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Inverse Association Between Carbohydrate Consumption
and Plasma Adropin Concentrations in Humans
Joseph R. Stevens1, Monica L. Kearney2, Marie-Pierre St-Onge3,4, Kimber L. Stanhope5,6, Peter J. Havel5,6, Jill A. Kanaley2,
John P. Thyfault7, Edward P. Weiss8, and Andrew A. Butler1

Objective: The role of metabolic condition and diet in regulating circulating levels of adropin, a peptide

hormone linked to cardiometabolic control, is not well understood. In this study, weight loss and diet

effects on plasma adropin concentrations were examined.

Methods: This report includes data from (1) a weight loss trial, (2) an evaluation of acute exercise effects

on mixed-meal (60% kcal from carbohydrates) tolerance test responses, and (3) a meta-analysis to deter-

mine normal fasting adropin concentrations.

Results: Distribution of plasma adropin concentrations exhibited positive skew and kurtosis. The effect

of weight loss on plasma adropin concentrations was dependent on baseline plasma adropin concentra-

tions, with an inverse association between baseline and a decline in concentrations after weight loss

(Spearman’s q 5 20.575; P < 0.001). When ranked by baseline plasma adropin concentrations, only val-

ues in the upper quartile declined with weight loss. Plasma adropin concentrations under the main area

of the bell curve correlated negatively with habitual carbohydrate intake and plasma lipids. There was a

negative correlation between baseline values and a transient decline in plasma adropin during the mixed-

meal tolerance test.

Conclusions: Plasma adropin concentrations in humans are sensitive to dietary macronutrients, perhaps

due to habitual consumption of carbohydrate-rich diets suppressing circulating levels. Very high adropin

levels may indicate cardiometabolic conditions sensitive to weight loss.

Obesity (2016) 24, 1731–1740. doi:10.1002/oby.21557

Introduction
Studies using mice suggest the peptide hormone adropin has metabolic

(1-3) and vascular functions (4). Circulating adropin concentrations

have been measured in several mammalian species using commercially

produced enzyme immunoassays (5-22). Human studies have screened

for associations between plasma adropin concentrations and cardiovas-

cular disease (5,8,12,17), endothelial function (10,11), type 2 diabetes

(T2D) (7,9,14,17), obesity and aging (6), and exercise response (23).

These studies suggest associations between cardiometabolic disorders

of obesity and altered circulating adropin concentrations (24,25).

Adropin expression in a human liver cell line (Hepg2) is suppressed

following the activation of liver receptor (LXRa), suggesting sensi-

tivity to carbohydrate and lipid metabolism (26). We reported

increased plasma adropin concentrations following Roux-en-Y gas-

tric bypass (6), changes following sugar consumption (20), and
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associations between plasma adropin concentrations and fat and car-

bohydrate intake (16). Metabolic condition and feeding behavior

thus influence plasma adropin levels in humans. However, the spe-

cific metabolic and dietary factors influencing plasma adropin con-

centrations in humans remain unclear.

Here we report investigating whether weight loss and improved

insulin sensitivity would affect plasma adropin concentrations in

humans using plasma samples before and after 6% to 8% weight

reduction (27). We also further investigated associations between

plasma adropin concentrations and macronutrient intake previously

observed in women participating in a sleep restriction study (16),

using habitual intake data from a larger cohort of men and women.

Finally, we report results from a meta-analysis to establish normal

values for fasting plasma adropin.

Methods
Data from three studies were included in this report: (1) a random-

ized intervention trial to determine whether weight loss and habitual

diet affect plasma adropin concentrations (Caloric Restriction, Exer-

cise, and Glucoregulation in Humans; CREG study), (2) a meta-

analysis to determine normal plasma adropin concentrations, and (3)

an acute exercise study in diabetics evaluating the effects of a single

bout of exercise on plasma adropin responses to a mixed-meal toler-

ance test (MMTT study).

The rationale for examining whether weight loss affects plasma

adropin concentrations in humans is based on experiments in mice

showing regulation in response to fasting (26) and caloric restriction

(28). The rationale for the meta-analysis was based on data from the

weight-loss study suggesting a clustering of values below 5 ng/mL.

The intent of the MMTT was to examine whether a meal with car-

bohydrate content similar to the habitual intake of participants with

low plasma adropin concentrations would have an inhibitory effect

CREG study
Participants and intervention. Selection criteria, interventions,

and primary outcomes were reported previously (27) (ClinicalTrials.-

gov #NCT00777621). In brief, the study involved sedentary, men

and women with excess weight aged 45 to 65 years. Subjects were

randomized with stratification for sex, and assigned to groups with

the established goal of achieving 6 to 8% weight loss using either

calorie restriction (CR), endurance exercise training (EX), or a com-

bination (CREX) to maintain a 20% negative energy balance relative

to estimated total energy expenditure. The study was reviewed and

approved by the Institutional Review Boards (IRB) of Washington

University and Saint Louis University.

Plasma samples used in this study were collected at baseline and

follow-up; follow-up samples were collected after 2 weeks of weight

stability to eliminate confounding effects of negative energy bal-

ance. For CREX and EX participants, samples were collected 12 to

24 h after the last exercise bout. Sera were analyzed in a Clinical

Laboratory Improvement Amendments (CLIA)-certified clinical lab-

oratory for concentrations of total, low-density lipoprotein (LDL),

and high-density lipoprotein (HDL) cholesterol, and glycerol-

blanked triglyceride concentrations using automated enzymatic/col-

orimetric assays (Roche/Hitachi Modular Analytics System, Roche

Diagnostics Corporation, Indianapolis, IN). Plasma glucose was

measured using the glucose oxidase method (YSI STAT Plus; YSI

Life Sciences, Yellow Springs, OH); insulin was measured using

IMMULITE Chemiluminescence Kits (Diagnostics Products Corpo-

ration, Los Angeles, CA). Fat mass and fat-free mass were measured

by DXA (Lunar iDXA, software version 13.31; GE Healthcare,

Madison, WI).

Food diaries. CREG study participants maintained food diaries

for 3 days before starting weight loss intervention; the sample size

is higher (n 5 62) compared with that used for the weight loss study

(n 5 54) owing to noncompliance of eight participants. Nutrient

intakes were quantified by analyzing the 3-day food diaries (2 week-

days, 1 weekend day) with Food Processor SQL (ESHA Research,

Salem, OR).

MMTT study
Participants. Sedentary (0-1 sessions/week of physical activity

lasting >30 min; not employed in physically active jobs or hobbies),

weight-stable, male (n 5 2) and female (n 5 7) subjects aged 48 to

67 years who had overweight or obesity (body mass index, BMI

25.0-37.0 kg/m2) and physician-diagnosed T2D and HbA1c <10%

were recruited for participation. Subjects were nonsmokers, not on

insulin therapy, had no previous cardiac events, and did not skip

breakfast or have other irregular dietary patterns. The study was

reviewed and approved by the IRB at the University of Missouri in

Columbia, MO.

Intervention. Plasma adropin concentrations during the MMTT

were compared before (pre) and after (post) a 7-day exercise inter-

vention, allowing within subjects comparisons. Seven days of aero-

bic exercise training is commonly used to examine the effects of

added daily exercise before changes in body composition and train-

ing adaptations that occur with chronic training (29). Subjects exer-

cised under the supervision of trained personnel for 1 h/day at 60%

of heart rate reserve (monitored by telemetry) over 7 consecutive

days between tests. Exercise involved combining brisk treadmill

walking and stationary cycling (29). The last exercise session was

completed 14 to 16 h before the day of the MMTT.

TABLE 1 Composition of the breakfast meal (breakfast wrap
and orange juice; 60% energy as carbohydrates, 30% as
fats, and 10% as protein) used for the MMTT

Food

Carbohydrates

(g)

Fats

(g)

Protein

(g)

Energy

(kcal)

Flour tortilla 23.4 3.3 3.7 140.5

Egg BeatersVR 0.0 0.0 0.2 1.1

Egg yolk 0.2 1.2 0.7 14.5

Cheese 1.7 4.3 2.6 60.0

Margarine 0.0 4.5 0.0 38.6

Orange juice 34.8 0.0 2.7 147.1

Total 60.1 13.3 9.9 401.8

Obesity Carbohydrate Intake and Circulating Adropin Stevens et al.
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After an overnight fast, blood samples were taken at time zero and

subjects then consumed a �400 kcal mixed meal containing 60%

energy as carbohydrates (2/3 as simple sugars) (Table 1). Blood was

sampled from the arterialized venous site, collected in EDTA tubes

containing aprotinin and dipeptidyl peptidase IV inhibitors; aliquots

of plasma and serum were stored at 2808C. Plasma adropin

Figure 1 An inverse association between baseline plasma adropin concentrations and the effect of weight loss. (A) Plasma adropin concentrations at baseline
and after achieving 6% to 8% weight loss (“follow-up”) by calorie restriction (CR), calorie restriction plus exercise (CREX), and exercise only (EX). White
bars 5 adropin values at baseline; black bars 5 adropin values after weight loss. (B) Scatterplot showing associations between baseline plasma adropin con-
centrations and concentrations after weight loss (follow-up) or the difference in concentration at follow-up from baseline (Dadropin). Gray circles 5 adropin val-
ues after weight loss; white circles 5 Dadropin. (C) Plasma adropin concentrations quartiled by ranking levels at baseline from low (1st quartile) to high (4th
quartile). There was a significant interaction between weight loss and quartile, with the 4th quartile exhibiting a decline in plasma adropin concentrations. *P
< 0.005 between all quartiles; a P < 0.005 vs. 3rd, 4th quartile; b P < 0.005 vs. 4th quartile; c P < 0.005 vs. 1st quartile; d P < 0.005 vs. 1st, 2nd quartile;
**P < 0.001 compared with the 1st and 2nd quartile, P < 0.05 to 3rd quartile. (D) Frequency distribution of plasma adropin data pooled from the current and
previously published experiments (n 5 245). (E) Frequency distribution of plasma adropin data by sex. The values for the x-axis are the same in panels D
and E.
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concentrations were measured at baseline (T 5 0) and then at

T 5 30, 60, and 90 min postmeal.

Meta-analysis of plasma adropin concentrations
Distribution of plasma adropin concentrations in a mixed population was

estimated by pooling data from this study with published data (6,16,20)

(ClinicalTrials.gov #NCT01165853; NCT01103921; NCT00935402,

and NCT00936130), and data obtained from measurement of plasma

adropin concentrations in samples obtained from studies performed at

the University of Missouri-Columbia (30-33). The samples used for these

measurements were collected at baseline. The original studies were

reviewed by the IRB at UC Davis, Syracuse University, St. Luke’s-

Roosevelt Hospital Center, Pennington Biomedical Research Center, and

the University of Missouri in Columbia.

Measurement of plasma adropin concentrations
Adropin concentrations were determined in the plasma fraction of

blood as previously described (6,16,20) using a commercially avail-

able enzyme immunoassay (s-1385, Peninsula Laboratories, San Car-

los, CA) validated previously using plasma from adropin knockout

mice, and tested using a spike and recovery of synthetic adropin34-76

(1,6). The intra- and interassay coefficient of variation are <5% and

25 to 30%, respectively.

Statistical analysis
Data were analyzed using SPSS Statistics Version 23 (IBM). Effects

of weight loss on plasma adropin concentrations were assessed using

repeated measures ANOVA, including treatment (CR, EX, CREX)

as an independent variable and sex and glucose tolerance state as

covariates, and using linear regression modeling including plasma

adropin data and other metrics. When grouped into quartiles based

on ranking plasma adropin concentrations treatment, sex, and glu-

cose tolerance status were used as covariates. Associations between

changes in plasma adropin concentrations (Dadropin calculated by

subtracting the baseline value from final value) and fasting measure-

ments indicating glucose control and lipid metabolism were eval-

uated using Spearman correlations. Associations between baseline

and Dadropin and food intake data were first evaluated by converting

all data into Z-scores (standard deviations [SD] from the mean), and

further evaluated by separation into quartiles or tertiles, and ranked

by baseline plasma adropin values from lowest to highest.

For the meta-analysis, distribution, skew, and kurtosis were deter-

mined using SPSS. Effects of sex were assessed using univariate

analysis with age, BMI, and glucose tolerance status as covariates.

Associations between plasma adropin concentrations with macronutrient

intake were initially analyzed using linear and nonlinear associations

using Microsoft Excel. We initially converted macronutrient intake data

TABLE 2 Subject demographics of the CREG participants for whom plasma adropin values were measured for the weight loss
study

Demographic; laboratory measurement All participants CR CREX EX

Gender (F/M, n) 42/12 13/3 16/4 13/5

Age (years) 57.0 6 0.7 57.4 6 1.4 57.2 6 1.2 56.9 6 1.3

Weeks taken to attain weight loss goalsa 17.0 6 1.1 18.6 6 1.8 13.5 6 1.7* 19.4 6 1.8

BMI (kg/m2)b

Pretreatment 27.7 6 0.2 27.7 6 0.4 28.3 6 0.4 27.0 6 0.4

Post-treatment 25.9 6 0.2 25.9 6 0.4 26.3 6 0.4 25.4 6 0.4

Change 21.8 6 0.1 21.7 6 0.2 22.0 6 0.2 21.6 6 0.2

Body weight (kg)b

Pretreatment 78.7 6 1.4 77.2 6 2.0 81.8 6 1.8 76.5 6 1.9

Post-treatment 73.5 6 1.4 72.2 6 2.0 75.9 6 1.8 72.0 6 1.9

Change 25.2 6 0.3 25.0 6 0.5 25.9 6 0.5 24.5 6 0.5

Fat mass (kg)b

Pretreatment 31.8 6 0.7 32.0 6 1.3 33.1 6 1.1 30.3 6 1.2

Post-treatment 27.6 6 0.7 28.1 6 1.3 28.3 6 1.1 26.4 6 1.2

Change 24.3 6 0.3 23.9 6 0.5 24.8 6 0.4 23.9 6 0.4

Fat-free mass (kg)b

Pretreatment 46.5 6 1.2 44.9 6 1.1 48.3 6 1.0 45.9 6 1.1

Post-treatment 45.8 6 1.2 44.0 6 1.1 47.5 6 1.0 45.7 6 1.0

Change 20.6 6 1.2 20.8 6 0.3 20.8 6 0.2 20.2 6 0.3

Fat%b

Pretreatment 42.2 6 0.8 43.4 6 1.0 42.2 6 0.9 41.2 6 0.9

Post-treatment 39.1 6 0.9 40.7 6 1.1 38.8 6 1.0 37.9 6 1.0

Change 23.2 6 0.2 22.7 6 0.4 23.4 6 0.4 23.3 6 0.4

Data are mean 6 SE.
aAmong group comparison by ANOVA, P < 0.05; CREX vs. CR, EX, P < 0.05.
bSex was used as a covariate in the analysis to adjust for differences in proportion of males and females in each group.
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into Z-scores, allowing for comparisons of protein, carbohydrate, and fat

intake as g/d or relative to total calorie intake as a function of plasma

adropin values. Nonlinearity appeared to be driven by participants with

very high plasma adropin concentrations; these individuals were treated

as outliers (values >2 SD from the mean). Associations between plasma

adropin concentrations and nutrient intake were further investigated by

separating the tertiles ranked by plasma adropin concentrations; the out-

liers were not included in the tertiled data, but were treated as a separate

group. Comparisons of macronutrient intake between groups were then

assessed by ANCOVA with total caloric intake, sex, and glucose toler-

ance status used as covariates.

Between-group differences were tested using post hoc comparisons

(Bonferroni). All the statistical tests reported were two-tailed, with

significance accepted at P� 0.05.

Results
Circulating adropin concentrations before and
after weight loss (CREG study)
Demographics and metrics of the 54 participants in CREG study who

completed the weight loss program and for whom plasma adropin concen-

trations were measured are shown in Table 2; groups were matched for

body weight, body composition, and weight loss (27). Weight loss and

treatment method (CR, EX, CREX) had no significant effect on plasma

adropin concentrations (Figure 1A). However, an analysis of baseline,

postintervention, and Dadropin (change in plasma adropin concentrations

after weight loss) suggested an effect of weight loss dependent on baseline

values (Figure 1B). There was a strong negative correlation between

Dadropin and baseline concentrations (q 5 0.575, P < 0.001). There was

also a strong linear correlation between baseline plasma adropin concen-

trations with values after weight loss was also observed (q 5 0.680, P <

0.001). Further analysis using linear regression modeling with Dadropin

as the dependent variable and metrics recorded during the study (base-

line adropin values, body weight, fat and fat-free mass, BMI), demo-

graphics, and treatment indicated that baseline adropin was the only

significant coefficient (R 5 0.722; B 5 20.391; standard error [SE],

0.073; P 5 0.001).

We next separated participants into quartiles ranked by baseline

plasma adropin concentrations from low (1st quartile) to high (4th

quartile) (Figure 1C). While the effect of weight loss was still not

significant, there was a significant interaction between quartile and

weight loss (P < 0.001). Plasma adropin concentrations in the 4th

quartile declined with weight loss, with no change in the 1st to 3rd

quartile (Figure 1C). Demographics in the quartiles were similar

(males/females and n for quartile 1, 9/4; 2, 11/3; 3, 11/3; 4, 11/2;

mean age for quartile 1, 55.9 years; 2, 56.2 years; 3, 59.0 years; 4,

57.0 years; mean BMI adjusted for sex for quartile 1, 27.7 kg/m2;

2, 27.8 kg/m2; 3, 27.5 kg/m2; 4, 27.8 kg/m2). There was also no

correlation between Dadropin and measures of glucose control or

blood lipids, either at baseline or in response to weight loss (data

not shown).

Normal values for fasting plasma adropin
concentrations (meta-analysis)
Inspection of plasma adropin concentrations suggested that plasma

adropin concentrations in most individuals are <5 ng/mL (Figure

1B). This observation was confirmed in a meta-analysis using data

from 245 individuals pooled from current and previously published

studies (6,16,20) (Figure 1D, Table 3). Plasma adropin concentra-

tions exhibit a unimodal Gaussian distribution profile with positive

skew and high kurtosis (concentration in ng/mL; mean, 3.30;

median, 2.73; SD, 2.33; skewness, 3.262; kurtosis, 16.23, range 0.57

to 19.95 ng/mL, n 5 245) (Figure 1D). As observed previously (6),

plasma adropin concentrations are higher in males compared with

females (concentrations in ng/mL adjusted for age, BMI, and glu-

cose tolerance status for males, 3.8 6 0.2; females, 2.9 6 0.2; P <

0.01). A more pronounced positive skew and kurtosis may contrib-

ute to sex differences, as both are more pronounced in males (mean,

3.86; median, 2.93; SD, 2.93; skewness, 2.91; kurtosis, 11.18, n 5

104) compared with females (mean, 2.88; median, 2.50; SD, 1.58;

skewness, 1.97; kurtosis, 5.866; n 5 141) (Figure 1E). While 46 of

the 245 participants had been diagnosed with T2D (Table 3), there

was no significant difference in plasma adropin concentration in par-

ticipants with or without diabetes (concentrations in ng/mL for dia-

betic vs. nondiabetic, 2.9 6 0.3 vs. 3.4 6 0.2).

Negative association between habitual
carbohydrate intake and plasma adropin levels
(CREG study)
We observed a nonlinear association between plasma adropin con-

centrations and self-reported habitual carbohydrate intake in partici-

pants of the CREG study (correlation coefficient between plasma

adropin concentrations and carbohydrate intake, 0.5155; for relative

carbohydrate intake, 0.4514) (Figure 2A). In contrast, no associa-

tions were evident between plasma adropin concentrations and either

fat or protein intake (Figure 2B, C). When examined as tertiles

ranked by plasma adropin concentration, there were significant dif-

ferences in absolute and relative carbohydrate intake between the 1st

and 3rd tertiles (Figure 2D), with no difference in fat (Figure 2E) or

protein intake (Figure 2F).

TABLE 3 Demographics of the subjects used for the meta-
analysis of plasma adropin concentrations

Demographic;

laboratory

measurement

All subjects

(n 5 245)

Males

(n 5 104)

Females

(n 5 141) P

T2D (n) 46 8 38

Age (years)
Mean 34.9 33.3 36.1 n.s

SD 12.8 13.6 12.2 0.001

Range 18-67 18-70 20-67 0.001

BMI (kg/m2)
Mean 30.7 28.4 32.4 0.001

SD 9.1 7.4 9.9

Range 17.6-71.5 17.6-62.6 19.4-71.5

Adropin (ng/ml)
Mean 3.3 3.9 2.9 0.001

SD 2.3 3 1.6

Range 0.6-20.0 1.1-20.0 0.6-10.9
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The difference in carbohydrate intake between the 1st and 3rd

tertiles was due to simple sugars (mono- and disaccharides; 34%

difference) and complex carbohydrates (oligo- and polysaccha-

rides; 30% difference); fiber intake was similar between tertiles

(Table 4). Analysis of the different fatty acid species for which

reliable data were available from the study (saturated, unsatu-

rated) also indicated no significant differences between tertiles.

As diet may affect glucose control and lipid profile, we also

compared blood chemistries between tertiles (Table 4). There

was no evidence for differences in insulin sensitivity between

tertiles; however, blood lipids (triglycerides, cholesterol, LDL)

were significantly lower in the 3rd tertile compared with 1st ter-

tile. In general, the tertiles had similar demographics; while peo-

ple in the 3rd tertile weighed significantly less, their BMI and

body composition were normal compared with the other groups

(Table 4).

Figure 2 Association between plasma adropin concentration and carbohydrate intake. The macronutrient intake data (in kJ per person, or
expressed relative to other macronutrients) and plasma adropin concentration data were converted into Z-scores (6SD from the mean)
to allow plotting total and relative intake data on the same graph. White circles 5 total intake; gray circles 5 intake relative to other macro-
nutrients; n 5 62. (A-C) Scatterplots showing a nonlinear association between plasma adropin concentration (x-axis) and carbohydrate
intake (y-axis); no associations were evident for intake of either fats or protein. (D) Carbohydrate intake of the 58 participants whose
plasma adropin concentrations were within 2 SD of the mean separated into tertiles with low-normal (1st tertile, n 5 19), normal (2nd ter-
tile, n 5 20), or high-normal (3rd tertile, n 5 19) plasma adropin concentrations. Carbohydrate intake (in total or relative to other macro-
nutrients) in the 1st and 3rd tertiles was significantly different (*P < 0.01). The means of the four participants whose plasma adropin
concentrations were >2 SD from the mean (“outliers”) are also shown. (E,F) Intake of fats and protein by tertile.

Obesity Carbohydrate Intake and Circulating Adropin Stevens et al.
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Reduced plasma adropin concentrations during
the MMTT study
Analysis using repeated measures indicated a significant effect of

meal (P < 0.01) but not of exercise (mean 6 SE plasma adropin

concentrations at T0, pre-exercise, 2.73 6 0.30 ng/mL; postexercise,

2.94 6 0.30 ng/mL) (Figure 3A, B). Plasma adropin levels at T 5 30

and T 5 60 were 13% and 14% lower compared with baseline

(mean 6 SE of the delta in plasma adropin concentrations in ng/mL

at T 5 30, 20.37 6 0.13 ng/mL; at T 5 60, 20.41 6 0.19 ng/mL),

returning to normal levels at T 5 120 (20.01 6 0.22 ng/mL) (Figure

3C, D). The meal effect was predominantly observed in individuals

with baseline adropin values >2.5 ng/mL (Figure 3E, F).

Discussion
Our initial objective was to determine whether weight loss reduces

plasma adropin concentrations in humans. A simple association

between weight loss and plasma adropin concentrations was not

observed. However, further analysis suggested asymmetry in effects

of interventions known to alter systemic metabolism on plasma

adropin concentration. In individuals with adropin values at the high

end of the range, weight loss reduced values (Figure 1B, C).

A secondary objective of this study was to further investigate the associa-

tion between diet and plasma adropin concentrations. In lean women

(BMI 22-26 kg/m2) aged between 30 and 45 years participating in a

TABLE 4 Demographics, blood chemistries, and self-reported nutrient intake of CREG study participants separated into
tertiles ranked by plasma adropin concentrations

Demographic; laboratory

measurement 1st tertile 2nd tertile 3rd tertile Outliers (>2 SD) P

Gender (F/M, n) 14/5 13/7 18/1 3/1

T2D 1 0 1 0

Prediabetes 10 9 13 3

Age (years) 55.9 6 1.2 57.2 6 1.3 57.6 6 1.1 54.7 6 0.8 n.s.

Weight (kg)a 81.3 6 1.8 79.9 6 1.8 73.8 6 1.9* 87.4 6 4.0 <0.01

BMI (kg/m2)b 27.7 6 0.4 27.8 6 0.4 27.4 6 0.4 28.8 6 0.8 n.s.

Fat% 42.5 6 1.0 42.2 6 0.9 41.5 6 1.0 43.6 6 2.1 n.s.

SBP 119.2 6 2.4 115.7 6 2.4 114.2 6 2.5 119.4 6 5.3 n.s.

DBP 75.0 6 1.9 74.9 6 1.9 75.8 6 2.0 75.5 6 4.1 n.s.

Blood chemistriesb

Adropin (ng/mL)c 1.5 6 0.1 2.4 6 0.1 3.7 6 0.1 7.6 6 0.3 <0.001

Insulin (lU/mL) 9.1 6 1.4 8.4 6 1.4 6.5 6 1.5 15.2 6 2.8 (0.063)

Glucose (mg/d) 96.9 6 1.5 95.0 6 1.5 93.8 6 1.6 101.6 6 3.3 n.s.

HOMA-IR 2.25 6 0.35 1.98 6 0.36 1.51 6 0.37 4.12 6 0.7** <0.05

HbA1c 5.64 6 0.06 5.65 6 0.06 5.68 6 0.06 5.63 6 0.12 n.s.

Triglycerides (mg/dL) 135.2 6 12.9 116.2 6 13.1 83.3 6 13.5*** 92.5 6 28.2 (0.063)

Total cholesterol (mg/dL) 217.3 6 9.7 195.7 6 9.7 174.4 6 10.1*** 205.8 6 21.0 <0.05

LDL-C (mg/dL) 136.4 6 6.6 118.4 6 6.7 104.7 6 6.9*** 135.1 6 14.4 <0.05

HDL-C (mg/dL) 53.9 6 3.3 54.7 6 3.3 61.1 6 3.4 51.9 6 7.1 n.s.

Nutrient intaked

Total kcal 2,250 6 118 1,915 6 117 2,164 6 128 2,298 6 263 n.s.

Carbohydrates (g) 269 6 10 254 6 10 218 6 10* 309 6 22 <0.001

Fats (g) 80 6 4 81 6 4 92 6 4 67 6 9 50.05

Protein (g) 81 6 4 84 6 4 85 6 4 75 6 8 n.s.

Carbohydrates by class
Sugars (g) 96 6 7 87 6 7 76 6 7 103 6 15 n.s.

Other carbs (g) 114 6 8 116 6 9 98 6 9 144 6 18 n.s.

Fiber (g) 18 6 1 19 6 2 18 6 2 31 6 3# <0.01

Fats by class
Saturated (g) 26 6 2 27 6 2 30 6 2 18 6 4## (0.057)

Unsaturated (g) 52 6 3 52 6 3 60 6 3 476 6 n.s.

aSex included as a covariate in the analysis to adjust for differences in proportion of males and females in each group.
bSex and glucose tolerance status included as covariates in the analysis.
cThe differences in plasma adropin concentrations between all groups were highly significant (P < 0.001).
dFor total caloric intake, body weight, sex, and glucose tolerance status were used as covariates; for macronutrients, total caloric intake, sex, and glucose tolerance status
were included as covariates.
*P < 0.05 vs. 1st tertile and outliers; **P < 0.05 vs. 3rd tertile; ***P < 0.05 vs. 1st tertile; #P < 0.05 vs. all other tertiles; ##P < 0.05 vs. 3rd tertile.
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Figure 3 Reduced plasma adropin concentrations following a high-carbohydrate (60% energy), low-fat (30%), and low-protein (10%) meal. (A, C, E) Actual val-
ues for the two arms of the study and (B,D,F) least square means of the overall meal effect. Panels A and B show actual plasma adropin values, while panels
C and D show the change in plasma adropin concentrations relative to baseline (Dadropin). A negative association between the area under the curve (AUC) for
plasma adropin concentrations following the meal and baseline values is shown in panels E and F. White circles 5 postexercise; black circles 5 pre-exercise;
gray circles 5 averaged meal effect.
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sleep restriction study, we reported strong associations between plasma

adropin concentrations and macronutrient intake (16). When expressed

relative to total calories, there was a positive association between plasma

adropin values and fat intake and a negative association with carbohy-

drate intake. Here we screened for associations between diet and plasma

adropin concentrations using a larger sample size (n 5 62). Results from

this study suggest habitual dietary preferences are a factor determining

plasma adropin concentrations. In participants with adropin values under

the main peak of the distribution, there was a negative association with

carbohydrate consumption. Individuals with low plasma adropin concen-

trations exhibited higher intake of carbohydrates as simple sugars and

complex carbohydrates, with no difference in fiber intake.

The lipid profile between tertiles was also significantly different,

with the 3rd tertile having lower blood lipids compared with the 1st

tertile (Table 4). An inverse association between fasting triglycerides

and plasma adropin concentrations has been reported (6). Whether

differences in dietary preferences explain the association between

plasma adropin concentrations and lipid profiles is unclear, with fur-

ther studies needed.

The impact of the high-carbohydrate breakfast on plasma adropin

values was more pronounced in participants with values >2.5 ng/

mL (Figure 3E, F). While speculative, if plasma adropin values are

an indicator of long-term food selection preferences, then a super-

vised change in feeding behavior (e.g., a participant who normally

consumes diets high in saturated fat consumes a high-carbohydrate

breakfast) could have a proportionately greater impact on plasma

adropin concentrations compared with someone who regularly con-

sumes carbohydrate-rich diets. Thus, study participants with adropin

values between 3 and 4 ng/mL and lower self-reported carbohydrate

consumption would exhibit a decline in plasma adropin values fol-

lowing a high-carbohydrate meal. On the other hand, people with

low plasma adropin concentrations who self-report habitual con-

sumption of high-carbohydrate diets will be less responsive when

consuming a supervised breakfast that matches their regular diet.

Data from studies using mice suggest inhibitory effects of simple

carbohydrates on adropin expression. In silico analysis using the

GEO database (34) suggests an 80% reduction of Enho expression

(P < 0.001) in livers of C57BL/6J mice maintained on a very-low-

fat (1% w/w), high-carbohydrate diet (50% sucrose) for 10 days rel-

ative to chow-fed controls (35) (GEO accession GDS1517). Dietary

sugars may therefore suppress adropin synthesis in mice. However,

the regulation of plasma adropin concentrations by sugars in humans

is not clear. Consumption of glucose as 25% of daily energy

requirements for 2 to 10 weeks reduces plasma adropin concentra-

tion, while consumption of fructose as 25% of daily energy require-

ments has the opposite effect (20). Plasma adropin concentrations in

humans may be affected by multiple factors, including diet composi-

tion and secondary effects of diet on metabolic condition.

It is important to note some of the weaknesses of these studies. Most

of the participants of the CREG study were women (48 out of 62);

whether associations between carbohydrate intake and circulating adro-

pin occur in men is not clear. Relying on self-reported feeding data is

also a weakness, as underreporting of total energy intake and macronu-

trient intakes is common (36). Carbohydrate intake when expressed as

a percentage of total energy intake does not appear to be susceptible

to bias from underreporting (37). Underreporting is thus unlikely to be

responsible for the association between carbohydrate intake and

plasma adropin concentrations in this study. Furthermore, this weak-

ness is offset by replication of the finding in participants recruited in

different clinical settings (New York City) in which food intake was

objectively measured (16). Further studies of macronutrient-specific

and meal-related effects using healthy individuals who have nondiabe-

tes are needed, as the impact of altered carbohydrate metabolism on

the parameters being investigated is not clear. Finally, this study did

not determine whether plasma adropin concentrations alter eating

behavior. Studies using visual analog scales could be useful in deter-

mining whether plasma adropin concentrations correlate with altered

appetite and/or food preferences.

The positive skew observed in the distribution of plasma adropin con-

centrations may suggest a “normal range” of plasma adropin concen-

trations. Important questions raised by this result concern the meta-

bolic conditions of people with values in the extreme low or high ends

of the distribution profile. Determining whether plasma adropin values

at the low or high end (“hypo/hyperadropinemia”) are associated with

increased metabolic risk and clearly defined metabolic phenotypes

could establish whether adropin has significant physiological roles in

humans. This study suggests that low plasma adropin concentrations

may indicate a situation of excess carbohydrate consumption and dys-

lipidemia. The inverse association between plasma adropin and serum

TG was observed previously (6). The current results suggest that the

association may not be causative, as carbohydrates appear to have an

inhibitory on plasma adropin levels. Further studies examining whether

extremely high or low plasma adropin concentrations are associated

with dyslipidemias are needed.

We previously reported an asymmetric impact of sugar consumption

and high-fat meals on plasma adropin concentrations (20). Combin-

ing the results of these studies leads us to propose that obesogenic

or leptogenic interventions either increase or reduce the distribution

in plasma adropin concentrations at the high end of the range (Fig-

ure 2A). Interventions causing weight loss appear to reverse the pos-

itive skew observed in the distribution of plasma adropin values

(Figure 2B). These results are consistent with hyperadropinemia

resulting from a metabolic condition that may be related to changes

in systemic lipid metabolism. The exact nature of this metabolic

condition requires further analysis. However, we can use published

data from animal studies to suggest two hypotheses. First, if adropin

regulates fuel selection in skeletal muscle in humans as observed in

mice (2,3), then abnormalities in carbohydrate and/or lipid metabo-

lism are possible in situations of hyperadropinemia. Consistent with

this theory, the changes in plasma adropin concentrations in

response to sugars may be linked to systemic lipid metabolism (20).

A second possibility is vascular; adropin enhances vascular function

in mouse models (4). Elevated plasma adropin concentrations have

been observed with heart failure (5), while myocardial infarction in

a rat model increases adropin expression (12).

Conclusion
These results provide further evidence supporting a link between cir-

culating adropin concentrations, dietary macronutrient intake, and

systemic lipid metabolism in humans. Further investigation will be

required to determine how carbohydrate intake affects plasma adro-

pin concentrations, as the response may be specific for different

sugar species (20). Further studies focusing on individuals with
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plasma adropin concentrations at either end of the spectrum may

also provide important information on the role of this peptide in

human physiology.O
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