on a small set A of sample

architectures and then compare it against a threshold. The latency measurement for the

small set of sample architectures is already performed during the proxy selection process.

In Figs. 3.11(b) and 3.11(c), we can see that latency measurement based on a few sample

architectures is enough to reliably estimate the SRCC value: e.g., if we set 0.9 as the SRCC

threshold, then 30-50 sample architectures are sufficient. Thus, the cost for measuring

latencies for the small set A of sample architectures is negligible compared to building a

device-specific latency predictor.

3.5.4 Increasing Latency Monotonicity by Adapting the Proxy Latency

Predictor

As illustrated in Fig. 3.11(a), in case of weak latency monotonicity, we cannot re-

use the same set of Pareto-optimal architectures found for the proxy device to a new target

device. To address this issue, we propose an efficient transfer learning-based technique —

93



adapting the proxy’s latency predictor to the target device — to drastically boost latency

monotonicity.

A close look at SOTA latency predictors

We first review three major types of SOTA latency predictors used in hardware-

aware NAS.

• Operator-level latency predictor. A straightforward approach is to first

profile each operator [24, 34] (or each layer [20, 105]), and then sum all the operator-level

latencies as the end-to-end latency of an architecture. Specifically, given K operators (e.g.,

each with a searchable kernel size and expansion ratio), we can represent each operator

using one-hot encoding: 1 means the respective operator is included in an architecture,

and 0 otherwise. Thus, an architecture can be represented as x ∈ {0, 1}K ∪ {1}, where

the additional {1} represents the non-searchable part, e.g., fully-connected layers in CNN,

of the architecture. Accordingly, the latency predictor can be written as l = wTx, where

w ∈ RK+1 is the operator-level latency vector. This approach needs a few thousands of

latency measurement samples (taking up a few tens of hours) [24,68].

• GCN-based latency predictor. To better capture the graph topology of

different operators, a recent study [40] uses a graph convolutionary network (GCN) to predict

the inference latency for a target device. Concretely, the latency predictor can be written

as l = GCNΘ(x), where Θ is the learnt GCN parameter learnt and x is the graph-based

encoding of an architecture.

• Kernel-level latency predictor. Another recent latency predictor is to use a

random forest to estimate the latency for each execution unit (called “kernel”) that captures
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different compilers and execution flows, and then sum up all the involved execution units as

the latency of the entire architecture [129]. This approach unifies different DNN frameworks,

such as TensorFlow and Onnx, into a single model graph, and hence can predict latencies

for models developed using different frameworks. By encoding an architecture based on the

execution units, we can also transform the latency predictor into a linear one: l = wTx

where w is the vector of latencies for different execution units and x denotes the number

of each execution unit included in an architecture. Thus, an “execution unit” in [129] is

conceptually equivalent to a searchable operator in the operator-level latency predictor [24].

Summary. The three SOTA latency predictors use different encodings/representations

for an architecture: the encoding based on searchable operators in an operator-level predic-

tor is the simplest, while the encoding based on fine-grained execution units in a kernel-based

predictor has the most details of an architecture. Despite different prediction accuracies in

terms of mean squared errors, they all reflect the latency rankings on an actual device very

well and hence are sufficient for serving as the proxy predictor.

Adapting the proxy latency predictor

We propose efficient transfer learning to boost the otherwise possibly weak latency

monotonicity for a target device.

Intuition. Even though two devices have weak latency monotonicity, it does

not mean that their latencies for each searchable operator are uncorrelated; instead, for

most operators, their latencies can still be roughly proportional. The reason is that a

more complex operator with higher FLOPs that is slower (say, 2x slower than a reference
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operator) on one device is generally also slower on another device, although there may be

some differences in the slow-down factor (say, 2x vs. 1.9x). This is also the reason why

some NAS algorithms use the device-agnostic metric of architecture FLOPs as a rough

approximation of the actual inference latency [107, 108]. If we view proxy adaptation as a

new learning task, this task is highly correlated with the task of building the proxy device’s

latency predictor, and such correlation can greatly facilitate transfer learning.

Approach. To explain our transfer learning approach, we consider the proxy

device’s latency predictor in a linear form: Ld0(x) = wTx, wherew is the weight and x is the

architecture representation (e.g., one-hot encoding of the searchable operators, penultimate

layer output in a neural network-based predictor,3 or encoding of the execution units).

We measure the latencies of a small set of sample architectures x ∈ A on the target device,

noting that this step is also needed to check the SRCC value and incurs a negligible overhead

compared to SOTA approaches (i.e., tens of hours of latency measurement [64,129]). Then,

with the latency measurement samples denoted by (xi, yi), we quickly adapt the proxy

device’s latency predictor as Ld0,d(x) =
[
(αIT + bT ) ◦wT

]
x tailored to the target device,

by solving the following the problem:

min
α,b

1

N

∑
i

∣∣[(αIT + bT ) ◦wT
]
x− yi

∣∣2 + λ|b|, (3.3)

where I is the identity vector with all the elements being 1, the operator “◦” denotes the

element-wise multiplication, and λ ≥ 0 is a hyperparameter controlling the weight for the

sparsity regularization term |b| and tuned based on a small validation set of architectures (20
3If the proxy device uses a neural network-based latency predictor, we can also fix the earlier layers while

updating the weights in the last few layers, instead of only updating the last single layer.
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architectures in our experiment) split from the sample architecture set A. The interpretation

of using Eqn. (3.3) is as follows. First, the scaling factor α reflects our intuition that a more

complex operator that is slower on one device is generally also slower on another device.

Second, the sparsity term b accounts for the fact that the slow-down factors for an operator

on two devices are not necessarily the same.

With Ld0,d(x), we essentially construct a new virtual proxy device (called adapted

proxy or AdaProxy) whose latency is given by Ld0,d(x). Here, our goal is to increase the

latency monotonicity between the new virtual proxy and the target device; we do not need

to create a new latency predictor that produces accurate estimates of the absolute latency

values for the target device.

If strong latency monotonicity still does not hold between AdaProxy and the target

device, we can incrementally measure the latencies of another small set of sample architec-

tures on the target device and re-solve Eqn. (3.3). In the majority of our experiments, 50

latency measurements on the target device are enough to achieve a strong latency mono-

tonicity. This is negligible compared to thousands of latency profiling and measurements

used by SOTA algorithms [24,129].

Next, with the adapted latency predictor Ld0,d(x) that reflects the architecture

latency rankings on the target device d, we can run evolutionary search to find the set of

Pareto-optimal architectures.

3.5.5 Remove non-Pareto-optimal architectures

Up to this point, we have obtained for the target device an architecture set Pd,

which is the same as the proxy (or AdaProxy) device’s Pareto-optimal set. While the latency
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monotonicity between the proxy (or AdaProxy) device and the target device is strong (e.g.,

SRCC around 0.9 or higher), it is not perfect. Thus, some architectures in Pd may not be

Pareto-optimal for the target device. We remove these architectures based on their actual

latencies measured on the target device. Specifically, if an architecture x1 ∈ Pd has a higher

latency but the same or similar accuracy compared to another architecture x2 ∈ Pd, we can

remove x1 from Pd.

Finally, if there is a specific latency constraint that is not satisfied by architectures

in Pd, we can re-run evolutionary searches with the assistance of Ld0(x), or adapted Ld0,d(x)

if applicable, to further enlarge the set Pd. The key point is that we do not need to go

through a very time-consuming process to build a new latency predictor specifically for the

target device.

In summary, the cost for measuring latencies of a small sample set of architectures

on the target device for checking latency monotonicity (and, if needed, adapting Ld0(x)) is

negligible. Therefore, given n different devices, we achieve a total latency evaluation cost

of O(1), which, when combined with SOTA NAS algorithms that have O(1) cost for model

training and accuracy evaluation [23,34], successfully keeps the entire NAS cost at O(1).

3.6 Experiment

We run experiments on multiple devices (including mobile phones, desktop GPU/CPU,

ASIC, etc.) on different mainstream search spaces — MobileNet-V2, MobileNet-V3, NAS-

Bench-201, and FBNet.
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3.6.1 Results on MobileNet-V2

Setup

We now present the setup for our experiments on MobileNet-V2.

Search Space. As in [24], the backbone of our CNN architecture is MobileNet-V2

with multiplier 1.3, with the channel number in each block fixed. The search space consists

of depth of each stage, kernel size of convolutional layers, and expansion ratio of each block.

The depth can be chosen from “2, 3, 4”, kernel size can be “3, 5, 7”, and candidate expansion

ratios are “3, 4, 6”. There are five stages whose configurations can be searched.

NAS Method. We consider one-shot NAS and use the Once-For-All network [23]

as a supernet that has the same search space as ours. We run evolutionary search to find

optimal architectures for the proxy (or AdaProxy) device. Our parameter settings are:

population size is 1000, parent ratio is 0.25, mutation probability is 0.1, mutation ratio is

0.25, and we search for 50 generations given each latency constraint. Evolutionary search

takes less than 30 seconds for each run. To facilitate the readers’ understanding, we provide

a summary of evolutionary search in Appendix 3.9, while the full details can be found

in [34,115].

Accuracy Predictor. The evolutionary search is assisted with by an accuracy

predictor for fast architecture performance evaluation [34,115]. Our accuracy predictor is a

neural network with four fully-connected layers and updated with 176 samples on top of the

predictor used in [23]. The accuracy predictor takes a 128-dimensional feature vector (which

is converted from a 21-dimensional architecture configuration within the search space) as

input. Fig. 3.12(a) compares the actual and predicted accuracies, which have a SRCC of
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0.903 and root mean squared error of 1.11%. The performance of our accuracy predictor

is in line with the existing NAS literature for MobileNet-based models [23]. As a result,

the imperfection in the accuracy predictor explains why a strong, but not perfect, latency

monotonicity (e.g., SRCC>0.9) is enough for our one-proxy approach to find Pareto-optimal

architectures for a new target device.

Latency Predictor. We build device-specific latency predictors in the MobileNet-

V2 space for our four devices listed in Table 3.2. Specifically, for each sample architecture,

we profile the average latency of 1000 runs. We use a single thread for running the Tensor-

Flow Lite interpreter by default. To show the accuracy of our latency predictors, we sample

a few additional models and measure their actual latency on our four mobile devices. The

comparison between actual and predicted latency is shown in Fig. 3.12, with a root mean

squared error of 2.88ms on S5e, 4.69ms on TabA, 3.72ms on Lenovo, and 59.18ms on the

low-end Vankyo. As corroborated by prior studies [34, 115, 125], our result shows that the

predicted average latency is almost identical to the actual value.

We choose S5e mobile phone as the proxy device. Our results of using other mobile

devices as the proxy are nearly the same because S5e and the other mobile devices have SRCC

close to 1.0 (Fig. 3.4(b)), i.e., these mobile devices are almost viewed one device based on

Proposition 1.

Architecture Evaluation. For a searched architecture, the actual model per-

formance is measured. We evaluate accuracies on the ImageNet validation dataset [35],

which consists of 50000 images in 1000 classes. Accuracy evaluation is run on Google Colab

equipped with Tesla T4.
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Figure 3.12: (a) Actual vs. predicted accuracy. The root mean squared error is 1.11%, and
SRCC is 0.903. (b)(c)(d)(e) Measured average inference latency versus predicted latency
based on latency lookup tables. The root mean squared errors for S5e, TabA, Lenovo, and
Vankyo are 2.88ms, 4.69ms, 3.72ms, and 59.18ms respectively.

Baselines

We consider the following baselines for hardware-aware NAS.

#1: Building a Latency Predictor for Each Target Device [23,34,40,115].

For each device, we use the same evolutionary search described in Section 4.4. While the

accuracy predictor is reusable across devices and evolutionary search is quick, measuring

latencies of thousands of architectures to build a device-specific latency predictor (as done

in the existing hardware-aware NAS [23, 40, 115]) is time-consuming. Thus, this approach

has a total cost of O(n) for n devices [13,34].

#2: Heuristic Model Scaling. There are different ways to scale a CNN to meet

different latency constraints: e.g., adapt the network depth and/or width [107, 108]. Since

the number of channels in our backbone network is fixed, we heuristically scale the depth

of a Pareto-optimal architecture on the proxy device by increasing (for higher accuracy)

or reducing (for smaller latency) the depth by up to two blocks, and transfer the scaled

architecture to new target devices. This approach has O(1) complexity.

The two baselines highlight that the existing hardware-aware NAS either achieves

Pareto optimality but has a O(n) latency evaluation cost (Baseline #1), or keeps the latency
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evaluation cost atO(1) but loses Pareto optimality (Baseline #2). By contrast, our approach

has a O(1) latency evaluation cost in total, while preserving Pareto optimality.

Performance of Searched Architectures

We compare the measured top-1 accuracy on ImageNet versus average inference

latency of searched architectures on each target device.

Mobile Devices. Fig. 3.13 shows the result for three different target mobile

devices, all using S5e as the proxy device. The SRCC values between S5e and the target

devices are all greater than or equal to 0.98 (Fig. 3.4(b)). We see that the architectures

searched on S5e can result in almost the same (accuracy, latency) tradeoff as device-specific

NAS, but the additional latency evaluation cost for each target device is negligible. Further,

we see that despite its O(1) complexity, heuristic adaptation (baseline #2) can result in

really bad architectures without performance guarantees.

Non-Mobile Devices. We show the results in Fig. 3.14 for non-mobile devices.

As these devices have low SRCC values with our S5e proxy, we use Eqn. (3.3) to create an

AdaProxy device, which has SRCC of close to 0.9 or higher with the target devices. The

details of the proxy adaptation process, including the SRCC values before and after proxy

adaptation, are available in Appendix 3.10.2.

The top row shows the architectures found by evolutionary search. We see that with

a low SRCC (around 0.7-0.8), the architectures searched on the proxy device are not Pareto-

optimal on the target devices. With proxy adaptation, the SRCC increases significantly, and

the architectures searched on the AdaProxy device are almost the same as those directly
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Figure 3.13: Results on three different mobile target devices, using S5e as proxy device.
“Target” is the baseline #1, “Proxy” means using our approach with S5e as the proxy device,
and “Scaling” means heuristic scaling applied to S5e’s one Pareto-optimal architecture.
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Figure 3.14: Results for non-mobile target devices with the default S5e proxy and AdaProxy.
The top row shows the evolutionary search results with real measured accuracies, and the
bottom row shows the exhaustive search results based on 10k random architectures and
predicted accuracies.

searched on the target device. This highlights the need of strong latency monotonicity

between the proxy and the target device, as well as the effectiveness of our proposed proxy

adaptation technique to boost the latency monotonicity. The heuristic scaling approach
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(Baseline #2) performs even worse than directly using the architectures searched on the

proxy device, and hence are omitted.

The bottom row shows exhaustive search results out of 10k randomly selected ar-

chitectures, using the predicted accuracies as the true values. This is essentially considering

a semi-oracle NAS process (on a small space of 10k architectures) assuming a perfect accu-

racy predictor. As a result, compared to evolutionary search using an imperfect accuracy

predictor, it may have a more stringent requirement on the SRCC between the target device

and the proxy (or AdaProxy) device. We see that, due to the low SRCC, the architec-

tures found by using the proxy device’s latency predictor may not overlap with the oracle’s

Pareto-optimal boundary. In fact, some of the proxy’s optimal architectures can perform

very poorly on the target device. For example, Fig. 3.14(d) shows that S5e’s optimal archi-

tectures are highly sub-optimal on Tesla T4. On the other hand, with improved SRCC, the

architectures found by using the AdaProxy device’s latency predictor preserves Pareto opti-

mality very well on the target devices, again demonstrating the necessity and effectiveness

of our proxy adaptation technique in the presence of weak latency monotonicity between

the default proxy and target device.

Additional results, including settings for proxy adaptation and comparison of ex-

haustively searched architectures on other devices, can be found in Appendix 3.10.2.

3.6.2 Results on NAS-Bench-201, FBNet, and nn-Meter

We now evaluate our approach on the recently released latency datasets for six

different devices on NAS-Bench-201 and FBNet spaces [64], additional devices on NAS-
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Figure 3.15: SRCC for various devices in the NAS-Bench-201 search space on CIFAR-10.
Pixel3 is our proxy device. SRCC values boosted with AdaProxy are highlighted.

Bench-201 [40], as well as four devices on nine different search spaces [128].

We first consider the latency results on the NAS-Bench-201 search space using the

CIFAR-10 dataset [64]. Since NAS-Bench-201 represents a simple architecture space with

only around 15k architectures, we consider an oracle NAS process via exhaustive search.

Thus, compared to evolutionary search using an imperfect accuracy predictor, the oracle

NAS process can have a more stringent requirement on the SRCC between the target device

and the proxy (or AdaProxy) device. We use Pixel3 as the default proxy which, as shown

in Fig. 3.15, does not have strong latency monotonicity with the target devices (except

for Raspi4). By proxy adaptation, we can significantly boost the latency monotonicity,

increasing the SRCC values to 0.9 or higher.

Next, Fig. 3.16 shows the optimal architectures found by using the proxy device’s

latency predictor, the adapted latency predictor, and the oracle, respectively. We can see

that due to the pre-adaptation low SRCC values between the proxy device Pixel3 and the
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Figure 3.16: Exhaustive search results for different target devices on NAS-Bench-201 archi-
tectures (CIFAR-10 dataset) [38, 64]. Pixel3 is the proxy.

target devices, only a few architectures that are optimal for the proxy are still optimal for

the target devices after architecture removal (Section 3.5.5). Moreover, even the proxy’s re-

maining optimal architectures can be far from optimality on the target device. For example,

Fig. 3.16(a) shows that some of Pixel3’s optimal architectures deviate from the Pareto-

optimal boundary on the edge GPU. By using proxy adaptation and increasing the SRCC

values, the AdaProxy’s optimal architectures can be efficiently transferred to target devices

while preserving optimality. The proxy device Pixel3 has a high SRCC of 0.96 with Raspi4,

even without proxy adaptation. Thus, as shown in Fig. 3.16(e), the optimality of Pixel3’s

architectures preserve very well on Raspi4. All these demonstrate the importance of strong

monotonicity between the proxy and the target device, as well as the effectiveness of our

proxy adaptation technique. for scalable hardware-aware NAS.

Additional results, including the details of proxy adaptation and results on other

search spaces, are available in Appendix 3.10. These results further validate our approach

and highlight the practical feasibility of using only one proxy device for scalable hardware-

aware NAS.
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3.7 Related Work

The huge search space for neural architectures presents significant challenges (see

[42,68,79,107,108,120,133] and references therein). To minimize the cost of training numer-

ous architectures, one-shot NAS uses a super net that includes all the weights for candidate

architectures [12, 13, 15, 23, 49]. In recent years, transformer-based vision algorithms have

also been emerging and inspired studies transformer search to optimize the performance [39],

but it is orthogonal to NAS that we focus on.

Importantly, fast evaluation of accuracy and inference latency to rank different

architectures is crucial for efficient hardware-aware NAS [42,68,79,107,108,120,133]. To re-

duce the cost of accuracy evaluation, the prior studies have considered reinforcement learning

with accuracy evaluated based on a small proxy dataset [133], Bayesian optimization-based

NAS (to reduce the number of sampled and evaluated architectures) [96], generative ap-

proaches [60], one-shot or few-shot NAS [12,23,130], and NAS assisted with an accuracy pre-

dictor [34, 115]. More recently, ranking architecture accuracies based on easily-computable

proxy metrics has also been studied: e.g., computing a model score based on a small mini-

batch of training data [2], and analyzing the neural tangent kernel (NTK) as well as the

number of linear regions in the input space [26].

To expedite inference latency evaluation, the SOTA hardware-aware NAS has

mainly resorted to device-specific latency predictors [13,15,24,30,34,40,115,125]. Nonethe-

less, building even one latency predictor incurs a non-trivial upfront cost. Thus, [40,64,129]

have recently released latency datasets and predictors, but only for a few devices due to the

prohibitive time cost.
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Given many diverse devices, scalability of latency evaluation is critically impor-

tant. A straightforward approach is to build a meta latency predictor that incorporates

hardware features as additional input [63, 78]. Nonetheless, significant drawbacks exist for

this approach: (1) numerous latency measurements on a large number of heterogeneous

devices are required in advance for meta-training; (2) there is a fundamental challenge for

provably-good generalization to new unseen target devices that deviate significantly from

the training device pool (i.e., out-of-distribution); and (3) the process of meta-learning and

adaptation to new devices involves complex hyperparameter tuning, adding considerable un-

certainties to the latency prediction performance. For example, in order to cover 24 devices

with good generalization performance in the experiment, up to 18 heterogeneous devices are

used for meta-training in which 900/4000 architecture latencies are collected for each device

on the NAS-Bench-201/FBNet search space, while only the remaining 6 devices are used

for testing [63]. Crucially, these meta latency predictors [63, 78] aim at producing accurate

latency prediction with low prediction errors, which adds further challenges to the predic-

tion model but is unnecessary for hardware-aware NAS. By contrast, what matters most is

the architecture latency ranking on a target device, for which sophisticated (meta) latency

predictors may not offer substantial benefits. We show both theoretically and empirically

that one proxy device that has strong latency monotonicity with target devices (after proxy

adaptation if needed) is enough for hardware-aware NAS, truly keeping the total latency

evaluation cost at O(1).

Considering a synthetic latency metric aggregated over a few devices, simultaneous

multi-device NAS [30] may not meet the latency constraint or achieve Pareto optimality
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for any involved device. Heuristic scaling approaches, e.g., by changing the number of

layers and/or channels [97,107,108], can limit the architecture space and hence reduce both

accuracy and latency evaluation costs, but they may also miss Pareto-optimal architectures

because of their coarse scaling granularity. Architecture FLOPs is a device-agnostic proxy

metric, but it cannot accurately reflect the true latency ranking of architectures on real

devices [34, 64, 107]. While various proxy metrics (e.g., NTK [26]) have been considered

for accuracy evaluation, our approach of using one proxy device is the first to address a

complementary challenge of fast latency evaluation in the presence of many diverse devices.

3.8 Conclusion

In this chapter, we efficiently scale up hardware-aware NAS for diverse target

devices. Concretely, we demonstrate latency monotonicity among different devices, and

propose to use just one proxy device’s latency predictor for NAS. When latency monotonic-

ity is not satisfied between the proxy device and the target device, we propose an efficient

transfer learning technique — adapting the proxy’s latency predictor to the target device —

to boost latency monotonicity. Overall, our approach results in a much lower total cost of

latency evaluation, yet without losing Pareto optimality. For evaluation, we conduct exper-

iments with different devices of different platforms on mainstream search spaces, including

MobileNet-V2, MobileNet-V3, NAS-Bench-201 and FBNet spaces.

Appendix

In the appendix, we provide a summary of evolutionary search used in our exper-

iment and additional experimental results.
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3.9 Summary of Evolutionary Search

3.9.1 Description

To facilitate the readers’ understanding, we provide a summary of the widely-used

evolutionary search process for NAS, taking the MobileNet-V2 search space as example.

More details of using evolutionary search in hardware-aware NAS can be found in [34,115].

In our experiment, the total number of searchable blocks is 21, divided into five

stages plus the last convolutional layer. Thus, we can use two 21-dimension vectors to

represent the kernel size and expansion ratio of each block, respectively, and one 5-dimension

vector to denote the depth of each stage. The depth can be chosen from “2, 3, 4”, the

kernel size can be “3, 5, 7”, and the candidate expansion ratios are “3, 4, 6”. Each individual

member in evolutionary search consists of these three vectors. Here is an example individual:

{“kernel_size”: [5, 3, 5, 7, 5, 3, 5, 3, 7, 7, 5, 7, 5, 3, 3, 5, 5, 3, 5, 5, 3], “expansion_ratio”:

[3, 3, 4, 6, 4, 3, 4, 6, 4, 3, 6, 4, 3, 4, 3, 4, 4, 3, 3, 4, 3], “depth”: [2, 2, 2, 2, 3]}.

To run evolutionary search, we first randomly sample the initial population of

individuals according to the population size. Next, we evaluate the fitness of each individual

in the population, where the fitness function is defined as:

(t− 1) · accuracy + t · latency (3.4)

where t ∈ [0, 1] is the weight parameter to balance the tradeoff between accuracy and latency,

and accuracy and latency are predicted values given by the accuracy and latency predictors,

respectively. By varying t ∈ [0, 1], we can obtain a set of Pareto-optimal architectures.
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For each evolutionary search iteration, we select the fittest individuals as parents

for reproduction, which will survive in the next generation and also breed new individuals

through crossover. For example, if our population size is 1000 and the parent ratio is 0.25,

we have 250 fittest individuals as parents. Then, we randomly select a pair of parents each

time for crossover and generate a child. Within the crossover process, each element in the

child’s vector is chosen randomly from one of the parents’. Also, based on the mutation ratio

setting, part of the offsprings will further perform mutation operations. For example, with

mutation ratio 0.25 and mutation probability 0.1, 250 out of 750 children have a possibility

of 0.1 to mutate. If a child is chosen to mutate, its kernel size, expansion ratio, and depth

will be randomly sampled out of all the possible values for exploration. After crossover

and mutation, we have a new population consisting of parents, bred children, and mutated

children. Next, the fittest individuals are selected as new parents for next iteration. The

above crossover and mutation steps will be repeated for the maximum evolutionary search

iteration number.

3.9.2 Evolutionary Search Hyperparameters

Typically, the evolutionary search is not very sensitive against different hyperpa-

rameter settings, provided that the population size and iteration number are large enough

and that there is adequate exploration. In Section 3.6, our hyperparameter settings are:

population size is 1000, parent ratio is 0.25, mutation probability is 0.1, mutation ratio

is 0.25, and we search for 50 generations given each latency constraint. We denote these

settings as “EA#1". In Fig. 3.17, we change the hyperparameters to “EA#2": population

111



60 110 160 210
Latency (ms)

70

72

74

76

78

A
cc

ur
ac

y 
(%

)

EA#1
EA#2

Figure 3.17: Pareto-optimal models searched on Samsung Galaxy S5e with different param-
eter settings for evolutionary search. “EA#1" denotes the parameter setting that population
size is 1000, parent ratio is 0.25, mutation probability is 0.1 and mutation ratio is 0.25; while
“EA#2" represents that population size is 500, parent ratio is 0.3, mutation probability is
0.2 and mutation ratio is 0.4.

size is 500, parent ratio is 0.3, mutation probability is 0.2, mutation ratio is 0.4, and run

evolutionary search again on Samsuang Galaxy S5e. The results in Fig. 3.17 show that the

searched Pareto-optimal models are almost identical to the original ones (“EA#1").

3.10 Additional Results

In this section, we present additional experimental results, including the demon-

stration of latency monotonicity based on third-party latency results and the effectiveness

of our transfer learning technique in various mainstream search spaces.

3.10.1 Latency Monotonicity

To corroborate our own measurement and finding in Section 3.4, we examine la-

tency monotonicity by leveraging third-party latency predictors and measurements for other

devices.
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Results on Predicted Latencies

We obtain latency lookup tables for four mobile devices [21]: Google Pixel1,

Pixel2, Samsung Galaxy S7 edge, Note8 in the MobileNet-V2 space with stage widths

“32, 16, 24, 48, 80, 104, 192, 320, 1280". In addition, we obtain from [22] latency lookup

tables for four cross-platform devices (used in [24]): Google Pixel1, Pixel2, TITAN Xp,

E5-2640 v4 in the MobileNet-V2 space with different stage widths “32, 16, 24, 40, 80, 96, 192,

320, 1280" and measured with the MKL-DNN library. Note that latency predictors are very

accurate (e.g., with an root mean squared error of less than 1% of the average) [13,24,34,125].
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Figure 3.18: Latency monotonicity on third-party latency predictors [21, 22]. (a)(b) and
(c)(d) use different search spaces and DNN acceleration libraries.

We randomly sample 10k models in each search space with variable depths of “2,

3, 4” in each stage, variable filter sizes of “3, 5, 7” in each convolutional layer, and variable

expansion ratios of “3, 4, 6” in each block. We show the results in Fig. 3.18, which are in line

with our experiments: latency monotonicity among mobile devices is strong (>0.95), while

FLOP-latency ranking correlation for mobile devices is also quite strong but cross-platform

latency monotonicity degrades.
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Figure 3.19: Latency results of 2000 models on CortexA76 CPU, Adreno 640 GPU, Adreno
630 GPU, and Myriad VPU, available in the dataset [128]. Search spaces: (a)(d) GoogLeNet,
(b)(e) MnasNet, (c)(f) MobileNet-V2, (g)(j) ResNet, (h)(k) SqueezeNet, and (i)(l) VGG.
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Results on Measured Latencies

We provide more evidence of latency monotonicity across different devices, and

even across different DNN frameworks, using the nn-Meter results [128, 129]. Specifically,

Fig. 3.19 shows the measured latencies and cross-device SRCCs in six different search spaces.

We see that cross-device latency monotonicity strongly exists.

3.10.2 Results on MobileNet-V2

Search Space. Our backbone is MobileNet-V2 with multiplier 1.3, with the chan-

nel number in each block fixed. As shown in Fig. 3.20, The search space consists of depth of

each stage, kernel size of convolutional layers, and expansion ratio of each block. The depth

can be chosen from “2, 3, 4”, kernel size can be “3, 5, 7”, and candidate expansion ratios are

“3, 4, 6”. There are five stages whose configurations can be searched, plus the kernel size

and expansion ratio of the last inverted residual block.
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Figure 3.20: MobileNet-V2 search space and architectural encoding.

Proxy Adaptation. We use S5e as the default proxy device. Fig. 3.21 shows

the original SRCC between S5e and desktop CPUs and GPUs, which are all below 0.8. We

observe from Section 3.5 that SRCC of <0.8 is not enough to find Pareto-optimal architec-
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tures on the target device. Thus, in the absence of strong latency monotonicity between the

default proxy device and the target device, proxy adaptation is necessary.

In the MobileNet-V2 search space, we have 21 searchable blocks in total, whose

configurations can each be chosen out of nine kernel size and expansion ratio combinations

or none (i.e., the block is not selected with a reduced stage depth). Thus, to represent an

architecture, we simply use a 9-dimension one-hot vector xb to encode the specification of

each block. Given the proxy device’s latency predictor as Ld0(x) = wTx built a priori,

we collect the latencies of 80 sampled architectures on the target device, which are further

split into 60 for training and 20 for validation. For i7-4790 and i7-4770HQ, we only need

latencies of 30 sampled architectures for training. Next, by solving Eqn. (3.3), we obtain the

AdaProxy device’s latency predictor adapted to the target device, resulting in a significantly

increased SRCC. Therefore, with the new latency predictor, we can quickly obtain Pareto-

optimal architectures for the AdaProxy device, which are also very close to optimum for the

target device (after removal of non-Pareto optimal architectures as specified in Section 3.5).
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1.0 0.78 0.8 0.740.720.760.730.68

0.78 1.0 0.970.960.82 0.8 0.770.69

0.8 0.97 1.0 0.930.78 0.8 0.790.67

0.740.960.93 1.0 0.850.820.770.72

0.720.820.780.85 1.0 0.950.880.92
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Figure 3.21: SRCC for various devices in the MobileNet-V2 space. S5e is the default proxy
device. SRCC values boosted by AdaProxy are highlighted.
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(a) Intel i7-4790 (b) E5-2673 v3 (c) Tesla K80 (d) Quadro P5000

Figure 3.22: Exhaustive search results based on 10k random architectures and predicted
accuracies, for non-mobile target devices with the default S5e proxy and AdaProxy. SRCC
values before and after proxy adaptation are shown in Fig. 3.21.

Results. Even without proxy adaptation, our results in Section 3.4 show that

latency monotonicity among mobile devices (and between S5e and FPGA) is very strong.

Here, we show the latency monotonicity between our proxy and desktop GPUs/CPUs, both

with and without proxy adaptation. We see from Fig. 3.21 that the weak monotonicity can

be significantly increased by using proxy adaptation. Thus, for a new target device that

has a low SRCC with our default proxy device, we can simply use the AdaProxy device’s

latency predictor instead of profiling thousands of architectures and building a new one.

In Section 3.6, we already show the architecture performances for mobile target

devices and some GPU/CPU devices. Now, we show the architecture performances for the

remaining GPU/CPU devices in Fig. 3.22. We see that, due to the low SRCC, the archi-

tectures found by using the default proxy device’s latency predictor may not overlap well

with the oracle’s Pareto-optimal boundary. On the other hand, with improved SRCC, the

architectures found by using the AdaProxy device’s latency predictor preserves Pareto opti-

mality very well on the target devices. Again, this shows that our proposed transfer learning

approach to boost the latency monotonicity is necessary and effective. For the devices in

Fig. 3.22(d), we use 80 sampled architectures (50 for training, and 30 for validation and tun-
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ing λ) to construct AdaProxy. Note that the results are based on exhaustive search out of

10k randomly selected architectures, using the predicted accuracies as the true values. This

is essentially considering a semi-oracle NAS process (on a small space of 10k architectures)

assuming a perfect accuracy predictor. In other words, compared to evolutionary search

(whose accuracy predictor itself is also not perfect), it has a more stringent requirement

on the SRCC between the target device and the proxy (or AdaProxy) device. Thus, our

approach works well even in this challenging case.

3.10.3 Results on NAS-Bench-201

Search Space. NAS-Bench-201 adopts a fixed cell search space [38]. Each

searched cell is represented as a densely-connected directed acyclic graph (DAG), which

is then stacked together with a pre-defined skeleton to construct an architecture. Specifi-

cally, as shown in Fig. 3.23, the search space considers four nodes and five representative

operation candidates for the operation set, and varies the feature map sizes and dimensions

of the final fully-connected layer to handle different datasets (i.e., CIFAR-10, CIFAR-100,

and ImageNet16-120).

zeroize [1, 0, 0, 0, 0]

3x3 avg pool

3x3 conv

skip-connect [0, 1, 0, 0, 0]

Figure 3.23: NAS-Bench-201 search space and architectural encoding.
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Proxy Adaptation. We have four searchable nodes in total, the operation for

each of which can be chosen from five candidates. Thus, we can use a 5-dimension one-hot

vector to encode the specification of each node, although more advanced representation (e.g.,

graph-based [40]) is also applicable. Pixel3 is the default proxy device. Given the proxy

device’s latency predictor as Ld0(x) = wTx built a priori, the training in transfer learning is

based on measured latencies of 40 sampled architectures for the edge TPU and edge GPU,

and 20 sampled architectures for Eyeriss and FPGA, respectively. In addition, validation

uses another 20 sampled architectures for tuning the hyperparameter. Next, by solving

Eqn. (3.3), we obtain the AdaProxy device’s latency predictor adapted to the target device,

resulting in a significantly increased SRCC. We show in Fig. 3.24 the latency monotonicity

in terms of SRCC values, both with and without proxy adaptation. We see that the weak

monotonicity can be significantly increased by using proxy adaptation.
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Figure 3.24: SRCC for various devices in the NAS-Bench-201 search space on CIFAR-100
(left) and ImageNet16-120 (right) datasets. Pixel3 is our proxy device. SRCC values boosted
with AdaProxy are highlighted.
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(a) Edge GPU (b) Edge TPU (c) Eyeriss (d) FPGA (e) Raspberry Pi 4

Figure 3.25: Exhaustive search results for different target devices on NAS-Bench-201 archi-
tectures (CIFAR-100 dataset) [38, 64]. Pixel3 is the proxy. SRCC values before and after
proxy adaptation are shown in the left subfigure of Fig. 3.24.

(a) Edge GPU (b) Edge TPU (c) Eyeriss (d) FPGA (e) Raspberry Pi 4

Figure 3.26: Exhaustive search results for different target devices on NAS-Bench-201 archi-
tectures (ImageNet16-120 dataset) [38, 64]. Pixel3 is the proxy. SRCC values before and
after proxy adaptation are shown in the right subfigure of Fig. 3.24.

Results. Considering the CIFAR-100 dataset, Fig. 3.25 shows optimal architec-

tures found by using the proxy device’s latency predictor, the adapted latency predictor, and

the oracle, respectively. We can see that due to the pre-adaptation low SRCC values between

the proxy device Pixel3 and the target devices, only a few architectures that are optimal for

the proxy are still optimal for the target devices after architecture removal. Moreover, even

the proxy’s remaining optimal architectures can be far from optimality on the target device.

For example, Fig. 3.25(a) shows that some of Pixel3’s optimal architectures deviate from the

Pareto-optimal boundary on the edge GPU. By using proxy adaptation and increasing the

SRCC values, the AdaProxy’s optimal architectures can be efficiently transferred to target

devices while preserving optimality. The proxy device Pixel3 has a high SRCC of 0.96 with

Raspi4, even without proxy adaptation. Thus, as shown in Fig. 3.25(e), the optimality of
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Pixel3’s architectures preserve very well on Raspi4. All these demonstrate the importance

of strong monotonicity between the proxy and the target device, as well as the effectiveness

of our proxy adaptation technique, for hardware-aware NAS with a total latency evaluation

cost of O(1).

The same observation is also made in Fig. 3.26 for the ImageNet16-120 dataset.

3.10.4 Results on FBNet

Search Space. Similar to MobileNet-V2, the FBNet search space is also layer-

wise with a fixed macro-architecture, which defines the number of layers and input/output

dimensions of each layer and fixes the first and last three layers, with the remaining layers to

be searched. As shown in Fig. 3.27, the overall search space consists of 22 searchable blocks:

the first and last inverted residual blocks, and five stages within each of which there are at

most four blocks. For each block, the kernel size can be chosen from “3, 5", and the expansion

ratio can be “1, 3, 6". For the first and last 1x1 convolution layer, group convolution can be

used to reduce the computation complexity. Also, each block can be skipped. Thus, there

are nine candidate specification choice for each block (detailed configurations are shown in

Table 2 of [120]).
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Figure 3.27: FBNet search space and architectural encoding.
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Proxy Adaptation. We have 22 searchable blocks in total, the configuration for

each of which can be chosen from the nine architecture candidates (including “Skip”). Then,

we can still use a 9-dimension one-hot vector to encode each block. Using Pixel3 as the

default proxy and the same approach as in Appendix 3.10.2, we can solve Eqn. (3.3) to

create an AdaProxy device, which has SRCC of close to 0.9 or higher with the target device.

In the transfer learning process, the numbers of sampled architectures for training are: 80

(Edge GPU), 40 (Raspi4), 30 (FPGA), 20 (Eyeriss). In addition, validation uses another 20

sampled architectures for tuning the hyperparameter.
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Figure 3.28: SRCC for various devices in the FBNet search spaces [64], on CIFAR-100 (left)
and ImageNet16-120 (right) datasets respectively. Pixel3 is the proxy. SRCC values boosted
by AdaProxy are highlighted.

Results. Our key focus is to achieve a high SRCC between the proxy (or AdaProxy)

device and the target device, such that we can efficiently transfer the optimal architectures

found on the proxy (or AdaProxy) device to the new target device without measuring laten-

cies of thousands of architectures and building a new latency predictor. Since the accuracy

results for architectures in the FBNet search space are not available [64], we only show in

Fig. 3.28 the SRCC values instead, both with and without proxy adaptation. We can see
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that cross-platform SRCCs are greatly boosted (i.e., close to 1) with AdaProxy. By Theo-

rem 1, the strong latency monotonicity ensures that the optimal architectures found on the

proxy (or AdaProxy) device can be applied to new target devices.

3.10.5 Results on nn-Meter

The nn-Meter dataset released in [128, 129] includes measured inference latencies

of 2000 models from 11 search spaces, including GoogLeNet, MnasNet and ProxylessNAS,

etc on three mobile devices and one edge device: Pixel4 (Cortex A76 CPU), Mi9 (Adreno

640 GPU), Pixel3XL (Adreno 630 GPU), and Myriad VPU (Intel Movidius NCS2 edge

device). Fig. 3.19 shows that the devices already have strong latency monotonicity with

SRCC values greater than 0.9 on six search spaces. Among the remaining five search spaces,

MobileNet-V1 and AlexNet are obsolete and phased out for hardware-ware NAS. Next, we

apply our proxy adaptation technique on the other three search spaces: MobileNet-V3,

NAS-Bench-201, and ProxylessNAS, which are mainstream and widely-used backbones

in SOTA NAS algorithms.

MobileNet-V3

In our experiment, the number of searchable blocks in the MobileNet-V3 space is

fixed as 12. For each block, the input, mid, and output channel number, and kernel size

are variable from a set of candidates. Instead of directly using the kernel-based latency

predictor in [129] that has a very large dimensionality for one-hot architectural encoding,
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Figure 3.29: SRCC for various devices in the MobileNet-V3 search space [128, 129]. SRCC
values boosted by AdaProxy are highlighted.

we use a simple block-level encoding method. Concretely, for each block, we use one-hot

encodings for the input, mid, and output channel number and kernel size, respectively, and

then concatenate these four one-hot vectors together to get the block-level encoding. After

further concatenating the encoding vector of each block, we have a 530-dimension encoding

for each architecture. Then, we build a simple 4-layer fully-connected neural network (with

500/250/100 neurons in each hidden layer) and train it on the latency data of the edge

device Myriad VPU (used as the proxy), which has a low SRCC with the other three

mobile devices. For the neural network training, we split the 1000 data samples (we use

1000 out of 2000 models for this experiment) into 800 for training and 200 for testing,

set the learning rate as 0.01 and the batch size as 128, and train the network for 500

epoches. We also compress the network to 2 layers by fixing the first layer and appending

it with another layer for the proxy device’s latency predictor. Next, we apply the transfer

learning method in Section 3.5.4 to the three target mobile devices. We use latencies of

150 architectures for transfer learning on Adreno 630/640 and 160 architectures for Cortex
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A76, respectively, while using 20 architectures for validation. The relatively larger number

of latency measurements needed for boosting the latency monotonicity is due in great part

to two reasons: (1) MobileNet-V3 is a fairly complex search space, with many searchable

operators; and (2) we intentionally address a challenging case where the proxy device has

weak monotonicity with all the target devices. The results are shown in Fig. 3.29, where we

can see that the SRCC values are significantly increased after proxy adaptation. despite the

initially weak latency monotonicity.

ProxylessNAS

This search space is based on the MobileNet-V2 backbone, with variable expansion

ratios, kernel sizes, inputs, and output channel numbers [24]. We apply a similar encoding

approach as in the MobileNet-V3 space, and get a 783-dimension vector for each architecture

in the nn-Meter dataset [128]. The Myriad VPU and Adreno 640 GPU is the only pair

of devices with SRCC less than 0.9, with the pre-adaptation SRCC already being 0.87.

We directly use the 783-dimension vector to perform transfer learning by updating the

weights pre-trained on the proxy device (Adreno 640 GPU), with latencies of 30 sampled

architectures for training and 20 architectures for validation. The results are shown in

Fig. 3.30, demonstrating that the SRCC can be increased to over 0.9 after proxy adaptation.

NAS-Bench-201

For the NAS-Bench-201 space, we adopt the same encoding method as described

in Appendix 3.10.3. We also consolidate the latency datasets released by three different
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Figure 3.30: SRCC for various devices in the ProxylessNAS search space [128, 129]. SRCC
values boosted by AdaProxy are highlighted. We only apply proxy adaptation for the Myriad
VPU edge device, since the other target devices already have high SRCC of 0.9+ with the
proxy device.

research studies [40, 64, 129] for the NAS-Bench-201 search space. The Myriad VPU edge

device is the default proxy, while the target devices include FPGA, GPU, CPU, mobile,

edge device, DSP, and TPU. Using the latencies of 20 sampled architectures for validation,

the numbers of sampled architectures for training in the transfer learning process are: 30 for

Edge GPU, Edge TPU, Eyeriss, FPGA, Raspi4, Adreno 630, Adreno 640, Cortex A76, CPU

855, GPU 855, 50 for DSP 855, 55 for Pixel3 and Jetson, 60 for GTX and i7, and 90 for

Jetson 16. Note that the dataset in [128] only contains latencies for 2000 architectures in the

NAS-Bench-201 space, and hence we only consider these 2000 architectures when calculating

the cross-device SRCC values. We show the results in Fig. 3.31. While the latencies are

measured by different research groups, on very different devices and using different deep

learning frameworks, our proxy adaptation technique can still successfully increase the SRCC

values to 0.9+, significantly boosting the otherwise weak latency monotonicity and keeping

the total latency evaluation cost at O(1) for hardware-aware NAS.
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Figure 3.31: SRCC for various devices in the NAS-Bench-201 search space with laten-
cies collected from [40, 64, 128, 129]. SRCC values boosted by AdaProxy are highlighted.
“Adreno640" and “Adreno640*" denote model latencies measured by [129] and [40] respec-
tively. “Jetson Nano" and “Jetson Nano 16" represent the latencies of FP32 and FP16
models correspondingly.
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Chapter 4

A Semi-Decoupled Approach to Fast

and Optimal Hardware-Software

Co-Design of Neural Accelerators

4.1 Introduction

Neural architecture search (NAS) has been commonly used as a powerful tool

to automate the design of efficient deep neural network (DNN) models [132]. As DNNs

are being deployed on increasingly diverse devices and platforms, such as tiny Internet-of-

Things devices and wearables, state-of-the-art (SOTA) NAS is turning hardware-aware by

further taking into consideration the target hardware as a crucial factor that affects the

resulting performance (e.g., inference latency and energy consumption) of NAS-designed

models [14,31,64,107,108,117,120]

128



Likewise, optimizing hardware accelerators built on Field Programmable Gate Ar-

ray (FPGA) or Application-Specific Integrated Circuit (ASIC), as well as the corresponding

dataflows (e.g., scheduling DNN computations and mapping them on hardware), is also

critical for speeding up DNN execution [3, 56,123].

While both NAS and accelerator optimization can effectively improve the DNN

performance (in terms of, e.g., accuracy and latency), they are traditionally performed in

a siloed manner, without fully unleashing the potential of design flexibilities. As shown

in recent studies [67, 79], such a decoupled approach does not explore potentially better

combinations of architecture-accelerator designs, leading to highly sub-optimal DNN per-

formance. As a result, co-design of neural architectures and accelerators (a.k.a., hardware-

software co-design) has been emerging to discover jointly optimal architecture-accelerator

designs [8, 56, 57,79,84,123].

A common approach to hardware-software co-design is to use a nested loop: the

outer loop searches over the hardware space while the inner loop searches for the optimal

architecture given the hardware choice in the outer loop, or vice versa (i.e., outer loop for ar-

chitectures and inner loops for hardware) [57,59]. Alternatively, one can also simultaneously

search over the neural architecture and hardware spaces as a combined design choice [67].

While hardware-software co-design can further optimize DNN performance [124],

it also exponentially enlarges the search space, presenting significant challenges. For exam-

ple, the combination of architecture and accelerator design spaces can be up to 10861 [67].

Concretely, lettingM and N be the sizes of the architecture space and hardware/accelerator

space, respectively, the total search complexity is in the order of O(MN). By contrast, the
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fully-decoupled approach (i.e., separately performing NAS and accelerator optimization) has

a total complexity of O(M +N), although it only results in sub-optimal designs.

Consequently, many studies have been focusing on speeding up the evaluation of

co-design choices (e.g., using accuracy predictor and latency/energy simulation instead of

actual measurement [23,79,115,123]), and/or improving the search efficiency (e.g., reinforce-

ment learning or evolutionary search to co-optimize architecture and hardware [56,67, 79]).

Nonetheless, due to the O(MN) search space, the SOTA hardware-software co-design is

still a time-consuming process, taking up a few or even tens of GPU hours for each new

deployment scenario (e.g., changing the latency and/or energy constraints) [57,67].

Contributions. By settling in-between the fully-decoupled approach and the

fully-coupled co-design approach, we propose a new semi-decoupled approach to reduce the

size of the total co-search space O(MN) by orders of magnitude, yet without losing design

optimality. Our approach builds on the latency and energy monotonicity — the architec-

tures’ ranking orders in terms of inference latency and energy consumption on different

accelerators are highly correlated — and includes two stages. In Stage 1, we randomly

choose a sample accelerator (a.k.a., a proxy accelerator), and then run hardware-aware NAS

for K times to find a set P consisting of K = |P| optimal architectures for this proxy.

Clearly, compared to M and N , the size of P is orders-of-magnitude smaller (e.g., 10-20 vs.

1018 [69]). Then, in Stage 2, instead of the entire architecture space as in the SOTA co-

design, we only jointly search over the hardware space combined with the small set P, which

significantly reduces the total search space. Crucially, by latency and energy monotonicity,

the set of optimal architectures is (approximately) the same for all accelerator designs, and

130



hence selecting architectures out of P can still yield the optimal or very close-to-optimal

architecture design.

We validate our approach by conducting experiments on a state-of-the-art neural

accelerator simulator MAESTRO [62]. Our results confirm that strong latency and energy

monotonicity exist among different accelerator designs. More importantly, by using one

candidate accelerator as the proxy and obtaining its small set of optimal architectures, we

can reuse the same architecture set for other accelerator candidates during the hardware

search stage.

4.2 Problem Formulation

We focus on the design of a single neural architecture-accelerator pair. The main

goal is to maximize the inference accuracy subject to a few design constraints such as

inference latency, energy, and area [57]. Next, by denoting the neural architecture and

hardware as a and h, respectively, we formulate the problem as follows:

maxa∈A, h∈HAccuracy(a) (4.1)

s.t., Latency(a, h) ≤ L (4.2)

Energy(a, h) ≤ E (4.3)

HardwareResource(h) ≤ H, (4.4)
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where the objective Accuracy(a) depends on the architecture,1 the first two constraints are

set on the inference latency and energy consumption that depend on both the architecture

and hardware choices, and the last constraint is on the hardware configuration itself (e.g.,

area) and hence independent of the architecture. We denote the optimal design as (a∗, h∗)

which solves the optimization problem Eqns. (4.1)—(4.4). Note that, because of the combi-

natorial nature of the problem, optimality is not in a mathematically strict sense; instead, a

design (a, h) is often considered as optimal if it is good enough in practice (e.g., better than

or competitive with SOTA designs).

Suppose that the architecture space A and hardware space H have M = |A| and

N = |H| design choices, respectively, which are both extremely large in practice. Thus, the

co-design space A×H has a total of MN architecture-hardware combinations. This makes

exhaustive search virtually impossible and adds significant challenges to co-design over the

joint search space.

Remark. In our formulation, the notation of neural “architecture” a ∈ A can

also broadly include other applicable design factors for the DNN model (e.g., weight quan-

tization). Moreover, the hardware h implicitly includes the dataflow design, which is a

downstream task based on the architecture and hardware choices. In the following, we

also interchangeably use “accelerator” and “hardware” to refer to the hardware-dataflow

combination unless otherwise specified. Thus, with different dataflows, the same hardware

configuration will be considered as different h ∈ H.
1The inference accuracy also depends on the network weight trained on a dataset, which is not a decision

variable in hardware-software co-design and hence omitted.
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4.3 A Semi-Decoupled Approach

In this section, we first review the existing architecture-accelerator design ap-

proaches, and then present our Aquaman approach.

4.3.1 Overview of Existing Approaches

Fully decoupled approach.

A straightforward approach is to separately optimize architectures and accelerators

in a siloed manner by decoupling NAS from accelerator design [34, 115, 123]: first perform

NAS to find one optimal architecture ã ∈ A, and then optimize the accelerator design for

this particular architecture ã; or, alteratively, first optimize the accelerator h̃ ∈ H, and

then perform NAS to find the optimal architecture for this particular accelerator h̃. This

approach has a total complexity in the order of O(M + N) where M = |A| and N = |H|.

But, the drawback is also significant: it does not fully exploit the flexibility of the co-design

space and, as shown in several prior studies [57, 67, 79], can result in highly sub-optimal

architecture-accelerator designs.

Fully coupled approach.

As can be seen in Eqns. (4.2) and (4.3), the inference latency and energy consump-

tion is jointly determined by the architecture and hardware choices. Such entanglement of

architecture and hardware is the key reason for the SOTA hardware-software co-design.

Concretely, a general co-design approach is to use a nested loop [79]. For example,

the outer loop searches over the hardware space, whereas the inner loop searches for the
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optimal architecture given the hardware choice in the outer loop. Alternatively, another

equivalent approach is to first search for neural architectures in the outer loop and then

search for accelerators in the inner loop.

Here, we use “outer loop for hardware and inner loop for architecture” as an exam-

ple. While the actual search method can differ from one study to another (e.g., reinforcement

learning vs. evolutionary search [23, 79]), this nested search can be mathematically formu-

lated as a bi-level optimization problem below:

Outer: maxh∈HAccuracy(a∗(h)) (4.5)

s.t., HardwareResource(h) ≤ H, (4.6)

where, given a choice of h, the architecture a∗(h) = a∗(h;L,E) solves the inner hardware-

aware NAS problem:

Inner: maxa∈AAccuracy(a) (4.7)

s.t., Latency(a, h) ≤ L (4.8)

Energy(a, h) ≤ E. (4.9)

In Eqn. (4.5), Accuracy(·) is still decided by the architecture, although we use a∗(h) =

a∗(h;L,E) to emphasize that the architecture is specifically optimized for the given hardware

candidate h.

We see that, during the search for the optimal hardware h∗ in the outer problem, the

inner NAS problem is repeatedly solved as a subroutine and yields the optimal architecture
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Table 4.1: Comparison of Different Approaches
Approach Optimality Complexity
Fully-decoupled separate design No O(M +N)
Fullly-coupled co-design Yes O(MN)
Semi-decoupled co-design Yes O(K(M +N))

a∗(h) = a∗(h;L,E) given each hardware choice h set by the outer search. For notational

convenience, we also use a∗(h) to represent a∗(h;L,E) without causing ambiguity.

The focus of SOTA hardware-software co-design approaches have been primarily

on speeding up the evaluation of architecture-hardware choices (e.g., using accuracy predic-

tor and latency/energy simulation instead of actual measurement [23, 79, 115, 123]), and/or

improving the search efficiency (e.g., reinforcement learning or evolutionary search to co-

optimize architecture and hardware [56, 67, 79]). Nonetheless, evaluating one architecture-

accelerator combination can still take up a few seconds in total (e.g., running MAESTRO

to perform mapping/scheduling and estimate the latency and energy consumption takes 2-5

seconds on average [62]). Then, compounded by the exponentially large architecture and

hardware space in the order of O(MN), the total hardware-software co-design cost is very

high (e.g., a few or even tens of GPU hours for each deployment scenario [67,79]).

4.3.2 Semi-Decoupled Co-Design

We propose a Aquaman approach — partially decoupling NAS from hardware

search to reduce the total co-search cost from O(MN) to O(K(M + N)) in a principled

manner, where K is orders-of-magnitude less than M and N .

Performance monotonicity. The key intuition underlying our Aquaman ap-

proach is the latency and energy performance monotonicity — given different accelerators,
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the architectures’ ranking orders in terms of both the inference latency and energy con-

sumption are highly correlated. We can measure the ranking correlation in terms of the

Spearman’s rank correlation coefficient (SRCC), whose value lies within [−1, 1] with “1”

representing the identical ranking orders [6].

It has been shown in a recent hardware-aware NAS study [77] that the architec-

tures’ ranking orders in terms of inference latency are highly similar on different devices,

with SRCCs often close to 0.9 or higher, especially among devices of the same platform (e.g.,

mobile phones). For example, if one architecture a1 is faster than another architecture a2

on one mobile phone, then it is very likely that a1 is still faster than a2 on another phone.

One reason is that architectures are typically either computing-bound or memory-bound on

devices of the same platform, which, by roofline analysis, results in similar rankings of their

latencies [119]. Based on this property (a.k.a., latency monotonicity), it has been theoreti-

cally and empirically proved that the Pareto-optimal architectures on different devices are

highly overlapping if not identical [77].

While the target hardware space chosen by the designer has many choices, it es-

sentially covers one platform — neural accelerator under a set of hardware constraints. As a

result, we expect latency monotonicity to be satisfied in our problem. Additionally, beyond

the findings in [77], we observe in our experiments that energy monotonicity also holds: if

one architecture a1 is more energy-efficient than another architecture a2 for one hardware

choice, then it is very likely that a1 is still more energy-efficient than a2 for another hard-

ware choice. Along with latency monotonicity, energy monotonicity will be later validated

in our experiments. One reason for the energy monotonicity is that energy consumption is
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highly related to the inference latency with a strong correlation [64]. For simplicity, we use

performance monotonicity to collectively refer to both latency and energy monotonicity.

Insights. The performance monotonicity leads to the following proposition, which

generalizes the statement in [77] by considering both latency and energy monotonicity. We

first note that, by solving the inner NAS problem under a set of latency and energy con-

straints in Eqns. (4.7)—(4.9), we can construct a set P(h) = (a∗1(h;L1, E1), · · · , a∗K(h;LK , EK))

of optimal architectures covering the architectures along the Pareto boundary. The size

K = |P(h)| of the optimal architecture set depends on the granularity of latency and energy

constraints we choose. In practice, K in the order of a few tens (e.g., 10 − 30) is sufficient

to cover a wide range of latency and energy constraints for our design target.

Proposition 2 Given performance monotonicity, the set of optimal architectures P(h) =

(a∗1(h;L1, E1), · · · , a∗K(h;LK , EK)) found by the inner hardware-aware NAS problem in Eqns. (4.7)—

(4.9) is the same for all hardware choices, i.e., P(h1) = P(h2), for all h1, h2 ∈ H. Proof.

Consider two hardware choices h1, h2 ∈ H. By performance monotonicity, we can replace

the constraints Latency(a, h1) ≤ L1 and Energy(a, h2) ≤ E1 with another two equivalent

constraints Latency(a, h2) ≤ L1
′ and Energy(a, h2) ≤ E1

′, respectively. By varying E1 and

L1 over their feasible ranges, we obtain the optimal architecture set P(h1) for h1. Accord-

ingly, due to the equivalent latency and energy constraints for h2, we also obtain the optimal

architecture set P(h2) for h2, thus completing the proof. �

Proposition 2 ensures that in the presence of performance monotonicity, the same

set P(h) of optimal architectures apply to all h ∈ H. Thus, we can also simply use P

to denote the set of optimal architectures, which are essentially shared by h ∈ H. Note
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Figure 4.1: Overview of our Aquaman approach.

carefully that Proposition 2 does not mean that, given a specific pair of latency and energy

constraints, we will have the same architecture a∗(h1;L,E) = a∗(h2;L,E) for two hardware

choices h1, h2 ∈ H.

Nonetheless, once we have found P ⊂ A, there is no need to jointly search over

the entire architecture-hardware space A × H any more. Instead, it is sufficient to merely

search over the restricted architecture-hardware space P × H. Importantly, the set P of

optimal arachitectures is orders-of-magnitude smaller than the entire architecture space A

(e.g., a few tens vs. 1018 in the DARTS architecture space [69]), thus significantly reducing

the total hardware-software co-design cost without losing optimality.

Algorithm. Our Aquaman approach has two stages, as illustrated in Fig. 4.1 and

summarized in Algorithm 6.

Stage 1: We randomly choose a sample accelerator h0 ∈ H, which we refer to as

the proxy accelerator, and run hardware-aware NAS for K times to find a set of optimal

architectures P = P(h0) = (a∗1(h0;L1, E1), · · · , a∗K(h0;LK , EK)). Specifically, P is con-
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Algorithm 6 Semi-Decoupled Architecture-Accelerator Co-Design
1: Input: Architecture space A, hardware space H, sample hardware h0 ∈ H, and design

constraints L,E,H in Eqns. (4.2), (4.3), (4.4)
2: Output: Optimal co-design (a∗, h∗)
3: Initilization: Choose K latency and energy constraints (Lk, Ek) for
k = 1, · · · ,K, set P = ∅, and randomly choose (a∗, h∗);

4: for k = 1, · · · ,K do
5: For constraints (Lk, Ek), run hardware-aware NAS to get optimal

architecture a∗k(h0;Lk, Ek)
6: P = P

⋃
{a∗k(h0;Lk, Ek)};

7: end for
8: for each candidate hardware h ∈ H do
9: if HardwareResource(h) ≤ H then

10: Find optimal architecture a∗(h) ∈ P satisfying the latency and energy
constraint (L,E)

11: if Accuracy(a∗(h)) > Accuracy(a∗) then
12: (a∗, h∗)← (a∗(h), h)
13: end if
14: end if
15: end for

structed by setting K different latency and energy constraints and accordingly solving the

inner NAS problem in Eqns. (4.7)—(4.9) for K times. Thus, the search cost in Stage 1 is

O(KM) where M = |A|.

Stage 2: We search for the optimal accelerator h∗ ∈ H. Specifically, given each

candidate h ∈ H (selected by, e.g., reinforcement learning or evolutionary search [67, 79]),

instead of searching over the entire architecture set A, we obtain its corresponding optimal

architecture a∗(h) from the set P ⊂ A constructed in Stage 1. Thus, the search cost in

Stage 2 is O(KN) where N = |H|.

4.3.3 Discussion

In practice, performance monotonicity may not be perfectly satisfied. Thus, the

optimal architecture a∗(h) corresponding to a candidate accelerator h ∈ H may not always
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strictly belong to the optimal architecture set P that is pre-constructed based on the proxy

h0. Nonetheless, by only searching over P for this candidate accelerator h, we can still

find an architecture a ∈ P that is close-to-optimal. In fact, to speed up the NAS process

and find competitive architectures, it is very common to use proxy/substitute metrics (such

as accuracy predictor or the neural tangent kernel [26]) which only have SRCC of around

0.5–0.9 with the true performance. In our problem, we can also view the architectures’

latency and energy performance on the proxy accelerator h0 as the substitute performance

on other accelerator candidates. Therefore, given the good albeit not necessarily close-to-

perfect performance monotonicity, the architectures optimized specifically for the proxy are

also sufficiently competitive ones for other accelerator candidates.

In [77], scalable hardware-aware NAS is proposed by utilizing latency monotonicity

on various devices. Without considering energy consumption, a high SRCC (>0.9) for

latency is needed to ensure that one proxy device’s optimal architectures are still close to

optimal on another device. In our problem, such high SRCC values are not necessarily

needed, because we consider both energy and latency — moderate SRCC values on two

performance metrics are enough. This is reflected in both our experiments and prior studies

(e.g., two proxy metrics having moderate SRCC values with the true accuracy can estimate

the accuracy performance very well [26]).

In the highly unlikely event of very low SRCCs (e.g., 0.2) between the proxy and

other accelerator candidates, we can enlarge P by adding some approximately optimal archi-

tectures near the Pareto boundary (for the chosen proxy), such that they can be competitive

choices for other candidate accelerators. Alternatively, we could use a few proxy acceler-
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ators, each having good latency and energy monotonicity with a subspace of accelerator

design, and jointly construct an expanded set P of optimal architectures in Stage 1. In

any case, the set P is orders-of-magnitude smaller than the entire architecture space or

accelerator space.

Summary. The essence of our semi-decoupled approach is to use a proxy h0 to

find a small set of optimal architectures that also includes the actual optimal or close-

to-optimal architectures for different accelerator candidates, thus reducing the total co-

design complexity without losing optimality. This is significantly different from a typical

fully-decoupled approach that pre-searches for one architecture and then find the matching

accelerator, and also has a sharp contrast with a fully-coupled co-design approach that

jointly searches over the entire architecture-accelerator space. The comparison of different

approaches is also summarized in Table 4.1. Importantly, our approach focuses on reducing

the search space complexity, and can be integrated with any actual NAS (Stage 1) and

accelerator exploration techniques (Stage 2).

4.4 Experiment Setup

We provide details of our experiment setup as follows.

Accelerator hardware space. We employ an open-source tool MAESTRO [62]

to simulate DNNs on the accelerator and measure inference metrics (e.g., latency and en-

ergy). MAESTRO supports a wide range of accelerators, including global shared scratchpad

(i.e., L2 scratchapd), local PE scratchpad (i.e., L1 scratchpad), NoC, and a PE array orga-

nized into different hierarchies or dimensions.
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DNN dataflow. Dataflow decides the DNN partitioning and scheduling strate-

gies, which affects inference latency and energy performance. We consider three template

dataflows: KC-P (motivated by NVDLA [88]), YR-P (motivated by Eyeriss [27]), and

X-P (weight-stationary). Exhibiting different characteristics (e.g., temporal reuse of input

activation and filter in YR-P vs. spatial reuse of input activation in KC-P), these rep-

resentative dataflows are all supported by MAESTRO [62] and commonly used in SOTA

hardware-software co-design [124].

Architecture space. We consider the following two spaces.

• NAS-Bench-301 : It is a SOTA surrogate NAS benchmark built via deep en-

sembles and modeling uncertainty, which provides close-to-real predicted performances (i.e.,

accuracy and training time) of 1018 architectures on CIFAR-10 [103]. We consider the

DARTS space [69], where each architecture is a stack of 20 convolutional cells, and each cell

consists of seven nodes.

• AlphaNet : It is a new family of architectures on ImageNet discovered by applying

a generalized α-divergence to supernet training [110]. Our search space is based on Table 7

of [110], with a slight variation that the channel width is fixed as "16, 16, 24, 32, 64, 112,

192, 216, 1792", and depth, kernel size, expansion ratio of the first and last inverted residual

blocks are fixed as "1, 1", "3, 3", "1, 6", respectively. For other searchable inverted residual

blocks, the candidate depth, kernel size, and expansion ratio are "2, 3, 4, 5, 6", "3, 5, 7",

and "3, 4, 6", respectively.

Search strategy. Our approach can be integrated with any NAS and hardware

search strategies. Here, we consider exhaustive search over a pre-sampled subspace. Specif-
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ically, for the NAS-Bench-301, we first sample 10k models. Then, based on the accuracy

given by NAS-Bench-301 and FLOPs of these 10k models, we select 1017 models, including

the Pareto-optimal front (in terms of predicted accuracy and FLOPs) and some random

architectures. Similarly, for the AlphaNet space, we first sample 10k models and then select

1046 models based on the predicted accuracy given by the released accuracy predictor [43]

and FLOPs. We consider a filtered space of 1k+ architectures (which include the Pareto-

optimal ones out of the 10k sampled architectures), because using MAESTRO to measure

the latency and energy of 10k models on thousands of different hardware-dataflow combina-

tions is beyond our computational resource limit. For each of the three template dataflows,

we sample 51 neural accelerators with different number of PEs, NoC bandwidth, and off-

chip bandwidth per the MAESTRO document [89]. Specifically, the number of PEs can be

chosen from “512, 256, 128, 64, 32, 16", candidate NoC bandwidths are from “300, 400, 500,

600, 700, 800, 900, 1000", and off-chip bandwidths are from “50, 100, 150, 200, 250, 275,

300, 325, 350". Note that some of our sampled hardware-dataflow pairs are not supported

when running with KC-P and YR-P dataflows on MAESTRO. Thus, the actual numbers of

sampled accelerators (i.e., hardware-dataflow combinations) are 133 for NAS-Bench-301 and

132 for AlphaNet, respectively. We also consider layer-wise mixture of different dataflows

(Section 4.5.3) to create 5000 different hardware-dataflow combinations.

4.5 Experimental Results

In this section, we present our experimental results. We show that strong perfor-

mance monotonicity exists in the hardware design space, and highlight that our Aquaman
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Figure 4.2: Performance monotonicity. We test 1017 models sampled in DARTS search
space on 133 accelerators.

approach can identify the optimal design at a much lower search complexity.

4.5.1 NAS-Bench-301

Performance monotonicity

We first validate that strong latency and energy performance monotonicity, quan-

tified in SRCC, holds between different accelerators. The results are shown in Fig. 4.2. We

see that, except for two accelerator choices that have SRCC less than 0.6 with others, all the

other accelerators have almost perfect performance monotonicity with SRCC greater than

0.97. We also plot in Fig. 4.2(c) the cumulative distribution function (CDF) of the average

SRCC values for all the sampled accelerators, where for each accelerator h the “average”

is over the SRCC values of all the accelerator pairs that include h. We see that the vast

majority of the accelerators have average SRCC close to 1.
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Figure 4.3: NAS-Bench-301. Left: The optimal models are marked in blue, and the grey
scale indicates accuracy. Right: The accuracy of the model selected from the proxy’s optimal
model set. We test each accelerator as a different proxy. We also select two proxy accelerators
(indexes 95 and 107) that have the lowest SRCCs with the target, and show the detailed
results in Table 4.2.

Accelerator
Index

SRCC Hardware Config. Model Performance
Latency Energy PEs NoC Off-chip Dataflow Latency (cycles) Energy (nJ) Accuracy (%)

1 (target) 1 1 512 900 350 KC-P 2279256 626090 93.85
107 0.556 0.567 64 400 250 YR-P 2279256 626090 93.85
95 0.595 0.595 256 800 350 X-P 2279256 626090 93.85

1 (target) 1 1 512 900 350 KC-P 3027992 758928 94.30
107 0.556 0.567 64 400 250 YR-P 3027992 758928 94.30
95 0.595 0.595 256 800 350 X-P 3027992 758928 94.30

1 (target) 1 1 512 900 350 KC-P 4130699 964783 94.47
107 0.556 0.567 64 400 250 YR-P 4130699 964783 94.47
95 0.595 0.595 256 800 350 X-P 4130699 964783 94.47

Table 4.2: Hardware configuration of the target and two proxy accelerators, and performance
metrics of the selected optimal models on each of them. “Accelerator Index" corresponds to
the x-axis in right of Fig. 4.3, the models on the target accelerator correspond to the circled
ones in left of Fig. 4.3, while the models on the two proxy accelerators correspond to the
diamond marks located on the accelerator indexes. The architecture configuration of the
target models is further illustrated in Table 4.3.

Target Model Model Architecture
Normal Cell Config. Normal Cell Concat. Reduce Cell Config. Reduce Cell Concat.

#1

(skip_connect, 0), (skip_connect, 1),
(skip_connect, 0), (skip_connect, 2),
(sep_conv_5x5, 0), (skip_connect, 1),
(dil_conv_5x5, 4), (skip_connect, 2)

[2, 3, 4, 5]

(sep_conv_3x3, 1), (sep_conv_3x3, 0),
(dil_conv_3x3, 2), (skip_connect, 0),
(sep_conv_5x5, 2), (avg_pool_3x3, 0),
(dil_conv_3x3, 3), (sep_conv_3x3, 1)

[2, 3, 4, 5]

#2

(skip_connect, 0), (max_pool_3x3, 1),
(sep_conv_3x3, 0), (skip_connect, 1),
(skip_connect, 0), (’sep_conv_5x5, 3),
(avg_pool_3x3, 4), (sep_conv_5x5, 1)

[2, 3, 4, 5]

(sep_conv_3x3, 1), (sep_conv_5x5, 0),
(avg_pool_3x3, 0), (sep_conv_5x5, 1),
(dil_conv_5x5, 3), (sep_conv_3x3, 2),
(avg_pool_3x3, 4), (sep_conv_3x3, 0)

[2, 3, 4, 5]

#3

(dil_conv_5x5, 0), (skip_connect, 1),
(max_pool_3x3, 0), (max_pool_3x3, 2),
(sep_conv_5x5, 0), (dil_conv_3x3, 3),
(dil_conv_5x5, 3), (dil_conv_5x5, 4)

[2, 3, 4, 5]

(skip_connect, 0), (dil_conv_3x3, 1),
(sep_conv_3x3, 1), (sep_conv_5x5, 2),
(skip_connect, 1), (max_pool_3x3, 0),
(skip_connect, 1), (sep_conv_5x5, 2)

[2, 3, 4, 5]

Table 4.3: Architecture configuration of the target models in Fig. 4.3. The first row (i.e.,
target model #1) corresponds to the leftmost circled model in Fig. 4.3, and second row corre-
sponds to the middle circled model, etc. These are the configurations for each convolutional
cell constructing a complete model, which is a stack of 20 cells. For detailed explanation of
the operations in the DARTS search space, please refer to [69] and [103].
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Effectiveness

To demonstrate the effectiveness, suppose that we have an optimal architecture-

accelerator pair (a∗, h∗) produced by the SOTA hardware-software co-design. We refer to

the optimal accelerator as the “Target”. By using our approach, in Stage 1, we first randomly

choose a non-target accelerator h0 as our proxy, and run hardware-aware NAS on this proxy

to obtain the set P of optimal architectures. Next, in Stage 2, we will search over the

accelerator space, retrieve the corresponding architecture a∗0 from P that best satisfies the

latency and energy constraints, and keep the accelerator, whose corresponding architecture

a∗0 has the highest accuracy, as the optimal accelerator. Thus, we prove the effectiveness

of our approach if the architecture a∗0 ∈ P corresponding to the optimal accelerator found

in Stage 2 produces (approximately) the same accuracy as a∗ obtained using the SOTA

co-design.

In our experiment, we consider a target optimal accelerator h∗ as follows: 512 PEs,

NoC bandwidth constraint 900, off-chip bandwidth constraint 350, and KC-P dataflow. In

Fig. 4.3, we plot all the optimal architectures under various latency and energy constraints.2

Then, we set three representative latency and energy consumption constraints, with their

corresponding optimal models circled in red. Next, we test each of the other 132 accelerators

as the proxy, and find the corresponding set P, which includes about 20 optimal architectures

for that proxy. Then, we select the architecture from P whose latency and energy are

closest to the design constraints on the target accelerator. We see that by using any of

the 132 accelerators as the proxy, our approach can still find the optimal architecture that
2MAESTRO returns the runtime cycles, instead of actual time, for the inference latency.
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has (nearly) the same accuracy as that found by using SOTA hardware-software co-design.

Importantly, even the proxy accelerator that has the lowest SRCC with the target can yield

an competitive architecture with a good accuracy.

Total search cost

We now compare the total search cost incurred by exhaustive search over our sam-

pled space. Using the coupled SOTA approach, the co-serach evaluates 133∗1017≈135K

architecture-accelerator designs. In Stage 1 of our approach, we choose one proxy and eval-

uate 1017 architectures to obtain 20 optimal architectures for different latency and energy

constraints. As we use exhaustive search, we do not need to run 20 times. In Stage 2, we

evaluate the remaining 132 accelerators combined with the selected 20 architectures. Thus,

the total search cost of our approach is 132∗20+1017≈3.7K, which is significantly less than

135K. While reinforcement learning or evolutionary search can improve the efficiency (es-

pecially on larger spaces), the order of the total cost remains the same. Moreover, when

the architecture and accelerator spaces are larger, the relative advantage of our approach is

even more significant.

4.5.2 AlphaNet

We now turn to the AlphaNet architecture space, and show the results in Fig. 4.4

and Fig. 4.5. While the SRCC values are lower than those in the NAS-Bench-301 case, they

are still generally very high (e.g., mostly >0.9). Crucially, as shown in Fig. 4.5, our approach

can successfully find an architecture that has (almost) the same accuracy as that obtained
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Accelerator
Index

SRCC Hardware Config. Model Config.
Latency Energy PEs NoC Off-chip Dataflow Latency (cycles) Energy (nJ) Accuracy (%)

1 (target) 1 1 512 900 350 KC-P 2061611 614779 69.60
64 0.638 0.945 512 400 350 X-P 2061611 602782 69.58
91 0.775 0.945 32 800 250 X-P 2046476 610891 69.60

1 (target) 1 1 512 900 350 KC-P 3367489 965462 71.18
64 0.638 0.945 512 400 350 X-P 3367489 965462 71.18
91 0.775 0.945 32 800 250 X-P 3367489 965462 71.18

1 (target) 1 1 512 900 350 KC-P 5923046 1858261 71.76
64 0.638 0.945 512 400 350 X-P 5923046 1858261 71.76
91 0.775 0.945 32 800 250 X-P 5923046 1858261 71.76

Table 4.4: Hardware configuration of the target and two proxy accelerators, and performance
metrics of the selected optimal models on each of them. “Accelerator Index" corresponds
to the x-axis in right of Fig. 4.5, models on the target accelerator correspond to the circled
ones in left of Fig. 4.5, while the selected optimal models on proxy accelerators correspond
to the diamond marks locating on the accelerator indexes. The architecture configuration
of the target models is further illustrated in Table 4.5.

Target Model Model Architecture
Resolution Width Kernel Size Expansion Ratio Depth

#1 224 16, 16, 24, 32, 64, 112, 192, 216, 1792 3, 3, 3, 3, 3, 3, 3 1, 4, 4, 6, 6, 5, 6 1, 3, 4, 3, 3, 3, 1
#2 288 16, 16, 24, 32, 64, 112, 192, 216, 1792 3, 3, 3, 3, 3, 7, 3 1, 4, 4, 5, 4, 5, 6 1, 3, 3, 3, 4, 4, 1
#3 288 16, 16, 24, 32, 64, 112, 192, 216, 1792 3, 3, 5, 7, 7, 7, 3 1, 6, 6, 6, 5, 5, 6 1, 6, 6, 3, 6, 6, 1

Table 4.5: Architecture configuration of target models in Fig. 4.5. The first row (i.e., target
model #1) corresponds to the leftmost circled model in Fig. 4.5, and second row corresponds
to the middle circled model, etc. For detailed explanation of the operations in AlphaNet
search space, please refer to [111].
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Figure 4.4: Performance monotonicity. We test 1046 models sampled in AlphaNet search
space on 132 accelerators.

by using the SOTA coupled approach.
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model set. We test each accelerator as a different proxy. We select two proxy accelerators
(indexes 64 and 91) and show the detailed results in Table 4.4.

0.0

0.2

0.4

0.6

0.8

1.0

(a) Latency SRCC
0.0

0.2

0.4

0.6

0.8

1.0

(b) Energy SRCC

0.8 0.9 1.0
Average SRCC

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Latency
Energy

(c) CDF of SRCC

Figure 4.6: Performance monotonicity. We test 1017 models sampled in DARTS on 5000
accelerators with layer-wise mixed dataflows.
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Figure 4.7: Performance monotonicity. We test 1046 models sampled in AlphaNet on 5000
accelerators with layer-wise mixed dataflows.

4.5.3 Layer-wise Mixed Dataflow

Ideally, each layer of a DNN model can be switched between accelerator hardware

and dataflows to search for the best combination (especially in the multi-accelerator design
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case) [124]. To account for this, we divide each model into 22 parts: first and last convo-

lutional layer, and evenly into 20 groups for all intermediate layers. For each part, it can

be executed on any of our 51 sampled hardware configurations following any dataflow. We

sample 5000 different mixtures for our models in NAS-Bench-301 and AlphaNet spaces, and

report the SRCC results in Fig. 4.6 and 4.7, respectively. The results confirm again that

strong performance monotonicity exists and ensures the effectiveness of our approach. We

omit the optimal accuracy results due to the lack of space, while noting that they are similar

to Figs. 4.3 and 4.5.

4.6 Related Work

NAS and accelerator design. Hardware-aware NAS has been actively studied

to incorporate characteristics of target device and automate the design of optimal architec-

tures subject to latency and/or energy constraints [14, 31, 64, 79, 94, 107, 120, 125]. These

studies do not explore the hardware design space. A recent NAS study [77] explores latency

monotonicity to scale up NAS across different devices, but it only considers latency con-

straints and, like other NAS studies, does explore the hardware design space. In parallel,

there have also been studies on automating the design of accelerators for DNNs [123]. But,

NAS and accelerator design have been traditionally studied in a siloed manner, resulting in

sub-optimal designs.

Architecture-accelerator co-design. The studies on jointly optimizing archi-

tectures and accelerators have been quickly expanding. For example, [124] jointly optimizes

neural architectures and ASIC accelerators using reinforcement learning, [59] performs a
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two-level (fast and slow) hardware exploration for each candidate neural architecture, [57]

adopts a set of manually selected models as the hot start state for acceleration exploration,

and [67] co-designs neural architecture, hardware configuration and dataflow, and employs

evolutionary search to reduce the search cost. These studies primarily focus on improving

the search efficiency given a certain search space. By contrast, we use a principled approach

to reducing the total search space, without losing optimality.

4.7 Conclusion

In this chapter, we reduce the total hardware-software co-design cost by semi-

decoupling NAS from accelerator design. Concretely, we demonstrate latency and energy

monotonicity among different accelerators, and use just one proxy accelerator’s optimal

architecture set to avoid searching over the entire architecture space. Compared to the SOTA

co-designs, our approach can reduce the total design complexity by orders of magnitude,

without losing optimality. Finally, we validate our approach via experiments on two search

spaces — NAS-Bench-301 and AlphaNet.
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Chapter 5

Conclusions

To conclude this dissertation, we provide innovative scalable solutions to efficiently

scale up DNN optimization for effcient inference on diverse edge devices. Previous device-

unaware DNN optimization on a single target device cannot result in the optimal DNN

model for all other devices, motivating the device-aware approach. While the existing ap-

proaches can produce an optimal DNN model for a given device, it lacks scalability facing a

large number of heterogeneous edge devices. Specifically, even using prediction-assisted op-

timization, the often lengthy process of building an offline performance predictor is required

for each target device.Therefore, scalable and automated approaches are crucial for effcient

DNN optimization. This thesis can be summarized as two parts: part I automates DNN

model selection for diverse edge devices to maximize users’ QoE, using machine learning-

based techniques, which is presented in Chapter 2; part II focuses on fully reaping the

benefits of flexible design spaces – both neural architecture and hardware accelerators – to

optimize neural network performance, which is investigated in Chapters 3 and 4.
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The key challenge of user-centric DNN selection is that the QoE can be a very

complicated function of the DNN performance metrics and is unkown a priori. In Chapter

2, we leverage a machine learning model to approximate the QoE function based on users’

QoE feedback, which serves as "labels" for training the model. Based on it, an automated

and user-centric DNN selection engine – Aquaman, is proposed to optimize DNN selection

decisions and maximize users’ QoE feedback. Aquaman consists of two integrated parts: QoE

prediction and DNN model selection. To balance exploitation and exploration, Aquaman

selects DNN models based on the QoE UCB, resulting in provably-efficient QoE performance

compared to the oracle.

Going beyond selecting pre-existing DNN models, the key challenge of traversing

the flexible neural architecture and accelerator design space is the exponentially large search

space consisting of billions of or even more candidates. The reason is that evaluating and

ranking the candidate architectures or architecture-accelerator pairs in terms of metrics of

interest (e.g., accuracy and latency) can be extremely time-consuming. In Chapter 3, we

focus on efficiently exploring the neural architecture search space for diverse target devices,

namely hardware-aware NAS. We first demonstrate latency monotonicity among different

devices, and propose to use just one proxy device’s latency predictor for NAS on any target

device. When latency monotonicity is not satisfied between the proxy device and the target

device, we propose an efficient transfer learning technique – adapting the proxy’s latency

predictor to the target device – to boost latency monotonicity. Overall, our approach results

in a much lower total cost of latency evaluation, yet without losing Pareto optimality. Our

experiments with different devices of different platforms on mainstream neural architecture
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search spaces, including MobileNet-V2, MobileNet-V3, NAS-Bench-201 and FBNet spaces,

prove the effectiveness of our one proxy approach.

To take into consideration the hardware design freedom, we further extend our anal-

ysis to hardware-software co-design of neural accelerators, which is investigated in Chapter

4. Based on the latency monotonicity of different architectures in Chapter 3, we addition-

ally demonstrate latency and energy consumption monotonicity among different accelerators,

and then propose to reduce the total hardware-software co-design cost by semi-decoupling

NAS from accelerator design. Particularly, we use just one proxy accelerator’s optimal archi-

tecture set to avoid searching over the entire architecture space. According to our evaluation

on two search spaces – NAS-Bench-301 and AlphaNet, our approach can reduce the total

design complexity by orders of magnitude, without losing optimality, compared to the SOTA

co-designs.
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