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ABSTRACT OF THE DISSERTATION

Asynchronous Transmission in Multiuser Networks

By

Mehdi Ganji

Doctor of Philosophy in Electrical Engineering

University of California, Irvine, 2020

Chancellor’s Professor Hamid Jafarkhani, Chair

Time asynchrony inherently exists in many wireless communication systems, especially in

multiuser scenarios, where the users are located in various locations. Different locations

and paths impose different delays on the received signals, resulting in asynchronous recep-

tion at the receiver. In most of the works in the literature, perfect synchronization among

received signals is a common presumption. However, it might be impossible to synchro-

nize signals at all the nodes in the network even if an ideal infrastructure using control

signals is considered. For example, assume that the receiver encompasses multiple receive

antennas or multiple distributed base stations. Then, although the synchronization can

be realized at one of them, realizing synchronization at all of the base stations/antennas

might be impossible. Thus, it is essential to investigate the effect of the time asynchrony

in the wireless systems, particularly multiuser systems.

Asynchrony naturally imposes some performance degradation in a system designed op-

timally based on having synchronized incoming signals. One immediate solution is to

eliminate the time asynchrony and achieve almost perfect synchronization among the re-

ceived signals. This question is analyzed under the notion of time synchronization. There

are many methods proposed and analyzed in literature aiming for that goal, and one of the
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common ones is to use control signals to achieve synchronization among different users.

However, apart from this approach’s feasibility, the questions which are atypical but of

importance to answer are: Can a system be designed such that it provides performance

improvement under an asynchronous condition? Can a system, which is designed based

on asynchronous assumption, outperform its counterpart system, which is designed based

on the assumption of perfect synchronization?

We thoroughly investigate these questions in this thesis. First, we theoretically analyze

the performance bounds of multi-antenna, multiuser systems under the asynchrony as-

sumptions. We show that by exploiting inherent time delays between different users in

a multiuser/multi-antenna scenario, we can improve the performance. Besides, we pro-

pose to intentionally add timing offsets in the systems that are not inherently impaired

by time asynchrony. We introduce the optimal transceiver designs under asynchronous

assumptions and analyze the performance improvement provided. We consider various

multiuser networks, including broadcasting networks, multiple access networks, and co-

operative networks, and examine the advantages and disadvantages of having asynchrony

in such multiuser networks.
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Chapter 1

Introduction

1.1 Time Synchronization

Time synchronization is an inseparable ingredient of wireless communications. Timing

synchronization is the process by which the proper sampling instants are acquired by the

receiver. If the receiver cannot grasp the right times to sample the incoming signal, the

resulting performance will be degraded [1]. Generally, in wireless systems, the transmitted

signals are distorted by changes in amplitude, phase, and timing, which are a priori

unknown to the receiver node. Usually, the channel parameters are estimated in the

channel estimation process using pilot based or blind methods. For example, in SISO

systems, the received signal at the receiver antenna is affected by a single timing offset

(TO). The receiver needs to estimate this parameter and compensate for its effects to be

able to decode the transmitted symbols.

On the other hand, in a multiuser system, data is transmitted from distributed users.

The received signal at a receive antenna is given by a linear combination of the distorted
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and delayed version of the data symbols transmitted from different users resulting in mul-

tiple timing offsets (MTOs) [2]. In practice, the users perform timing correction using

the timing advance (TA) estimate received in the physical downlink control channel (PD-

CCH). For example, in LTE standards, synchronization is achieved through periodically

transmitted primary and secondary synchronization signals from the base station. Any

user who has not yet acquired the uplink synchronization can use the primary and sec-

ondary synchronization signals to achieve synchronization in the downlink. Therefore, a

significant amount of overhead signaling is used to eliminate MTOs. Moreover, having

multiple distributed antennas make the synchronization process challenging and, in some

cases, even impossible [3].

Besides the additional overhead signaling, waste of resources, and other challenges to

remove MTOs at all receive nodes; the main question is that whether it is necessary to

enforce perfect time synchronization with such a high price? Some preliminary works in

the literature motivate the use of time asynchrony to improve the system performance

[4, 5, 6, 7, 8, 9]. In this thesis, we thoroughly investigate the possibilities and challenges

that time asynchrony provides in multiuser networks.

1.2 Multiuser Systems: Inter-user Interference

Another issue in multiuser systems is inter-user interference (IUI), which is the result

of sharing a common medium to transmit data. Numerous examples of multi-access

communication include uplink transmission of a single cell in a cellular system, a group

of twisted-pair copper subscriber lines transmitting data to the same switching office,

multiple ground stations communicating with a satellite and interactive cable television

networks. The key challenge in these types of networks is interference from unwanted sig-
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nals. Over several decades, many methods have been introduced to address this problem

[10, 11, 12, 13]. The currently prevailing approach for mitigating IUI lies in the cate-

gory of orthogonal multiple access (OMA). For example, time division multiple access

(TDMA) protocols allocate different time slots to different users to mitigate interference.

The same concept can be applied by partitioning the frequency spectrum among different

users, called frequency division multiple access (FDMA). Code division multiple access

(CDMA) is another scheme used to surpass IUI in which users are multiplexed by dis-

tinct codes rather than by orthogonal frequency bands, or by orthogonal time slots [14].

Multiple antennas are used to take advantage of the spatial domain to cancel interference

[15], [16]. More recently, non-orthogonal multiple access (NOMA) [17, 18] is proposed as

a candidate for future radio access to partially fulfill the requirements of future networks.

The significant advantage of OMA methods is that their complexity is merely the com-

plexity of single-user encoders/decoders. On the other hand, assigning resource blocks

exclusively to each user can be very inefficient (in terms of achievable rate-regions) and

may pose a severe fairness problem among users. In contrast to OMA, NOMA allows

users to utilize the same resource blocks for transmission simultaneously and therefore is

potentially more efficient. When evaluated under the LTE system characteristics, NOMA

demonstrates significant gains over OMA systems [19, 20]. The NOMA methods are

generally based on superposition coding and successive interference cancellation (SIC)

[21, 22]. Thus, the mitigation of IUI is critical in modern multiuser networks.

In this thesis, we investigate the timing asynchrony between received signals as an addi-

tional resource to address the problem of IUI. We show that by exploiting time delays

between users and proper sampling, the IUI can be effectively reduced. Besides, by ap-

plying the oversampling method, a system model with increased independent dimensions

can be obtained. The increased dimensionality combined with proper receiver design can

mitigate IUI and enhance system performance. It is shown that by exploiting time delays
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between the received signal and employing appropriate sampling methods and detection

methods, not only can the IUI be appropriately managed, but the resulting system out-

performs the synchronous counterpart. The content of this thesis is summarized next.

1.3 Content

In Chapter 2, we analyze the performance degradation caused by time asynchrony in a

large scale multiuser MIMO (MU-MIMO) systems. With a large number of receive anten-

nas, one major challenge is to receive perfectly aligned signals at all the receive antennas,

particularly in a distributed scenario where the receive antennas are not collocated. In-

evitable timing mismatch between received signals results in imperfect sampling and hence

creates inter-symbol interference (ISI). Considering practical challenges for delay acqui-

sition in a large scale MU-MIMO system, we assume that the timing mismatch values

are random, and the receiver only knows their distribution. We develop a mathematical

model that explicitly accounts for the random timing mismatch among the received sig-

nals. We quantify the uplink achievable rates obtained by the MRC receiver with perfect

channel state information (CSI) and imperfect CSI while random time delays impair the

system performance. After quantifying the detrimental impact of asynchrony on the MRC

receiver, we design new algorithms to alleviate the effects of timing mismatch. Finally, to

verify our analytical results, we present simulation results that thoroughly investigate the

performance of the traditional MRC receiver and the introduced designs under asynchrony

assumption.

The goals in Chapter 2 are two-fold. The first goal is to show the harmful effects of

time asynchrony on the system performance while the time delays are neglected. The

second goal is to shed light on the importance of sampling methods and receiver design
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in dealing with time asynchrony. If a proper sampling method is not used, some parts

of information are lost, and the performance is degraded by time asynchrony, no matter

what process we apply afterward. Therefore, in Chapter 3, we express more details about

time synchronization and the possible opportunities that it provides. More importantly,

we introduce the proper structure and optimal sampling methods in order to exploit

time asynchrony. We present various system models accounting for time asynchrony and

provide their corresponding features. We also explain the reasons behind the possible

advantages of time asynchrony in providing performance improvement.

In Chapter 4, we show that by investigating inherent time delays between different users

in a multiuser scenario, we can cancel interference more efficiently. Time asynchrony

provides another tool to cancel interference, which results in preserving other resources

like frequency, time, and code. By taking advantage of the sampling methods explained

in Chapter 3, we derive the system model, which is similar to an ISI channel. Then, to

equalize the ISI introduced by timing mismatch, sequence detection methods such as the

Viterbi algorithm are applied. We also present successive interference cancellation with

hard and soft decision passing. We show that by exploiting the time asynchrony, proper

sampling, and suitable detection algorithms, a superior Bit Error Probability (BEP) can

be achieved compared with the synchronous model. Also, the diversity of zero-forcing

detection methods is analyzed. It is shown that with asynchronous transmission, full

diversity can be achieved while the synchronous counterpart suffers from loss of diversity

due to IUI cancellation. Simulation results are presented to verify our analysis.

In Chapter 4, the inherent time delays in an uplink multiuser are exploited. However, the

same concept can be applied to a downlink scenario where the timing offset is intention-

ally added among the transmitted signals. In Chapter 5, we investigate the effect of time

asynchrony in NOMA schemes for downlink transmissions. First, we analyze the benefit

of adding intentional timing offsets to the conventional power domain-NOMA (P-NOMA).
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This method, called Asynchronous-Power Domain-NOMA (AP-NOMA), introduces arti-

ficial symbol-offsets between packets destined for different users. It reduces the mutual

interference, which results in enlarging the achievable rate-region of the conventional P-

NOMA. Then, we propose a precoding scheme that fully exploits the degrees of freedom

provided by the time asynchrony. We call this multiple access scheme T-NOMA, which

provides higher degrees of freedom for users than the conventional P-NOMA or even the

modified AP-NOMA. T-NOMA adopts precoding at the base station and a linear pre-

processing scheme at the receiving user, which decomposes the broadcast channel into

parallel channels circumventing the need for Successive Interference Cancellation (SIC).

The numerical results show that T-NOMA outperforms AP-NOMA and both outperform

the conventional P-NOMA.

In chapter 5, it is shown that asynchronous transmission can improve the capacity region

of the broadcast channel. Mainly, with the use of the proposed precoding, significant

capacity enlargement can be achieved. However, this is not obtained free. In fact, the

improved capacity region is obtained in exchange for out-of-band (OOB) emission. In

Chapter 6, we analyze the OOB emission and propose a simple solution that provides a

trade-off between increased capacity and OOB emission. We analyze the OOB emission

in the context of faster than Nyquist (FTN) signaling, which resembles the asynchronous

downlink transmission. FTN refers to transmitting the desired symbols faster than the

Nyquist rate with shorter time intervals, which was first introduced in [23]. Asynchronous

transmission in which multiple streams of information are superimposed and transmitted

with some timing offsets resemble FTN. In Chapter 6, we consider the capacity compu-

tations of faster-than-Nyquist (FTN) signaling. We calculate the theoretical capacity of

FTN signaling, which is obtained by a correlated input. The capacity-achieving power

spectral density (PSD) is derived, and its superiority over the independent input is shown.

The practical issue imposed by the capacity-achieving PSD, i.e., OOB emission, is shown.
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To solve this issue, we introduce an upper-bound for the input PSD to limit the OOB

emission. The new optimization problem is solved, and the constrained PSD is obtained.

The introduced PSD captures the trade-off between the obtained capacity and the OOB

emission.

In Chapter 7, we analyze the benefits of intentionally adding timing mismatch in the down-

link transmit beamforming for wireless transmission. Transmit beamforming enables the

so-called space-division multiple access (SDMA), where multiple spatially separated users

are served simultaneously. The optimal beamforming vectors can be found to minimize

the average transmit power under each user’s Quality-of-Service (QoS) constraint. We

show that intentionally adding timing offsets between the transmitted signals can signif-

icantly reduce the average transmission power compared with the conventional optimal

beamforming method while providing the same QoSs for users. The frequency-selectivity

in communication channels provides the opportunity to exploit intelligent design for per-

formance improvement. The frequency-selectivity is limited in environments with line-of-

sight links or little scattering. In such environments, we propose adding intentional time

delays to induce frequency-selectivity that can be exploited. We provide three different

methods exploiting the artificially induced frequency-selectivity, which improves the per-

formance with a computational complexity similar to that of the optimal synchronous

beamforming. We derive the expressions for the achievable rates using the proposed

methods and then provide efficient algorithms to solve the minimum power optimiza-

tion. We show analytically and numerically that our proposed methods outperform the

conventional optimal transmit beamforming.

In Chapter 8, we thoroughly analyze the rate-region provided by the asynchronous trans-

mission in multiple access channels (MACs). We derive the theoretical capacity regions

which apply to a wide range of pulse shaping methods. We analytically prove that asyn-

chronous transmission enlarges the capacity region of MACs. We show that although
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successive interference cancellation (SIC) is sum-rate achieving for the conventional up-

link NOMA methods, it is unable to achieve the boundary of the capacity region for the

asynchronous transmission. We also demonstrate that for the asynchronous transmission,

the optimal SIC decoding order to achieve the maximum sum-rate is based on the channel

strengths of the users. This optimal ordering is in contrast to the conventional uplink

NOMA, where the order of decoding does not affect the sum-rate. In Chapter 9, final

remarks and summary of main contributions are provided. Besides, possible future works

are mentioned.
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Chapter 2

Performance Degradation Caused by

Time Asynchrony: A Large-Scale

Analysis

This chapter shows how time asynchrony can degrade the performance of a distributed

multiuser system. One of the main issues, particularly in distributed massive MIMO

setting, is timing asynchrony among different users. We quantify the uplink achievable

rates obtained by the MRC receiver with perfect channel state information (CSI) and

imperfect CSI while random time delays impair the system performance. Furthermore,

some solutions are provided to alleviate the degradation caused by time asynchrony.
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2.1 Introduction

Introducing multiple-input multiple-output (MIMO) systems was a breakthrough in com-

munication systems. MIMO communications were studied extensively during the past two

decades [24, 25]. One of the MIMO systems’ applications is in multiuser scenarios where

K users communicate with a common multiple-antenna receiver. Besides traditional prob-

lems in point to point communication, due to the distributed nature of multiuser-MIMO

(MU-MIMO) systems, new challenges exist like timing mismatch between received signals

from different users [11]. When the number of users and the number of receive antennas

are moderate, this issue is often handled by synchronization methods [26, 27, 28]. How-

ever, increasing the number of receive antennas and users makes the time delay estimation

or synchronization challenging, especially in the context of massive MIMO systems[29].

In large scale MU-MIMO systems, the base station is equipped with a very large number

of receive antennas and communicates with tens of users at the same time and frequency.

The benefits of the massive MIMO settings including, near-optimal performance using

simple processing like maximum ratio combining (MRC), increased spectral efficiency,

and energy efficiency, have been studied in the literature[30, 31, 32]. Two models can be

adopted to implement massive MIMO in wireless networks: centralized, where antennas

are co-located at the base station (BS), as illustrated in Fig. 2.1a, and distributed, where

BS antennas are deployed at different geographical locations while connected through

high-capacity back-haul links such as fiber-optic cables, as shown in Fig. 2.1b.

From a practical point of view, compared with the distributed topology, the centralized

configuration is easier to deploy [33]. The distributed setting, however, exhibits several

advantages over the centralized setting, such as lower transmit power, higher multiplex-

ing gain, higher spectral efficiency, enhanced coverage area, and ease of network planning

[34, 35]. Nevertheless, many challenges need to be addressed before the gains can be
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(a) Centralized (b) Distributed

Figure 2.1: Different implementations of massive MIMO systems

realized in practice [36, 37]. For hundreds of receive antennas, one major challenge is the

fact that it is impossible to receive perfectly aligned signals at all the receive antennas,

especially in a distributed scenario where the receive antennas are not collocated. In [38],

the authors showed that when multiple base stations (BSs) communicate with their cor-

responding users, the interference is inherently asynchronous, meaning that BSs cannot

align all the interfering signals at each user because of the different propagation times

between the BSs and users. This phenomenon is what happens in uplink, where multiple

users communicate with a base station with multiple distributed receive antennas. Even

if the users perform timing correction using the timing advance (TA) estimate received

in the physical downlink control channel (PDCCH), the synchronization can be realized

at only one receive antenna. However, due to different propagation delays, the other

receive antennas will experience asynchrony. Therefore, it is of great importance to inves-

tigate timing mismatch in large scale distributed MU-MIMO systems. Inevitable timing

mismatch between received signals results in imperfect sampling and hence creates inter-

symbol interference (ISI), as illustrated in Fig. 2.2. Considering practical challenges for

delay acquisition in a large scale MU-MIMO system, we assume that the timing mismatch

values are random, and the receiver only knows their distribution.
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Figure 2.2: Demonstration of ISI caused by imperfect sampling

It is shown in the literature that in large scale MU-MIMO systems, a low complexity MRC

receiver can approach near-optimal performance and even outperforms its complex coun-

terparts, i.e., ZF and MMSE receivers, at low SNR[31]. The MRC receiver also follows

the power scaling law. The power scaling law indicates that, for all SNRs, to maintain the

same quality-of-service of a single-user SISO scenario with no interference, the transmit-

ting power of single-antenna users to a 100-antenna BS would be almost 1 % of that of the

single-user SISO system [39]. As we shall see, ignoring the asynchrony can significantly

degrade the performance of the MRC receiver. We develop a mathematical model that

explicitly accounts for the random timing mismatch among the received signals. We then

quantify the detrimental impact of asynchrony on the MRC receiver and suggest how to

mitigate it by making some modifications to the MRC receiver.

The rest of this chapter is organized as follows: In Section 2.2, first, we introduce the sys-

tem model and preliminary results for the perfect synchronized scenario, then, modify the

system model to include the existence of random time delays. We analyze the achievable

rates obtained by the MRC receiver with random time delays in Section 2.3. In Section

2.4, the MRC-ZF receiver structure is introduced, and the corresponding achievable rates

are presented. Next, simulation results are presented in Section 2.5 to verify our analysis.
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Finally, we summarize our contributions in Section 2.6. The materials in this chapter are

partially published in [40, 41].

2.2 System Model

2.2.1 Transmit Signal Model

We consider a single-cell multiuser distributed massive MIMO system. In this system,

there is one BS equipped with M antennas which are spatially distributed. The BS serves

K users, each equipped with single antenna. The number of antennas M is assumed to be

large, e.g., a few hundreds. We assume that the distributed BS antennas are connected

with high capacity back-haul (e.g., optical fiber channels) and have ideal cooperation

with each other [42, 43]. The single carrier uplink communication is considered, where

the K users transmit their data in the same time-frequency resource to the BS. The signal

transmitted from User k is described by:

sk(t) =
√
ρd

N∑
n=1

sk[n]p(t− nT ) (2.1)

where T , ρd and p(.) represent the symbol period, the transmit power, and the pulse-

shaping filter with non-zero duration of Tp, respectively. For the rectangular pulse shape,

Tp = T , and for Nyquist pulse shapes truncated with I significant adjacent side lobes,

Tp = 2(I + 1)T . The number of significant adjacent side lobes is specified based on the

desired stop band attenuation. More number of side lobes results in higher stop band

attenuation. For example, we assume 3 side lobes in our simulation which results in

about 25 dBm stop band attenuation for the square-root raised cosine pulse shape. Also,

N is the frame length and sk[i] is the transmitted symbol by User k in the ith time slot.
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2.2.2 Received Signal Model: Perfect Synchronization

Denote the channel coefficient between the mth antenna of the BS and the kth user as

cmk. We consider both the path-loss and small-scale fading as follows [43]:

cmk =
√
βmkhmk, k = 1, · · · , K, m = 1, · · · ,M (2.2)

where hmk is the small-scale fading coefficient, which is modeled as a random variable

with zero-mean and unit-variance. Without loss of generality, Rayleigh fading is adopted

in the simulation, where hmks are independent, identically distributed (i.i.d), following

circularly symmetric complex Gaussian distribution, i.e., hmk ∼ CN (0, 1). βmk models

the path-loss, given as:

βmk =

(
rh
rmk

)v
(2.3)

where v is the path-loss exponent, and rmk is the distance between the kth user and the

mth BS antenna. rh is the minimum distance between a user and a BS antenna, which

exists due to physical implementation. In centralized configuration, r1k = · · · = rMk, thus

β1k = · · · = βMk, which indicates that the large-scale fading coefficients from the kth

user to all BS antennas are the same. Assuming fixed channel coefficients for a block, the

continuous received signal at the mth receive antenna can be represented by:

ym(t) =
K∑
k=1

cmksk(t) + nm(t) (2.4)

where nm(t) is the additive white Gaussian noise (AWGN) with zero mean and variance

of σ2
n. To obtain the discrete samples of the received signal, first, the continuous received
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signal should be passed through a matched filter and its output can be written as follows:

ŷm(t) =
√
ρd

K∑
k=1

cmk

N∑
n=1

sk[n]g(t− nT ) + nm(t) ∗ p(t) (2.5)

where g(t) = p(t) ∗ p(t). Then, the output of the matched filter is sampled at the instants

of, tsi = iT, i = 1, · · · , N . The obtained samples at the sampler of the mth receive antenna,

denoted by ym[i] = ŷm(t)|t=tsi , can be written as:

ym[i] =
√
ρd

K∑
k=1

√
βmkhmk

N∑
n=1

sk[n]g((i− n)T ) + n̂m(t)
∣∣
t=iT

(2.6)

where n̂m(t) = nm(t)∗p(t). Due to the ideal assumption of perfect synchronization, there

is no ISI caused by adjacent symbols, i.e., ym[i] =
√
ρd
∑K

k=1 cmksk[i] + nm[i]. Thus, the

time index can be discarded and for each time instant, the M × 1 collective vector of the

received signals at time instant i, at the BS can be denoted as:

y =
√
ρdCs+ n (2.7)

where s = (s1, s2, · · · , sK)T is the transmitted symbols by all users at time instant i and

n = (n1, n2, · · · , nM)T is the noise vector with covariance matrix of σ2
nIM , where IM is

an M ×M identity matrix. Also, C is the channel matrix whose elements are defined as

C(m, k) = cmk. Note that the index i can be discarded for the perfect synchronized case

and the block fading scenario.

2.2.3 Review of Performance Results

We first consider the case that the BS has perfect CSI. Considering the MRC receiver,

the BS processes its received signal vector by multiplying it with 1
M
CH [29]. Then, the
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corresponding sample for the lth user can be denoted as:

ymrc−ideall,p =
1

M

M∑
m=1

c∗mlym (2.8)

The achievable rate of the lth user in the single-cell multiuser distributed MIMO uplink

can be approximated as [33, 39]:1

R̃mrc−ideal
l,p ≈ log2

1 +
ρd(Mβl

2
+ βll)

ρd
K∑
k=1
k 6=l

βlk + βl

 (2.9)

where βk and βlk are defined as follows:

βk =
1

M

M∑
m=1

βmk, βlk =
1

M

M∑
m=1

βmlβmk (2.10)

As M increases and approaches infinity, the achievable rate will be infinity. This is the

underlying reason for defining the power scaling law. The power scaling law for the

massive MIMO setting with perfect CSI can be stated as follows.

Corollary 2.1. Using MRC receivers with M receive antennas and perfect CSI, cutting

the transmit power of each user by a factor of 1
M

, the system still achieves the performance

of the SISO system with no interference. In other words, the achievable uplink rate for

each user approaches:

Rmrc−ideal
l,p → log2 (1 + Edβl

2
) (2.11)

as M →∞ and ρd = Ed
M

[31].

1Throughout this chapter, the subscripts p and ip are used for perfect CSI and imperfect CSI, respec-
tively.
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In real situations, the channel matrix is estimated at the BS. We assume the channel

coefficients are estimated by sending known sequences of symbols, called pilot sequences.

Each user assigns its first Np symbols of each frame to send pilot symbols. We denote

the assigned pilot sequence to the kth user as pk = (pk[1], · · · , pk[Np]). It is common in

the literature to assume that the assigned pilot sequences for different users are mutually

orthogonal, i.e., 〈pi.pj〉 = δ[i − j], where 〈 . 〉 shows the inner product. In addition, Np

should be equal to or greater than the number of users and its optimal value is shown to

be Np = K [44]. The mutual orthogonality enables all the users to send the pilot symbols

simultaneously without interfering with each other. The K ×Np matrix that contains all

the pilot sequences is represented by:

Φ =



p1[1] · · · p1[Np]

p2[1] · · · p2[Np]

...
. . .

...

pK [1] · · · pK [Np]


K×Np

(2.12)

Due to the orthogonality of the rows, the pilot matrix is unitary, i.e., ΦΦH = IK . In the

ideal case of perfect synchronization, the received signal can be written as:

Yp =
√
ρpCΦ +N (2.13)

where Yp and N are M×Np matrices of received samples and noise samples, respectively.

Also, ρp is the power assigned to the transmission of pilot sequences and is equal to

ρp = Npρd. The least squares estimate of the channel matrix C can be calculated as [45]:

C̃ =
1
√
ρp
YpΦ

H (2.14)

The corresponding sample for the detection of the lth user’s symbol can be denoted as
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ymrc−ideall,ip = 1
M

∑M
m=1 c̃

∗
mlym. The achievable rate of the lth user in the single-cell multiuser

distributed MIMO uplink with estimated channel coefficients can be approximated as

[33, 39]:

R̃mrc−ideal
l,ip ≈ κ log2

1 +
Npρ

2
d(Mβl

2
+ βll)

Npρ2
d

K∑
k=1
k 6=l

βlk + ρd
K∑

k=1k 6=l
βk + ρd(Np + 1)βl + 1

 (2.15)

where κ = N−Np
N

accounts for the spectral efficiency loss due to channel estimation. The

power scaling law for the massive MIMO setting with imperfect CSI can be stated as

follows.

Corollary 2.2. Using MRC receivers with M receive antennas and imperfect CSI, cutting

the transmit power of each user by a factor of 1√
M

, the system still achieves the perfor-

mance of the SISO system with no interference. In other words, the achievable uplink rate

for each user approaches

Rmrc−ideal
l,ip → log2 (1 +NpE

2
dβl

2
) (2.16)

as M →∞ and ρd = Ed√
M

[31].

These results are obtained based on the assumption of having perfect synchronization.

However, due to the distributed locations of the received antennas, synchronization at

all receive antennas is impossible. Therefore, we modify the system model to the asyn-

chronous scenario and show inability of the conventional MRC receivers to hold the power

scaling law. Then, we introduce a simple solution which restores the power scaling law.
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2.2.4 Received Signal Model: Timing Mismatch

Due to the distributed locations of users and receive antennas, the transmitted signal from

the kth user to the mth receive antenna is received with a relative delay of dmkT + τmk.

Then, the continuous received signal at the mth receive antenna can be represented by:

ym(t) =
√
ρd

K∑
k=1

cmksk(t− dmkT − τmkT ) + nm(t) (2.17)

We assume that the values of the frame asynchrony, i.e., dmk are known at the receiver

[28]. Therefore, without loss of generality, we assume dmk = 0 in Eq. (2.17). However, the

symbol-level asynchrony, i.e., τmk is unknown and is treated as a random variable between

(0, 1). The reason behind this assumption is that the precision needed for the symbol-level

synchronization is much higher than the frame synchronization, which becomes important

particularly in the massive MIMO context, where using estimation algorithms with high

precision and thus long acquisition time is infeasible. Also, the value of dmk is discrete

and easily represent-able by a finite number of bits, while τmk is continuous and its exact

representation needs infinite number of feedback bits which is impossible. Therefore,

always, there will be some residual error that can be modeled as a random variable τmk.

Then, the output of the matched filter can be written as follows:

ŷm(t) =
√
ρd

K∑
k=1

√
βmkhmk

N∑
n=1

sk[n]g(t− nT − τmkT ) + nm(t) ∗ p(t) (2.18)

We sample the output of the matched filter at the instants of tsi = iT, i = 1, · · · , N . The

obtained samples at the sampler of the mth receive antenna, denoted by ym[i] = ŷm(t)|t=tsi ,

can be written as:

ym[i] =
√
ρd

K∑
k=1

√
βmkhmk

N∑
n=1

sk[i]g((i− n)T − τmkT ) + n̂m(t)
∣∣
t=iT

(2.19)
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where n̂m(t) = nm(t) ∗ p(t). We can put the obtained samples together and form the

system model equation as follows:

ym =
√
ρd

K∑
k=1

√
βmkhmkGmksk + nm (2.20)

where sk = (sk[1], sk[2], · · · , sk[N ])T is the transmitted frame by the kth user and nm =

(nm[1], nm[2], · · · , nm[N ])T is the noise vector containing samples of n̂m(t), i.e., nm[i] =

n̂m(t)|t=iT , 1 ≤ i ≤ N . Also, Gmk is an N ×N matrix defined as:

Gmk =

 g(−τmkT ) g(−T−τmkT ) ··· g((1−N)Ts−τmkT )
g(T−τmkT ) g(−τmkT ) ··· g((2−N)T−τmkT )

...
... ...

...
g((N−1)Ts−τmkT ) ··· g(T−τmkT ) g(−τmkT )

 (2.21)

Note that for the synchronous case, matrix Gmk turns into an identity matrix and the

system model simplifies to Eq. (2.7), because there is no ISI in the systems. However,

for the asynchronous scenario, the off-diagonal elements are nonzero due to the timing

offsets. Defining Tmk =
√
βmkhmkGmk, Eq. (2.20) can be written in the following short

form:

ym =
√
ρd

K∑
k=1

Tmksk + nm (2.22)

Denoting c̃ml as the estimate of the channel coefficient between the lth user and the mth

receive antenna, the MRC output vector for the detection of the lth user’s symbols, i.e.,

ymrcl = 1
M

∑M
m=1 c̃

∗
mlym, can be expressed as:

ymrcl =
√
ρd

K∑
k=1

Tmrclk bk + nmrcl (2.23)

where the effective channel matrices and the resulting noise vector are denoted by Tmrclk

and nmrcl , respectively, and will be defined later based on the available CSI and detection
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methods. In the next section, we analyze the performance of the MRC detection with

timing mismatch considering perfect or estimated CSI at the receiver.

2.3 The Achievable Rate of MRC Receiver with Ran-

dom Timing Mismatch

2.3.1 Perfect CSI

By assuming perfect CSI, i.e., c̃mk = cmk, the effective channel matrix, i.e., Tmrclk,p and

effective noise vector, i.e., nmrcl,p can be represented as follows

Tmrclk,p =
1

M

M∑
m=1

√
βmlβmkh

∗
mlhmkGmk, (2.24)

nmrcl,p =
1

M

M∑
m=1

√
βmlh

∗
mlnm (2.25)

The achievable rate for the corresponding system model is found in the next theorem.

Theorem 2.1. The achievable rate of the MRC receiver for User l, when there is random

time delays between received signals, can be approximated as:

R̃mrc
l,p ≈ log2

1 +
ρdMβl

2
g′[0]

ρd

(
g′′

K∑
k=1

βlk + (g′′ − g′)βll
)

+ ρdMβl
2
(g′ − g′[0]) + βl


(2.26)

where g′[i] and g′′[i] are defined based on the pulse shape and delay distributions as follows:

g′[i] = E2
f(τ){g(iT − τmk)}
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g′′[i] = Ef(τ){g2(iT − τmk)} (2.27)

where f(τ) is the distribution of time delays. Assuming the same distribution for all time

delays, the receive antenna and user indexes are discarded after taking expectations. g′ and

g′′ are defined as g′ =
I∑

i=−I
g′[i] and g′′ =

I∑
i=−I

g′′[i], where I is the number of significant

side lobes of the pulse shape.

Proof. The proof is presented in Appendix A.1.

By ignoring the inevitable timing mismatch, the promised benefit of power scaling law in

a massive MIMO setting vanishes as described in the next corollary.

Corollary 2.3. In the presence of random timing mismatches, the power scaling law of

the large scale MRC receiver is degraded by ISI. In more details, if we put ρd = Ed
M

in Eq.

(2.26) and let M go to infinity, we will have:

Rmrc
l,p → log2

(
1 +

Edβlg
′[0]

Edβl(g′ − g′[0]) + 1

)
(2.28)

The achievable rate in Eq. (2.28) is limited by ISI, and by increasing the transmit power

it will be saturated to a constant value, i.e.:

Rmrc
l,p → log2

(
1 +

g′[0]

g′ − g′[0]

)
(2.29)

Therefore, at high SNR regime, no matter how much transmit power is used, the achiev-

able rate converges to a fixed value independent of the transmit power. This fixed value

depends on the delay distribution and the pulse shape. However, by optimizing the sam-

pling instants, the asymptotic values can be maximized.
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2.3.2 Imperfect CSI

In what follows, we provide a similar analysis for the channel estimation when the mis-

alignment exists between received signals. Time delays modify Eq. (2.13) to:

Yp =
√
ρp

I∑
i=−I

CiΦi +N (2.30)

where Ci
M×K and Φi

K×Np are defined as follows:

Ci =



g(iT − τ11T )
√
β11h11 · · · g(iT − τ1KT )

√
β1Kh1K

g(iT − τ21T )
√
β21h21 · · · g(iT − τ2KT )

√
β2Kh2K

...
. . .

...

g(iT − τM1T )
√
βM1hM1 · · · g(iT − τMKT )

√
βMKhMK


(2.31)

Φi≤0 =



p1[1− i] · · · p1[Np] 0 · · · 0

p2[1− i] · · · p2[Np] 0 · · · 0

...
. . .

...

pK [1− i] · · · pK [Np] 0 · · · 0


, (2.32)

Φi≥0 =



0 · · · 0 p1[1] · · · p1[Np − i]

0 · · · 0 p2[1] · · · p2[Np − i]
...

. . .
...

0 · · · 0 pK [1] · · · pK [Np − i]


(2.33)

23



The process of de-spreading, which is multiplying the received pilot signal by 1√
ρp

ΦH ,

yields the following channel matrix estimator:

C̃ =
I∑

i=−I

CiΦiΦH + Ñ (2.34)

where Ñ is the estimation noise. We denote ΦiΦH by Υi which is equal to IK for i = 0,

and for the other values of i can be calculated as:

(Υi<0)T = Υi>0 =

(
〈 p1[1:Np−i].p1[1+i:Np]〉 ··· 〈 p1[1:Np−i].pK [1+i:Np]〉

...
...

...
〈 pK [1:Np−i].p1[1+i:Np]〉 ··· 〈 pK [1:Np−i].pK [1+i:Np]〉

)
(2.35)

where p[i : j] represents the vector (p[i], p[i+ 1], · · · , p[j]). After some calculations, the

estimate of the User l’s channel coefficient to the mth receive antenna can be represented

as:

c̃ml =
K∑
j=1

λlmjcmj + ñml (2.36)

where λlmj is the leakage from User j to the estimation of the User l’s channel coefficient

to receive antenna m and is equal to:

λlmj =
I∑

i=−I

g(iT − τmjT )Υi(j, l) (2.37)

This phenomenon is similar to the “pilot contamination” effect, i.e., the channel estimation

of each user to the mth receive antenna is contaminated by the channel coefficients of

other users. In the “pilot contamination” scenario, the reason behind contamination is

reusing the same pilot sequences in different cells, however, here, the reason is random

timing mismatches between the received signals. Due to the time asynchrony between

the received signals, the orthogonality between pilot sequences is not preserved anymore
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and the de-spreading matrix is not able to eliminate the effect of interfering users. The

effective channel matrix and noise vector after MRC can be expressed, respectively, as:

Tmrclk,ip =
1

M

M∑
m=1

K∑
j=1

λlmj
√
βmjβmkh

∗
mjhmkGmk (2.38)

nmrcl,ip =

√
ρd

M

M∑
m=1

ñml

K∑
k=1

√
βmkhmkGmkbk +

1

M

M∑
m=1

(
K∑
j=1

λlmj
√
βmjh

∗
mj + ñml

)
nm

(2.39)

The corresponding achievable rate results are presented in the next theorem.

Theorem 2.2. The achievable rate by the MRC receiver using orthogonal channel esti-

mation, when there is random time delays between received signals can be approximated

as follows:

Rmrc
l,ip ≈ κ log2

(
1 +

Npρ
2
dβl

2
Mγ′lll[0]∑K

k=1 ∆k −Npρ2
dβl

2
Mγ′lll[0] + 1

)
(2.40)

where κ = N−Np
N

accounts for the spectral efficiency loss due to channel estimation, and

∆k is defined as follows:

∆k = Npρ
2
d

(
K∑
j=1

βjkγ
′′
ljk + βkk(γ

′′
lkk − γ′lkk)

)
+Npρ

2
dMβk

2
γ′lkk + ρd(g

′′ +Npλ
′′
lk)βk

where γ′ljk[i],γ
′′
ljk[i] and λ′′lk are defined based on the pulse shape, delay distributions and

pilot sequences by

γ′ljk[i] = E2
f(τj ,τk)[λlmjg(iT − τmk)] (2.41)

γ′′ljk[i] = Ef(τj ,τk)[λ
2
lmjg

2(iT − τmk)] (2.42)

λ′′lk = Ef(τ)[λ
2
lmk] (2.43)
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Assuming the same distribution for all time delays, the receive antenna index is dis-

carded after taking expectations. γ′ljk and γ′′ljk are denoted as γ′ljk =
I∑

i=−I
γ′ljk[i] and

γ′′ljk =
I∑

i=−I
γ′′ljk[i], where I is the number of significant side lobes of the pulse shape.

Proof. The proof is presented in Appendix A.2.

These results are general for any pilot matrices and delay distributions. The values

of γ′ljk[i], γ
′′
ljk[i] and λ′′lk only depend on the pulse shape, pilot sequences and the delay

distribution which can be calculated analytically or numerically. Thus, we can insert

any delay distribution, any pilot matrix and any value of K in the above formulas and

calculate the achievable rates. Due to the existence of timing mismatch, the promised

power scaling law is lost which is presented in the next corollary.

Corollary 2.4. If we reduce the transmit power by an order of 1√
M

and let M go to

infinity, then the achievable rate for each user becomes:

Rmrc
l,ip → κ log2

1 +
NpE

2
dβl

2
γ′lll[0]

NpE2
d

(
K∑
k=1

βk
2
γ′lkk − βl

2
γ′lll[0]

)
+ 1

 (2.44)

By increasing the transmit power, the achievable rate saturates at the following fix value:

Rmrc
l,ip → κ log2

1 +
βl

2
γ′lll[0]

K∑
k=1

βk
2
γ′lkk − βl

2
γ′lll[0]

 (2.45)

For any given pulse shape and pilot sequence, the performance in Eq. (2.45) can be

maximized by optimizing the sampling instants.

While such an optimization can increase the achievable rates in Theorems 1 and 2, the
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main benefit of massive MIMO setting which is having unlimited achievable rate by using

asymptotically large number of receive antennas will still be out of reach in the presence

of random time delays. Therefore, we design two receiver structures, for perfect CSI

and imperfect CSI scenarios, to remove the unwanted effects of ISI and IUI imposed by

random time delays. The details are presented next.

2.4 The Achievable Rate of MRC-ZF Receiver

In an ideal distributed massive MIMO system, the achievable uplink rate grows unbounded

when M grows large. Therefore, we can scale down the power of each user by the ratios

of M and
√
M for the perfect and imperfect CSI, respectively, to achieve the single-user

performance with no interference. However, in a realistic distributed massive MIMO

system where timing mismatch among received signals is inevitable, the uplink achievable

rate using the MRC receiver approaches a constant value when M grows large, as shown in

Theorems 2.1 and 2.2. Therefore, the power scaling law, provided by the MRC receiver in a

perfectly synchronized massive MIMO system, is not achievable with random time delays.

To understand the underlying reason, we express the asymptotic values of ymrc−ideall,p/ip and

ymrcl,p/ip, as M →∞ in the next lemma.

Lemma 2.1. By using the law of large numbers, the asymptotic values of ymrc−ideall,p/ip and

ymrcl,p/ip approaches:

ymrc−ideall,p/ip → √ρdβlsl, ymrcl,p → √ρdβlZsl, ymrcl,ip →
√
ρd

K∑
k=1

βkΓlksk (2.46)
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, as M →∞. Z and Γlk are N ×N matrices defined as follows:

Z =



g′[0] ··· g′[−I] 0 ··· 0

... g′[0]
... ... ...

...

g′[I]
... g′[0]

... ... 0

0
... ... ... ... g′[−I]

...
... ... ... g′[0]

...
0 ··· 0 g′[I] ··· g′[0]



� 1
2

(2.47)

Γlk =



γ′lkk[0] ··· γ′lkk[−I] 0 ··· 0

... γ′lkk[0]
... ... ...

...

γ′lkk[I]
... γ′lkk[0]

... ... 0

0
... ... ... ... γ′lkk[−I]

...
... ... ... γ′lkk[0]

...
0 ··· 0 γ′lkk[I] ··· γ′lkk[0]



� 1
2

(2.48)

where M�r is the element-wise rth-exponent of matrix M . The results in Lemma 2.1 are

immediately derived by applying the law of large numbers. As you can see, in the perfect

synchronized scenario, because of the law of large numbers and also orthogonality between

channel vectors, the inter-user interference is vanished and infinite rate can be achieved as

M goes to infinity. However, when unknown time delays exist between received signals,

particularly in the distributed scenario, ISI and IUI will degrade the performance. In the

perfect CSI scenario, the main impairment is ISI, indicated by the nonzero off-diagonal

elements of matrix Z. In the imperfect CSI scenario, due to loss of orthogonality in the

estimation process and the “contamination” effect, not only ISI but also IUI, indicated

by nonzero matrices of Γlk, will degrade the performance.

To cancel the effect of these impairments, we propose to implement some post-processings.

In this work, we use linear post-processing and, in particular, zero forcing (ZF) process-

ing, however, other methods like minimum mean squared error (MMSE) and successive

interference cancellation (SIC) can also be used. The summary of the proposed structures

are explained next.
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(a) MRC-ZF Receiver with perfect CSI (b) MRC-ZF Receiver with imperfect CSI

Figure 2.3: MRC-ZF Receiver

2.4.1 MRC-ZF structures

• Perfect CSI: For the perfect CSI scenario, where ISI is the the main source of

degradation, its effect can be canceled by multiplying the output sample of the

MRC receiver by the inverse of matrix ZN×N .

• Imperfect CSI: For the imperfect CSI scenario, where both ISI and IUI degrades the

performance, we need extra sets of equations to cancel all the interference terms.

Therefore, we utilize the concept of oversampling as explained in [46, 47, 48]. After

performing oversampling and MRC, the vector of samples is multiplied by the proper

processing matrix, denoted as WllN×NK .

The receiver structure for the proposed methods are shown in Figs. 2.3a and 2.3b. The

detailed description and calculation of matrix Wll is provided in Appendix A.3. Next,

the achievable rates by MRC-ZF structures are analyzed.

2.4.2 Perfect CSI

As shown in Fig. 2.3a, the output samples of the MRC receiver are multiplied by Z−1 to

cancel the effect of the averaged ISI. Note that matrix Z is pre-calculated once based on
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the pulse shape, sampling origin and delay distributions and then, it can be used during

the entire transmission. We call this receiver MRC-ZF whose output samples are:

ymrc−zfl,p = Z−1ymrcl,p =
√
ρd

K∑
k=1

Tmrc−zflk,p sk + nmrc−zfl,p (2.49)

where Tmrc−zflk,p = Z−1Tmrclk,p and nmrc−zfl,p = Z−1nmrcl,p . For the special case of symbol-

level synchronization, i.e., f(τ) = δ(τ), Z will be the identity matrix; meaning that no

additional processing is required. To show the effectiveness of the proposed processing,

it can be easily shown that when M → ∞ the asymptotic value of ymrc−zfl,p approaches

√
ρdβlINsl. Thus, the effect of ISI is eliminated as M goes to infinity. The approximation

of the achievable rate by the MRC-ZF receiver is presented in the next theorem.

Theorem 2.3. The achievable rate by each user using the MRC-ZF receiver can be ap-

proximated by:

Rmrc−zf
l,p ≈ log2

1 +
Mρdβl

2

ρdĝ′′
K∑
k=1

βlk + ρd (ĝ′′ − 1) βll + ε0βl

 (2.50)

where ĝ′′ depends on the distribution of time delays and is defined in Appendix A.4. The

value of ε0 is the noise enhancement factor due to ZF processing and is equal to the

diagonal element of matrix
(
ZHZ

)−1
. These are only functions of the distribution of

delays and the pulse shape.

Proof. The proof is presented in Appendix A.4.

By using the MRC-ZF receiver which exploits the statistics of the time delays, the effect

of the averaged ISI is vanished. If the number of receive antennas goes to infinity, the

achievable rate goes to infinity. Therefore, the power scaling law is restored.
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Corollary 2.5. In the presence of random time delays, using MRC-ZF receivers with M

receive antennas and perfect CSI, cutting the transmit power of each user by a factor of

1
M

, the system still achieves the performance of the SISO system with no interference. In

other words, the achievable uplink rate becomes

Rmrc−zf
l,p → log2

(
1 +

Edβl
ε0

)
(2.51)

as M →∞ and ρd = Ed
M

.

Hence, even in the presence of random time delays, the power scaling law is held for the

MRC-ZF receiver.

2.4.3 Imperfect CSI

As shown in Fig. 2.3b, the output samples of the MRC receiver are multiplied by Wll to

cancel the effect of the averaged ISI and IUI. Note that matrix Wll is pre-calculated once

based on the pulse shape, sampling origins and delay distributions and then, it can be

used during the entire transmission. We call this receiver MRC-ZF whose output samples

are:

ymrc−zfl,ip = Wlly
os−mrc
l,ip =

√
ρd

K∑
k=1

Tmrc−zflk,ip sk + nmrc−zfl,ip (2.52)

where Tmrc−zflk,ip = WllT̂lk, nmrc−zfl,ip = Wlln
os−mrc
l,ip and T̂lk =

(
(T 1
lk)T , . . . , (TKlk )T

)T
. It

can be easily shown that when M → ∞ the asymptotic value of ymrc−zfl,ip approaches

√
ρdβlINsl. Thus, the effects of ISI and IUI are eliminated as M goes to infinity. The

achievable rates for the aforementioned system is presented in the next theorem.

Theorem 2.4. The achievable rate by the MRC-ZF receiver using estimated channel coef-
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ficients, when there is random time delays between the received signals can be approximated

by:

Rmrc−zf
l,ip ≈ κ log2

(
1 +

Npρ
2
dβl

2
M∑K

k=1 ∆k −Npρ2
dβll + vl0

)
(2.53)

where ∆k is defined as:

∆k = Npρ
2
d

(
K∑
j=1

βjkγ̂
′′
ljk + βkkγ̂

′′
lkk

)
+ ρd(ul0 + vl0Npλ

′′
lk)βk

γ̂′′ljk depends on the distribution of time delays and is defined in Appendix A.5. The values

of ul0 and vl0 are the noise enhancement factors due to ZF processing and depends on the

matrix Wll.

Proof. The proof is presented in Appendix A.5.

If the number of receive antennas goes to infinity, the achievable rate goes to infinity.

Thus, by using the MRC-ZF receiver which exploits the statistics of time delays, the

effect of averaged ISI and IUI is vanished and the power scaling law can be obtained.

Corollary 2.6. In the presence of random time delays, using MRC-ZF receivers with M

receive antennas and imperfect CSI, cutting the transmit power of each user by a factor

of 1√
M

, the system still achieves the performance of the SISO system with no interference.

In other words, the achievable uplink rate becomes

Rmrc−zf
l,ip → κ log2

(
1 +

NpE
2
dβl

vl0

)
(2.54)

as M →∞ and ρd = Ed√
M

.

Hence, even in the presence of random time delays, the power scaling law is held by using
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the MRC-ZF receiver. In all schemes presented in this section, the noise enhancement by

ZF can be mitigated by using other cancellation methods like MMSE and SIC.

2.5 Numerical Results and Discussions

In this section, we present and discuss simulations results, compared with numerical ones

pertaining to the analysis developed previously. The simulation experiments, of Monte

Carlo type, are performed in the platform Matlab. The system considered consists of a

single cell with a distributed BS having M antennas. The number of users served by the

BS is K = 5. The small-scale fading coefficients follow an i.i.d. Rayleigh block-fading

channel model drawn from an i.i.d. complex Gaussian distribution, i.e., hmk ∼ CN(0, 1).

To generate path loss coefficients, a cell with a radius of R = 1000 is considered and

rmks are distributed randomly and uniformly over the cell, with the exclusion of a central

disk of radius rh = 100, and the path loss exponent is assumed to be equal to 2. Time

delays follow the uniform distribution and noise samples are also distributed as CN(0, 1).

The MC simulations are conducted for 10, 000 independent channel, time delay and noise

realizations.

In Fig. 2.4, the performance of the MRC and MRC-ZF receivers with perfect CSI and

imperfect CSI is presented by theoretical approximation in Theorems 2.1, 2.2, 2.3 and

2.4 and via simulation. The sum rate for 5 users are plotted with respect to the number

of receive antennas. The results include Rectangular (Rect.) pulse shape and Raised

Cosine (R.C.) pulse shape with roll-off factor of β = 0.5 truncated at 3 side lobes. Our

analytical approximation and simulation results match. It also shows that, unknown

time delays limit the performance of MRC receivers, and by increasing M , the sum rate

is saturated for both perfect and imperfect scenarios. However, the performance of the
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MRC-ZF receiver is not saturated and by increasing M , the sum rate increases. For MRC

receivers, the results are the same for both Rect. and R.C. pulse shapes, however, for

MRC-ZF structures, the pulse shape has a significant effect, particularly, in imperfect

CSI scenario. In the perfect scenario case, the effect of noise-interference enhancement

induced by matrix Z is roughly the same for both Rect. and R.C. pulse shapes. On

the other hand, in the imperfect scenario case, the choice of pulse shape has a great

effect on the condition number of matrix Γ. Using Rect. pulse shape results in huge

noise-interference enhancement by Wll, while for more practical pulse shape of R.C., the

noise-interference enhancement is much less. In Fig. 2.5, the power scaling law is depicted
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Figure 2.4: Performance of the MRC and MRC-ZF receivers with respect to the number of
receive antennas, using perfect/imperfect CSI and ρd = 10 dB

for perfect and imperfect scenarios. In Fig. 2.5a, the performance of the MRC and the

MRC-ZF receivers are presented using perfect CSI while ρd = Ed
M

and in Fig. 2.5b, a

similar analysis is presented for imperfect CSI with ρd = Ed√
M

. For MRC receivers, by

increasing Ed, the sum rate is saturating as also shown by the analytical results. On the

other hand, by using the MRC-ZF receiver, the achievable sum rate increases by Ed which

verifies that the power-scaling law can be achieved by MRC-ZF receivers. Fig. 2.5 also

shows the effect of e, which is the sampling adjustment variable, on the performance of

MRC receivers.
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Figure 2.5: Analysis of Power Scaling Law for the MRC and the MRC-ZF receiver

2.6 Conclusion

In this chapter, we obtained the general formula for the achievable rate of the MRC

receiver when random timing mismatch exists. We showed that unknown time delays

degrade the performance substantially. In other words, in the presence of random timing

mismatch, the achievable rate by each user is interference limited, and the power scaling

law is hindered. Therefore, intelligent system design is required to manage the inherent

time delays in a multiuser network, which is discussed in the next chapters.
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Chapter 3

Oversampling Explained: The

General System Model for an

Asynchronous Transceiver and Its

Properties

In this chapter, we try to explore the possible advantages of asynchronous transmission

and its underlying reasons. In Section 3.1, the notion of time asynchrony and concepts

behind its possible advantages are explained. In Section 3.2, we introduce the concept

of oversampling and present sufficient statistics to detect the transmitted symbols in an

asynchronous scenario. Finally, in section 3.3, the critical features of the resulting system

model are provided.
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3.1 The Concept Behind Advantages of Asynchrony

In this section, we try to provide some insights into possible benefits of asynchronous

transmission. First, we provide a toy example to demonstrate the advantages of asyn-

chronous transmission. Assume that we have two single-antenna users, namely, U1 and

U2, trying to transmit their corresponding symbols from alphabet {−1, 1} to a common

single-antenna receiver at a same time and same frequency. Assuming AWGN channel,

the received signal at the receiver can be denoted as:

y = s1 + s2 + n. (3.1)

Considering Rectangular pulse shape and perfectly synchronized scenario, the possible

outcomes for different permutations of input symbols are shown in Fig. 3.1. As it can be

seen, no matter how small the additive noise is, it is impossible to distinguish between

transmission of {1,−1} and {−1, 1}. As a consequence of IUI, we are unable to decode

the transmitted symbols in synchronous fashion. However, assume that either we add

intentional time delay to transmission of one of the users or channel itself impose different

delays to the transmitted signals. Then, the resulting combination of transmitted symbols

can be one of the options in Fig. 3.2 .

(a) {1, 1} (b) {−1, 1}, {1,−1} (c) {−1,−1}

Figure 3.1: Possible outcomes for synchronous transmission
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(a) {1, 1} (b) {1,−1} (c) {−1, 1} (d) {−1,−1}

Figure 3.2: Possible outcomes for asynchronous transmission

Thanks to the timing offset between the two received signals, all possible combinations

of the transmitted symbols are distinguishable and, hence, decodable. However, if we

follow conventional sampling methods like sampling the middle point or calculate the

integral over the range of transmission, then the benefits of asynchrony will be lost and

the performance might even be worse. Thus, the proper sampling method is of great

importance in order to take advantage of asynchronous transmission. Although in this

simple example, there is 150% increase in the time interval which results in the reduced

rate, by using sufficiently long frames, the loss due to adding time delays will be negligible.

The metric to numerically express “distinguishability” is the minimum distance between

the resulting signals. The distance between two continuous and integrable signals, e.g.,

f(t) and g(t), is defined as:

D(f, g) =

∫ ∞
−∞
|f(t)− g(t)|2dt (3.2)

Based on the aforementioned example, the minimum distance between the resulting signals

in the synchronous scenario is zero while in the asynchronous scenario, it depends on the

introduced delay and is equal to min{ 2T
T+τ

, 4τ
T+τ
} where T and τ are the symbol length

and the time delay, respectively.(the result is normalized by the transmission interval).

Assume that the time delay is a portion of the symbol length, i.e., τ = κT , then, the

minimum distance can be shown with respect to κ as follows:
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Maximizing the the minimum distance between the received signals results in minimizing

the BER. Therefore, roughly speaking, we can interpret from Fig. 3.3 that the timing

offset equal to half of the symbol length results in the best BER performance. These

concepts are explained in more details in next chapters.

Next, we provide another example using the truncated root raised cosine (r.r.c.) pulse

shape. Assume that two symbols modulated by truncated r.r.c. are transmitted through

two different channels, namely, h1, h2. Then, the received signal after matched filtering is

equal to:

y(t) = h1s1(t) + h2s2(t) + n(t). (3.3)

where si(t) = sig(t), g(t) being the truncated r.c. pulse shape. If the two signals

are perfectly aligned, then the received signal is sampled at the peak point as shown in

Fig. 3.4. Assuming a normalized pulse shape, the discrete sample can be written as

y1 = h1s1 + h2s2 + n1. Note that any extra sample at any other instant, e.g., t′ will

result in y2 = αh1s1 +αh2s2 + n2 where α is the amplitude of the pulse shape at the new

sampling point t′. Now, assume that there is a time delay between the received signals.

39



Figure 3.4: Illustration of synchronous reception

Then, based on the sampling method shown in Fig. 3.5, the two samples are obtained as

y1 = h1s1 + βh2s2 + n1 and y2 = γh1s1 + h2s2 + n2 where β and γ are the amplitude of

the normalized pulse shape at the times t1 and t2, respectively. If we put the samples in

Figure 3.5: Illustration of asynchronous reception

the matrix form, for both synchronous and asynchronous scenarios, we will have:

ysynch =

 h1 h2

αh1 αh2


s1

s2

+ nsynch, yasynch =

 h1 βh2

γh1 h2


s1

s2

+ nasynch.

(3.4)
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= Hsynch

s1

s2

+ nsynch, = Hasynch

s1

s2

+ nasynch. (3.5)

The main difference between the synchronous and asynchronous transmissions is in the

structure of the resulting offset matrices denoted as Hsynch and Hasynch. One critical

characteristic of the offset matrix is its rank which is usually called the degree of freedom

or multiplexing gain of the channel. In other words, by using proper processing, any

channel matrix H can be divided into rank(H) number of parallel sub-channels. It can

be easily shown that the rank of matrices Hsynch and Hasynch are 1 and 2, respectively,

i.e., rank(Hsynch) = 1, rank(Hasynch) = 2 (channel coefficients are assumed to be

independent). Therefore, synchronous transmission results in one degree of freedom while

the asynchronous transmission provides two degrees of freedom.

3.2 The Sampling Method: Oversampling

In the conventional point to point Nyquist-rate transmission, after performing encoding

and modulation, the modulated symbols are shaped with appropriate waveforms suited

to the communication channel. Let the block length be equal to N , then the transmitted

signal will be:

s(t) =
N∑
n=1

s[n]p(t− nT ) (3.6)

where p(t) is the pulse shape, e.g., r.r.c., which is truncated and its length is denoted

by Tp. T is the symbol interval and is usually equal to 1
2W

where W is the occupied

bandwidth in which most of the transmitted power is concentrated. Let us assume a K

user system with a common receiver where each user’s signal experiences a time delay
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of τk, 0 ≤ τ1 < τ2 < · · · < τK < 1 to be received at the receiver. By assuming AWGN

channel, the received signal is described as:

y(t) =
K∑
k=1

N∑
n=1

sk[n]p(t− nT − τkT ) + n(t) (3.7)

To detect the transmitted symbols xk[n], instead of working with the continuous random

process y(t), we use a set of statistics, Zj = rj(y(t)), j = 1, · · · , J that are sufficient for

the detection of the transmitted symbols. Intuitively, Z1, Z2, · · · , ZJ are jointly sufficient

statistics if the statistician who knows the values of Z1, Z2, · · · , ZJ can do just as good a

job of estimating the transmitted symbols as the statistician who knows the entire random

process y(t). We use the well-known factorization theorem to find the sufficient statistics.

Theorem 3.1. Let Y1, · · · , Yn be random variables with joint density f(y1, y2, · · · , yn|θ).

The statistics

Zj = rj(Y1, Y2, · · · , Yn), j = 1, · · · , J (3.8)

are jointly sufficient to estimate θ if and only if the joint density can be factored as follows:

f(y1, y2, · · · , yn|θ) = u(y1, y2, · · · , yn).v(z1, · · · , zJ , θ)

where u and v are non-negative functions [49].

The density of y(t) given the transmitted symbols is calculated as follows:

f(y(t)|{sk[n]}) = c exp

[∫ ∞
−∞

w2(t)dt

]

where w(t) = y(t) −
∑K

k=1

∑N
n=1 sk[n]p(t− nT − τkT ) and c is a constant value. By

expanding the likelihood function, it can be observed that the transmitted symbol sk[n]
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is related to y(t) through the value of
∫∞
−∞ y(t)p(t− nT − τkT )dt. Therefore, using the

factorization theorem stated above, we can conclude that sufficient statistics for detecting

the transmitted symbols are:

yl[m] =

∫ ∞
−∞

y(t)p(t−mT − τlT )dt (3.9)

which is known as the matched filter in the literature and can also be implemented using

convolution followed by a sampler, i.e.,:

yl[m] = y(t) ∗ p(t)|t=mT+τlT (3.10)

Denoting p(t) ∗ p(t) as g(t), the sufficient statistics can be represented as:

yl[m] =
K∑
k=1

N∑
n=1

sk[n]g((m− n)T + (τl − τk)T ) + nl[m] (3.11)

where nl[m] = n(t) ∗ p(t)|t=mT+τlT . Therefore, the knowledge of timing offsets are critical

in obtaining the sufficient statistics and are assume to be known at the receiver. The

NK obtained samples can be put into a matrix form in two different ways. If we define

yl = (yl[1], · · · , yl[N ])T and sk = (sk[1], · · · , sk[N ])T , the input-output relation of the

system can be presented in matrix form as follows:



y1

y2

...

yK


=



R11 R12 · · · R1K

R21 R22 · · · R2K

...
. . . . . .

...

RK1 RK2 · · · RKK





s1

s2

...

sK


+



n1

n2

...

nK


(3.12)
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where Rlk is the N ×N constructing sub-block whose elements are defined as:

Rlk(m,n) = g((m− n)T + (τl − τk)T ) (3.13)

Matrix R is a Hermitian matrix whose sub-blocks, i.e., Rlk are Toeplitz. Two examples

of matrix R are provided for Rectangular and r.r.c. pulse shapes, K = 3, τ = [0, 0.2, 0.7],

and N = 3.

RRect. =



1 0 0 0.8 0 0 0.3 0 0

0 1 0 0.2 0.8 0 0.7 0.3 0

0 0 1 0 0.2 0.8 0 0.7 0.3

0.8 0.2 0 1 0 0 0.5 0 0

0 0.8 0.2 0 1 0 0.5 0.5 0

0 0 0.8 0 0 1 0 0.5 0.5

0.3 0.7 0 0.5 0.5 0 1 0 0

0 0.3 0.7 0 0.5 0.5 0 1 0

0 0 0.3 0 0 0.5 0 0 1



(3.14)

Rr.r.c. =



1 0 0 0.93 −0.11 0.02 0.33 −0.07 0.01

0 1 0 0.2 0.93 −0.11 0.84 0.33 −0.07

0 0 1 −0.04 0.2 0.93 −0.13 0.84 0.33

0.93 0.2 −0.04 1 0 0 0.6 −0.12 0.02

−0.11 0.93 0.2 0 1 0 0.6 0.6 −0.12

0.02 −0.11 0.93 0 0 1 −0.12 0.6 0.6

0.33 0.84 −0.13 0.6 0.6 −0.12 1 0 0

−0.07 0.33 0.84 −0.12 0.6 0.6 0 1 0

0.01 −0.07 0.33 0.02 −0.12 0.6 0 0 1


(3.15)

If we define y[m] = (y1[m], · · · , yK [m])T and s[m] = (s1[m], · · · , sK [m])T , the input-
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output relation of the system can be presented in matrix form as follows:



y[1]

y[2]

...

y[N ]


=



R′11 R′12 · · · R′1N

R′21 R′22 · · · R′2K
...

. . . . . .
...

R′N1 R′N2 · · · R′NN





s[1]

s[2]

...

s[N ]


+



n[1]

n[2]

...

n[N ]


(3.16)

where R′mn is the K ×K constructing sub-block whose elements are defined as:

R′mn(l, k) = g((m− n)T + (τl − τk)T ) (3.17)

Matrix R′ is a Hermitian block-Toeplitz matrix, i.e., R′ij = R′i′j′ if i−j = i′−j′, whose

sub-blocks are not necessarily Toeplitz. For simpler representation, and due to the block

Toeplitz structure of the matrix R′,we re-name the constructive block of R′ij = R′i−j .

Thus, we can have an alternative representation of:



y[1]

y[2]

...

y[N ]


=



R′0 R′−1 · · · R′1−N
R′1 R′0 · · · R′2−N
...

. . . . . .
...

R′N−1 R′N−2 · · · R′0





s[1]

s[2]

...

s[N ]


+



n[1]

n[2]

...

n[N ]


(3.18)

Two examples of matrix R′ are provided for Rectangular and r.r.c. pulse shapes, K =

3, τ = [0, 0.2, 0.7] and N = 3.
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R′Rect. =



1 0.8 0.5 0 0 0 0 0 0

0.8 1 0.3 0.2 0 0 0 0 0

0.5 0.3 1 0.7 0.5 0 0 0 0

0 0.2 0.7 1 0.8 0.5 0 0 0

0 0 0.5 0.8 1 0.3 0.2 0 0

0 0 0 0.5 0.3 1 0.7 0.5 0

0 0 0 0 0.2 0.7 1 0.8 0.5

0 0 0 0 0 0.5 0.8 1 0.3

0 0 0 0 0 0 0.5 0.3 1



(3.19)

R′r.r.c. =



1 0.93 0.33 0 −0.11 −0.07 0 0.02 0.01

0.93 1 0.6 0.2 0 −0.12 −0.04 0 0.02

0.33 0.6 1 0.84 0.6 0 −0.13 −0.12 0

0 0.2 0.84 1 0.93 0.33 0 −0.11 −0.07

−0.11 0 0.6 0.93 1 0.6 0.2 0 −0.12

−0.07 −0.12 0 0.33 0.6 1 0.84 0.6 0

−0 −0.04 −0.13 0 0.2 0.84 1 0.93 0.33

0.02 0 −0.12 −0.11 0 0.6 0.93 1 0.6

0.01 0.017 0 −0.07 −0.12 0 0.33 0.6 1


(3.20)

If the time delays are equi-spaced, i.e., τk = (k − 1) T
K
, k = 1, · · · , K, then the matrix

R turns into a block-Toeplitz matrix which each blocks is also Toeplitz. On the other

hand, the matrix R′ will turn into a Toeplitz matrix. These two structures are used

interchangeably throughout the thesis based on the application.

In the conventional transmission scheme, the set of modulated signals, hence, the set of

matched filters are orthogonal, which results in independent noise samples. However, due
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to timing offsets and the overlapping among the pulse shapes, the set of matched filters

are not orthogonal anymore. Therefore, the noise samples are not independent anymore

and their covariance is not identity matrix. Remember that:

nl[m] =

∫ ∞
−∞

n(t)p(t−mT − τlT )dt (3.21)

Thus, the covariance between nl[m] and nk[n], denoted as δmnlk , will be equal to:

δmnlk = E{nl[m]n∗k[n]}

= E

{∫ ∞
−∞

∫ ∞
−∞

n(t)p(t−mT − τlT )n∗(s)p(s− nT − τkT )dtds

}
= σ2

n

∫ ∞
−∞

∫ ∞
−∞

δ(t− s)p(t−mT − τlT )p(s− nT − τkT )dtds

= σ2
n

∫ ∞
−∞

p(t−mT − τlT )p(t− nT − τkT )dt

= σ2
np(t) ∗ p(t)|t=(m−n)T+(τl−τk)T

= σ2
ng((m− n)T + (τl − τk)) (3.22)

Therefore, the covariance matrix of noise vectors n and n′ are equal to Rσ2
n and R′σ2

n,

respectively. However, we can use a different set of matched filters to produce indepen-

dent noise samples which circumvent the noise whitening procedure involving Cholesky

decomposition. For example, one way is to break down the integrals corresponding to the

sampling in Fig. 3.6 to define a new sampling method as shown in Fig. 3.7 [46, 47]. The

corresponding output samples are written as follows where τk+1 is an auxiliary variable

equal to Tp.

yl[m] =

∫ τ(l+1)+mT

τl+mT

K∑
k=1

N∑
n=1

sk[n]p(t−mT − τlT )p(t− nT − τkT )dt

+

∫ τ(l+1)+mT

τl+mT

n(t)p(t−mT − τlT )dt 1 ≤ l ≤ K, 1 ≤ m ≤ N + 1
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Figure 3.6: Sampling method with correlated pulse shapes

Figure 3.7: Sampling method with independent pulse shapes

By defining intermediate variables umn(l, k) and noise samples vl[m] as follows:

umn(l, k) =

∫ τ(l+1)+mT

τl+mT

p(t−mT − τlT )p(t− nT − τkT )dt (3.23)

νl[m] =

∫ τ(l+1)+mT

τl+mT

n(t)p(t−mT − τlT )dt (3.24)

, respectively, we can write the output samples in a more compact way:

yl[m] =
K∑
k=1

N∑
n=1

sk[n]umn(l, k) + νl[m] (3.25)

m = 1, . . . , N + 1 sampling time index

l = 1, . . . , K index of the matched user

Defining y[m] = (y1[m], y2[m], . . . , yK [m])T and s[n] = (s1[n], s2[n], . . . , sK [n])T , then,

y[m] for different values of m can be written as:

y[m] =
N∑
n=1

Umns[n] + ν[m] 1 ≤ m ≤ N + 1 (3.26)

where ν[m] = [ν1(j), ν2(j), . . . , νK(j)]T and Umn is a K ×K matrix whose elements are
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defined as Umn(l, k) = umn(l, k). The next step is to put all vectors of y[m] together

and define y as (y[1]T ,y[2]T , . . . ,y[N + 1]T )T . Then, y can be written as:

y =



U11 U12 . . . U1N

U21 U22 . . . U2N

...
. . . . . .

...

UN1 . . . UN(N−1) UNN

U(N+1)1 . . . U(N+1)(N−1) U(N+1)N





s[1]

s[2]

...

s[N ]


+



ν[1]

ν[2]

...

ν[N ]


= Us+ ν (3.27)

Block Toeplitz structure of U originates from the fact that u(j+m)(i+m)(l, k) = uji(l, k).

This can be verified by a change of variable in Eq. (3.23). Defining Ui−j = Uij , we can

have an alternative representation of:

y =



U0 U−1 . . . U1−N

U1 U0 . . . U2−N

...
. . . . . .

...

UN−1 . . . U1 U0

UN . . . U2 U1





s[1]

s[2]

...

s[N ]


+



ν[1]

ν[2]

...

ν[N ]



The important fact about this sampling method is that the covariance matrix of noise

samples is diagonal. With a small abuse of notation, we denote Diag(U0) as a diagonal

matrix including diagonal elements of U0. Then, it can be shown that E[ννH ] is equal

to σ2(IN+1 ⊗ Diag(U0)), where In is an n × n identity matrix and (⊗) is Kronecker

product.

Since the statistically sufficient samples in Fig. 3.6 can be created from samples in Fig.

3.7, the samples in Fig. 3.7, are sufficient statistics too. Both of these sampling methods
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introduce intentional ISI and impose memory on the system; however, they have some

differences:

1. Since sampling intervals are disjoint in Fig. 3.7, noise samples are independent.

However, due to sampling overlap, the noise samples in Fig. 3.6 are correlated.

2. The sampling in Fig. 3.7 results in an overdetermined system, while the number of

output samples in Fig. 3.6 is equal to the number of input symbols.

Note that, the notion of increasing signaling dimension by performing oversampling, in-

troduces ISI in the system. Hence, the benefit of having more degree of freedom in the

system model is obtained in the expense of dealing with ISI which necessitates the need

for designing low complexity receiver architectures. The question of whether the offset

matrix, i.e., R/R′, is invertible or not and how it behaves asymptotically as the block

length N tends to infinity will have important consequences on the performance of system

and the design of encoders and decoders [50]. Hence, we will investigate this question in

the next section.

3.3 Features of the Offset Matrix

To understand the asymptotic behavior of matrixR/R′, we will utilize the Szego theorem

which states that [51, 52]:

Theorem 3.2. Let TN = [tk−j; k, j = 0, 1, 2, · · · , N − 1] be a sequence of Hermitian

Toeplitz matrices whose generating functions is defined as f(w) =
∑∞

k=−∞ tke
ikw, w ∈

[0, 2π]. Also, λ0 ≥ λ1 ≥ · · · ≥ λN−1 are the sorted eigenvalues of matrix TN . Then, for
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any function F that is continuous on the range of f:

lim
N→∞

1

N

N−1∑
k=0

F (λk) =
1

2π

∫ 2π

0

F (f(w))dw (3.28)

In addition, the largest and smallest eigenvalues asymptotically converge to:

lim
N→∞

λ0 = max
w

f(w)

lim
N→∞

λN−1 = min
w
f(w)

The proof comes from asymptotic equivalence of sequences of Hermitian Toeplitz matrices

and their corresponding circulant versions which result in asymptotic convergence of the

their eigenvalues [53]. Therefore, this theorem can be utilized to specify the eigenvalues

of matrix R′ when the time delays are uniformly distributed. As N tends to infinity, the

asymptotic eigenvalues of matrix R′ with uniformly distributed time delays approach the

equispaced samples of the K
T

-folded spectrum of the pulse shape. K
T

-folded spectrum is

defined the same as the conventional folded spectrum except that the frequency shifts are

K
T

[54].
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Figure 3.8: Eigenvalues of matrix R′ with Sinc pulse shape

Eigenvalues of matrix R′ with uniform time delays and different pulse shapes including

Sinc, r.r.c. and Rectangular are shown in Figs. 3.8, 3.9 and 3.10, respectively. Due to
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Figure 3.9: Eigenvalues of matrix R′ with r.r.c. pulse shape (β = 0.75)
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Figure 3.10: Eigenvalues of matrix R′ with Rectangular pulse shape

the time limited transmission (infinite-time pulse shapes can not be practically realized),

the spectrum is theoretically non-zero for every frequency, thus the extra eigenvalues

provided by the asynchronous transmission are always positive. However, the used pulse

shape has a huge impact on the magnitude of the extra eigenvalues. For example, for Sinc

function, adding asynchrony is not very beneficial, because the extra eigenvalues have very

small values. However, for other pulse shapes which have some nonzero spectrum outside

the 1
T

bandwidth, like, Rectangular and r.r.c. pulse shapes, adding asynchrony provides

additional nonzero eigenvalues. For example, for r.r.c. pulse shape, β percent additional

eigenvalues are available to exploit. For Rectangular pulse shape, due to having unlimited

spectrum, there are unlimited number of eigenvalues to exploit, however, by increasing K,

the additional eigenvalues get closer to zero. In summary, the benefits of the asynchronous
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transmission depends on the utilized pulse shape and its K
T

-folded spectrum.

Fortunately, the Szego Theorem can also be extended to Toeplitz block matrices like R

[54]. The generalized Szego Theorem relates the collective behavior of the eigenvalues to

the generalized generating function, R(w), which is defined as:

R(w) =



f11(w) f12(w) · · · f1K(w)

f21(w) f22(w) · · · f2K(w)

...
. . . . . .

...

fK1(w) fK2(w) · · · fKK(w)


(3.29)

where flk(w) is the generating function for the corresponding Toeplitz block Rlk. The

generalized Szego Theorem states that for any continuous function F [54]:

lim
N→∞

1

N

NK−1∑
k=0

F [λk(R)] =
1

2π

∫ 2π

0

K−1∑
j=0

F [λj(R(w))]dw (3.30)

In particular, for F (x) = x,

lim
N→∞

1

N

NK−1∑
k=0

λk(R) =
1

2π

∫ 2π

0

K−1∑
j=0

λj(R(w))dw (3.31)

Moreover, same convergence results can be obtained for the largest and smallest eigenval-

ues, i.e,:

lim
N→∞

λ0(R) = max
w

λ0(R(w))

lim
N→∞

λNK−1(R) = min
w
λK−1(R(w))

Therefore, some of the properties of matrix R can be deducted by properties of matrix

R(w) when the block length is sufficiently large. For example, it is proved in the liter-
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ature that for time limited transmission, matrix R(w) is positive definite with bounded

eigenvalues, thus, eigenvalues of matrix R are nonzero and bounded. On the other hand,

when the pulse shapes are strictly band-limited, matrix R(w) is singular which results

in singularity of R [7].
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Chapter 4

Multiuser Systems and Time

Asynchrony: Receiver Design

This chapter shows that by investigating inherent time delays between different users

in a multiuser scenario, we can cancel interference more efficiently. Time asynchrony

provides another tool to cancel interference, which results in preserving other resources

like frequency, time, and code. By taking advantage of the sampling methods explained

in the previous chapter, a system model with memory is derived, which resembles an

ISI channel. Thus, the asynchronous transmission with oversampling enables the use of

sequence detection methods such as the Viterbi algorithm and forward-backward belief

propagation, which provides superior BEP performance. Next, the diversity of zero-

forcing (ZF) detection is analyzed. It is shown that with asynchronous transmission, full

diversity can be achieved by ZF detection. Simulation results are also presented to verify

our analysis.
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4.1 Introduction

There are many applications where multiple users share a common channel to transmit

data to a receiver. Numerous examples of multi-access communication include uplink

transmission of a single cell in a cellular system, a group of twisted-pair copper subscriber

lines transmitting data to the same switching office, and multiple ground stations commu-

nicating with a satellite and interactive cable television networks. The critical challenge

in multiuser transmissions or multiple access channels is Interuser Interference. Over

several decades, many methods have been introduced to address this problem [10], [11].

Most of these methods are based on assigning orthogonal dimensions to different users

to separate them and prevent interference. For example, time division multiple access

(TDMA) protocols allocate different time slots to different users to mitigate interference.

The same concept can be applied by partitioning the frequency spectrum among different

users, called frequency division multiple access (FDMA). Code division multiple access is

another scheme used to surpass interuser interference in which users are multiplexed by

distinct codes rather than by orthogonal frequency bands, or by orthogonal time slots [14].

More recently, multiple receive antennas are utilized at the receive side to take advantage

of the spatial domain in order to cancel interference [15], [16].

In this chapter, we investigate the timing mismatch between users as an additional re-

source to address the problem of interuser interference. By exploiting time delays between

users and employing an appropriate sampling method, we design detection methods which

not only cancel the interference but also outperform the synchronous ones. There are also

other examples in the literature that motivates the asynchronous transmission. For exam-

ple, in [9, 4], the ZF receiver structure with the asynchronous transmission is considered.

However, the proposed receiver is not BEP wise optimal. In this chapter, we consider

the BEP wise optimal ZF receiver and prove its full diversity gain. The design of asyn-
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chronous differential decoding methods that outperform their synchronous counterparts

is discussed in [46], [47]. This chapter presents sampling diversity and provides several de-

tection methods to gain advantages from the asynchronous transmission. We analytically

prove that our ZF method provides full diversity.

In Section 4.2, the system model is presented. In Section 4.3, the receiver design is

explained including MLSD, ZF and SIC methods. In Section 4.4, the performance analysis

is provided, and the diversity gain of the ZF method is analyzed. Finally, simulation

results are provided in Section 4.5. The materials in this chapter are partially published

in [48].

4.2 System Model

4.2.1 General Settings

We consider a system with K users, transmitting data to a common receiver simultane-

ously, which can have one receive antenna or multiple ones. Due to different physical

locations of users, their signal is received with various time delays. It is assumed that

each data stream is received with an arbitrary delay smaller than the symbol interval and

only the receiver knows the time delays. The signal transmitted from User k is described

by:

sk(t) =
N∑
n=1

sk[n]p(t− nT ) (4.1)

where T is the symbol length and p(.) is the pulse-shaping filter with non-zero duration of

Tp. Also, N is the frame length and sk[n] is the transmitted symbol by User k in the nth
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time slot. The transmitted signals are received with a relative delay of τk and a channel

path gain of hk. Then, the received signal can be represented by:

y(t) =
K∑
k=1

hksk(t− τkT ) + n(t) (4.2)

where K is the number of users and n(t) is the white noise with variance of σ2
n. Without

loss of generality, we assume that 0 = τ1 < τ2 < · · · < τK < 1.

4.2.2 Output Samples

The sampling methods explained in the previous chapter can be used to provide sufficient

statistics for detecting the transmitted symbols. By using the sampling method in Fig.

3.6, the corresponding output samples can be written as:

y =


U0 U−1 ... U1−N
U1 U0 ... U2−N
...

... ...
...

UN−1 ... U1 U0

UN ... U2 U1


H 0 0 ... 0

0 H 0 ... 0
...

... ... ...
...

0 ... 0 H 0
0 ... 0 0 H

 s[1]
s[2]

...
s[N ]

+

 ν[1]
ν[2]

...
ν[N ]


= UHs+ ν (4.3)

whereH is aK×K matrix equivalent to diag(h1, h2, . . . , hK). As explained in the previous

chapter, the advantage of this sampling is to generate independent noise samples. Based

on the relation between T and Tp, different numbers of adjacent symbols interfere with

each other. For example, for rectangular pulse shapes, i.e., T = Tp, at each instant only

current and previous symbols cause interference. In other words, only U0 and U1 are

nonzero. Without loss of generality, we assume that T = 1, therefore U0 and U1 are
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defined as follows:

U0 =


τ2,1 0 ... 0
τ3,2 τ3,2 ... 0

...
...

...
...

τK,K−1 ... τK,K−1 0
1−τK ... 1−τK 1−τK

 , U1 =


0 τ2,1 ... τ2,1
0 0 ... τ3,2

...
...

...
...

0 ... 0 τK,K−1

0 ... 0 0

 (4.4)

where τi,j = τi − τj. Equivalently, the sampling method in Fig. 3.7 can be utilized to

generate the samples of:

y =


R′0 R′−1 ··· R′1−N
R′1 R′0 ··· R′2−N
...

... ...
...

R′N−1 R
′
N−2 ··· R′0


H 0 0 ... 0

0 H 0 ... 0
...

... ... ...
...

0 ... 0 H 0
0 ... 0 0 H

 s[1]
s[2]

...
s[N ]

+ n

= R′Hs+ n (4.5)

where R′0, and R′−1 = R′T1 are defined as:

R′0 =


1 1−τ2,1 ... 1−τK,1

1−τ2,1 1 ... 1−τK,2
...

... ...
...

1−τK−1,1 ... 1 1−τK,K−1

1−τK,1 ... 1−τK,K−1 1

R′−1 =


0 0 ... 0 0
τ2,1 0 ... 0 0

...
... ...

...
...

τK−1,1 τK−1,2 ... 0 0
τK,1 τK,2 ... τK,K−1 0


Because of intersection between sampling intervals, noise samples are correlated and noise

whitening procedure needs to be performed before symbol detection. We use the first

system model to design the receiver architectures and use the second system model to

analyze the system performance.

4.3 Receiver Design

In this section, we introduce different detection methods which take advantage of distinct

features of the proposed sampling methods. One of these features is converting a memory-

less system into a system with memory and independent noise samples. This enables us

to implement the Viterbi algorithm based on samples in Eq. (4.3). The other feature

59



is that this sampling method provides a over-determined system model which can be

used to improve detection methods. For example, the extra samples make it possible

to carry out successive interference cancellation (SIC) backward and forward. Also, by

means of the additional available degrees of freedom, ZF detection can be performed even

with one receive antenna, which is impossible in synchronous multiuser transmission.

In what follows, we will show how asynchronous multiuser transmission can outperform

synchronous multiuser transmission.

The problem is to recover the vector s ∈ RNK from an observation vector in the form of:

y = UHs+ ν (4.6)

where the noise vector is distributed as ν ∼ N(0, σ2
nΣν). Thanks to the new sampling

method introduced in the previous section, the covariance matrix of noise vector is a

diagonal matrix. For the sake of notational simplicity, we can multiply the obtained

vector with Σν
−1/2 to equalize the variance of noise for different sub-channels. Thus, we

will have ȳ = Ūs + ν̄ where Ū = Σν
−1/2UH and ν̄ ∼ N(0, σ2

nI(N+1)K). The elements

of s belong to a finite alphabet Ω of size |Ω|. Therefore, there are |Ω|NK possible vectors

of s. Detecting s in the maximum-likelihood (ML) sense is equivalent to:

min
s∈ΩNK

∥∥ȳ − Ūs∥∥ (4.7)

Eq. (4.7) is a finite-alphabet-constrained least-squares (LS) problem, which is known to

be nondeterministic polynomial-time (NP)-hard. The complicating factor is of course the

constraint x ∈ ΩNK , otherwise it would be just the classical LS regression [55]. Due to

the distinct feature of the sampling method shown in Fig. 5.3 , i.e., Ū (i, j) = 0, j > i,
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the metric in Eq. (4.7) can be rewritten as:

min
s∈ΩNK

{f1(s1) + f2(s1, s2) + · · ·+ fNK(s1, · · · , sNK)} (4.8)

where

fn(s1, · · · , sn) =

(
ȳn −

n∑
m=1

Ū(n,m)sm

)2

(4.9)

The new representation can be visualized as a decision tree with NK+1 layers, |Ω| branches

emanating from each node, and |Ω|NK leaf nodes. To any branch, we associate a hypo-

thetical decision on sn , and the branch metric fn(s1, · · · , sn). Also, to any node, we

associate the cumulative metric which is just the sum of all branch metrics accumulated

when traveling to that node from the root. Finally, to each node, we associate the symbols

{s1, s2 · · · , sn} it takes to reach there from the root.

Root

1

4 5

2

3 4

s1 = −1
f1(−1) = 1

s2 = −1
f2(−1,−1) = 3

s2 = 1
f2(−1, 1) = 4

s1 = 1
f1(1) = 2

s2 = −1
f2(1,−1) = 1

s2 = 1
f2(1, 1) = 2

Figure 4.1: Tree representation of the minimization problem

Clearly, a naive but valid way of solving the minimization in Eq. (4.8) would be to traverse

the entire tree to find the leaf node with the smallest cumulative metric. However, such

a brute-force search is extremely inefficient, since there are |Ω|n leaf nodes to examine.

We will now review some efficient, popular, but approximate solutions for this problem

setting [56, 57].
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4.3.1 Maximum-Likelihood Sequence Detection

Simply stated, Maximum-Likelihood Sequence Detection (MLSD) finds the sequence

through the trellis that looks most like the received output sequence, or, in other words,

minimizes the relation in Eq. (4.8) [58]. As a simple example, the highlighted path in Fig.

4.2 is the MLSD decision for the sequence that best matches the received outputs. The

receiver need only wait until the entire sequence is received and then compare it against

all possible sequences.

Figure 4.2: Illustration of the concept of MLSD in a trellis

The concept is simple, but the complexity grows exponentially with length of the sequence.

The Viterbi Algorithm reduces this complexity through a recursive elimination procedure

where trellis paths that are worse than other paths are eliminated early from further

consideration. At each stage of the trellis, the equilizer keep only the best “surviving”

path into each state, eliminating all the rest into that state at that time. Thanks to the

memory introduced in the system by the time delays, we can implement MLSD by using

Viterbi algorithm. As a result, the complexity order of O(|Ω|NK) offered by exhaustive

search reduces to complexity order of O(|Ω|K)[59].

Based on the recursive relation between the input and output which is described as:

ȳ[j] = Ū0s[j] + Ū1s[j − 1] + ν̄[j] 2 ≤ j ≤ N
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where Ū i = UiH. The trellis diagram of the system includes |Ω|K states with |Ω|K

outgoing paths to the next states, and |Ω|K incoming paths from previous states. To

calculate the metric for each path, we need to calculate the likelihood function as follows:

Pr(ȳ[j]|s[j], s[j − 1]) =Pr(ν̄[j] = ȳ[j]− Ū0s[j]− Ū1s[j − 1])

=
1√

(2π)Kσ2
n

exp (− 1

2σ2
n

xj
Hxj)

where xj = ȳ[j] − Ū0s[j] − Ū1s[j − 1]. By discarding common terms and simple

calculations, the metric for each path can be defined as
∑K

i=1 |xj(i)|2. After calculating

the path metrics, the final goal is to find the surviving path and trace it back to detect

the transmitted symbols.

4.3.2 Zero-Forcing (ZF)

The ZF detector first solves the problem mentioned in Eq. (4.7) neglecting the finite

alphabet constraint.

s̃ = argmin
s

∥∥ȳ − Ūs∥∥ (4.10)

= Ū
−1
ȳ (4.11)

Note that Ū
−1

does not need to be explicitly calculated. For example, one way is to use

Gaussian elimination, i.e.,

s̄1 =
ȳ1

Ū(1, 1)
(4.12)

s̄2 =
ȳ2 − Ū(2, 1)s̄1

Ū(2, 2)
(4.13)

... (4.14)
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s̄n =
ȳn −

∑n−1
m=1 Ū(n,m)s̄m

Ū(n, n)
(4.15)

ZF detector, then approximate the answers by projecting each s̄n onto the closet point in

the constellation point, i.e.,

s̃n = argmin
sk∈Ω

‖sk − s̄k‖ (4.16)

It can be seen that s̄ = s + Ū
−1
ν̄ which means that all the ISI has been completely

removed. However, unfortunately ZF works poorly unless Ū is well conditioned. This

can be improved by using MMSE estimate but it does not overcome the fundamental

problem of the approach [55].

4.3.3 Successive Interference Cancellation with Hard Decision

Passing

Successive interference cancellation (SIC) detection that takes a serial approach to cancel

interference can be used to reduce complexity. SIC is sometimes called ZF detector

with decision feedback (ZF-DF). ZF-DF detector performs Gaussian elimination method

mentioned before to detect the transmitted symbol. However, it performs the Gaussian

elimination with the modification that it projects the symbols onto the constellation Ω in

each step of the Gaussian elimination, rather than afterwards. In more details:

s̃1 = argmin
s1∈Ω

f1(s1) (4.17)

=

[
ȳ1

Ū(1, 1)

]
(4.18)
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where [.] means the projection onto the nearest point in the constellation. For the next

symbols, the effect of previously detected symbols are removed by subtracing them from

the corresponding samples, i.e.,

s̃n = argmin
sn∈Ω

{fn(s̃1, s̃2, · · · , s̃n−1, sn)} (4.19)

=

[
ȳn −

∑n−1
m=1 Ū(n,m)s̃m

Ū(n, n)

]
(4.20)

In the decision-tree perspective, ZF-DF can be considered as just examining one single

path down from the root. When deciding on sn, it considers s1, s2, · · · , sn−1 known and

takes the sn that corresponds to the smallest branch metric. Clearly, after NK steps

we end up at one of the leaf nodes, but not necessarily in the one with the smallest

cumulative metric. For example, in Fig. 4.1, considering the branch metrics for s1 will

result in detecting s1 = −1. Next, deciding on s2 given that s1 = −1 will yield the

detected vector as (−1,−1) which is not the optimal answer, i.e., (1,−1).

Thus, the problem with ZF-DF is error propagation. If, due to noise, an incorrect decision

is taken in any of the steps, then this error will propagate and many of the subsequent

symbols are likely to be detected wrong as well. The detection order can be optimized to

minimize the effects of error propagation. It is best to start with the symbol for which ZF

produces the most reliable result, i.e., the sub-channel with smallest noise variance, and

then proceed to less and less reliable symbols. However, even with the optimal ordering,

error propagation severely limits the performance [60].

Using the sampling method in Fig. 5.3, this serial approach can be either a forward SIC

initiated from the first transmitted symbol, i.e., s1[1], or a backward SIC started from

the last transmitted symbol, i.e., sK [N ]. For example, for forward processing, s1[1] can

be detected by using y1[1] without interference, then s2[1] can be detected by canceling
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the interference of s1[1] from y2[1], and so on. The same procedure can be performed

backwards. One can also combine forward and backward operations. However, when

hard decisions are used, such a combination will not result in a noticeable gain. On the

other hand, by using soft decisions, combining the forward and backward operations will

improve the results as explained in the following section.

4.3.4 Forward-Backward Belief Propagation Detection

In the previous section we introduced an SIC method which was performed by passing

hard decisions of previously detected symbols to cancel the interference. In this section,

we introduce a similar detection method which passes likelihood values.

In practice, each symbol sk typically is composed of information-carrying bits. It is then

of interest to take decisions on the individual bits, and often, also to quantify how reliable

these decisions are. Such reliability information about a bit is called a “soft decision,”

and is typically expressed via the probability ratio. Hard decisions does not distinguish

between two events of p(s = 0|y) = 0.49, p(s = 0|y) = 0.51 and p(s = 0|y) = 0.01, p(s =

0|y) = 0.99, while, the soft decisions take this difference into account. Therefore, soft

decisions carry more information with respect to the hard decisions. By using likelihood

values, instead of hard decisions, performance can be improved. Additionally, this method

provides the opportunity to exploit benefits of backward processing as well. We explain

the strategy of detecting BPSK modulation and K = 2, but it can be also generalized to

other modulations and other values of K. We also assume that transmitted symbols have

the same prior probabilities and calculate the conditional probabilities as follows:

66





a = P (y1[1]|s1[1] = 0) = 1√
2πρ1σ2

n

exp
(
− |y1[1]+h1ρ1|2

2ρ1σ2
n

)
b = P (y1[1]|s1[1] = 1) = 1√

2πρ1σ2
n

exp
(
− |y1[1]−h1ρ1|2

2ρ1σ2
n

)
P fw0 (s1[1]) = P (s1[1] = 0|y1[1]) = a

a+b

P fw1 (s1[1]) = P (s1[1] = 1|y1[1]) = b
a+b



c = P (y2[1]|s2[1] = 0, y1[1]) =

P fw0 (s1[1]) 1√
2πρ2σ2

n

exp
(
− |y2[1]+h1ρ1+h2ρ2|2

2ρ2σ2
n

)
+ P fw1 (s1[1]) 1√

2πρ2σ2
n

exp
(
− |y2[1]−h1ρ1+h2ρ2|2

2ρ2σ2
n

)
d = P (y2[1]|s2[1] = 1, y1[1]) =

P fw0 (s1[1]) 1√
2πρ2σ2

n

exp
(
− |y2[1]+h1ρ1−h2ρ2|2

2ρ2σ2
n

)
+ P fw1 (s1[1]) 1√

2πρ2σ2
n

exp
(
− |y2[1]−h1ρ1−h2ρ2|2

2ρ2σ2
n

)
P fw0 (s2[1]) = P (s2[1] = 0|y1[1], y2[1]) = c

c+d

P fw1 (s2[1]) = P (s2[1] = 1|y1[1], y2[1]) = d
c+d

where ρi = U0(i, i). Using these successive calculations, P fw
0 (sk[n]) and P fw

1 (sk[n]) can

be found for all values of 1 ≤ n ≤ N and 1 ≤ k ≤ K. As explained before, due to the

structure of the sampling method in Fig. 5.3, the last transmitted symbol can also be

detected without interference and the same procedure can be applied backward to find

P bw
0 (sk[n]) and P bw

1 (sk[n]). Using either of these likelihood sets as a detection metric will

result in an improvement over the hard-decision SIC method that was presented in the

previous section. Moreover, the performance can be furthered improved if we use forward

and backward operations together and define the detection metric as:

P0(sk[n]) = P fw
0 (sk[n])P bw

0 (sk[n])

P1(sk[n]) = P fw
1 (sk[n])P bw

1 (sk[n])
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4.4 Performance Analysis

In this section, the achievable performance by the asynchronous transmission is analyzed.

We use Bit Error Probability (BEP) as the performance criterion. In the analysis of BEP,

one important factor is diversity gain which specifies the reliability of the transmission.

Unlike the AWGN channel, the fading channel suffers from sudden declines in the power.

This is due to the destructive addition of multi-path signals in the propagation media.

Therefore, the effective signal-to-noise ratio (SNR) at the receiver can go through deep

fades and be dropped dramatically. Usually we can assume a threshold for the received

SNR in which the receiver can reliably detect and detect the transmitted signal. If the

received SNR is lower than such a threshold, a reliable recovery of the transmitted signal

is impossible. and this event is called an “outage.” The probability of outage, which is the

probability of having a received power lower than the given threshold, can be calculated

based on the statistical model of the channel or based on the actual measurements of the

channel.

One way to combat the outage events is to provide different replicas of the transmitted

signal to the receiver, which is the main idea behind “diversity”. If these different replicas

fade independently, it is less probable to have all copies of the transmitted signal in deep

fade simultaneously. Therefore, the receiver can reliably detect the transmitted signal

using these received signals. To define diversity quantitatively, we use the relationship

between the received SNR, denoted by δ , and the probability of error, denoted by Pe. A

tractable definition of the diversity, or diversity gain, is

D = − lim
δ→∞

logPe
log δ

(4.21)

where Pe is the error probability at an SNR equal to δ . In other words, diversity is the
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slope of the error probability curve in terms of the received SNR in a log-log scale [25].

4.4.1 Diversity Analysis for a Receiver with Multiple Antennas

and ZF detection

There is a fundamental difference between synchronous and asynchronous ZF. In the

synchronous ZF, we need more number of receive antennas than transmit antennas/users

to be able to cancel interference completely. However, in the asynchronous ZF, even

with one receive antenna, we are able to remove all the interference completely. The

required dimension at the receiver signal space is provided by asynchronous transmission

and oversampling. Denoting M as the number of receiver antenna, it is well-known in the

literature that, synchronous ZF provides M−K+1 diversity orders when K independent

symbols are transmitted. K − 1 diversity orders are wasted to remove the interference

[61]. In more details, transmitting S (S ≤ K ≤ M) independent symbols will result

in (M − S + 1)(K − S + 1) diversity orders [62]. On the other hand, asynchronous ZF

provides additional degrees of freedom by means of oversampling which enable us to enjoy

full diversity of M while transmitting K independent symbols.

Here, we present the system model when multiple receive antennas are used at the receiver.

To represent the system model we use the sampling method described in Eq. (4.5). By

stacking output samples of all receive antennas together we can represent the system

model as follows:



y1

y2

...

yM


=



R′ 0 . . . 0

0 R′ . . . 0

...
...

. . .
...

0 . . . 0 R′





H1

H2

...

HM


s+



n1

n2

...

nM


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yT = UTHTs+ nT

where M is number of receive antennas, Hm, ym and nm are the effective channel matrix,

the received sample vector and the noise vector, respectively, at mth receive antenna.

Then, by performing the ZF detection, we have:

ỹ = s+ ñ (4.22)

where COVñ can be calculated as:

COVñ = E{ññH} = σ2
n(

M∑
m=1

H∗mR
′Hm)−1 (4.23)

Unfortunately, due to the complex structure of
(∑M

m=1H
∗
mR

′Hm

)−1

for M ≥ 1, finding

the exact expression of BEP for M ≥ 1 is not easy. We derive an upper bound on BEP by

finding an upper bound on the diagonal elements of COVñ and show that full diversity

is achieved. Because R′ is positive definite, for every 1 ≤ m ≤ M , H∗mR
′Hm is also

positive definite. Therefore, we can apply the following lemma.

Lemma 4.1. For n positive definite matrices Ai, 1 ≤ i ≤ n, we have:

(
n∑
i=1

Ai)
−1 ≤

n∑
i=1

Ai
−1 (4.24)

where B ≤ C means that C −B is positive semidefinite.

Proof. This lemma is a straightforward result of the following inequality, which can be

found in [63].

(A+B)−1 ≤ A−1 A,B : positive definite matrices
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As a result, we can conclude that COVñ ≤ σ2
n

∑M
i=1 (Hi

∗R′Hi)
−1. This inequality

implies that the diagonal elements of the covariance matrix of noise are upper bounded

as follows:

COVñ(i, i) ≤ σ2
nR
′−1(i, i)∑M

m=1 |hπ(i),m|2
1 ≤ i ≤ NK (4.25)

where π(.) is the assigning function that assigns each sub-channel to a specific user, i.e.,

π : I → K, where I = {1, · · · , NK} and K = {1, · · · , K} are the set of sub-channel and

user indices, respectively. Also, hk,m represents the channel coefficient between User k

and Receive Antenna m.

The upper-bound for the BEP expression for each sub-channel is equal to:

BEPu,i =

√
2δ0

πR′−1(i,i)

2
(

1 + 2δ0
R′−1(i,i)

)M+ 1
2

Γ(M + 1
2
)

Γ(M + 1)
× 2F1(1,M +

1

2
;M + 1;

1

1 + 2δ0
R′−1(i,i)

)

(4.26)

where δ0 = E[|sk[i]|2]
σ2
n

. The details of derivation can be found in Appendix B.1. The actual

BEP for each subchannel is upper-bounded by BEPu,i, i.e., BEPi ≤ BEPu,i. If we define

Di = − limδ0→∞
logBEPi

log δ0
and di = − limδ0→∞

logBEPu,i
log δ0

, it is clear that Di ≥ di. By using

the fact that the hypergeometric function of form 2F1(1,m + 1
2
;m + 1; 1

1+c
) converges to

one as c grows large [64], we can calculate that di = M . Therefore, the diversity of the

ith subchannel is greater than or equal to M . On the other hand, M is the maximum

available diversity for this system, which completes the proof of achieving full diversity,

i.e. Di = M .
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4.4.2 Effect of Time Delays on Performance

In this section, we calculate the optimal values of delays for the ZF detection in order

to achieve the lowest average BEP with one receive antenna at high SNR. Because for

M = 1 the inequality in Eq. (4.25) turns into equality, the exact BEP expression for each

sub-channel can be obtained as:

BEPi =

√
2δ0

πR′−1(i,i)

2
(

1 + 2δ0
R′−1(i,i)

)3/2

Γ(3/2)

Γ(2)
2F1(1, 3/2; 2;

1

1 + 2δ0
R′−1(i,i)

)

Approximating BEPavg at high SNR for one receive antenna results in: (see Appendix

B.2 for more details)

B̃EP avg =
1

4
√
πNK

Γ(3/2)

Γ(2)
×
∑

iR
′−1(i, i)

δ0

,

For a fixed number of users and frame length, in order to minimize B̃EP avg, we need

to minimize the trace(R′−1) which is related to time delays between different users. In

what follows, we derive the relationship between the trace(R′−1) and time delays, and

consequently find the optimum time delays.

Lemma 4.2. the sum of the diagonal elements of the inverse of matrix R′ is equal to:

trace(R′
−1

) =
(N − 1)(N + 1)

3(1 + τ1,K)
+

2N + 1

3(N + 1 + τ1,K)
+
N(N + 2)

3

K−1∑
i=1

1

τi+1,i

(4.27)

where τi+1,i = τi+1 − τi. The proof is presented in Appendix B.3.

Theorem 4.1. The optimum time delays which result in the lowest average BEP for ZF
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detection at high SNR are: (τ1 is assumed to be zero)

τi−1 =
i− 2

i− 1
× τi 3 ≤ i ≤ K (4.28)

Also τK is found by solving the following equation:

Aτ 4
K +Bτ 3

K + Cτ 2
K +DτK + E = 0 (4.29)

where

A = (1− (K − 1)2)
(N + 2)

3
.

B =
−2

3
(1− (K − 1)2)N2 + 2(4(K − 1)2 − 1)

(N + 1)

3
.

C =
1

3
(1− (K − 1)2)N3 +

2

3
(1− 4(K − 1)2)N2 − 2(K − 1)2(3N + 2).

D =
2

3
(K − 1)2(N3 + 5N2 + 8N + 4).

E = −1

3
(K − 1)2(N3 + 4N2 + 5N + 2).

The proof is easily obtained by taking the derivation of Eq. (4.27) with respect to time

delays.

For K = 2, A will be zero and Eq. (4.29) is a polynomial of degree 3 which has a

closed-form solution as follows:

τopt =
N + 2− 3

√
N3 + 1.5N2 − 1.5N − 1

3
(4.30)

where N is the block length. However, for other values of K, Eq. (4.29) should be solved

numerically. After finding τK , the remaining time delays are calculated recursively using

Eq. (4.28). The optimum delay values for different K and N values are reported in

Tables 4.1 and 4.2. Optimum time delays approach uniform time delays, i.e, τk = k−1
K

,

2 ≤ k ≤ K, as N increases. The effects of time delay values on the performance are
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Table 4.1: Optimum Time Delays when K = 2

Case N=10 N=32 N=64 N=128 N →∞
K=2 0.5240 0.5077 0.5039 0.5019 0.5

Table 4.2: Optimum delays when N = 128

Case N=128

K=4 [0.2505,0.5010,0.7514]

K=6 [0.1669,0.3338,0.5006,0.6675,0.8344]

K=8 [0.1251,0.2502,0.3754,0.5004,0.6256,0.7507,0.8758]

studied numerically in the following section.

In this section, we showed that unlike synchronous ZF, asynchronous ZF can provide full

diversity of M . If we assume M > K, then transmitting independent symbols from differ-

ent users and using ML detection can provide diversity order of M . However, conventional

ZF detection wastes K − 1 diversity orders to null the interference resulting in diversity

order of M −K + 1. On the other hand, if M < K, we are only able to transmit maxi-

mum number of M symbols which is apprehend as the multiplexing gain. At the receiver

side, M diversity gain is available which can be exploited by ML detection, however, the

ZF detection is unable to detect the transmitted symbols because the null space of the

channel matrix is empty. These diversity results are summarize in Table 4.3 In summary,

Table 4.3: Receive Diversity Gain results

Diversity gain M > K M < K

synchronous ML M M

synchronous ZF M −K + 1 unable to detect

Asynchronous M M

a MIMO system can provide two types of gains: diversity gain and spatial multiplexing

gain. Given a MIMO channel, both gains can be simultaneously obtained, but there is a

fundamental trade-off between them: higher multiplexing gain comes at the price of sac-
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rificing diversity [65]. However, by means of asynchronous transmission, another domain

for exploiting multiplexing gain is provided which let us enjoy full diversity provided by

spatial domain without sacrificing the multiplexing gain.

4.5 Simulation Results and Discussions

In this section, we provide simulation results in order to validate our theoretical results

and compare different methods. We present the BEP results in the Rayliegh fading

channel. In all simulations, channel coefficients are independent Rayliegh fadings with

variance one, fixed during the block and changing independently for each block. All users

have the same average power of one and variance of noise (σ2
n) is equal to 10

−SNR
10 where

SNR is in dB. To avoid inter-block interference, the last symbol of each block should be

idle for asynchronous methods. This will reduce spectral efficiency, but it is negligible

for large block lengths. In all simulations, the block length is 128 and the time delays

are uniform except in the case where we report the time delays to study their effects on

the performance. The number of users and the number of receive antennas is denoted

by K and M , respectively. When M is not specified, the assumption is that only one

receive antenna is used. Transmitted symbols are chosen from BPSK modulation and the

comparing criterion is the average bit error rate among all the users.

In Fig. 4.3, we compare the performance of the asynchronous MLSD method with that of

the synchronous ML. Asynchronous MLSD outperforms synchronous ML detection with

similar complexity. Fig. 4.3 also includes the single-user bound for a better comparison.

As can be seen in the figure, asynchronous MLSD for K = 2 achieves performance of the

single user system at high SNR. Fig. 4.4 shows the performance of different SIC methods

presented in Section 4.3.3. Our new forward-backward belief propagation method using
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Figure 4.3: Comparing asynchronous MLSD and synchronous ML

the sampling method in Fig. 5.3 improves the performance of traditional SIC method by

about 3 dB. Fig. 4.5 compares the performance of the synchronous and asynchronous

Figure 4.4: Performance of SIC method with hard decisions and soft decisions

ZF detectors. Although asynchronous ZF is even possible with one receive antenna, for

fair comparison, we consider the cases where the number of receive antennas and users

are the same. Since all users are assumed to have the same transmit power, synchronous

ZF for (K = 2,M = 2) and (K = 4,M = 4) provides the same performance and both of
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Figure 4.5: Comparing synchronous and asynchronous ZF

them have diversity of one. However, for asynchronous ZF detection, diversity of 2 and 4

is achieved for (K = 2,M = 2) and (K = 4,M = 4), respectively.

We study the effects of time delay values on the performance of a ZF system with K = 4

users and one receive antenna in Fig. 4.6. Note that a synchronous ZF solution does not

exist in this case as we need at least M = 4 receive antennas. We show the results for

six different sets of time delays. For optimum time delays we use the result of Section

4.4.2 as reported in Table 4.2. The curve associated with random time delays represents

the average performance over uniformly distributed random time delays. The remaining

sets of time delays are specified in the figure. The optimum time delays and time delays

of [0.01, 0.1, 0.9] have the best and worst performances, respectively. They also have the

lowest and the highest trace(R′−1), respectively, which are presented along with other sets

of time delays in Table 4.4. As can be seen, a lower trace(R′−1) results in a better per-

formance. This observation is in line with the analysis in Section 4.4.2 where trace(R′−1)

was introduced as a criterion to compare the performance of different time delays.

Finally, to compare different methods with each other, we include the performance of

all detection methods for K = 2 in Fig. 4.7. Both MLSD and forward-backward BP
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Table 4.4: Comparing trace(R′−1) for different time delays in Fig. 4.6

Time delays trace(R′−1)

[0.2505, 0.5010, 0.7514] 8.8404× 104

[0.4, 0.6, 0.8] 9.6639× 104

[0.1, 0.4, 0.7] 1.1065× 105

[0.1, 0.2, 0.9] 1.7347× 105

[0.01, 0.1, 0.9] 6.7784× 105

Figure 4.6: Effect of time delays in asynchronous ZF detection for K = 4

detection methods not only outperform the synchronous ML detection, but also achieve

the performance of the single user system. In addition, the low complexity method of SIC

with hard decisions also provides good performance.

4.6 Conclusion

In this chapter, we studied the benefits of asynchrony when multiple users are sending

data simultaneously to a common receiver. Instead of treating asynchrony as a disruptive

factor, we exploited it as an additional resource to cancel interference. We have shown

that asynchrony between data streams adds a favorable ISI, which can be exploited to
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Figure 4.7: Comparison of all detection methods for K = 2

cancel the interference. It also introduces memory to the system, which can be exploited

by methods such as maximum-likelihood sequence detection. Exact BEP expression for

ZF detection was derived, and it was verified that a diversity equal to the number of

receive antennas is achievable by asynchronous transmission.
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Chapter 5

Effect of Asynchrony on the

Achievable Rates of Broadcast

Channels

In this chapter, we investigate the effect of time asynchrony in non-orthogonal multiple

access (NOMA) schemes for downlink transmissions. First, we analyze the benefit of

adding intentional timing offsets to the conventional power domain-NOMA (P-NOMA).

This method, called Asynchronous-Power Domain-NOMA (AP-NOMA), introduces arti-

ficial symbol-offsets between packets destined for different users. It reduces the mutual

interference, which results in enlarging the achievable rate-region of the conventional P-

NOMA. Then, we propose a precoding scheme that fully exploits the degrees of freedom

provided by the time asynchrony. We call this multiple access scheme T-NOMA, which

provides higher degrees of freedom for users compared to the conventional P-NOMA or

even the modified AP-NOMA. T-NOMA adopts precoding at the base station and a linear

preprocessing scheme at the receiving user, which decomposes the broadcast channel into
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parallel channels circumventing the need for Successive Interference Cancellation (SIC).

The numerical results show that T-NOMA outperforms AP-NOMA and both outper-

form the conventional P-NOMA. We also compare the maximum sum-rate and fairness

provided by these methods. Moreover, the impact of pulse shape and symbol offset on

AP-NOMA and T-NOMA schemes’ performance is investigated.

5.1 Introduction

For future radio access, significant gains in the system capacity/efficiency and quality

of user experience are required. In particular, the multiple access approach is a crucial

part of radio access technology [66]. In [17, 18], and the references therein, NOMA is

proposed as a candidate for the future radio access to partially fulfill the requirements of

next-generation networks. The currently prevailing approach for multiple access lies in

the category of orthogonal multiple access (OMA). In 2G systems, time division multiple

access (TDMA) is adopted. In the 3G mobile communication systems such as W-CDMA

and CDMA2000, direct sequence-code division multiple access (DS-CDMA) is used, and

the receiver is based on simple single-user detection using the Rake receiver. OMA based

on orthogonal frequency division multiple access (OFDMA) or single carrier-frequency

division multiple access (SC-FDMA) is used in the 4th generation mobile communication

systems such as LTE and LTE-Advanced. These approaches first partition resources

into orthogonal resource blocks and then assign each resource block exclusively to one

user. After this, the problem reduces to a point-to-point (P2P) communication problem,

and then well developed single-user encoders/decoders can be applied. The significant

advantage of OMA methods is that their complexity is merely the complexity of single-

user encoders/decoders. On the other hand, assigning resource blocks exclusively to one

user can be very inefficient (in terms of achievable rate-regions) and may pose a severe
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fairness problem among users. In contrast to OMA, NOMA allows users to utilize the

same resource blocks for transmission simultaneously and therefore is potentially more

efficient. When evaluated under the LTE system characteristics, NOMA demonstrates

significant gains over OMA systems [19, 20].

The problem of communicating with many receivers arises in “downlink” scenarios such as

communication from an access point to stations in WiFi or from a base station in cellular

systems. Although OMA approaches eliminate interference between transmissions, it does

not, in general, achieve the highest possible transmission rates for a given packet error

rate [22]. Superposition Coding (SC) is a well-known non-orthogonal scheme that achieves

the capacity on a scalar Gaussian broadcast channel [21, 67]. Superposition coding is a

technique of simultaneously communicating information to several receivers by a single

source. In other words, it allows the transmitter to send the information of multiple users

at the same time and frequency. At the receiver’s side, successive interference cancellation

(SIC) is applied, which exploits the differences in signal strength among the signals of

interest [25]. The basic idea behind SIC is that user signals are successively decoded.

Superposition coding and SIC are the optimal encoder/decoder methods for degraded

broadcast channels where users can be ordered in terms of the quality of the received

signals [68, 22]. This concept is of particular importance in cellular systems where the

channel conditions vary significantly among users due to the near-far effect[18]. From

an information-theoretic perspective, NOMA with a SIC is an optimal multiple access

scheme from the viewpoint of the achievable multiuser capacity region, in the downlink

[69, 70, 71, 72, 73] and in the uplink [74].

Applications of NOMA in the downlink scenario have been widely studied [75]. In [76]

and [77], various power allocation and user scheduling algorithms were proposed to im-

prove the sum-rate of the NOMA-based multiuser system. In [78], cooperative NOMA

scheme was investigated to improve the spectral efficiency and transmission reliability.
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In [79], the trellis-coded NOMA method is introduced, and in [80], a block-based non-

orthogonal multicarrier Scheme is proposed. More recently, the study of the combination

of multiple-input and multiple-output (MIMO) and NOMA has received considerable at-

tention [81], [82]. However, most of the previous research on NOMA only considered

symbol-synchronous transmission. Often in the literature, timing mismatch is considered

as an impairment, and different synchronization methods are applied to eliminate it [1].

However, in this work, we show that time asynchrony can indeed be beneficial. Time

asynchrony can decrease interference and provide additional degrees of freedom using

proper transmission and receiver design.

The usefulness of timing offset, or time asynchrony, has been studied in the literature.

For example, the results in [83] show that time asynchrony can increase the capacity

region in multiple-access channels. Also, the effect of time asynchrony is other contexts

are discussed in [84, 46, 47, 48, 4, 40, 85, 86]. In this chapter, we introduce two schemes

called AP-NOMA and T-NOMA which use time asynchrony to enlarge the downlink

rate-region and thus improve the user experience [87].

The rest of the chapter is organized as follows. In Section 5.2, we provide an overview of

the concepts of NOMA, including superposition coding and SIC. Next, we provide some

insights regarding the benefits of time asynchrony. The concept behind AP-NOMA is the

reduction in IUI by using intentional time delays, and the concept behind T-NOMA is

exploiting extra degrees of freedom provided by time asynchrony, explained in Section 5.3.

Then, we present the system model and its characteristics in Section 5.4. We present the

achievable rate-region results for the conventional P-NOMA, AP-NOMA, and T-NOMA

in Section 5.5. In the end, we provide the numerical results and the final remarks in

Sections 5.6 and 5.7, respectively. The materials in this chapter are partially published

in [88, 89].
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5.2 Concepts of P-NOMA

Simultaneous transmission of information from one source to several receivers has been

studied under the title of broadcast channel [90]. Superposition coding at the transmit-

ter and SIC at the receivers provide the capacity achieving performance and thus play

important roles in the P-NOMA. In this section, we briefly summarize the results in the

literature and explain the concepts of superposition coding and SIC method. Consider

the Gaussian broadcast channel

Y1 = X + Z1

Y2 = X + Z2

where Z1 and Z2 follow Gaussian distributions, i.e., Z1 ∼ N(0, N1) and Z2 ∼ N(0, N2),

assuming that N2 > N1.

Theorem 5.1. The capacity region for the Gaussian broadcast channel, with signal power

constraint P , is given by:

R1 ≤
1

2
log

(
1 +

αP

N1

)
R2 ≤

1

2
log

(
1 +

(1− α)P

αP +N2

)

where α ∈ [0, 1] represents the power allocation coefficient. This region is achieved by the

superposition coding and SIC schemes described in [21].

To encode the messages, the transmitter generates two codebooks, one with power αP

at rate R1, and another codebook with power (1 − α)P at rate R2, where R1 and R2

lie in the capacity region above. Then, to send an index w1 ∈ {1, 2, · · · , 2nR1} and
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w2 ∈ {1, 2, · · · , 2nR2} to Y1 and Y2, respectively, the transmitter takes the codeword X(w1)

from the first codebook and codeword X(w2) from the second codebook and computes the

sum. The transmitter sends the sum over the channel [68]. An example of superposition

Coding using 4-PSK and 8-QAM constellations for two users are shown in Fig. 5.1.

The input bits of the user with weaker channel are modulated with 4-PSK modulation as

shown by the coarse points in Fig. 5.1 and the input bits for the user with stronger channel

are modulated with 8-QAM modulation and sum of the modulated symbols results in a

32-QAM constellation shown by the fine points in Fig. 5.1.

Figure 5.1: An Example of Superposition Coding

The receivers must now decode the messages. The weak receiver, Y2, merely looks through

the second codebook to find the closest codeword to the received vector Y2. His effective

signal-to-noise ratio is (1−α)P
αP+N2

, since Y1’s message acts as noise to Y2. The strong receiver,

Y1, first decodes Y2’s codeword, which he can accomplish because of his lower noise N1.

After subtracting this codeword X̂2 from Y1, the receiver looks for the codeword in the

first codebook closest to Y1 − X̂2. The resulting probability of error can be made as low

as desired. A nice dividend of optimal encoding for degraded broadcast channels is that

the strong receiver Y1 always knows the message intended for receiver Y2 in addition to

its own message [68]. Fig. 5.2 presents the technique for decoding the superposed signal
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(Fig. 5.1) at the receiving side. As shown in Fig. 5.2, the weak receiver only decodes the

coarse points by mapping the received signal to the nearest point in the corresponding

constellation (4-PSK). The stronger user is also able to decode the coarse points and after

subtracting the decoded symbol from the received signal, the resulting signal is decoded

using the corresponding constellation (8-QAM) as shown in Fig. 5.2b.

(a) Decoding at the weak
user/first step at the strong user

(b) Second step of decoding at the
strong user

Figure 5.2: An example of SIC decoding

5.3 Motivations Behind Asynchronous Transmission

It is shown in the literature that time asynchrony which is the intrinsic feature of most of

the wireless networks, not only is not disruptive, but also can be beneficial if the proper

processing is employed [84, 46, 47, 48, 4, 40, 85]. We introduce two NOMA schemes

enjoying the benefits of time asynchrony, i.e., AP-NOMA and T-NOMA. The details of

these two methods will be elaborated later, but before that, let us briefly express the

intuition and motivations behind each of the mentioned methods.
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5.3.1 Motivation Behind AP-NOMA

In conventional P-NOMA, the underlying assumption is the reception with perfect syn-

chronization. In the perfect synchronous scenario, the peak points of all users are aligned,

however, by adding intentional time delays to each user, the peak points drift apart. The

comparison between synchronous and asynchronous reception for two users is shown in

Fig. 5.3.

(a) Synchronous Reception (b) Asynchronous Reception

Figure 5.3: Illustration of IUI for two cases of synchronous and asynchronous reception

Denoting the effective pulse shape as g(t) and assuming normalized symbols, the interuser

interference (IUI) power from interfering user can be calculated as:

IUI(τ) =
∞∑

i=−∞

|g(τ + iT )|2 (5.1)

where τ is the time delay and T is the symbol interval. In the next lemma, we show that

adding intentional time delay will decrease the IUI power.

Lemma 5.1. For any pulse shape with real spectrum in frequency domain (i.e., real and

even in the time domain), we will have

IUI(τ) ≤ IUI(0) (5.2)

Proof. The proof is presented in Appendix C.1.
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Note that the conditions mentioned above encompasses almost all the the pulse shapes in

the literature like rectangular and sinc pulse shapes and even practical pulse shapes like

the raised cosine pulse shape. Thus, adding time asynchrony can decrease the IUI which

is the main degradation in NOMA schemes. However, the benefits of time asynchrony

is not limited to decreasing IUI power. In fact, as we will explain later, adding time

asynchrony provides additional degrees of freedom which can be exploited to serve more

users over the same time and frequency resources.

5.3.2 Motivation Behind T-NOMA

Here, we use Hilbert space formulation to show the potential of asynchronous transmission

in providing additional degrees of freedom. Hilbert space generalizes the Euclidean space

of real numbers to finite energy signals. Each finite energy signal can be represented by

a vector in the Hilbert space with each coordinate given by an inner product with the

corresponding orthonormal basis functions. In more details, any finite energy signal like

s(t) can be written as a linear combination of the orthonormal basis functions as:

s(t) =
∑
n∈Γ

s[n]pn(t) (5.3)

where pn(t) is an orthonormal basis function, i.e, 〈pn(t).pm(t)〉 = δ[n−m] and s[n] is the

corresponding coefficient in the direction of the basis function pn(t) which is obtained by

the following inner product.

s[n] = 〈s(t).pn(t)〉 (5.4)

If we further constrain our finite energy signals to strictly band-limited ones, then the

Hilbert Space is called the Paley-Wiener space. The Nyquist sampling theorem states that
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any signal in Paley-Wiener space whose Fourier transform is supported on f ∈ (−W W )

can be written as the linear combination of some sinc pulses, i.e,

s(t) =
∞∑

n=−∞

s[n]
(√

2Wsinc(2W (t− nT ))
)

(5.5)

where T is the Nyquist interval, i.e., T = 1
2W

[91]. Due to completeness of the of sinc

pulses, all band-limited signals, even sinc pulses that do not lie at integer multiples of T ,

e.g., their fractionally-shifted version, i.e., sinc(2W (t− nT − τT )), still lie completely in

the Paley-Wiener space.

Assume that, in Eq. (5.5), s[n] is the transmitted symbol modulated on the sinc pulse

pn(t) =
√

2Wsinc(2W (t−nT )). In practice, pulses spanning an unlimited time domain are

not feasible, hence, they are usually truncated within a desired interval. Assume that the

transmission interval is truncated into NT seconds, then we are capable of transmitting

approximately 2WNT symbols. In other words, 2WNT dimensions is used in the case

of finite-time transmissions [92]. However, due to the truncation, the finite set of sinc

pulses, i.e.:

S ≡

pn(t) =
√

2Wsinc(2W (t− nT ))

n = 0, · · · , 2WNT − 1

 (5.6)

is not complete anymore and does not span the whole signal space. Therefore, we can

insert additional pulses to exploit more signaling dimensions which leads to higher data

throughput [93].

For example, defining b2WNT =
√

2Wsinc(2W (t − τT )) and applying the well-known

Gram-Schmidt orthogonalization process, provide us an orthonormal basis function with

size 2WNT + 1. The newly formed basis function exploits an additional signaling dimen-
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sion. We provide a numerical example next.

Example 5.1. Assume that W = 0.5, N = 5, T = 1, then pn(t) = sinc(t − n) for

n = 0, · · · , 4 with truncation length of 5T . The Gram matrix of the aforementioned set is

equal to:

GS =



0.959 0.052 −0.084 0.057 −0.013

0.052 0.959 0.052 −0.084 0.057

−0.084 0.052 0.959 0.052 −0.084

0.057 −0.084 0.052 0.959 0.052

−0.013 0.057 −0.084 0.052 0.959


(5.7)

If the pulse shapes were strictly band-limited, i.e., unlimited time support, matrix GS

would be the identity matrix. In addition, with unlimited time support, any other function

like p6(t) = sinc(t−0.5) can be written as
∑∞

n=−∞ ansinc(t− n) where an = sinc(n−0.5).

On the other hand, in a time-limited scenario, p5(t) cannot be written as the weighted sum

of truncated sinc functions. Thus, performing the Gram-Schmidt process, we can get the

following orthonormal set:



p′0(t) = sinc(t), e0(t) =
p′0(t)

|p′0(t)|

p′1(t) = p1(t)− 0.053e0(t), e1(t) =
p′1(t)

|p′1(t)|

p′2(t) = p2(t) + 0.086e0(t)− 0.058e1(t), e2(t) =
p′2(t)

|p′2(t)|

p′3(t) = p3(t)− 0.059e0(t) + 0.089e1(t)− 0.064e2(t), e3(t) =
p′3(t)

|p′3(t)|

p′4(t) = p4(t) + 0.014e0(t)− 0.06e1(t) + 0.091e2(t)− 0.066e3(t), e4(t) =
p′4(t)

|p′4(t)|

p′5(t) = p5(t)− 0.647e0(t)− 0.612e1(t) + 0.191e2(t)− 0.099e3(t) + 0.06e4(t), e5(t) =
p′5(t)

|p′5(t)|



Now we have a new set with six elements, i.e., S ′ ≡ {en(t), n = 0, · · · , 5}, for which the

Gram matrix is almost the identity matrix.

We can continue this procedure and take advantage of the rest of the available signaling

dimensions. In fact, it is shown in the literature that the available degree of freedom in
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a time-limited channel is unbounded [8]. We will use asynchronous transmission to fully

exploit the available degrees of freedom in a NOMA framework.

5.4 System Model

After performing coding and modulation, the modulated symbols intended for each user,

namely, User k, are shaped with appropriate waveforms suited to the communication

channel. We denote the block length by N , then the intended signal for User k will be:

sk(t) =
N∑
n=1

sk[n]p(t− nT ) (5.8)

where p(t) is the pulse shape, e.g., r.r.c., which is truncated and its length is denoted by

Tp and T is the symbol interval. The transmit power assigned to sk(t) is denoted by Pk

which is calculated as:

Pk = E

[∫ ∞
−∞

sk(t)s
∗
k(t)dt

]
(5.9)

The transmitted signal from BS will be the super-position of signals from all users, i.e.:

ssynch(t) =
K∑
k=1

sk(t) (5.10)

where the transmit power, i.e., Psynch = E
[∫∞
−∞ ssynch(t)s

∗
synch(t)dt

]
, satisfies the total

power constraint for N time slots, i.e., Psynch ≤ NP . To take advantage of asynchrony,

assume that each sub-stream is shifted with a specific time delay τkT where 0 ≤ τk < 1.
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Then, the transmitted signal will be:

sasynch(t) =
K∑
k=1

sk(t− τkT ) (5.11)

such that Pasynch ≤ NP . By assuming flat fading and additive white Gaussian noise, the

received signal at the desired user is described as:

y(t) = hr

K∑
k=1

sk(t− τkT ) + n(t) (5.12)

where hr is the channel coefficient for the corresponding user. We use the sampling method

explained in Chapter 3 to obtain a set of samples which are sufficient statistics:

yk[m] =

∫ ∞
−∞

y(t)p(t−mT − τkT )dt (5.13)

k = 1, · · · , K m = 1, · · · , N

Denoting p(t) ∗ p(t) as g(t) and g((m − n)T + (τk − τl)T ) as gkl[m − n], the sufficient

statistics can be represented as:

yk[m] = hr

K∑
l=1

N∑
n=1

gkl[m− n]sl[n] + nk[m] (5.14)

where nk[m] = n(t) ∗ p(t)|mT+τkT . Defining the vectors yk = (yk[1], · · · , yk[N ])T and sk =

(sk[1], · · · , sk[N ])T , the input-output relation in matrix form is represented as follows:

y = hrRs+ n (5.15)
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where y =
(
y1

T , · · · ,yKT
)T

, s =
(
s1

T , · · · , sKT
)T

, n =
(
n1

T , · · · ,nKT
)T

and the

matrix R is defined as:

R =



R11 R12 · · · R1K

R21 R22 · · · R2K

...
. . . . . .

...

RK1 RK2 · · · RKK


(5.16)

where the elements of each sub-matrix Rlk is defined as:

Rkl(m,n) = gkl[m− n] (5.17)

Matrix R is a Hermitian matrix whose sub-blocks, i.e., Rlk are banded Toeplitz blocks of

order u, where u = Tp
T

. Due to oversampling, the noise samples are correlated and their

covariance is equal to Rσ2
n. Note that, in the perfect synchronous case, sub-blocks Rlk

turn into identity matrices, i.e., IN . However, for the asynchronous case, only diagonal

blocks are identity matrices, i.e., Rll = IN , and the other sub-blocks have non-zero off

diagonal elements. It is proved in the literature that as N grows large, i.e., N → ∞,

matrix R becomes a positive definite matrix with bounded eigenvalues for time-limited

pulse shapes. On the other hand, when the pulse shapes are strictly band-limited, matrix

R is asymptotically singular [7].

5.4.1 Transmit Power Examination

In this section, we analyze the transmit power for synchronous and asynchronous sce-

narios. We calculate Pasynch in the next lemma and Psynch will be immediately found by

assuming that the time delays are equal to zero.
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Lemma 5.2. The transmit power of the asynchronous transmission of K superimposed

sub-streams defined in Eq. (5.11) can be calculated as:

Pasynch =
K∑
i=1

K∑
j=1

trace(RijQij)

= trace(RQs) (5.18)

where Qij = COV {si, sj} and Qs = COV {s}.

Proof. The proof is presented in Appendix C.2

Remarks 5.1. With no precoding, i.e., Qij = 0N and Qii = PiIN , the transmit power

of both methods, the synchronous and asynchronous methods equal Pasycnh = Psynch =

N
∑K

k=1 Pk where Pk is the power assigned to each symbol of User k. Consequently, the

power constraint simplifies to
∑K

k=1 Pk ≤ P .

Remarks 5.2. With precoding, the power constraint depends on the transmission mode,

or equivalently, on the choice of time delays. The power constraint becomes trace(RQ) ≤

NP . Therefore, with precoding, the choice of matrix R affects the power allocation,

whereas, with no precoding, it has no effect on the transmit power.

5.5 Achievable Rate-Region Analysis

This section analyzes the achievable rate-region of the proposed NOMA schemes, AP-

NOMA and T-NOMA. For comparison purposes, we also present the achievable rate-

regions of the synchronous P-NOMA.
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5.5.1 Achievable Rates for Conventional P-NOMA

We begin by applying the SIC detection at each user in the synchronous NOMA scheme.

The optimal detection sequence is sK , · · · , s2, s1 assuming |h1|2
σ2
n
> · · · > |hK |2

σ2
n

. In partic-

ular, User 1 first decodes s2, · · · , sK and subtracts their components from the received

signal y1. Then, User 1 decodes s1 without interference from other users. On the other

hand, User K can directly decode sK while considering other users as noise. Assuming

successful decoding and no error propagation, the achievable rate-region can be repre-

sented as:

RP−NOMA ,



0 ≤ R1 ≤ 1
2

log2

(
1 + P1|h1|2

σ2
n

)
0 ≤ R2 ≤ 1

2
log2

(
1 + P2|h2|2

P1|h2|2+σ2
n

)
...

0 ≤ RK ≤ 1
2

log2

(
1 + PK |hK |2

|hK |2
∑K−1
k=1 Pk+σ2

n

)
(5.19)

5.5.2 Achievable Rates for AP-NOMA

In AP-NOMA, the SIC detection is the same as P-NOMA, however, the set of samples

that is used to decode symbols of each user is different. In the synchronous case, there is

only one set of samples at each user. However, based on the sufficient statistics derived

in Eq. (5.13), in the asynchronous case, there are K sets of samples at each user, each of

them matched to the timing offset of one of the users represented as:

yj = hr

K∑
k=1

Rjksk + nj , j = 1, · · · , K (5.20)

Based on the assumption of |h1|2
σ2
n

> · · · > |hK |2
σ2
n

, User r can decode signals of Users

{r + 1, · · · , K} using the sample sets of {yr+1, · · · ,yK} and subtract them from the
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corresponding sample set of yr. Note that based on the ordering of channel strengths,

User r only needs K− r sets of samples. In particular, the strongest user needs all K sets

of samples and the weakest user only needs its own corresponding set of samples. The

resulting set of samples after subtraction, at User r, is calculated as:

ŷr = hrINsr + hr

r−1∑
k=1

Rrksk + nr (5.21)

Due to the Toeplitz structure of the sub-blocks Rkl, the resulting sample at each time

instant i can be written as:

ŷr[i] = hrsr[i] + hr

r−1∑
k=1

u∑
j=−u

grk[j]sk[i− j] + nr[i], i = u+ 1, · · · , N − u

Treating the remaining interferers as noise will result in the following achievable rate for

User r:

0 ≤ Rr ≤
1

2
log2

(
1 +

Pr|hr|2

|hr|2
∑r−1

k=1 ηrkPk + σ2
n

)
(5.22)

where ηrk =
∑u

i=−u g
2
rk[i]. In general, the overall rate-region depends on how we assign

the timing offsets to users with different channel strengths. For a specific assignment,

namely ψ, the achievable rate-region, Rψ
AP−NOMA can be defined as:

Rψ
AP−NOMA ,



0 ≤ R1 ≤ 1
2

log2

(
1 + P1|h1|2

σ2
n

)
0 ≤ R2 ≤ 1

2
log2

(
1 + P2|h2|2

η21P1|h2|2+σ2
n

)
...

0 ≤ RK ≤ 1
2

log2

(
1 + PK |hK |2

|hK |2
∑K−1
k=1 ηKkPk+σ2

n

)
(5.23)

Note that there are K! different assignments of time delays to users. Hence, the total
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rate-region is the convex hull of all possible assignments, i.e.,

RAP−NOMA ,
K!⋃
ψ=1

Rψ
AP−NOMA (5.24)

Using Lemma 1, it can be shown that ηrk =
∑u
−u g

2
rk[i] ≤ 1 where equality is obtained

by putting τ = 0. As a result, the rate-region for each assignment and thus the total

rate-region for AP-NOMA is larger than that of the conventional P-NOMA. Note that

for the 2-user scenario, the rate-region for both possible assignments is the same because

η21 = η12. However, this is not valid for more number of users unless the difference

between time delays is equal which results in matrix R to be Hermitian Toeplitz.

5.5.3 Achievable Rates for T-NOMA

In this section, we derive the achievable rate-region for the T-NOMA method. As men-

tioned before, asynchrony provides additional degrees of freedom which will be exploited

in T-NOMA by using precoding at the BS. T-NOMA method applies a simple precoding

at the BS. Assuming that Qs = COV {s}, the transmitted symbols can be written as

s = UT
√
Px where Qx = IN and Qs = UTPUT

H . Matrix UT is an orthogonal ma-

trix representing the precoding matrix and
√
P denotes the element wise square-root of

matrix P which is a diagonal matrix representing the power allocation matrix defined as:

P =



p1 0 · · · 0

0 p2 · · · 0

...
. . . . . .

...

0 0 · · · pNK


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Then, the received samples at User r is denoted as:

y = hrRUT
√
Px+ n (5.25)

where the power constraint is stated as trace(RUTPUT
H) ≤ NP . The covariance ma-

trix of the noise vector is Qn = Rσ2
n. To find the proper precoding matrix and power

allocation, let us consider the eigen-decomposition of matrix R. Matrix R is a Hermitian

matrix, thus its eigen-decomposition can be written as:

R = UR



λ1 0 · · · 0

0 λ2 · · · 0

...
. . . . . .

...

0 0 · · · λNK


UR

H

= URΛRUR
H (5.26)

where λ1 ≥ λ2 ≥ · · · ≥ λNK are the eigenvalues of matrix R and UR is a Unitary matrix.

Therefore, the received signal can be rewritten as:

y = hrURΛRU
H
RUT

√
Px+ n (5.27)

Because the time delays are known at the transmitter, the matrix R is known at the

transmitter. Hence, the transmitted symbols can be precoded in the direction of the

eigen-vectors of matrix R. In addition, the sub-channels can be decomposed at each user

by a post-processing matrix UU . By choosing UT = UR and UU = UR
H , we will have

ȳ = hrΛR

√
Px+ n̄ (5.28)
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where ȳ = UHy and n̄ = UHn. The covariance matrix of the noise vector is given

by Qn̄ = ΛRσ
2
n. By using proper precoding and post processing at the destination, the

channel has turned into NK independent sub-channels. In other words, we have used the

available degrees of freedoms offered by asynchrony to decompose the transmitted symbols

and eliminate interference. The precoding at the BS also affects the power constraint. By

using the proposed precoding, the product of RQ simplifies to:

RQ = UR



p1λ1 0 · · · 0

0 p2λ2 · · · 0

...
. . . . . .

...

0 0 · · · pKNλKN


UH
R (5.29)

As a result, the power constraint will be:

NK∑
i=1

piλi ≤ NP (5.30)

Based on the sample in Eq. 5.28, the achievable rate for User r can be denoted as

Rr =
1

2N

∑
i∈Ir

log2

(
1 +

piλi|hr|2

σ2
n

)

where Ir represents the set of sub-channels indices that are assigned to User r.

Lemma 5.3. The achievable rate-region of T-NOMA method can be described as follows:

Rk =
1

2
log2

(
1 +

Pk|hk|2

σ2
n

)
, k = 1, · · · , K

s.t.

K∑
k=1

Pk ≤ P (5.31)

Proof. The proof is presented in Appendix C.3.
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Note that the achievable rate-region of T-NOMA method is independent of the pulse

shape and the timing offsets. The only requirement to achieve this rate-region is the

matrix R to be full rank which is satisfied as long as the pulse shapes are time limited

and the timed delays are distinct. Also note that, using relatively band-limited signals

like truncated sinc pulse shapes and truncated r.c. pulse shapes will limit the spectrum

broadening caused by precoding [93]. Numerical results are provided in the next section.

5.6 Numerical Results

In this section, we present numerical results to show the effectiveness of using asynchrony

in providing a larger rate-region. In particular, we show that AP-NOMA outperforms P-

NOMA with a slight change of adding timing offset among transmitted symbols. However,

T-NOMA which uses the degrees of freedom provided by time asynchrony results in the

best performance. We assume that a transmit power of P = 10 is available at the base

station which is serving two users. We consider the typical pulse shaping function in

the literature, i.e., Rectangular pulse shape (Rect.), and a more practical pulse shaping

function, i.e., r.r.c.. Theoretically, r.r.c. pulse shaping is unlimited in time, however, it is

truncated in practice and we have adopted the truncated version with 4 side lobes. The

symbol duration T is normalized to be 1, τ1 = 0 and τ2 ∈ [0, 0.5] due to the symmetry.

We first consider the Gaussian channel where the channel coefficients are determined by

|h1|2/σ2
n = 10 and |h2|2/σ2

n = 1. In Fig. 5.4, we show the achievable rate-regions of AP-

NOMA and T-NOMA with different symbol offsets and r.c. pulse shape. Increasing the

timing offset will improve the performance and τ2 = 0.5 results in the best performance.

On the other hand, the performance of the T-NOMA method, which exploits the degrees of

freedom available in the system, is independent of the pulse shape and time delays as long
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Figure 5.4: Achievable rate-regions of AP-NOMA and T-NOMA for different symbol offsets and
a Gaussian channel.

as matrix R is full rank. Fig. 5.4 shows that both T-NOMA and AP-NOMA outperform

the conventional P-NOMA. In Fig. 5.4, there is sufficient discrepancy between channel

qualities of the two users to be exploited by P-NOMA and AP-NOMA methods. However,

in Fig. 5.5, the channel coefficients are assumed to be the same, i.e., |h1|2/σ2
n = 1 and

|h2|2/σ2
n = 1, thus the P-NOMA performance coincides with that of the OMA systems.

In such a case, the AP-NOMA method provides slightly better performance; however,

T-NOMA significantly improves the performance showing the capability of this method

even without channel quality discrepancy.

The rate-region for 3 users with rectangular pulse shape and τ = [0, 0.3, 0.7] is shown in

Fig. 5.6. The rate-regions for P-NOMA and T-NOMA are calculated similar to those of

the 2-user scenario. However, there are two main differences in calculating the rate-region

of AP-NOMA. First, there are 3!=6 different assignments of time delays to users, and

the total region is found by taking the convex hull of all possible assignments. The other

difference is that when one of the power assignments is equal to zero, the remaining time
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Figure 5.5: The maximum achievable rate-regions of three schemes: P-NOMA, AP-NOMA and
T-NOMA in Gaussian channels with |h1|2/σ2

n = 1 and |h2|2/σ2
n = 1.

delays for the other two users need to be updated. In more details:

RAP−NOMA =



RAP−NOMA[0, 0.3, 0.7] P1 6= 0, P2 6= 0, P3 6= 0

RAP−NOMA[0, 0.4] P1 = 0, P2 6= 0, P3 6= 0

RAP−NOMA[0, 0.7] P1 6= 0, P2 = 0, P3 6= 0

RAP−NOMA[0, 0.3] P1 6= 0, P2 6= 0, P3 = 0

(5.32)

To have a better understanding of the 3 dimensional rate-region provided in Fig. (5.6),

we show different two-dimensional cuts when R1 = 1, R2 = 1 and R3 = 1 in Figs. (5.7a),

(5.7b) and (5.7c), respectively.

Next, we consider the Rayleigh block-fading channel where the channel coefficients are

independent Rayleigh distribution with unit variance, and noise variance is set to 0.1. The

ergodic rate is averaged over 105 different realizations of the channel. In Fig. 5.8, we show

the achievable rate-regions of P-NOMA, AP-NOMA and T-NOMA in Rayleigh block-
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Figure 5.6: The maximum achievable rate-regions of three schemes: P-NOMA, AP-NOMA and
T-NOMA in Gaussian channels with |h1|2/σ2

n = 10, |h2|2/σ2
n = 2 and |h3|2/σ2

n = 1.

(a) R1=1 (b) R2=1 (c) R3=1

Figure 5.7: Different 2D cuts of the 3 dimensional rate-region in Fig. 5.6

fading channels. Similar to Gaussian channels, with fading channels, the achievable rate-

region of P-NOMA is improved by adding asynchrony. In addition, T-NOMA provides a

large improvement compared with other schemes.
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Figure 5.8: The maximum achievable rate-regions of three schemes: P-NOMA, AP-NOMA and
T-NOMA in Rayleigh fading channels.

5.7 Conclusion

In this chapter, we proposed a novel symbol-asynchronous downlink NOMA schemes. In

contrast to the conventional P-NOMA, we proposed to add timing offsets among super-

imposed symbols. The receiver architecture in AP-NOMA includes oversampling and

a SIC scheme similar to the P-NOMA, however, asynchrony reduces IUI and improves

the overall performance. T-NOMA exploits the degrees of freedom introduced by time

asynchrony, using novel precoding and simple post-processing at users. In other words,

T-NOMA decomposes the channel into independent sub-channels and eliminates the in-

terference. Our analysis shows that both AP-NOMA and T-NOMA methods can improve

the achievable rate-regions.
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Chapter 6

Link to the Faster than Nyquist

Signaling: Challenges and Solutions

Faster than Nyquist (FTN) signaling refers to transmitting the desired symbols faster

than the Nyquist rate with shorter time intervals, which was first introduced in [23] where

its minimum Euclidean distance property was analyzed. Asynchronous transmission in

which multiple streams of information are superimposed and transmitted with some tim-

ing offsets resemble FTN. Notably, an asynchronous transmission method with τ = 0.5 is

similar to an FTN signaling method with a compression factor of δ = 0.5. Although asyn-

chronous transmission and FTN signaling can provide an increased achievable rate, the

optimal input design imposes some practical issues such as out-of-band (OOB) emission,

which is analyzed and addressed in this chapter.

In more detail, this chapter considers the capacity computations of faster-than-Nyquist

(FTN) signaling. We calculate the theoretical capacity of FTN signaling, which is ob-

tained by a correlated input. The capacity-achieving power spectral density (PSD) is

derived, and its superiority over the independent input is shown. The practical issue im-
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posed by the capacity-achieving PSD, i.e., OOB emission, is shown. To solve this issue,

we introduce an upper-bound on the input PSD to limit the OOB emission. The new

optimization problem is solved, and the constrained PSD is obtained. The introduced

PSD captures the trade-off between the obtained capacity and the OOB emission.

6.1 Introduction

We consider the problem of transmitting data over bandlimited additive white Gaussian

noise (AWGN) and fading channels employing a set of signals that are generated by

linear modulation. Linear modulation signals have the form x(t) =
∑
a[n]p(t − nδT )

where {a[n]} are the symbols to be transmitted and can be independent or correlated.

The pulse shape p(t) usually has useful detection properties, e.g., orthogonality, commonly

mentioned as No-ISI Nyquist condition. An example of such pulses is called r.c. pulse

and is extensively used in communication standards, including the DVB-S2X in satellite

communication [94].

Shannon’s classical result states that the highest transmission rate over the AWGN chan-

nel is W log2(1 + P/WN0) where W is one-sided bandwidth, P is the average power,

and N0/2 is the power spectral density (PSD) of the white noise [22]. Such a capacity is

achieved by the sinc pulse and T = 1
2W

. However, the Sinc pulse has serious realization

problems and disadvantages in practice. Therefore, smoother orthogonal pulses are uti-

lized, which introduce the excess bandwidth. This excess bandwidth remains unutilized

by orthogonal signaling. However, the excess bandwidth can be utilized by Faster than

Nyquist (FTN) Signaling [95].

FTN was first introduced in [23], where its minimum Euclidean distance property was

analyzed. FTN has been extensively studied over the past few years [96]. For example,
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asymptotic optimality of binary FTN signaling is shown in [97], non-binary FTN and the

bit error rate (BER) performance are studied in [98], the detection and the receiver design

are examined in [99], and the application of FTN in the multiuser broadcast channel is

considered in [100]. The effect of time localization of signals on the performance of

FTN signaling is considered in [101], and the multicarrier FTN is analyzed in [102].

The information rates of FTN signaling and the provided gain by faster signaling are

thoroughly investigated in [95, 103]. In [95], an independent input with a constant PSD

that satisfies the power constraint is considered. In [103], a more comprehensive set of

inputs, including independent and correlated inputs, is considered. Denoting the input

PSD as Sa(f), f ∈ [−1/2, 1/2], the power constraint is expressed as
∫ 1/2

−1/2
Sa(f)df ≤ P ,

and the capacity-achieving input is found by using the well-known water-filling algorithm.

Although the mentioned power constraint is correct for Nyquist signaling, the correlated

input in conjunction with FTN signaling will alter the power constraint and change the

capacity expressions.

Our goal in this chapter is to study the power constraint and the resulting capacity expres-

sion comprehensively. We derive the capacity-achieving PSD and show its enhancement

over the independent input. To alleviate the practical issue of the capacity-achieving in-

put, we modify the input PSD constraint to strike a trade-off between the independent

and capacity-achieving inputs. In Section 6.2, the general system model is presented. In

Section 6.3, some preliminary results are provided and in Section 6.4, the new capac-

ity expression of FTN signaling is presented. In Section 6.5, the constrained capacity is

expressed which provides a trade-of between the achieved capacity and OOB emission.

Finally, in Section 6.7, the numerical results are presented. The materials in this chapter

are originally published in [104].
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6.2 System Model

We consider the fundamental single-carrier communication model. The transmitted lin-

early modulated baseband signal has the form

x(t) =
N∑
n=1

a[n]p(t− nδT ), (6.1)

where {a[n]} is a stationary Gaussian process with power spectral density (PSD) of

{Sa(f), f ∈ [−1/2, 1/2]} which is periodic in f with period of 1. The symbol interval is

denoted by δT where δ ∈ (0, 1] is the compression factor in FTN signaling and δ = 1 yields

the traditional Nyquist signaling with signaling rate of 1/T . Also, p(t) is a root-Nyquist

pulse shaping filter with unit energy, i.e.,
∫∞
−∞ |p(t)|

2dt = 1. Denoting g(t) = p(t)?p∗(−t),

the Nyquist No-ISI condition is expressed as: g(nT ) =

1 n = 0

0 n 6= 0
. The Nyquist No-ISI

condition can be equivalently expressed as GT (f) =
∑∞

k=−∞G
(
f − k

T

)
= T . The PSD of

the transmitted signal x(t) can be calculated as Sx(f) = Sa(δTf)G(f). The transmission

power is calculated as Px =
∫∞
−∞ Sx(f)df . Because Sa(δTf) is periodic in f with period

of 1/δT , the transmission power can be written as:

Px =

∫ 1
2δT

−1
2δT

Sa(δTf)GδT (f)df =
1

δT

∫ 1
2

−1
2

Sa(f)GδT

(
f

δT

)
df, (6.2)

where GδT (f) =
∑∞

k=−∞G
(
f − k

δT

)
. Note that for the Nyquist signaling, i.e., δ = 1,

GT (f) = T , and thus, the transmit power reduces to Px =
∫ 1/2

−1/2
Sa(f)df which is com-

monly used in the literature. However, for δ < 1, the above equality does not hold. Also

note that for independent symbols, i.e., Sa(f) = σ2
a, the transmission power reduces to

Px = σ2
a

δT

∫ 1/2

−1/2
GδT ( f

δT
)df = σ2

a. Assuming the AWGN channel, the received signal at the

decoder is denoted as: y(t) =
∑N

n=1 a[n]p(t − nδT ) + n(t) where n(t) is the white noise
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Figure 6.1: FTN system model.

with the PSD of σ2
n = N0/2. At the decoder, the set of sufficient statistics is obtained

by a matched filter followed by a sampler which samples at time instants tm = mδT as

shown in Fig. 6.1. Thus, the samples can be written as:

y[m] =
N∑
n=1

a[n]g((m− n)δT ) + n[m], (6.3)

where n[m] =
∫∞
−∞ n(t)p∗(t−mδT )dt and the correlation of the noise sample can be

denoted as E{n[m]n∗[i]} = σ2
ng((m− i)δT ). The input-output relation can be written in

matrix form as:

yN = GNaN + nN , (6.4)

where yN = {y[1], · · · , y[N ]}, aN = {a[1], · · · , a[N ]}, nN = {n[1], · · · , n[N ]} and GN is

an N ×N Toeplitz matrix whose elements are defined as:

[GN ]m,n = g((m− n)δT ). (6.5)

Note that with Nyquist signaling, the input-output relation is independent for each trans-

mitted symbol denoted as y[m] = a[m] + n[m].
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6.3 Existing Results

In [95], the capacity of FTN signaling for independent symbols with power constraint of

P is calculated as:

C(P, δT ) =

∫ 1/2δT

0

log2

(
1 +

P

σ2
n

GδT (f)

)
df. (6.6)

In [103], the capacity with correlated symbols is calculated as:

C(P, δT ) = sup
Sa(f)

∫ 1/2δT

0

log2

(
1 +

1

σ2
n

Sa(δTf)GδT (f)

)
df.

s.t.

∫ 1/2

−1/2

Sa(f)df = P, (6.7)

where the optimization problem is solved by the well-known water-filling strategy. How-

ever, in these results, the effect of FTN signaling on the power transmission was ignored

which led to erroneous results. Hence, we revisit the capacity expression with the correct

transmission power and reveal the main advantages of FTN signaling.

6.4 FTN Capacity Expressions Revisited

For completeness, we derive the capacity expressions for FTN signaling, following the

steps taken in [105] and [83]. Based on [105], the capacity of the discrete-time system

in (6.4), which resembles an ISI channel, is equal to CDT = limN→∞
1
N
I(yN ;aN) given

the input symbols satisfy the power constraint in (6.2). The differential entropy of a

stationary Gaussian n-vector, xN , with covariance matrix of ΣN
x is equal to [68]:

h(xN) =
N

2
log2

(
2πe

[
det(ΣN

x )
]1/N)

. (6.8)
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In addition, according to the Toeplitz distribution theorem [51], as N →∞, the asymp-

totic differential entropy approaches:

lim
N→∞

1

N
h(xN) =

1

2

∫ 1/2

−1/2

log2 (2πeσx(f)) df, (6.9)

where σx(f) is the generating function of the Toeplitz matrix Σx defined as σx(f) =∑∞
n=−∞ [Σx]n e

−j2πfn and [Σx]n represents the nth diagonal element of Σx.

Using (6.8) and (6.9), the asymptotic information rate of CDT = limN→∞
1
N
I(yN ;aN) can

be calculated in the following steps:

CDT = lim
N→∞

1

N
h(yN)− lim

N→∞

1

N
h(nN)

=
1

2

∫ 1/2

−1/2

log2

(
σ2
nĝ(f) + ĝ2(f)Sa(f)

)
− log2

(
σ2
nĝ(f)

)
df

=
1

2

∫ 1/2

−1/2

log2

(
1 +

1

σ2
n

ĝ(f)Sa(f)

)
df, (6.10)

where ĝ(f) =
∑∞

n=−∞ g(nδT )e−j2πfn and after some calculations, it can be shown that

ĝ(f) = GδT (f/δT ). Then, after normalizing by the signaling rate, the capacity of FTN

signaling can be formulated as:

C(P, δT ) = sup
Sa(f)

1

2δT

∫ 1/2

−1/2

log2

(
1 +

1

σ2
n

GδT

(
f

δT

)
Sa(f)

)
df.

s.t.
1

δT

∫ 1/2

−1/2

Sa(f)GδT

(
f

δT

)
df ≤ P. (6.11)

Note that the power constraint in the new capacity formulation differs from the power

constraint mentioned in (6.7). Considering Jensen’s inequality, the capacity is achieved
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by:

Sa(f) =


δTP

µGδT (f/δT )
GδT (f/δT ) 6= 0

0 o.w.
, (6.12)

where µ = L (f ∈ [−1/2, 1/2]|GδT (f/δT ) 6= 0) and L(I) is the Lebesgue measure of the

set I. By simple calculations, the capacity can be written as:

C(P, δT ) =
µ

2δT
log2

(
1 +

δTP

µσ2
n

)
. (6.13)

Remarks 6.1. For sinc function, the achieved capacity is C(P, δT ) = 1
2T

log2

(
1 + TP

σ2
n

)
.

Remarks 6.2. For Nyquist signaling, i.e., δ = 1 with any No-ISI satisfying pulse shape,

i.e., GT (f/T ) = T , the capacity-achieving input and the achieved capacity are Sa(f) = P

and C(P, δT ) = 1
2T

log2

(
1 + TP

σ2
n

)
, respectively. This verifies dissipation of the excess

bandwidth with Nyquist signaling.

Remarks 6.3. For any non-orthogonal signaling, i.e., δ < 1, the capacity-achieving input

and the capacity expression are calculated by inserting µ = min{1, fBW δT} in (6.12) and

(6.13), respectively, where fBW is the frequency support of g(t).

Example 6.1. Consider the r.c. pulse shape with a roll-of-factor of β whose Fourier

transform is denoted as:

G(f) =


T |f | ≤ 1−β

2T

T
2

[
1 + cos

(
πT
β

(
|f | − 1−β

2T

))]
1−β
2T < |f | ≤ 1+β

2T

0 o.w.

.

The folded-scaled spectrum GδT ( f
δT

) =
∑∞

k=−∞G
(
f
δT
− k

δT

)
is depicted in Fig. 6.2 for

T = 1 and different values of δ and β. Observe that for δ = 1, all the pulse shapes with
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different roll-of-factors result in a constant folded-scaled spectrum. Decreasing δ alters the

shape of the folded-scaled spectrum.

(a) β = 0 (b) β = 0.5

(c) β = 1

Figure 6.2: Illustration of the folded-scaled spectrum for different values of β and δ.

It can be calculated that µ = min{1, (1 + β)δ)} and as a result:

C(P, δT ) =


1

2δT
log2

(
1 + δTP

σ2
n

)
1

1+β
< δ ≤ 1

1+β
2T

log2

(
1 + TP

(1+β)σ2
n

)
δ ≤ 1

1+β

,

which is obtained by the correlated input expressed in (6.12). With independent input, i.e.,

Sa(f) = P , the achievable rate is equal to Cind(P, δT ) = 1
2δT

∫ 1/2

−1/2
log2

(
1 + P

σ2
n
GδT

(
f
δT

))
df
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also derived in [95] .

Figure 6.3: Comparison of C and Cind for P = 20 dB.

A comprehensive comparison of C and Cind is illustrated in Fig. 6.3 for P = 20 dB. Note

that for the compression factor of 1
1+β

< δ < 1, the excess bandwidth is exploited by FTN

and the achievable rate is increased. However, as δ < 1
1+β

, further compression provides

no extra gain. Using FTN, the capacity-achieving input and the independent input can

improve the performance of the Nyquist signaling up to 40% and 65%, respectively.

These results state that, in terms of capacity, Nyquist signaling is optimal only for the

sinc pulse. For other pulse shapes, FTN can exploit the excess bandwidth and improve

the capacity. Although FTN signaling with independent input can improve the achievable

rate, the correlated input achieves the capacity and further boosts the advantage of FTN

signaling. However, the capacity-achieving input imposes hardware-related problems,

stability issues and OOB emission in practical settings. This is because the PSD of the

capacity-achieving input is proportional to the inverse of the folded-scaled spectrum and

can take very large values due to the small values of the folded-scaled spectrum. This

results in OOB emission when time-limited pulse shapes are used. For further details on
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practical aspects of FTN and hardware related issues refer to [96].

6.5 New Constrained Capacity

To solve the mentioned issue, we introduce an upperbound constraint on the input PSD,

i.e., Sa(f) ≤ θP where θ ∈ [1,∞) can be chosen based on the hardware capabilities

and system sensitivity to OOB emission. Intuitively, looser upperbound results in higher

capacity and on contrary more stringent upperbound results in lower capacity in exchange

for less hardware complications and lower OOB emission. The constrained capacity for

the FTN signaling with PSD upperbound-constraint can be stated as:

Cθ(P, δT ) = sup
Sa(f)

1

2δT

∫ 1/2

−1/2

log2

(
1 +

1

σ2
n

GδT

(
f

δT

)
Sa(f)

)
df.

s.t.
1

δT

∫ 1/2

−1/2

Sa(f)GδT

(
f

δT

)
df ≤ P,

Sa(f) ≤ θP. (6.14)

The KKT conditions can be written as:

λ1

(
1

δT

∫ 1/2

−1/2

Sa(f)GδT

(
f

δT

)
df − P

)
= 0,

λ2(f) (Sa(f)− θP ) = 0,

GδT

(
f
δT

)
σ2
n +GδT

(
f
δT

)
Sa(f)

− 2λ1GδT

(
f

δT

)
− 2δTλ2(f) = 0,

where λ1 ≥ 0 and λ2(f) ≥ 0 are the Lagrange multipliers. Therefore, Sa(f) can be

calculated as: Sa(f) =


1

2λ1GδT (f/δT )+2δTλ2(f)
− σ2

n

GδT (f/δT )
GδT (f/δT ) 6= 0

0 o.w.
. Considering
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the KKT conditions and with some calculations, Sa(f) can be further simplified as:

Sa(f) =


θP λ > θPGδT (f/δT ) + σ2

n

λ−σ2
n

GδT (f/δT )
θPGδT (f/δT ) + σ2

n ≥ λ > σ2
n

0 o.w.

, (6.15)

where λ = 1/2λ1. The procedure to find λ is similar to the well-known water-filling

algorithm. Defining U = {f ∈ [−1/2, 1/2]|λ > θPGδT (f/δT ) + σ2
n} and V = {f ∈

[−1/2, 1/2]|θPGδT (f/δT ) + σ2
n ≥ λ}, then the power constraint can be written as:

T (λ) =
θP

δT

∫
f∈U

GδT

(
f

δT

)
df + (λ− σ2

n)
µV
δT
− P = 0,

where T (λ) ≤ (θ − 1)P is a monotonically increasing function in λ. Therefore, the

Figure 6.4: θ-limited PSD for different values of θ

optimal λ can be found by a simple bisection search. The optimal PSD can be calculated

by inserting the optimal λ in (6.15). Using the proposed algorithm, the optimal PSDs are

illustrated in Fig. 6.4 for β = 1, δ = 0.5, P = 1 and different values of θ. In summary, the

proposed method limits the very large values of the original PSD to θP and then adjusts
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the rest of the PSD to satisfy the power constraint.

6.6 Fading Channels

Denoting the discrete-channel frequency response as Hd(f), the capacity of FTN signaling

can be formulated as:

C(P, δT ) = sup
Sa(f)

1

2δT

∫ 1
2

−1
2

log2

(
1 +

1

σ2
n

GδT

(
f

δT

)
Sa(f)|Hd(f)|2

)
df.

s.t.
1

δT

∫ 1/2

−1/2

Sa(f)GδT

(
f

δT

)
df ≤ P. (6.16)

Considering the KKT conditions, the capacity is achieved by:

Sa(f) =


X(f)

GδT (f/δT )
GδT (f/δT ) 6= 0

0 o.w.
, (6.17)

where X(f) = [λ − σ2
n

H(f)
]+, H(f) =

|Hd(f)|2 GδT (f/δT ), 6= 0

0 o.w.
, and the water level, λ,

is found by satisfying the power constraint, i.e., 1
δT

∫ 1
2
−1
2

[λ− σ2
n

H(f)
]+df = P . If the channel

is time varying, then the capacity of FTN signaling equals:

C(P, δT ) = EH

{
1

2δT

∫ 1/2

−1/2

log2

(
1 +

1

σ2
n

GδT

(
f

δT

)
SHa (f)|Hd(f)|2

)
df

}
, (6.18)

where SHa (f) is found for each realization of channel similar to (6.17). The same calcu-

lation can be applied to the constrained capacity which is omitted due to lack of space.

The effect of FTN in fading channels is further evaluated in the numerical results section.
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6.7 Numerical Results

In this section, we analyze the derived results using the r.c. pulse. First, we examine

the time-domain characteristics and the average transmit power of Nyquist and FTN

signaling. We assume that the inputs are drawn from either an independent Gaussian

process or a Gaussian process with the capacity-achieving PSD. To generate the capacity-

achieving symbols, a random realization of white noise is convolved by a sequence with

PSD of S
1/2
a (f). Next, the symbols are modulated by a r.r.c. filter. Realizations of

such sequences are shown in Fig. 6.5a for independent and capacity-achieving symbols

with Nyquist rate, i.e., δ = 1 and a FTN rate, i.e., δ = 0.6. Then, the average power

Px = E
{∫

t
|x(t)|2dt

}
is shown in Fig. 6.5b for different values of δ.

(a) The time domain modulated signal for
Nyquist and FTN signaling with δ = 0.6

(b) Px versus δ for Nyquist and FTN sig-
naling

Figure 6.5: Illustration of the effect of FTN on transmit power.

Fig. 6.5 shows that the capacity-achieving PSD combined with FTN signaling satisfies

the power constraint. On the other hand, the same PSD combined with Nyquist signal-

ing, results in large instantaneous and average power. Also, note that independent PSD

satisfies the power constraint and results in the same average power for all values of δ.
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In Fig. 6.6, the effect of FTN signaling on the capacity is illustrated. As the signaling

rate increases, the capacity increases. However, as δ drops below 1
1+β

, the capacity does

not improve anymore. In addition, the capacity improvement for β = 1 is larger due to

having more excess bandwidth.
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Figure 6.6: Illustration of the effect of FTN on capacity.

As mentioned before, the capacity-achieving PSD imposes some practical issues such as

OOB emission. The OOB emission is calculated as the total power leaked out of the

allocated sub-band, and shown in Fig. 6.7 for β = 1, δ = 0.5, P = 10 dB. As θ increases,

the OOB emission increases and for large values of θ, the OOB emission approaches an

unaccepted level of 5 dB. On the other hand, by increasing θ, the achievable rate increases.

In fact, we have C1 = Cind and C∞ → C. Therefore, θ provides a flexible mechanism

to capture the trade-off between an acceptable OOB emission and a desired rate. For

example, θ = 10 can result in an acceptable OOB emission of ∼ −30 dB while it provides

∼ 2.5 bits/s rate (i.e., 96% of the FTN capacity). In Fig. 6.8, the capacity of θ-limited

PSD with θ = 10 is compared with that of independent and capacity-achieving PSDs for

β = 0.5 and δ = 0.5. The channel follows a multi-path model with 5 taps where each

tap is a Gaussian random variable and the average in (6.18) is taken over 10000 channel
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Figure 6.7: Illustration of the effect of θ on OOB emission and capacity.

realizations. The two step algorithm proposed in Section 6.6 is utilized which includes a

water-filling step and a power adjustment step based on the threshold θ. The proposed

PSD improves the performance compared with the independent PSD and its performance

is very close to the capacity-achieving input.
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6.8 Conclusion

In this chapter, we analyzed the capacity of FTN signaling. We showed that an indepen-

dent PSD does not achieve the capacity of FTN signaling. Instead, the capacity-achieving

PSD is derived, which is proportional to the inverse of the folded-scaled spectrum of the

pulse shape. However, the capacity-achieving input causes practical issues such as OOB

emission. To solve these issues, we introduce a new optimizing problem with an additional

constraint on the input PSD. The introduced θ-limited input PSD can strike a trade-off

between the independent input and the capacity-achieving input. The value of θ can be

engineered to achieve an acceptable OOB emission and a desirable capacity.
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Chapter 7

Exploiting Time Asynchrony in

Multiuser Transmit Beamforming

In this chapter, we analyze the benefits of intentionally adding timing mismatch in the

downlink transmit beamforming for wireless transmission. Transmit beamforming enables

the so-called space-division multiple access (SDMA), where multiple spatially separated

users are served simultaneously. The optimal beamforming vectors can be found to min-

imize the average transmit power under each user’s Quality-of-Service (QoS) constraint.

We show that intentionally adding timing offsets between the transmitted signals can sig-

nificantly reduce the average transmission power compared with the conventional optimal

beamforming method while providing the same QoSs for users. The frequency-selectivity

in communication channels provides the opportunity to exploit intelligent design for per-

formance improvement. The frequency-selectivity is limited in environments with line-of-

sight links or little scattering. In such environments, we propose adding intentional time

delays to induce frequency-selectivity that can be exploited. We provide three different

methods exploiting the artificially induced frequency-selectivity, which improve the per-
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formance with a computational complexity similar to that of the optimal synchronous

beamforming. We derive the expressions for the achievable rates using the proposed

methods and then provide efficient algorithms to solve the minimum power optimiza-

tion. We show analytically and numerically that our proposed methods outperform the

conventional optimal transmit beamforming.

7.1 Introduction

Transmit beamforming is a versatile technique for signal transmission to serve multiple

users simultaneously in multiple-antenna systems [106]. With multiple antennas, the idea

of transmit beamforming is to transmit directional beams to reduce the co-channel in-

terference and, thus, enables serving several users using the same resource slot, which

is called spatial division multiple access (SDMA). In contrast to the space-time coding

methods [25], which can be designed in the time-space domain without the aid of channel

state information (CSI), transmit beamforming exploits the CSI to combat the channel

fading [22, 107, 108]. In theory, dirty paper coding (DPC), a multiuser encoding strategy

based on the interference pre-subtraction [109], is the optimal (capacity-achieving) strat-

egy in multiple-input multiple-output (MIMO) downlink channels from the base station

to mobile users [110]. However, DPC is challenging to implement in practical systems due

to the high computational burden of successive encoding and decoding, especially when

the number of users is large.

Thus, in the practical scenarios, where users have limited computational capabilities and

only employ a single antenna, the beamforming is proposed as an alternative solution of

DPC [111, 112, 113, 114, 115, 116]. Beamforming has been shown to achieve a relatively

large fraction of DPC capacity with a lower computational complexity when the base
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station has multiple antennas, and each user has a single antenna [117]. Moreover, it

has been shown that if the beamforming vectors are chosen optimally, the sum rate of

BF approaches that of DPC as the number of users goes to infinity [118, 119]. As an

example, in multibeam satellite communications [120], the burden of interference cancel-

lation is carried by the transmission side at the gateway instead of the user terminals

equipped with a single antenna and limited computational capabilities [121]. Therefore,

beamforming techniques with low complexity are more favorable than more complex DPC

or Superposition/ successive interference cancellation (SIC) methods.

Many different techniques have been proposed in the literature for the multiple-input-

single-output (MISO) minimum power beamforming problem [122, 123, 124, 125] which

generally assume symbol-level synchronization. However, in this chapter, we incorporate

the idea of introducing timing offsets at the transmitter side to improve the performance.

The idea of intentionally introducing timing offset was investigated in other contexts. It

was shown in [83] that with time asynchrony, the achievable rate region could be improved

for multiple access channels. By intentionally introducing symbol asynchrony in the trans-

mitted signal, a higher diversity gain could be achieved by zero-forcing detection in spatial

multiplexing [9, 4, 48]. The benefits of asynchronism in Code Division Multiple Access

(CDMA) systems with random spreading were analyzed in [126], and it was shown that

asynchronous transmission could indeed enhance the spectral efficiency. Besides, asyn-

chronous NOMA (ANOMA) systems could achieve a better throughput performance than

the conventional (synchronous) NOMA systems [127, 128, 89, 129]. Orthogonal differential

decoding could be improved by utilizing the oversampling technique [47, 46] to achieve the

sampling diversity gain. An asynchronous network coding (ANC) transmission strategy

for multiuser cooperative networks was investigated in [130], where the received signals

from multiple sources were asynchronous to each other. In [131], a novel interference can-

cellation (IC) technique was proposed for asynchronous NOMA systems, which exploited
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a triangular pattern to perform the IC. It was shown that the NOMA with the proposed

asynchronous IC technique could outperform the conventional synchronized orthogonal

multiple access (OMA).

Traditionally, time asynchrony is viewed as a source of performance degradation that has

to be mitigated. However, we intentionally add time delays to induce frequency-selectivity

that can be exploited. In many applications, such as satellite communication, there is a

line-of-sight path or little scattering in the environment, limiting the frequency-selectivity

gains. In this chapter, we propose to exploit the artificially added frequency-selectivity,

induced by adding time delays, when the environment has little scattering. In a related

work [112], opportunistic beamforming is proposed, in which channel fluctuations are

introduced in the time domain by changing the phase and amplitude of each antenna

element even if the physical channel gains have minimal fluctuations. Opportunistic

beamforming exploits the fluctuations to achieve multiuser diversity. Similarly, we in-

duce the frequency-selectivity by intentionally adding timing offsets even if the physical

channel is frequency-flat and exploit that to achieve better performance, i.e., reduce the

transmission power.

We propose three methods to exploit induced frequency-selectivity. The first method

requires no additional processing at the transmitter or the receiver beyond that in a

conventional system, except for adding time delays among transmitted streams at the

transmitter side. We prove that the average power of the induced frequency-selective

channels can be reduced by proper choice of time delays. Thus, we will have reduced

inter-user interference (IUI) and improved performance. The second method applies sim-

ple frequency transformations at the transmitter and receiver to decompose the effective

frequency-selective channels into parallel multi-channel. It employs power allocation al-

gorithms to reduce the transmit power further. The third method applies the concept

of oversampling in conjunction with the asynchronous transmission to generate a system
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model with a higher rank, enabling IUI cancellation.

The remainder of this chapter is organized as follows. In Section 7.2, the general system

model and some introductory notes are presented to set the scene for introducing the pro-

posed methods. In Section 7.3, Method A, its corresponding rate expressions and its per-

formance are analyzed. In Section 7.4, Method B and its corresponding rate expressions

are presented, and an efficient algorithm to solve the corresponding power minimization

is provided. In Section 7.5, Method C with user scheduling and oversampling technique

is presented. Next, the rate expressions with simplifying sub-channel/power assignments

are provided to enable SDR. In Sections 7.6 and 7.7, the numerical results and final re-

marks are presented, respectively. The materials in this chapter are originally published

in [132].

7.2 General System Model and Preliminaries

We consider a downlink wireless communication system consisting of one transmitter

equipped with M transmit antennas and K single-antenna users where the environment

has limited frequency-selectivity or more specifically is frequency-flat. The system oper-

ates over a multi-user fading channel and the transmitter sends a block of N complex

symbols to each user. Channel coefficients change independently from one block to an-

other and are perfectly known at the base station (BS) [123].

Let dk = (dk[1], · · · , dk[N ])T ∈ CN×1 denote the random vector of symbols, where dk[n]

is the symbol intended for User k at time instant n with average power of E[|dk[n]|2] = 1.

In practical systems, these symbols are selected from an arbitrary constellation; however,

to derive the achievable rate expressions and compare the proposed methods, we assume

that the symbols are drawn from a Gaussian distribution, as commonly assumed in the
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related works in the literature [133]. The symbols can be time-precoded properly to yield

precoded symbols of sk = (sk[1], · · · , sk[N ])T ∈ CN×1, k = 1, · · · , K. Then, the precoded

symbols are linearly modulated by a unit-energy real-valued pulse as:

sk(t) =
N∑
n=1

sk[n]p(t− nT ), (7.1)

where T is the symbol interval and p(t) is the pulse shaping filter which can be assumed

to be a rectangular pulse shape (rect.) (a theoretical pulse shape most common in the

literature) or a root-raised cosine (r.r.c.) pulse with roll-off factor of β (a common pulse

shape in many communication standards like DVB-S2X standard [94] for high throughput

satellite systems).

(a) Synchronous transmission (b) Asynchronous transmission

Figure 7.1: Demonstration of synchronous and asynchronous transmission.

To exploit the benefits of time asynchrony, the time delay of τkT is intentionally inserted

between the transmitted streams where τk is the normalized timing offset intended for

User k. Thus, the transmitted signal is denoted as s(t) =
∑K

k=1wksk(t− τkT ), where

wk ∈ CM×1 denotes the beamforming vector applied to the transmitting antenna elements

to generate the spatial channel for transmission to User k. Putting τk = 0, k = 1, · · · , K

will result in the synchronous system model. In previous chapters, we have shown that

the uniform time delays, i.e., τk = (k − 1)/K, result in optimal performance in different

settings. Thus, in this chapter, we use the uniform time delays although any other choice
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of time delays is still applicable. The difference between synchronous and asynchronous

transmission is demonstrated in Fig. 7.1. The introduced timing offsets at the transmit

side are known by the BS and can be sent to the users. The channel might also introduce

additional time delay at the user side which needs to be estimated and compensated by

the synchronization methods. The effect of the residual timing synchronization error is

analyzed in [128]. We assume that channel-imposed time delays are compensated by the

users.

The received signal at User k can be denoted as yk(t) =
∑K

l=1 h
H
kwlsl(t − τlT ) + nk(t)

where hk ∈ CM×1 denotes the channel vector for User k and nk(t) is the additive white

Gaussian noise (AWGN) at the kth user with variance of σ2
k. Applying the received signal

at the kth user to a matched filter with the impulse response p(t) and sampling the filter

output at time instants tn = nT + τkT , n = 1, 2, · · · , N yields a set of statistics, yk[n],

for detecting the transmitted symbol vectors. Denoting yk = (yk[1], · · · , yk[N ])T , we will

have yk =
∑K

l=1Gklh
H
kwlsl + nk. The matrix Gkl, called the “offset matrix”, is an

N ×N Toeplitz matrix whose elements depend on the pulse shape and the corresponding

time delay and are denoted as:

[Gkl]m,n = g(τklT + (m− n)T ) , gτkl [m− n], m, n = 1, · · · , N, (7.2)

where τkl = τk − τl and g(t) = p(t) ∗ p(t). Denoting u as the number of significant

(truncated) side-lobes in the Nyquist pulse shape, the offset matrix is a u-banded Toeplitz

matrix. The vector nk represents the noise vector at User k whose covariance matrix is

Qk = E[nknk
H ] = σ2

kIN . For any square-root Nyquist pulse, e.g., r.r.c., Gkk = IN

and GT
kl = Glk. Also note that for the synchronous transmission, i.e., τk = 0, ∀k, all

the timing offset matrices become an identity matrix. Intuitively, by intentionally adding

time delays, the interfering signals at the receiver side will appear as signals that have
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passed through a channel with multiple taps, i.e., a frequency-selective channel. Method

A exploits the reduced power of the interfering frequency-selective channels, and Method

B exploits frequency-selectivity by using Discrete Fourier Transform (DFT) and proper

power management, and Method C exploits oversampling to enable IUI cancellation which

are illustrated in Fig. 7.2. The details of these methods will be presented in different

sections as follows.

(a) synchronous method (b) Method A

(c) Method B (d) Method C

Figure 7.2: Simple illustration of the proposed methods: (a) the conventional synchronous
method, (b) Method A: utilizes the “reduced IUI ” caused by asynchronous transmission, (c)
Method B : exploits the “frequency-selectivity” enabled by asynchronous transmission. (d)
Method C : exploits “additionally available rank” introduced by asynchronous transmission
and oversampling. Colors yellow, grey and white indicate the desired signal, the IUI, and
no-interference, respectively.
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7.3 Spatial Beamforming Design

with No Time-domain Precoding

In this section, we present Method A which requires no additional processing at the

transmitter or receiver side. Compared with a conventional system, the only change is

the introduction of timing offsets at the transmitter. With no time-domain precoding,

i.e., sk = dk, the received samples at User k can be written as yk[n] = hHkwkdk[n] +∑K
l=1
l 6=k
hHkwl

∑N
m=1[Gkl]n,mdl[m] + nk[n], n = 1, · · · , N where Gkl becomes an identity

matrix for the synchronous transmission. Assuming Gaussian-distributed symbols, the

variance of the effective noise, i.e., ñk[n] =
∑K

l=1
l 6=k
hHkwl

∑N
m=1[Gkl]n,mdl[m]+nk[n], can be

calculated as σ̃2
k[n] =

∑K
l=1
l 6=k
|hHkwl|2

∑N
m=1[Gkl]

2
n,m + σ2

k. As a result, the achievable rate

at User k can be written as rk = limN→∞
1
N

∑
n log2(1 +

|hHk wk|2
σ̃2
k[n]

). Note that rk provides

a lower-bound for the achievable rate of non-Gaussian symbols. Due to the Toeplitz

structure of the offset matrices, the expression for the achievable rate can be further

simplified. For non-boundary sub-channels, i.e., n = u, · · · , N−u, the variance of effective

noise is independent of the sub-channel index, i.e., σ̃2
k =

∑K
l=1
l 6=k
|hHkwl|2

∑u
n=−u g

2
τkl

[n]+σ2
k.

Therefore, as N → ∞, the effect of boundary sub-channels vanishes and the achievable

rate can be written as:

rAk = log2

(
1 +

|hHkwk|2∑K
l=1,l 6=k ητkl|h

H
kwl|2 + σ2

k

)
, (7.3)

where rAk denotes the achievable rate by asynchronous transmission and symbol-by-symbol

detection at User k, ητkl =
∑u

n=−u g
2
τkl

[n] represents the “offset coefficient”, and u is the

number of significant (truncated) side-lobes in the Nyquist pulse shape. Note that, al-

though N →∞ is required for rigorous derivation of the achievable rate, rAk approximates

the achievable rate very well even for a moderate block length.
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The offset coefficients ητkl are the key factors to analyze the achievable rates of Method A.

The offset coefficients represent the average power of the frequency-selective channels of

interfering users. With synchronous transmission, i.e., τk = 0,∀k, the offset coefficients are

equal to one and as a result, the achievable rates simplify to the conventional synchronous

rate expressions rsynchk = log2

(
1 +

|hHk wk|2∑K
l=1,l 6=k |h

H
k wl|2+σ2

k

)
[123]. However, for asynchronous

transmission, i.e., 0 < τk < 1, the effective frequency-selective channel has a lower average

power which is verified and quantified in the next lemma.

Lemma 7.1. For any Nyquist filter denoted as g(t), the offset coefficient defined as ητ =∑u
n=−u g

2
τ [n], for a given τ , has the following property:

ητ ≤ η0 (7.4)

In addition, ητ can be calculated for the rectangular pulse and root raised cosine pulse with

roll-off factor of β as:

ηrect.τ = τ 2 + (1− τ)2, ηr.r.c.τ = 1− β/4 + β cos(2πτ)/4, (7.5)

respectively.

Proof. The proof is presented in Appendix D.1.

This lemma states that sampling a Nyquist pulse at a time instant different than its peak

value leads to a reduced-power set of samples. Equivalently, it can be interpreted that

the average power of the induced frequency-selective channels can be reduced by a proper

choice of time asynchrony. The reduction in the power is caused by out-of-phase addition

of folded spectrum and is proportional to the out-of-Nyquist-band spectrum of the used

pulse shape, as explained in Appendix D.1. For example, for the perfect Nyquist pulse,
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i.e., sinc function, the power of samples does not decrease with any choice of timing offsets

in the sampling. In other words, when β = 0, ηr.r.c.τ = 1 for all values of τ . For other values

of β, the choice of timing offset impacts the power of resulting samples. For example,

τ = 0 results in the maximum of ητ = 1 and τ = 1/2 results in the minimum of 1− β/2

for the r.r.c. pulse shapes. In Fig. 7.3, the behaviour of the offset coefficient with respect

to the normalized timing offsets is shown for a rect. pulse and truncated r.r.c. pulses

with the roll-off factor β = 0.1, 0.5, 1. Note that τ = 0.5 results in the smallest offset

coefficient.

Figure 7.3: Values of ητ for different timing offsets.

The power minimization problem can be expressed as [111, 125]:

min
{wk}Kk=1

pavg =
K∑
k=1

||wk||2 (7.6)

s.t.
|hHkwk|2∑K

l=1,l 6=k ητkl|h
H
kwl|2 + σ2

k

≥ γ∗k, k = 1, · · · , K,

where the parameters γ∗k = 2r
∗
k − 1 describe the transmit power and the signal to in-

terference plus noise ratios (SINRs) required by each user. The optimal solution can be

obtained using the uplink-downlink duality and modifying the optimal algorithm pre-
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sented in [111, 125]. For completeness, the highlight of the algorithm is presented in

Appendix D.2.

Proposition 7.1. The average transmission power obtained from the asynchronous trans-

mission in (7.6) is less than that of the synchronous method, i.e., pAavg,opt < psynchavg,opt.

Proof. The proof is trivial as the minimization problem for both the synchronous and

asynchronous methods include the same objective function while having looser constraints

for the latter due to the reduced IUI.

7.4 Spatial Beamforming design

with Individual Time-domain Precoding

In this section, we present Method B which exploits DFT to decompose the induced

frequency-selective channels into parallel multi-channels and applies power allocation to

further reduce the transmit power. Recalling the received samples at User k, yk =∑K
l=1Gklh

H
kwlsl+nk, note that the offset matrices are banded Toeplitz matrices. Banded

Toeplitz matrices are asymptotically equivalent to circulant matrices as the matrix di-

mension goes to infinity [134, 135]. The first implication of the asymptotic equivalence of

Banded Toeplitz matrices with circulate matrices is that a banded Toeplitz matrix can be

diagonalized by DFT matrices as its size grows large. In other words, as N →∞, matrix

Gkl can be denoted as UNΛklUN
H where UN denotes the N ×N DFT matrix and Λkl

is a diagonal matrix whose nth diagonal element is denoted as [Λkl]nn = λkl[n]. Diagonal

structure of Λkl = UH
NGklUN is also verified in Fig. 7.4a for a moderate number of block

length. The off-diagonal residual, defined as sum of squared of off-diagonal elements is

shown for the r.r.c. pulse and various values of N . It can be seen that, as N increases, the
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off diagonal elements converge to zero and, thus, the offset matrices can be diagonalized

by DFT matrix.

(a) Verification of diagonal structure of
Λkl = UH

NGklUN with r.r.c. pulse.
(b) Comparison of Gτkl(f) and λkl(n) with
r.r.c. pulse and N = 100.

Figure 7.4: This figure verifies that for sufficiently large N , Toeplitz matrix Gkl can be diagonal-
ized with DFT matrices where the diagonal elements (λkl[n]) are the samples of the generating
function of Gkl, i.e., Gτkl(f). (a) shows that after diagonalizing matrix Gkl with DFT matri-
ces, the off-diagonal residual goes to zero as N increases. (b) shows the equivalence of diagonal
elements of Λkl and samples of Gτkl(f), i.e., λkl[n] = Gτkl(n/N)

.

Therefore, to diagonalize the offset matrices, each data stream can be precoded as, sk =

UNPk
1/2dk where UN is the N ×N DFT matrix and Pk is a diagonal matrix whose nth

diagonal element is the power coefficient of User k’s nth sub-channel denoted by Pk[n].

At User k, the received samples are multiplied by UH
N to get:

ŷk = UH
Nyk = hHkwkP

1/2
k dk +

K∑
l=1
l 6=k

Λklh
H
kwlP

1/2
l dl + n̂k, (7.7)

where the covariance matrix of n̂k is equal to σ2
kIN . Then, assuming Gaussian signaling,

the achievable rate at User k can be written as:

rBk = lim
N→∞

1

N

N∑
n=1

log2

(
1 +

Pk[n]|hHkwk|2∑K
l=1,l 6=k |λkl[n]|2Pl[n]|hHkwl|2 + σ2

k

)
. (7.8)
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The next implication of the asymptotic equivalence of banded Toeplitz matrices with

circular matrices is that the diagonal elements of Λkl are samples of the generating

function of matrix Gkl. In more details, defining the generating function of Gkl as

Gτkl(f) =
∑∞

n=−∞ gτkl [n]e−j2πfn, f ∈ [0, 1], we have λkl[n] = Gτkl(n/N), n = 1, · · · , N

[53]. For example, for the offset matrix Gkl with r.r.c. pulse and N = 100, the absolute

values of λkl[n] and the function |Gτkl(f)| (denoted as λ[n] and Gτ (f) in the legend for

better presentation) are shown in Fig. 7.4b.

Defining fn = n/N , dfN = 1/N and Pk(fn) = Pk[n], we can rewrite the achievable rate as

rBk = limN→∞
∑N

n=1C(fn)dfN where C(fn) = log2

(
1 +

Pk(fn)|hHk wk|2∑K
l=1,l 6=k |Gτkl (fn)|2Pl(fn)|hHk wl|2+σ2

k

)
.

Because C(fn) is bounded and almost everywhere continuous on the interval [0, 1], then

it is Reimann integrable on the interval [136], and we get:

rBk =

∫ 1

0

log2

(
1 +

Pk(f)|hHkwk|2∑K
l=1,l 6=k λkl(f)Pl(f)|hHkwl|2 + σ2

k

)
df, (7.9)

where λkl(f) = |Gτkl(f)|2, called the “offset function”, depends on the pulse shape and

the corresponding time delay τkl. The power distribution function of User k is denoted

as Pk(f), f ∈ [0, 1]. A similar approach is also used in [137] to show the capacity region

of broadcast channels with inter-symbol interference (ISI) and colored Gaussian noise.

The offset function λkl(f) is the deciding factor on the achievable rates of Method B.

Various examples of the offset function is demonstrated in Fig. 7.5 for r.r.c. pulse shape

and different time delays. The addition of time delays effectively transforms the flat

fading channels into frequency-selective channels which can be exploited by proper power

spectrum management.

The average transmission power can be calculated as
∑K

k=1 ||wk||2
∫ 1

0
Pk(f)df , hence, the
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Figure 7.5: Demonstration of λkl(f) for r.r.c. pulse with β = 0.5, 1 and different values of timing
offsets.

power minimization can be written as:

min
{Pk(f),wk}Kk=1

pavg =
K∑
k=1

||wk||2
∫ 1

0

Pk(f)df (7.10)

s.t.

∫ 1

0

log2

(
1 +

Pk(f)|hHkwk|2∑K
l=1,l 6=k λkl(f)Pl(f)|hHkwl|2 + σ2

k

)
df ≥ r∗k, k = 1, · · · , K.

Proposition 7.2. The optimal transmission power obtained from the power minimization

in (7.10) is less than Method A, i.e., pBavg,opt < pAavg,opt.

Proof. The proof is presented in Appendix D.3.

Due to non-convexity of the objective function in (10) and also the non-convex set of

constraints, solving (10) leads to a computationally intractable problem. To reduce the

complexity, a two-step sub-optimal algorithm is proposed to find the beamforming vec-

tors and power distribution functions, subsequently. In the first step, the beamforming

vectors are obtained by assuming uniform power distribution functions which reduces the
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optimization problem to

min
{wk}Kk=1

pavg =
K∑
k=1

||wk||2 (7.11)

s.t.

∫ 1

0

log2

(
1 +

|hHkwk|2∑K
l=1,l 6=k λkl(f)|hHkwl|2 + σ2

k

)
df ≥ r∗k, k = 1, · · · , K.

To efficiently find the beamforming vectors under the rate constraints, the beamforming

vectors can be found using the lower bounds of the actual rate expressions (refer to

Appendix D.3 for more details). The optimization problem can be rewritten as

min
{wk}Kk=1

pavg =
K∑
k=1

||wk||2 (7.12)

s.t. log2

(
1 +

|hHkwk|2∑K
l=1,l 6=k

∫ 1

0
λkl(f)df |hHkwl|2 + σ2

k

)
≥ r∗k, k = 1, · · · , K.

Since the rate constraints in (7.12) are tighter versions compared with those in (11),

the solution of (7.12) is also a suboptimal solution for (11). The optimization problem

in (7.12) is equivalent to the optimization problem in (7.6) because
∫ 1

0
λkl(f)df = ητkl .

Hence, the optimal algorithm presented in Appendix D.2 can be used to find the optimal

beamforming vectors for the above problem as well.

In the second step, the power distribution functions are found. Power spectrum manage-

ment or Dynamic Spectrum Management (DSM) is a well-known and an effective method

for reducing the effect of crosstalk in Digital Subscriber Line (DSL) systems [138]. Various

DSM algorithms are proposed in the literature including the Optimal Spectrum Balancing

(OSB), Iterative Spectrum Balancing (ISB), Iterative Water-Filling (IWF) and Successive

Convex Approximation for Low complExity (SCALE) [139, 140, 141]. Denoting ||w∗k||2

and λkl(f)|hHkw∗l |2 as ρk and λ̂kl(f), respectively, where w∗k is the beamforming vectors

137



obtained from the first step, the DSM problem can be formulated as:

min
{Pk(f)}Kk=1

pavg =
K∑
k=1

ρk

∫ 1

0

Pk(f)df (7.13)

s.t.

∫ 1

0

log2

(
1 +

Pk(f)λ̂kk(f)∑K
l=1,l 6=k λ̂kl(f)Pl(f) + σ2

k

)
df ≥ r∗k, k = 1, · · · , K,

which can be solved efficiently with SCALE algorithm [142]. For example, the power

distribution functions for the case of M = 4, K = 4 using r.r.c. pulse shape with β = 0.5

and a random channel realization is shown in Fig. 7.6. Observe that the frequency-

Figure 7.6: Demonstration of power distribution functions obtained by the proposed two-step
algorithm for r.r.c. pulse with β = 0.5.

selectivity, imposed by asynchronous transmission, is exploited by the proposed algorithm

and further reduction in the average transmit power is achieved, i.e.,
∫ 1

0
Pk(f)df < 1, as

shown in the legend of Fig. 7.6.
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7.5 Spatial Beamforming Design

with Joint Time-domain Precoding

In this section, we present Method C that exploits oversampling and timing asynchrony.

Oversampling provides an independent set of sufficient statistics for the asynchronous

transmission which can be exploited to cancel the IUI [83].

(a) Sampling at generic users 1 and 2 (b) Oversampling at User k

Figure 7.7: Demonstration of oversampling method.

To obtain the set of sufficient statistics, each user samples the received signalK times more

than the previous methods, i.e., at time instants tjn = nT + τjT , for n = 1, 2, · · · , N, j =

1, · · · , K which yields a set of sufficient statistics yjk[n] for detecting the transmitted

symbol vectors [83]. The oversampling method is demonstrated in Fig. 7.7. Denoting

yjk = (yjk[n], · · · , yjk[N ])T , we will have yjk =
∑K

l=1 h
H
kwlGjlsl + njk where njk represents

the noise vector of the jth set of samples at User k whose covariance matrix is Qj
k =

E[njkn
j
k

H
] = σ2

kIN . Putting all the samples together as yk = (y1
k

T
, · · · ,yKk

T
)T results in:

yk =


G11 G12 ··· G1K

GT12 G22

...
...

...
... ... GK−1,K

GT1K ··· GTK−1,K GKK



hHk w1IN 0N ··· 0N

0N hHk w2IN
...

...
...

... ... 0N
0N ··· 0N hHk wKIN


( s1

s2
...
sK

)
+

 n1
k

n2
k

...
nKk


= GHks+ nk, (7.14)
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where 0N represents the N × N all-zero matrix. Matrix G contains the offset matrices

as its constructive blocks. Matrix Hk represents the effective channel coefficients at User

k which depends on the actual channel and the choice of beamforming vectors at the

antenna elements. The vectors s and nk denote the precoded symbols and the noise

vector at User k whose covariance matrix equals Gσ2
k due to oversampling. It is shown

that Matrix G with distinctive time delays is positive definite for any time-limited pulse

shape (which encompasses all the pulse shapes in practice) [7]. Therefore, unlike the

synchronous transmission where matrix G becomes rank-deficient, in the asynchronous

transmission with distinctive time delays, matrix G is full-rank [8]. Because matrix G is

full-rank, NK sub-channels are available to be exploited. In addition, matrix G is a block

Toeplitz matrix which by using uniform time delays and proper ordering in the received

samples become banded Toeplitz [93] and, thus can be diagonalized by DFT matrix, as

explained in Section 7.4.

In order to use the additionally available rank, and be able to cancel the co-channel

interference, the users should be divided into multiple groups with a common beamforming

vector assigned to each group. In this way, the effective channel matrix will be the same

for all the users in a group and the offset matrix can be diagonalized by DFT to remove the

co-channel interference. The information symbols of users within each group are precoded

jointly and transmitted by the same beamforming vector. Spatial-domain beamfroming

is used to avoid inter-group interference and time-domain precoding is used to avoid

intra-group interference as shown in Fig. 7.8.

Assume K/q groups, {G1, · · · ,GK/q}, where each of them includes q users, i.e., |Gg| =

q, g = 1, · · · , K/q and define a user-grouping function that assigns each user to a group,

i.e., π : K → G, where K = {1, · · · , K} and G = {1, · · · , K/q} are the set of user and

group indices, respectively. Each user, k, is assigned to a group, g, π(k) = g, and the

user-grouping policy will be discussed later. Unlike Method B with individual precoding,
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where each user’s data is precoded separately, here, the intended symbols of all users in a

group are precoded together. The intended symbols for the users in Group g are precoded

as
(
sTq(g−1)+1, · · · , sTqg

)T
= UNqP

′
g

1/2 (
dTq(g−1)+1, · · · ,dTqg

)T
where UNq and P ′g are

the Nq × Nq DFT matrix and Nq × Nq diagonal power allocation matrix, respectively.

After time-precoding, power allocation and pulse shaping, the signal for Group g can

be written as: Sg(t) =
∑q

i=1

∑N
n=1 sq(g−1)+i[n]p(t− nT − τiT ). Then, the signal for each

group is beamformed by w′g ∈ CM×1, and hence, the transmitted signal can be written as

S(t) =
∑K/q

g=1 w
′
gSg(t).

Figure 7.8: Method C’s System Model.

The received signal at the kth user can be denoted as yk(t) =
∑K/q

g=1 h
H
kw

′
gSg(t) + nk(t).

By employing the oversampling technique, explained before, we can have:

y′k =


G11 G12 ··· G1,q

GT12 G22

...
...

...
... ... Gq−1,q

GT1,q ··· GTq−1,q Gq,q

 K/q∑
g=1

hHkw
′
gUNqP

′
g

1/2

 dq(g−1)+1

dq(g−1)+2

...
dqg

+

 n1
k

n2
k

...
n
q
k


= G′

K/q∑
g=1

hHkw
′
gUNqP

′
g

1/2
d′g + n′k. (7.15)

As explained before, the banded Toeplitz matrix G′ can be diagonalized by DFT matrix,
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i.e., G′ = UNqΛ
′UH

Nq, as N → ∞ [135]. After multiplying y′k with UH
Nq, the resulting

samples can be written as ŷ′k = Λ′
∑K/q

g=1 h
T
kw
′
gP
′
g

1/2d′g+ n̂′k where the covariance matrix

of the effective noise vector equals Λ′σ2
k. Denoting the nth diagonal elements of the Λ′

and P ′g, as λ′[n] and P ′g[n], respectively, and assuming Gaussian signaling, the rate at the

kth user can be written as

rCk = limN→∞
1
N

∑
n∈Ik log2

(
1 +

P ′
π(k)

[n]λ′[n]|hHk w′π(k)|2∑K/q
j=1,j 6=π(k)

P ′j [n]λ′[n]|hHk w′j |2+σ2
k

)
where Ik represents the

set of sub-channels indices which are assigned to User k. The average transmit power

equals pavg = limN→∞
1
N

∑K/q
g=1 tr(Λ′P ′g)||w′g||2, thus, the optimization problem can be

formulated as

min
{w′g ,P ′g}

K/q
g=1 ,{Ik}Kk=1,π(.)

pavg = lim
N→∞

1

N

K/q∑
g=1

tr(Λ′P ′g)||w
′
g||

2 (7.16)

s.t. lim
N→∞

1

N

∑
n∈Ik

log2

(
1 +

P ′π(k)[n]λ′[n]|hHkw′π(k)|2∑K/q
j=1,j 6=π(k) P

′
j [n]λ′[n]|hHkw′j |2 + σ2

k

)
≥ r∗k, k = 1, · · · , K.

The sub-channel and group assignment polices make the above optimization problem

overly complicated and intractable. To solve the optimization problem efficiently, we use

a sub-optimal method of sub-channel and power assignment rule to simplify the opti-

mization problem. We assume the following simplifying assumptions: (I) a simple power

assignment rule for sub-channels which is, indeed, optimal for an AWGN channel, and

(II) the same q available sub-channel configurations for each group. These assumptions

are explained in Appendix D.4 in more details. After considering the above simplifying

assumptions, the power minimization problem can be formulated as:

min
{w′g}

K/q
g=1 ,{Pk}Kk=1,(π(.),φ(.))

pavg =
K∑
k=1

Pk||w′π(k)||
2 (7.17)

s.t.
Pk|hHkw′π(k)|2∑K/q

j=1,j 6=π(k) Pc(k,j)|h
H
kw
′
j|2 + σ2

k

≥ γ∗k, k = 1, · · · , K,

where π(.), φ(.) are the group assignment and sub-channel assignment functions, respec-
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tively, assigning each user to a group index, i.e., (π : K → G = {1, · · · , K/q}) and a

sub-channel assignment index (φ : K → S = {1, · · · , q}). The index c(k, j) denotes the

index of the user in Group j which has the same sub-channel assignment as the kth user,

i.e., c(k, j) = {l ∈ Gj|φ(l) = φ(k)}.

A key step in the proposed method lies in sub-channel/user-grouping. User scheduling and

sub-channel assignment is studied in various context in the literature including the NOMA

and Multicast Mutigroup beamforming [143, 121, 144, 145]. The underlying intuition for

user-grouping in Method C is that users assigned to the same group should have co-linear

(i.e., similar) channels since they need to use the same beamforming vector. On the

contrary, interfering users, assigned to other groups, should be orthogonal to minimize

the interference [119]. Therefore, inspired by the multigroup multicast nature of Method

C, we use the low-complexity user-grouping method detailed in [121]. Note that the

focus in this thesis is analyzing the benefits of time asynchrony and not the user-grouping

algorithm. Thus, any other alternative user grouping algorithm that fits our system model

can be employed.

The well-known SDR technique [146] can be applied by assuming that all the power

adjustment coefficients are equal to one. Thus, the original optimization problem which

is a quadratically constrained quadratic programming (QCQP) problem with non-convex

constraints can be relaxed to the following standard semi-definite programming (SDP).

min
{W ′g}

K/q
g:1

pavg =

K/q∑
g=1

tr(W ′
g) (7.18)

s.t. γ∗k

K/q∑
j=1,j 6=π(k)

tr(HkW
′
j ) + γ∗kσ

2
k − tr(HkW

′
π(k)) ≤ 0

W ′
g ≥ 0, ∀g ∈ {1, · · · , K/q}, (7.19)
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where Hk = hkh
H
k , W ′

g = w′gw
′
g
H and the non-convex rank-one condition is dropped.

Thus, the solution can be found by SDP solvers like CVX [147]. However, due to the

relaxation, the obtained solution will not, in general, consist of rank-one matrices. Hence,

an approximate solution to the original problem can be found using a randomization

technique like Gaussian randomization method [148]. We apply the following step to find

the power adjustment coefficients.

Let denote ||w′∗j ||2 and |hHkw
′∗
j |2 as ρ′j and αkj, respectively, where ŵ

′∗
j is a beamforming

vector candidate obtained from the Gaussian randomization method. Then, to find the

power adjustment coefficients, we solve the following optimization problem:

min
{Pk}Kk=1

pavg =
K∑
k=1

Pkρ
′
π(k) (7.20)

s.t.
Pkαk,π(k)∑K/q

j=1,j 6=π(k) Pc(k,j)αkj + σ2
k

≥ γ∗k, k = 1, · · · , K,

which is a linear program (LP) and can be solved easily by matrix inversion as the

inequalities are active at the optimal solution (see Appendix D.2 for more details). After

feeding Nrand beamforming vector candidates to the power control step, the one with

lowest objective function value is chosen as the final solution. In summary, the proposed

algorithm includes solving the SDP problem once and solving the LP problem Nrand times

[143].

7.6 Comparison and Numerical Results

7.6.1 Comparison

In Table 7.1, various properties of the proposed methods, including the complexity and

delay, are compared. Due to the limited computational capabilities of the users in a beam-
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Table 7.1: Comparison of the Proposed Methods

Methods Complexity at Tx Det. Delay Uplink Knowledge of Delays Oversampling Algorithm

synch. STE SS yes own delay no optimal
A STE SS yes own delay no optimal
B N -IFFT+STE FF yes own delay no sub-optimal
C Nq-IFFT+STE FF no all delays in own group yes sub-optimal

forming application, we only consider the complexity at the user side. The synchronous

method and Method A enjoy symbol-by-symbol (SS) detection with a possible single-tap

equalizer (STE) while Methods B and C perform detection on a frame-by-frame (FF)

basis and have additional complexity of N ×N IDFT matrix multiplication and Nq×Nq

IDFT matrix multiplication, respectively. However, the N ×N and Nq ×Nq IDFT ma-

trix multiplications can be effectively perforemd by N -point and Nq-point Inverse Fast

Fourier Transform (IFFT). The synchronous method, Methods A and B are applicable to

uplink with minor modifications, however, Method C is only applicable to downlink due

to the joint precoding which requires the collective information of all users in a group. In

addition, in Method C, the users require the knowledge of the user’s time delays in their

own group to perform oversampling, however, in other methods, each user only requires

its own time delay. The suggested algorithms for the synchronous and Method A are op-

timal while the multi-step algorithms for Methods B and C are sub-optimal. Providing

improved algorithms for Methods B and C is an interesting topic for future work.

7.6.2 Numerical Results

In this section, numerical simulations are performed to verify our presented results. The

Monte Carlo simulations are performed over 1000 realizations of random channel coeffi-

cients where the channel coefficients follow a Rayliegh fading model CN (0, 1). For each

such configuration, the same rate constraint is assumed for all users and the noise variance

is set to σ2
k = 0.1 for all users. Different configurations of transmit antennas (M), number

of users (K) and rate constraints (r∗k) are considered to show the advantages of the asyn-
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chronous methods. In Fig. 7.9a, the performance of the synchronous method is compared

(a) M = 6, r∗k = 1.5(bpcu) (b) K = 10, r∗k = 1.2(bpcu)

(c) M = 6, K = 8

Figure 7.9: Performance of Method A: (a) verifies that Method A needs less transmit power
to serve the same number of users and is able to serve more number of users. (b) verifies that
Method A needs less transmit power with a given number of transmit antennas and is able to
serve the same number of users with fewer transmit antennas. (c) verifies that Method A needs
less transmit power to satisfy a given rate constraint and is able to satisfy a wider range of rate
constraints.

with Method A with M = 6 transmit antennas and the rate constraint of r∗k = 1.5(bpcu)

for each user. Different pulse shapes are included to show the effect of pulse shape in

the performance of beamforming methods. For fair comparison, the synchronous method

is assumed to use the same pulse shape as its counterpart. As explained in Proposition

1, due to asynchrony, the choice of pulse shape has significant effect on the performance

improvement of Method A. As the roll-off factor of the r.r.c. pulse shape increases, the
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decrease in the transmit power increases. β = 1 provides the highest improvement while

β → 0 provides no reduction in power as proved in Proposition 1. Beside decreasing the

average transmit power, Method A can also support 10 users which is not possible with

the synchronous beamforming. In Fig. 7.9b, the comparison is performed for K = 10 and

r∗k = 1.2(bpcu) with respect to different number of transmit antennas. By increasing the

number of transmit antennas, the average transmit power decreases and the performance

of both synchronous and asynchronous methods converge. With large number of anten-

nas, the IUI can be completely removed by spatial beamforming and asynchrony loses

its benefits. However, as the number of transmit antennas decreases and the system be-

comes overloaded, the reduction in the average transmit power, obtained by asynchrony,

increases. For example, with M = 6 and r.r.c. pulse with β = 0.5, around 3dB power

reduction is achieved. In addition, using Method A, the required rate constraints can be

supported by 5 transmit antennas which is impossible with the synchronous beamform-

ing. In Fig. 7.9c, the comparison is presented for M = 6 and K = 8 with respect to

various rate constraints. For small rate constraints the gain provided by Method A is not

noticeable, however, as the rate constraints increase the reduction in the average transmit

power increases. In addition, the largest rate constraint that can be provided by the

synchronous method is r∗k = 1.8(bpcu) while Method A can support up to r∗k = 2.2(bpcu).

In Fig. 7.10, the performance of Method B using the 2-step algorithm proposed in Section

7.4 with SCALE DSM algorithm [142] and N = 100 is shown. In Fig. 7.10a, M = 6,

r∗k = 1.5[bpcu] and different number of users (K) are considered. As the number of users

increases, the reduction in the average transmit power increases. For example, for K = 9,

around 1dB power reduction is achieved. In Fig. 7.10b, considering M = 6 and K = 8,

the power reduction of around 10dB and 2dB is achieved at r∗k = 2.2 compared with

Method A by r.r.c. (β = 0.5) and rect. pulses, respectively.
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(a) M = 6, r∗k = 1.5(bpcu) (b) M = 6, K = 8

Figure 7.10: Performance of Method B : Method B improves the performance of the conventional
synchronous method and Method A. (a) verifies that Method B reduces the transmit power to
serve a given number of users. (b) verifies that Method B reduces the transmit power to satisfy
a given rate constraint.

(a) K = 10, r∗k = 1.2(bpcu) (b) M = 6, K = 10

Figure 7.11: Performance of Method C : Method C improves the performance of the conventional
synchronous method and Methods A and B (a) verifies that Method C is able to serve the same
number of users with fewer transmit antennas. (b) verifies that Method C is able to satisfy a
wider range of rate constraints.

In Fig. 7.11, the performance of Method C using the proposed algorithm in Section 7.5

with Nrand = 300, q = 2, and with/without user scheduling is shown. In Fig. 7.11a,

K = 10, r∗k = 1.2(bpcu) and different number of transmit antennas (M) are considered.

As the number of transmit antennas increases, the spatial domain becomes sufficient
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to cancel the IUI and Method C is not helpful. However, with low number of transmit

antennas, the spatial domain is unable to effectively cancel the IUI and user-grouping and

the precoding/oversampling technique greatly improves the performance. Furthermore,

by using Method C, the required rate constraints can be satisfied by M = 4 transmit

antennas. In Fig. 7.11b, with M = 6, K = 10, the power reduction of around 6dB and

4dB are achieved at r∗k = 1.4(bpcu) compared with Methods A and B, respectively. In

addition, for the chosen parameters, Method C can support up to r∗k = 2(bpcu) while

the synchronous method and Methods A/B can support up to r∗k = 1.2(bpcu) and r∗k =

1.4(bpcu), respectively. Note that the heuristic user scheduling method further reduces the

average transmit power. While we have presented the results for a few sets of parameters,

we have done extensive simulations with other choices of parameters and a similar trend

has been observed.

7.6.3 Frequency-Selective Channel Analysis

The main advantage of intentionally adding time delays is to transform flat-fading chan-

nels into frequency-selective channels and exploit the frequency-selectivity to improve

the performance. However, in some applications, the channel is inherently frequency-

selective which might impact the effectiveness of adding time delays at the transmitter.

To analyze the effect of timing offsets in such scenarios, consider a frequency-selective

environment where the channels follow a J-tap multipath channel. Then, the received

signal at User k can be denoted by yk(t) =
∑J

j=1

∑K
l=1 h

H
k,jwlsl(t − τlT − τk,j) + nk(t)

where hk,j ∈ CM×1 denotes the jth channel tap vector for User k and τk,j is the jth

delay tap to User k. Applying proper post-processing at the users, as explained in Sec-

tion II, the received samples denoted by yk = (yk[1], · · · , yk[N ])T , can be written as:

yk =
∑K

l=1G
fs
kl sl + nk, where Gfs

kl denotes the effective frequency-selective channel ma-
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trix calculated as Gfs
kl =

∑J
j=1 h

H
k,jwlGkl,j and the offset matrix Gkl,j is defined similarly

as:

[Gkl,j ]m,n = g(τlT + τk,j + (m− n)T ) , gτkl,j [m− n], m, n = 1, · · · , N. (7.21)

By considering the above effective frequency-selective channel matrix, all proposed meth-

ods, including Methods A, B and C can be applied to frequency-selective channels. Due

to limited space, the corresponding analysis is not included. For completeness, however,

the effective SINR metric is used to show the general impact of time delays in frequency-

selective channels. The effective SINR at User k can be calculated as:

SINRk ≈

J∑
j=1

|hHk,jwk|2g2
τkk,j

(0)

J∑
j=1

|hHk,jwk|2
n=u∑
n=−u
n 6=0

g2
τkk,j

(n) +
K∑
l=1
l 6=k

L∑
j=1

|hHk,jwk|2
n=u∑
n=−u

g2
τkl,j

(n) + σ2
n

, (7.22)

where the first, second and third components in the denominator represent, ISI, IUI and

noise, respectively. Because the channel is inherently frequency-selective, the effect of

intentionally adding time delays , i.e., τl 6= 0, ∀l is not significant. Assuming a two-

user scenario with r.r.c. pulse shape (β=0.5), MRT beamforming with respect to the

dominant channel path, transmit power of 10 dB and σ2
n = 1 in a 5-tap channel model, the

change of the averaged SINR for asynchronous transmission compared with synchronous

transmission is shown in Fig. 7.12.

The average SINR over 10,000 realizations of the channel is considered. For frequency-

selective channels, the average power ratio of the scattering paths and the dominant

path is assumed to be 0,−3 and −9 dB. For high scattering environments, the effect of

asynchronous transmission is negligible. However, as the power of the dominant path

compared with the scattering paths is increased, the effect of asynchronous transmission
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Figure 7.12: Effect of asynchronous transmission in frequency-selective channels

is intensified. In addition, due to multi-path effect, adding time delays can decrease the

performance in some scenarios, unlike the flat fading case, where adding time delays always

improve the effective SINR. In summary, in an inherently frequency-selective channel,

intentionally adding time delays is less effective. As an alternative, frequency offsets can

be intentionally added to induce time-selectivity to improve the performance [129].

7.7 Conclusion

In this chapter, we investigated the benefits of adding intentional time delays in the perfor-

mance of downlink transmit beamforming. We compared our proposed methods with the

conventional synchronous transmit beamforming method and showed that our proposed

methods improve the performance by decreasing the average transmit power. Method A,

which uses no time-domain precoding, exploits the reduction in the co-channel interfer-

ence power by proper choice of time delays. In Method B, the induced frequency-selective

channels are decomposed by DFT, and a further reduction in the average transmit power

is realized by applying power spectrum management algorithms. Method C employs joint
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time-domain precoding and an oversampling technique to obtain a set of sufficient statis-

tics, which results in a system model with higher dimensional full-rank matrices. The

additionally available rank helps to cancel the intra-group co-channel interference, while

the spatial beamforming reduces the inter-group IUI. In a nutshell, adding intentional

timing offsets provide powerful tools to manage the co-channel interference in downlink

beamforming scenarios.
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Chapter 8

Rate-region Analysis of the

Asynchronous Transmission for

Multiple Access Channels

In this chapter, we thoroughly analyze the rate-region provided by the asynchronous

transmission in multiple access channels (MACs). We derive the theoretical capacity

regions which apply to a wide range of pulse shaping methods. We analytically prove that

asynchronous transmission enlarges the capacity region of MACs. We show that although

successive interference cancellation (SIC) is sum-rate achieving for the conventional uplink

Non-orthogonal Multiple Access (NOMA) methods, it is unable to achieve the boundary

of the capacity region for the asynchronous transmission. We also demonstrate that for

the asynchronous transmission, the optimal SIC decoding order to achieve the maximum

sum-rate is based on the channel strengths of the users. This phenomenon is in contrast to

the conventional uplink NOMA, where the order of decoding does not affect the sum-rate.
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8.1 Introduction

With the increase of mobile users and the higher data demand, the use of Non-orthogonal

methods in wireless networks is inevitable. Notably, in the uplink, where multiple users

attempt to connect the base station (BS), orthogonal multiple access (OMA) incurs inef-

ficiency in resource utilization and requires more overhead signals. The capacity region of

the MAC channel is derived and expressed in [149, 150], which is conventionally named

the Cover-Wyner pentagon. However, recently, the system design and performance anal-

ysis of MAC channels have received new attention from academia and industry under the

category of uplink Non-orthogonal-multiple-access (NOMA). For example, in the power-

domain NOMA scheme, the signals for multiple users are superposed at different power

levels using superposition coding, and a multiuser detection method, such as successive

interference cancellation (SIC), is employed at the receiver [151]. The advantages of the

NOMA over the OMA have been extensively studied in [152] and the references therein,

e.g., providing higher system throughput compared with OMA and supporting massive

connectivity.

In this chapter, the results of [83] on the capacity of asynchronous MACs are generalized to

a wide range of pulse shapes, including the prevailing r.c. pulse shape. We further analyze

and compare the SIC detection method for the conventional synchronous transmission

and the asynchronous transmission. We prove that while SIC is optimal for synchronous

transmission in the capacity-achieving sense, it provides a sub-optimal rate region for

the asynchronous transmission. We analytically show the optimal decoding order of SIC

detection for the asynchronous transmission.

The rest of this chapter is organized as follows: In Section 8.2, the general system model,

characteristics, and input-output relation is outlined. In Section 8.3, the capacity region

is analytically derived for general types of pulse shapes, and the superiority of asyn-
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chronous transmission is proved. Finally, in Section 8.4, the main points of this chapter

are summarized.

8.2 System Model

In many practical situations, it is reasonable to assume that frame synchronism is achiev-

able with a means of channel feedback or cooperation among transmitters. However,

symbol anachronism is difficult to achieve due to the much smaller time scale involved

as explained in previous chapters. For a channel with K single-antenna users and one

common receiver, assuming frame synchronism, we can write the channel output as

y(t) =
K∑
k=1

hk

N∑
n=1

sk[n]p(t− nT − τkT ) + n(t), (8.1)

User k transmits a codeword (sk[1], · · · , sk[N ]) ∈ SNk where Sk represents the input do-

main, p(t) is the normalized pulse shaping function, i.e.,
∫
|p(t)|2dt = 1, with the support

of Tp, T denotes the symbol interval and n(t) is white Gaussian noise with power spectral

density equal to σ2
n. The τk ∈ [0, 1) accounts for the timing offset of User k, and hk rep-

resents the kth user channel coefficient and are known to the receiver to decode reliably

each of the transmitted messages. For capacity analysis, the symbols are assumed to be

chosen from Gaussian processes whose PSD are found optimally. It is assumed that the

pulse shape occupies frequency bandwidth of B. For example, for a r.r.c. pulse shape with

roll-off factor of β, the occupied bandwidth is B = 1+β
T

. T is assumed to be normalized

to 1 if not specified.

If the signals transmitted by the users are not aligned at the receiver, then the channel

is symbol asynchronous. For completeness of the material in this chapter, we include the
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system model derivation which is indeed similar to the one in the previous chapters. The

received signal is applied to a matched filter with the impulse response p(t) and its output

is samples at time instants tmk = mT + τkT , m = 1, 2, · · · , N , k = 1, · · · , K which results

in the samples of yk[m]. One can arrange the samples and define yk = (yk[1], · · · , yk[N ])T .

Thus, we can have the input output relation of yk =
∑K

l=1 hlRklsl + nk. Matrix Rkl is

an N ×N Toeplitz matrix whose elements depend on the pulse shape, the corresponding

time delay and are denoted as:

[Rkl]m,n =g(τklT + (m− n)T ) , gτkl [m− n], (8.2)

m,n = 1, · · · , N

where τkl = τk − τl and g(t) = p(t) ∗ p(t). The vector nk represents the noise vector

whose co-variance matrix is defined as Qkl = E[nknl
H ] = σ2

nRkl. For any square-root

Nyquist pulse, e.g., r.r.c., Rkk = IN and RT
kl = Rlk. Also note that for the synchronous

transmission, i.e., τk = 0∀k, Rlk = IN . We can put all the received samples together and

define y =
(
y1

T , · · · ,yKT
)T

to get the system model in a matrix form as:

y =


R11 · · · R1K

...
. . .

...

RK1 · · · RKK



h1IN · · · 0N

...
. . .

...

0N · · · hKIN



s1

...

sK

+


n1

...

nK

 = RHs+ n

(8.3)

where R is the NK × NK matrix which is called the “offset matrix”. Note that R is

constructed by Toeplitz blocks of Rlk.
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8.3 Capacity Region Analysis

To analyze the capacity region of the resulting asynchronous system model, we assume

two users while generalization to more than two users is straightforward. Let us de-

fine s1 and s2 as stationary Gaussian processes with power spectral density (PSD) of

{S1(f), S2(f) f ∈ [0, 1]} for User 1 and User 2, respectively.

Then, the capacity region of the asynchronous MAC channel can be denoted as:

C =
⋃

Sk(f)≥0,f∈[0,1]∫ 1
0 Sk(f)df≤Pk

k=1,2

(R1, R2),

0 ≤ R1 ≤ limN→∞
1
N
I(y; s1|s2)

0 ≤ R2 ≤ limN→∞
1
N
I(y; s2|s1)

0 ≤ R1 +R2 ≤ limN→∞
1
N
I(y; s1, s2)

 (8.4)

where Rk and Pk represents the achievable rate and the available power of User k, respec-

tively, and y represents the 2N received samples obtained as explained in Eq. 8.3. In the

next theorem, the capacity region is derived:

Theorem 8.1. For a two user MAC channel, the capacity region can be denoted as:

C =
⋃

Sk(f)≥0,k=1,2∫ 1
0
Sk(f)df≤Pk

(R1, R2),

0 ≤ R1 ≤ 1
2

∫ 1

0
log2

(
1 + S1(f)

σ2
1

)
0 ≤ R2 ≤ 1

2

∫ 1

0
log2

(
1 + S2(f)

σ2
2

)
0 ≤ R1 +R2 ≤ 1

2

∫ 1

0
log
(

1 + S1(f)
σ2
1

+ S2(f)
σ2
2

+
S1(f)S2(f)(1−G2

τ (f))

σ2
1σ

2
2

)
df


(8.5)

where σ2
1 = σ2

n

|h1|2 , σ2
2 = σ2

n

|h2|2 and Gτ (f) depends on the pulse shape and the timing offset

and is defined as

Gτ (f) =

∣∣∣∣∣ 1

T

∞∑
i=−∞

e−j2πτ(f+i)ĝ

(
f + i

T

)∣∣∣∣∣ , (8.6)

where ĝ(f) is the Fourier transform of the matched filter pulse g(t).
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Proof. The proof is presented in Appendix E.1.

Note that with no timing offset, Gτ (f) becomes the conventional folded spectrum which

is constant and is equal to 1 for Normalized Nyquist no-ISI satisfying pulse shapes. Then,

the capacity region of the MAC channel turns into the conventional Cover-Wyner region:

Csynch =

(R1, R2),

0 ≤ R1 ≤ 1
2

log2

(
1 + P1

σ2
1

)
0 ≤ R2 ≤ 1

2
log2

(
1 + P2

σ2
2

)
0 ≤ R1 +R2 ≤ 1

2
log
(

1 + P1

σ2
1

+ P2

σ2
2

)
df

 (8.7)

We present our first conclusion in the next proposition. Although this is a straightforward

outcome of the derived capacity region, it is of great importance from practical and

theoretical perspective.

Proposition 8.1. In a 2-users MAC channel, asynchronous transmission enlarges the

capacity region compared with the synchronous transmission.

Proof. To prove the proposition, it is enough to prove that for the asynchronous trans-

mission the function Gτ (f) is less than or equal to that of the synchronous transmission

in every frequency. This can be easily proved by using the fact that ĝ(f) is a positive

real-valued function which is satisfied because of matched filtering at the receiver side.

Thus,

Gasynch(f) =

∣∣∣∣∣ 1

T

∞∑
i=−∞

e−j2πτ(f+i)ĝ

(
f + i

T

)∣∣∣∣∣ ≤ 1

T

∞∑
i=−∞

∣∣e−j2πτ(f+i)
∣∣ ∣∣∣∣ĝ(f + i

T

)∣∣∣∣,
=

1

T

∞∑
i=−∞

ĝ

(
f + i

T

)
= Gsynch(f)
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The capacity region enlargement by the asynchronous transmission depends on the pulse

shape and the timing offset which is explained in more details next.

Example 8.1. In this example, the well-known and practically common pulse shape of

r.r.c is considered. After matched filtering, the effective pulse shape is raised cosine whose

frequency spectrum is denoted as:

ĝ(f) =


T |f | ≤ 1−β

2T

T
2

[
1 + cos

(
πT
β

(
|f | − 1−β

2T

))]
1−β
2T < |f | ≤ 1+β

2T

0 o.w.

. (8.8)

where β is the roll-off factor. The phase-shifted folded spectrum,

Gτ (f) =
∣∣ 1
T

∑∞
i=−∞ e

−j2πτ(f+i)ĝ
(
f+i
T

)∣∣ is periodic with period of 1 and based on the defi-

nition of ĝ(f), can be derived as:

Gτ (f) =


e−j2πτfA(−f) + e−j2πτ(f+1)A(f + 1) −1

2
< f ≤ −1+β

2

e−j2πτf |f | ≤ 1−β
2

e−j2πτfA(f) + e−j2πτ(f−1)A(−f + 1) 1−β
2
< f ≤ 1

2

, (8.9)

where A(f) = 1
2

[
1 + cos

(
πT
β

(
f
T
− 1−β

2T

))]
. To illustrate the effect of roll-off factor and

timing offset, G2
τ (f) is shown with various parameters in Fig. 8.1.

The next step to specify the capacity region is to find the optimum power allocation.

However, it is worth describing the achievable rate region with the constant power PSDs.

Assuming constant power for each user, i.e., Sk(f) = Pk, the achievable rate region can
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Figure 8.1: Demonstration of G2
τ (f) for r.r.c. pulse with β = 0.5, 1.

be denoted as:

C =
⋃
(R1, R2),

0 ≤ R1 ≤ 1
2

log2

(
1 + P1

σ2
1

)
0 ≤ R2 ≤ 1

2
log2

(
1 + P2

σ2
2

)
0 ≤ R1 +R2 ≤ 1

2
log
(

1 + P1

σ2
1

+ P2

σ2
2

+ P1P2(1−G2
τ (f))

σ2
1σ

2
2

)
df

 (8.10)

Using Proposition 1, it is obvious that even with constant PSDs, the asynchronous trans-

mission enlarges the capacity region, however, with optimizing the inputs PSDs, even

further enlargement is possible. Following the steps in [83], the optimization problem to

find the optimal PSD can be formulated as:

arg max
S1(f),S2(f)

max
R1,R2

αR1 + αR2 (8.11)

s.t. Rk ∈ C in (8.5),∫ 1

0

Sk(f)df = Pk
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for every 0 ≤ α ≤ 1. The inner maximization which describes the pareto points of the

region can be simplified as:

arg max
S1(f),S2(f)

max {αF (S1(f), 0) + (1− α)[F (S1(f), S2(f))− F (S1(f), 0)] ,

α[F (S1(f), S2(f))− F (0, S2(f))] + (1− α)F (0, S2(f))} (8.12)

= arg max
S1(f),S2(f)

(2α− 1)F (S1(f), 0) + (1− α)F (S1(f), S2(f)) 1/2 ≤ α ≤ 1

(1− 2α)F (S1(f), 0) + αF (S1(f), S2(f)) 0 ≤ α ≤ 1/2
(8.13)

where F (S1(f), S2(f)) = 1
2

∫ 1

0
log
(

1 + S1(f)

σ2
1

+ S2(f)

σ2
2

+ S1(f)S2(f)(1−|Gτ (f)|2)

σ2
1σ

2
2

)
df . Unlike the

synchronous case, where Sk(f) = Pk can achieve all the boundary points, in the asyn-

chronous case, not a single optimal PSD pair can achieve all the boundary points. After

solving the nonlinear optimization problem for various values of α, the result is shown in

Fig. 8.2.

It is shown that the asynchronous transmission improves the capacity region compared

with the synchronous transmission. In addition, τ = 0.5 provides the largest capacity

improvement. Although constant PSDs are optimal for synchronous transmission, con-

stant PSDs can not achieve the capacity for asynchronous transmission. However, even

with constant PSDs, the asynchronous transmission provides a significant improvement

in achievable rates compared with the synchronous transmission.

Note that by increasing the roll-off factor, β, the gain provided by asynchronous transmis-

sion is increased. For example, with constant PSDs, P1 = P2 = 10, σ2
1 = 1, σ2

2 = 5, τ = 0.5,

and using r.r.c. pulse shape with β = 0.5 and β = 1, asynchronous transmission provides

10% (Rsum : 1.23 → 1.36 [bits/s/Hz]) and 20% (Rsum : 0.92 → 1.11 [bits/s/Hz]) im-

provement in the sum-rate, respectively, compared with the synchronous transmission.

Optimizing PSDs enables additional 3 − 4% improvement. This is supported by the
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Figure 8.2: Capacity region of the asynchronous MAC channel for two users with P1 = P2 = 10
and r.r.c. pulse shape.

derivation of Gτ (f) function, as β = 1 results in more reduction in Gτ (f) function, shown

in Fig. 8.1. The underlying reason is because of the out-of-Nyquist-band portion of r.c.
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spectrum which increases as the roll-off factor increases. Increased out-of-Nyquist-band

portion causes more destructive addition in the phase-shifted folded spectrum which re-

sults in smaller values for Gτ (f). Note that with no out-of-Nyquist-band spectrum, i.e.,

β = 0, we have Gτ (f) = 1, f ∈ [0, 1], and thus, the capacity region is reduced to the

conventional Wyner-Cover pentagon. In summary, asynchronous transmission exploits

the out-of-Nyquist-band spectrum, and is of no use without it.

In the capacity region, 4 points are of great importance denoted as A,A′, B,B′ in Fig.

8.3. Points A and A′ are obtained by maximizing the sum-rate upper-bound over one

user’s PSD while the other user’s PSD is assumed to be constant. By formulating the

optimization problem, considering the KKT conditions and simple simplifications, we

have:

S∗k(f) =

λ− σ2
k̄

+ Pk̄
σ2
k̄

σ2
k

+
Pk̄
σ2
k
(1−G2

τ (f))

+

, k = 1, 2 (8.14)

where k̄ = {1, 2} − k and [x]+ = max{0, x}. It shows that the optimal PSD for points

A and A′ is not constant and depends on Gτ (f) as also stated in [83]. In addition, it

depends on the ratio of channel strengths, i.e.,
σ2
k̄

σ2
k
. Roughly speaking, if one of the users

has a much stronger channel strength, the dependence of stronger user’s PSD on Gτ (f)

reduces and it approaches a constant PSD. On the other hand, the weaker user’s PSD

greatly depends on Gτ (f), and no power is assigned to frequencies that Gτ (f) = 1. These

observations are illustrated in Fig. 8.4, where the optimized PSD for the stronger user in

Fig. 8.4b (row A) is almost constant with insignificant variations while the weaker user

selectively assigns its available power depending on Gτ (f). This fact is the underlying

reason for proximity of point A to the constant PSD corner and the large gap between A′

and the constant corner in Fig. 8.3b.
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Figure 8.3: Capacity region analysis of MAC channel with P1 = P2 = 10 and r.c. pulse shape
while the channels have equal or unequal strength

Points B and B′ are obtained by maximizing the sum-rate upper-bound over both users’
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PSDs. Similarly, the optimized PSDs can be obtained as:

S∗k(f) =

λ− σ2
k̄

+ S∗
k̄
(f)

σ2
k̄

σ2
k

+
S∗
k̄

(f)

σ2
k

(1−G2
τ (f))

+

, k = 1, 2 (8.15)

Again, if the difference between channel strengths is large, then, the stronger user’s op-

timal PSD approaches a constant one as shown in Fig. 8.4b (row B,B′). This is also

the reason that the point B′ is very close to A′ in Fig. 8.3b. For point B′, the stronger

user achieves the rate R1 =
∫ 1

0
log 2

(
1 +

S∗1 (f)

σ2
1

)
df where S∗1(f) is derived in (8.15) and is

almost a constant spectrum (also shown in Fig. 8.4b). The weaker user utilizes the resid-

ual available rate from the optimized sum-rate which is R2 = Rsum − R1. On the other

hand, for point B, weaker user achieves the rate R2 =
∫ 1

0
log 2

(
1 +

S∗2 (f)

σ2
2

)
df where S∗2(f)

is derived in (8.15) (also shown in Fig. 8.4b), which is far less than the rate achieved by

the constant PSD. In exchange, the sum-rate is maximized and the stronger user achieves

R1 = Rsum − R2. In a nutshell, with asynchronous transmission, in a near-far scenario,

the power optimization is more critical for the weaker user as the stronger user’s optimal

PSD approaches a constant PSD.
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Figure 8.4

For a synchronous scenario, the pentagon’s corner point can be achieved by the SIC
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method, and the rest of Pareto points on the connecting line are achieved by time-sharing.

This optimality is the reason that SIC is widely used in NOMA uplink literature. Due

to the SIC method’s importance, the SIC achievable rates are analyzed in the next sec-

tion, and few critical comparisons are drawn between the synchronous and asynchronous

transmissions.

8.3.1 SIC achievable rate region

In the SIC method, the information symbols of one user are decoded while the other

user’s signal is considered as noise. After the decoded symbols are removed, the symbols

of the other user are decoded with reduced interference. With Gaussian signaling, the

achievable rate tuples for the synchronous transmission can be denoted as:

R1 =
1

2
log2

(
1 +

P1|h1|2

P2|h2|2 + σ2
n

)
, R2 =

1

2
log2

(
1 +

P2|h2|2

σ2
n

)
(8.16)

R2 =
1

2
log2

(
1 +

P2|h2|2

P1|h1|2 + σ2
n

)
, R1 =

1

2
log2

(
1 +

P1|h1|2

σ2
n

)
(8.17)

which are achieved by the decoding order of {1, 2} and {2, 1}, respectively. The mentioned

rate tuples coincide with the corner points of the well-known pentagon capacity region

and the sum-rate is calculated as:

Rsum =
1

2
log2

(
1 +

Pj|hj|2

Pk|hk|2 + σ2
n

)
+

1

2
log2

(
1 +

Pk|hk|2

σ2
n

)
(k, j) = {(1, 2), (2, 1)}

(8.18)

=
1

2
log2

(
1 +

P1|h1|2

σ2
n

+
P2|h2|2

σ2
n

)
(8.19)

which is equal to the maximum sum-rate in capacity region Eq. (8.7). Recall the

asynchronous system model in Eq. (8.3), and rewrite the received samples as yk[m] =
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hksk[m] + hk̄
∑N

n=1 gτ [m− n]sk̄[m− n] + nk[m], k = 1, 2. Note that due to the time delay,

the IUI is caused by multiple interfering symbols rather than the one in the synchronous

case. Assuming Gaussian signaling, the achievable rate tuples for the asynchronous trans-

mission is denoted as:

R1 =
1

2
log2

(
1 +

P1|h1|2

ητP2|h2|2 + σ2
n

)
, R2 =

1

2
log2

(
1 +

P2|h2|2

σ2
n

)
(8.20)

R1 =
1

2
log2

(
1 +

P2|h2|2

ητP1|h1|2 + σ2
n

)
, R2 =

1

2
log2

(
1 +

P1|h1|2

σ2
n

)
(8.21)

where ητ =
∑n=∞

n=−∞ g
2
τ (n) and the corresponding decoding orders are {1, 2} and {2, 1},

respectively. Equivalently, ητ can be denoted as ητ =
∫ 1/2

−1/2
G2
τ (f)df and thus, ητ ≤ 1 with

equality achieved by τ = 0, as shown in Chapters 5. Particularly, for the r.r.c. pulse shape

ητ = 1− β/4 + β/4 cos(2πτ), which can be minimized by τ = 0.5 and has been derived in

Chapter 7. Therefore, for every set of power and channel coefficients, the asynchronous

transmission enjoys less inter-user interference and greater achievable rates. Unlike the

synchronous transmission where the decoding order has no effect on the sum rate, decoding

the stronger user first results in a larger sum-rate for the asynchronous transmission. In

more details, assuming |h1|2 > |h2|2, and P1, P2 6= 0, results in 1
2

log2

(
1 + P1|h1|2

ητP2|h2|2+σ2
n

)
+

1
2

log2

(
1 + P2|h2|2

σ2
n

)
> 1

2
log2

(
1 + P2|h2|2

ητP1|h1|2+σ2
n

)
+ 1

2
log2

(
1 + P1|h1|2

σ2
n

)
. Summary of our re-

sults are listed below:

Proposition 8.2. • The SIC rate tuples achieved by asynchronous transmission are

greater than that of the synchronous transmission.

Proof. The proof is immediately obtained by comparing the rate tuples expressed

previously and considering the fact that ητ ≤ 1.

• For synchronous transmission, the order of decoding in the SIC method does not

affect the sum-rate. On the contrary, for the asynchronous transmission, decoding
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the stronger user first and the weaker user next results in a larger sum-rate.

Proof. The proof is simply obtained by algebraic manipulations.

• Unlike the synchronous transmission, in which SIC is capacity-achieving optimal, the

SIC method can not achieve the optimal sum-rate for the asynchronous transmission.

Proof. The optimallity of SIC method in the synchronous transmission was ex-

pressed, previously. For the asynchronous transmission, the maximal sum-rate

achieved by SIC, assuming |h1|2 ≥ |h2|2, equals RSIC
sum = 1

2
log2

(
1 + P1|h1|2

ητP2|h2|2+σ2
n

)
+

1
2

log2

(
1 + P2|h2|2

σ2
n

)
. However, the capacity region boundary with constant PSDs is

denoted as Rconst.
sum = 1

2

∫ 1

0
log
(

1 + P1|h1|2
σ2
n

+ P2|h2|2
σ2
n

+ P1P2|h1|2|h2|2(1−G2
τ (f))

σ2
nσ

2
n

)
df . We can

prove that:

RSIC
sum =

1

2
log2

(
1 +

P1|h1|2

ητP2|h2|2 + σ2
n

)
+

1

2
log2

(
1 +

P2|h2|2

σ2
n

)
(8.22)

=1 1

2
log2

(
1 +

P1|h1|2∫ 1

0
Gτ (f)dfP2|h2|2 + σ2

n

)
+

1

2
log2

(
1 +

P2|h2|2

σ2
n

)
≤2 1

2

∫ 1

0

log2

(
1 +

P1|h1|2

Gτ (f)P2|h2|2 + σ2
n

)
df +

1

2
log2

(
1 +

P2|h2|2

σ2
n

)
=

1

2

∫ 1

0

log2

(
1 +

P2|h2|2

σ2
n

+
P1|h1|2

Gτ (f)P2|h2|2 + σ2
n

+
P1P2|h1|2|h2|2

Gτ (f)P2|h2|2σ2
n + σ4

)
df

≤3 1

2

∫ 1

0

log

(
1 +

P1|h1|2

σ2
n

+
P2|h2|2

σ2
n

+
P1P2|h1|2|h2|2(1−G2

τ (f))

σ2
nσ

2
n

)
df

= Rconst.
sum

where (1) is obtained by substituting η =
∫ 1

0
Gτ (f)df , (2) is the result of applying

the Jenson’s inequality to the convex function of log2(1 + 1
x
), and finally, (3) can be

achieved by simple calculations assuming Gτ (f) ≤ 1,∀f .

The mentioned results are illustrated in Fig. 8.5 where the capacity region with the

optimized PSDs, the optimal rate regions with constant PSDs and the achievable rate
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region by SIC method are included for P1 = P2 = 10, σ2
1 = 1, σ2

2 = 5, and using r.r.c.

pulse shape with β = 0.5.
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Figure 8.5: Rate region analysis of SIC method

8.4 Conclusion

In this chapter, we analyzed the capacity region of the uplink MAC channels. The results

apply to a wide range of pulse shapes, including the well-known r.r.c. pulse shape. The

asynchronous MAC channel provides a larger capacity region compared with the syn-

chronous MAC channel. Besides, we proved that the capacity region boundary of the

asynchronous MAC channel could not be achieved by the SIC method. Furthermore, the

sum-capacity-achieving SIC decoding order for asynchronous MAC is expressed.
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Chapter 9

Discussions and Future work

In this thesis, we analyzed the opportunities and challenges that time asynchrony provides

in a multiuser network. We showed that conventional system designs are incapable of

removing the harmful effects of time asynchrony on system performance. As an example,

we demonstrated that in a distributed massive MIMO system, neglecting the existing

time delays deteriorate the available rates and hinder the power scaling law. On the other

hand, we showed that the inherent time delays in a multiuser system could indeed be

useful and improve the system performance by proper architecture design. To this end,

we introduced proper sampling methods that generated sufficient statistics to detect the

transmitted symbols and analyzed the resulting system models. Favorably, the effective

system model is turned into an ISI channel with memory, which enables the use of MLSD

methods such as the Viterbi algorithm. As a result, a superior BEP performance is

obtained compared with the conventional synchronous system.

Next, we proposed to add timing offsets in downlink NOMA schemes intentionally. The

receiver architecture includes oversampling and a SIC scheme similar to the conventional

NOMA schemes, however, asynchrony reduces IUI and improves the overall performance.
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Besides, using novel precoding and simple post-processing at users, we exploited the addi-

tional degrees of freedom introduced by time asynchrony. In other words, we decomposed

the channel into independent sub-channels and eliminated the interference. We showed

that the proposed methods could improve the achievable rate-regions. We also analyzed

the capacity of FTN signaling, which is similar to the asynchronous downlink transmis-

sion. We showed that the capacity-achieving input causes practical issues such as OOB

emission. To solve these issues, we proposed a simple solution that can achieve an accept-

able OOB emission and a desirable capacity.

Next, we investigated the benefits of adding intentional time delays in the performance of

downlink transmit beamforming. We compared our proposed methods with the conven-

tional synchronous transmit beamforming method and showed that our proposed meth-

ods improve the performance by decreasing the average transmit power. In summary,

adding intentional timing offsets transform the flat fading channel into frequency selective

channels, and by using proper power allocation method and precoding, reduced transmit

power can be achieved compared with the conventional synchronous beamforming meth-

ods. Lastly, we thoroughly analyzed the capacity region of the uplink MAC channel for a

wide range of pulse shapes, including the well-known r.c. pulse shape.

In this thesis, the opportunities and fundamental performance bounds provided by time

asynchrony are discussed along with their underlying reasons. However, in this thesis, the

information about time delays was assumed to be known. The knowledge of time delays

plays a significant role in the system design and performance improvement brought by

asynchronous transmission. Therefore, it is essential to analyze and design a composite

receiver structure, including time delay estimation and symbols detection. The interplay

between time delay estimation and symbol detection and the effect of estimation error in

the system performance is interesting to analyze. It is interesting to consider asynchronous

transmission in more practical scenarios that encounter issues such as quantization error,
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phase offset, and analyze the overall system performance. Finally, as the last step to

validate the analytical results, it is vital to practically build such a system and evaluate

its performance with real data.
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Appendix A

Supplementary Proofs for Chapter 2

A.1 Proof of Theorem 2.1

We analyze four different receiver structures, including: MRC with perfect and imperfect

CSI and MRC-ZF with perfect and imperfect CSI. The output sample of either of these

receivers for detection of the ath symbol of the lth user can be written in a general

framework as:

y
mrc/mrc−zf
l,p/ip (a) =

√
ρd

K∑
k=1

N∑
n=1

T
mrc/mrc−zf
lk,p/ip (a, n)sk(n) + n

mrc/mrc−zf
l,p/ip (a)

Discarding the subscripts for different receivers and based on the assumption that the

coefficients are known perfectly at the receiver, the corresponding achievable rate can be

calculated as follows[31]:

Rl(a) = E

log2

1 +
ρd(Tll(a, a))2

ρd
∑∑

k,n
(k,n)6=(l,a)

(Tlk(a, n))2 + σ2
nl(a)

 (A.1)
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Because each of the coefficients is the arithmetic mean of M uncorrelated random vari-

ables, as M increases, their randomness decreases and they approach to their expected

value. As a result, the above expression can be approximated in the Massive MIMO

context as follows: [39, 153]

Rl(a) = log2

1 +
ρdE {(Tll(a, a))2}

ρd
∑∑

k,n
(k,n)6=(l,a)

E {(Tlk(a, n))2}+ σ2
nl(a)

 (A.2)

However, due to the existence of unknown time delays, the assumption of perfect knowl-

edge of coefficients at the receiver is not valid anymore. Because the expected value of

the coefficients is known by the receiver, in order to find the achievable rates, we rewrite

Eq. (A.1), as follows (the subscripts are discarded):

yl(a) =
√
ρd

K∑
k=1

N∑
n=1

E{Tlk(a, n)}sk(n) + ñl(a) (A.3)

where ñl(a) =
√
ρd
∑K

k=1

∑N
n=1 (Tlk(a, n)− E{Tlk(a, n)}) sk(n) +nl(a). In this new sys-

tem model, all the effective channel coefficients are known by the receiver and the effective

noise is denoted as ñl. It is mentioned in [154] that the achievable information rate for the

system model in Eq. (A.3) is given by considering the worst case uncorrelated additive

noise having the same variance as ñl(a). Variance of ñl(a) can be easily calculated as

σ2
ñl(a) = ρd

∑K
k=1

∑N
n=1 V ar{Tlk(a, n)} + σ2

nl(a). As a result, the achievable rate can be

written as:

Rl(a) = E

log2

1 +
ρdE

2{Tll(a, a)}
ρd
∑∑

k,n
(k,n) 6=(l,a)

E2 {Tlk(a, n)}+ ρd
∑K
k=1

∑N
n=1 V ar{Tlk(a, n)}+ σ2

nl(a)




The expectation can be discarded because the randomness of the coefficients is combined

with the noise and no randomness is left except the noise realizations where the worst
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case of Gaussian uncorrelated additive noise is considered [155]. Then,

Rl(a) = log2

1 +
ρdE

2{Tll(a, a)}
ρd
∑∑

k,n
(k,n)6=(l,a)

E2 {Tlk(a, n)}+ ρd
∑K
k=1

∑N
n=1 V ar{Tlk(a, n)}+ σ2

nl(a)


By using the fact that V ar{x} = E{x2}−E2{x}, the formula for the achievable rate can

be further simplified to:

Rl(a) = log2

(
1 +

ρdE
2{Tll(a, a)}

ρd
∑K

k=1

∑N
n=1E {(Tlk(a, n))2} − ρdE2{Tll(a, a)}+ σ2

nl(a)

)
(A.4)

Hence, for finding the achievable rates for different receivers, we just need to calculate the

values of E{(Tlk(a, n))2} and the variance of effective noise vector for different receivers.

Note that due to the structure of the system, the achievable rate for different symbols of

the frame except the I-boundary ones (negligible with respect to the frame length) is the

same, thus the index of a can be discarded. Note that, throughout the paper, for element-

wise power we use (T (p, q))2 and for elements of powered matrices we use T 2(p, q).

We show the step by step derivation for the MRC receiver with perfect CSI, and the

corresponding formulas for other scenarios can be derived similarly.

For the MRC receiver with perfect CSI the effective channel matrix is denoted as Tmrclk,p =

1
M

∑M
m=1

√
βmlβmkh

∗
mlhmkGmk and the values of E{|Tmrclk,p (a, n)|2} are calculated in the

next lemma.

Lemma A.1. The expected value of |Tmrclk,p (a, n)|2 can be calculated as follows:

E
{
|Tmrclk,p (a, n)|2

}
=


1
M

(
βll (2g

′′(a− n)− g′(a− n)) +Mβl
2
g′(a− n)

)
k = l

βlk
M g′′(a− n) k 6= l

(A.5)

where

g′[i] = E2
f(τ){g(iT − τ)} =

[∫ ∞
−∞

g(iT − τ)f(τ)dτ

]2
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g′′[i] = Ef(τ){g2(iT − τ)} =

∫ ∞
−∞

g2(iT − τ)f(τ)dτ

Proof. Case k = l:

E
{
|Tmrcll,p (a, n)|2

}
=

1

M2
E

{(
M∑
m=1

βml|hml|2Gml(a, n)

)(
M∑
m=1

βml|hml|2Gml(a, n)

)}
(A.6)

=
1

M2

 M∑
m=1

β2
mlE

{
|hml|4(Gml(a, n))2

}
+

M∑
m1=1

M∑
m2=1
m2 6=m1

βm1lβm2lE
{
|hm1l|

2Gm1l(a, n)|hm2l|
2Gm2l(a, n)

}

where the expectation is taken over different realizations in time. Expectations of the

elements of matrices Gml only depend on the pulse shape and the joint distribution of

time delays which are known by the receiver. For example, E {Gm1l(a, n)Gm2l(a, n)} can

be expressed as:

E {Gm1l(a, n)Gm2l(a, n)} =

∫ ∞
−∞

∫ ∞
−∞

g(t′ − τ1)g(t′ − τ2)fτm1l
,τm2l

(τ1, τ2)dτ1dτ2

where t′ = (a − n)T . Note that based on the system characteristics, the time delays

can follow any given correlated distribution or even they might be the same which is

more suited for collocated receive antennas , i.e., fτml1 ,τml2 (τ1, τ2) = f(τ1)δ(τ1 − τ2), or

independent for distributed receive antennas, i.e., fτml1 ,τml2 (τ1, τ2) = fτml1 (τ1)fτml2 (τ2).

Although no assumption is required for the joint distribution of delays, we consider the

distributed scenario and assume that all the time delays are independent and follow the

same distribution, i.e., fτml(τ) = f(τ). Therefore, we will have:

E {Gm1l(a, n)Gm2l(a, n)} =

[∫ ∞
−∞

g(t′ − τ)f(τ)dτ

]2

,

E
{

(Gml(a, n))2
}

=

∫ ∞
−∞

g2(t′ − τ)f(τ)dτ (A.7)

Note that, E2 [Gml(a, n)] and E [(Gml(a, n))2] depend on a and n thorough their differ-

ence, therefore we denote them as g′(a− n) and g′′(a− n), respectively. As a result, Eq.
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(A.6) can be presented as:

E
{
|Tmrcll,p (a, n)|2

}
=

1

M2

2g′′(a− n)
M∑
m=1

β2
ml + g′(a− n)

M∑
m1=1

M∑
m2=1
m2 6=m1

βm1lβm2l


=

1

M2

(
2g′′(a− n)Mβll + g′(a− n)(M2βl

2 −Mβll)
)

=
1

M

(
βll
(
2g′′(a− n)− g′(a− n)

)
+Mβl

2
g′(a− n)

)
(A.8)

where βk and βlk are defined as follows, respectively:

βk =
1

M

M∑
m=1

βmk, βlk =
1

M

M∑
m=1

βmlβmk (A.9)

Note that these values are bounded, i.e., minm βmk < βk < maxm βmk and minm βmlβmk <

βlk < maxm βmlβmk.

Case k 6= l: By taking similar steps, we can show that:

E
{
|Tmrclk,p (a, n)|2

}
=

1

M2
E

{(
M∑
m=1

√
βmlβmkh

∗
mlhmkGmk(a, n)

)(
M∑
m=1

√
βmlβmkhmlh

∗
mkGmk(a, n)

)}

=
1

M2

(
M∑
m=1

βmlβmkE
{
|hml|2|hmk|2(Gmk(a, n))2

})
=

1

M

(
g′′(a− n)βlk

)
(A.10)

which completes the derivation of expectations.

Covariance matrix of the effective noise vector is also calculated as:

COV {nmrcl,p } = E

{(
1

M

M∑
m=1

√
βmlh

∗
mlnm

)(
1

M

M∑
m=1

√
βmlhmln

H
m

)}

=
1

M2

M∑
m=1

βmlE
{
|hml|2

}
E
{
nmn

H
m

}
=
βl
M
IN (A.11)

By inserting the expected values of |Tmrclk,p (a, n)|2 and also the variance of the effective
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noise vector into Eq. (A.4), we have:

R̃mrcl,p ≈ log2

1 +
ρdMβl

2
g′[0]

ρd

(
g′′

K∑
k=1

βlk + (g′′ − g′)βll +Mβl
2
g′
)
− ρdMβl

2
g′[0] + βl



where g′ =
I∑

i=−I
g′[i], g′′ =

I∑
i=−I

g′′[i] and I is the number of significant side lobes of the

pulse shape.

A.2 Proof of Theorem 2.2

By taking similar steps as Appendix A.1, we can derive the expectations of the elements

of the effective matrix presented in Eq. (2.38), as follows:

E
{
|Tmrc

lk,ip(a, n)|2
}

=
1

M

βkk (γ′′lkk[a− n]− γ′lkk[a− n]) +Mβk
2
γ′lkk[a− n] +

K∑
j=1

βjkγ
′′
ljk[a− n]


where γ′ljk[i] = E2

f(τj ,τk) {λlmjg(iT − τmk)} and γ′′ljk[i] = Ef(τj ,τk)

{
λ2
lmjg

2(iT − τmk)
}

are

the expectations over the time delay distributions. Assuming the same distribution for

all the time delays, the receive antenna index is discarded. The covariance matrix of the

effective noise vector presented in Eq. (2.39) can be calculated similarly as:

COV
{
nmrcl,ip

}
=

 ρd
Mρp

g′′
K∑
k=1

βk +
1

M

 K∑
j=1

βjλ
′′
lj +

1

ρp

 IN (A.12)

where λ′′lk = Ef(τ){λ2
lmk}. By inserting these values into Eq. (A.4), the proof will be

complete.
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A.3 Details of MRC-ZF Receiver with Imperfect CSI

In this section, we provide some details on MRC-ZF structure, particularly for the imper-

fect CSI case. As explained before, when the channel coefficients are estimated by using

orthogonal pilot sequences, the effective channel matrices for all the K users are nonzero.

Therefore, we need at least K sets of samples to cancel them. Denoting ytm, t = 1, · · · , K

as the set of N samples, obtained at sampling times of etT + iT, i = 1, · · · , N , we collect

all the samples obtained at receive antenna m in a vector yosm = [(y1
m)T , · · · , (yKm)T ]T to

derive:

yosm =
√
ρdTms+ nosm (A.13)

where s = [s1
T , · · · , sKT ]T includes transmitted vectors of all users and Tm is defined as:

Tm =



T 1
m1 T 1

m2 · · · T 1
mk

T 2
m1 T 2

m2 · · · T 2
mk

...
. . . . . .

...

TKm1 TKm2 · · · TKmk


(A.14)

where T tmk represents the channel matrix of User k to receive antenna m in the tth set of

samples, i.e., T tmk =
√
βmkhmkG

t
mk where Gt

mk is defined by Eq. (2.21) with e = et. The

noise vector also includes all the noise vectors obtained from different sampling times, i.e.,

nosm =
(
(n1

m)T , · · · , (nKm)T
)T

and its covariance matrix is calculated by:

Σnos =



Σ11 Σ12 . . . Σ1K

Σ21 Σ22 . . . Σ2K

...
. . . . . .

...

ΣK1 ΣK2 . . . ΣKK


(A.15)
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where Σt1t2 is the covariance matrix between the noise samples obtained at times t1 and

t2, and its elements are defined as Σt1t2(i, j) = g((i − j)T + (et1 − et2)T ). The receive

antenna index is discarded because the noise covariance matrix is the same at all receive

antennas. The User l’s channel estimation to the mth receive antenna, i.e., c̃sml is equal

to:

c̃sml =
K∑
j=1

λslmjcmj + ñsml (A.16)

where λslmj is defined the same as Eq. (2.37) with es. Because oversampling is only

performed in the data detection phase, we use index s for the set of sampling times in the

channel estimation phase to differentiate it from the sets of sampling times in the data

detection phase. After performing MRC for the lth user, the resulting system of equations

is:

yos−mrcl,ip =
√
ρdT̂ls+ nos−mrcl,ip (A.17)

where T̂l is the effective channel matrix with constructive blocks of T̂ tlk where each sub-

block is defined as:

T̂ tlk =
1

M

M∑
m=1

(
K∑
j=1

λslmjc
∗
mj

)
T tmk (A.18)

The effective noise is also calculated as:

nos−mrcl,ip =

√
ρd

M

M∑
m=1

(ñsml)
∗Tmb+

1

M

M∑
m=1

(
K∑
j=1

λslmjc
∗
mj + (ñsml)

∗

)
nosm (A.19)
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The expected value of T̂l is equal to:

E{T̂l} =

 Γ1
l1 Γ1

l2 ··· Γ1
lK

Γ2
l1 Γ2

l2 ··· Γ2
lK

...
... ...

...
ΓKl1 ΓKl2 ··· ΓKlK


 β1IN 0 ··· 0

0 β2IN ··· 0

...
... ...

...
0 0 ··· βKIN


= Γl

 β1IN 0 ··· 0

0 β2IN ··· 0

...
... ...

...
0 0 ··· βKIN

 (A.20)

where Γtlk is defined the same as Eq. (2.48); however, because of oversampling, there is an

extra index of t which represents the sampling origin index, i.e., t in et. Matrix Γl in Eq.

(A.20) is only related to sampling origins, i.e., ets, pilot sequences, the pulse shape and

delay distributions and is known at the receiver. To resolve the problem of ISI and IUI,

we calculate the inverse of Γl and denote it as Wl, which is constructed by sub-blocks of

Wlk, i.e., Wl = (Wl1
T , · · · ,WlK

T )T . Then, in order to detect the transmitted symbols

of the lth user, we multiply the output of the MRC receiver by the lth sub-block of Wl,

i.e., Wll.

A.4 Proof of Theorem 2.3

The expected values of |Tmrc−zflk,p (a, n)|2 defined in Eq. (2.49) can be calculated similar

to Appendix A.1:

E
{
|Tmrc−zflk,p (a, n)|2

}
=


1
M

(
βll(2ĝ

′′[a− n]− δ[a− n]) +Mβl
2
δ[a− n]

)
k = l

βlk
M ĝ′′[a− n] k 6= l

where ĝ′′[a − n] = Ef(τ)

{
(Ĝ(a, n))2

}
with respect to the distribution of time delays

and Ĝ = ZG. Similarly, ĝ′′ is defined as the summation of nonzero elements of ĝ′′[i].
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Covariance of the effective noise vector in Eq. (2.49) is also calculated as:

COV {nmrc−zfl,p } = E
{
nmrc−zfl,p nmrc−zfl,p

H
}

(A.21)

= E
{
Z−1nmrcl,p n

mrc
l,p

HZ−H
}

(A.22)

=
βl
M

(
ZHZ

)−1
(A.23)

By inserting these values into Eq. (A.4), we can conclude the proof.

A.5 Proof of Theorem 2.4

Similar to Appendix A.1, the expected values of |Tmrc−zflk,ip (a, n)|2 and the covariance

matrix of the effective noise vector defined in Eq. (2.52) can be calculated as:

E
{
|Tmrc−zflk,ip (a, n)|2

}
=

1

M

βkk (γ̂′′lkk[a− n]− δ[a− n]δ[l − k]
)

+Mβk
2
δ[a− n]δ[l − k] +

K∑
j=1

βjkγ̂
′′
ljk[a− n]



COV {nmrc−zfl,ip } =
ρd

Mρp

K∑
k=1

βkUl +
1

M

 K∑
j=1

βjλ
′′
lj +

1

ρp

Vl (A.24)

where

γ̂′′ljk[a− n] =

∫ ∞
−∞

∫ ∞
−∞

(
λsljĜlk(a, n)

)2
f(τj)f(τk)dτjdτk

λ′′lk =

∫ ∞
−∞

(λslk)
2 f(τk)dτk

where Ĝlk = W llĜk and Ĝk = ((G1
k)T , · · · , (GK

k )T )T . Assuming the same distribution

for all the time delays, the receive antenna index is discarded. Similarly, γ̂′′ljk is defined

as the summation of nonzero elements of γ̂′′ljk[i]. Also Ul = WllEf(τ){ĜkĜ
H

k }WH
ll and
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Vl = WllΣnosW
H
ll whose diagonal elements are denoted as ul0 and vl0, respectively.

Inserting these values into Eq. (A.4), will conclude the proof.
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Appendix B

Supplementary Proofs for Chapter 4

B.1 Derivation of the Upper-bound for the Bit Error

Probability (BEP) Expression

The post SNR of the ith sub-channel at the receiver can be expressed as:

δi =
δ0

∑M
m=1 |hπ(i),m|2

R′−1(i, i)
(B.1)

where δ0 = E[|sk[i]|2]
σ2
n

. The function π(.) is the assigning function that assign each sub-

channel to a specific user, i.e., π : I → K, where I = {1, · · · , NK} and K = {1, · · · , K}

are the set of sub-channel and user indices, respectively. Also, hk,m represents the channel

coefficient between User k and Receive Antenna m. We know that |hk,m|2 follows a chi-

squared distribution with two degrees of freedom for all is and js. Therefore,
∑M

m=1 |hk,m|2

is chi-squared distributed with 2M degrees of freedom. As a result, the distribution of δi
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can be calculated as follows:

Pδi(δ) =
R′−1(i, i)

δ0

(
R′−1(i,i)

δ0
δ
)M−1

exp
(
−R

′−1(i,i)
2δ0

δ
)

2MΓ(M)
(B.2)

where Γ(.) is the Gamma function. For a specific value of SNR, BER varies according to

the modulation. We assume that BPSK is used, however, extension to other modulations

is straightforward. Based on this assumption, the BER for a given value of SNR, e.g., δ

is equal to Q(
√

2δ). The next step is to calculate the following integral:

BEPu,i =

∫ ∞
0

Q(
√

2δ)Pδi(δ)dδ

The integral of am

Γ(m)

∫∞
0

exp (−az)zm−1Q(
√
bz)dz has a closed-form of:

√
b/2πa

2
(
1 + b

2a

)m+1/2

Γ(m+ 1/2)

Γ(m+ 1)
2F1(1,m+

1

2
;m+ 1;

1

1 + b
2a

)

where 2F1(q, w; e; r) is the hypergeometric function [156]. Therefore, the upper-bound for

the actual BEP is equal to:

BEPu,i =

√
δ02

πR′−1(i,i)

2
(

1 + δ02

R′−1(i,i)

)M+ 1
2

×
Γ(M + 1

2
)

Γ(M + 1)
× 2F1(1,M +

1

2
;M + 1;

1

1 + δ02

R′−1(i,i)

)

(B.3)

B.2 Average BEP and Its Approximation at High

SNR

In Eq. (B.3), BEPi depends on R′−1(i, i) which varies for different values of i, and there-

fore each sub-channel has a different BEP. This is unlike the synchronous ZF, where all
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resulting sub-channels have the same performance. In order to evaluate the performance

of the entire system, we define the average BER performance as follows:

BEPavg =

∑NK
i=1 BEPi
NK

(B.4)

Since BEPavg is not tractable, we approximate it at high SNR, using the fact that

2F1(1,m + 1
2
;m + 1; 1

1+c
) converges to one as c grows large [64]. Hence, at high SNR,

BEPavg can be approximated as follows:

B̃EP avg = Const ×
∑NK

i=1 (R′−1(i, i))M

δM0
(B.5)

where the constant value is equal to 1
2(M+1)NK

√
π

Γ(M+ 1
2

)

Γ(M+1)
.

B.3 Proof of Lemma 4.2

When the frame length is N , we denote R′ by RN . Note that the prime sign is discarded

in this section for notational simplicity. However, the same sampling structure as in Eq.

(4.5) is used. Then, we prove by induction that, for all N ∈ Z+,

trace((RN )−1) =
(N − 1)(N + 1)

3(1 + τ1 − τK)
+

2N + 1

3(N + 1 + τ1 − τK)
+
N(N + 2)

3

K−1∑
i=1

1

τi+1 − τi

Base case: When N = 1, R1 is equal to R0 which can be written as a generalized
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Fiedler’s matrix whose inverse is given by [157]:

R0
−1 = −1

2


d1

1
τ2−τ1

... 0 f

1
τ2−τ1

d2
1

τ3−τ2
... 0

... ... ...
0 ... 1

τK−1−τK−2
dK−1

1
τK−τK−1

f 0 ... 1
τK−τK−1

dK


where f and dis are defined as:

f =
1

τK − τ1 − 2
(B.6)

d1 =
1

τ1 − τ2

− 1

τ1 − τK + 2
(B.7)

dK =
1

τK−1 − τK
− 1

τ1 − τK + 2
(B.8)

di =
1

τi−1 − τi
+

1

τi − τi+1

2 ≤ i ≤ K − 1 (B.9)

Then, trace(R−1
0 ) is equal to

(
−1

2

∑K
i=1 di

)
, which can be calculated using the above

equations:

trace(R−1
0 ) =

1

(2 + τ1 − τK)
+

K−1∑
i=1

1

τi+1 − τi
(B.10)

Therefore, Eq. (B.6) is true for N = 1.

Induction step: Suppose Eq. (B.6) is true for N . We need to show that it also holds

for N + 1, i.e.,

trace((R(N+1))−1) =
(N)(N + 2)

3(1 + τ1 − τK)
+

2N + 3

3(N + 2 + τ1 − τK)
+

(N + 1)(N + 3)

3

K−1∑
i=1

1

τi+1 − τi

Because matrix R follows a recursive structure, RN+1can be presented as follows:

RN+1 =

(RN )NK×NK (L)NK×K

(LT )K×NK (R0)K×K

 (B.11)
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where LT = [0K , . . . ,0K , (R1)K ]. For calculating the inverse of RN+1, we use the follow-

ing lemma for matrix inversion in block form.

Lemma B.1. Let na (m+ n)× (m+ n) matrix T be partitioned into a block form:

T =

A B

C D


where the m×m matrix A and n× n matrix D are invertible. Then, we have:

T−1 =

 M−1 −M−1BD−1

−D−1CM−1 D−1 +D−1CM−1BD−1


where M = A−BD−1C [158].

Here, A, B, C and D are equal to RN , L, LT and R0, respectively. Therefore, M is

equal to:

M = RN −L(R0)−1LT (B.12)

Now, we need to find the inverse of M . By defining Z as (RN )−1, the inverse of M can

be presented as:

M−1 =



IK . . . 0K Z1NQ(IK −ZNNQ)−1

0K
. . .

...
...

...
... IK Z(N−1)NQ(IK −ZNNQ)−1

0K . . . 0K (IK −ZNNQ)−1


Z

where Q = R−1R0
−1R1 and Zijs are K ×K partitioning blocks of Z. Also, Ik and 0k

are a k × k identity and zero matrices , respectively.
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To show the correctness of Eq. (B.13), we need to take the following steps:

Step 1: By some calculations, it can be shown that L(R0)−1LT is equal to

0 0

0 Q

. As

a result, we have:

M = RN −

0(N−1)K×(N−1)K 0(N−1)K×K

0K×(N−1)K Q

 (B.13)

Step 2: If we multiply both sides by Z, we will have:

ZM = INK −



0K . . . 0K Z1NQ

0K . . . 0K Z2NQ

...
...

...
...

0K . . . 0K ZNNQ


(B.14)

Step 3: We denote the right hand side of Eq. (B.14) by X, then, we can conclude that

the inverse of M is equal to:

M−1 = X−1Z (B.15)

Step 4: X−1 can be calculated as follows:

X−1 =



IK . . . 0K Z1NQ(IK −ZNNQ)−1

0K
. . .

...
...

...
... IK Z(N−1)NQ(IK −ZNNQ)−1

0K . . . 0K (IK −ZNNQ)−1


(B.16)
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Step 5: Finally, if we plug X−1 in Eq. (B.15), we will reach Eq. (B.13).

If we denote K × K diagonal blocks of M−1 as [M−1]i,i 1 ≤ i ≤ N , then, by use of

Lemma B.1, trace((RN+1)−1) can be written as:

trace((RN+1)−1) =
N∑
i=1

trace([M−1]i,i) + trace(R0
−1 +R0

−1R1[M−1]N,NR−1R0
−1)

(B.17)

By simplifying Eq. (B.13), diagonal blocks of M−1 can be presented as follows:

1 ≤ i ≤ N − 1 :

[M−1]i,i = Zii +ZiNQ(I −ZNNQ)−1ZNi (B.18)

i = N :

[M−1]i,i = (I −ZNNQ)−1ZNN (B.19)

In Eq. (B.17), we set the diagonal blocks of M−1 as Eqs. (B.18) and (B.19). Then, by

some manipulations, trace((RN+1)−1) can be presented as:

trace((RN+1)−1) = trace((RN )−1) + trace(R0
−1)

+
N−1∑
i=1

trace(ZiNQ(I −ZNNQ)−1ZNi) (B.20)

+ trace((I −ZNNQ)−1ZNN )− trace(ZNN )

+ trace(R0
−1R1(I −ZNNQ)−1ZNNR−1R0

−1) (B.21)

The first and second terms in Eq. (B.21) can be calculated by induction hypothesis and

induction base, respectively. Calculating other terms in Eq. (B.21) is tedious but similar

for different values of K. Therefore, we only calculate it for K = 2 and skip the rest. For
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K = 2, Q is equal to:

Q =

0 0

0 1−τ
1+τ

 (B.22)

where τ = τ2 − τ1.

If we plug Q =

0 0

0 1−τ
1+τ

 in Eq. (B.21), after some calculations we will have:

trace((RN+1)−1) = trace((RN )−1) +
2

1− (1− τ)2

+
1− τ

(1 + τ)− (1− τ)r(2N, 2N)

2N∑
i=1

(r(2N, i))2

+
(1 + τ)(1 + (τ − 1)2)

(2− τ)2[(1 + τ)− (1− τ)r(2N, 2N)]
r(2N, 2N) (B.23)

where r(i, j) is the (i, j)th element of matrix (RN )−1. By induction hypothesis, the first

term in Eq. (B.23) is equal to (N−1)(N+1)
3(1−τ2+τ1)

+ N(N+2)
3(τ2−τ1)

+ 2N+1
3(N+1−τ2+τ1)

. For calculating Eq.

(B.23), we also need values of r(2N, i), 1 ≤ i ≤ 2N , which are elements of the last row of

(RN )−1. Due to the special structure of matrix R, values of r(2N, i) can be calculated

as follows: r(2N, 2i− 1) = τ−i
τ(N+1−τ)

r(2N, 2i) = i
τ(N+1−τ)

1 ≤ i ≤ N (B.24)

To verify Eq. (B.24), we can multiply the last row of (RN )−1, i.e.,

[r(2N, 1), r(2N, 2), . . . , r(2N, 2N)], by different columns of RN as follows:

1st column:
(τ − 1)1

τ(N + 1− τ)
+

(1)(1− τ)

τ(N + 1− τ)
= 0

(2i)th column: 1 ≤ i ≤ N − 1
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(τ − i)(1− τ)

τ(N + 1− τ)
+

(i)1

τ(N + 1− τ)
+

(τ − (i+ 1))τ

τ(N + 1− τ)
= 0

(2i− 1)th column: 2 ≤ i ≤ N

((i− 1))(τ)

τ(N + 1− τ)
+

(τ − i)1
τ(N + 1− τ)

+
(i)(1− τ)

τ(N + 1− τ)
= 0

2Nth column:
(τ −N)(1− τ)

τ(N + 1− τ)
+

(N)1

τ(N + 1− τ)
= 1

These results verify that the last row of (RN )−1 follows the pattern in Eq. (B.24).

The last step is to plug Eq. (B.24) into Eq. (B.23). As a result, trace((RN+1)−1) is equal

to (N)(N+2)
3(1−τ2+τ1)

+ (N+1)(N+3)
3(τ2−τ1)

+ 2N+3
3(N+2−τ2+τ1)

, which verifies the induction step and completes

the proof.
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Appendix C

Supplementary Proofs for Chapter 5

C.1 Proof of Lemma 5.1

Denoting g(t) as a pulse shape with real spectrum, we show that IUI(τ) calculated as:

IUI(τ) =
∞∑

i=−∞

|g(τT + iT )|2 (C.1)

is maximized at τ = 0. In other words, IUI(τ) < IUI(0), τ 6= 0. Assume that ĝ(f) is

the Fourier transform of the pulse shape g(t). Then, the Fourier transform of the shifted

version of g(t), i.e., g(τT + t), will be ĝ(f)ej2πfτ . The DTFT of the samples of g(τT + t),

i.e., g(τT + iT ), i ∈ Z can be expressed as:

Gτ (f) =
1

T

∞∑
i=−∞

e−j2πτ(f+i)ĝ(
f + i

T
) (C.2)
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Note that Gτ (f) is periodic with period of 1. Based on the Parseval’s theorem, the IUI

energy, i.e., IUI(τ) =
∑∞

i=−∞ |g(τT + iT )|2, will be equal to:

IUI(τ) =

∫ 1/2

−1/2

|Gτ (f)|2df (C.3)

Then, with the assumption of having real spectrum, we will have:

IUI(τ) =
1

T

∫ 1/2

−1/2

∣∣∣∣∣
∞∑

i=−∞

e−j2πτ(f+i)ĝ

(
f + i

T

)∣∣∣∣∣
2

df

≤ 1

T

∫ 1/2

−1/2

∣∣∣∣∣
∞∑

i=−∞

ĝ

(
f + i

T

)∣∣∣∣∣
2

df = IUI(0) (C.4)

which concludes the proof.

C.2 Proof of Lemma 5.2

The power of the asynchronous signal can be written as:

Pasynch = E

{∫ ∞
−∞

sasynch(t)s
∗
asynch(t)dt

}
(C.5)

= E

{∫ ∞
−∞

(
K∑
k=1

sk(t− τkT )

)(
K∑
k=1

sk(t− τkT )

)∗
dt

}

Then, we have

Pasynch = E

{∫ ∞
−∞

(
K∑
k=1

N∑
n=1

sk[n]p(t− nT − τkT )

)(
K∑
k=1

N∑
n=1

sk[n]p(t− nT − τkT )

)∗
dt

}

=

K∑
k1=1

K∑
k2=1

N∑
n1=1

N∑
n2=1

E [sk1 [n1]sk2 [n2]]

∫ ∞
−∞

p(t− n1T − τk1T )p(t− n2T − τk2T )dt

=

K∑
k1=1

K∑
k2=1

trace(Rk1k2COV {sk1 , sk2}) = trace(R COV {s}) (C.6)
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which concludes the proof.

C.3 Proof of Lemma 5.3

The achievable rate for each user is the sum of the achievable rates for the corresponding

sub-channels:

Rr =
1

2N

∑
i∈Ir

log2

(
1 +

piλi|hr|2

σ2
n

)

where Ir represents the set of sub-channels indices that are assigned to User r. with the

power constraint of:

N∑
i=1

piλi ≤ NP (C.7)

Denoting Pr as
∑

i∈Ir piλi/N , then the achievable rates can be re-written as:

Rr =
1

2N

∑
i∈Ir

log2

(
1 +

piλi|hr|2

σ2
n

)
s.t.

∑
i∈Ik

piλi/N = Pr (C.8)

K∑
k=1

Pk ≤ P (C.9)

It can be easily shown that the power assignment that maximizes Rr is such that:

piλi = Pr ∀i ∈ Ir (C.10)
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Therefore, by simple substitution, we can conclude that the achievable rate for each user

is:

Rr =
1

2
log2

(
1 +

Pr|hr|2

σ2
n

)

such that
∑K

r=1 Pr ≤ P . Note that the different assignments of sub-channels to users only

change the power assignment, otherwise, the final result remains the same.
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Appendix D

Supplementary Proofs for Chapter 7

D.1 Proof of Lemma 7.1

Assuming a rectangular pulse shape, due to its finite time support, it can be easily shown

that ηrect.τ =
∑∞

i=−∞ g
2(τT + iT ) = τ 2 + (1 − τ)2. Therefore, we focus on deriving the

results for the r.r.c. pulse shape which has infinite time support. Denoting g(t) as a raised

cosine pulse shape with symbol period of T and the roll-off factor of β, the goal is to find

ητ =
∑u

i=−u g
2(τT + iT ). Assuming truncation of the raised cosine pulse shape with large

number of side lobes, we can approximate ητ ≈ η∞τ =
∑∞

i=−∞ g
2(τT + iT ). The frequency

spectrum of the discrete sequence of {g(τT + iT )}∞i=−∞ can be denoted as:

Gτ (f) =
1

T

∞∑
i=−∞

e−j2πτ(f+i)ĝ

(
f + i

T

)
, f ∈ [−1/2, 1/2], (D.1)
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where ĝ(f) is the Fourier transform of the raised cosine pulse shape g(t) and is denoted

as:

ĝ(f) =


T |f | ≤ 1−β

2T

T
2

[
1 + cos

(
πT
β

(
|f | − 1−β

2T

))]
1−β
2T

< |f | ≤ 1+β
2T

0 o.w.

. (D.2)

The spectrum function Gτ (f) is periodic with period of 1 and based on the Parseval’s

theorem, we have η∞τ =
∫ 1/2

−1/2
|Gτ (f)|2df . Based on the definition of ĝ(f), the spectrum

function Gτ (f) for f ∈ [−1/2, 1/2] can be derived as:

Gτ (f) =


e−j2πτfA(−f) + e−j2πτ(f+1)A(f + 1) −1

2
< f ≤ −1+β

2

e−j2πτf |f | ≤ 1−β
2

e−j2πτfA(f) + e−j2πτ(f−1)A(−f + 1) 1−β
2
< f ≤ 1

2

, (D.3)

where A(f) = 1
2

[
1 + cos

(
πT
β

(
f
T
− 1−β

2T

))]
. Thus, η∞τ can be calculated as follows:

η∞τ =

∫ −1+β
2

−1
2

∣∣A(−f) + e−j2πτA(f + 1)
∣∣2 df︸ ︷︷ ︸

b

+

∫ 1
2

1−β
2

∣∣A(f) + e−j2πτA(−f + 1)
∣∣2 df︸ ︷︷ ︸

a

+(1− β). (D.4)

In general, for the pulse shapes that satisfy the Nyquist no-ISI condition, the frequency-

shifted replicas of the spectrum add up to a constant value, here, e.g., A(f)+A(−f+1) =

1, f ∈ [1−β
2
, 1

2
]. Thus, putting τ = 0 yields η∞0 = 1, which is in fact the maximum value of

η∞τ . However, with asynchronous transmission, the effective frequency-selective channel

attains less power which is the result of the out-of-phase addition of folded spectrum. In

more details, for the non-zero values of timing offset, the phase rotation of the frequency
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replicas, due to the timing offset, results in the out-of-phase addition of replicas and hence,

η∞τ < η∞0 , τ ∈ (0, 1), as shown in Fig. D.1.

Figure D.1: Schematic illustration of the folded spectrum with phase rotation of the frequency
replicas.

To further simplify η∞τ , note that a = b, and we calculate one of them as:

a =

∫ 1
2

1−β
2

A2(f) + A2(−f + 1) + 2A(f)A(−f + 1) cos(2πτ)df. (D.5)

Because the function A(f) is always positive, thus, τ = 0 maximizes a as explained

before, and τ = 1/2 minimizes a. By some calculations, we can show that a = 3β/8 +

β cos(2πτ)/8. As a result, η∞τ can be calculated as η∞τ = 1 − β/4 + β cos(2πτ)/4 which

concludes the proof.
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D.2 Summary of the Optimal Algorithm for Down-

link Beamforming

Denoting wk =
√
ρkuk where ||uk||2 = 1, the power optimization problem can be written

as:

min
{ρk,uk}Kk=1

pavg =
K∑
k=1

ρk (D.6)

s.t.
ρku

H
k hkh

H
k uk∑K

l=1,l 6=k ητklρlu
H
l hkh

H
k ul + σ2

k

≥ γ∗k, k = 1, · · · , K.

By exploiting the virtual uplink duality, the power minimization can be equivalently stated

as [111]:

min
{ρk,uk}Kk=1

pavg =
K∑
k=1

ρk (D.7)

s.t.
ρku

H
k h̃kh̃

H

k uk

uHl

(∑K
l=1,l 6=k ητklρlh̃kh̃

H

k + IM

)
ul
≥ γ∗k, k = 1, · · · , K.

where h̃k = hk/σk. Then, the beamforming direction uk and beamforming amplitude ρk

can be recursively updated to find the optimal answer, as follows:

• Update beamforming direction:

uk(t+ 1) =
(∑K

l=1,l 6=k ητklρl(t)h̃kh̃
H

k + IM

)−1

h̃k.

• Update beamforming amplitude:

ρk(t+ 1) =
γ∗k
µk(t)

ρk(t) where µk(t) = ρk(t)uH(t)kh̃kh̃
H
k uk(t)

uHl (t)
(∑K

l=1,l 6=k ητklρl(t)h̃kh̃
H
k +IM

)
ul(t)

.

The rate constraint inequalities are active at the optimal point, thus, to satisfy the rate

constraint inequalities, the power control procedure is adopted as follows ρ = F−1γ∗
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where ρ = (ρ1, · · · , ρK), γ∗ = (γ∗1 , · · · , γ∗K) and [F ]i,j =

 uHi h̃ih̃
H

i ui i = j

−ητijγ∗i uHj hih
H
i uj i 6= j

.

D.3 Proof of Proposition 7.2

To show the superiority of Method B compared with Method A, we simply assume uniform

power distribution function in Method B which simplifies the achievable rate expression

for User k to rBk =
∫ 1

0
log2

(
1 +

|hHk wk|2∑K
l=1,l 6=k λkl(f)|hHk wl|2+σ2

k

)
df . Then, to prove that the

asynchronous method with individual precoding can reduce the power transmission, we

show that for the set of optimal beamforming vectors obtained for Method A, we have

rBk > rAk . Then, the beamforming vectors’ amplitudes can be accordingly reduced which

results in power reduction. To show that, we use the Jensen’s inequality for the convex

function of log2(1+1/x), which results in
∑

i log2(1+1/xi) ≥ log2(1+1/
∑

i xi). Therefore,

we have:

rBk =

∫ 1

0

log2

(
1 +

|hHkwk|2∑K
l=1,l 6=k λkl(f)|hHkwl|2 + σ2

k

)
df (D.8)

≥ log2

(
1 +

|hHkwk|2∑K
l=1,l 6=k

∫ 1

0
λk,l(f)dfhHkwl|2 + σ2

k

)
= rAk . (D.9)

Besides, by applying the Parseval’s theorem, we can show that ητkl =
∑∞

n=−∞ g
2
τkl

(n) =∫ 1

0
|Gτkl(f)|2df =

∫ 1

0
λkl(f)df (refer to Appendix D.1 for more details). The right hand

side of the inequality is equal to rAk = log2

(
1 +

|hHk wk|2∑K
l=1,l 6=k ητk,l |h

H
k wl|2+σ2

k

)
which verifies that

rBk > rAk and concludes the proof.
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D.4 Derivation of the Rate Expression for Method C

with Simplifying Assumptions

The term 1
N

tr(Λ′P ′g) in the average transmit power expression can be written as

1
N

∑Nq
n=1 λ

′[n]P ′g[n] =
∑

k∈Gg Pk where Pk = 1
N

∑
n∈Ik λ

′[n]P ′g[n]. To simplify the optimiza-

tion problem, we use a sub-optimal power allocation which is, in fact, optimal for AWGN

channels [93]. Assuming an AWGN channel, the optimal capacity-achieving power allo-

cation simplifies to λ′[n]P ′g[n] = Pk, ∀n ∈ Ik which is followed by the concavity of log2

function and Jensen’s inequality. Therefore, by substitution, the optimization problem

simplifies to:

min
{w′g}

K/q
g=1 ,{Ik,Pk}Kk=1,π(.)

pavg =
K∑
k=1

Pk||w′π(k)||
2 (D.10)

s.t. lim
N→∞

1

N

∑
n∈Ik

log2

(
1 +

Pk|hHkw′π(k)|2∑K/q
j=1,j 6=π(k) Pc(n,j)|h

H
kw
′
j|2 + σ2

k

)
≥ r∗k

where c(n, j) = {l ∈ Gj|n ∈ Il}. In simple words, Pc(n,j) is the power adjustment co-

efficient of the user in Group j which Sub-channel n is assigned to it. In the above

optimization, the summation is over assigned sub-channels, however, with a simple sub-

channel assignment rule, we can get rid of the summation and the optimization problem

can be further simplified. We assume that there are q different sub-channel configurations,

Figure D.2: Schematic representation of the simplified sub-channel assignment.

{S1, · · · ,Sq}, where each of them includes K/q different users in K/q different groups,
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i.e., |Ss| = K/q, s = 1, · · · , q. Define a sub-channel-assignment function that assigns

each user to a sub-channel configuration, i.e., φ : K → S, where K = {1, · · · , K} and

S = {1, · · · , q} are the set of user and sub-channel configuration indices, respectively.

Each user, k, is assigned to a sub-channel configuration, s, φ(k) = s. An example of

the simplified sub-channel assignment is shown in Fig. D.2 for K = 6 and q = 3, where

G1 = {1, 2, 3}, G2 = {4, 5, 6}, S1 = {1, 4}, S2 = {2, 5} and S3 = {3, 6}. Note that the

users with the same color (same sub-channel configuration) interfere with each other.

Therefore, the optimization problem is simplified to

min
{w′g}

K/q
g=1 ,{Pk}Kk=1,(π(.),φ(.))

pavg =
K∑
k=1

Pk||w′π(k)||
2 (D.11)

s.t.
Pk|hHkw′π(k)|2∑K/q

j=1,j 6=π(k) Pc(k,j)|h
H
kw
′
j|2 + σ2

k

≥ γ∗k, k = 1, · · · , K.

where c(k, j) = {l ∈ Gj|φ(k) = φ(l)}.
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Appendix E

Supplementary Proofs for Chapter 8

E.1 Proof of Theorem 8.1

The system model in Eq. (8.3) can be re-written for a two-user scenario as:

y =

R11 R12

R21 R22


h1IN 0N

0N h2IN


s1

s2

+

ν1

ν2

 = RHs+ ν (E.1)

The mutual information I(y; s1, s2) can be upper-bounded by:

I(y; s1, s2) ≤ 1

2
log det[cov(y)]− 1

2
log det[cov(ν)] (E.2)

where cov(y) = RHE[ssH ]HHR+Rσ2 and cov(n) = Rσ2. Therefore,

I(y; s1, s2) ≤ 1

2
log det

I2N +
1

σ2

|h1|2Qs1 0N

0N |h2|2Qs2


R11 R12

R21 R22


 (E.3)
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where Qsk is the co-variance matrix of the input stationary process for User k. The

upper-bound is achieved by Gaussian processes. Matrices R11 and R22 are equal to

identity matrices and R12 and R21 are Toeplitz matrices which can be decomposed using

the singular value decomposition, i.e., R12 = RT
21 = UGτV

H , where U and V are

orthogonal matrices and Gτ is an N × N diagonal matrix containing singular values of

R12 on its diagonal and depends on the pulse shape and the timing offset. Hence, we can

simplify the upper-bound using:

det

[
I2N +

1

σ2
n

(
|h1|2Qs1 0N

0N |h2|2Qs2

) (
R11 R12
R21 R22

)]
= (E.4)

det
[(

UH 0N
0N V H

)]
det

[
I2N +

1

σ2
n

(
|h1|2Qs1 0N

0N |h2|2Qs2

) (
IN R12
R21 IN

)]
det
[(

U 0N
0N V

)]
=

det

[
I2N +

1

σ2
n

(
|h1|2UHQs1 0N

0N V H |h2|2Qs2

) (
U R12V

R21U V

)]
=

det

[
I2N +

1

σ2
n

(
|h1|2UHQs1U |h1|2UHQs1UGτ
|h2|2V HQs2Gτ |h2|2V HQs2V

)]
=

det

[
I2N +

1

σ2
n

(
|h1|2S1 0N

0N |h2|2S2

) (
IN Gτ
Gτ IN

)]
(E.5)

where S1 = UHQs1U and S2 = V HQs2V are diagonal matrices whose diagonal elements

can be denoted as s1n and s2n, respectively. To further simplify the upper-bound, we use

the Lemma 2 in [83], which states:

Lemma E.1. Let A and B be N × N non-negative-definite matrices, and let G =

diag[g1, · · · , gN ] where |gn| ≤ 1, n = 1, · · · , N . Then,

det
[
I2N +

(
A 0N
0N B

) (
IN G
G IN

)]
≤

N∏
n=1

(
1 + ann + bnn + annbnn(1− |gn|2)

)
(E.6)

where ann and bnn are the diagonal elements of matrices A and B, respectively. The

equality is achieved with A and B being diagonal.
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As a result, we will have:

R1 +R2 ≤
1

2
lim
N→∞

N∑
n=1

log

(
1 +
|h1|2

σ2
s1n +

|h2|2

σ2
s2n +

|h1|2|h2|2

σ4
s1ns2n(1− |gn|2)

)
1

N

(E.7)

Toeplitz matrices are asymptotically equivalent to circulant matrices as the matrix dimen-

sion goes to infinity [134, 135]. The implication of the asymptotic equivalence of Toeplitz

matrices with circular matrices is that the values of the singular values of Toeplitz ma-

trices are asymptotically equal to samples of their generating function. In more details,

considering a Toeplitz matrix, R, its generating function, R(f), f ∈ [0, 1], and its singular

values, rn, n = 1, · · · , N , we have rn = R(n/N), n = 1, · · · , N [53].

Defining fn = n/N , dfN = 1/N , Sk(fn) = skn, and Gτ (fn) = |gn| we can rewrite the

sum-rate upper-bound as C = 1
2

limN→∞
∑N

n=1 C(fn)dfN where

C(fn) = log
(

1 + |h1|2
σ2 S1(fn) + |h2|2

σ2 S2(fn) + |h1|2|h2|2
σ4 S1(fn)S2(fn)(1−G2(fn))

)
. Because

C(fn) is bounded and almost everywhere continuous on the interval [0, 1], then it is

Reimann integrable on the interval [136], and we get:

R1 +R2 ≤
1

2

∫ 1

0
log

(
1 +
|h1|2

σ2
S1(f) +

|h2|2

σ2
S2(f) +

|h1|2|h2|2

σ4
S1(f)S2(f)(1−G2

τ (f))

)
df

(E.8)

where S1(f) and S2(f) are the generating functions of Qs1 and Qs2 , or equivalently, PSDs

of User 1 and User 2, respectively. In addition, Gτ (f) = |R12(f)| = |R12(f)| where R12(f)

and R21(f) are the generating functions of Toeplitz matrices R12 and R21, respectively.
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To analyze Gτ (f), recall the structure of R21 as:

R21 =



gτ [0] gτ [−1] · · · gτ [1− n]

gτ [1] gτ [0]
. . .

...

...
. . . . . . g[−1]

gτ [N − 1] · · · gτ [1] gτ (0)


(E.9)

where τ is the timing offset between two users and g(t) is the matched filter pulse. Re-

call that gτ [n] = g(τT + nT ). The generating function of R21 is defined as R21(f) =∑N−1
n=1−N gτ [n]e−j2πnf and is periodic with period of 1. Equivalently, R21(f) can be de-

noted as:

R21(f) =
1

T

∞∑
i=−∞

e−j2πτ(f+i)ĝ(
f + i

T
), (E.10)

where ĝ(f) is the Fourier transform of g(t). Note that R21(f) can be interpreted as the

folded-spectrum. The only difference is that each replica is phase shifted due to the timing

offset between users.
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