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Classification of grass pollen through
the quantitative analysis of surface
ornamentation and texture

Luke Mander1,†, Mao Li2, Washington Mio2, Charless C. Fowlkes3

and Surangi W. Punyasena1

1Department of Plant Biology, University of Illinois, Urbana, IL 61801, USA
2Department of Mathematics, Florida State University, Tallahassee, FL 32306, USA
3Department of Computer Science, University of California, Irvine, CA 92697, USA

Taxonomic identification of pollen and spores uses inherently qualitative

descriptions of morphology. Consequently, identifications are restricted to

categories that can be reliably classified by multiple analysts, resulting in

the coarse taxonomic resolution of the pollen and spore record. Grass

pollen represents an archetypal example; it is not routinely identified

below family level. To address this issue, we developed quantitative mor-

phometric methods to characterize surface ornamentation and classify

grass pollen grains. This produces a means of quantifying morphological

features that are traditionally described qualitatively. We used scanning elec-

tron microscopy to image 240 specimens of pollen from 12 species within the

grass family (Poaceae). We classified these species by developing algorithmic

features that quantify the size and density of sculptural elements on the

pollen surface, and measure the complexity of the ornamentation they

form. These features yielded a classification accuracy of 77.5%. In compari-

son, a texture descriptor based on modelling the statistical distribution

of brightness values in image patches yielded a classification accuracy of

85.8%, and seven human subjects achieved accuracies between 68.33 and

81.67%. The algorithmic features we developed directly relate to biologically

meaningful features of grass pollen morphology, and could facilitate direct

interpretation of unsupervised classification results from fossil material.
1. Introduction
The taxonomic identification of pollen and spores, in common with many other

biological sciences that rely on morphological comparison, uses inherently

qualitative descriptors of shape and ornamentation. As a result, identifications

are restricted to taxonomic groupings that can be reliably classified by multiple

analysts and subtle morphological differences are often ignored. A consequence

of this conservative approach is the coarse taxonomic resolution of the pollen

and spore record [1]. The development of intuitive, numerical measures of

shape and ornamentation would directly address these limitations of pollen

and spore identification, and allow researchers to translate morphologi-

cal differences observed under the microscope into quantitative, repeatable

measurements. Treating morphology as measurement, rather than description,

allows a broader range of observations to be incorporated into the analysis and

identification of pollen and spores.

Grass pollen presents a classic demonstration of the taxonomic limits of

current analytical approaches. The grass family (Poaceae) is an exceptionally

successful group of plants, and can be found in a wide range of habitats

from the tropics to the arctic. However, although Poaceae contains more than

11 000 recognized species [2] and its genetic diversity is visible in the diverse

morphology of grass flowers [3], the gross morphology of grass pollen is

remarkably similar throughout the family. The pollen is generally spheroidal

with a single pore surrounded by an annulus [4,5]. This simple morphology
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Table 1. Classification and specimen information for the 12 species of
grass investigated here. Subfamily classification of grasses follows [17].
‘Group’ refers to the four morphological clusters created by sculptural
element size and density (figure 2).

subfamily genus and species
species
code group

Pooideae Anthoxanthum odoratum 1 1

Dactylis glomerata 2 2

Phalaris arundinacea 3 1

Poa australis 4 1

Stipa tenuifolia 5 4

(a) (b) (c) (d )

(e) ( f ) (g) (h)

Figure 1. Thumbnails showing the image processing steps taken during the
construction of features i and n. (a – d) show a species with areolae (Oplismenus
hirtellus). (e – h) show a species with scabrate ornamentation consisting of gran-
lua (Anthoxanthum odoratum). (a,e) show original �6000 SEM images of each
specimen cropped to 100 � 100 pixels. (b,f ) show binary images with white
pixels representing edges delineated by a Sobel edge detector (used to generate
feature i). (c,g) show quantized images with pixels clustered into four groups
from low (dark blue) to high (red) intensity. (d ,h) show binary images with
pixels in the cluster of highest intensity shown as white pixels (used to generate
feature n).
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has led researchers to suggest that pollen morphology is

‘uniform’ within the family [6] and has little to contribute

to the reconstruction of grass evolution and diversification.

Instead, direct evidence for the palaeoecology and evolution-

ary history of grasses has been provided mostly by other

fossil groups such as phytoliths (microscopic silica bodies

formed in plant tissues) [6,7].

Yet, owing to their high abundance in terrestrial and

marine sediments, and standardized protocols that allow

relative abundances of different plant groups to be directly

compared through time, pollen grains provide a potentially

rich source of information on the evolutionary history of

grasses. As a result, palynologists have attempted to increase

the taxonomic precision of grass pollen by measuring charac-

ters such as pollen grain length, grain width, pore diameter

and annulus width [8–11], and by noting differences in the

organization of the grass pollen exine [5,9]. High-resolution

scanning electron microscopy (SEM) studies have revealed a

diversity of surface ornamentation patterns that may have

taxonomic significance [5,12–16] but are not visible when

viewed using traditional light microscopy. However, exine

ornamentation has not been widely used to classify grass

pollen because of the difficulty in comparing the relatively

small differences in surface patterning [5,13,14].

In this paper, we classify 240 specimens of grass pollen

from 12 species in three subfamilies within Poaceae (table 1)

by quantifying the size and density of sculptural elements

and the complexity of the surface ornamentation that they

form. In doing so, we develop a means of quantifying mor-

phological features that have traditionally been described

solely in qualitative terms. Our results provide a potential

solution to the problem of classifying grass pollen, and

demonstrate how computational image analysis, combined

with high-resolution microscopy, holds the potential to dra-

matically increase the taxonomic resolution of pollen and

spore records of Earth’s vegetation [18,19].

Chloridoideae Cynodon dactylon 6 3

Eragrostis mexicana 7 3

Sporobolus pyramidalis 8 2

Triodia basedowii 9 1

Panicoideae Bothriochloa intermedia 10 1

Digitaria insularis 11 3

Oplismenus hirtellus 12 2
2. Scanning electron microscopy image
acquisition

Grass pollen from the 12 species was prepared for SEM ima-

ging using standard palynological methods (see the electronic

supplementary information). Twenty grains of each species

were imaged at �2000, �6000 and �12 000 magnification

(see the electronic supplementary information, dataset S1).

Analyses were undertaken on 400 � 400 pixel windows that

were manually cropped from the �6000 images (see the

electronic supplementary information, dataset S2). In these

images, 1 pixel measures 16.(6) nm. SEM images of all grass

pollen analysed in this paper can be found at https://www.

ideals.illinois.edu/handle/2142/43358.
3. Grouping morphologically similar species
(a) Quantifying sculptural element size and density
SEM revealed that the surface ornamentation of the 12 species

is considerably diverse. Using terminology from descriptive

palynology [20], some species are characterized by scabrate

ornamentation consisting of granula, whereas others have

more complex areolate ornamentation, with polygonal areas

separated by grooves that form a negative reticulum. We
first clustered the species into groups with similar patterns

of surface ornamentation. To do this, we developed a scalar

feature i that represents the size of the sculptural elements

on the surface of each specimen, and a feature n that is related

to the density of the granula on the surface of each specimen

(figure 1).

The size of sculptural elements on the surface of each

pollen grain was quantified from five windows measuring

100 � 100 pixels randomly chosen and cropped from each

�6000 SEM image of each specimen. Working with smaller

windows decreased the influence of variations in the bright-

ness and contrast of each image. A Sobel edge detector was

applied to each 100 � 100 window, which turned each of

these into a binary image with the white pixels representing

the detected edges (figure 1b,f ). The white pixels were then

clustered by forming a graph with the white pixels as

nodes and two nodes connected with an edge if one node

https://www.ideals.illinois.edu/handle/2142/43358
https://www.ideals.illinois.edu/handle/2142/43358
https://www.ideals.illinois.edu/handle/2142/43358
http://rspb.royalsocietypublishing.org/


0 2 4 6 8

–2

–1

0

1

2

3

i (sculptural element size)

n 
(s

cu
lp

tu
ra

l e
le

m
en

t d
en

si
ty

)
Group One Group Four

Group Two Group Three

1 3 4

109

5

2

8

12

6

7

11

Figure 2. Pollen from the 12 species of grass investigated here clustered into
four groups at 95% accuracy using features i and n. Thumbnails show the
surface ornamentation of species within each group. Group one (red open
circles) contains five species: A. odoratum (1), Phalaris arundinacea (3),
Poa australis (4), Triodia basedowii (9) and Bothriochloa intermedia (10).
Group two (blue solid triangles) contains three species: Dactylis glomerata
(2), Sporobolus pyramidalis (8) and O. hirtellus (12). Group three (black
plus signs) contains three species: Cynodon dactylon (6), Eragrostis mexicana
(7) and Digitaria insularis (11). The two outliers are specimens 13 and 20 of
E. mexicana. Group four (green open squares) contains a single species:
S. tenuifolia (5). Images taken using SEM and shown at �12 000 magnifi-
cation. Scale bar measures 120 pixels and represents 1 mm. In these
images, 1 pixel measures 8.(3) nm. Numeric species codes from table 1.
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fell within the 3 � 3 pixel neighbourhood of the other. The

connected components of this graph were identified using a

standard Dulmage–Mendelsohn decomposition of the adja-

cency matrix [21]. We selected the connected component C
with the largest number of pixels and applied principal com-

ponent analysis to the coordinates of the centres of the pixels

in C. We quantified the size of C using the largest eigenvalue

iC . 0 of the covariance matrix, which may be interpreted as

the variance along the first principal direction. We employed

the average value of iC over the five 100 � 100 pixel windows

as a scalar feature i that represents the size of the sculptural

elements on the surface of each specimen.

The density of the sculptural elements was quantified using

the same 100 � 100 pixel windows. Minimum variance quan-

tization [22] was used to cluster the pixels in each window

into four groups. We interpreted the pixels in the cluster H
of highest intensity as the pixels that form the granula of the

scabrate ornamentation on each pollen grain (figure 1c,g).

We constructed a graph with the pixels in H as nodes, and

used the same 3 � 3 pixel neighbouring relations employed
in the analysis of sculptural element size to identify the con-

nected components of H. We used the number of connected

components nH to estimate the number of granula in each

100 � 100 pixel window, and used the average value n over

the five 100 � 100 windows as a feature related to the density

of the granula on the surface of each specimen. To balance out

the scales of i and n that are related to sculptural element size

and density, respectively, we centred both features by subtract-

ing their mean values and scaling them to have unit variance.

(b) Identification and validation of morphological
groups

Using a scatterplot of features i and n as a guide, we clustered

the 12 species into four groups (figure 2 and table 1). These

four morphological groups were validated by a leave-

one-out experiment with a k-nearest-neighbour classifier in

which 228 of the 240 specimens were classified correctly

(95% accuracy; we selected k ¼ 9 based on classification

performance). Group one contains five species that are

characterized by granula spread relatively densely over the

surface of the pollen grain and poorly defined areolae

(figure 2). Group two contains three species that are charac-

terized by areolae and granula spread relatively densely

over the surface of the pollen grain (figure 2). Group three

contains three species that are characterized by areolae and

granula distributed relatively sparsely over the pollen surface

(figure 2). The simple scabrate surface ornamentation of Stipa
tenuifolia lacks areolae and has sparsely distributed granula.

This surface ornamentation is sufficiently different to any of

the other species that it clusters alone (figure 2).
4. Classification of species within each
morphological group

Next, we classified the species of grass contained within each of

the four morphological groups. To do this, we approached the

pixels in each image of a pollen grain as nodes in a network,

with two nodes connected with an edge using a neighbouring

relation. We treated the sculptural elements on the surface of a

pollen grain as foreground objects (white pixels in figure 3c,f,i),
and used the notion of network centrality to define two

20-dimensional features, t1 and t2, that provide measures of

the complexity of the surface ornamentation on each pollen

grain. Centrality here refers to the relative importance of the

nodes of a network for its local–global connectivity [23].

(a) Quantifying the complexity of grass pollen surface
ornamentation and construction of features t1 and t2

Five windows measuring 40� 40 pixels were randomly

chosen and cropped from each �6000 SEM image of each

specimen [22] within these groups. Minimum variance quanti-

zation was used to cluster the pixels in each window into four

groups and turn each window into a binary image. For species

within group one (figure 2), the pixels in the two clusters of

lower intensity were turned into black pixels (background)

and those in the two clusters of higher intensity were turned

into white pixels (foreground; figure 3i). For species within

groups two and three (figure 2), only pixels in the cluster of

lowest intensity were turned into black pixels (background)

and those in the other three were turned into white pixels

http://rspb.royalsocietypublishing.org/
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(g) (h) (i)

Figure 3. Thumbnails showing the image processing steps that were taken
during the construction of features t1 and t2. (a – c) show a species with
relatively narrow areolae (D. insularis). (d – f ) show a species with relatively
large areolae (O. hirtellus). (g – i) show a species with scabrate ornamentation
consisting of granlua (A. odoratum). (a,d,g) show original �6000 SEM
images of each specimen cropped to 40 � 40 pixels. (b,e,h) show quanti-
zed images of each specimen with pixels clustered into four groups from
low (dark blue) to high (red) intensity. (c,f ) show a binary image with
pixels in the cluster of lowest intensity as black pixels. (i) shows a binary
image with pixels in the two clusters of lower intensity as black pixels.
Binary images in (c,f,i) show black pixels as the background and white
pixels as the foreground.
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Figure 4. Thumbnails showing examples of expanding subregions and the
number of connected components within them. Subregions are displayed as
coloured pixels and shown in 20% increments. Examples of three species are
shown, each from a different morphological group. (a) D. insularis (Group 3;
figure 2 and table 1), (b) O. hirtellus (Group 2; figure 2 and table 1),
(c) A. odoratum (Group 1; figure 2, table 1). Binary images at the top of
each column correspond to the binary images in figure 3c,f,i, with black
pixels as the background and white pixels as the foreground. (a) shows a
sequence of expanding subregions within a network having only the background
pixels as nodes, which was used to derive feature t1. Pixels added to this net-
work following SC computations are shown in purple. (b,c) show a sequence of
expanding subregions within a weighted network having all pixels as nodes,
which was used to derive feature t2. Pixels added to this network following
SC computations are shown in green. The number of connected components pre-
sent in each subregion is shown in a white circle to the right of each image.
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(foreground; figure 3c,f ). Treating the groups in this way

ensured that the primary ornamentation patterns of each

species were represented as accurately as possible in the

binary images.

We employed the notion of subgraph centrality (SC) in

our analysis [23]. For unweighted networks, SC can be

defined as follows. For a node v and a non-negative integer

‘, let m‘(v) denote the number of closed walks of length ‘

starting at v. Then, the centrality of v is defined as

SCðvÞ ¼
X1

l¼0

mlðvÞ
l!

; ð4:1Þ

a weighted sum that attributes higher importance to shorter

walks; that is, to the local connectivity near v. SC(v) can be

computed in terms of the eigenvalues and eigenvectors of

the adjacency matrix of the network as follows: let v1, . . . ,vn

denote the nodes of the network and let h1, . . . ,hn be an

orthonormal basis of eigenvectors of the adjacency matrix

with associated eigenvalues l1, . . . ,ln. Then,

SCðviÞ ¼
Xn

j¼1

½hjðiÞ�
2elj ; ð4:2Þ

where hj(i) is the ith entry of the vector hj [23]. This form of

SC generalizes to weighted networks, where the adjacency

matrix is given by the weights wij. We rank the nodes of

the network according to decreasing values of SC.

Feature t1 is derived from a network having only the back-

ground (black) pixels as nodes, and two nodes connected with
an edge if they are immediate neighbours to the north, south,

east or west. SC was used to rank the pixels of this network.

A sequence of 20 expanding subregions of the background

was formed, starting with the pixels ranked in the top 5%

and adding the next 5% until the entire background of black

pixels was covered (figure 4a). For each of the subregions,

the number of connected components was calculated, which

were recorded in a 20-dimensional feature vector tW. As

pixels are added to the shape, the number of connected com-

ponents may increase or decrease and existing components

may coalesce (figure 4a). The last component of the vector

tW is the number of connected components of the background.

This process was repeated using each of the five randomly

cropped 40 � 40 pixel windows from each specimen. The aver-

age was taken to obtain a 20-dimensional feature vector t1.

Feature t2 is derived from a weighted network having all

1600 pixels of each 40 � 40 window as nodes, and two nodes

connected with an edge using the same neighbouring relation

as for feature t1. Edges connecting two foreground (white)

http://rspb.royalsocietypublishing.org/
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Figure 5. Tree showing the classification of the 12 species of grass investi-
gated in this study. The uppermost dark grey box represents all 12 species.
The medium grey boxes at the first level of the tree show the 12 species
clustered into four groups, labelled G1 – 4, and colour coded as for figure
2. The light grey boxes at the second level of the tree show the classification
of species within each cluster. See table 1 for species codes.

rspb.royalsocietypublishing.org
ProcR

5

 on September 18, 2013rspb.royalsocietypublishing.orgDownloaded from 
pixels or two background (black) pixels received weight 1,

whereas background–foreground transition edges received

weight a, 0 , a , 1. Experiments indicate that t2 remains

essentially unchanged for a � 0.01, so we used a ¼ 0.01 in

all calculations. As for feature t1, SC was used to rank the

pixels of this network and a sequence of 20 expanding sub-

regions of the 40 � 40 window was formed (figure 4b,c).

The number of connected components was calculated at

each stage of the sequence (figure 4b,c), which was recorded

in a 20-dimensional feature vector. This process was repeated

using each of the five randomly cropped 40 � 40 pixel win-

dows from each specimen. The average was taken to obtain

a 20-dimensional feature vector t2.
SocB
280:20131905
(b) Species classification of grass pollen
To optimize the combination of i (sculptural element size) and

n (sculptural element density) with the feature t derived from

centrality, we allow a scaling factor a . 0, and use the

22-dimensional feature vector Y ¼ (ai, an, t) to classify species.

For each group, we experimented with a range of values of a,

and selected the value that yielded the highest classification

accuracy. We employed either feature t1 or feature t2 depend-

ing on which feature yielded the highest classification

accuracy. Feature vector Y was reduced to three dimensions

using principal component analysis.

As S. tenuifolia clusters alone using features i and n, we

only further subdivide species in groups one, two and three

(figure 2). Classification of species within these groups was

validated with a leave-one-out experiment using a k-nearest-

neighbour classifier. The choice of k was based on classification

performance. Within group one, 78 out of 100 specimens were

classified correctly at the species level (78%) using feature t2,

a ¼ 15.8 and k ¼ 5. For this group, feature t2 quantifies

the complexity of the patterning formed by the granula

on the pollen surface (figure 4c). (Typically, for complex pat-

terning, the vector t will have several larger values that

reflect the presence of numerous connected components. In

many cases, the values of t also show an oscillatory behaviour

indicating that many new connected components are created

and existing ones get merged as more pixels are added to

the count.) Within group two, 50 out of 60 specimens were

classified correctly (83%) using feature t2, a ¼ 8 and k ¼ 6.

For this group, feature t2 quantifies the complexity of the

patterning formed by the negative reticulum and the areolae

(figure 4b). Within group three, 50 out of 60 specimens were

classified correctly (83%) using feature t1, a ¼ 5 and k ¼ 3.

For this group, feature t1 quantifies the complexity of the

patterning formed by the negative reticulum (figure 4a).

Our classification of the 12 species investigated is shown

schematically as a tree in figure 5. At the first level, we use

features i and n to cluster the 12 species into groups that

have similar patterns of surface ornamentation (figure 5).

At the second level, we use the 22-dimensional feature

vector Y to classify species within groups one, two and three

(figure 5). Classification errors are introduced at the first and

second levels of the classification. A leave-one-out experiment

with all 240 specimens yielded a classification accuracy of

77.5% (see the electronic supplementary material, figure S1).

Given that leave-one-out cross-validation was used to

estimate model parameters and the predictive performance

of k-nearest-neighbour classifiers, the performance rates

reported in the paper are subject to the general limitations of
the cross-validation procedure, as estimates so obtained may

exhibit considerable variation (cf. [24]).
5. Comparison with an alternative texture
descriptor and human subjects

As a baseline for the species-level classification accuracy of our

approach, we evaluated a texture descriptor based on the mod-

elled statistical distribution of brightness values in local image

patches. This approach is common in computational image

analysis and has been used previously for classifying materials

[25] and detection of boundaries between textured regions [26].

Each cropped �6000 SEM image of grass pollen grain was

down-sampled to a resolution of 120 � 120. Each 5 � 5 pixel

window centred at every pixel location within the image

(excluding boundaries) was quantized by subtracting the

mean brightness of the patch and assigning it to the closest

element in a pre-computed dictionary of canonical appear-

ances. We used a generic dictionary containing 75 elements

learned from a set of consumer photographs by minimizing

sparse reconstruction error (graciously provided by Ren &

Bo [27]). The relative frequencies of these appearances were

stored in a 75-bin histogram and left-out samples were classi-

fied using k-nearest-neighbour with an L1 distance (cityblock).

k ¼ 3 was selected by cross-validation. A histogram recording

the frequencies of the different patch appearances in a sample

image was used as the texture descriptor for the sample.

k-nearest-neighbour classification using this histogram descrip-

tor with k ¼ 3 and leave-one-out cross-validation yielded

a final species-level classification accuracy of 85.8% (see the

electronic supplementary material, figure S2).

We next measured the ability of seven human subjects to

classify the same SEM images of grass pollen that were used

for our computational image analyses (see the electronic sup-

plementary material, dataset S2). Each subject was provided

with a reference library containing six images of each species

of grass pollen, grouped and labelled by species. Each subject

was then provided with a set of 120 unlabelled images of

grass pollen containing 10 images of each of the 12 species.

Two of these 10 images were duplicates, and one of these

10 images also appeared in the reference library. Images

were classified by assigning each image to one of the

12 species. The images and classification key are provided

in the electronic supplementary material, dataset S3.

The classification accuracy of the seven human subjects

ranged from 68.33 to 81.67% (average 75.48%; figure 6).
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Figure 6. Bar chart showing the accuracy of seven human subjects asked to
classify SEM images of grass pollen. Lower dashed line shows the accuracy of
the algorithmic approach that we have developed in this paper (77.5%).
Upper solid line shows the accuracy of a texture descriptor based on histo-
grams of local quantized image patches (85.8%).
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However, classification consistency between subjects was low;

only 28.33% of the specimens were classified correctly by all

seven subjects. This consistency falls to 21.82% when the

visually distinctive S. tenuifolia is excluded from the analysis.
6. Discussion
Quantitative image-based analyses can enumerate the small,

subtle and diverse morphological differences among taxa

that may be observed by the expert, but cannot easily be con-

veyed by the terminology used to describe pollen and spores

[18]. This has been a significant barrier to the classification of

grass pollen [5,13,14]. For example, the patterns of grass

pollen surface ornamentation revealed by SEM have been

used to define morphotypes that contain many species of

grass [13,14]. However, these morphotypes form a conti-

nuum without clearly defined boundaries between them

[13], and this is partly responsible for their limited use in

palynological studies of grass [5,13,14]. They include the

Hordeum-type, Triticum-type, Avena-type and Setaria-type

[14]. The Setaria-type, for example, ‘is characterized by exten-

sive field-like [areolae] of irregularly polygonal outlines.

Their bulging surface is studded with very small pointed

spinules, in most cases, (3–)5–8(–10) [sic]’ ([14], p.139).

Our analyses demonstrate how the morphological characters

that are described by such terminology can be quantified and

used to classify grass pollen.

We have attempted to develop and use features that can

be directly related to biologically significant characteristics

of grass pollen (figures 1, 3 and 4). For example, the cluster-

ing step in our classification uses features related to sculptural

element size and density (figures 1 and 2). The four morpho-

logical groups that are produced are consistent with visual

perception of surface ornamentation (figure 2) and this step

is analogous to the description of grass pollen morphotypes
[5,13,14], but using measurements of morphology rather

than qualitative descriptions.

Our approach is rooted in the accurate description of

morphology, and achieves classification results that are compar-

able to the results of manual human classification (figure 6) and

a more conventional computational image analysis based on the

distribution of brightness values in local image patches ([25,26];

see the electronic supplementary material, figures S1 and S2).

These comparisons highlight that there are a variety of analyti-

cal techniques that could be used to classify grass pollen once

sufficient morphological information has been recovered from

individual specimens. However, in our experiments with

human subjects, classification accuracy comes at the expense

of consistency, highlighting that the taxonomic resolution of

the pollen and spore record can be reduced by disagreement

among multiple analysts [18,28]. The patch appearance histo-

gram approach resulted in higher identification accuracies for

10 of the 12 species, but this increase in accuracy (approx. 8%

on average) comes at the expense of interpretability. The histo-

gram counts encode the image appearance in a distributed way

and, in contrast to the features we developed in this paper

(figures 1 and 4), are not easily understood in terms of basic

morphological features of pollen grains. We anticipate that the

use of features that can be directly related to biologically

significant morphological characters will be critical in the

interpretation of fossil samples, where extant reference speci-

mens are unavailable, and all possible morphologies are

not known. Interpretability is important in this context, as

character-based features will produce unsupervised clusters

that are more intuitively understood by palynological experts.

This is not always true of the supervised learning approaches

popular in automated pollen classification, which generally

provide low interpretability of biological features [18,29].

Additionally, the development of quantitative measures of

shape and ornamentation has wide applications in other

branches of the biological sciences that rely on visual inspection

for classification of phenotypic differences. The methods to quan-

tify morphology that we have developed in this paper have

immediate utility for the classification of other groups of organ-

isms for which the patterns of surface ornamentation are an

important taxonomic character, such as diatoms and ostracods,

as well as the potential to quantify the complexity of other

biological structures, such as venation in leaves and insect wings.
7. Conclusion
In this paper, we have used a combination of high-resolution

microscopy and computational image analyses to classify

12 species of modern grass pollen. We have classified these

species by developing features that quantify the size and

density of sculptural elements (figure 1) and measure the com-

plexity of the surface ornamentation that they form (figures 3

and 4). These features can be understood in terms of the

basic morphological features of the grass pollen exine. In our

experiments using this algorithmic method, 186 out of 240

specimens were classified correctly, yielding a classification

accuracy of 77.5%. We also compared a baseline texture classi-

fication approach using histograms of local quantized image

patches [25,26], which yielded an accuracy of 85.8% but pro-

vides low interpretability. Seven human subjects achieved

classification accuracies between 68.33 and 81.67% (figure 6)

on a subset of these images. However, classification consistency

http://rspb.royalsocietypublishing.org/
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between subjects was low, and just 28.33% of the specimens

were correctly classified by all subjects.

Our results support the view that a combination of high-

resolution microscopy and computational image analyses can

generate classifications at fine taxonomic levels that are

beyond the capability of human experts [18,28]. This approach

has the potential to dramatically increase the taxonomic resol-

ution of pollen and spore records of ancient vegetation, which

will in turn expand the range and depth of hypotheses that can

be tested using the fossil record [18,19].
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