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Pervasive, coordinated protein level changes driven by 
transcript isoform switching during meiosis

Ze Cheng1,*, George Maxwell Otto1,*, Emily Nicole Powers1, Abdurrahman Keskin2, Philipp 
Mertins3,4, Steven Alfred Carr3, Marko Jovanovic2,+, and Gloria Ann Brar1,†,+

1Department of Molecular and Cell Biology, UC-Berkeley, Berkeley, CA, 94720, USA

2Department of Biological Sciences, Columbia University, New York, NY, 10027, USA

3Broad Institute of MIT and Harvard, Cambridge, MA, 02136, USA

Summary

To better understand the gene regulatory mechanisms that program developmental processes, we 

carried out simultaneous, genome-wide measurements of mRNA, translation and protein through 

meiotic differentiation in budding yeast. Surprisingly, we observed that the levels of several 

hundred mRNAs are anti-correlated with their corresponding protein products. We show that 

rather than arising from canonical forms of gene regulatory control, the regulation of at least 380 

such cases—or over 8% of all measured genes—involves temporally regulated switching between 

production of a canonical, translatable transcript and a 5′ extended isoform that is not efficiently 

translated into protein. By this pervasive mechanism for the modulation of protein levels through a 

natural developmental program, a single transcription factor can coordinately activate and repress 

protein synthesis for distinct sets of genes. The distinction is not based on whether an mRNA is 

induced or not, but rather based on the type of transcript produced.
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Introduction

The decoding of cellular information from DNA to protein determines cellular identity. 

Despite a strong body of knowledge of how transcription and translation are controlled, our 

understanding of how their regulation drives fluid changes in cell structure and function over 

a developmental program is rudimentary. Global studies have revealed complex patterns of 

gene expression regulation in contexts of cellular change, especially during developmental 

programs, with evidence accumulating for much more regulation than we can currently 

explain mechanistically [for examples, see (Blank et al., 2017; Brar et al., 2012; Duncan and 

Mata, 2014; Jovanovic et al., 2015; Kronja et al., 2014; Peshkin et al., 2015; Tanenbaum et 

al., 2015); for review, see (Liu et al., 2016)]. Developmental programs include 

embryogenesis, as well as cellular differentiation, and are characterized by rapid and 

unidirectional transitions in cellular state. These changes are largely thought to be driven by 

transcriptional activators, which turn up mRNA production to promote protein synthesis, and 

repressors, which turn down mRNA production and allow gene expression to be reduced. By 

such classical models, gene expression patterns are thus set by transcriptional regulation, 

which may be subsequently enhanced or dampened by post-transcriptional regulation.

Meiosis is one such conserved process of differentiation, during which chromosome and 

organelle segregation are coupled to gamete formation (sporulation in budding yeast). The 

large body of knowledge about meiotic progression in the budding yeast Saccharomyces 
cerevisiae and the tractability of isolating large numbers of synchronous cells makes this 

system a valuable model for studying gene regulation in cellular differentiation. Our 

previous study (Brar et al., 2012), revealed extensive formerly unrecognized transcriptional 

and translational regulation in meiotic cells, but the mechanisms responsible for this 

regulation and their impact on protein levels were unclear. We therefore performed a deeper 

global study here, aimed at determining the impact of transcriptional and translational 
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regulation on the meiotic proteome. To our knowledge, the resultant dataset represents the 

most complete gene expression atlas to date for any developmental process.

We were surprised to identify a large subset of genes for which mRNA abundance patterns 

were not predictive of protein patterns despite high quality and reproducibility of 

measurements. Our deep dataset, enabling robust detection of both qualitative and 

quantitative features of gene expression, allowed us to discover that many such cases show 

hallmarks of a non-canonical mode of regulation that involves transcriptional toggling 

between two transcript isoforms encoding identical Open Reading Frames (ORFs), one of 

which is a traditional mRNA that is zwell translated and results in protein accumulation, and 

one of which is an often abundant transcript that cannot be efficiently translated and results 

in decreased protein production (Chen et al., 2017; Chia et al., 2017). We find that this is a 

global regulatory mechanism that sets protein levels for over 8% of all measured genes over 

meiotic differentiation. By this mechanism, a transcription factor can drive synthesis of 

mRNA for a set of genes in concert, but this transcriptional activation results in gene 

expression activation in some cases and repression in others, depending on the type of 

transcript produced. Here, transcriptional and translational control are integrated in their 

regulation rather than sequential, such that the translatability of an mRNA isoform—rather 

than its quantity per se—is fundamental in setting protein levels through a natural and 

conserved developmental process.

Results

A deep dataset reveals meiotic gene regulation in detail from transcript to protein

To assay the degree of change in gene regulation as cells progress through meiosis, we 

measured matched samples for protein levels by quantitative mass spectrometry (isobaric 

TMT10-plex labeling), mRNA levels by mRNA-seq, and translation by ribosome profiling

—on 8 stages of natural meiotic differentiation, one vegetative exponential control in rich 

media, and one sporulation media-matched non-meiotic (MATa/a) control (Fig. 1A, S1A, 

S1E). Our protein measurements were highly reproducible, both when comparing to 

biological replicates and to label free quantification (LFQ;Fig. S1C–D). Our mRNA-seq and 

ribosome profiling measurements also showed high reproducibility (Fig. S1C).

We were able to quantify 4,464 annotated proteins at every timepoint, with an average 

coverage of 10.7 peptides/protein. We efficiently captured proteins from most cellular 

compartments, with few exceptions (Table S1). Our mass spectrometry measurements reveal 

extensive protein level regulation when looking broadly at all quantified genes and suggest 

that most proteins are subject to active degradation in the meiotic program, with decreases in 

abundance observed for nearly every protein despite no dilution due to cell division, as 

would be seen during mitosis (Fig. 1B, S1E). Patterns of protein abundance for well studied 

genes confirmed known regulation, and was remarkably consistent with known function 
[Fig. S1F–K;(Zaslaver et al., 2004)].
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Discordant mRNA and protein levels are common and reflect biological regulation

The degree to which regulation at the level of transcription, translation, and protein 

degradation drive protein levels has been a topic of extensive debate (Liu et al., 2016). We 

first investigated this issue in our dataset by examining the degree to which mRNA patterns 

predicted protein patterns. A plot of the correlation coefficients between mRNA and protein 

abundances revealed a positive trend, as expected based on canonical models of gene 

regulation (Fig. 2A). We were surprised to see, however, a subset of genes that showed poor, 

even negative, mRNA:protein correlations (Fig. 2A, S2A). Given the large number of genes 

in this group, we tested whether they were lowly expressed, and thus the poor correlation 

could be driven by measurement noise. However, analyses of mean mRNA and protein 

abundance measurements indicated no association with mRNA to protein agreement over 

time (Fig. 2B). We determined that a parallel set of mRNA-seq without polyA-selection was 

similar to our original mRNA-seq data, and thus that the discrepancy between mRNA and 

protein patterns was not an artifact of polyA tail length changes, which have been observed 

during developmental processes [Fig. S2B–D; for example (Subtelny et al., 2014)]. We 

concluded that the poor mRNA to protein correlation that we detect for a large subset of 

genes is likely to result from biological regulation.

A subset of transcriptionally co-regulated genes show discordant protein patterns

We hypothesized that we might be able to identify regulatory mechanisms that lead to 

specific cases of poor mRNA:protein concordance by focusing on a set of genes that are 

transcriptionally co-activated, and thus allow straightforward parallel comparison of their 

post-transcriptional regulation. Towards this end, we clustered mRNA-seq data and 

observed, as previously seen, that a large group of transcripts are sharply induced in concert 

in late meiotic prophase (Fig. S2E). Several features suggest that these genes are targets of 

the transcription factor Ndt80 (Xu et al., 1995): they include known Ndt80 target genes [Fig. 

2C, S2E;(Chu and Herskowitz, 1998)]; they show a high expression correlation and a pattern 

matching expectations for Ndt80 induction (Fig. S2E); and the consensus Ndt80 binding 

motif, termed the Middle Sporulation Element (MSE) was strongly enriched in their 

promoters [Fig. S2F–G;(Chu and Herskowitz, 1998)].

We isolated data for the 241 of these genes quantified for protein and determined that, as 

expected, the most well characterized Ndt80 targets (including NDT80 itself and the Polo 

kinase-encoding CDC5) showed a sharp uptick in protein abundance that mirrors patterns of 

mRNA abundance. Protein levels decrease with timing similar to mRNA decreases, 

suggesting a short protein half-life (Fig. 2C, 2D). Such high mRNA:protein agreement is 

seen for 150 (62%) of targets (Fig. 2C, 2D). However, the protein levels for the other Ndt80 

targets were not well predicted by the patterns of mRNA levels, showing, for example, 

markedly delayed protein accumulation (orange box in Fig. 2C, 2D) or protein patterns that 

appeared to have little relationship to transcript patterns (blue and green boxes in Fig. 2C, 

2D). These cases showed the type of paradoxical poor mRNA:protein correlation seen to be 

prevalent in the full dataset (Fig. 2A, 2C, S2A, S2H–I) and we proceeded to investigate their 

regulation in detail.
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Decoupled mRNA and protein levels are associated with transcript isoform toggling

We noted that two members of this aberrant class of Ndt80 targets were ORC1 and NDC80 
(Fig. 2C, S2I), encoding conserved proteins that are required for DNA replication and 

kinetochore function, respectively. Both genes have recently been shown to be associated 

with regulation involving mutually exclusive alternate transcript isoforms, so we investigated 

the possibility that this could account for their poor mRNA:protein agreement. A recent 

study showed that the 5′ extended ORC1 transcript isoform results from Ndt80 activation of 

an upstream Transcription Start Site (TSS), producing a transcript that is poorly translated 

for the ORC1 ORF and instead shows translation of several upstream Open Reading Frames 

[uORFs;(Brar et al., 2012; Xie et al., 2016)]. Comparison to a canonical Ndt80 target, CDC5 
(Fig. 2E, 2F), revealed that both show a robust boost in overall mRNA levels consistent with 

Ndt80 activation. However, in the case of ORC1, the translation of the ORF on the longer, 

Ndt80-induced transcript is poor and thus results in a peak in translation that precedes the 

peak in total mRNA accumulation [Fig. 2F; (Brar et al., 2012)]. In contrast, induction of 

higher transcript levels of CDC5 by Ndt80 results in increased translation and protein 

accumulation, as expected from canonical models of gene regulation (Fig. 2E).

Regulation of the kinetochore component NDC80 shows the opposite pattern as ORC1 with 

respect to transcript induction by Ndt80. In the case of NDC80, a long, translationally silent 

transcript is present early in meiosis (Chen et al., 2017; Chia et al., 2017). The poor 

translation of Ndc80 protein from the long transcript led to it being named a “LUTI” or 

“Long Undecoded Transcript Isoform”, and depends on the translation of AUG-initiated 

uORFs. The short, translatable version of the NDC80 transcript is induced later by Ndt80 

[Fig. 2G;(Chen et al., 2017; Chia et al., 2017)]. In our dataset, NDC80 showed a translation 

peak after the mRNA peak, and the gap was more prominent than we see for known cases of 

translational repression (Fig. 2G, Fig. S2J). We interpret this delay to reflect the switch 

between the abundant LUTI transcript and activation of the previously silenced proximal 

TSS to produce the shorter transcript. This results in mRNA and protein bursts that are out 

of phase by hours, which is not typical of canonically regulated genes in meiosis. Strikingly, 

this regulation results not just in a poor correlation between mRNA and protein abundance, 

but an anti-correlation (Fig. 2G, S2I).

Differences in translatability of alternate transcripts produced at ORC1 and NDC80 are 

apparently more important in setting protein output than the differences in overall mRNA 

abundance for these genes, explaining the discordance between mRNA and protein level 

patterns in these cases (Fig. 2C, 2F, 2G). Thus, the single transcription factor, Ndt80, is 

capable of activating transcription of three types of target genes (Fig. 3A, 3C). First, CDC5 
is a canonical target that promotes meiotic progression and its translation and protein levels 

increase in a manner that mirrors its sole, canonical transcript (Fig. 2E, 3A, 3C). Second, 

ORC1, whose protein levels decrease late in meiosis when DNA replication is complete, is 

silenced by Ndt80 induction through production of a longer transcript that does not 

efficiently produce protein and is associated with shutdown of the short, translatable 

transcript [Fig. 2F, 3A, 3C,(Xie et al., 2016)]. Translation efficiency [TE; (ribosome 

footprint)/(mRNA)] of the early, short ORC1 transcript is high, but TE of the abundant 

longer, Ndt80-induced ORC1 transcript is low (Fig. 2F, 3A). Thus, counter-intuitively, due 
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to the scale of these differences in TE for the ORC1 isoforms, Ndt80-mediated 

transcriptional activation is actually associated with repressed translation for this target (Fig. 

3A, 3C). Third, NDC80, whose protein levels are kept low early to enable normal assembly 

of the meiosis I kinetochore, is required for chromosome segregation. Ndt80 drives the 

necessary late burst in protein levels and overcomes the silencing mediated by previous 

longer transcript production [Fig. 2G, 3A, 3C, (Chen et al., 2017; Chia et al., 2017)]. Taken 

together, Ndt80 is capable of functioning via transcriptional activation as both an inducer 

(CDC5 and NDC80) and as a repressor (ORC1) of protein expression, depending on the 

position of its binding site relative to the positions of other features of the genomic locus, 

including uORF sequences and the ORF start codon (Fig. 3A, 3C).

Transcript toggling is common and reshapes the meiotic proteome

We noted that ORC1 and NDC80 were both members of a group of genes that we previously 

predicted to have alternate transcripts in meiosis, based solely on mRNA-seq data (Brar et 

al., 2012). Analysis of the 55 genes in the Ndt80 regulon that showed the poorest mRNA to 

protein correlation (<0.4, Fig. S2H) revealed that this set was greatly enriched for genes with 

observed alternate transcripts (Fig. 3B), suggesting that a similar transcript toggling 

mechanism might be responsible for other cases of discordant mRNA to protein patterns in 

meiosis. We sought to define simple rules that could be used to detect such regulation in an 

unbiased manner. We noted that an essential feature of LUTI regulation for the one 

mechanistically well-defined case, NDC80, was a translated AUG-initiated uORF, 

specifically on the long transcript isoform, which prevented ribosomes from translating the 

ORF (Chen et al., 2017). Down-regulated ORF translation as a result of conditional uORF 

translation is a known mechanism, although in most reported examples, temporal control 

results from a change in trans-factor activity [for example, (Hinnebusch, 1993; Palam et al., 

2011)], while in this case, uORF translation is enabled and ORF translation disabled simply 

by timed production of a longer transcript that encodes uORF sequences. We previously 

annotated genes with meiotically translated AUG-initiated uORFs, of which 911 were 

quantified at the protein level here [Fig. 3D; (Brar et al., 2012)]. We filtered the set of genes 

that show poorly correlated mRNA and protein profiles (Fig. 2A) for meiotic translation of 

an AUG uORF and examined each of these loci for evidence of a clear alternate 5′ extended 

transcript at some point in meiosis and uORF translation that was negatively associated with 

ORF translation (Fig. 3D). In 380 cases, or 68% of genes for which these analyses were 

possible, we indeed observed evidence for regulation based on transcript toggling of 

differentially translated isoforms (Fig. 3D, Fig. 3A, Table S2). This value changed little if 

discovery was conducted using mRNA-seq without single round polyA-selection (Table S2). 

We noted that the clusters representing aberrant protein accumulation patterns in the Ndt80 

regulon were strongly enriched for these newly annotated cases of LUTI-like regulation 

(Fig. 2C, 3E).

We expected, based on the parameters of their discovery, that the 380 proposed LUTI cases 

would be regulated by an NDC80/ORC1-like mechanism involving modulation of the level 

of two transcripts, one of which has a long 5′ leader containing at least one translated AUG 

uORF that results in little protein production from the canonical ORF, and one of which has 

a shorter 5′ leader and a highly translated ORF that results in robust protein production. If 
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this is true, we should be able to detect two transcripts that both encode the ORF, and the 

longer transcript should be associated with poor translation efficiency. mRNA-seq data is 

useful for predicting the possibility of alternate transcripts, but cannot distinguish between 

alternate transcripts and discontinuous, overlapping transcripts. We therefore performed 

Northern blotting for ORFs that we predicted to show LUTI-based regulation (Figure 4, S4). 

RNA pol II mediator complex gene MED7, for example, shows two mRNA isoforms that are 

differentially translated for the MED7 ORF (Fig. 4A, 4B, S4A). Timepoints with the highest 

total MED7 mRNA levels also showed the lowest TE and preceded a drop in protein levels, 

consistent with poor translation of the long transcript that was present at these times (Fig. 

4A, 4B).

Examination of the full set of newly proposed LUTI cases showed a variety of patterns of 

mRNA and protein accumulation over our timecourse, suggesting that several transcription 

factors were likely to be involved in inducing long and short isoforms at these loci (Fig. 4C, 

top). In all cases, as expected, protein patterns did not resemble mRNA patterns (Fig. 4C). 

We confirmed the presence of two transcript isoforms and the expected relationship with 

respect to TE for ten additional cases (Fig. 4C–J, S4A–O). Regulation of RRD2, the gene 

encoding a peptidyl-prolyl-isomerase, is evident if one compares the 3 hour and 4.5 hour 

timepoints. Both show a similar amount of RRD2ORF, but the TE is higher at 4.5 hours, 

when we observe less RRD2LUTI isoform (Fig. 4D, S4B). Northern blots for POP7, an 

RNase complex component-encoding gene, and POP4, a gene encoding a fellow member of 

some of these complexes, showed meiotic appearance of long and poorly translated 

transcript isoforms at 4.5 and 1.5 hours, respectively, corresponding to low points in 

translation (Fig. 4E, 4F, S4C, S4F). DNA damage factor RAD16 primarily has a long 

transcript isoform through most of meiosis, corresponding with poor translation compared to 

vegetative cells (Fig. 4H, S4D). A long isoform of septin-encoding SHS1 was seen to peak 

at 6 hours into meiosis and was correlated in timing with a drop in SHS1 TE (Fig. 4J, S4E).

We noted that gene expression measurements for the 380 newly annotated LUTI cases were 

highly reproducible and that the unexpected relationship between protein levels was not due 

to our mass spectrometry approach (Fig. S3B–D). To further confirm our measurements, we 

assayed protein production from reporter constructs for three of our LUTI-regulated 

candidates—RAD16, SHS1, and POP4—with Green Fluorescent Protein (GFP) driven by 

their extended promoter regions. We observed patterns that matched expectations based on 

LUTI-based regulation (Fig. 4F–K, S4P–V). We further showed that Shs1 protein 

production was markedly decreased by inactivation of the predicted canonical (proximal) 

promoter in the reporter. Cells carrying this construct still show accumulation of the long 

transcript isoform, actually earlier and to a higher level than the wild-type construct, but 

show low levels of canonical transcript. Even at timepoints with high levels of the long 

transcript isoform present, protein levels are ~30-fold lower than in cells carrying the wild-

type construct (Fig. 4K–L). We conclude that, consistent with our model, the long isoform of 

SHS1 is not capable of efficiently supporting protein production. Based on our stringent 

annotation and validation approaches (Fig. 3D, Fig. 4, S4), we conclude that the newly 

annotated cases of discordant mRNA to protein levels are indeed likely to reflect LUTI 

regulation of the type outlined in Figure 7 below.
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New LUTI cases show strong apparent shifts in translation efficiency

LUTI-based regulation would be expected to result in shifts in TE over time, because TE is 

determined by normalizing ribosome footprint counts to mRNA counts over the ORF. 

Indeed, the newly proposed set of 380 LUTI-regulated genes show strong relative TE shifts 

compared to other genes (Fig. 6A). It is important to note that without information about the 

presence of alternate transcript isoforms present at these loci, we would assume that these 

measurements represented temporally regulated changes in translatability for a single 

transcript type. In the case of genes in the NDC80 or ORC1 clusters in the Ndt80 regulon, 

there is evidence that transcript toggling (and TE shifts) are driven by Ndt80, either towards 

a translatable isoform in the NDC80 cluster or towards a translationally silent isoform in the 

ORC1 cluster. This conclusion is based on positioning of Ndt80 binding sites and strong 

similarity of our measurement patterns for these genes to others in the same clusters (Fig. 

2C, 2D, 3A, 3E).

A transcription factor can coordinately activate and repress protein synthesis of distinct 
targets

If, as our data suggest, a single transcription factor can mediate both up- and down-

regulation of expression from distinct sets of target genes, this would represent a powerful 

mechanism for coordination in differentiation and potentially cellular transitions, more 

generally. To determine whether this is the case, we performed Northern blotting on samples 

from a timecourse for which we had measured mRNA abundances and translation rates 

following timed induction of the transcription factor Ndt80 in a strain carrying GAL4 under 

β-estradiol (βE) control and pGAL-NDT80 (Brar et al., 2012; Carlile and Amon, 2008). We 

noted that three of the transcripts for which we validated transcript toggling by Northern 

blotting, POP7, ORC3 (another origin recognition complex component) and MED7, showed 

similar timing for long isoform appearance following βE addition and were present in the 

aberrant protein level clusters among likely Ndt80 targets (Fig. 2C, 2D, 4C, 4B, S4F, S4H, 

S4O). A fourth gene that we had validated by Northern blotting to have two transcript 

isoforms, CYC8, encoding a general transcriptional co-repressor, was also present in the 

aberrant Ndt80 target clusters but showed the opposite pattern as the other three, with a 

shorter transcript isoform induced in mid-meiosis (Fig. 2C, S4N). We hypothesized that 

POP7, ORC3, and MED7 LUTI isoforms were driven by Ndt80, and that the CYC8 
canonical isoform was driven by Ndt80, overcoming the pre-existing LUTI isoform. All four 

genes showed strong predicted Ndt80 binding sites adjacent to the TSS predicted to be 

activated (Fig. S5I–L). Within one hour of βE addition, Northern blotting revealed a sharp 

increase in abundance of the canonical transcript for validated Ndt80 target, CDC5, a short 

transcript isoform of CYC8, and long isoforms of POP7, ORC3, and MED7 (Fig. 5A). The 

timing of this induction was similar in all cases and corresponded with a decrease in TE of 

POP7, ORC3, and MED7, and an increase for canonical Ndt80 target CDC5 and CYC8 (Fig. 

5B, S5E), supporting our hypothesis.

To prove that Ndt80 expression and not simply time in sporulation medium was responsible 

for these patterns, we arrested meiotic cells in late prophase and collected subsequent 

timepoints with or without induction of Ndt80 (Fig. 5E, S5A–D). We observed patterns of 

transcript appearance that matched those seen in our previous timecourse (Fig. 5A, 5C). 
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Moreover, matched timepoints at 0.5 and 1.75 hours after βE addition showed distinct 

patterns from those without Ndt80 induction. In the cases of POP7, MED7, and ORC3, low 

levels of canonical transcript remained at 1.75 hours without Ndt80 induction and long 

transcript was not observed (Fig. 5C). In the case of CYC8, canonical transcript was 

strongly induced in an Ndt80-dependent manner (Fig. 5C). In all cases, analysis of our 

mRNA-seq data showed accumulation of overall mRNA levels to be strongly dependent on 

Ndt80 induction in a manner similar to that seen for canonical targets like CDC5 (Fig. 5C, 

5D, S5E–L). Further, we observed a sharp increase in NDT80 mRNA within 15 minutes of 

βE addition, and subsequent increases in other target transcripts, canonical (CDC5, HRR25, 

CYC8) or LUTI (POP7, MED7, ORC3), with differing degrees of induction but within a 

shared timespan of ~45 minutes after βE addition, supporting a model in which both of these 

disparate target sets are simultaneous direct targets of Ndt80 (Fig. 5C, 5D).

Comparison of mass spectrometry and mRNA-seq data showed that, as expected, Ndt80 

induction resulted in accumulation of first mRNA, then protein for canonical Ndt80 targets, 

including Cdc5 and Hrr25 (Fig. 5F, 5G). We were also able to detect Ndt80-dependent 

protein accumulation for Cyc8, which showed a similar pattern to these targets (Fig. 5H). 

Most interestingly, we detected protein for Pop7 (Fig. 4E, 5A, 5C), and observed that 

although overall POP7 mRNA levels were drastically increased following and dependent on 

Ndt80, this condition resulted in slight decreases in protein levels with Ndt80 induction (Fig. 

5I). In contrast, without Ndt80 induction, Pop7 protein levels were seen to increase in this 

same timeframe, suggesting that induction of the long POP7 isoform by Ndt80 “turns off” 

pre-existing default protein production from this gene (Fig. 5I). This result shows that Ndt80 

induction results in coordinate up-regulation and down-regulation of protein production of 

distinct sets of genes despite increased mRNA abundance for both types of targets (Fig. 5E).

New LUTI-type cases show evidence of spatio-temporal co-regulation

For most of the 380 LUTI cases, as is true of most canonically regulated genes that are 

expressed during meiotic differentiation, we do not know the transcription factor(s) 

responsible for their induction. We identified a signature in our new annotations, however, 

that supports the involvement of regulated differential transcriptional control in many cases. 

Among the 380 proposed LUTI-regulated genes, 42 of them— far more than would be 

expected by chance —were in adjacent genomic locations and in a divergent orientation 

such that the 5′ ends were close (Fig. 6B).

We wondered if this enrichment for genomically neighboring positions suggested 

coordinated transcriptional regulation. To investigate this possibility in greater depth, we 

examined mRNA read patterns over time and space in the genomic vicinity of each of our 

380 predicted LUTI cases for evidence of their co-regulation with any stable neighboring 

transcripts. In approximately half of the cases, we observed clear evidence for co-regulation 

in time and genomic space (Fig. 6C). One of these was RRD2, which we had annotated as 

showing LUTI-based regulation, and which appeared to be spatio-temporally co-regulated 

with production of a long version of the RAD53 mRNA (encoding a DNA damage kinase, 

CHK2 in humans) that we had not identified as a candidate for LUTI-based regulation (Fig. 

4D, 6D, 3D). We noted that both RRD2 and RAD53 showed short transcripts at similar 
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times and 5′ extended transcripts at similar times, and the positions of 5′ ends of the longer 

transcripts were in close proximity (within 50 nt), suggesting transcriptional co-regulation. 

We confirmed the presence of the predicted longer version of the RAD53 transcript, and 

noted that the ORF appeared to be poorly translated when two AUG-initiated uORFs were 

translated (Fig. 6D, 6E, S4G), although we had not previously annotated translated AUG-

initiated uORFs for this gene. 94 of our set of 380 LUTI-based regulation candidates showed 

evidence for spatio-temporally coordinated co-regulation of long transcript isoforms like that 

seen for RAD53/RRD2 (Fig. 6C, Fig. S6B). We further observed several other patterns that 

suggested neighboring transcript co-regulation (Fig. S6), including cases in which LUTI 

transcription was correlated in time and genomic position with transcription of a canonical 

transcript for a gene with no evidence for LUTI-type regulation [Fig. S6G–I (Xie et al., 

2016)]. We noted that in all such cases, the 5′ transcript ends were either overlapping or 

close (within 100 nt), suggesting that co-regulation of two long transcript isoforms, or a 

LUTI and another transcript, may be driven by a change in chromatin structure and/or a 

shared transcription factor at a bi-directional promoter (Xie et al., 2016). The majority of 

canonical Ndt80 transcriptional targets (Figure 2D) also show divergent and 

spatiotemporally-regulated transcription, consistent with this feature as a hallmark of 

transcriptional activation [data not shown; examples in Fig. S6C, S6G; (Bussemaker et al., 

2001)].

The discovery that RAD53 showed LUTI-like regulation but was missed by our annotation 

approach led us to investigate if our requirement for previously annotated uORFs (Fig. 3D) 

might result in other false negative cases. To investigate this possibility, we searched for 

genes that showed a poor mRNA:protein correlation that did not have annotated uORFs and 

determined whether there was evidence for translational regulation associated with an 

alternate transcript at the locus. We identified several cases that did appear to be associated 

with AUG-initiated uORF translation (Fig. S7A–D). In the cases of ADH1 (encoding 

alcohol dehydrogenase) and CTT1 (encoding Catalase T), like RAD53 above (Fig. 6D, 6E), 

the uORF in question was one that we had annotated as translated but not previously 

annotated within the leader of a canonical gene (Brar et al., 2012). It seems likely that there 

will be cases in which extended 5′ leaders suppress translation independent of AUG-

initiated uORF translation, but we have yet to confirm such an example. Nonetheless, cases 

like RAD53, ADH1, and CTT1, which our systematic approach (Fig. 6D, 6E, Fig. S7A–D) 

failed to identify as LUTI-regulated, suggests that a regulatory mechanism in which 

transcript toggling drives protein levels is likely to be an even greater contributor to the 

dynamic content of the meiotic proteome than predicted by the evidence for 380 cases 

presented here (Fig. 3D).

Discussion

We find that gene regulation based on transcript toggling, a mechanism recently dissected in 

detail for a single gene (Chen et al., 2017; Chia et al., 2017), is a general mode of gene 

regulation during meiotic differentiation in yeast, determining the protein levels for at least 

8% of measured genes (Fig. 7A). This regulatory mechanism, in which transcript isoform 

identity rather than transcript quantity drives protein accumulation, dramatically remodels 

the meiotic proteome relative to what would be expected from traditional models of gene 
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regulation. Our results suggest that a substantial subset of the meiotic transcriptome contains 

protein coding regions that are not decoded by the ribosome into protein, and that this subset 

can change over time as part of this developmental program. As a result, total mRNA levels 

may have no relationship to protein levels for many genes in a changing cell.

We base our general model of this non-canonical regulation (Fig. 7) on observations from 

our dataset and on recent studies of NDC80 (Chen et al., 2017; Chia et al., 2017). In short, 

the relative levels of two transcription factors may determine the relative levels of two 

transcripts for these loci. The longer transcript does not result in efficient protein synthesis 

due to translation of interfering uORFs, while the short transcript does (Fig. 7A). In the case 

of NDC80, transcription from the distal TSS promotes cis-silencing by epigenetic 

modification at the proximal TSS, a key aspect of the toggling observed between the two 

isoforms. This may be true for many genes in our new set, as well, based on the inverse 

pattern generally seen for the two isoforms (in particular, Fig. 4B, 4E, 4F, 4H, S4O, S7C]. 

LUTI-based regulation is analogous in many ways to transcriptional repressor-based 

regulation (Fig. 7B), in that in general in both cases, two trans-factors control the capacity 

for protein synthesis of a gene. In the latter case, however, mRNA levels would be predictive 

of protein levels, while in the LUTI case, this may not be true.

Several factors lead us to believe that our annotations are underestimating the total incidence 

of LUTI-based regulation. First, we identified the set of 380 cases reported here by limiting 

our search pool to the set of genes that we measured to show a poor mRNA:protein 

correlation (Fig. 2A, Fig. 3D). This requires that we searched for and captured the protein by 

mass spectrometry, which excludes ~2200 canonical genes and thousands of noncanonical, 

shorter genes (Brar et al., 2012; Ingolia et al., 2014). Second, our follow-up analysis of the 

mRNA-seq data and ribosome profiling data for evidence of alternate isoforms and uORF 

translation require high enough expression levels for such effects to be clear. Third, the 5′ 
extension must be long enough that a shift in transcript boundary is apparent in the mRNA-

seq data. Fourth, our ability to see transient isoforms is limited by population synchrony. 

The case of CTT1 is informative, as the 8 hour timepoint shows a mixture of the two 

isoforms which is visible by Northern blotting but was not immediately evident from the 

mRNA-seq data alone (orange, Fig. S7C–D). Finally, our LUTI prediction pipeline required 

previous annotation of a translated AUG-initiated uORF, but we are aware that our uORF 

annotations are incomplete (demonstrated for RAD53, ADH1, and CTT1; Fig 6E, Fig. S7A–

D) and also because there may be alternate mechanisms by which a longer 5′ leader could 

repress translation relative to a shorter one.

Why is this mode of regulation so common in meiotic cells? It seems effective at driving up- 

and down-regulation of protein levels without the need for a dedicated trans-factor for 

transcriptional repression. This process instead allows repurposing of existing transcription 

factors for a new function, dependent only on cis-sequence evolution. It also appears to be 

readily reversible and tunable, resulting in ramping up and down of protein levels that may 

be important to the timing in developmental processes, which involve a series of switches in 

cell state (Fig. 2C, Fig. 7C–E;Chen et al., 2017; Chia et al., 2017). Further, the use of a 

common set of transcription factors to traditional transcriptional up-regulation provides an 

efficient solution for coordinated of up- and down-regulation of sets of protein targets (Fig. 
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2C, 3C, 7C–E). This feature is ideal for executing coordinated cell state changes, over 

biological and evolutionary time.

With the recent ability to quantify gene expression globally at multiple levels, there has been 

intense interest in ascertaining the relative importance of different stages of gene regulation 

(Liu et al., 2016). Our work suggests that a focus on relative quantitative contributions may 

cause us to miss important qualitative changes. A single transcription factor can activate 

protein expression or repress protein production, a distinction based not on whether an 

mRNA is induced or not, but based on the position of the TSS relative to the ORF start 

codon and the resultant translatability of the specific isoform induced (Fig. 2C, 3A, 3C, 7). 

A significant implication is that inferring protein production based on mRNA abundances 

may not just give an incomplete picture; rather such measurements may lead to completely 

false conclusions about protein levels. Similarly, our data shows that identification of 

alternate transcript isoforms alone is not enough to infer translational regulation. We identify 

cases in which regulated 5′ transcript extensions are seen, even accompanied by uORF 

translation, but for which we cannot detect an effect on translation or protein production 

(example in Fig. S7E–F). The basis for the difference between these cases and LUTI-based 

regulation remains unclear and suggests that there are important features of this regulation 

that are yet to be uncovered.

Our ability to systematically identify many cases of a new mode of gene regulation was 

enabled by the depth, time-resolved, and parallel nature of our measurements. A dataset with 

few timepoints or without matched measurements of mRNA and protein may not have 

allowed sensitive identification of the anti-correlations between mRNA and protein levels. 

Without matched TE measurements, we would not have been able to determine the basis for 

these poor correlations. Our analyses were also enabled by the apparently relatively short 

protein half-lives in meiotic cells relative to our timepoint spacing (Fig. 1B). A short protein 

half-life is a feature that one would expect to generally see during processes involving rapid 

unidirectional change in cellular state and this feature was important in revealing both the 

low mRNA:protein correlation among LUTI-regulated genes and the high mRNA:protein 

correlation for traditionally regulated genes (Fig. 2A, 2E). Given recent evidence of 

widespread alternate TSSes in mammalian cells and for variant translation efficiencies of 

alternate mammalian transcripts [examples in (Floor and Doudna, 2016; Wang et al., 2016)], 

along with the high degree of conservation of some of the genes for which we observe 

LUTI-based regulation, it seems likely that this mode of integrated regulation may be used 

outside of yeast. A recent study that compared mRNA and protein levels over embryonic 

development in frogs determined that a large set of genes showed a poor mRNA:protein 

correlation over time (Peshkin et al., 2015). Some of those cases were deemed a result of 

measurement noise, but it is possible that a LUTI-based mechanism might explain a 

remaining subset of such cases.

We suggest that thinking of transcription and translation as independent levels of regulation 

in eukaryotes may obscure important principles in gene regulation. Widespread use of 

alternate TSSes has been seen by genome-wide approaches [for example, (Aanes et al., 

2013; Pelechano et al., 2013)]. Similarly, it is clear that 5′ leader identity is key in setting 

translation efficiency [examples in (Floor and Doudna, 2016; Hinnebusch et al., 2016; Law 
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et al., 2005; Rojas-Duran and Gilbert, 2012; Wang et al., 2016)]. The connection between 

these two concepts—that a regulated toggle in TSS usage driven by the relative activity of 

two transcription factors can determine whether a protein-decodable or non-decodable 

transcript is made, and that this mechanism is employed pervasively in setting protein levels 

during cell fate determination, however, has not been previously apparent. By this 

mechanism, timed changes in the transcript pool composition for a large set of genes, rather 

than their levels, are key in driving the changing composition of the proteome through 

cellular differentiation. Further, the concept of simultaneous up- and down-regulation of 

distinct sets of genes by a single transcription factor provides a previously unrecognized and 

elegant solution to the problem of precisely coordinating increases and decreases in protein 

expression during a developmental program.

STAR Methods

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Gloria Brar (gabrar@berkeley.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Yeast material and growth conditions—All experiments were performed using diploid 

Saccharomyces cerevisiae strains of the SK1 background. All are MATa/alpha except Br-

Ün5805, an SK1 strain that is wild-type except for two copies of the MATa locus and no 

MATalpha locus (van Werven et al., 2012). This latter strain will not undergo meiosis, even 

when stimulated with conditions that should induce it.

For major meiotic timecourse, Br-Ün strain 1362 [equivalent to gb15 in (Brar et al., 2012)] 

was inoculated into YEPD overnight, then diluted to OD6000.2 into buffered YTA and grown 

for 12 hours. Cells were washed in water and resuspended in 250 ml sporulation media 

supplemented with 0.02% raffinose. Cells were incubated, with shaking at 30°C. For 

vegetative growth, strains were incubated with shaking at 30°C.

METHOD DETAILS

Sample collection—Meiotic samples for main experiment were collected at the 

timepoints presented in Figure 1, as in (Brar et al., 2012), using 1 minute cyclohexamide 

treatment, filtration and flash freezing in liquid Nitrogen in two portions, 90% for ribosome 

profiling, 10% for total RNA isolation. Vegetative exponential samples were collected after 

growth of 750 ml in YEPD to OD6000.6 from a dilution to OD6000.05. MATa/a samples 

were treated as the meiotic, but only one sample was collected, at 4.5 hours.

3 mL flash frozen buffer was added to ribosome profiling aliquot (also to be used for mass 

spectrometry) of the standard ribosome profiling composition (20mM Tris pH8, 140mM 

KCl, 1.5mM MgCl2, 100ug/ml cycloheximide, 1% Trition X-100) supplemented with 

2ug/ml Aprotinin, 10ug/ml Leupeptin, 1mM PMSF, 1:100 PIC2, 1:100 PIC3 (both Sigma 

inhibitor cocktails). Samples were lysed by Retsch mixermilling (6×3 minute rounds at 15 

Hz). Resulting powder was thawed, spun once at 4C for 5 min at 3000 RCF, sup was 
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removed and spun at 20,000 RCF at 4C for 10 minutes. Extract was aliquoted in 200ul 

portions and flash frozen. Identical extract was used for ribosome profiling and mass 

spectrometry.

Ribosome profiling—Ribosome profiling was performed as described previously in (Brar 

et al., 2012). The detailed protocol is identical to (Ingolia et al., 2012) except that no linker 

ligation was used and instead ribosome footprints were polyA-tailed to mark the 3′ends 

rather than using linker ligation. In short, samples were treated with RNase I (Ambion) at 15 

U per A260 unit of extract for 1 hour at room temperature. Samples were then loaded onto 

sucrose gradients (10–50%) and centrifuged for 3 hrs. at 35,000 rpm at 4°C in a SW41Ti 

rotor (Beckman). 80S/monosome peaks were collected using a Gradient Station (BioComp). 

RNA was extracted using the hot acid phenol method, RNA was size selected from a 

polyacrylamide gel, dephosphorylated, polyA-tailed, subjected to rRNA subtraction, RT-

PCR, circularization, and PCR. The enzymes used were PNK (NEB, lot 0951602), E.coli 

polyA polymerase (NEB, lot 0101309), Superscript III (Thermo, lot 1752971), Circ Ligase 

(Epicentre), Phusion polymerase (NEB). Oligos used were oCJ200-oligodT for Reverse 

transcription, oNTI231 and aatgatacggcgaccaccgagatcggaagagcacacgtctgaactccagtcac-

barcode-cgacaggttcagagttc index primers, for PCR, all also PAGE purified from IDT, where 

the barcodes are six nucleotides in length. Sequencing was done for both reads with standard 

Illumina oligos.

mRNA sequencing: The protocol followed was identical to above, except for the following: 

single round polyA-selected RNA was alkaline fragmented and size selected to 30–50 nt. 

Fragments were subjected to an identical library prep pipeline as the footprints, but no 

selective rRNA subtraction round was used. A parallel set of RNA was sequenced that 

excluded the polyA-selection step, but sequencing depth of mRNA was much lower, as 

expected, and agreement with the polyA-selected data was high (Fig. S2B). We thus use the 

polyA-selected mRNA data for all analyses presented.

Sequencing—All samples were sequenced on an Illumina HiSeq 2500, 50SRR, with 

multiplexing, at the UC-Berkeley Vincent Coates QB3 Sequencing facility.

Meiotic staging: Progression of cells through meiosis in each timecourse included here was 

determined by quantification of nuclear morphology by DAPI staining (Vectashield, Vector) 

of ethanol-permeabilized cells adhered to a polylysine-treated glass slide. Prior to anaphase 

I, cells show mononucleate morphology, at and after anaphase I and before anaphase II, cells 

show binucleate morphology, during and following anaphase II, cells show tetranucleate 

morphology. All timecourses were also assessed at 24 hours after transfer to sporulation 

media by brightfield microscopy to ensure high efficiency of spore formation, which we 

typically observe at ~90%. The Ndt80 induction experiment (Fig. 5C–I, S5) was also staged 

using indirect immunofluorescence of alpha-tubulin, using a rat anti-tubulin antibody 

(Serotec) at a dilution of 1:200 and anti-rat FITC antibody (Jackson ImmunoResearch 

Laboratories) at 1:100. Fluorescent microscopy was done on a DeltaVision microscope with 

a 100X objective.
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Ndt80 induction: Cells carrying GAL-NDT80 and pGPD1-GAL4(848). ER constructs [as 

described in (Carlile and Amon, 2008)] were introduced to sporulation medium and 

incubated with shaking at 30OC for 5.5 hours. At that time, β-estradiol was added to half of 

the culture at a concentration of 1μM. The Northern blotting of the Ndt80 release experiment 

in Fig. 5A, 5B was done using mRNA extracted for this manuscript from frozen pellets 

archived from the experiment published in (Brar et al., 2012). Data in Figure 5B is based on 

analysis of matched translation and mRNA-seq data from (Brar et al., 2012).

Strain construction: Reporter strains used for Western blotting pictured in Figure 4 were 

constructed by amplification of promoter regions, including >200 nt upstream of 5′ most 

mRNA-seq read observed at any timepoint in our dataset. These regions were cloned 

upstream of a plasmid encoding eGFP to create (pPOP4-eGFP), pUB1288 (pRAD16-eGFP), 

and pUB1290 (pSHS1-eGFP). pUB1288 was mutated to remove the 50 nt region containing 

the proximal promoter to create pUB1324 (pSHS1 prox-eGFP), using the Q5 Site-directed 

mutagenesis kit (New England Biolabs). All constructs were integrated into the genome by 

amplification TRP1 on both sides and integration into this locus in a strain carrying a 

trp1::hisG allele.

Western blotting—Western blotting was performed using a standard trichloroacetic acid 

(TCA) protocol, exactly as described in (Chen et al., 2017), except using a mouse anti-GFP 

JL8 antibody (Clontech). In short, 5ml of meiotic cells in culture (or 2ml vegetative) were 

collected and incubated with 5% TCA for at least 10 minutes at 4°C. Cells were centrifuged 

for 2 min. at 20,000 rcf and supernatant was aspirated. Cells were washed with acetone and 

pellets dried for at least 2 hours. Cell extract was made by addition of TE, supplemented 

with 3 mM DTT and protease inhibitors (Roche), and 1 volume of acid-washed glass beads. 

Tubes were agitated for 5 minutes, after which 3X SDS sample buffer was added, samples 

were boiled for 5 minutes, centrifuged for 5 min at 20,000 rcf. 8 μl supernatant was loaded 

onto Bis-Tris acrylamide gels. Gels were transferred using a Turboblot system (BioRad). 

Primary anti-GFP antibody dilution was 1:2000, anti-hexokinase was 1:12,000, secondary 

(Li-Cor) was 1:20,000. Primary antibody incubation was overnight, secondary for 1–2 hours. 

Blots were visualized using a Li-Cor system.

Northern blotting—8ug of total RNA from timecourse (Fig. 1A) was loaded onto either 

1% or 1.5% Formaldehyde agarose gels, and run at 170V for 2.5 hours. A DNA ladder was 

also loaded to assess rough sizing. The gel was transferred onto a nylon membrane (Hybond, 

GE), crosslinked, and methylene blue stained for loading. The blot was blocked with 

Northern Max Ultrahyb buffer (Ambion) at 68C for 30 minutes. The probe was generated by 

PCR of wild-type genomic yeast DNA and in vitro transcription (MaxiScript T7 kit, 

Thermo) using alpha-UTP and all other nucleotides cold. The blot was incubated with the 

probe overnight at 65C, washed as recommended by NorthernMax kit (Ambion), and 

visualized using Typhoon phosphor-imaging.

Mass spectrometry

Deep coverage meiotic time course proteomics data set generated by TMT-labeling and 
sample fractionation: Proteins were precipitated by adding -20°C cold acetone to the lysate 

Cheng et al. Page 15

Cell. Author manuscript; available in PMC 2019 February 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(acetone to eluate ratio 10:1) and overnight incubation at -20°C. The proteins were pelleted 

by centrifugation at 20000xg for 15min at 4°C. The supernatant was discarded and the pellet 

was left to dry by evaporation. The protein pellet was reconstituted in 200μl urea buffer (8M 

Urea, 75mM NaCl, 50mM Tris/HCl pH 8.0, 1mM EDTA) and protein concentrations were 

determined by BCA assay (Pierce). 40μg of total protein per sample were processed further. 

Disulfide bonds were reduced with 5mM dithiothreitol and cysteines were subsequently 

alkylated with 10mM iodoacetamide. Samples were diluted 1:4 with 50mM Tris/HCl (pH 

8.0) and sequencing grade modified trypsin (Promega) was added in an enzyme-to-substrate 

ratio of 1:50. After 16h of digestion, samples were acidified with 1% formic acid (final 

concentration). Tryptic peptides were desalted on C18 StageTips according to (Rappsilber et 

al., 2007) and evaporated to dryness in a vacuum concentrator. Desalted peptides were 

labeled with the TMT10plex mass tag labeling reagent according to the manufacturer’s 

instructions (Thermo Scientific) with small modifications. Briefly, 0.5 units of TMT10plex 

reagent was used per 40μg of sample. Peptides were dissolved in 50μl of 50mM Hepes pH 

8.5 solution and the TMT10plex reagent was added in 20.5μl of MeCN. After 1h incubation 

the reaction was stopped with 4μl 5% Hydroxylamine for 15min at 25°C. Differentially 

labeled peptides were mixed for each replicate (see mixing scheme in Table S8) and 

subsequently desalted on C18 StageTips (Rappsilber et al., 2007) and evaporated to dryness 

in a vacuum concentrator.

To reduce peptide complexity and achieve deeper proteome coverage, samples were then 

separated by basic reversed-phase chromatography as described in (Mertins et al., 2013). 

Briefly desalted peptides were reconstituted in 20mM ammonium formate, pH 10, (900μl) 

and centrifuged at 10,000g to clarify the mixture before it was transferred into autosampler 

tubes. Basic reversed-phase chromatography was conducted on a Zorbax 300Å Extend-C18 

column, using an Agilent 1100 Series HPLC instrument. The separations were performed on 

a 2.1mm. 150mm column (Agilent, 3.5μm bead size). Prior to each separation, columns 

were monitored for efficient separation with standard mixtures containing 6 peptides. 

Solvent A (2% acetonitrile, 5mM ammonium formate, pH 10), and a nonlinear increasing 

concentration of solvent B (90% acetonitrile, 5mM ammonium formate, pH 10) were used to 

separate peptides by their hydrophobicity at a high pH. We used a flow rate of 0.2ml/min 

and increased the percentage of solvent B in a nonlinear gradient with 4 different slopes (0% 

for 1min; 0% to 9% in 6min; 9% to 13% in 8min; 13% to 28.5% in 46.5min; 28.5% to 34% 

in 5.5min; 34% to 60% in 23min; 60% for 26min). Eluted peptides were collected in 96 well 

plates with 1min (= 0.2 ml) fractions. Early eluting peptides were collected in fraction “A”, 

which is a combined sample of all fractions collected before any major UV-214 signals were 

detected. The peptide samples were combined into 12 to be used for proteome analysis. 

Subfractions were achieved in a serpentine, concatenated pattern, combining eluted fractions 

from the beginning, middle, end of the run to generate subfractions of similar complexities 

that contain hydrophilic as well as hydrophobic peptides. For high-scale proteome analysis 

every 12th fraction was combined (1,13,25,37,49,61; 2,14,26,38,50,62; …). Subfractions 

were acidified to a final concentration of 1% formic acid and desalted on C18 StageTips 

according to (Rappsilber et al., 2007). LC-MS/MS analysis on a Q-Exactive HF was 

performed as previously described (Keshishian et al., 2015).
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All mass spectra were analyzed with the Spectrum Mill software package v4.0 beta (Agilent 

Technologies) according to (Mertins et al., 2013) using the yeast Uniprot database 

(UniProt.Yeast.completeIsoforms.UP000002311.20151220; strain ATCC 204508 / S288c). 

For identification, we applied a maximum FDR of 1% separately on the protein and peptide 

level and proteins were grouped in subgroup specific manner. We required at least 1 spectral 

count from a unique peptide for protein identification and for protein quantification per 

replicate measurement. 72 proteins were identified and quantified by one spectral count in 

each replicate, 231 proteins by one count in one replicate and >1 in the other replicate and 

4161 proteins by >1 spectral count in both replicates. Note that the S288C UniProt dataset 

was used because we are not aware of an equivalently complete protein dataset for SK1, and 

due to poorer sequencing depth and annotation of this genome relative to the reference, our 

attempt to create one excluded many proteins. This presumably caused us to miss capture of 

some proteins for which the quantifiable peptides are not identical in the two strains, but 

should not cause artifacts in our correlation measurements, because all measurements are 

relative among timepoints.

Finally, we normalized the Spectrum Mill generated intensities the following way. For the 

“… total norm” values in Table S3, we normalized the Spectrum Mill generated intensities 

such that at each condition/time point the TMT intensity values added up to exactly 

1,000,000, therefore each protein group value can be regarded as a normalized microshare 

(we did this separately for each replicate for all proteins that were present in that replicate 

TMT mix). For the “… MS1 total” values in Table S3, we used these normalized “… total 

norm” values to assign each protein group of a TMT labeled sample its proportional fraction 

of the Spectrum Mill generated “total MS1” intensities, based on its labeling channel 

specific “… total norm” intensity relative to the sum of the “… total norm” intensities of all 

labeled channels for the corresponding protein group. For the “… MS1 mean” values in 

Table S3, we used these normalized “… total norm” values to assign each protein group of a 

TMT labeled sample its proportional fraction of the Spectrum Mill generated “mean MS1” 

intensities, based on its labeling channel specific “… total norm” intensity relative to the 

sum of the “… total norm” intensities of all labeled channels for the corresponding protein 

group.

Note: In order to compare protein group specific intensity values between the TMT 

quantified meiotic time courses and our control label free quantified (LFQ) meiotic time 

course (replicate 2 only, missing the “25h spores” time point only), we analyzed the above 

generated data also with MaxQuant (version 1.6.0.16), as that was the program of choice for 

our LFQ measurements. The same parameters were applied as for the LFQ data analysis (see 

below). Each protein group of a TMT labeled sample got its proportional fraction of the 

MS1 based LFQ intensities based on its labeling channel specific TMT MS2 intensity 

relative to the sum of TMT MS2 intensities of all labeled channels for the corresponding 

protein group. Afterwards we normalized these fractional MS1 LFQ intensities such that at 

each condition/time point these intensity values added up to exactly 1,000,000, therefore 

each protein group value can be regarded as a normalized microshare. These microshare 

values were then compared to the normalized microshare LFQ based intensities from our 

label free meiotic time course samples (Figure S1D, see below).
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Control meiotic time course proteomics data generated by Label Free Quantification 
(LFQ): In order to validate the TMT-based quantification results, we performed proteomics 

based LFQ, which does the quantification on the MS1 level, instead of the MS2 level and 

does not allow multiplexing as is the case for TMT labeling. Therefore, different systematic 

biases are introduced by LFQ based proteomics than by TMT based proteomics and it serves 

as a quite stringent test to our deep proteome quantification results obtained by our TMT 

based approach. We quantified 9 matched samples, all coming from the second replicate of 

the meiotic time course. The only sample missing was the “25 hours spore” sample.

Proteins were precipitated by adding -20°C cold acetone to the lysate (acetone to eluate ratio 

10:1) and overnight incubation at -20°C. The proteins were pelleted by centrifugation at 

20000xg for 15min at 4°C. The supernatant was discarded and the pellet was left to dry by 

evaporation. The protein pellet was reconstituted in 100μl urea buffer (8M Urea, 75mM 

NaCl, 50mM Tris/HCl pH 8.0, 1mM EDTA) and protein concentrations were determined by 

BCA assay (Pierce). 20μg of total protein per sample were processed further. Disulfide 

bonds were reduced with 5mM dithiothreitol and cysteines were subsequently alkylated with 

10mM iodoacetamide. Samples were diluted 1:4 with 50mM Tris/HCl (pH 8.0) and 

sequencing grade modified trypsin (Promega) was added in an enzyme-to-substrate ratio of 

1:50. After 16h of digestion, samples were acidified with 1% formic acid (final 

concentration). Tryptic peptides were desalted on C18 StageTips according to (Rappsilber et 

al., 2007) and evaporated to dryness in a vacuum concentrator. Desalted peptides were 

reconstituted in Buffer A (0.2% Formic acid).

LC-MS/MS analysis was performed on a Q-Exactive HF. Each sample was measured twice 

(a total of 18 mass spec runs). Around 1μg of total peptides were analyzed on an Eksigent 

nanoLC-415 HPLC system (Sciex) coupled via a 25cm C18 column (inner diameter 100μm 

packed in-house with 2.4μm ReproSil-Pur C18-AQ medium, Dr. Maisch GmbH) to a 

benchtop Orbitrap Q Exactive HF mass spectrometer (Thermo Fisher Scientific). Peptides 

were separated at a flow rate of 200nL/min with a linear 106min gradient from 2% to 25% 

solvent B (100% acetonitrile, 0.1% formic acid), followed by a linear 5min gradient from 25 

to 85% solvent B. Each sample was run for 170min, including sample loading and column 

equilibration times. Data was acquired in data dependent mode using Xcalibur 2.8 software. 

MS1 Spectra were measured with a resolution of 60,000, an AGC target of 3e6 and a mass 

range from 375 to 2000m/z. Up to 15 MS2 spectra per duty cycle were triggered at a 

resolution of 15,000, an AGC target of 2e5, an isolation window of 1.6 m/z and a normalized 

collision energy of 27.

All raw data were analyzed with MaxQuant software version 1.6.0.16 (Cox and Mann, 

2008) using a UniProt yeast database (release 2014_09, strain ATCC 204508 / S288c), and 

MS/MS searches were performed with the following parameters: The two replicate runs per 

sample were grouped together. Oxidation of methionine and protein N-terminal acetylation 

as variable modifications; carbamidomethylation as fixed modification; Trypsin/P as the 

digestion enzyme; precursor ion mass tolerances of 20 p.p.m. for the first search (used for 

nonlinear mass re-calibration) and 4.5 p.p.m. for the main search, and a fragment ion mass 

tolerance of 20 p.p.m. For identification, we applied a maximum FDR of 1% separately on 

protein and peptide level. “Match between the runs” was activated, as well as the “LFQ” (at 
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least two ratio counts were necessary to get an LFQ value). We required 1 or more unique/

razor peptides for protein identification and a ratio count of 2 or more for label free protein 

quantification in each of the 9 samples. This gave us LFQ values for a total of 1568 protein 

groups.

Finally, we normalized the MaxQuant generated LFQ intensities such that at each condition/

time point the LFQ intensity values added up to exactly 1,000,000, therefore each protein 

group value can be regarded as a normalized microshare (we did this separately for each 

sample for all proteins that were present in that sample).

Ndt80 release proteomics measurements: Proteins were precipitated by adding -20°C cold 

acetone to the lysate (acetone to eluate ratio 10:1) and overnight incubation at -20°C. The 

proteins were pelleted by centrifugation at 20000xg for 15min at 4°C. The supernatant was 

discarded and the pellet was left to dry by evaporation. The protein pellet was reconstituted 

in 100μl urea buffer (8M Urea, 75mM NaCl, 50mM Tris/HCl pH 8.0, 1mM EDTA) and 

protein concentrations were determined by BCA assay (Pierce). 15μg of total protein per 

sample were processed further. Disulfide bonds were reduced with 5mM dithiothreitol and 

cysteines were subsequently alkylated with 10mM iodoacetamide. Samples were diluted 1:4 

with 50mM Tris/HCl (pH 8.0) and sequencing grade modified trypsin (Promega) was added 

in an enzyme-to-substrate ratio of 1:50. After 16h of digestion, samples were acidified with 

1% formic acid (final concentration). Tryptic peptides were desalted on C18 StageTips 

according to (Rappsilber et al., 2007) and evaporated to dryness in a vacuum concentrator. 

Desalted peptides were labeled with the TMT10plex mass tag labeling reagent according to 

the manufacturer’s instructions (Thermo Scientific) with small modifications. Briefly, 

0.2units of TMT10plex reagent was used per 15μg of sample. Peptides were dissolved in 

30μl of 50mM Hepes pH 8.5 solution and the TMT10plex reagent was added in 12.3μl of 

MeCN. After 1h incubation the reaction was stopped with 2.5μl 5% Hydroxylamine for 

15min at 25°C. Differentially labeled peptides were mixed for each replicate (see mixing 

scheme in Table S8) and subsequently desalted on C18 StageTips (Rappsilber et al., 2007) 

and evaporated to dryness in a vacuum concentrator.

The peptide mixtures were fractionated by Strong Cation Exchange (SCX) using StageTips 

as previously described (Rappsilber et al., 2007) with slight modifications. Briefly, one 

StageTip was prepared per sample by 3 SCX discs (3M, #2251) topped with 2 C18 discs 

(3M, #2215). The packed StageTips were first washed with 100μl methanol and then with 

100μl 80% acetonitrile and 0.2% formic acid. Afterwards they were equilibrated by 100μl 

0.2% formic acid and the sample was loaded onto the discs. The sample was transeluted 

from the C18 discs to the SCX discs by applying 100μl 80% acetonitrile; 0.2% formic acid, 

which was followed by 3 stepwise elutions and collections of the peptide mix from the SCX 

discs. The first fraction was eluted with 50μl 50mM NH4AcO; 20% MeCN (pH ~7.2), the 

second with 50μl 50mM NH4HCO3; 20% MeCN (pH ~8.5) and the sixth with 50μl 0.1% 

NH4OH; 20% MeCN (pH ~9.5). 200μl of 0.2% acetic acid was added to each of the 3 

fractions and they were subsequently desalted on C18 StageTips as previously described 

(Rappsilber et al., 2007) and evaporated to dryness in a vacuum concentrator. Peptides were 

reconstituted in 10μl 0.2% formic acid. Both the unfractionated samples plus the 
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fractionated, less complex samples were afterwards analyzed by LC-MS/MS on a Q-

Exactive HF was performed as previously described (Keshishian et al., 2015).

Around 1μg of total peptides were analyzed on an Eksigent nanoLC-415 HPLC system 

(Sciex) coupled via a 25cm C18 column (inner diameter of 100μm, packed in-house with 

2.4μm ReproSil-Pur C18-AQ medium, Dr. Maisch GmbH) to a benchtop Orbitrap Q 

Exactive HF mass spectrometer (Thermo Fisher Scientific). Peptides were separated at a 

flow rate of 200nL/min with a linear 106min gradient from 2% to 25% solvent B (100% 

acetonitrile, 0.1% formic acid), followed by a linear 5min gradient from 25 to 85% solvent 

B. Each sample was run for 170min, including sample loading and column equilibration 

times. Data was acquired in data dependent mode using Xcalibur 2.8 software. MS1 Spectra 

were measured with a resolution of 60,000, an AGC target of 3e6 and a mass range from 375 

to 2000m/z. Up to 15 MS2 spectra per duty cycle were triggered at a resolution of 60,000, 

an AGC target of 2e5, an isolation window of 1.6 m/z and a normalized collision energy of 

36.

All raw data were analyzed with MaxQuant software version 1.6.0.16 (Cox and Mann, 

2008) using a UniProt yeast database (release 2014_09, strain ATCC 204508 / S288c), and 

MS/MS searches were performed with the following parameters: The five mass spec runs 

were grouped together. TMT11plex labeling on the MS2 level, oxidation of methionine and 

protein N-terminal acetylation as variable modifications; carbamidomethylation as fixed 

modification; Trypsin/P as the digestion enzyme; precursor ion mass tolerances of 20 p.p.m. 

for the first search (used for nonlinear mass re-calibration) and 4.5 p.p.m. for the main 

search, and a fragment ion mass tolerance of 20 p.p.m. For identification, we applied a 

maximum FDR of 1% separately on protein and peptide level. We required 1 or more 

unique/razor peptides for protein identification and a ratio count for each of the 10 TMT 

channels. This gave us a total of 2908 quantified protein groups.

Finally, we normalized the MaxQuant generated corrected TMT intensities such that at each 

condition/time point the corrected TMT intensity values added up to exactly 1,000,000, 

therefore each protein group value can be regarded as a normalized microshare (we did this 

separately for each TMT channel for all proteins that were made our filter cutoff in all the 

TMT channels).

QUANTIFICATION AND STATISTICAL ANALYSIS

Sequence alignments, data analysis—Sequencing data were analyzed exactly as in 

(Brar et al., 2012; Ingolia et al., 2012). In short, bowtie2-based alignment (Langmead and 

Salzberg, 2012) was used and only unique sequences were mapped. Bowtie2-based mapping 

and subsequent quantification for ribosome profiling data were executed using quality 

control metrics and scripts written by Nick Ingolia. These quality control metrics include 

analysis of ribosome footprint length distributions in ribosome profiling samples to confirm 

periodicity and optimal RNAse I digestion. Gene expression quantification involved 

summing unique reads over annotated ORFs and adjustment for RPKM (reads per kilobase 

million) values. Only genes and timepoints with at least 10 raw ribosome footprint or mRNA 

reads were used for analyses. Mochiview was used for genome browsing and motif analysis, 
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Cluster 3.0 and Treeview were used for cluster analyses and visualization. All correlation 

measurements used throughout this manuscript are Pearson correlations.

As is true of most genome-wide studies, our measurements are relative, representing the 

proportional levels of either mRNA, ribosome footprints, or protein in the population. For 

meiotic timepoints, including and between 1.5 and 8 hours, these values are expected to be 

quantitatively comparable, as our previous measurements determined no major shifts in bulk 

mRNA, translation, or protein levels over this timespan. In contrast, major metabolic shifts 

are expected as cells enter meiosis (from 0 hr to 1.5 hr) and as they complete spore 

formation, and major metabolic differences are likely to exist between cells in sporulation 

medium and rich medium. We chose, however, to analyze relative measurements among all 

timepoints for two reasons. First, our previous attempts to normalize our measurements 

relative to doped oligos or exogenous mRNAs introduced an additional source of noise to 

the data that obscured real biological regulation (Brar et al., 2012). Second, we determined 

based on examination of the patterns of mRNA, translation, and protein for well studied 

genes, that our measurements mirrored those from our own and others’ published studies 

and thus seemed reliable despite some expected metabolic shifts. Nonetheless, we generally 

refrain from making quantitative comparisons between measurements made in rich media 

and cells in sporulation media, as these comparisons are the most likely to include 

complicating large bulk effects.

Note that, although full biological replicates were collected and matched extremely well in 

most instances, the mRNA for the vegetative exponential replicate 2 appeared contaminated. 

Attempts were made to re-prepare this sample once this was determined, but the issue was 

not identified and this sample, in particular, looks unlike vegetative exponential samples that 

our lab has previously prepared. Because the assignment of replicate 1 and 2 for this sample 

was arbitrary and because the footprint samples collected from the same culture flasks 

agreed very well (Table S3), we used the replicate 1 data for the vegetative exponential 

mRNA. This was the only instance in which the samples were not completely matched from 

identical cells and we believe that it does not affect the results based on comparisons with 

our previous timecourse and thorough replicate analyses of the ribosome footprints and 

protein for this sample.

Genome browsing/motif analysis—We used Mochiview (Homann and Johnson, 2010) 

for all of our genome browser analyses and motif analyses.

Data clustering and visualization—We used Cluster 3.0 (de Hoon et al., 2004) for our 

hierarchical clustering, using uncentered correlation clustering with the centered setting. We 

visualized the results using Java Treeview (Saldanha, 2004).

Translation Efficiency measurements—Translation efficiency measurements were 

calculated for each gene and timepoint from the formula FPRPKM/mRNARPKM, in both 

cases only using values that resulted from 10 raw reads or more and in each case, summing 

only over the annotated open reading frame (ORF).
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LUTI annotation—We isolated the pool of genes for which we quantified protein in this 

dataset and had previously identified evidence for meiotic translation of an AUG-initiated 

uORF. This pool included 914 genes. We then filtered on the mRNA to protein Pearson 

correlation over all timepoints, choosing a cutoff at 0.4 to represent “poor” correlation, 

narrowing the pool to 624 genes. We then assayed mRNA-seq data by genome browser, 

comparing all timepoints and taking forward only genes that showed evidence for an 

alternate 5′ extended transcript at some point. We also required that these genes show AUG-

initiated uORF translation in this dataset by genome browser analysis of ribosome profiling 

data and that this translation did not mirror translation of the downstream ORF (or was 

broadly consistent with an inverse relationship between uORF and ORF translation). In 

cases in which reads for ribosome profiling reads over uORFs were low or noisy, 

occasionally observed due to the short nature of many of these regions, we alternatively 

allowed a case to be scored as positive if the TE at the timepoint when the transcript 

appeared long by genome browser analysis was lower than the TE when the transcript 

appeared short by genome browser analysis. This determination did not require any fold 

change cutoff so that the quantitative confirmation in part Fig. 6A would be independent. 

The results of this approach are summarized in the pie chart. In 59 cases, we could not 

analyze the locus for evidence of an alternate transcript due to overlap with a neighboring 

transcript. In 5 cases, we observed regulation that appeared similar to that observed for the 

SER3/SRG1 locus [see Fig. S7G for example and discussion; (Martens et al., 2004)], with 

regulated appearance of an alternate overlapping transcript that does not contain the full 

canonical ORF; in 3 cases the regulation was difficult to categorize for other reasons; and in 

177 cases, there was no clear evidence for an alternate transcript. In the remaining 380 cases, 

there is moderate to strong evidence for LUTI-based regulation. This includes 78 of the 156 

cases that we had annotated as showing alternate 5′ leaders in our original mRNA-seq 

dataset (Brar et al., 2012).

DATA AND SOFTWARE AVAILABILITY

All raw sequencing and mass spectrometry data for use in this manuscript are available 

through NCBI GEO (https://www.ncbi.nlm.nih.gov/geo/; GSE108778) and the MassIVE 

platform (http://massive.ucsd.edu; MSV000081874). Processed data used for analyses in this 

manuscript are included as Tables S3–S6.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Parallel global measurements in meiosis reveal discordant mRNA and protein 

patterns

• Toggling between mRNA isoforms due to alternate TSSes drives meiotic 

protein levels

• Regulation of transcription and translation can be integrated rather than 

sequential

• A single transcription factor can coordinately activate and repress gene 

expression

A single transcription factor can coordinate control of both up- and down-regulation of 

gene products through generation of alternative transcripts.
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Figure 1. 
Gene expression through meiotic differentiation, from mRNA to protein. A) Matched extract 

was used for mRNA-seq, ribosome profiling, and quantitative mass spectrometry. B) 

Hierarchical clustering of protein measurements for all quantified annotated genes (n=4464, 

columns) over all timepoints (rows) is shown. Total signal is normalized per column to allow 

comparison of patterns. See also Fig. S1, Tables S1, S3, and S6.
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Figure 2. 
Many genes show a poor correlation between mRNA and protein in meiotic differentiation 

that is associated with alternate transcripts. A) A histogram of the Pearson correlation 

coefficients between mRNA and protein abundance measurements over all timepoints for all 

genes is shown. Note the general skew towards a positive correlation and a subdistribution 

(centered at ~−0.2) with a poor correlation. B) Mean levels of mRNA (blue) and protein 

(black) for each of the genes shown in the distribution above is shown. C) Protein 

abundances for Ndt80 targets. Columns are genes, rows are timepoints. Shaded boxes below 

denote discrete clusters representing patterns of protein abundance. The gray box denotes 

the set of genes that show protein abundance patterns that fit well with mRNA abundances in 

Cheng et al. Page 28

Cell. Author manuscript; available in PMC 2019 February 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



D. D) mRNA abundances matched to the columns in C. For E), F) and G), pink bars denote 

the timing of production of long transcripts and blue bars denote the timing of production of 

short, canonical transcripts. mRNA, ribosome footprints, protein, and TE are plotted for E) 

canonical Ndt80 target CDC5, F) ORC1 and G) NDC80. See also Fig. S2.
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Figure 3. 
Annotation of genes regulated by transcript toggling. A) Top, transcript models are shown, 

along with the position of the MSE. Middle, mRNA reads (top) are plotted for CDC5, 
NDC80, and ORC1. Bottom, TE is plotted for these same genes. The timing of Ndt80 action 

corresponds with an increase in translation and TE for NDC80 and a decrease for ORC1. B) 

Enrichment is shown for predicted alternate meiotic transcripts [as defined in (Brar et al., 

2012)] for genes in the Ndt80 regulon with poor mRNA:protein correlation (<0.4, Pearson) 

in Fig. S2A. ** p<0.01 by Fisher’s exact test. C) A model for Ndt80 action on three different 

types of targets for which it induces an abundant transcript. Canonical targets like CDC5 
promote meiotic progression past pachytene. At these loci, a translatable transcript is made, 

resulting in rapid protein accumulation. Ndt80 induction induces an abundant and longer, 

untranslatable transcript isoform (LUTI) of ORC1, which results in decreased in protein 

levels. NDC80 is a target that was previously kept silent by a LUTI transcript. Ndt80 induces 

a short transcript that overcomes the silent transcript in the population and is well translated 

and allows protein accumulation, albeit at a slower rate than most canonical Ndt80 targets. 

D) The description of our pipeline for LUTI-type identification is shown and expanded in 

Fig. S3A. E) Enrichment of the newly annotated LUTIs is seen in the ORC1, CDC5 and 

NDC80 clusters in Fig. 2C. Fisher’s exact test was used for statistical significance. See also 

Fig. S3, Table S2.
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Figure 4. 
Validation of LUTI cases predicted by systematic annotation. A) mRNA-seq and ribosome 

profiling data is shown over all timepoints for the MED7 locus. Existence of a long 

transcript that has translated uORFs and is poorly translated for MED7 is clear at mid-

meiotic timepoints. B) Comparison of levels and timing between Northern blots for the 

MED7 ORF and the mRNA-seq, translation, protein, and TE measured from matched 

samples shows evidence for a poorly translated long transcript isoform. C) Z-score 

clustering to compare mRNA (top) and protein (bottom) patterns for each of the 380 

predicted LUTIs discovered by the approach outlined in Fig. 3D. Below, the positions of the 

genes that are investigated in more detail in Fig. 4 and S4 are shown. D–J) Comparison of 

levels and timing between Northern blots and the TE in matched samples shows evidence for 

a poorly translated long transcript for D) RRD2, E) POP7, F) POP4, H) RAD16, J) SHS1. 

Pink bars represent the presence of the long transcript and blue bars represent the presence 

of the short transcript. G) W. blotting of a GFP reporter driven by pPOP4, I) pRAD16, and 

K) pSHS1. In a paired reporter deleted for the canonical SHS1 promoter, long transcript 

remains high and is increased relative to wild-type but protein production is low. Blots were 

run, transferred, and blotted together. L) Quantification of the Western blots in K. See also 

Fig. S4.
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Figure 5. 
A single transcription factor coordinately induces long, translationally silent transcript 

isoforms and canonical transcripts, with opposing effects on protein production. A) Northern 

blotting reveals rapid increases in mRNA following Ndt80 induction for canonical Ndt80 

target, CDC5, the canonical transcript isoform of CYC8, and long isoforms of POP7, 
MED7, and ORC3. Pink and blue bars at the right of blots indicate canonical and LUTI 

isoforms. B) These increases in mRNA result in decreased TE for POP7, MED7, and ORC3, 

while CDC5 and the short CYC8 isoform are better translated after Ndt80 induction. C) 

Northern blotting reveals Ndt80-dependence to induction of CDC5, the canonical transcript 

isoform of CYC8, and long isoforms of POP7, MED7, and ORC3, *denotes a background 

band. D) mRNA abundance increases for traditional and long, poorly translated Ndt80 

transcript isoform targets occur with similar timing and are dependent on Ndt80. Dotted 

lines show mRNA abundances without addition of β-estradiol. Solid lines show 

measurements with. E) Outline of experiments in A) and C) and expected effects on gene 

expression. F–I) mRNA (blue) and protein (black) are shown with (solid line) and without 

(dotted line) Ndt80 induction for F) canonical targets CDC5 and G) HRR25, H) the 

canonical transcript isoform of CYC8, and I) POP7LUTI. Note that induction of canonical 

mRNAs results in an Ndt80-dependent increase in mRNA and protein, while induction of 

the POP7 LUTI results in an Ndt80-dependent increase in mRNA but decrease in protein, 

relative to no Ndt80 induction. See also Fig. S5, Table S4, Table S5.
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Figure 6. 
Newly identified LUTIs result in strong apparent translational control and show unusual 

spatio-temporal transcriptional coordination. A) A histogram of the ratio between the 

highest and lowest TE measured is shown for the genes that we predicted to be LUTI-

regulated (Fig. 3D), revealing a higher difference for these genes compared to others. B) The 

incidence of directly adjacent and divergently oriented genes with their 5′ ends close is 

shown for our newly defined prospective LUTIs and a control set, chosen to include the 380 

genes with the lowest protein:translation Pearson correlation in our dataset. C) We examined 
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the full set of 380 predicted LUTI cases for evidence of neighboring, correlated transcripts, 

with 94 of these cases oriented divergently and with apparently co-regulated long transcript 

isoform cases (Fig. 3D). D) mRNA seq data for the RAD53/RRD2 locus is shown, 

demonstrating their divergent, neighboring orientation. RAD53 shows a regulated longer 

transcript of the predicted size that is poorly translated. RAD53 regulation looks similar to 

the regulation for RRD2 (Fig. 4D, 6D) but we had not previously annotated translated AUG-

initiated uORFs for RAD53. E) Translation levels, mRNA, protein, and TE for RAD53 are 

shown above Northern blotting of matched samples. See also Fig. S6, S7.
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Figure 7. 
A model for the control of protein levels by transcript isoform toggling in meiosis. A) A 

subset of genes are encoded by two isoforms, differing in their 5′ end. These isoforms result 

from two transcription start sites (TSSes) and the choice between these two TSSes may be 

controlled by the relative levels of the two transcription factors (TF2 and TF1) that can bind 

the proximal and distal TSS, respectively. If TF2 binds the proximal TSS, a canonical 

transcript is produced with a short 5′ leader that is well translated and results in protein 

accumulation. If TF1 accumulates, it binds the distal TSS and produces a longer transcript at 

this locus. This transcript includes the sequence for the encoded gene, but ribosomes do not 

decode this region into protein due to uORFs in the extended leader region. Analysis of one 

case shows that transcription of the LUTI can silence the proximal TSS in cis (Chia et al., 

2017). The difference in translatability of the two transcripts is more important than the 

abundance of transcript at these loci. Further, by this model, TF2 ultimately activates gene 

expression and TF1 ultimately represses gene expression. B) In contrast, canonical 

transcriptional repression involves either loss of binding of an activating transcription factor 

or the additional presence of a repressor molecule. C) In a developmental process, the LUTI 

mechanism can enable coordinated activation of genes required for the next cellular state 

and repression of genes involved in the past cellular state. D) This mode of regulation allows 

a relay of sequential activation and repression to time protein levels to a window of action. 

E) The modular nature of LUTI regulation allows genes to be turned on an off in a 

coordinated manner for windows of different lengths of time. For example, gene A protein 

production would be turned on by TF1 and turned off by production of a LUTI by TF2. 

Gene C, would also be turned on by TF1, but would stay on longer, until shut down by TF3.
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