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Abstract
The photosynthetic unicellular alga Chlamydomonas (Chlamydomonas reinhardtii) is a versatile reference for algal biology
because of its ease of culture in the laboratory. Genomic and systems biology approaches have previously described tran-
scriptome responses to environmental changes using bulk data, thus representing the average behavior from pools of cells.
Here, we apply single-cell RNA sequencing (scRNA-seq) to probe the heterogeneity of Chlamydomonas cell populations
under three environments and in two genotypes differing by the presence of a cell wall. First, we determined that RNA
can be extracted from single algal cells with or without a cell wall, offering the possibility to sample natural algal communi-
ties. Second, scRNA-seq successfully separated single cells into nonoverlapping cell clusters according to their growth con-
ditions. Cells exposed to iron or nitrogen deficiency were easily distinguished despite a shared tendency to arrest photosyn-
thesis and cell division to economize resources. Notably, these groups of cells not only recapitulated known patterns
observed with bulk RNA-seq but also revealed their inherent heterogeneity. A substantial source of variation between cells
originated from their endogenous diurnal phase, although cultures were grown in constant light. We exploited this result
to show that circadian iron responses may be conserved from algae to land plants. We document experimentally that bulk
RNA-seq data represent an average of typically hidden heterogeneity in the population.

Introduction

Transcriptome analysis in the green unicellular alga
Chlamydomonas (Chlamydomonas reinhardtii) has prolifer-
ated since the genome was released in 2007 (Merchant

et al., 2007). Since then, dozens of experiments have been
conducted that aimed to describe the changes in gene ex-
pression in response to changes in nutrient availability such
as nitrogen (Plumley and Schmidt, 1989; Miller et al., 2010;
Boyle et al., 2012; Blaby et al., 2013), sulfur (González-
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Ballester et al., 2010), phosphorus (Moseley et al., 2006;
Schmollinger et al., 2014; Bajhaiya et al., 2016), acetate
(Goodenough et al., 2014; Bogaert et al., 2019), and essential
metals (Castruita et al., 2011; Blaby-Haas and Merchant,
2012; Urzica et al., 2012; Malasarn et al., 2013; Blaby-Haas
et al., 2016), as well as changes that occur in response to
light (Wakao et al., 2014; Tilbrook et al., 2016) or across the
diurnal cycle (Zones et al., 2015; Strenkert et al., 2019), and
following chemical treatments (Blaby et al., 2015; Wittkopp
et al., 2017; Ma et al., 2020). A common feature of the prior
studies is the use of bulk transcriptome deep sequencing
(RNA-seq) obtained from the sequencing of RNA extracted
from pools of cells. Such pooling is necessary to meet the
material requirements for library preparation. Changes in
transcript levels therefore reflect the average behavior of the
culture and may not accurately inform on the extent of cell-
to-cell variation that might exist in these samples.

Recently developed single-cell RNA sequencing (scRNA-
seq) techniques have gained in popularity to counter the in-
nate limitations of bulk RNA-seq. In Arabidopsis (Arabidopsis
thaliana) and yeast (Saccharomyces cerevisiae), comparisons
of bulk RNA-seq and scRNA-seq results have highlighted the
heterogeneity of cell populations. For instance, the characteri-
zation of yeast culture responses to stress uncovered variabil-
ity in gene expression between cells, which may shape how
well they cope with the introduced stressor (Gasch et al.,
2017). Individual yeast cells also do not age evenly within cul-
tures, again highlighting the heterogeneity of bulk cultures
(Zhang et al., 2020). Likewise, in Arabidopsis, profiling of sin-
gle root cells revealed the stochasticity reflecting their devel-
opmental trajectories, although each cell type could be
efficiently identified by comparing scRNA-seq and bulk RNA-
seq data (Shulse et al., 2019; Zhang et al., 2019). In both
Arabidopsis and yeast, the cells under investigation are sur-
rounded by a physical barrier that must be removed prior to
RNA extraction and library construction. In the case of
Arabidopsis, the cell wall is digested by a mixture of enzymes
for 60 min; protoplast isolation ahead of scRNA-seq may
therefore introduce variation in the gene expression profile of
single cells that must be considered during subsequent analy-
sis, especially for short-lived RNAs.

In contrast to bulk RNA-seq data sets that inspect a few
RNA samples to great depth (or coverage), scRNA-seq data
sets provide an overview of the complement of genes that
might be expressed in a given cell at very shallow coverage.
Therefore, in a typical scRNA-seq data set, there are no val-
ues for most genes, either because they are truly not
expressed or because their transcripts were not captured in
that specific cell. Nevertheless, scRNA-seq data are also in-
credibly dense, as the data sets document the expression of
n genes (usually thousands) across m cells (also in the hun-
dreds to thousands), resulting in an n � m matrix whose
gene expression data exist in an n-dimensional space. To at
least partially remedy both limitations of scRNA-seq studies,
dimensionality reduction methods are generally applied early
on, bringing an estimate of the full data sets into a 2D

space. Two popular methods presently in use are t-distrib-
uted Stochastic Neighbor Embedding (t-SNE) and Uniform
Manifold Approximation and Projection (UMAP) (Van Der
Maaten and Hinton, 2008; Becht et al., 2019). Both methods
aim to preserve the local structure of complex data by con-
verting the distance between neighboring cells into probabil-
ities in n-dimensional space, followed by dimension
reduction using different probability distribution functions
and distance minimization parameters. Thus, genes with
similar expression patterns will occupy similar n-dimensional
neighborhoods that will be reduced to the same local 2D
neighborhoods, even when some genes have missing data.
Recent benchmarking of various dimensionality reduction
techniques has illustrated the strengths and limitations of
both methods: While they both correctly distinguish sam-
ples into large clusters, the relative distance and orientation
of these clusters may not reflect the underlying structure. In
addition, the exact nature of the analyzed samples also mat-
ters: Indeed, the clustering of cells that fall along a contin-
uum such as a developmental time course more accurately
represents the underlying structure than discrete samples,
especially with UMAP (Heiser and Lau, 2020). Another useful
tool in analyzing and visualizing single cell data is to aggre-
gate the expression of multiple genes, selected based on
prior knowledge of gene function or pathway. The com-
bined expression across many cells will reinforce any poten-
tial observable signal, thus facilitating downstream analysis.

As a unicellular organism, Chlamydomonas presents an
ideal system for the application of scRNA-seq to discover
whether cultures exhibit similar stochasticity in their tran-
scriptome as do Arabidopsis root cells, yeast, or mammalian
cells. Although the alga can be easily synchronized to a 24-h
cell division cycle by growth under light–dark cycles (12-h
light/12-h dark), the vast majority of experimental condi-
tions relies on cells grown in constant conditions. In addi-
tion, cultures need to be refreshed often so as to keep cells
in an actively growing state. It is assumed that such cultures
are globally asynchronous and represent a mixture of cells in
various phases along the diurnal and cell cycles. However,
this assumption has not been tested empirically.

We describe here the scRNA-seq analysis of gene expres-
sion for almost 60,000 cells derived from three growth con-
ditions and two Chlamydomonas strains. We report that
scRNA-seq successfully captures the same gene expression
signatures as do bulk RNA-seq approaches. We further show
that cells experiencing distinct growth conditions cluster in-
dependently from one another. Finally, we determine that
bulk Chlamydomonas cultures grown in constant light are
far from homogeneous and exhibit instead substantial varia-
tion in their diurnal cycle, although the distribution of these
phases is not uniform. We then use the preferential diurnal
phase exhibited by cells to demonstrate the likely conserva-
tion of circadian iron responses in Chlamydomonas, as diur-
nal phases are globally lagging in iron-deficient algal cells, as
seen in Arabidopsis (Chen et al., 2013; Hong et al., 2013;
Salomé et al., 2013).
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Results

scRNA-seq of Chlamydomonas cells reflects their
iron nutritional status

To determine whether scRNA-seq methodology is applicable
off-the-shelf for profiling Chlamydomonas cultures, we
tested the cell wall–deficient strain CC-5390 under two con-
trasting conditions: iron replete (Fe + ), and iron deficient
(Fe–). We grew a single culture for 3 d in constant light and
in Fe + conditions before splitting the culture into separate
Fe + and Fe– cultures. We measured cell density after 23 h
and adjusted it to 1,200 cells mL–1 for Gel Bead in Emulsion
(GEM) formation and single-cell library preparation. We

reasoned that 1 d in the complete absence of Fe would be
sufficient to induce a strong Fe deficiency response (Page
et al., 2012) but would not be as drastic as prolonged Fe de-
ficiency from the time of initial inoculation (Urzica et al.,
2012). To test reproducibility, we also generated a third sam-
ple consisting of a mixture of the two samples at equal cell
densities and proceeded with GEMs alongside the Fe + and
Fe– samples.

After sequencing and mapping reads to the
Chlamydomonas reference genome (version v5.5), we
counted 28,690 cells across the three samples, from which
we detected an average of 3,344 unique molecular identifiers
(UMIs) per cell mapping to an average 823 genes
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Figure 1 scRNA-seq properly separates chlamydomonas cells according to their iron nutritional status. In a first experiment, we grew
Chlamydomonas strain CC-5390 in Fe-replete (Fe + ) conditions before being transferred to Fe + or Fe-limited conditions (Fe–) for 23 h. Cells
were then processed for scRNA-seq, starting with GEMs formation in the 10X Genomics pipeline. See also Supplemental Tables 1 and 2. (A)
Characteristics of sequencing results from Chromium Single Cell 30 gene expression libraries (first experiment). Violin plots report the number of
genes, number of UMIs, and the percentage of gene expression estimates coming from the mitochondrial and chloroplast organelles in Fe +
(pink), Fe– (teal), and an equal mix of cells from Fe + and Fe– cultures (Mix, purple). (B, C) t-SNE (B) and UMAP (C) plot for the 28,690 se-
quenced cells, colored by sample: Fe + , pink; Fe–, teal; Mix: purple. Each dot represents one cell. (D) UMAP plot of the iron deficiency module
score, which includes genes highly induced by Fe deficiency (Urzica et al., 2012). Dark red indicates individual cells with a high iron deficiency
module score and thus in a Fe-limited nutritional state. (E) Iron deficiency module score for each sample, shown as violin plots. Fe + , pink; Fe–,
teal; Mix: purple. Note the bimodal distribution of the Mix sample. Wilcoxon Rank Sum Test was performed between the Fe + and Fe– cells, the
p value was below 2.2 � 10–16. (F) Heatmap representation of normalized gene expression estimates for of genes induced under Fe deficiency in
Fe + and Fe– cells. Each horizontal line indicates the expression of the listed gene in one cell.
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(Figure 1A; Supplemental Tables 1 and 2). We identified
transcripts from 16,982 distinct genes in at least one cell
across all samples, with an individual gene being detected
on average in 1,391 cells across the three samples
(Supplemental Figure 1A and Supplemental Table 3). The
contribution of mitochondrial and chloroplast transcripts to
UMIs was low (0.23% for mitochondria and 0.91% for chlor-
oplasts; Figure 1A), consistent with the initiation of reverse
transcription from an oligo(dT) primer (Gallaher et al.,
2018).

The scRNA-seq data set consisted of expression informa-
tion from 16,982 genes across about 30,000 cells, such that
the expression data are in a 16,982-dimension matrix. To vi-
sualize the data in two dimensions, we applied two widely
used dimensionality reduction methods: t-SNE (Van Der
Maaten and Hinton, 2008) and UMAP (McInnes et al., 2018;
Becht et al., 2019), using the R package Seurat (Stuart et al.,
2019). Both methods aim to preserve much of the local and
global data structure, although UMAP has been proposed to
perform better than t-SNE in representing complex data
into a low-dimensional space (Becht et al., 2019; Heiser and
Lau, 2020). Both methods also perform well on continuous
data, such as a developmental time course that describes a
cell type-specific progenitor and its gradual differentiation,
with UMAP outperforming t-SNE (Heiser and Lau, 2020).
Fe + and Fe– cells formed two clearly separated groups
with both methods, while the mixed cells sample was
equally divided between the first two groups and closely
overlapped with them in the t-SNE (Figure 1B) and UMAP
plots (Figure 1C). Note that with both methods, the relative
position of each cluster is not always informative, which is a
known limitation of these dimensionality reduction meth-
ods. These results demonstrated that scRNA-seq 1) success-
fully separated cells according to their nutritional status (Fe-
replete or Fe-deficient) and 2) had very good technical re-
producibility between libraries processed in parallel, as evi-
denced by the overlap between the mixed cells samples and
the two test groups.

To validate the observation that scRNA-seq captured the
Fe nutritional status of our samples, we calculated an iron
deficiency module score (Stuart et al., 2019) for each cell us-
ing genes induced under Fe deficiency previously identified
using bulk RNA-seq (Urzica et al., 2012). A module score cal-
culates the average expression of a given gene list, sub-
tracted by the aggregated expression of randomly sampled
control genes. A module score therefore partially circum-
vents the low coverage typical of scRNA-seq data by aggre-
gating the expression of multiple genes of interest into a
quantitative output that can be visualized either using the
t-SNE and UMAP plots or as a violin plot representing the
distribution of values across cells experiencing the same
treatment. We discovered that Fe– cells exhibit a much
higher iron deficiency module score compared to Fe + cells,
supporting the ability of scRNA-seq to capture expression
differences resulting from distinct culture conditions
(Figure 1, D and E). The mixed cells sample showed a

bimodal distribution for the iron deficiency module score, in
agreement with the equal contribution of Fe + and Fe– cells
(Figure 1E).

We also performed differential expression analysis between
the Fe + and Fe– cells and obtained 1,589 differentially
expressed genes between these two conditions with a cutoff
at adjusted P 50.05. Notably, 69 out of 100 genes induced
by iron deficiency used in the module score calculation were
differentially regulated. We also plotted the expression of a
number of iron-related genes across all cells, shown as a
heatmap in Figure 1F. We observed strong induction for
genes encoding various components of the Fe assimilation
machinery, such as the Fe ASSIMILATORY (FEA) genes FEA1
and FEA2, the FERRIC REDUCTASE FRE1, the multicopper ox-
idase FOX1, and the Fe permease FE TRANSPORTER (FTR1).
Other highly expressed genes across Fe– cells included
TEF22, which is divergently transcribed from the same pro-
moter sequences as FEA1; the low Fe-induced MANGANESE
SUPEROXIDE DISMUTASE 3 (MSD3); the Chloroplast DnaJ-
like CDJ3 and CONSERVED IN THE GREEN LINEAGE 27
(CGLD27) (Urzica et al., 2012). Likewise, the COPPER
TRANSPORTING P-type ATPase CTP1 was highly expressed
only in Fe– cells. CTP1 is predicted to load Cu into FOX1
for full Fe deficiency responses (La Fontaine et al., 2002;
Eriksson et al., 2004; Merchant et al., 2006). The high-affinity
Fe transporter IRT1 was seldom expressed in either Fe + or
Fe– cells, although the related transporter gene IRT2 was in-
duced in a large fraction of Fe– cells (Figure 1F). Finally, we
noted high expression of a number of genes encoding cell
wall-associated proteins: cell wall pherophorin-C (PHC) PHC1
and PHC21, vegetative SP-rich VSP1, and GAMETE-SPECIFIC
28 (GAS28) (Waffenschmidt et al., 1993; Rodriguez et al.,
1999); and plasma membrane proteins such as autoinhibited
Ca2 + -ATPase 4 (ACA4), METAL TRANSPORT PROTEIN1
(MTP1), and LOW CO2-INDUCED 6 (LCI6). We interpret
these highly induced genes as being part of the stress re-
sponse of a Chlamydomonas strain lacking a cell wall.

scRNA-seq, therefore, efficiently captures comparable
changes in the transcriptome relative to bulk RNA-seq when
Chlamydomonas cells are grown in Fe + and Fe–
conditions.

scRNA-seq recapitulates nitrogen deficiency bulk
RNA sequencing signatures
In a second independent experiment, we grew CC-5390 cells
under replete conditions for both Fe and nitrogen (N) and
then divided the cultures into Fe and N replete (control),
Fe– (with full N supply) and N deficiency (N–, with full Fe
supply, as technical duplicates) 23 h before processing cells
for GEMs. After sequencing, we counted 19,140 cells across
the four samples, from which we detected an average of
4,181 UMIs resolving into 694 genes per cell (Supplemental
Figure 1B and Supplemental Tables 1–3). UMAP dimension-
ality reduction identified three clearly separated clusters,
corresponding to replete cells (Fe + N + ), Fe-deficient cells
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(Fe– N + ), and N-deficient cells (N– Fe + ) (Figure 2A).
These results indicated that scRNA-seq consistently pro-
duced distinct cell clusters for Fe + and Fe– cells across
multiple experiments (Figures 1, B and 2, A). In addition, N–
cells formed a cluster that did not overlap with either Fe +
or Fe– cells, suggesting a transcriptome signature that is
unique to each growth condition. Finally, we again observed
good technical reproducibility, as the two replicates for N–
cells closely overlapped.

To investigate whether scRNA-seq accurately captured the
behavior of N status signature genes identified by bulk RNA-
seq, we calculated module scores using two gene lists: genes
repressed under N deficiency (and thus induced under N
sufficiency conditions; Figure 2B) and genes induced under
N deficiency (Figure 2C). Both Fe + and Fe– cells showed a
high N sufficiency module score, although Fe + cells
appeared to exhibit a higher score than Fe– cells
(Figure 2B). In agreement, a subset of Fe– cells displayed a
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Figure 2. scRNA-seq captures bulk RNA sequencing signatures of nitrogen deficiency. We grew Chlamydomonas strain CC-5390 in nitrogen (N)
and Fe-replete conditions before exposing cells to N deficiency (but full Fe supply) and Fe limitation (with full N supply) for 23 h. (A) UMAP plot
for 19,140 sequenced cells, colored by sample: Fe + and N + , red; Fe– and N + , teal; N– and Fe + , purple and magenta (two technical replicates:
N– R1 and N– R2). (B) UMAP plot of the N sufficiency module score, which includes genes strongly repressed by N deficiency and/or induced by
N sufficiency (Schmollinger et al., 2014). Dark red indicates individual cells with a high N sufficiency module score and are thus N-replete. (C)
UMAP plot of the N deficiency module score, which includes genes highly induced by N deficiency (Schmollinger et al., 2014). Dark red indicates
individual cells with a high N deficiency module score and thus in an N-limited nutritional state. (D) UMAP plot showing of iron deficiency mod-
ule score, using the same gene list as in Figure 1. (E) UMAP plot showing of cell division module score, based on a list of genes involved in DNA
replication and chromosome segregation with a mean diurnal phase of 12–14 h (using dawn as time 0). (F) Percentage of cells with a high cell di-
vision score across the Fe + , Fe–, and N– samples. We included cells with a positive cell division module score. (G–I), Module score across all sam-
ples for chloroplast RPGs (G), cytosolic ribosomes (H), and photosynthesis-related genes (I). The chloroplast and cytosolic RPG module score
includes all nucleus-encoded plastid-localized or cytosolic RPG subunits, respectively. The photosynthesis module score is derived from all nu-
cleus-encoded photosystem I and II components, as well as chlorophyll biosynthetic genes and M factors.
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significant module score for N deficiency genes, as expected
due to the rearrangement of the photosynthetic apparatus
in response to Fe deficiency (Moseley et al., 2002). Notably,
N– cells were characterized by a very low module score for
N sufficiency marker genes and a high module score for N
deficiency genes, thus validating their clustering into a group
separate from those of Fe-replete and Fe-limited cells
(Figure 2, B and C).

The Fe module score was high in Fe– cells, further con-
firming the UMAP clustering results (Figure 2D). As Fe– and
N– cells would be predicted to stop dividing rapidly to
maintain their nutritional quotas (Street and Paytan, 2005),
we calculated a module score for genes specifically involved
in cell division (minichromosome maintenance complex,
DNA replication, and structural maintenance of
chromosome-encoding genes). Overall, few cells showed a
cell division signature, but they largely belonged to the Fe–
and N– clusters (Figure 2D). We also observed a subgroup
of Fe– cells with a strong cell division module score. We hy-
pothesized that these highlighted cells were arrested prior to
entry into cell division proper due to Fe or N deficiency. To
test this hypothesis, we calculated the percentage of cells
with a positive cell division module score for each sample:
30–40% of Fe– and N– cells fulfilled this criterion, consistent
with cell cycle arrest to prevent dilution of nutrients by divi-
sion (Figure 2F). By contrast, only approximately 7% of Fe +
cells had a high cell division module score, as expected for
an even distribution of cells along the various stages of the
cell cycle. These results are consistent with a cell cycle block
in nutrient-limited cells before cell division, as observed pre-
viously in Chlamydomonas cultures treated with cyclohexi-
mide (Howell et al., 1975).

Because of the high abundance of the photosynthetic ap-
paratus, with a stoichiometry of 1 � 106 molecules per cell,
photosynthetic proteins constitute a high draw on the
amino acid pool and on the Fe pool because of their high
Fe content. Therefore, Fe and N deficiency are expected to
have a strong negative effect on the biosynthesis of the pho-
tosynthetic apparatus, and especially in the case of N defi-
ciency, the translation apparatus. We therefore calculated
module scores for genes of the photosynthesis apparatus, as
well as for ribosomal protein genes (RPGs). While mitochon-
drial RPGs showed a constant module score across all condi-
tions (Supplemental Figure 2A), chloroplast RPGs were
associated with a substantially reduced module score under
Fe or N deficiency (Figure 2G). These results are consistent
with the cellular response to each nutritional deficit: Fe defi-
ciency will limit chloroplast development, while N deficiency
will cause a global reallocation of N resources away from N-
rich proteins such as ribosomes (Siersma and Chiang, 1971;
Martin et al., 1976) or photosynthetic proteins (Plumley and
Schmidt, 1989). This latter hypothesis was also reflected in
the module score for cytosolic RPGs, which was much lower
in N– cells relative to N + cells (Figure 2H). Finally, the
module score for photosynthetic genes recapitulated nicely
the known physiological state of each group of cells, with

Fe + cells showing a high photosynthesis module score that
decreased in Fe– cells (Figure 2I). N– cells experienced an
even stronger repression of the photosynthetic apparatus,
with a mean module score close to 0 (Figure 2I). These
results independently confirmed the module scores calcu-
lated for N sufficiency and deficiency, as several genes
encoding photosynthetic components (e.g. LIGHT-
HARVESTING COMPLEX proteins 7 LHCAs and 4 LHCBs)
are included in the N sufficiency list (Peltier and Schmidt,
1991; Moseley et al., 2002).

N deficiency is a routinely employed growth condition to
induce the production of storage lipids from the remodeling
of membrane lipids in Chlamydomonas. When we looked
for genes involved in lipid biosynthesis, we detected no
changes, as determined by a module score for lipid biosyn-
thetic genes (Supplemental Figure 2B), as expected.
However, our cultures experienced clear signs of N defi-
ciency, as evidenced by severe chlorosis, suggesting that the
increased expression of genes involved in triacylglyceride bio-
synthesis may be more delayed relative to N sparing mecha-
nisms. To test this hypothesis, we looked at PDAT1
(Cre02.g106400), DGAT1 (Cre01.g045903), and DGTT1
(Cre12.g557750): only DGTT1 demonstrated a clear increase
in expression in N– cells, while PDAT1 and DGAT1 did not
(Supplemental Figure 2C). DGTT1 was also more highly
expressed than either gene in bulk RNA-seq experiments
(Schmollinger et al., 2014), possibly hinting at the detection
limit of scRNA-seq. We previously observed a 65% reduction
in chlorophyll levels per cell within 24 h of transfer to N de-
ficiency, concomitantly with a 50% decrease in total protein
levels (Schmollinger et al., 2014). The same drop in chloro-
phyll levels was also reported in cultures grown in constant
light and maintained for months in low N conditions
(Plumley and Schmidt, 1989). Notably, cultures subjected to
long-term low N fail to exhibit gametic activity (Plumley
and Schmidt, 1989), although N deficiency is well-known to
induce the gametic program (Martin and Goodenough,
1975). We therefore turned to a list of genes previously
shown to be highly and specifically expressed in each ga-
metic type (from mt– and mt + cells) (Lopez et al., 2015)
and calculated the associated module score. As shown in
Supplemental Figure 2, D and E, N-deficient cells showed a
specific enrichment in mt + -specific genes, but not mt–-spe-
cific genes, relative to Fe-deficient cells and their sufficient
control. This observation was in agreement with the geno-
type of the strain used here: CC-5390, which is of mating
type mt + (Strenkert et al., 2019). We also noted that the ga-
metic module scores were fairly weak in terms of the magni-
tude of upregulation, but this may reflect the long 24-h N
deficiency treatment used in this work. Indeed, the gametic
transcriptional program is activated within 2–3 h of transfer
into N depletion, and time points beyond 5–8 h are consid-
ered late-stage (Abe et al., 2004; Lopez et al., 2015). Notably,
many of the gamete-specific genes identified by Lopez et al.
showed no clear and/or sustained induction during N defi-
ciency in either mating type over a 48-h time course in N
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deficiency conditions (Schmollinger et al., 2014), possibly
contributing to the observed low module score. We did not
test our N-deficient cultures for mating efficiency.

Together, these results demonstrate that scRNA-seq can
sort individual cells according to their transcriptional profile
in response to multiple stresses and that Fe– and N– cells
are arrested before the completion of cell division, likely so
as not to dilute their limiting resources and/or because they
do not have the necessary resources to multiply.

Diel rhythmic oscillations explain much of the
heterogeneity of batch-cultured cells
One of the primary advantages of scRNA-seq is that it can
reveal the heterogeneity between cells, while bulk RNA-seq
only captures the average expression across all cells. In both
experiments, we observed clear heterogeneity in both Fe +

and Fe– cells, as they occupied a rather large territory in
both t-SNE and UMAP low-dimension projections. To ex-
plore the source of this heterogeneity in more detail, we ap-
plied the dimensionality reduction step only to the Fe +
cells, which were easily identifiable (Figure 1C). We then ran
unsupervised clustering on the Fe + cells from the first ex-
periment using a K nearest neighbor algorithm, which iden-
tified 15 clusters (Figure 3A). Notably, many clusters
organized around a closed circle on the UMAP, a pattern
that was also present in the t-SNE plot, although not as pro-
nounced (Supplemental Figure 3, A and B). UMAP was pre-
viously shown to provide meaningful organization of cell
clusters, to preserve the global structure of the data and the
continuity of the cell clusters, as might be expected of a de-
velopmental gradient across progenitors and terminally dif-
ferentiated cells (McInnes et al., 2018; Heiser and Lau, 2020).
Since our cultures are unlikely to differentiate, we hypothe-
sized that the cells might have organized around the circle
in a temporal fashion. We observed a similar circle in the
second experiment (Figure 2A) and noted that a fraction of
cells appeared to be primed for cell division based on the
cell division module score (Figure 2, E and F). We also
obtained 11 clusters with Fe-deficient cells that organized
into a comparable circle (Figure 3B; Supplemental Figure
3B), suggesting that such clustering may reflect a common
behavior of Chlamydomonas cultures.

To determine whether the observed clusters might corre-
late with the endogenous diurnal phase of each cell, we first
turned to a trajectory analysis with the R package Monocle
(Trapnell et al., 2014). The principle of this analysis relies on
the predictability of gene expression changes in cells under-
going a transition from state A to state B. Although this
analysis is routinely applied to developmental data sets, it
should be equally applicable to diurnal and circadian data
with predictable gene expression changes over the diurnal
or circadian cycle. Monocle identified a single trajectory for
both Fe-sufficient and Fe-deficient cells (Figure 3, C and D;
Supplemental Figure 4, A–D) and allowed a clear ordering
of clusters. Satisfyingly, clusters #1 and #6–11 grouped
closely together in the trajectory obtained for Fe + cells,

although these clusters covered a large area of the UMAP
plot, suggesting a shared expression signature. Likewise, clus-
ters #1–3 and #9–11 concentrated in the same portion of
the trajectory deduced by Monocle. The identification of a
single trajectory devoid of any side branches also suggests
that Chlamydomonas cultures occupy a continuum of possi-
ble states along a single variable, in this case: Time.

We next used the diurnal phases reported for
Chlamydomonas cultures from two recent diurnal time-
courses (Zones et al., 2015; Strenkert et al., 2019). We calcu-
lated a module score for rhythmic genes in 1-h time bins ev-
ery other h, from 0 h to 24 h, for all clusters. The module
scores were converted to a heatmap for ease of comparison
and ordered according to the order deduced from the
Monocle trajectory. As shown in Figure 3E, the resulting
phase module scores followed a clear pattern that ordered
the clusters along the diurnal cycle, with cluster #0 exhibit-
ing a phase close to dawn and clusters #2 and #3 showing a
phase close to dusk. Fe-deficient cells broadly followed a
similar pattern (Figure 3F). We also plotted representative
module scores in UMAP plots (Figure 4, A and B). Most cells
occupied time bins between 4 h and 8 h after lights on.
Smaller cell populations had time signatures closer to 14 h
after dawn (largely overlapping with cluster #2), 18 h (corre-
sponding to clusters #3 and #4), and 20 h (matching clusters
#5 and #0). As expected for cells progressing through a
�24-h rhythm, module scores for the phase bins at 0 and
24 h were very similar in our analysis (Figure 4A).

Plotting phase module scores in UMAP plots also pro-
vided an opportunity to compare the phase distribution of
Fe + and Fe– cells. Indeed, even though we collected cells at
a single time point, phase module scores reveal the endoge-
nous phase of each cell, as a molecular timetable analysis
would (Ueda et al., 2004). When we plotted diurnal module
scores in UMAP plots for Fe– cells, we observed a similar
pattern as that seen with Fe + cells (Figure 4B). However,
we discovered through a careful inspection of the UMAP
plots that Fe– cells appeared to display a later diurnal phase
relative to Fe + cells, with more Fe– cells represented in the
8-h phase module plots, while Fe + cells were more numer-
ous in the 4-h and 8-h modules (Figure 4, A and B). We in-
terpret these results as suggestive of a delay in the circadian
clock of the alga, reminiscent of the period lengthening
effects observed under poor Fe nutrition in Arabidopsis
(Chen et al., 2013; Hong et al., 2013; Salomé et al., 2013).

Pseudo-time construction reveals the phase
ordering of batch cultures
Until this point, we have considered one cell cluster as a
unit and projected the diurnal module scores onto the clus-
ters (Figure 3). To better characterize the rhythmic status of
single cells, we ordered all cells on the basis of their individ-
ual trajectory time (also called pseudo-time), as determined
by Monocle and illustrated in Supplemental Figure 4E. We
ordered the cells into a continuous trajectory and assigned a
pseudo-time to each cell. Next, we ordered cells by their
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pseudo-time and plotted their associated diurnal module
scores (Figure 4C). The pseudo-time trajectory started with
cells from clusters #4 to #5 for Fe + cells, with a strong 18-h
signature, that is shortly after cell division has occurred

(Supplemental Figure 5, A and B). As pseudo-time increased,
the trajectory progressed from cluster #0 through all other
clusters in a counterclockwise fashion, to end with clusters
#2 and #3, with a strong time signature around 14 h that
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Figure 3. The endogenous diurnal phase of individual cells explains the heterogeneity of batch cell cultures. (A) UMAP plot for the 9,517 se-
quenced cells grown in Fe + conditions from Experiment 1. The cells were separated into clusters by Seurat (Stuart et al., 2019) and are indicated
by the color gradient, with the color key on the right side of the plot. (B) Same as (A), but with 9,748 sequenced cells grown in Fe– conditions
from Experiment 1. (C, D), Trajectory plot of Fe + (C) and Fe– (D) cells from Experiment 1, colored according to their constituent clusters, as de-
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corresponds to cell division (Supplemental Figure 5B).
Pseudo-time analysis placed cell division in Fe-deficient cells
around pseudo-time 3, consistent with a delay in cell divi-
sion relative to Fe-replete cells. The remaining population of
Fe– cells did not exhibit a high cell division module score
along the pseudo-time trajectory. We interpret this result as
another indication that Fe-deficient cells stop dividing to
hold on to their remaining iron stores and not fall below a
minimum iron quota (Supplemental Figure 5, C and D).

That pseudo-time analysis tracked the diurnal phase bins
underscores the essential contribution of rhythmic gene ex-
pression to the heterogeneity of Chlamydomonas cells in
batch cultures.

Effects of the cell wall on RNA extractability and
quality for scRNA-seq
Protocols for the extraction of high-quality total RNA from
Chlamydomonas cultures have been optimized to quickly
inactivate ribonucleases that might be released from other
cellular compartments during the thawing of a frozen cell
pellet. For example, our routine RNA extraction protocol
relies on the resuspension of the cell pellet in 2% sodium
dodecyl sulfate (SDS) and proteinase K immediately after
collection and prior to flash-freezing, conditions that are
much harsher than the typical extraction procedures used
in the 10X pipeline. Therefore, we first used a cw mutant of
Chlamydomonas for the previous analyses to facilitate RNA

extraction and recovery. However, to apply these methods
to natural field conditions or commercial pond situations, it
would be useful to understand whether the same methodol-
ogy might apply to walled cells. As a preliminary test, we in-
cubated Chlamydomonas cells from strains with or without
cell wall in the RNA extraction buffer used in the early steps
before library construction. We also treated equal numbers
of cells with 0.2% NP-40 and 2% SDS as positive controls for
cell lysis, as judged by the release of chlorophyll from the
cell pellet. As shown in Figure 5A, only the strain CC-5390,
which lacks a cell wall, resulted in substantial lysis in the RT
kit buffer, while we failed to observe signs of lysis with the
other cell wall-containing strains CC-4532, CC4533, and CC-
1690.

Nevertheless, we selected strain CC-4532 (CW) for scRNA-
seq on cells grown under iron-replete (Fe + ) or Fe-starved
(Fe–) conditions following the same methodology as for CC-
5390. We processed both samples for GEMs production and
library preparation. We successfully recovered RNA suitable
for sequencing from these samples corresponding to 2,814
Fe + cells and 9,289 Fe– cells. When compared to CC-5390
(cw) strain grown under the same conditions, we collected
data from fewer genes, reflecting some differences in RNA
extractability or UMI formation in strains without (cw) or
with (CW) a cell wall (Figure 5B).

To determine whether scRNA-seq captured the Fe nutri-
tional status of strain CC-4532, we performed UMAP
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resentation of the diurnal module score in individual cells, ordered by their pseudo-time, as determined by Monocle. Each vertical bar corresponds
to one individual cell.
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dimensionality reduction on CC-5390 (cw) and CC4532
(CW) samples grown side by side and treated in an identical
manner as part of the second experiment. First, we noticed
that the two strains clustered separately from each other, in-
dicating strong transcriptomic differences correlated with
the absence of the cell wall, strain-specific differences
(Gallaher et al., 2015) or both (Figure 5C). Both strains
formed distinct clusters corresponding to Fe + and Fe– cells,
demonstrating the applicability of scRNA-seq analysis to cell
wall-containing algal strains, even without resorting to me-
chanical or enzymatic digestion. We noticed that the cluster
formed by CC-4532 Fe– cells overlapped with that of CC-
4532 Fe + cells (Figure 5C). The Fe module score supported
this observation (Figure 5D). We hypothesize that transfer-
ring cells from Fe-replete to Fe-starved conditions for 23 h
was sufficient to induce a strong Fe deficiency response in
CC-5390, whereas the cell wall–containing strain CC-4532
only partially depleted its Fe stores. Although this hypothesis
has never been tested in two isogenic Chlamydomonas
strains only differing at the CW15 locus, empirical

phenotyping of strains with and without cell walls under
low Fe conditions is consistent with the higher sensitivity of
cw strains to Fe deficiency (Allen et al., 2007; Gallaher et al.,
2015).

Discussion

We show that scRNA-seq can recapitulate bulk RNA-seq sig-
natures and separate individual cells in nonoverlapping clus-
ters reflective of the growth condition they experienced
(here, nutritional deficiency for Fe or N). In addition, we de-
termine that Chlamydomonas cells grown in batch cultures
retain substantial rhythmicity even after growing in constant
light for weeks, contrary to common belief. This strong
rhythmic component can explain much of the heterogeneity
exhibited by individual Chlamydomonas cells in their tran-
scriptional profile, as previously noted (Damodaran et al.,
2015).

Using Arabidopsis and hairy bittercress (Cardamine hir-
suta) as model systems, we had previously established that
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the Arabidopsis circadian clock responded to available Fe
supply (Salomé et al., 2013). We and others showed that
the circadian period lengthens under conditions of poor
Fe nutrition, a phenotype that depended entirely on light-
mediated chloroplast development (Chen et al., 2013;
Hong et al., 2013; Salomé et al., 2013). One of several out-
standing questions concerned the degree of evolutionary
conservation of this response: do green single-cell algae
such as Chlamydomonas adjust the period or phase of
their circadian clock to the Fe status surrounding them?
The comparison of diurnal phase module scores between
Fe + and Fe– Chlamydomonas cultures indicates that, in
fact, Chlamydomonas cells do appear to adjust their diur-
nal phase as a function of their Fe status (Figures 3 and
4). In addition, they do so in the same direction as do
Arabidopsis and hairy bittercress, with a delay in diurnal
phase under poor Fe nutrition conditions. Although our
growth conditions did not specifically control for circadian
behavior, these results nonetheless tentatively suggest that
circadian Fe responses may be conserved between
Chlamydomonas and Arabidopsis, opening new avenues
for the systematic dissection of the underlying molecular
mechanism by looking for conserved genes shared by the
alga and the land plant.

Our Chlamydomonas cultures were maintained in a con-
stant light for weeks before sample collection. Yet, they
showed a remarkable degree of synchronization that was
not entirely expected. However, we independently reached
the same conclusion from a deep reanalysis of hundreds of
RNA-seq samples collected by our laboratory and the
Chlamydomonas community over the past 10 years (Salomé
and Merchant, 2021). Notably, one-third of all bulk RNA-seq
samples showed the same preferred diurnal phase as the sin-
gle cell data described here. We hypothesize that
Chlamydomonas cells may remain synchronized over such
periods of time through two (nonmutually exclusive) hy-
potheses: (1) growing cells establish a population-wide
phase, similar to quorum sensing in bacteria, that would
maintain them in a synchronized state to share resources
and (2) the manipulation of cells, for example the inocula-
tion of the test cultures, acts as a synchronizing signal that
persists for days. This latter possibility would be similar to a
nutritional synchronization, such as serum shocks applied to
mammalian cell cultures (Balsalobre et al., 1998). Cultures
grown in flasks demand serial dilutions to remain in their
exponential growth phase, making it difficult to determine
the contribution of dilution to synchronization. By contrast,
continuous-flow bioreactors allow for absolute control of all
parameters during cell culture, including cell density. We
therefore envisage that the effect from inoculation as a re-
setting signal may be testable in bioreactors, whereby
Chlamydomonas cells would be entrained by light–dark
cycles and then released into constant light, all the while
keeping the cell density low and constant. Samples may be
collected every 12–24 h and processed for scRNA-seq, and
the rhythmic components extracted as we did here,

essentially following a molecular timetable approach applied
to single cell populations (Ueda et al., 2004).

Our results also have commercial and ecological applica-
tions. Indeed, algal cells grown in large cultivation ponds
may experience their surrounding environment differently as
a function of pond depth, volume, cell density, and turbu-
lence. While bulk RNA-seq may help determine the average
molecular and physiological phenotypes of cells collected at
various depths and positions within the pond, the inherent
variation between cells will be lost. By contrast, scRNA-seq
offers a much more detailed picture of all cells within each
sample, thus raising sensitivity by several orders of magni-
tude. Likewise, scRNA-seq applied to environmental samples
collected in the wild may make it possible to describe algae
in their native environment—what stresses they may experi-
ence and their interactions with other organisms with which
they share the same ecological niche. Our results demon-
strate that although cells lacking sufficient Fe or N stall
along the cell cycle (Figure 2), they also express key stress
marker genes that are inherently specific for each stress they
may encounter. With carefully formulated gene lists and the
calculation of the corresponding module scores, scRNA-seq
may thus provide a unique opportunity to study
Chlamydomonas (and other algae) in the wild.

Chlamydomonas cells, just like yeast cells, can present a
significant cell wall that might be considered a physical bar-
rier for RNA extraction from single cells. In yeast, this techni-
cal limitation was resolved by adding the cell wall-digesting
enzyme zymolyase before (Jackson et al., 2020) or during
(Jariani et al., 2020) the reverse transcription step of the
same 10X Chromium Single Cell 30 v2 protocol we followed
here. However, it should be noted that the authors did not
attempt to generate scRNA-seq libraries from walled (undi-
gested) yeast cells. Using chlorophyll release as a proxy for
cell lysis, we similarly saw little lysis for the walled strain CC-
4532; nevertheless, we detected hundreds of UMIs from this
strain, indicating that Chlamydomonas strains of various cell
wall thicknesses may be amenable to scRNA-seq. The
Chlamydomonas cell wall is composed of a mixture of pro-
teins and glycoproteins arranged in multiple layers, poten-
tially limiting the use of cell wall-digesting enzymes. A classic
approach for the removal of the cell wall relies on autolysin,
a zinc metalloprotease that is secreted by gametes during
the initial stages of the algal sexual cycle. However, treating
cells with autolysin may also induce the expression of the
gametic program, as shown with the gamete-specific (GAS)
genes GAS28, GAS29, and GAS30, even with a short incuba-
tion time of 30 min (Hoffmann and Beck, 2005). Another
potential limitation to the use of autolysin is the difficulty
associated with its purification from mating cells. A com-
mercially available protease would thus be preferable, such
as alcalase, a commercial form of subtilisin that shows 35%
identity with sporangin, the so-called hatching enzyme re-
sponsible for the digestion of the cell wall surrounding
daughter cells before their release (Kubo et al., 2009; Hwang
et al., 2019).
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We only tested scRNA-seq on strains with no (like CC-
5390) or moderately thick (like C-4532) cell wall. However,
other laboratories focus on strains with a much more devel-
oped cell wall, for example CC-4533 (the wild-type back-
ground for a large insertional mutant library, Li et al., 2019)
and CC-1690. The microfluidics pipeline from 10X Genomics
now provides the perfect basis for a systematic comparison
of RNA extraction efficiency across Chlamydomonas strains,
with or without the addition of a protease during the re-
verse transcription step. The information gathered will also
directly apply to wild isolates with walls, since the cw strains
were all generated by mutagenesis in the laboratory (Hyams
and Davies, 1972). Finally, our results can provide a bench-
mark for comparing the recovery of RNA suitable for se-
quencing from various methods to preserve cells between
sample collection and processing, such as freezing with or
without the use of sample preservative solutions.

In conclusion, we showed that scRNA-seq can be applied
to Chlamydomonas strains with or without a cell wall. In ad-
dition, scRNA-seq results recapitulated bulk RNA-seq data,
indicating their reliability and the robustness of the
Chlamydomonas transcriptome response to changes in its
environment. Finally, we demonstrated that
Chlamydomonas cells occupied a range of diurnal phases
that may explain the heterogeneity exhibited by individual
cells in bulk culture mode. By extracting diurnal data from
single time point scRNA-seq, we also observed a delay in
the phase of the Chlamydomonas diurnal clock, suggesting
that, just like land plants, algae may adjust the pace of their
rhythms to Fe availability. The application of scRNA-seq to
cultivation ponds and natural isolates will pave the way to a
deeper understanding of the interactions between algae and
their surroundings.

Materials and methods

Growth conditions
We used the C. reinhardtii strains CC-5390 (cw15 arg7-
8::ARG7 mt+) and CC-4532 (CW mt–), which we procured
from laboratory stocks. We grew all pre-cultures in Tris
Acetate Phosphate (TAP) medium supplemented with
micronutrients as described previously (Kropat et al., 2011),
at 24�C in constant light (provided by a mixture of cool-
white and warm-white fluorescent light bulbs, for a total
Photon Flux Density �50 mmol m–2 s–1) and under con-
stant agitation (180 rpm) in an Innova-44R incubator.

In the first experiment, we started a pre-culture of strain
CC-5390 in 50 mL TAP medium with 20 mM FeEDTA (iron-
replete conditions) at an initial cell density of 5 � 104 cells
mL–1. After 5 d, we inoculated a new pre-culture at the same
initial cell density (5 � 104 cells mL–1), with 100 mL TAP
medium + 20 mM FeEDTA in a 250-mL flask. After another
5 d, we collected the cells by centrifugation for 3 min at
1,600g at room temperature using an Eppendorf centrifuge
(model 5810 R), resuspended the pellet in 10 mL of fresh
TAP medium (with 20 mM FeEDTA), and used 1 mL to inoc-
ulate a fresh flask containing 100 mL TAP medium + 20 mM

FeEDTA, resulting in a 10-fold dilution of the culture. The
next day, we pelleted the culture again across two 50-mL
Falcon tubes, washed the pellets once with TAP medium
without FeEDTA, and resuspended each pellet with either
50-mL TAP medium without FeEDTA (Fe– condition) or
with 50-mL TAP medium + 20 mM FeEDTA (Fe + condi-
tion) before transferring the test cultures into fresh sterile
250-mL flasks and placing the flasks into the incubator. After
23 h of growth, we counted cell density in both cultures on
a hemocytometer. Target cell density for scRNA-seq analysis
is 1,200 cells mL–1: we therefore transferred 1.2 � 106 cells
mL–1 in a 1.5-mL Eppendorf tube, centrifuged the cells briefly
on a tabletop centrifuge at 400g at room temperature. We
resuspended the pellets into 1� phosphate-buffered saline
(PBS) with 0.04% bovine serum albumin (BSA), placed the
tubes on ice, and covered them with aluminum foil. We
walked to the Technology Center for Genomics and
Bioinformatics at UCLA Pathology and Medicine (�5 min)
for immediate processing, starting with GEMs formation.

For the second experiment, we started pre-cultures for
CC-4532 and CC-5390 in 50-mL TAP medium + 20 mM
FeEDTA at an initial cell density of 5 � 104 cells mL–1.
After 3 d, we inoculated a new culture at the same initial
cell density (four flasks for CC-5390 and two flasks for CC-
4532). After another 3 d, we refreshed the cultures by 1:2 di-
lution with fresh TAP medium + 20 mM FeEDTA. The next
day, we resuspended cultures in TAP without FeEDTA, TAP
+ 20 mM FeEDTA or TAP – nitrogen (CC-5390) or in TAP
without FeEDTA or TAP + 20 mM FeEDTA (CC-4532), as
described above. After 23 h of growth, we counted cells and
proceeded as above.

10X library preparation, sequencing, and alignment
Cells were washed with PBS with 0.04% BSA, then counted
with Countess II automated Cell Counter (Thermo Fisher,
Waltham, MA). We loaded 10,000 cells onto the 10X
Chromium Controller using Chromium Single Cell 30 gene
expression reagents (10X Genomics, Pleasanton, CA). The se-
quencing libraries were prepared following the manufac-
turer’s instructions (10X Genomics), with 12 cycles used for
cDNA amplification and 12 cycles for library amplification.
Library concentrations and quality were measured using
Qubit ds DNA HS Assay kit (Life Technologies, Carlsbad,
CA) and Agilent Tapestation 4200 (Agilent, Santa Clara,
CA). The libraries were sequenced on a NextSeq500 plat-
form as 2 � 50 paired-end reads to a depth of approxi-
mately 150 million reads per library (Experiment 1), or using
2 � 50 paired-end reads, on an Illumina NovaSeq 6000 S2
platform to a depth of approximately 300 million reads per
library (Experiment 2). Raw reads were aligned to the
Chlamydomonas genome (C. reinhardtii v5.5, Blaby et al.,
2014) and cells were called using cellranger count (v3.0.2,
10X Genomics). Individual samples were aggregated to gen-
erate the merged digital expression matrix using the cell-
ranger aggr pipeline (10X Genomics).
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scRNA-seq data analysis
The R package Seurat (v3.1.2) (Stuart et al., 2019) was used
to cluster the cells in the digital expression matrix. We fil-
tered out cells with fewer than 100 genes or 300 UMIs
detected as low-quality cells. We divided the gene counts
for each cell by the total gene counts for that cell, multi-
plied by a scale factor of 10,000, then natural-log trans-
formed the counts. We used the FindVariableFeatures
function from Seurat to select variable genes with default
parameters. We used the ScaleData function from Seurat to
scale and center the counts in the data set. We performed
principal component analysis on the variable genes and se-
lected 20 principle components for cell clustering (resolu-
tion = 0.5) and UMAP dimensionality reduction. We
clustered the cells using a K-nearest neighbor method,
which assesses which K value results in the smallest
between-cell distance within and between clusters. The cells
were embedded in a K-nearest neighbor graph, with edges
drawn between cells with similar expression patterns. The
cells were then partitioned into highly interconnected clus-
ters. We calculated module scores using the
AddModuleScore function with default parameters. A mod-
ule score calculates the average expression of a given gene
list, subtracted by the aggregated expression of randomly
sampled control genes. To calculate differentially expressed
genes, the Wilcoxon rank sum test was conducted, and the
Benjamini–Hochberg Procedure was applied to adjust the
false discovery rate. We considered genes with adjusted P
50.05 as significantly differentially expressed.

Calculation of the diurnal module scores
We generated a list of diurnal signature genes by determin-
ing the overlap between rhythmic genes from two recent
studies (Zones et al., 2015; Strenkert et al., 2019). The list
contains 50 time points ranging from 0 h to 24.5 h in 30
min interval. To calculate module scores from nonoverlap-
ping diurnal gene lists, we selected a three time point inter-
val that collapsed genes 30 min on either side of a given
time point. For example, the module score for diurnal phase
2 h was calculated using genes from the 1.5 h, 2 h, and 2.5
h phase bins. Only the 0 h module score was calculated us-
ing genes from only two time points (0 h and 0.5 h). Dawn
is taken as time 0 throughout. It should be noted that the
diurnal cycle and the cell cycle are intertwined in
Chlamydomonas and that resolving one over the other is
not easily achieved. The length of one complete cell cycle is
set by light intensity when cells are grown in constant light
and may be shorter or longer than 24 h. For ease of com-
parison across samples, we used diurnal phase as reference.

Pseudo-time trajectory construction
We constructed pseudo-time trajectories using the R pack-
age Monocle (Trapnell et al., 2014). This trajectory reflects
the sequence of gene expression changes from one cell to
the next and orders the cells based on their similarity. We
extracted the raw counts for cells in the selected clusters
and normalized them by the estimateSizeFactors and

estimateDispersions functions with default parameters. We
only retained genes with an average expression over 0.5 and
detected in more than 10 cells for further analysis. We de-
termined variable genes by the differentialGeneTest function
with a model against the Seurat clusters. We determined
the order of cells with the orderCells function and con-
structed the trajectory with the reduce Dimension function
with default parameters. We extracted the pseudo-time for
the cells and plotted the pseudo-time in both the UMAP
and the linear shaped trajectory. We plotted the diurnal
module scores for each cell ordered by pseudo-time in a
heatmap. We plotted the cell division module score against
the pseudo-time.

Compilation of gene lists for module score analysis
and scRNAseq exploration
We assembled gene lists for the calculation of module score
by mining the literature. For the iron deficiency module
score, we selected genes expressed 410 Fragments Per
Kilobase of transcript per Million mapped reads (FPKM) and
showing the stronger induction by Fe limitation from a
comparison of RNA-seq data between Chlamydomonas CC-
4532 grown in TAP medium + 0.25 mM FeEDTA and TAP
medium + 20 mM FeEDTA (Urzica et al., 2012). We
extracted the lipid biosynthesis and nitrogen gene lists from
(Schmollinger et al., 2014). We ordered normalized expres-
sion data from a 48-h time-course in CC-4349 to identify
genes that were induced in response to N deficiency (with
normalized expression of 0 at 0 h and expression of 1 at 48
h) or repressed by N deficiency (or induced by N sufficiency,
with normalized expression of 1 at 0 h and expression close
to 0 at 48 h). The lists of lipid biosynthetic genes and ribo-
some protein genes were according to Supplemental Data
Sets 14 and 9 from (Schmollinger et al., 2014), respectively.
The photosynthesis gene list include all nucleus-encoded
genes from Supplemental Data Set 5 from Strenkert et al.
(2019). Cell cycle genes were obtained from Supplemental
Data Set 4 of Zones et al. (2015). Genes specific to mt– and
mt + gametes were extracted from Lopez et al. (2015).
Finally, we determined the diurnal phase of 10,294 high-
confidence rhythmic genes by looking at the overlap be-
tween genes deemed to be rhythmic in two separate studies
(Zones et al., 2015; Strenkert et al., 2019) and using the diur-
nal phase values from the 2015 work that had been recalcu-
lated for the 2019 study. Gene lists are provided as
Supplemental Data Sets 1–10.

Accession numbers
Sequence data from this article can be found at Phytozome
under the following accession numbers: FEA1 (Cre12.
g546550), FEA2 (Cre12.g546600), FRE1 (Cre04.g227400), FOX1
(Cre09.g393150), FTR1 (Cre03.g192050), TEF22 (Cre12.g546500),
MSD3 (Cre16.g676150), CDJ3 (Cre01.g009900), CGLD27
(Cre05.g237050), CTP1 (Cre16.g682369), IRT1 (Cre12.g530400),
IRT2 (Cre12.g530350), PHC1 (Cre17.g717900), PHC21 (Cre02.
g094450), VSP1 (Cre11.g467710), GAS28 (Cre11.g481600), ACA4
(Cre10.g459200), MTP1 (Cre03.g145087), and LCI6 (Cre12.
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g553350). Other genes used to calculate module scores are
listed in Supplemental Data Sets 1–10. scRNA-seq data sets
were deposited at Gene Expression Omnibus at NCBI under
the accession number GSE157580.

Supplemental data
The following materials are available in the online version of
this article.

Supplemental Figure 1. Modules scores for mitochondrial
RPGs and lipid biosynthetic genes in cells from Experiment
2. (Supports Figure 2).

Supplemental Figure 2. The Endogenous diurnal phase of
individual cells explains the heterogeneity of batch cell cul-
tures without iron. (Supports Figure 3).

Supplemental Figure 3. Pseudo-time construction aligns
Fe + cells along the diurnal cycle. (Supports Figure 4).

Supplemental Table 1. Summary of number of cells se-
quenced, number of genes and UMIs detected.

Supplemental Table 2. Summary of the number of genes
detected in cells across samples.

Supplemental Table 3. Summary of the number of cells
expressing a common set of genes across samples.

Supplemental Data Set 1. Fe deficiency module score gene
list.

Supplemental Data Set 2. Nitrogen deficiency module score
gene list.

Supplemental Data Set 3. Nitrogen sufficiency module score
gene list.

Supplemental Data Set 4. Chloroplast ribosomal protein
gene (RPG) module score gene list.

Supplemental Data Set 5. Cytosolic ribosomal protein gene
(RPG) module score gene list.

Supplemental Data Set 6. Mitochondrial ribosomal protein
gene (RPG) module score gene list.

Supplemental Data Set 7. Lipid biosynthesis module score
gene list.

Supplemental Data Set 8. Cell division module score gene
list.

Supplemental Data Set 9. Photosynthesis module score gene
list.

Supplemental Data Set 10. Diurnal phase for high-confidence
rhythmic genes.

Supplemental Data Set 11. mt– module score gene list.
Supplemental Data Set 12. mt + module score gene list.
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