UC Irvine
ICS Technical Reports

Title
Exploiting relationships for data cleaning

Permalink
https://escholarship.org/uc/item/Owg3w0km|

Authors

Kalashnikov, Dmitri V.
Mehrotra, Sharad
Chen, Zhaoqi

Publication Date
2004

Peer reviewed

eScholarship.org

Powered by the California Diqgital Library

University of California

https://escholarship.org/uc/item/0wg3w0km
https://escholarship.org
http://www.cdlib.org/

ICS

TECHNICAL REPORT

Exploiting Relationships for Data Cleaning

Dmitri V. Kalashnikov, Sharad Mehrotra, Zhaoqi Chen

UCI-ICS Technical Report No. 04-11
Department of Computer Science
University of California, Irvine

May 2004

Information and Computer Science

University of California, Irvine

Exploiting Relationships for Data Cleaning
DMITRI V. KALASHNIKOV, SHARAD MEHROTRA, and STELLA CHEN

University of California, Irvine
Information and Computer Science
Tech Report 04-11

May 19, 2004

In this paper we address the problem of data cleaning when multiple data sources are merged to
create a single database. Specifically, we focus on the problem of determining if two representations
in two different sources refer to the same entity. Current research has focused on linking records
from different sources by computing the similarity among them based on their attribute values.
Our approach explores a new research direction by exploiting relationships among records for
the purpose of cleaning. Our approach is based on the hypothesis that if two representations
refer to the same entity, there is a high likelihood that they are strongly connected to each other
through multiple relationships implicit in the database. We view the database as a graph in
which nodes correspond to entities and edges to relationships among the entities. Any one of
the existing conventional approaches is first used to determine possible matches among entities.
Graph analysis techniques are then used to disambiguate among the various choices. While out
approach is domain independent, it can be tuned to specific domains by incorporating domain
specific rules. We demonstrate the applicability of our method to a large real dataset.

Categories and Subject Descriptors: H.m [MISCELLANEOUS]: Data Cleaning

General Terms:
Additional Key Words and Phrases: relationship-based data cleaning, record linkage, similarity

retrieval

Milestones

(1) Jul-Aug, 2003, The RelDC framework is developed. The weight-based approach
is implemented.

(2) Sep-Oct, 2003, The optimizations are developed to scale the RelDC to large
datasets (Citeseer and HPSearch).

(3) Nov-Mar, 2004, The solver-based solution is developed.

(4) Apr-May, 2004, The probabilistic approach is implemented.

This material is based upon work supported by the National Science Foundation under Grant
No. IIS-0331707 and IIS-0083489 and by the Knowledge Discovery and Dissemination (KD-D)
Program.

, Vol. V, No. N, May 2004, Pages 1-48.

2 . Dmitri V. Kalashnikov et al.

1. INTRODUCTION

Recent surveys [Discovery 2003 show that more than 80% of researchers working
on datamining projects spend more than 40% of their project time on cleaning and
preparation of data. The data cleaning problem often arises in data warehouse en-
vironments when information from heterogeneous sources is collected and merged.
Consider an input table I containing records that are to be merged with the refer-
ence database R. It is assumed that the database R is clean! in which every entity
is represented in its canonical form. Representation of the entity in I may differ
from that of in R. For example, in a database containing business information of
companies, a corporation named ACME may be represented as “ACME Corpora-
tion”. The same corporation may be referred to as “ACME Corp.” in the input
table.

Such differences may arise due to differences in data representation, inconsisten-
cies, and/or incompleteness (missing attribute values) of data sources. Often, it
is desirable that such linkages among data be identified while merging in order to
ensure high accuracy/quality of the resulting merged database. Quality of the data
has direct implications to the quality of the data analysis/ data mining which, in
turn, may have an significant impact the quality of business decisions and hence
revenues. As a result, data cleaning tools that empower analysts overseeing the
merging process to perform successful and efficient matching among records are
important. Typically, such tools work by computing the similarity between two
records based on their attribute values. For example, the two strings represent-
ing ACME corporation in the example above, though not identical, are sufficiently
similar to suggest that they potentially refer to the same entity.

While an approach to matching entities/tuples based solely on matching corre-
sponding attribute values may work well in many instances, difficulties arise (as is
often the case) if the attribute values for an entity/record of an input table matches
description of more than one object in the reference tables. What basis should then
be used to disambiguate among the multiple matches? One possible approach is
for the cleaning tool to output all potential matches and for the analyst to decide
among the various choices. Even so, the challenge still remains — what basis should
the analyst use for disambiguation?

[orgaa] org_namel country | area II

boeing_usa Boeing USA aerospace
boeing_aus Boeing AUS farming
beoing_ger Beoing GER finance

a A - farming
g G GER -
uj U; - aerospace
us Uz USA ~
us Us USA -

Table I. Reference table: company information

1t is commonly assumed that reference tables do not contain duplicates and R is complete, i.e.
whenever a tuple in the input table is referring to an object, this object is present in R.

, Vol. V, No. N, May 2004.

Exploiting Relationships for Data Cleaning . 3

[trans_id | org.idi | org-id2 ||

T, boeing_usa uj
To boeing_usa u
T3z u uz
Ty us us
Ts boeing_aus a
Te boeing.aus a
Tz beoing_ger g
Tsg beoing_ger g
Tg beoing._ger g

Table II. Organization transactions

“ input_id I org.namel] org-name?2 ”

I, Boeing A
I Beoing G
I3 Beoing Ui
Iy Beoing Us
Is Beoing Us

Table III. Input table: org-namel to be cleaned, input_id and org_name2 are known to be clean

In this paper, we hypothesize (and we will justify via examples shortly) that
the knowledge about entities and their relationships latent in the database can be
used to achieve such a disambiguation. Based on this hypothesis, we propose an
approach to data cleaning that can be applied for choosing among various matching
alternatives when merging relational data.

Before we describe the proposed approach in detail, let us motivate it through
an example. Consider again the data warehouse scenario where data from multiple
sources about companies and their business transactions is being merged to create
a common database. Let the warehouse schema contain two tables: the company
and transaction tables explained below. Assume the input table contains new data
that needs to be merged.

Table I shows a sample content of the company table for eight companies. It
serves as a reference table. That is, the company name in the column org.name
is considered as a canonical representation and this representation will be used to
determine the matches during data cleaning. The other attributes are organization
id, its specialization area, the country in which the organization is located. For
some of the companies the country or area may be unknown.

Table II shows information about companies’ business transactions. Each tuple
contains transaction id and two id’s of companies between which the transaction
has occurred. The intent of that table is to show that Boeing of USA has many
transactions with company named U;, company U; normally does business with
company Usg, company Us with company Us, also all current transactions of Boeing
of AUS are with company A, and company Beoing of GER has many transactions
with company G.

Table III contains data to be cleaned in the form of new transactions specified
as names (not id’s) of companies between which those transactions have occurred.
We assume in this example that only values of the org namet attribute are to be

, Vol. V, No. N, May 2004.

4 . Dmitri V. Kalashnikov et al.

cleaned and the values of the other attributes are known to be clean.

To clean the data in Table III, current algorithms such as [Chaudhuri et al.
2003] essentially would try to do string-based similarity matches between names
of companies in the input table and company table, which serves as a reference
table. Correspondingly such methods would unavoidably conclude that “Beoing”
companies mentioned in Table III most likely correspond to the Beoing of GER
because this company has the best string match with “Beoing” among all possible
candidates.

However, for this specific domain it could be the case that two companies from
the same country, having the same specialization areas, that have previously worked
together (have multiple business transactions with each other) are more likely to
have transactions together rather than two companies from different countries and
having different specializations and which have not had transactions with each other
previously. Let us assume that the rules mentioned above do apply and see what
effect this has on data cleaning.

Further refinement [I3]: Consider cleaning of tuple I;. Any string-based approach
would output that Boeing in I; is, with equal probability, either Boeing of USA
or Boeing of AUS. Another (lesser) possibility is of Boeing being misspelled and
it is in reality Beoing of GER. However, given our assumptions and the fact that
company A has previously had all its transactions with Boeing of AUS, and Boeing
of AUS and A have the same specialization, one can further assert that the highest
probability to be the right match should be given to Boeing of AUS, second highest
to Boeing of USA, and the lowest to Beoing of GER.

Consistent |I]: For tuple I any string-based algorithm would identify Beoing of
GER as being the most likely candidate. This is also consistent with the current
content of the database.

Contradiction {Is, 14, Is]: For I3, 14, and Is any string-based method would output
that Beoing of GER is the most likely correct match. These cases are interesting
because if one relies solely on our assumptions and ignores what is returned by
any string-based method then one will conclude that Boeing of USA, not Beoing
of GER, is the likely correct match. This is because company U; has previously
had transactions only with Boeing of USA and further, they both have the same
specialization. Company Us shares the same country with Boeing of USA, and it has
worked with U; which has worked with Boeing of USA — these are weak connections,
but nevertheless the other possible candidates do not have such connections at all.
The situation with company Us is similar, except for the second connection chain
to Boeing of USA is now longer and weaker: Uz has transactions with Us, which
has transactions with Uj, which has transactions with Boeing of USA.

Above we have shown cases where knowledge of the application domain and rela-
tionships among entities can impact our decisions about matches between entities
beyond string-based match approaches.

While at first glance such an analysis might seem like an ad hoc (domain de-
pendent) solution, a generic solution emerges if we view the data in the form of a
graph of entities that are interconnected via relationships between them. In the
graph, we will use the term node for vertex and link for edge. The term path, un-
less specified otherwise, refers to a simple path with no duplicate nodes. Figure 1

, Vol. V, No. N, May 2004.

Exploiting Relationships for Data Cleaning . 5

Fig. 1. Graph for the warehouse example

shows a possible graph representation of the reference warehouse database. We
also show a single entity in the input table I; which needs to be resolved. I; is
shown connected to organization A and to the three possible “boeing” choices via
a choice node. How to construct such a graph will be made clear in the following
sections. The analysis leading to cleaning in the example above can then be viewed
as determining the connectivity between the entity being cleaned and the various
choices that exist in the database. The measure of connectivity between nodes in
a graph can be estimated by analyzing various paths that exist between the two
nodes. The above example summarizes the essence of our approach. What we re-
quire is a mechanism for estimating the strength of connections among entities in
a graph based on relationships among them and an algorithm to do it efficiently.

Empowered with these observations, we develop a generic approach for off-line
domain independent data cleaning which we refer to as Relationship-based Data
Cleaning (RelDC). RelDC views the underlying database as a graph and exploits
relationships among entities to make accurate match predictions. We explore sev-
eral optimizations of the algorithm to scale RelDC to very large data sets, we show
a few of those in Section 5, more optimizations are available in [Kalashnikov and
Mehrotra].

While the approach presented in the paper is generic, to validate our approach, we
had to find one large public-domain real dataset to demonstrate its applicability. For
this purpose we have chosen the author matching problem explained in Section 2.
The rest of this paper is organized as follows. Section 3 presents RelDC approach.
Experimental results are presented in Section 6. Finally, related work is covered in
Section 7 and Section 8 concludes the paper.

2. AUTHOR MATCHING PROBLEM

In the author matching problem we consider merging of two sources: CiteSeer|[CiteSeer
] and HPSearchHomePageSearch |. From CiteSeer we extract an (input) paper
table with the schema (paper_id, FI, last _name, namel, name2, name3). These
attributes correspond to the CiteSeer’s paper id, author first initial, last name, first
name, second name and third name. The last three attributes are not always avail-

, Vol. V, No. N, May 2004.

6 . Dmitri V. Kalashnikov et al.

able. From HPSearch we extract a (reference) author table with the schema (name1,
name2, last_name, department, university/organization). The attributes are
author name and affiliation, the latter is not always specified in HPSearch.

In the author matching problem main entities are authors and papers. An author
name in the paper table from CiteSeer can match several authors in HPSearch. The
goal is to identify the true author. For example, J. Smith who authored paper P1
may correspond to one of the many entries in HPSearch author table, e.g., John
Smith, Jane Smith, etc. The cleaning task is to link the record in the paper table
to the record of the real author of the paper in the author table.

Our approach to data cleaning exploits rela-
tionships to determine linkage among entities.
The types of relationships among entities in the
authorj—(departmentj author matching problem is depicted in Fig-
ure 2. In the figure nodes correspond to entity
) o types and edges represent the relationships be-
Fig. 2. Connectivity graphs for tween the entities. The figure shows, for exam-
author matching ple, that a paper entity is related to the author
entity. Similarly author is related to department, but there is no direct relationship
between paper and department. While Figure 2 shows the type of entities and
relationships among them, using the author and paper tables, a large instance level
graph can be be constructed similar in nature to Figure 1. In such a graph, a node
will be created for each distinct author, university, department and paper and the
entities will be related to each other based on relationships identified in Figure 2.
A set of choice nodes will be added to the graph the purpose of which will become
evident shortly.

Note that in the author matching problem we have extracted only a few sim-
ple attributes that introduce relationships useful for our cleaning task and suf-
fice to illustrate the concepts and validate the approach. In reality CiteSeer and
HPSearch pages are much richer in content and one could have extracted many
other attributes, e.g. for some of the papers in CiteSeer it is possible to extract
author affiliations, paper conferences, etc. This will further improve accuracy of
our method.

3. RELDC APPROACH

RelDC analyzes various relationships between entities and their strength for data
cleaning. It is based on the following assumption:

Relationships between entities are important for data cleaning.]

Correspondingly, if the assumption is not true for a particular domain, then
the solution presented in the paper is not applicable. But as will be shown, the
assumption is true for many of the domains in practice. The basics steps of the
RelDC approach are as follow.

o Step 1. Use an existing similarity approach to cleanse data. Wherever the existing
approaches, such as [Chaudhuri et al. 2003], fail in disambiguating records (i.e., it
finds multiple matching candidates) identify those records.

o Step 2. Determine the strength of connection between the to-be-cleaned records
and their matching candidates based on relationships.

, Vol. V, No. N, May 2004.

Exploiting Relationships for Data Cleaning : 7

o Step 8. Resolve the choices based on the connection strengths.

The above three steps are an abstract representation of our proposed approach.
Step 1 is straightforward, we simply take existing approaches to determine the pos-
sible choices. The rest of this section is dedicated to discussing steps 2 and 3 which
together represent the novel aspect of our approach. Before we proceed, we note
that steps 2 and 3 can be realized in a variety of different ways. What we discuss
below is one particular implementation. We do not claim the specific implementa-
tion/realization of steps 2 and 3 is the best (either in terms of effectiveness of the
cleaning or the performance). It is an intuitively appealing approach that is able
to achieve high accuracy as will be shown in Section 6. Moreover it suffices our
purpose of establishing the importance of relationships in data cleaning which we
believe is our fundamental contribution in this paper.

In explaining our approach we view the database as a graph. We could have
explained our approach directly in terms of the relational view of the data, but
we find the graphical view more intuitive and natural for our purpose. Chains of
relationships between entities correspond to paths (or connections) in the graph.
Thus in terms of the graph terminology the assumption can be restated as follows.

Connections between entities in the graph are important for data cleaning.

We note that graphical view of structured data is commonly used in many data
analysis and designing situations. For example, ER diagrams are commonly used
as a starting step for relational data design. The ER model is used since it is more
conceptual compared to the relational model and hence easier/more intuitive for
the designer to deal with. Once the database designer has established the initial de-
sign, the resulting ER design is mapped (often automatically) to the corresponding
relational design via an ER to relational mapping.

In our situation, what we need is the reverse mapping — to view data as a graph,
we need to map the relational data into the corresponding graph of entities inter-
connected via relationships. Such a reverse mapping has also been studied in the
database design literature in the past [Mannila and Raiha 1992]. Such a mapping,
while in certain situations can be automated by exploiting knowledge of database
constraints (e.g., foreign key constraints), in general, it requires human interven-
tion. We do not dwell on this issue any further except to observe that the analyst
must guide such a mapping.

Edges as well as vertices in the graph can be labeled with weights. Edge labels
are needed to interpret the degree of confidence the relationship exists between the
two entities. For example, in Figure 1 specialization are of company Beoing of GER
might not be known precisely, but the system might be able to associate confidence
of 0.6 that its specialization is finance. In that case the corresponding edge will
be labeled 0.6. The construction of the graph as it is used for our data cleaning
algorithm is detailed in Section 3.1.

An implementation of RelDC The basic steps of our implementation of
RelDC are outlined in Figure 3 and explained in detail is the subsequent sections.

Data Cleaning Process Figure 4 shows the data cleaning process for relational
DBMSs in the context of our algorithm. First a graph of interest is created from a
relational DBMS. Then RelDC is applied to that graph producing a cleaned version
of it. Finally the results are interpreted and stored back in DBMS. In certain

, Vol. V, No. N, May 2004.

8 . Dmitri V. Kalashnikov et al.

Input:
(1) a reference database R
(2) a ‘dirty’ table I to be merged with R
(3) to-be-cleaned attributes in I and the corresponding at-
tributes in R
Algorithm:
1. create representation of R as a graph G
2. merge input table I with G
(a) use fms to determine initial matches
(b) create choice nodes
3. resolve choices
(a) discover relationships
(b) create equations for weights
(¢) resolve weights
4. interpret weights

Fig. 3. RelDC Approach

table1

table2

RelDC

Y

table3

Graph of interest Cleaned Graph

Relational Database

1 y

Fig. 4. RelDC: Data cleaning cycle

situations this process can be made to continue in cycle in order for the analyst to
apply the domain specific rules as discussed in [Kalashnikov and Mehrotra].

3.1 Graph construction

This section explains step 1 in Figure 3. The graph used in the system reflects
various relationships, represented as edges, between entities represented as nodes.
Each edge has a weight associated with it. This weight reflects the level of confidence
in the fact that the two nodes connected by the edge are actually related. Nodes,
in general, have weights too, which reflect the relevance of the nodes to a particular
matching task.?

When processing a tuple from the input table a node is created for that tuple
such that attributes of that tuple becomes attributes of the node. When processing
a node with to-be-cleaned attribute(s), the goal is to link this node correctly to
the existing graph based on the values of these attributes for that node. As an
example consider an author matching problem where a paper paper; is processed
and needs to be correctly linked to the graph, see Figure 5. Assume in addition
to what is mentioned in Figure 2, the algorithm can handle author and paper
specialization area. Assume paper; is coauthored by “J. Smith” and “C. Unique”,
and the paper’s specialization area is “DB”. Our algorithm first utilizes one of the

2For the author matching problem weight of all nodes is 1.

,» Vol. V, No. N, May 2004.

Exploiting Relationships for Data Cleaning . 9

authort John Smith

aythorz John Smith

papert
auth1: J. Smith

auth2: C. Unique
area: DB

author3 Joe Smith
author4 Curt E Unique

Fig. 5. Processing a new paper

on-line string-based methods, such as [Chaudhuri et al. 2003], to construct initial
matches. Assume according to a string-based similarity function author “J. Smith”
can match only three people shown in Figure 5, and author “C. Unique” can match
only one person. Furthermore, assume it is known that authors “Joe Smith” and
“Curt E. Unique” work in DB area, whereas the other two authors do not.

3.2 Choice creation

In this section we show how the input table is merged with the graph, which cor-
responds to step 2 in Figure 3. Since name “C. Unique” can correspond to only
author “Curt E. Unique”, paper; is linked directly to authors with weight of 1 as
shown in Figure 6. “J. Smith” cannot be resolved with certainty. The goal is to
determine who he really is based on the knowledge already stored in the database.
Our solution to the problem is to create an instance of a special type of node: a

choice1 ! authori John Smith

paper1

auth1: J. Smith auth1: J. Smith
auth2: C. Unique

area: DB

Fig. 6. Choice creation

choice node, see Figure 6. Each choice is connected with weight 1 to the entity
with the to-be-cleaned attribute for which it has been created. In Figure 6 choice;
is connected to paper;. It is also connected to all the entities, the value of the
to-be-cleaned attribute can refer to. These entities are initial matches determined
by a string-based similarity function. In Figure 6 choice; is connected to authors
1, 2, and 3. Such entities are called hypotheses or options of the choice. The goal
is to assign the appropriate weights to the edges linking the choice and its options
based on the current content of the database. A higher weight of an edge should
correspond to a higher chance for the option of being the correct match.

For notational convenience we will use “weight of an option” for “weight of the
edge linking the choice and option nodes”. We will use “a choice” for “a choice
node”. When we talk about “resolving a choice” we mean finding the weights of
its options.

, Vol. V, No. N, May 2004.

10 . Dmitri V. Kalashnikov et al.

” Notation [Meaning ”
choice; choice number
option;; option number j of choice;
weight of option;; | weight of edge choice;«option;;
wij raw weight of option,;
Wij normalized weight of option;;

Table IV. Terminology

3.3 Defining option weights

Now let us see how steps 3(a) and 3(b) in Figure 3 are implemented in our approach.
Determining the weight of 5t option of choice;, option;;, in our context means one
needs to find and measure some evidence of a hypothesis that the value for which
choice; has been created indeed corresponds to option;;, see Figure 7. The string-

entity, choice; -

attry (1o be cleaned) for entity, attr;

Fig. 7. Choice resolution

fms which is our notation for weight

ij

of option;; returned by a string-based similarity function. Weight wfjms can be
based for example on edit distance or any other reasonable measure. Acronym
fms, introduced in [Chaudhuri et al. 2003], stands for fuzzy match similarity and
we use it as a more generic term for any string-based similarity (or number-based
similarity).

e Discovering relationships Unlike any fms, RelDC analyzes relationships
between entities. In a graph, relationships correspond to paths. To analyze option;;
of choice; our algorithm first discovers all relevant relationships. It does so by
invoking AllSimplePaths algorithm which finds all simple paths in the graph linking
option;; and entity entity; for which choice; has been created.

Not all paths returned by AllSimplePaths algorithm are considered, some of them
must be ignored. Clearly the path via the choice; node (i.e., option;; — choice;
— entity;) must be ignored since our purpose in analyzing option;; of choice; is
to determine the strength of the connection between entity; and option;; based
on other relationships. Also if a path goes through some other choice choice, it
cannot contain two edges choicey — optionk, and choicex — optiong, | # m,
where optiony; and optionk,, are any two options of choicer. Such a path is illegal
since our underlying assumption is that the attribute of the entity a choice is trying
to resolve in reality matches exactly one option. Thus these edges are mutually
exclusive in a single path.

As an example, consider Figure 6. There is no legal simple path between paper;
and author; and between paper; and authors: simple paths author; — paper; and

based method returns one such measure w

» Vol. V, No. N, May 2004.

Exploiting Relationships for Data Cleaning . 11

authory — paper; are discarded as paths going via choice; (as described above).
There are two simple paths between paper; and authors: authors — area; —
paper; and authors — area, — authory — paper;.

e Analyzing and weighing relationships For each path returned by All-
SimplePaths our algorithm computes connection strength of that path as explained
in Section 3.3.1. Note that we show the reason behind our formula for connection

1. for i — 1 to num-_choices do

2. for j «— 1 to choice;.num_options do

3. Paths;; +— AllSimplePaths(option,;, choice;.entity)
4 wy; = ConStrength(Pathsi;)

5. for i — 1 to num_choices do

6 m «— choice; . num_options

7. forj«—1tomdo

8 option;;.w = w;; = Normalize(j, wi1, ..., Wim)

Fig. 8. RelDC: defining w;; and Ws;

strength but one potentially can compute it differently. The algorithm combines in-
dividual connection strength of each path to compute the raw weight w;; of option;.
Then, for each option;; its normalized (to 1) weight, @;;, is computed as explained
in Section 3.3.2, W;; is used for successive processing as weight of option;, i.e. it
replaces the corresponding “?” in Figure 7. The procedure for defining the raw and
normalized weights is outlined in Figure 8.

e Interpreting weights This addresses step 4 in Figure 3. Once the final
normalized weight are computed they can be interpreted in the similar fashion as
weights of any string-based approach. One of the approaches used in the literature is
for analyst to specify a threshhold 7', e.g. 0.80. If the weight of one of the matching
candidates is greater than the threshold, then this candidate is chosen as the answer
of the algorithm. If multiple candidates qualify, the one with the highest weight
is choosen, ties are broken randomly. If no such candidate cannot be chosen, then
such cases are flagged for the analyst to handle manually. If the analyst specifyies
the threshhod of zero, then the algorithm will work in fully automatic mode and
. will not require interaction with the analyst. In our experimental result section 7°

is always zero.
1

3.3.1 Computing connection strength. Once the set of all simple paths is deter-
mined, the raw weight is computed as a function of individual connections. But
which factors should be taken into account when computing the connection strength
of each individual path?

Figure 9 illustrates two different connections between authors author; and authors.
Let us understand which connection is better, and why. Both connections have an
equal length of two. One connection is going via node Researchers, the other one
via paper;. It is no wonder it is possible to connect the authors via Researchers
and such a connection should definitely have a lesser strength than a connection via
paper;. Notice, this is reflected in the fact that Researchers is connected to every

, Vol. V, No. N, May 2004.

12 . Dmitri V. Kalashnikov et al.

author, but paper; connects only the two authors. Based on this intuition let us
define a connection strength of a general simple path between two nodes.

authort John Smith author2 Jane Doe

paperi

Fig. 9. Strong and weak connections

Fig. 10. (a) Link coefficient (b) Connection strength of path node; — nodeq is 5

Assume path p consist of k links: I3, ..., . Let us define link coefficient C;
for each link [; in the given path. The formula for C; is different from the formula
for C; when i is greater than 1. For [, C; is chosen to be the weight of the link
wy,. Figure 10(a) shows a case where a path goes from left to right through an
intermediate node. In our system certain paths are not valid, as explained above,
and also paths must be simple so if a node is visited already the path cannot go
back to that node. To reflect this fact Figure 10(a) shows that because the node
has been entered via a certain link, the path can continue only via three links
depicted in solid lines, and cannot continue via links depicted in dashed lines. If
the path goes through the link with weight w; the link coefficient is calculated
as ﬁm This corresponds to the probability of following the link if doing a
random walk in the graph, following only simple paths and following links with
probability proportional to their weights. The connection strength wjy, of the whole
path p is computed as a product of link coefficients: w, = Hlep C;, where () is
the link coefficient of link / in path p. The intuition behind the formula is that it
is closely related to the probability of reaching the destination from the source via
this path if doing a random walk in graph. To compute the connection strength
Wn, n, Detween two nodes n; and ns one would need to find the set of all simple
paths between the two nodes P, », and sum up the weight of all individual paths:

Wny,ng d__gf Z Wp = Z HCI (1)

Pepnpnz Pepnl,nz lep
» Vol. V, No. N, May 2004.

Exploiting Relationships for Data Cleaning . 13

It can be seen that the total connection strength between n; and ng defined in
Equation 1 is related to the probability of reaching n, if doing a random walk in
the graph starting from n;.

Section 4 in the appendix discuss how to adjust the link coeflicient formula to
capture the fact that longer relationships are weaker and accommodate the node
relevance.

Example Connection strength of path node; — nodes shown in Figure 10(b) is
%1, This is so because the link coefficient C; of the first link by definition is simply
its weight. The link coefficient of the second link Cy is 1 because even though nodes
has 4 edges, due to the fact that it was entered from a specific link, it can be left
only via one specific link. The link coefficient of the last link in the path, C3, is %
because the node can be left via two links of equal weight. The connection strength

of the path is computed as C; - Cz - C3 which gives us .

3.3.2 Option weight normalization. Once the raw weights of the options of a
choice are computed they are further normalized to 1 to reflect the fraction of
confidence the algorithm places for each option to be the right match.

o Normalization method 1 One way of doing such a normalization is to use simple
formula for normalized weight w;;:

ij'tj

It is interesting to note that such normalized weights is related to to the probability
of reaching the options following links while adhering to certain rules. Method 1
treats connection strength as the only evidence available for determining those
weights.

o Normalization method 2 One could argue that the formula above does not
address the situation shown in Figure 11. In Figure 11(a) a choice has three options,

— 0 ifw¢j=0;
Wi = | <2 if wy; > 0.

Fig. 11. Motivation for Normalization method 2

raw weights of two of which is zero and of the third one is small with respect to
the other weights in the system. This means that RelDC has not been able to find
any evidence that options 1 and 2 can be the right match and found insubstantial

, Vol. V, No. N, May 2004.

14 . Dmitri V. Kalashnikov et al.

evidence for option 3. Normalization method 1 will produce weights of 0 for the
first two options and weight of 1 for the third option. One interpretation of this
might be that the algorithm is 100% confident options is the correct answer. One
can argue that in such a situation, since the evidence for options is very weak,
more appropriate normalized weights should be roughly equal, i.e. the weight of
each option should be close to % in this case, as shown in Figure 11(b), and options
should have a slightly greater weight than that of option; and options.

Figure 11(c) is similar to Figure 11(a), but this time the weight of the third option
is strong. Following the logic presented above weights of options 1 and 2 should be
close to zero, the weight of optiong should be close to 1, as in Figure 11(d).

To achieve such a normalization we assume that each option, just because it has
been picked by fms in the first place, has a default small positive weight o € RT.
The normalized weight W;; is then computed as:

Too= LT
Y (wi +a)

3.4 Resolving weights

This section addresses step 3(c) of RelDC approach shown in Figure 3. Recall, see
Figure 8, that first a string-based method is utilized to create initial matches, then
choice nodes are created for values that can match more than one entity. If there
is only one choice after that, then our algorithm will simply compute the weights
of its options as described above and stop. However, if there are multiple choices,
when resolving a particular choice it might turn out that the weight of its options
will depend on the weight of options of other choices. In that case further analysis
is needed.

System of nonlinear equations Once all simple paths between all attributes
to be resolved are determined, the raw weights can be expressed as functions of
normalized weight of other options (see Figure 8) and the new normalized weights
can be expressed as functions of the raw weights, as described in Section 3.3.2.
These dependencies can be expressed in the form of a system of nonlinear equations.
Figure 12 shows a sample of such a system of equations produced as an output of

(//raw weight equations

wy,2 = 0.010204 - Wa,3/(W1,3 + Wa,3) + 0.5 - Wa,2
Ws,6 = 0‘104167

Wws,7 = 0.0

//normalized weight equations
Ws,9 = ws,o/(ws,9 + ws,10)

Fig. 12. System of nonlinear equations

, Vol. V, No. N, May 2004.

Exploiting Relationships for Data Cieaning . 15

the algorithm for an experiment with real data.® In Figure 12, w; ; denotes the raw
weight of the edge between nodes with id’s ¢ and j, W;,; denotes normalized weight.

NLP problem A solution of such a system should adhere to additional con-
straint: all raw weights must be nonnegative values. Thus the problem can be
converted to a nonlinear programming (NLP) problem where the constraint func-
tions are specified as above and the objective function will be specified later in this
section. There is a large body of work [Hillier and Lieberman 2001] that estab-
lishes conditions under which solutions for NLP problems exist or does not exist.
We can always reformulate our problem to guarantee that a solution always ex-
ists as follows. Let n; in the rest of this section denote the number of options
of choice; and m denote the total number of choices. Each raw weight equation
wij = fij(Wi1,- -, Wmn,,) is transformed into fi; (w1, ... s Wmng,) — 0i < wyy <
fij (@11, -, Wmn,,) + 05, where 6;; is the tolerance for wi;. The objective func-
tion is set to minimize y = Z - 8i;. Such a system always has a solution because
maximum possible connection strength is limited for each graph: for any graph
IM e R* ¢ fi;() < M,Vi,j. Thus solution (assuming normalization method 2)
wi; =0, Wy = ;};, 8;; = M, Vi,j is one of the valid solutions, the goal of course
is to find a better solution by minimizing all d;;’s.

The second issue that arises is what if there is more than one solution. Which
solution should be the final answer then? This issue is normally resolved by associ-
ating an objective function in addition to the set of constraints. A feasible solution
that minimizes/maximizes the objective function is presented as the solution. So
our task is to specify an objective function in our context. We specify the objective
function as minimization of z = 37, 377 [Wy; ~ 7|

The motivation behind this formula is as follows. If multiple solutions exist
one (conservative) approach that seems very intuitive is to try to avoid making
disambiguation decisions if there is no direct evidence for those. For example, if
weight W;; of option;; can vary, try to make it as much neutral as possible by
minimizing [W;; — L| Notice, n; is the number of options of choice; and if there is

no evidence supporting any of the options the algorithm will output ;- L weight for
each option. By specifying such an objective function the algorithm t;rles to abdicate
from making decisions in the situations where there is not enough evidence: those
cases instead are left for the analyst to handle manually later, if the threshold is
set accordingly, see Section 3.3.

Another issue is to find an appropriate method that would solve our NLP prob-
lem. It is known that the general NLP problem is unresolved. Unfortunately we
could not map our problem to any existing NLP problems, methods of solving of
which are known. To solve our system we have tried several solvers. Given the
scale of the problem (50K-100K equations) the solvers we used would often not
terminate in a reasonable amount of time SNOPT[GAMS/SNOPT solver | solver
which we have used in most of the experiments works well for smaller problems.
To overcome this we also have implemented a simple iterative method described in
Section A.1 in the appendix.

3The indexes in the subscript are changed for clarity.The method described in Section 4 is to be
applied to that system.

, Vol. V, No. N, May 2004.

16 . Dmitri V. Kalashnikov et al.

4. OTHER ISSUES

Node relevance We have developed the above algorithm under the assumption
that every node in a connection is equally important in disambiguating a choice.
However in general some of the paths found by AllSimplePaths algorithm might
go through certain types of nodes which are irrelevant or only partially relevant
to the particular cleaning task. For example authors’ similar music taste, given
such information is included in the graph, is likely to have little impact on them
writing papers together. In such cases an analyst can specify node weights given
the particular cleaning task. Figure 10(a) depicts the case where a node is assigned
relevance of u1. In such a case a new formula for computing a link coefficient is
m’i«%ﬁ' In our setup for the author matching problem all nodes are relevant,
i.e. their weight are 1, consequently node weights are not used. Normally there will
be many nodes present in the graph, so assigning a node weight could present a
challenge. Fortunately, these nodes will be of a limited number of node types, such
as types “author” and “paper”. It is expected that most of the nodes of the same
type will get assigned the same weight reflecting their relevance.

Decay factor In current formula the fact that longer relationships chains are
weaker is only partially captured. For example, assume in the input table shown in
Table III attribute org_.name?2, instead of org_name1, needs to be cleaned, while the
other attributes are known to be clean. Assume there is an extra tuple (I, boeing,
U,), consequently U, can correspond to Uy, Us, or Us. By referring to Figure 1
one can see, especially if nodes “USA” and “aerospace” are removed, that U is
likely to correspond to U;. However, assuming all the nodes depicted in that figure
have relevance of 1, neither any string-based similarity functions, nor the formula
we have presented up until this point will be able to give preference to U;. Thus in
certain situations it can be desirable to shift towards the graph random walk model
where the next step itself is done with certain probability. One way of achieving
this is to specify a decay factor per node type. The modified formula for the link

coefficient of a link going from node with decay factor of d; is: E%

5. DEALING WITH SCALE

Our data cleaning approach is based on complex graph analysis which becomes
computationally expensive as the size of the problem increases. If we are to make
the approach scale to large problem sizes, clever techniques to speed up the analysis
must be designed.

As far as optimization techniques are concerned, the RelDC procedure can be log-
ically divided into two phases: the discovering relationship (a.k.a. AllSimplePaths)
phase and weight computation phase. Recall, for the weight computation phase we
either use an off-the-shelf solver or our own iterative method which we call Itera-
tive Graph-based Data Cleaning (IGDC). We cannot apply any optimizations of the
weight computation phase if a solver is used. So all the weight computation phase
f)ptimizations mentioned in this section, as well as most of the discussion in general,
imply our iterative implementation of RelDC. Also for IGDC a clear bottleneck is
the AllSimplePaths phase, whereas if a solver is used this is not necessarily the

, Vol. V, No. N, May 2004.

Exploiting Relationships for Data Cleaning . 17

case.?

The most computationally expensive part of our approach is determining all sim-
ple paths among a set of nodes. Since our problem and the well-studied problem of
the maximum network flow (MNF') bear some similarity, we have considered utiliz-
ing it for our algorithm but realized later that MNF treats “weights” in principally
different way and cannot be applied. Thus we had to devise our own optimiza-
tions. Note that in general the number of simple paths between two nodes can be
very large®. In practice, the number of path is not that large, however a simple
algorithm can make many redundant traversal while discovering those paths. We
have developed several optimizations that reduce the number of redundant traver-
sals improving performance by orders of magnitude. In the rest of the section we
discuss several most important optimizations. We classify optimizations in three
large categories summarized below:

1. Simplifying the problem by specifying rules, Section 5.1
I1. Algorithmic optimizations of IGDC
(1) Preprocessing optimizations
(a) Use of ShortestPath algorithm, Section 5.2.1
(2) Optimization for all (or only first) iterations
(a) Use neighborhood information, Section 5.2.2
(b) Use reachability information, Section 5.2.2
(3) Optimization for speeding up the subsequent iterations
(a) Store paths explicitly, Section 5.2.3
(b) Use graph coloring, Section 5.2.3
III. Exploiting parallelism

The first category improves the efficiency of algorithm by adding additional re-
strictions to simplify the problem. The second category optimizes AllSimplePaths
algorithm. The third category exploits parallelism: IGDC while processing choices
(i.e. while computing the normalized weights) during a particular iteration 7 uses
normalized weight of options only from iteration i —1. This provides an opportunity
for executing the algorithm in parallel on multiple CPU’s. That is, all choices can
be divided into several groups and each CPU will be responsible for resolving all
choices of one of the groups.

5.1 Constraining the problem

The problem can be simplified by adding additional constraints. In order to speed
up the data cleaning process as well as to guide choice resolution, an analyst using
such a system can specify rules to help avoid certain computations. Rules can be
classified along two dimensions: domain dependence and purpose. Rules can be
general (domain independent) or ad-hoc (domain dependent). In the purpose di-
mension we distinguish resolution and speedup rules, though rules that serve both

“The performance of the solve is greatly dependent on the max path limit parameter of AllSim-
é)lePaths, explained later in this section.

Assume the worst case of fully interconnected graph of n nodes. Let us analyze the number
of possible simple paths between any two nodes in the graph. There can be 1 path of length 1,
(n —2) paths of length 2 (pick one out of (n — 2) intermediate nodes), ..., (n —2)! paths of length
(n ~1). Thus the number of possible paths is exponential.

, Vol. V, No. N, May 2004.

18 . Dmitri V. Kalashnikov et al.

resolution and speed-up purposes exist. The resolution rules guide the choice reso-
lution process, while speed-up rules are needed to speed-up the resolution process.
Such rules can include:

(1) Limiting the maximum length of paths for AllSimplePaths algorithm. That
is AllSimplePaths algorithm can be specified to look only for path of length less
of equal than some parameter L, and to ignore path of length greater than L.
This optimization is based on the premise that longer path tend to have smaller
connection strength while RelDC will need to spend more time to discover those.
(2) Specifying path types of interest (or for exclusion) explicitly. For example,
the analyst can specify that only paths of type “from any author node to any
university node then to any author node” are of interest. Some of such rules are
easy to specify, however it is clear that for a generic framework there should be
some method (e.g., a language) for an analyst to specify more complex rules. Our
ongoing work addresses the problem of such a language.

(3) Specifying a weight cut-off threshold. Assume choice; with n; options. Such
a threshold is specified per each choice;, as some coefficient o € (0,1) multiplied
by the average expected raw weight of each options: 7; = o+ [(3_72; wij)/ni]. All
options options;; with raw weights of less than 7; are removed from choice;. The
intuition is to remove options with raw weights that are too small relative to that
of their peer options.

5.2 Optimizing AllSimplePaths algorithm

This section presents optimizations for AllSimplePaths algorithm. All optimiza-
tions are divided intro three categories. Section 5.2.1 describes one preprocessing
optimization which is applied before the first invocation of AllSimplePaths. Sec-
tion 5.2.2 presents optimizations applicable to all iterations. Finally, optimizations
for speeding up the subsequent iterations (i.e., iterations number 2, 3, ...) are
presented in Section 5.2.3.

5.2.1 Preprocessing optimization. Before executing costly AllSimplePaths algo-
rithm for two nodes in the graph, one can first try to determine whether there is
at least one path in a more efficient manner as follows. During the preprocessing
phase “iteration zero” runs as any other iteration except for it uses a faster Short-
estPath algorithm instead of AllSimplePaths. If ShortestPath algorithm is not able
to find any legitimate simple path between given two nodes, then AllSimplePaths
will not find any paths either. Thus the option will have the weight of zero and it
is removed from further consideration.

5.2.2 Optimizations for all iterations.
(1) Utilizing neighborhoods for path pruning (NBH optimization) We use
the term neighborhood of radius Rp of a node vg for the set of all the nodes that
are reachable from vy via at most Rg links. Each member of the set is tagged with
“the minimum distance to vg” information.

The intuitive definition presented above can be rephrased formally: for graph
G = (V, E), the neighborhood of node vg of radius Rg, N (vo, Ro), is a set of pairs:

N (v, Ro) = {(v,d) : v € V, d = mindist(v,v), d < Ro}.

, Vol. V, No. N, May 2004.

Exploiting Relationships for Data Cleaning . 19

Fig. 13. Neighborhood information

A depth-first algorithm looking for all simple paths of length no greater than L
can exploit neighborhood information to prune certain paths, see Figure 17. Let us
assume the algorithm processes choice; created for attribute a of entity; and has
k options: option;;. The algorithm first computes the neighborhood N (entitys, R)
of radius R : R < L around entity; node. Then for each option option;; it finds all
simple paths from option,;(source) to entity; (destination) using a modified depth-
first method. Assume the algorithm is at some intermediate stage where it currently
observes a node v; : v; # entity; and the length of the intermediate path, i.e. the
simple path from option;; to vi, is m links. If m is such that m + R < L, the
algorithm proceeds as the regular algorithm. If m + R > L, then v1 must be
inside NV (entity:, R): otherwise there is no need to continue with this path because
even if it is possible to continue from v; and find a path to entity; the length
of the resulting simple path will be no less than L + 1 exceeding our path length
constraint of L. Further, if v; is inside A/ (entity;, R) then it is possible to retrieve
its min.dist information d to entity; from N (entity;, R). Then m should be such
that m + d < L: otherwise there is no need to continue with this path since its
length is guaranteed to exceed L.

Let us introduce a new term actual radius of neighborhood N (vg, Ro):

Roet = vEArfréiéngo)(min_dist(vo, v)).

In practice, sometimes it happens® that Ra.: < Ry, i.e. the neighborhood of vg
is a cluster which is not connected to the rest of the graph, then it might be
possible to speed the algorithm further. In this situation A (v, Ract) is equal to
N (v, R),VR € [Rget,00). In other words, we know the neighborhood of vy of
radius co. Regarding searching all simple paths as described above, this means
that all intermediates nodes must always be inside the according neighborhood.
The AllSimplePaths algorithm given above should be modified in order to achieve
the speedup - after computing A (entity;, R) the following test should be done: if
Ryt < R then R « oc.

(2) Using structural reachability for path pruning (SR optimization)
Structural reachability (SR) optimization is similar to the optimization that utilizes
neighborhoods (NBH): it speeds up the algorithm by pruning certain paths. SR
optimization is based on the fact that often the graph on which the algorithm works

_—
Naturally, the greater the Ry the more frequently this is likely to occur.
, Vol. V, No. N, May 2004.

20 . Dmitri V. Kalashnikov et al.

is not random, it is either structured or can be made structured. This is especially
true for graphs constructed from relational tables of a relational DBMS.

Figure 2 shows the connectivity graph for the author matching problem. Ob-
serving this information it is clear that it is impossible to reach any node of type
“paper” from any node of type “university” going via less than three links. One can
create a table storing min_dist information for node types: the information about
the minimum number of links one should traverse from any node of one type to
reach any node of the second type. This table can be either created by the analyst
or learned automatically. Similar to NBH optimization, using such information it
is possible to prune certain paths. For example, assume the algorithm is using
depth-first method for finding all paths (of length no greater than L). Assume it
tries to reach a node of type paper and observes a node of type university and the
length of the intermediate path is m links. Then if m +3 > L then there is no need
to continue with this path since even if it reaches the destination, the path length
restriction will be violated.

Comparing SR and NBH As has been shown above, SR and NBH are quite
similar, here we shall take up the differences between them. The advantage of SR
optimization over NBH optimization is that SR utilizes the inherent structure of
the graph while NBH needs first to invest time in building auxiliary data structures
(i.e., neighborhoods). The advantage of NBH over SR, is that neighborhoods in
general contain more information for pruning than the knowledge of reachability.
SR provides information about the lower bound of the minimum number of links
the algorithm will need to traverse from current node before it will reach a node of
type equal to the type of the destination node. For example, it might be possible
to reach some node of type paper in k links but this node is not guaranteed to be
the destination node (a particular paper). NBH, if available, provides information
about the exact minimum distance (in number of links) to the destination node.
Thus SR algorithm is likely to make more redundant traversals than NBH. In
our tests with a real dataset NBH optimization has shown better results than SR
optimization. However SR optimization improves performance by an order of a
magnitude in comparison to the the case where neither SR nor NBH are used.

5.2.3 Optimizations for the subsequent iterations.

(1) Storing discovered paths explicitly Once paths are discovered on the first
iteration, they can be exploited for speeding up the subsequent iterations. One
solution would be to store such paths explicitly in memory, if there is enough such,
or on disk. Once paths are stored the subsequent iterations do not rediscover them,
but rather work with the stored data.

Storing paths explicitly might not be always an acceptable solution in terms of
memory and storage overhead, e.g. our rough experimental estimates show that
storing paths in a compressed form for CiteSeer data for path length constraint of
eight will require up to 4GB of storage space, whereas path length constraint of
nine will require around 40GB of storage space. A space efficient solution using
graph coloring is explored later in this Section.

Path compression We store paths because we need to recompute connection
strength of the path which can change as weights of choice options change. An
astute reader might notice that one way of compressing path information is to

» Vol. V, No. N, May 2004.

Exploiting Relationships for Data Cleaning . 21

find “fixed” path, i.e. path the connection strength of which will not change, and
store the fixed connection strength (which actually can be aggregated with others)
rather than the path itself. Given our definition of path connection strength, a
path’s connection strength is fixed if and only if none of the intermediate path
nodes are incident to an edge weight of which might change.

(2) Graph coloring Storing the discovered paths explicitly in order to speed up
the subsequent iterations, as discussed above is not very space efficient. This section
proposes a solution which requires O(|V|) space for graph G = (V, E).

entity1 1 choicet
uncertain attr1 for entity1.attr1

Fig. 14. Graph coloring

The main idea is the following. During the first iteration, while resolving say
optiony, of choice;, see Figure 14, all paths that are found are “colored” using
the same color, say blue. Coloring of a path with a certain color means that all
nodes in the path are assigned this color. Each node can have multiple colors,
e.g. in general a node can have colors of blue and red at the same time, such
as node v; in Figure 14. While resolving a different option say optiong we color
all discovered path with another color, say red. Now, during the second iteration
coloring information can be utilized to prune certain paths. E.g. assume a modified
depth-first algorithm needs to find all paths from option; to entity; after the first
iteration and it knows that the path has been colored red during the first iteration,
see Figure 14. Starting from optiony the algorithm inevitably reaches node v; at
which point it has several choices where to go next: it cannot go back to node vz
because the path will not be simple one anymore, it cannot continue via vz because
it is not colored, two other nodes have the wrong color (only blue color), the only
choice where it can go is the destination node entity;. Notice that the algorithm
has been able to prune many dead-end directions following which it could have
spent a lot of its time but which would have never led it to the destination.

Implementation of graph coloring In order to implement graph coloring each
node needs to have an nbit “color” field. By default a node has no color, which
corresponds to nbit vector with all bits set to 1: 1. A node has color i iff the iP bit
of its color has value of 0. Consequently a node cannot have more than n colors. To
test if a node has color i one can simply do a bitwise AND operation with the node’s
color field and the i*® color’s color-mask, color;, defined as an mbit vector with all
but 4t bits set to 0: color; = (1 << 7). The reason why “no color” is T and not 0
is because that way it is easy to make algorithm ignore node color information by
defining color-mask for “any color” as 0.

, Vol. V, No. N, May 2004.

22 . Dmitri V. Kalashnikov et al.

Picking colors A color is picked for choice-option pair once during the first
iteration. Colors should be picked such that each color is present roughly equal
number of times, i.e. the extreme case is when every node has just one color which
is equivalent to not using the coloring optimization at all. The subsequent iteration
should be able to determine which color was used during the first iteration. One
way to implement that is to make the first iteration store this color explicitly, e.g.
in a table, for each choice-option pair. Our implementation instead utilizes a hash
function which maps a choice and option IDs to a number between 0 and n — 1 to
create one of the n colors. That way we do not need to keep a table for storing
color assignments and achieve uniformity, i.e., each color is used roughly equally.

Limited number of colors Because the number of colors is limited to n, the
same color, in general, will be assigned to multiple choice-option pairs. Con-
sequently,the algorithm with the coloring optimization, might still explore paths
which will not lead to the destinations. Predictably (and verified experimentally),
the greater the n the more efficient the optimization and that the faster IGDC
works, if the total number of nodes |V| is fixed. Naturally this improvement is
constrained since having more than |V| colors is of little value. The side effect of
having more colors is the space requirements: O(n|V]) of bits of storage (i.e., n bits
per each of |V| nodes) is required for storing color information in every node. Also,
if the number of colors is fixed, the greater the number of nodes the less efficient
is the coloring optimization because more choice-option pairs will have the same
color and many nodes will have (almost) all colors.

Removing not colored nodes If a node does not have any color it means it is
not a part of any path and thus it can be removed from the graph. This will speed
up the algorithm further because now it does not even have to retrieve the node
in order to realize that it does not have a color. However one should be careful:
removing the nodes means decreasing the degree of its neighbor nodes, which can
disbalance the system which measure the connection strength. Thus it is imperative
to store at each node aggregated information on links (such as link-weight) that
were removed as the result of node removals.

6. EXPERIMENTAL RESULTS

In this section we experimentally study RelDC using real and synthetic datasets.
We have used a Pentium 2GHz machine for our experiments. Our knowledge
base contains information from two public-domain sources: CiteSeer[CiteSeer] and
HPSearch[HomePageSearch |. Typically data cleaning approaches are tested for
accuracy and efficiency. In our context two more types of tests are interesting: the
effect of the number/amount of relationships and of longer relationships on the ac-
curacy of RelDC. We have used our iterative implementation of RelDC (which we
call IGDC) extensively because it does not suffer from the drawbacks mentioned in
Section 3.4 and applicable to large number of equations (e.g. 100K). Using solver
[GAMS/SNOPT solver | for smaller samples we have established the approximate
solution of iterative implementation rarely fully coincide with the exact solution.
Nevertheless, this section shows that the achieved accuracy of the disambiguation

» Vol. V, No. N, May 2004.

Exploiting Relationships for Data Cleaning . 23

based on such an approximate solution is very high.”

Some of the optimizations we have described (e.g., the graph coloring with less
than 64 colors), without their further improvement (e.g., changing the graph color-
ing implementation to handle significantly more colors), while have showed excellent
performance improvement for smaller dataset, they also showed not very significant
improvement for very large datasets. In this section we will study the implemen-
tation of RelDC mostly with only those optimizations that are known to be very
efficient not only for small datasets, but also for large datasets such as the whole
citeseer. Two principal such optimizations are NBH and storing paths on disk. The
optimization we have developed make the RelDC approach 1-2 orders of magni-
tude more efficient than a naive implementation. In this section we will show that
for IGDC (the iterative implementation of RelDCQ) the bottleneck is AllSimplePaths
algorithm, not the weight computation part that follows it. Therefore most of the
proposed optimization have been developed for optimizing AllSimplePaths. All-
SimplePaths is specified to look for paths of length less or equal to L, where L is 8
by default.

In the context of the author matching problem, an entity is a paper and an
uncertain attribute is one of the paper’s unresolved authors for which a choice
node is created. Frequently a single paper would have more than one author for
which disambiguation is needed, therefore multiple choices are created for that one
paper. Options of a choice are the corresponding authors. For author matching
problem we use a modified depth-first AllSimplePaths algorithm which utilizes NBH
(neighborhood) optimization, described in Section 5.

Data preparation We have constructed the author and paper tables as de-
scribed in Section 2. The paper (input) table contains 573,123 tuples of type
(paper-id, FI, last name, namel, name2, name3), corresponding to 255,228 pa-
pers. The author (reference) table contains 176,626 tuples of type (namel, name2,
last._name, department, university).

Accuracy on a real dataset In this context, the accuracy is the fraction
of authors that are correctly resolved by the algorithm in fully automatic mode.
We have applied RelDC to CiteSeer, for 8% of the authors it has computed only
fis weights: these are 1-author papers or RelDC has not able to find any path,
for the rest 92% it has computed non-trivial raw and normalized weights as well.
However issues regarding the accuracy of the result are not trivial. We do not dwell
any further on this issue except to observe that since the information about the
real authors of the papers is not available, it is infeasible to determine the actual
accuracy of the result.®

Instead in this section we propose a second experiment, which works with real
data as well. It will demonstrate the accuracy of RelDC but not the accuracy of

"The accuracy of the approximate method is high for the following reason. Assume the exact
solutiox.l for the three options of a particular choice is weights 0.8, 0.1, and 0.1. Assume the
a:ppr0x1ma,te solution is 0.7, 0.16, 0.14. Recall, those weights are interpreted to select the most
likely correct match. In both cases the algorithm’s output would be the same: that option 1 is
ghe answer since it has the largest weight in both cases.

We have resolved manually a random sample of authors (not in the above 8%) by going to their

homepages containing their publications. The whole sample was resolved correctly but we could
not test a large sample.

, Vol. V, No. N, May 2004.

24 . Dmitri V. Kalashnikov et al.

o ——
o KN

o

08 |- I 1 08 4

.. 06 1 5 06F 4
£ g
5 3
8 8

® 04 1 04 b

RelDC 100% —e— RelDC 100% —e—
0.2 | RelDC 80% ---&--- e 02 |- RelDC 80% ---&--- -
fms —— S
0 L L . 0) s " "
1 1.5 2 25 3 0 0.2 04 0.6 0.8 1
unci unc2

1 T T T T T
08 PR L B it S o, E
Y4 _
g g Y
g 04 b g 04 | J
RelDC, unci=2 —e— RelDC 100% —o—
0.2 | RelDC, unc2=0.95 ---o--- _ 0.2 | RelDC 80% ------]
fms, unct=2 —— tms
fms, unc2=0.95 ~------
0 n L n L 0 L L)) L
0 0.2 0.4 06 0.8 1 1 2 3 4 5 6 7
p L
(c) (d)

Fig. 15. Experimental Results

the above experiment.

Guessing author first names The idea of the experiment is to clean authors
pretending only their first initials are known in the paper table and then see if
RelDC guesses the right full first names of the authors correctly. For example,
if we know from the paper table ‘John Smith’ is an author of paper P;, then we
pretend we only know ‘J. Smith’ is an author of P;. ‘J. Smith’ can correspond,
for example, to two authors in the author table: ‘Jane Smith’ and ‘John Smith’.
Note, in that case any fms algorithm must guess one candidate, whereas RelDC
will do relationship analysis. If fms (RelDC) identifies record for ‘John Smith’ in
the author table as its outcome, then it is a hit for fms (RelDC) since the first
name ‘John’ is guessed correctly. In general, the fact that the author’s first name
is identified correctly does not imply the author is identified correctly®, but it gives
an idea about the quality of the algorithms.

To conduct such an experiment we need to prepare the data accordingly. In the
paper table we now consider only those papers for which author full first names are

9For example, given “J. Doe” the algorithm can correctly identify the first name “John” but, if
there are multiple John Doe’s in the database, the algorithm can still pick an incorrect one.

» Vol. V, No. N, May 2004.

Exploiting Relationships for Data Cleaning . 25

available and that have at least one corresponding author in the author table. This
procedures leaves 146,412 in the paper table, corresponding to 25.5% of CiteSeer.
Next we pretend that for each author in the paper table only the first initial is
known. The statistic about for how many authors (specified as only their F1, and
last name) in the paper table there is exactly one (2, 3, ...) matching author(s) in
in the quthor table characterizes the uncertainty in the system. For our experiment
there is a direct one-to-one (1 — 1) match for 82% of the cases, 1 — 2 for 9%,
1 — 3 for 3%, 1 — 4 for 2%, 1 — 5 for 1%, and the rest are less than 1% each.

Obviously, both fms and RelDC will have 100% accuracy for 82% of the authors
with 1 — 1 match. First, we study the accuracy of those methods on the rest
of 18% — the situation is interesting because the identities of all those authors
are uncertain. For that case, the accuracy is computed as the fraction of choices
resolved correctly. For these 18% the results are: fms’s accuracy is 35.9%, RelDC
has much higher accuracy of 63.2%. Using more traditional definition of accuracy
(i.e. in our context, the accuracy is the fraction of authors resolved correctly -
including those with 1 — 1 match), the results are: fms’s accuracy is 82% + 18%
. 0.359 = 88.5%, RelDC has higher accuracy of 82% + 18% - 0.632 = 93.376%. In
the rest of this section we assume the traditional definition of accuracy.

Accuracy on synthetic datasets A standard method of testing accuracy is to
create an input dataset from a known dataset by introducing uncertainty in it. Thus
we have created a dataset of 5000 papers and 1000 authors, which we have tried to
make as reasonable as possible. Each author is affiliated with one of 25 universities
each of which has 5 departments. Authors are divided into students and faculty.
Most of the authors, including faculty, have (current or former) advisors. Advisors
of authors who are currently students are likely to be from the same department of
the same university; advisors of authors who are currently faculty are from random
universities but likely from the same department type (e.g. “CS”). Correspond-
ingly each advisor can have several generations of his students. A typical paper is
written by a faculty member with other coauthors. Each coauthor can be (with
different probabilities) a student of the faculty from one generation, another faculty
member (student) from the same (different) department of the same (different) uni-
versity. Notice, if there are no rules (e.g. such as above) of who writes papers, i.e.,
each coauthor in a paper is completely random, then RelDC is not applicable. Also
recall that if a paper has only one author and after using fms a choice is created
for that author, then RelDC will not be able to find any legal connections between
options of the choice and the paper given the graph structure we have, see Figure 2.
Thus the accuracy of RelDC for such cases is identical to that of fms. Therefore we
will not consider such cases further and in our tests papers have 2, 3, or 4 authors
most of the time.

Figures 15(a) and 15(b) demonstrate the effect of uncertainty on accuracy of
RelDC and any fms for two different kinds of uncertainty. Each figure has three
curves: one for fms and two for RelDC when for 100%(80%) of authors their uni-
versities/departments are known.

Uncertainty of type 1. In the first case, shown in Figure 15(a), there are Ngyen
(here always Ny, = 1000) unique authors which use Npgme different names.

Parameter uncertainty; in Figure 15(a) is uncertainty; = Nﬂw—i ratio.

, Vol. V, No. N, May 2004.

26 . Dmitri V. Kalashnikov et al.

Ezample Let us see what this means if Npame is 750. For ease of explanation,
assume author full names are integers. The name of author with ID k, where
k € [0,999], is computed as (k mod Npgme) which is (k mod 750), since Nname =

750. Thus authors with IDs 0,...,749 have names “0”,...,;“749”. Authors with
IDs 750,...,999 have names “0”,...,“249”. Thus 500 authors (those with IDs
250, . . ., 749) have unique names (their names are “250”,...,“749”). For each of the

rest of 500 authors (those with IDs 0,...,249 and 750,...,999) there is another
author with the identical name.

The authors in papers are always specified by their full names. Notice, for each
author whose name is not unique, one can never identify with 100% confidence any
paper this author has written, thus uncertainty for such authors is very high. When
uncertainty; is 1, then there is no uncertainty and all methods show accuracy of
1. As expected, accuracy monotonically decreases as uncertainty increases. When
uncertainty; is 2 uncertainty is very large: for any given author there is exactly
one another author with the identical name. For this case, any fms have no choice
but to guess one of the two authors, thus the accuracy of any fms, as shown in
Figures 15(a), is 0.5. The accuracy of RelDC 100% (RelDC 80%), given the uncer-
tainty, is quite high : 94%(82%). The gap between RelDC 100% and RelDC 80%
curves shows that for these settings RelDC relies substantially on author affiliations
for the disambiguations.

Uncertainty of type 2. Figure 15(b) shows the effect of different kind of uncer-
tainty on the accuracy of RelDC. For simplicity of explanation of uncertaintys, we
will use integers for names again. The first name of author with ID of k, where
k € [0,999], is given as “F<k>” and last name as “(k mod 500)”. For example,
author with ID of 1 has name (F1, 1), author with ID of 501 has name (F501, 1).
Thus if a full name of an author is given in a paper, then this author can be uniquely
identified, but if only the first initial is given for the first name, then that author
name can correspond to exactly two authors, e.g. author “F. 1” can correspond to
both (F1, 1) and (F501, 1). Parameter uncertainty, in Figure 15(b) corresponds
to fraction of author names in the paper table specified by only the first initial and
last name. If this fraction is 0, then there is no uncertainty and the accuracy of
all methods is 1. Also notice that the case when uncertainty; is 2 is equivalent to
the case when uncertaintys is 1. Notice, in this test there is much less uncertainty
than in the previous one: each author name is unique and for each author there is
a chance that for some of his/her papers he/she is known as an author with 100%
confidence. The accuracy decreases as uncertainty increases, but this time the ac-
curacy of RelDC is much higher: it stays for both curves well above 95% when
uncertainty is less than 0.9. The fact that curves for RelDC 100% and RelDC 80%
are almost indiscernible until uncertaintys reaches 0.9, shows that RelDC relies less
heavily on weak author affiliation information but rather on stronger connections
via papers. Thus we have empirically shown the superiority of RelDC to any fms
methods for achieving high disambiguation accuracy when information about the
relationships among the entities is available.

Importance of relationships Figure 15(c) studies what effect the amount of
relationships has on the accuracy of RelDC. In our experiments one can identify
two major types of relationships: one is via papers introduced by the paper table,

» Vol. V, No. N, May 2004.

Exploiting Relationships for Data Cleaning . 27

the other is via affiliations, introduced by the author table. The z-axis shows the
fraction of authors p for which their affiliation is known. If p is zero than the
affiliation relationship is eliminated completely and RelDC has to rely solely on the
knowledge stored in the paper table. If p is one that complete knowledge of author
affiliations is available. Figure 15(c) shows four curves for accuracy as function of
p: fms and RelDC for the case as in Figure 15(a) when uncertainty; is 2 and for
the case as in Figure 15(b) when uncertaintys is 0.95.

The accuracy increases as p increases showing that the current formula factors
in new relationships well. The accuracy of “RelDC unc; = 2” when p is 0 equals
that of fms: 0.5. This is because when unc; is 2, for each author there is exactly
one author with an identical name, but there is no affiliation information that can
help disambiguate between authors.

1000

" 1t iteration, 50K —e—
1st iteration, 75K ---e--- 7
10th iteration, 50K - -

100

time(secs)
>

Fig. 16. The effect of L on the efficiency

Longer relationships Figure 15(d) examines the effect of path limit parameter
L on the accuracy. The accuracy increases as L increases. It increases rapidly as L
reaches 2 since author— paper— author relationship can be discovered and increases
slowly after that. Tests with very long relationships have not been conducted due
to slow performance of RelDC for such cases. In general, larger L leads to higher
accuracy. The practical usefulness of longer paths depends on the combination
of other parameters. For example, the difference between accuracy when L is 2
and when L is 7 is (a) 3% for RelDC 80%, (b) it is more substantial 6.2% for
RelDC 100%, and (c) it is substantial 9.2% for RelDC 100% when the number of
universities in the model is decreased to ten'®.

Efficiency of RelDC To prove the applicability of our approach to a large
dataset we have used it to clean CiteSeer datasets described above. It take the
algorithm approximately 6 hours to complete.The accuracy issues regarding this
dataset are explained at the beginning of this section. The rest of the section will
consider (faster) experiments with subsets of CiteSeer.

10The case is not shown in the figure.

, Vol. V, No. N, May 2004.

28 . Dmitri V. Kalashnikov et al.

Figure 16 studies the execution time of the 15 and 10*! iterations of iterative
implementation of RelDC as function of L. The tests are on 50K and 75K tuples
from the paper table. This corresponds to 8.7% and 13% of CiteSeer, 10K and
15K choice nodes are created. Predictably, the execution time increases as the
path limit L increases since more paths are found. The execution time of the 10th
iteration is much smaller than that of 15¢ iteration because we apply optimization
techniques to be able to find all simple paths more efficiently after those paths have
been discovered once by AllSimplePaths on the first iteration.

NBH optimization

700 T T T T T T T
: RelDC, 25K, L=8 —e—
L RelDC, 50K, L=6 ---6---
600 | RelDC, 50K, L=8 ---&--- |
500 |- .
? 400 - -
[
Rz
T
£ 300 % Ll -
200 3
. LA
100 F T
\ . “.‘.:‘ /,/
| — S - M
0 ! 1 e . L 2 I
0 1 2 3 4 5 6 7

Fig. 17. NBH optimization

Figure 17 shows the execution time of RelDC as a function of neighborhood
radius R. Radius of zero means the NBH optimization is not used. When R is set
to [£7, the performance improves 28 times for 25K tuples and L of 6, it improves 82
times for L of 8. Performance improvement of 1-2 orders of magnitudes is typical
for this optimization.

Solver

In our experiment, we use the General Algebraic Modeling System (GAMS) to
solve our system. GAMS[GAMS]| is a high-level modeling system for mathemat-
ical programming problems. It consists of a language compiler and a bunch of
integrated solvers. GAMS transforms the mathematical representation to repre-
sentations required by specific solver engines, such as MINOS[B. Murtagh and
Kalvelagen], CPLEX[GAMS/CPLEX 9.0 user manual |, OSL[Solutions and Li-
brary], SNOPT[GAMS/SNOPT solver |, etc. By using GAMS, we can focus on
modeling itself.

A GAMS model is a collection of statement in the GAMS Language. The GAMS
language is similar to commonly used programming languages. Data are entered
only once in list and table form. Models are described in concise algebraic state-
ments which are easy to read for both humans and machines.

GAMS supports a broad range of model types, including linear programming,
mixed integer programming and different forms of nonlinear programming. There

» Vol. V, No. N, May 2004.

Exploiting Relationships for Data Cleaning . 29

1 . . [
S a— .
09 ‘ S |
e T
BT S
o8 N 000 T BT |
o7k 0N .
5
8
® 06} |
IGDC 100%, L=8 —e—
IGDC 80%, L=8 ---B---
05 fms |
IGDC 100%, L=4 ---v---
IGDC 80%, L=4 -0
0.4 FSolver 100%, L=4 —~+-- i
Solver 80%, L=4 --->%--
1 n L
1 1.5 Py 25 s

unct

Fig. 18. Solver

are many solvers incorporated in GAMS. Different solver is capable of different
model type(s). We only focus on solvers capable of nonlinear programming models.
We have tried out several solvers, including MINOS[B. Murtagh and Kalvelagen
], CONOPTsolver manual |, SNOPT[Gill et al. 1997} and find out SNOPT (from
Stanford) has the best output. This is probably because SNOPT is designed for
large scale programs. It minimizes a linear or nonlinear function subject to bounds
on the variables and sparse linear or nonlinear constraints, which is exactly our
case.

The solver-based solutions proceeds as follows. First RelDC discovers all relevant
simple paths, creates the corresponding system of equations, such as in Figure 12,
and output those into a file. Then a special module takes the system of nonlinear
equations from that that file as input and builds the according GAMS model. We
use the tolerance based model as described in previous sections. For experiments
on real citeseer data, the size of the models is usually more than 100K equations.
For experiments on synthetic data, the size of the models varies depending on
different path length and uncertainty we choose. Then one of the solvers, which
understands GAMS, can be used to solve the problem. After the weights are found
by the solver, they are interpreted to determine the most likely correct match in
the identical fashion to that of iterative solution.

For example, for synthetic data (Solver 100%), if uncertainty is 2 (i.e., there are
1,000 authors and the number of different author names is 500), the number of
equations in the system is 30,464. The size of the equation file is 1.66MB. We
transformed it to a GAMS model file and the size of it is 2.5MB. It took 24 seconds
for GAMS to run the solver and get the results on a P4 2.4G machine. The GAMS
outputs a file with the size of 12.8MB. We use the tolerance based model and all
the deltas are 0 at the end. We extract the values of weights variables and get
the accuracy of 92.002%. If the uncertainty is 1.333 (i.e., the number of different
author names is 750), there are 25186 equations in the system and the size of the
equation file is 1.58MB. The transformed GAMS model file has the size of 2.3MB.
The solver needs 17 seconds to get the results. The size of the GAMS output file

, Vol. V, No. N, May 2004.

30 . Dmitri V. Kalashnikov et al.

is 10.8MB. There are 18 non-zero deltas in the final results. The accuracy we get
from using solver at this point is 96.73%.

7. RELATED WORK

The problem of data cleaning is a very important problem that has been studied
extensively in the literature. It is also referred to as record linkage[Newcombe et al.

1959; Newcombe and Kennedy 1962; Fellegi and Sunter 1969}, merge/purge[Hernandez

and Stolfo 1995; 1998], object identification|Tejada et al. 2001], duplicate elimina-
tion[Bitton and DeWitt 1983; Ananthakrishna et al. 2002], or reference matching|?]
etc. by different communities.

Probabilistic linkage technique has been used since the pioneer work of Fellegi
and Sunter|[Fellegi and Sunter 1969] who provide the theoretical foundation for the
subsequent work. The basic idea is to view the problem of identifying matching
records as classification task and use probabilistic model to decide matching and
non-matching record-pairs. For the concern of the efficiency, they provide a blocking
mechanism so that only records in the same block are compared.

Several methods follow the spirit of blocking mechanism of the Fellegi-Sunter
theory and address the computational complexity and scalability issue. The sorted
neighborhood method|[Hernandez and Stolfo 1995] use multiple keys to sort the
database and compare only those records within a sliding window. The canopy
method[McCallum et al. 2000] uses an extremely inexpensive string distance met-
ric, such as TF-IDF distance metric, to output overlapping clusters that contains
possible matching records. More recently, Cohen et al. propose a scalable and
adaptive methods for clustering and matching identifier names, in the sense that
they can be trained to obtain better performance[Cohen and Richman 2002].

To improve the matching accuracy, many methods are proposed, varying by the
extent to which human expertise are involved or the machine learning techniques
are used. Rule-based methods require the most human involvement and are knowl-
edge intensive. Human experts need to specify the conditions in which records are
equivalent|Hernandez and Stolfo 1995; Galhardas et al. 2001; Lee et al. 2000; Ra-
man and Hellerstein 2001]. A declarative rule language is presented in [Galhardas
et al. 2001] to enable users to express the specifications.

Probabilistic methods are developed after the Fellegi-Sunter framework and use
unsupervised machine learning methods. The powerful ezpectation mazimization
(EM) algorithm is employed to classify record pairs into the three classes: matched,
non-matched, and possible matched based on statistical properties without any
training dataWinkler 1994]. A domain-independent unsupervised approach is to
treat the matching task as an information retrieval problem|[Cohen 1998]. The
approach uses the TF-IDF weighting scheme and employs cosine similarity in the
vector space. Database hardening approach[Cohen et al. 2000] considers the problem
of inferring the most likely “hard” (precise) database from a “soft” (noisy) database
Cons’?ructed from heterogeneous sources and which contains inconsistencies and
duplication. It uses a graph of similarity values between records to obtain the best
global record matching.

‘ Many efforts have been made to solve the linkage problem by exploiting textual
similarity. There are a number of distance metrics proposed by different commu-
» Vol. V, No. N, May 2004.

Exploiting Relationships for Data Cleaning . 31

nities, including edit-distance metrics]Monge and Elkan 1996; 1997], Jaro metric
and its variants[Jaro 1989; 1995; Winkler], TF-IDF distance metrics based on to-
ken[Cohen 2000; Gravano et al.],and hybrid methods. A comparison of various
string distance metrics are presented by [Cohen et al. 2003].

The most recent work on on-line domain independent data cleaning is by Chaud-
huri et. al [Chaudhuri et al. 2003]. In this publication the authors propose a new
string similarity function which is based not only on edit distance but also uses IR’s
tf-idf concept for creating a better similarity function. In order to speedup retrieval
of top-K most likely candidates for cleaning a particular tuple, [Chaudhuri et al.
2003] propose to use the error tolerant index relation. Recall, in this paper we are
using the term fms from [Chaudhuri et al. 2003], but we refer to any string-based
similarity match functions.

Recently, researchers in Al community employ supervised machine learning tech-
niques, such as Bayesian decision model|[Verykios et al. 2003], Hidden Markov
model[Christen et al. 2002], and Markov chain Monte Carlo[Pasula et al. 2002]
to make the matching decision. The methods of learning string similarity to clas-
sify matched and unmatched records are highly interested[Ristad and Yianilos 1998;
Sarawagi and Bhamidipaty 2002; Tejada et al. 2002; Bilenko and Mooney 2003).

In [Lee et al. 2004], the authors developed a method to determine the context sim-
ilarity of records and identify the spurious links. A concept hierarchy is employed
and association-rules mining is applied to the database to discover all associations
among the attribute values, in order to identify the context attributes. The sim-
ilarity of records is determined by how similar their context attributes are. This
method is similar to our work in the sense of using context (relationship in our
jargon), while our approach is more general and domain independent.

8. CONCLUSION AND FUTURE WORK

In this paper we have presented a domain-independent data cleaning approach
called RelDC. The algorithm utilizes a completely different paradigm from conven-
tional methods: it analyzes relationships between entities. The algorithm is largely
self-tuning, i.e., it tunes itself based on the interconnections between entities in each
particular situation, however some additional tuning capabilities, such as node rel-
evance, are provided. We have empirically demonstrated that RelDC shows high
accuracy as well as its applicability to a large dataset. Most importantly we have
shown that relationships when available are important for data cleaning.

Many other issues open up that will be addressed in our future work. They can
be divided into two categories: solving the same problem differently and solving
the problem in the wider context. First of all, different from our’s implementations
of RelDC are possible. The most interesting include: computing all simple paths
completely inside a relational DBMS using SQL, measuring connection strength
by analyzing frequency of paths types between directly connected entities, using
machine learning techniques for learning path weights. Issues of the second category
are as follows. First, in practice reference tables can have missing entries and
duplicates. Further there can be no reference table as such but rather two (not
cleaned) sources of information will need to be merged. Another important issue is
that of designing a general purpose cleaning toolkit for relational databases bases

, Vol. V, No. N, May 2004.

32 . Dmitri V. Kalashnikov et al.

on our approach. Such a toolkit would take a relational database and help analyst
to clean data seamlessly. Designing such a tool has many challenges: there is need
for a language for specifying rules (for path specification), there should be an easy
way for specifying parameters of the algorithm and guiding graph construction.

REFERENCES

ANANTHAKRISHNA, R., CHAUDHURI, S., AND GANTI, V. 2002. Eli- minating fuzzy duplicates in
data warehouses. In Proc. of VLDB Conf.

B. MURTAGH, M. SAUNDERS, P. G. R. R. AND KALVELAGEN, E. MINOS: A solver for large-scale
nonlinear optimization problems. http://www.gams.com/solvers/minos.pdf.

BILENKO, M. AND MOONEY, R. 2003. Adaptive duplicate detection using learnable string similarity
measures. In Proceedings of the ninth ACM SIGKDD international conference on Knowledge
Discovery and Data Mining (KDD-2003).

BiTToN, D. AND DEWITT, D. J. 1983. Duplicate record elimination in large data files. ACM
Transactions on Database Systems (TODS) 8, 2 (June), 255-265.

CHAUDHURI, S., GaNiAM, K., GANTI, V., AND MOTWANI, R. 2003. Robust and efficient fuzzy
match for online data cleaning. In Proc. of ACM SIGMOD Conf.

CHRISTEN, P., CHURCHES, T., AND ZHU, J. X. 2002. Probabilistic name and address cleaning and
standardisation. The Australasian Data Mining Workshop.

CITESEER. http://citeseer.nj.nec.com/cs.

CoHEN, W. 2000. Data integration using similarity joins and a word-based information represen-
tation language. Transactions on Information Systems 18, 3 (Jul).

CoHEN, W., KAauTz, H., AND MCALLESTER, D. 2000. Hardening soft information sources. In
Proc. of KDD Conf.

CoHEN, W. W. 1998. Integration of heterogeneous databases without common domains using
queries based on textual similarity. In Proceedings of the ACM SIGMOD International Con-
ference on Management of Data. 201-212.

COHEN, W. W., RAVIKUMAR, P., AND FIENBERG, S. E. 2003. A comparison of string distance
metrics for name-matching tasks. IIWeb Workshop 2003.

COHEN, W. W. AND RICHMAN, J. 2002. Learning to match and cluster large high-dimensional
data sets for data integration. In Proceedings of KDD-2002.

Di1scovERY, K. 2003. www.kdnuggets.com/polls/2003/data_preparation.htm.

FELLEGI, I. AND SUNTER, A. 1969. A theory for record linkage. Journal of the American Statistical
Association 64, 328, 1183-1210.

GALHARDAS, H., FLORESCU, D., SHASHA, D., SIMON, E., AND Sarra, C.-A. 2001. Declarative data
cleaning: Language, model, and algorithms. In Proc. of VLDB Conf.

GAMS. http://www.gams.com/.

GAMS/CPLEX 9.0 USER MANUAL. http://www.gams.com/solvers/cplex.pdf.

GAMS/SNOPT SOLVER. www.gams.com/solvers/.

GiLL, P., MURRAY, W., AND SAUNDERS, M. 1997. SNOPT: An sqp algorithm for large-scale
constrained optimization. Report NA , 97-2.

GRAVANO, L., IPEIROTIS, P., JAGADISH, H., Koupnas, N., MUTHUKRISHNAN, S., AND SRIVASTAVA,
D. Approximate string joins in a database (almost) for free. In VLDBO1.

HERNANDEZ, M. AND STOLFO, S. 1995. The merge/purge prob- lem for large databases. In Proc.
of SIGMOD.

HERNANDEZ, M. A. AND STOLFO, S. J. 1998. Real-world data is dirty: Data cleansing and the
merge/purge problem. Date Mining and Knowledge Discovery 2, 1 (January), 9-37.

HiLLiER, F. AND LIEBERMAN, G. 2001. Introduction to operations research. McGraw-Hill.

HOMEPAGESEARCH. http://hpsearch.uni-trier.de.

JARO, M. 1989. Advances in record-linkage methodology as applied to matching the 1985 census
of tampa, florida. Journal of the American Statistical Association 84, 406, 414C420.

, Vol. V, No. N, May 2004.

Exploiting Relationships for Data Cleaning . 33

Jaro, M. 1995. Probabilistic linkage of large public health data files. Statistics in
Medicine 14, 5C7 (Mar.CApr.), 491C498.

KALASHNIKOV, D. AND MEHROTRA, S. RelDC: a novel framework for data cleaning. RESCUE-
TRO03-04.

Leg, M., Hsu, W., AND KOTHARI, V. 2004. Cleaning the spurious links in data. IEEE Intelligent
Systems, 28-33.

Leg, M., T.W.LING, AND W.L.Low. 2000. Intelliclean: A knowledge-based intelligent data cleaner.
In Proc. 6th Int’l Conf. Knowledge Discovery and Data Mining (KDD2000).

MANNILA, H. AND RamHA, K.-J. 1992. The design of relational databases. Addison-Wesley.

McCALLUM, A. K., N1GaM, K., AND UNGAR, L. 2000. Efficient clustering of high-dimensional
data sets with application to reference matching. In Proceedings of the Sizth International
Conference on Knowledge Discovery and Data Mining (KDD-2000). 169-178.

MONGE, A. E. aAND ELKAN, C. 1996. The field matching problem: Algorithms and applications. In
Proceedings of the Second International Conference on Knowledge Discovery and Data Mining
(KDD-96),Portland, OR. 267-270.

MONGE, A. E. aAND ELKAN, C. P. 1997. An efficient domain-independent algorithm for detecting
approximately duplicate database records. In Proceedings of the SIGMOD 1997 Workshop on
Research Issues on Data Mining and Knowledge Discovery, Tuscon, AZ. 23-29.

NewcoMBE, H. B. AND KENNEDY, J. M. 1962. Record linkage making maximum use of the
discriminating power of identifying information. Communications of the ACM 5, 563-566.
NEwWCOMBE, H. B., KENNEDY, J. M., AXFORD, S. J., AND JAMES, A. P. 1959. Automatic linkage

of vital records. Science 130, 954-959.

PasuLa, H., MARTH], B., MILCH, B., RUSSELL, S., AND SHPITSER, 1. 2002. Identity uncertainty
and citation matching. In Advances in Neural Processing Systems 15. Vancouver, British
Columbia:MIT Press.

RAMAN, V. AND HELLERSTEIN, J. 2001. Potter's wheel: An inte- ractive data cleaning system. In
VLDB Journal.

RISTAD, E. AND YIANILOS, P. 1998. Learning string edit distance. IEEE Trans. Pattern Analysis
and Machine Intelligence 20, 5 (May), 522-532.

SARAWAGI, S. AND BHAMIDIPATY, A. 2002. Interactive deduplication using active learning. In
Proceedings of the Eighth ACM SIGKDD international conference on Knowledge Discovery
and Data Mining (KDD-2002).

SoLuTIONS, 1. O. AND LIBRARY. http://www-306.ibm.com/software/data/bi/osl/.

SOLVER MANUAL, C. http://www.gams.com/solvers/conopt.pdf.

TEIADA, S., KNOBLOCK, C. A., AND MINTON, S. 2001. Learning object identification rules for
information integration. Information Systems 26, 8 (December), 607-633.

TEJADA, S., KnoBLocK, C. A., AND MINTON, S. 2002. Learning domain-independent string
tranformation weights for high accuracy object identification. In Proceedings of the Eighth
ACM SIGKDD international conference on Knowledge Discovery and Data Mining (KDD-
2002),Hong Kong, China.

VERYKIOS, V., G.V.MOUSTAKIDES, AND ELFEKY, M. 2003. A bayesian decision model for cost
optimal record matching. The VLDB Journal 12, 28—40.

WINKLER, W. The state of record linkage and current research problems. In U.S. Bureau of
Census, TR99.

WINKLER, W. E. 1994. Advanced methords for record linkage. In U.S. Bureau of Census.

A. RESOLVING WEIGHTS INTERNALLY
A1 An iterative solution

One can base the final disambiguation decision not on the exact solution for the
S)ffsjcem 0}” equations, but on an approzimate solution obtained after a certain number
Of iterations of an iterative method for solving the system. In the experimental

, Vol. V, No. N, May 2004.

34 . Dmitri V. Kalashnikov et al.

section we show that using even a few iterations (e.g., 10-20) RelDC can achieve
very high accuracy. Currently the system is written in the form

{(wu,--',wmn) = F:l(ﬁlh-u,fv_mn)
(wll""v—wmn) = FQ(wlla'-'7wm’n)

The iterative semantics is introduced naturally if one treats computation of the
current raw weights as a function of normalized weights from previous iteration.
Let “(1)”, e.g. asin wu , denote i*? iteration. Then an iterative equivalent for the
system above is

W@, wh) = F@Y, . wenb)
(mgzl)’ ,wS}n) = F2(w§11)7 . ws)ﬂ)

To obtain an approximate solution first equal weights of 2L are assigned to each
option option,; of choice;, where choice; has n; options total Then several iter-
ations are carried out. The final matching decision is based on the approximate
solution to the original system, obtained after several iterations of the algorithm.
To obtain a better approximation of the solution one can speed up the conver-
gence by first applying the substitution method for constant weights as described
in Section A.2 and only then carrying out the iterative computations for “dynamic”
weights only.

A.2 Solid evidence based weight computation

The raw weight of an option is composed of weights of each individual path as
shown in Equation 1 in Section 3.3.1. The weight of a path is constant if it does
not depend on weights of other options. It might turn out for a particular option
the weight of each such path is constant, thus we refer to such a raw weight as
constant and to other raw weights as dynamic. In Figure 12, weights wse and
ws,7 are constant, weight wj o is dynamic. Based on the equations we can also
classify normalized weighs into the same two categories: if they cannot change we
call them constant, if they might — dynamic. Weight Ws ¢ in Figure 12, without
further knowledge of ws ¢ and ws, 10, is dynamic.

A typical example of a constant weight equation is an equation of type w; ; =
const. For many of those const is simply zero, such as in the equation for ws 7 in
Figure 12, created when AllSimplePaths algorithm is not able to find any paths.

e Substitution phase Any occurance of constant weight variables can be sub-
stituted with their values in all equations. This will eliminate the dependence of
those equations on those variables, possibly changing some of the dynamic weights
into constant ones. This process is repeated until such a substitution is no longer
possible. Because the total number of variables is limited the process is guaranteed
to terminate. After the substitution process terminates, in general, some of the
weights will be constant some of the weights will still remain dynamic.

Ezample For the system in Figure 12 every occurance of ws 7 in the right side
of all equations can be substituted with 0. If normalization method 1 is used, the
equation for Ws 7 will become Ws 7 = 0. Now the procedure can be repeated for
7.1)5’7.

¢ Weight computation phase The final weights are computed as follows. No

, Vol. V, No. N, May 2004.

Exploiting Relationships for Data Cleaning 35

further processing is needed for the constant weights. The dynamic weights are
processed in the following manner. Recall, the connection strength between two
nodes is computed as the sum of the connections strengths of each individual path.
The solid evidence way of computing weights is to sum the connections strength
of only those paths which have constant weights, ignoring the paths with dynamic

weights.

B. PROBABILISTIC MODEL

ﬂ Notation J Meaning j]
Az event “z exists” for some entity z
Az event “z does not exist” for some entity z
P3(z) probability that z exists, i.e. P3(z) = P(3z)
BL(E) probability to follow (edge) E, i.e. P, (E) = P(to follow E)
P the path being considered
Vg a node on the path
E; edge (vi,vi+1) on the path
E;; edge labeled with probability p; j, i.e. P3(E; ;) = ps,j
Qq,j if 3E; ; then a;; =1 else a;; =0, i.e. P(ai,j =1)= Pi,j
a, as a vector a= (a1, --,0kn;)
a, as a set a={a;:1=1,...,kj=1,...,n4}
a, as a variable | at each moment variable a is one instantiation of a as a vector
WM the weight-based model
PM the probabilistic model
WF the WM’s formulae for computing connection strength
PF the PM’s formulae for computing connection strength

Table V. Probabilistic model: Terminology

B.1

One can call the model for computing connection strength presented so far as
a weight-based model (WM). To compute such a connection strength each edge
is assigned some weight which reflects the degree of confidence the relationship
between the two entities exists and the connection strength is computed based on
the graph structure and those weights. Another interesting model that one can
consider is a probabilistic model (PM), where weights of edges are treated not as
weights but as probabilities. In this section we discuss challenges of creating such
a model and utilizing it in practice.

We have used the following philosophy in this section. PM is more complex that
WM and PM needs more time to compute but nevertheless, as we will show later,
the results of these models in terms of accuracy are very similar. Thus we do not
advocate the use of PM since it is slower than WM while achieving similar accuracy.
PM is interesting because, as explained later, it treats choice nodes more properly
than WM given specific semantics of a choice node. We show that, because the
existence of an edge can depend on the existence of other edges and other factors,
the formal probabilistic model can quickly become computationally infeasible if
one does not make any assumptions to simplify the model. One could abandon this

, Vol. V, No. N, May 2004.

Introduction

36 . Dmitri V. Kalashnikov et al.

model when such assumptions need to be made, instead we present the reader with
alternatives on how to simplify the model.

Before we proceed let us introduce the notation used in this section, see Table V.
The meaning of this notation will become clear as we go along: it can be useful to
refer back to Table V if terminology is not clear in one of the subsequent sections.
We use 3z to denote event “z exists” for some entity z. Similarly, we use Az to
denote event “x does not exist”. Notation P3(z) denotes the probability that =
exists. Let P (F) denote the probability to follow (edge) E, usually in the context
of a specific path. Notation P denotes the path being considered. We will use
v; denote i*P node on the path as in Figure 21. Let E; denote edge (vi,v; + 1)
on the path. Let E;; denote edge labeled with probability p;,;, notice P3(E; ;) =
pi,;- Notation a;; is defined as follows: if 3E;; then a;; = 1 else a;; = 0,
notice P(a;; = 1) = p;;. We use WM and PM to denote the weight-based and
probabilistic models.

o
N

A=)

Source Path: A,B,C,D.E Destination

0.8

Fig. 19. Probabilistic model

1

©

1 1
A B D E
Q —/

Source Path: AB,C,D,E Destination
Fig. 20. Probabilistic model

Let us introduce PM by analyzing two examples shown in Figures 19 and 20.
Let us consider how computation of connection strength will be different if one
treats labels of edges as probabilities and not as weights. Both figures show a part
of the graph with path P=A—B—C—-D—FE which will be of interest to us. In
Figure 19 we assume probability of an event “edge BF is present” is 0.8 and this

, Vol. V, No. N, May 2004.

Exploiting Relationships for Data Cleaning . 37

event is independent from an event “edge DF is present”, the probability of which
is equal to 0.2. In Figure 20 node F represents a choice created to resolve some
record of entity represented by node G and where nodes B and D are options of
this choice. That is, the record of the node G can correspond to only one: either
B with probability 0.8 and D with probability of 0.2. Notice events “edge BF is
present” and “edge DF is present” are strongly dependent: if one is present the
other one must be absent due to the semantics of the choice node.

Weight-based formulae (WF). The weight based formulae used so far for
computing the connection strength of a path would produce identical results for
path P in both Figures 19 and 20. Because of that one can argue these examples
demonstrate that WF does not consider the semantics of a choice node properly in
all cases: WF consider only one type of dependence — when a choice node belongs
to the path being considered. The connection strength of path P, according to WF,
is the product of the path’s link coefficients, see Section 3.3.1: wa,g = CaB-Csc
Cecp-Cpe. Thuswap=1- rl()S -1 1—+10—§ = % ~ 0.463.

Probabilistic formulae (PF). Let us first reintroduce part of the notation
useful in the context of the PM, see Table V. We will use P3(z) to denote the
probability that some entity z exists, and for an edge E we will use P_, (E) to denote
the probability to follow E (in the context of a specific path). PM follows the same
principle for computing the connection strength as WF: the connection strength of
a path is closely related to the probability to reach the destination from the source
by following this path. In PM computing connection strength becomes a two step
process. First of all, path P should exist in the first place, which means each of its
edges should exist. Thus the first step is to compute the probability P3(P) that
path P exists. Probability P3(P) is equal to P(3AB N 3IBC N3CD N 3DE). If
existence of each edge is independent from existence of the other edges, e.g. like
for the case shown in Figure 20, then P(34AB N3BC N3CD N3DE) = P3(AB) -
P3(BC) - P3(CD) - P5(DE). Since all of the edges of path P are labeled with
1’s in both figures, the probability that P exists is 1. Now the second step is
to consider probability P_,(P|3P) to follow path P, given that P exists. Once
this probability is computed, it is easy to compute our goal — the probability to
follow path P, which we use as our measure of the connection strength of path
P: P_(P) = P3(P) - P_(P|3P). Probability P_,(P|3P) is different for the cases
of Figures 19 and 20. Thus, for those figures, the connection strength of path P
computed using PF is different, whereas it is the same if WF is used.

Case 1: Independent edge existence. In Figure 19 two events “BF exists” and
“DG exists” are independent. The probability to follow path P is the product of
probabilities to follow each of its edges (under the assumption of independence of
the corresponding events): P_,(P|3P) = P_(AB|3P) - P_(BC|3P) - P_(CD|3P) -
P_,(DE|3P). Given path P exists, the probability to follow edge AB in path P is
one. The probability to follow edge BC is computed as follows. With probability 0.2
edge BF is absent and then the probability to follow BC is 1, with probability 0.8
edge BF is present and the probability to follow BC (given there are two links, BF
and BC, that can be followed) is % Thus the total probability is 0.2-1 —1—0.8-51 =0.6.
Similarly, the probability to follow CD is 1 and the probability to follow DE is
0.8-1+0.2 % = 0.9. The probability to follow path P, given it exists, is the product

, Vol. V, No. N, May 2004.

38 . Dmitri V. Kalashnikov et al.

of probabilities to follow each edge of the path which is equal to 0.6 - 0.9 = 0.54.
Since P in our example exists with probability 1, the final probability to follow this
path is 0.54.

Case 2: Dependent edge existence. For the case shown in Figure 20 both BF
and DF edges cannot be present at the same time. To compute P_.(P|IP) we
will consider two cases separately: IBF and /ABF and compute P_(P|3P) as
P_(P|3P) = P3(BF|3P) - P_(P|3P N 3BF) + P3(BF|3P) - P (P|3PN ABF).

Let us first assume 3BF and then compute P3(BF|3P) - P_(P|3P N3BF). For
the case of Figure 20, if no assumptions about the presence or absence of DF' have
been made yet, P3(BF|3P) is simply equal to P3(BF) which is equal 0.8. If BF is
present then DF is absent and the probability to follow P is P, (P|3PN3BF) =
1511= £. Now let us consider the second case ABF (and thus 3DF). Probability
P3(BF|2P) is 0.2. For that case P_,(P|3PN ABF)isequalto1-1-1 -1 =1, Thus
P_(P|2P)=08-%+02-5 =05

B.2 Independent edge existence: general case.

Let us now see how to compute path connection strength in the context of PM in
the general case assuming existence of each edge under consideration is independent
from existence of the other edges under consideration.

Source
Destination

edge E,

Fig. 21. Independent edge existence: general case.

Any non-trivial'! path in general can be represented as shown in Figure 21.
Path P can be viewed as a sequence of nodes g, . . . , Uk4+1 OF s a sequence of edges
Eo, . ,Ek, where Ei = (Ui7vi+l)7 PB(E,L) = q;-

Recall from Section B.1, our goal is to compute the probability to follow path P,
which we use as our measure of the connection strength of path P:

P_.(P) =P3(P) - P_(P|3P) (2)

11A trivial path is a path of length one, i.e. the source and destination are connected via a
single edge labeled with probability p. The connection strength of such a path, computed as
the probability to reach the destination node from the source node via the path, is p. A path
containing at least one intermediate node (i.e. of length at least 2) is called non-trivial.

, Vol. V, No. N, May 2004.

Exploiting Relationships for Data Cleaning . 39

The probability that P exists is equivalent to the probability each of its edges exists:

P3(P) = P(() 3E)) (3)

Source
Destination

edge Ep

Fig. 22. Independent edge existence: general case. Assuming 3P.

Now we need to compute P_,(P|3P). Since we assume 3P, we assume each edge
of P exists and thus we are now interested in the case shown in Figure 22. To
compute P_,(P|3P) let us refer to Table V again. Let us define for each edge E; ;
labeled p;,; a variable a,; € {0,1} where a;; = 1if 3E; ; and a;; = 0 if AE; ;. Let
a denote the vector of all a;, ; under consideration for path P: a = (a1,1,...,0kn,)-
Let A denote all possible instantiations of a, i.e. |A| = 2%+ +nx,

Probability P_,(P|3P) can be computed as

P_(P3P)= > P_(P[3PNa) -P(3PNa) (5)
acA

where P(3P N a) is the probability of instantiation a to occur while assuming
3P. Given our assumption of independence of probabilities P(3P N a) = P(a).
Probability P(a) can be computed as

P(a) = [Ty’ - (1 pog) oo, (®)
N

:‘PI'Obab.ﬂit.y P_.(P|3P N a), which is the probability to go via P given a particular
Instantiation of a and P exists, can be computed as

k

P_(PIZPNa)=]] :

— (7)
i=1 1+ Z?:l G5

, Vol. V, No. N, May 2004.

40 . Dmitri V. Kalashnikov et al.

So the formula for computing P, (P|3P) is

k
p_(Par) = Y [e [Ioly 0 -p) ™ ®)

1 g
acAi=1 +ZJ=1 i, 1,5

and

k k
P*(P):@)q’)' ZHH‘Z—?SJ'HP?,T-M—M,N“M (9)

acAi=1 i

Computing path connection strength in practice. Notice, Equation 9
iterates through all possible instantiations of a which is impossible to compute in
practice given |A| = gni++nk However Equation 9 can be simplified to make
computations feasible.

To achieve the simplification, we will use our assurnption of independence of prob-
abilities which allows us to compute P (P|3P) as P (P|IP) = Hf:o P_(E;|3P).
In our model P_,(Eo|3P) is always one, thus we need to specify how to compute
P_(E;|3P) for i greater than zero.

Let a; denote vector (@ii1,..-,8in,), 1.8 @ = (a1,...,ak). Let A; denote all
possible instantiations of aj, i.e. A= A; x...x A and |A;| = 2™.

1 =
P_(E;|3P) = Z ———— Hp‘,“:J (1= pi)T (10)
a;€A; 1+ Zj=1 G, j=1 "
and
1 -
p PP =1 | ¥y g LAy G-p)™ | 01
i=1 a;€A; 1 + ijl ai’j j=1 !
and
k k .
1 3 -
P (H qi) 11 e - [Piy (=) T (12)
i=0 i=1 \ay€.A4; 1+ Zj:l Qi,j]‘;‘[1 “I

The effect of transformation. Notice, using Equation 9 the algorithm will
need to perform |A| = 2™+ F7 iterations (one per each instantiation of a),
whereas using Equation 10 the algorithm will need to perform |AL] + -+ Akl =
2™ 4 ... 4 9"k simpler iterations, which is a significant improvement. It is inter-
esting to note here, that in WF P_(E;) corresponds to the link coefficient of link
E; which is computed using formula which is computationally even less expensive:
[Sa)a pi,jﬁ::+@i+1)“‘]i ’

Handling edges which have probability 1. The formula in Equation 10
assumes 2™ iterations will be needed to compute P_,(E;|3P), thus the cost can
still be quite high. This formula can be simplified further for much more efficient
computation given that in practice often some of the p; ;’s or even all of them are
1’s. Figure 23 shows the case where m, where m € [0,n;}, edges incident to node v;
are labeled with 1. Let a} denote vector (ai,1,- - - Qing—m) and let A’ be all possible

, Vol. V, No. N, May 2004.

Exploiting Relationships for Data Cleaning . 4]

Fig. 23. Link coefficient of link E; = (vi, vi+1) in PM.

instantiations of this vector. Then Equation 10 simplifies to:

1 " l—ay s
) = . S (1 — py s 2 13
P_.(Ei|3P) }e;: p—]I_]l P (1= pij) (13)

The number of iteration is reduced from 27 to 2™ 7.

Poisson trials. Performing 2™:~™ iterations can still be expensive for the cases
when n; —m is large. In this subsection we will present several solutions to deal with
this issue, none of those solutions is a very good one. The following discussion shows
several directions where one should investigate further if you are interested in using
PM for your problem. We will conclude our discussion with the method we have
actually used to compute P_,(E;|3P) when 2™~™ is large in our implementation
of PM.

Method 1: Do not simplify further. Even though 2™~™ cost can be expensive,
it is also true that for a particular data cleaning problem either (a)2"™™ is never
expensive or (b) 2™~™ can be large but bearable and cases when it is large are
infrequent. In those cases further simplification might not be required.!?

Method 2: Estimate answer using facts from Poisson trials theory. Let us denote
the following sum as s;: §; = Z?;l ai ;. The binomial distribution gives the number
of successes in n independent trials where each trial is successful with the same
probability p. The binomial distribution can be viewed as a sum of several .4.d.
Bernoulli trials. The Poisson trails process is similar to the binomial distribution
process where trials are still independent but not necessarily identically distributed,
i.e. the probability of success in i*! trial is p;.

We can modify Equation 12 to compute P_, (E;|3P) as follows:

k

1 .
P_(E|3P) =) T P(si =) (14)
pr
Notice, for given i we can treat a;1,asz2,...,a;n, as a sequence of n; Poisson

trials with probabilities of success P(a;; = 1) = pi;. Thus we can apply methods

12 .
ca.Isn O;r experiments cases when 27i~™ was large were infrequent, but unfortunately in those
€ the cost of performing 27i~™ iterations was not acceptable.

, Vol. V, No. N, May 2004.

42 . Dmitri V. Kalashnikov et al.

from Poisson trials theory to estimate P(s; = j) quickly, rather than compute it
exactly via iterations over the corresponding cases, i.e. one straightforward (and
exact) iterative method is:

Pla=0= 3 a5 0 =pu)

a;€A; j=1

§i=

For example, if all p; ; = p for all j € [1,n4] then we have a binomial distribution
case and can compute P(s; = [) quickly, and in this case exactly, as Cl,, p'(1—p)™ L.

Some work on Poisson trials mentions that Uspensky has studied estimation of
P(s; = l) for general case when all p;’s can be different, but we could not locate
any relevant publication authored by this author. We have been able to locate a
few html sources which sketch those estimations. Those sources had similar content
with several variables in formulae left unexplained and no measures of goodness of
the estimation has been provided.

Potentially, more famous formulae from Poisson trials theory, known as the Cher-
noff Bounds, can be used to estimate P(s; = [). The Chernoff Bounds are defined
for random variable X = 3", X; where X,’s are independently distributed ran-
dom variables such that P(X; = 1) = p;, and P(X; = 0) = 1 — p;. The expected
value p for X is p = E[X] = 3", p;. The bounds are as follows:

el .
e~ K
P(X <(1-6)u) < (m‘f:g) , for 6 € (0,1) (16)

Those bounds can be used, for instance, if it turns out that using those bounds
one can obtain a good estimations of P(s; = [} by, for example, presenting

P(S¢=l)=P(l—0.5<S¢<l+0.5)

= P(s; <1+0.5) = P(s; <1 - 0.5) an

Let u; = Els;] = Z?;l pi,j. Assume without loss of generality that [+ 0.5 < p;.
Let 6; and 82 be such that (1 —&;)u; =1 —0.5 and (1 —82)u; = [+ 0.5. According
to Equation 16,

6_51 Hi
P(si < (1—-61)ps) =P(s; <1-0.5) = (m) &

—&s Hi
P(si < (1 —82)pus) =P(s; <14+ 0.5) = (ﬁj{:‘gg) — &2

where €1,e5 > 0 represent the exact errors in the upper bounds (the values of ¢;
and €, are not known to us). Thus

» Vol. V, No. N, May 2004.

Exploiting Relationships for Data Cleaning . 43

P(s;=1)=P(1—-05<s; <l+0.5)

(=) - - (a5s) -

6—62 Hi 6—61 wi (18)
= K(l——éz—)m) B ((T__gl)l——sl) } L ze
I’e;:llt error

Thus Chernoff bounds might be useful if (a) one can show that the error is much
smaller relatively to the result or (b) if one can estimate €1 — €2 or (c) if one can
show that if the error is ignored the final result does not deviate significantly from
the exact result.

Method 8: Use linear cost formula. In our implementation of PM we have used
the following approach for computing the probabilistic link coefficient for edge E;.
We have a cut-off threshold to decide if 27 ~™ iterations is acceptable. If we decide
the number of iterations is acceptable we compute the coefficient precisely, using
iterations. If the number of iterations exceeds the threshold, we use the following
linear cost formula, applying which is not correct in general but which has some
degree of support behind it. We compute the expected number of edges u; among n;
edges E;1,Eiz2,...,Ein,, where P(3E; ;) = p; ;, as follows: p; =m + Z;H:—lm Dij-
Then we say since there are 1+ p; possible links to follow on average, the probability
to follow E; can be estimated as:

1 1
14+ py B 1+m+2;‘:£mpi,j

P_,(E;|3P) ~ (19)

Thus in most of the cases when 2™~™ is small we use the exact formula, and in
rare cases when the number of iterations 2™ ~™ is too large we utilize the approxi-
mate formula of Equation 19.

B.3 Dependence in edge existence: general case.

In Section B.2 we have assumed that each event, corresponding to the existence of
each edge under consideration, is independent from the other events, corresponding
to the existence of the other edges under consideration. This assumption is reason-
able for the cases when events are truly independent or when they are very weakly
correlated so that it is reasonable to make a simplifying assumption that they are
independent.

However the existence of one edge can strongly depend on the existence of another
edge, as shown in Section B.1 in Figure 20. In this section we discuss how to address
certain types of dependence. In particular we concentrate on how to deal with the
cases like the one shown in Figure 20 since that is the case, that we are aware of,
when the events are correlated the most.

As in Section B.2, we will need to compute P_(P) which we will use as our
measure of the connection strength of P. But now we will also consider cases with
dependence, such as in Figure 20.

Equations 2 and 3 still hold, but Equation 4 might not be true in general. Since

, Vol. V, No. N, May 2004.

44 . Dmitri V. Kalashnikov et al.

we concentrate only on cases like in Figure 20, we will assume Equation 4 holds,
but we will now show one simple method how to deal with the situation when
Equation 4 does not hold. To compute P3(P) one needs to use Equation 3 which
will require computation of P(ﬂi;o 3E;). A simple observation can help to compute
this probability: sometimes one easy way to compute P(ﬂfzo 3E;) would be to
represent it as a product of the following probabilities:

k
P5(P) = P([] 3E;)
1=0

et (20)

= P3(Ep) - P3(E1|3Eo) - P3(E2|3Eo N 3Ey) x -+ x P3(Ex| (] 3Ey)
=0

Our goal is to come up with a formula like Equation 12 but when existence
of certain edges is dependent. Let f (“f” for “free”) be a set of all a;;’s such
that events JE; ; are independent from each other. If we treat a as a set, we can
compute set d (“d” for “dependent”) of a; ;’s for which events 3E; ; are dependent
as followsd =a —f,ie. a=fuUd, fNnd = 0. Similarly to a; we can define d; as
di={aij:a;€d,j=1,...,n;} and fyas 5= {a;;: a5, €d,j = 1,...,n3}, ie.,
a;=fiUd; and f;Nnd; = 0.

k
P.(P)= (H Qi) X
i=0
k

2| (| > Fi%l—a; - Iel - =pig)'=os | | P(@)
=1 %,

deD i=1 \a;€A; Jiai ;€5

(21)

Equation 21 iterates over all feasible instantiations of d and P(d) is the proba-
bility of a specific instance.

B.3.1 Intra choice nodes dependence. Equation 21 is generic in the sense that
it is applicable to any kinds of dependence among edges for which a;; € d: one
just need to be able to compute P(d) for each feasible instance of d. Now we will
consider one specific type of dependence, and for that type we will specify how to
compute P(d).

Specifically, we will consider only those cases where a;,; is in d only because there
Is (at least one) another ay; € d such that events 3E; ; and 3E;; are dependent
and both edges F; ; and Ej;; are options of the same choice node. Figure 20 is an
example of such a case.

Let us formalize this case. Notice, for any a;; such that a;; € d there is at
least one ay;/ such that (i) ai; € d and (ii) 3B; ; and 3Ey; are dependent. Let
S(ai,;) denote a set which includes a;; and all ai;’s in d such that 3E;; and
3E;;; are dependent. Notice, for the cases being considered the following holds (a)
Va € S(a;;) = S(a) = S(ai;) and (b) all edges {Ei; : ai; € S(as;)} are options
of the same single choice node.

In such a model we can represent set d asd = C; U--- U Cy, such that
OVGGCZ‘=>C¢ES(G)
°Va € C; = a corresponds to an option of the same choice node ¢;

» Vol. V, No. N, May 2004.

Exploiting Relationships for Data Cleaning . 45

0o C; #0,i=1,...,m

o CiNCy=0,i# jii,5=1,...,m.]

Since we consider only intra choice dependence and assume there is no inter choice
dependence, then for each instantiation of d in our model P(d) = P(Cy) x --- %
P(Crm). Now let us specify how to compute P(C;) in this formula.

Fig. 24. Intra choice dependence.

Figure 24 shows a choice node C' with n options labeled with probabilities
p1,...,pn. Assume C is one of those ¢;’s mentioned above. As before, to specify
which edge is present and which is absent, each option has variable a; associated
with it: a; is 1 if the corresponding edge is present and a; is 0 of it is absent, i.e.
Pla; =1) =pi, Sy pi = 1. Let us assume, without loss of generality, that k first
a;’s belong to d, i.e. a; € d fori € [1,k] and a; ¢ d for i € [k +1,7n].

Thus our goal is to be able to compute the probability of a particular instantiation
of @ = (a1,...,ax). Notice, only one of ay,...,an can be 1. First let us compute
the probability of instantiation @ = 0= (0,...,0). Assume [0, 1] interval is divided
into two intervals: [0, Zle p;) and [Zi.;l pi, 1]. Probability P(@ = 0) is equal to
the probability that a random number, generated according to U|0, 1] distribution,
would fall into the second interval, thus P(@ = 0) = Y., ., pn. The other case
that is left for consideration is when one a; = 1, where [€ [1,k], in which case
P(a; = 1) = p;. To summarize:

n
Z Dn,ifa; =0, where i =1,...,k
i=k+1
pi, if a; = 1,0, =0, wherel € 1,k,i=1,...,0—=1,14+1,... .k

P@@) =

B.4 Computing the total connection strength.

B.4.1 Summation operation in computation of connection strength. Similarly to
WF, in PF the connection strength between nodes n; and ny is computed as a sum
of connection strengths of all simple paths between n; and ny. For PM, instead of
computing the (weight-based model’s) normalized weight of option option; (i-e.,
W;;), we compute the probability p;; that option;; exists.

Let us motivate why the summation of individual simple paths is performed. We
associate the connection strength between two nodes n; and np with probability of

. Vol. V, No. N, May 2004.

46 . Dmitri V. Kalashnikov et al.

reaching ny from n; where you are allowed to follow only simple paths of length
no greater than a parameter L. All those simple paths, lets name those P1,. .., Pk,
will be returned by AllSimplePaths algorithm. Lets call & the subgraph graph of
union of those paths: & = P; U---UPg. Graph & is a subgraph of the complete
graph G = (V, E), where V is the set of vertices V = {v;:i1=1,...,|V]} and E
is the set of edges E = {E; : i = 1,...,|E|}. Let us define a; as follows: if JE;
then a; = 1 else a; = 0, and let a denote vector (as,...,ag) and A is all possible
instantiations of a.

We need to compute P_ (&) which we treat as the measure of the connection
strength. We can represent P_, (%) as:

P_(#)=) P.(ZPla) P(a) (22)

acA

Notice, when computing P_,(]a) the complete knowledge of which nodes exist
and which do not is available, as if all the edges are “fixed”. That is, assuming one
particular instantiation of a, there is no dependence for node existences and each
edge is either present with 100% probability or absent with 100% probability. Thus

k
P_(Pla) = PL(P1U---UPla) = Y _ P_(Pila) (23)

i=1
and

P_(#)=> P.(ZPla)-P(a)

acA

=Y [(klPﬁ('PHa)) ~P(a)}

acA i=

_ i {Z (P_>(77k|a) .P(a))} o

i=1 LacA

k
= > P.(Py)
i=1

Thus Equation 24 explains why the connection strength is the sum of the con-
nection strength of all simple paths.

It is important to note a subtle difference between the semantics of “following a
path” in Equation 24 and that in other equations that we have considered before,
e.g. such as Equation 21. The issue arise because in formulae we have considered
before the term that corresponds to probabilistic link coefficient for the first link
in the path is computed differently from the rest of the link coefficients, where as
Equation 24 it is assumed to be computed the same way as for the rest of the links.
In other words, for a particular path in previous equations we have assumed that
from the source node in the path the algorithm, when computing the probability
to reach the destination, cannot travel anywhere but the second node in the path;
i.e. it cannot deviate via other links. However it is not so for Equation 24 where
formula implies that a deviation from the very first link is possible.

, Vol. V, No. N, May 2004.

Exploiting Relationships for Data Cleaning . 47

A question might arise of why it has been decided to compute the first link
coefficient differently from the others. The answer to that is the following. Assume
we are trying to decide whether record R in some object P corresponds to object
A; or Az. Assume there 20 simple path from A; to P and there are 10 simple path
from Az to P, where all paths have the same connection strength. Qur current
formulae are such that the probability that A, is the correct match will be greater
than that of A;. Now assume node A; has very large number of adjacent edges
whereas Ao has very few. If one decides to consider the probability of reaching P
from A; and, unlike us, will consider possibility to deviate from the path for the
very first link, then the probability of reaching P from A, might turn out to be
(much) greater than the probability of reaching A;. So if say one author, A4;, has
written many papers whereas another one, A,, has a few then A; will be unfairly
punished for large number of papers and not be correctly identified as the correct
match even though the evidence might indicate otherwise.

B.4.2 Models for computing option probability. We can use two models for com-
puting pi;’s. In both models one of the restrictions is that 3, p;; = 1. Let ¢;; denote
the connection strength corresponding to option;;. In the first loose model we can
specify that if ¢;;, > ¢, then py;; > pij;, must also be true and vice versa. In the
second model we can specify more precisely that probabilities and the corresponding
connection strengths are proportional: pjj, - ¢ij, = pij, - Cijy .13

B.5 Experimental results

0.8

07 —

accuracy

0.6 -

0.5 F -

RelDC 100% —e—

RelDC 80% ---&--
oel e 0% -

RelDC 100%, prob model ---4---
RelDC 80an, prob model i

1 15 2 25 3
unci

0.3

Fig. 25. Probabilistic model

Figure 25 is similar to Figure 15(a) except for it shows the result for both WF and
PF. The results are similar: PF’s results are marginally better that WEF’s results for
the experiment shown in Figure 25. Such an outcome is not surprising as explained
below.

13The second model corresponds to normalization method 1 of WM.

, Vol. V, No. N, May 2004.

48 . Dmitri V. Kalashnikov et al.

To understand why the results are similar it is useful to divide the algorithm
into three logical phases: the AllSimplePaths, weight computation, and weight
interpretation phases. The only difference PM and WM have is the way they
compute weights/probabilities, i.e., only the weight computation phase is different.
After the weight/probabilities are finally computed, they are interpreted to identify
the most likely match. For example, if the three options of a choice node have
weights W1 = .80, Wy = .10, and @; = .10 the algorithm will output that option
one (i.e. the one with the highest weight of 0.80) is the most likely correct match.
It will output the same if the weights are (0.78, 0.11, 0.11) or (0.6, 0.22, 0.18).
Examples in Section B.1 show very similar outcome for the cases of (a) WF (i.e.,
0.463); (b) PF: independent event case (i.e., 0.54), and (c) PF: dependent event case
(ie., 0.5).1* So it is not surprising that both PM and WM, after the interpretation,
select the same options as the correct matches.

Time efficiency. Recall that both PM and WM share the same AllSimplePaths
phase after which they differ in how the weights (or probabilities) are computed (the
weight computation phase). The time needed for the weight computation phase for
PM is roughly twice as much as that of WF.

14Notice, if all edges under consideration in those examples are labeled with probabilities 1, the
the outcome of all three formulae will be absolutely identical.

, Vol. V, No. N, May 2004.

