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Abstract 
 
Background: Compared to commonly-used green space indicators from downward-facing 
satellite imagery, street view-based green space may capture different types of green space and 
represent how environments are perceived and experienced by people on the ground, which is 
important to elucidate the underlying mechanisms linking green space and health. 
Objectives: This study aimed to evaluate machine learning models that can classify the type of 
vegetation (i.e., tree, low-lying vegetation, grass) from street view images; and to investigate the 
associations between street green space and socioeconomic (SES) factors, in Los Angeles 
County, California. 
Methods: SES variables were obtained from the CalEnviroScreen3.0 dataset. Microsoft Bing 
Maps images in conjunction with deep learning were used to measure total and types of street 
view green space, which were compared to normalized difference vegetation index (NDVI) as 
commonly-used satellite-based green space measure. Generalized linear mixed model was used 
to examine associations between green space and census tract SES, adjusting for population 
density and rural/urban status. 
Results: The accuracy of the deep learning model was high with 92.5% mean intersection over 
union. NDVI were moderately correlated with total street view-based green space and tree, and 
weakly correlated with low-lying vegetation and grass. Total and three types of green space 
showed significant negative associations with neighborhood SES. The percentage of total green 
space decreased by 2.62 [95% confidence interval (CI):−3.02,−2.21, p < 0.001] with each 
interquartile range increase in CalEnviroScreen3.0 score. Disadvantaged communities contained 
approximately 5% less average street green space than other communities.  
Conclusion: Street view imagery coupled with deep learning approach can accurately and 
efficiently measure eye-level street green space and distinguish vegetation types. In Los Angeles 
County, disadvantaged communities had substantively less street green space. Governments and 
urban planners need to consider the type and visibility of street green space from pedestrian's 
perspective. 



1. Introduction 
 
Evidence that indicates inequalities in health is increasing. Researchers and policymakers 

have given more attention to reduce or eliminate health disparity caused by geographical 
locations, gender, race/ethnicity, and socioeconomic status (SES), etc. (Marmot and Bell, 2016). 
Inequitable access to environmental resources, such as green space, may be one of the potential 
explanations of socioeconomic health disparities or inequalities (World Health Organization, 
2016). For example, a previous study has shown that low income neighborhoods have reduced 
availability of green space (Astell-Burt et al., 2014). In the U.S., race/ethnicity and poverty levels 
are important indicators of spatial access to green spaces (Wen et al., 2013). In addition, the 
green space health associations of all-cause mortality, circulatory disease, and mental well-being 
may be stronger among more disadvantaged groups (Astell-Burt et al., 2014; Dadvand et al., 
2014; Fuertes et al., 2014; McEachan et al., 2016; Mitchell and Popham, 2007), indicating an 
inequitable distribution of green spaces could exacerbate health inequalities for people of lower 
SES, who are already at greater risk of preventable diseases. Furthermore, green spaces could 
lower levels of environmental hazards such as air pollution and extreme heat (Markevych et al., 
2017; Sun et al., 2020a), which is also a pressing issue in the field of environmental justice. 

There are various sources, scales and types of green space indicator used in 
epidemiological studies (Cusack et al., 2017; Klompmaker et al., 2018; Larkin and Hystad, 2019; 
Mitchell et al., 2011; Reid et al., 2018; Villeneuve et al., 2018). Themost commonly used method 
to objectively assess exposure to green space is based on remote sensing data (Markevych et al., 
2017;Mitchell et al., 2011), such as normalized difference vegetation index (NDVI) (Tucker, 
1979) and land use or land cover databases (Helbich et al., 2018; James et al., 2015; Zock et al., 
2018). However, green space from downward-facing remotely sensing imagery including NDVI 
and traditional land-use measures, may significantly differ from surrounding green space at the 
eye level. Green space from satellite data cannot fully reflect the vertical dimension of green 
space, especially in locations with dense greenness (Jiang et al., 2017; Li, 2018), but can better 
represent the horizontal dimension of green space. For example, both seen and unseen trees may 
improve air quality by filtering air pollutants or reducing emission sources due to the competitive 
land use between green space and sources of air pollution, or provide cooling benefits for their 
surroundings. Green space from street view images may represent how environments are 
perceived and experienced by people on the ground (Dong et al., 2018; Lu et al., 2018), which is 
critical to better understand the underlying mechanisms linking green space with human 
behaviors and various health outcomes. For example, eye-level street green space may be more 
related to mental health and physical activity (Helbich et al., 2019; Lu, 2018; Lu et al., 2018) 
than the overhead-view satellite assessments. According to the Stress Recovery Theory (Ulrich, 
1983; Ulrich et al., 1991), natural elements (e.g. scenes, odors and sounds) activate the 
parasympathetic system that could decrease blood pressure, heart rate, skin conductance, and 
salivary cortisol level. Only eye-level, perceived and experienced green space can cause these 
physiological responses that could induce relaxation and help to reduce stress (Ulrich et al., 
1991). Further, eyelevel street green space may promote both transportation walking and 
recreational walking behaviors. The evidence suggests that street green spaces improve the 
perceived aesthetics and quality of a neighborhood's built environment, which are key predictors 
of route choice and walkability (Nagata et al., 2020; Saelens and Handy, 2008; Sallis et al., 
2012). 



Moreover, types of green space could be efficiently recognized from high resolution 
street view imagery. The differences in the composition of vegetation, such as the proportion of 
trees and grass, might have distinctive impacts on human behavior and health through different 
pathways. So far, only a few epidemiological studies have investigated the effects of different 
types of green space (Astell-Burt and Feng, 2019; Astell-Burt and Feng, 2020; Reid et al., 2017; 
Zhang and Tan, 2019). Higher tree density within 1000 m was associated with better self-
reported health in New York City, but not grass density (Reid et al., 2017). A study in Singapore 
measured urban green space in different buffer sizes between 400 m to 1600 m using three 
metrics: vegetation cover, canopy cover and park area. Although all three metrics were positively 
related to mental health, overall, canopy cover showed the strongest associations with mental 
health at most spatial scales (Zhang and Tan, 2019). Another study in Australia reported urban 
tree canopy may be a better option for promoting community mental health and preventing 
insufficient sleep than other urban greening (Astell-Burt and Feng, 2019; Astell-Burt and Feng, 
2020). Therefore, measuring types of green space may help to better capture different aspects of 
green space and improve our understanding of the mechanisms that underlie green space 
exposure and health. 

To overcome the constraints of remote sensing assessments of green space, people can 
use street view imagery, such as Google Street View (GSV) images to effectively characterize 
visual greenery along roads (Gong et al., 2018; Li, 2018; Middel et al., 2019). Street view data in 
combination with machine learning approach has been shown to be effective to characterize 
overall green space (Dong et al., 2018; Seiferling et al., 2017; Weichenthal et al., 2019). 
However, no prior study has applied deep learning techniques to characterize different types of 
green space based on high resolution street view image data. Only a few studies have applied 
computer vision (Larkin and Hystad, 2019; Li et al., 2015) to detect green color features or 
semantic segmentation techniques (Helbich et al., 2019; Lu, 2018) to measure overall green 
space from street view images. The types of green space were only measured using satellite 
imagery rather than eye-level street view data (Astell-Burt and Feng, 2020; Brandt et al., 2020). 
More advanced and robust deep learning architectures are needed to reliably classify types of 
green space based on high-resolution street view image data and thus refine the methodology and 
underlying pathway of health impact studies of green space. 

In this study, we aimed to: 1) test and evaluate machine learning models that can reliably 
and efficiently classify three types of green space, i.e., tree, low-lying vegetation, and grass 
based on street view imagery; and 2) apply this model to examine street-level green space types 
and investigate their associations with socioeconomic factors in Los Angeles County, California, 
U.S. 
 
2. Methods 
 
2.1. Study population 
 

This study was set in Los Angeles County, excluding the island areas. The primary unit 
of analysis was census tract (n = 2343). Los Angeles County is an ideal site to investigate the 
environmental justice or disparity issue related to urban greenness because it is one of the most 
populous (>10million people) and racially/ethnically diverse counties in the U.S. (U.S., 2015a). 
Minority and low-income communities in the city of Los Angeles have a high prevalence of 
chronic diseases and poor mental health (Brown et al., n.d.; Jennings et al., 2017; LA County, 



2017; Robles et al., 2019). In terms of plant biodiversity, Los Angeles County has a particularly 
mild climate with high-plant species richness due to the large range of vegetation species that 
can thrive there (Hondagneu-Sotelo, 2014). 
 
2.2. Socioeconomic factors 
 

The CalEnviroScreen3.0 dataset (2018 update) was obtained from the California 
Communities Environmental Health Screening Tool (OEHHA, 2018). CalEnviroScreen (CES) 
was created and designed by the California Environmental Protection Agency (CalEPA) to 
address the issue of environmental justice and screening disadvantaged communities, which is 
suitable for community-level estimates. This tool integrates 20 indicators representing pollution 
and population vulnerability for all 58 counties in California. There are two main categories of 
indicators: pollution burden (7 exposure indicators and 5 environmental effects indicators) and 
population characteristics (3 sensitive population indicators and 5 socioeconomic factors). The 
CES Score was calculated by combining all these components (Faust et al., 2017). To 
comprehensively capture the population characteristics and SES for Los Angeles County at 
census tract-level, we included all five socioeconomic indicators (i.e., educational attainment, 
housing burden, linguistic isolation, poverty and unemployment), and two SES-related summary 
indicators (Population Characteristics Score and CalEnviroScreen3.0 Score) (Fig. 1) in this 
analysis. Another notable use of CES was that Senate Bill 535 requires CalEPA to identify 
disadvantaged communities based on geographic, socioeconomic and environmental hazard 
criteria. Disadvantaged community (DAC) pursuant to SB 535 (CalEPA, 2017), defined as the 
top 25% scoring census tracts fromCalEnviroScreen3.0,was included in this analysis as a binary 
variable (1038 DAC, and 1305 non-DAC in Los Angeles County). Total population and 
race/ethnicity data from the 2010 Census were also constructed from the CalEnviroScreen3.0 
dataset. 
 
 



 
 
Fig. 1. Selected indicators and year of data source from CalEnviroScreen3.0. Educational 
Attainment: Percent of population over 25 with less than a high school education; Housing 
Burden: Percent housing burdened low-income households; Linguistic Isolation: Percent limited 
English speaking households; Poverty: Percent of population living below two times the federal 
poverty level; Unemployment: Percent of the population over the age of 16 that is unemployed 
and eligible for the labor force. Note: Full version and further information on the construction of 
the individual metrics is given in CalEnviroScreen3.0 Report (Faust et al., 2017). 
 
 
2.3. Outcome variable: green space 
 
2.3.1. Street view green space 
 

We requested street view images using Microsoft Bing Maps API. Bing StreetSide 
provides 360-degree panoramic imagery of street-level scenes across large regions of the United 
States. The street network data for Los Angeles County were obtained from the U.S. Census 
Bureau (U.S., 2015b) and include all features within the “Road/Path Features” (e.g., primary, 
secondary, local neighborhood, and rural roads, city streets, alleys, bike paths or trails, etc.). 
Sampling points for street view images were constructed along the road network with a 200 m 



space interval between each point and geocoded with ArcMap 10.5 (Esri, Redlands, CA, 
USA)(Li et al., 2015; Li, 2018). To include the entire streetscape, we retrieved four main 
cardinal directions at each point (e.g., 0, 90, 180, and 270 degrees; vertical angle: 0 degrees) 
(Helbich et al., 2019; Li, 2018; Lu, 2018). The amount of eye-level street green space for each 
point was determined by the average proportion of greenery pixels in the images of four 
directions. The proportion of different vegetation types in the image was predicted by the deep 
learning model described below. Total green space was defined as the sum of area proportion of 
all types of green space in each image. The size of each image was 480 × 320 pixels. To create 
census tract variables, all sampling points were assigned one of Los Angeles County's census 
tract in ArcMap. The proportion of green space for all points in a census tract were averaged to 
assess the census tract-level street green space, and then linked to the CalEnviroScreen3.0 data. 
The summary statistics of green space level and socioeconomic factors are shown in Appendix 
A. In the U.S., census tracts generally have a population size about 4000 inhabitants with similar 
population characteristics, economic status, and living conditions. In Los Angeles County, the 
areas of census tracts range from 0.1 to 74.5 km2 in urban area. The largest census tract in rural 
area has an area of 1460.5 km2. The spatial size of census tracts (5.1 ± 45.3 km2) varies widely 
depending on the population density. The number of sampling points (103 ± 231) per census 
tract varies depending on the area and street density. The distribution of street network and 
summary statistics of sampling points are shown in Appendix B. 
 
2.3.2. Deep learning model and image segmentation 
 

We applied a machine learning model using semantic segmentation to identify three 
different types of vegetation including tree (e.g., canopy), low-lying vegetation (e.g., shrub, 
bush), and grass based on high resolution street view image data. 
 
2.3.2.1. Model structure.  
 

Deep convolutional neural networks have achieved state-of-the-art results in semantic 
segmentation (Li et al., 2018). Two recent studies used classical semantic segmentation models, 
namely fully convolutional neural network (FCN-8 s) and Pyramid scene parsing network 
(PSPNet), to identify total green space from streetscape images, achieving 81.4% and 93.4% 
accuracy, respectively (Helbich et al., 2019; Lu, 2018).We compared top ranked semantic 
segmentation models on Cityscapes test in 2020 (PapersWithCode, 2020); the FCN and PSPNet 
models ranked 71 and 32 on the list respectively. Summary of the comparison for the top nine 
ranked models plus the FCN and PSPNet models are described in Appendix C. After thorough 
model comparison,we chose to apply a deep high-resolution representation learning model 
named High-Resolution Net (HRNet) coupled with the object-contextual representations 
(OCR)method for the classification of green space types (Wang et al., 2020; Yuan et al., 2019). 
The HRNet has the advantage of maintaining high-resolution representations throughout the 
network, making the model not only semantically strong but also spatially precise. This model 
can leverage multi-scale fusion mechanism, e.g., repeatedly exchange the information between 
high- and low-resolution subnetwork, to improve its capacity to capture both high- and low-
resolution features. The OCR technique can characterize a pixel by exploiting the representation 
of the corresponding object class. This HRNetV2 + OCR+ model, with a high accuracy of 84.5% 
on Cityscapes test dataset, ranked among the top semantic segmentation models 



(PapersWithCode, 2020). Appendix D illustrates the network structure of the HRNetV2 + OCR+ 
model. 
 
2.3.2.2. Model training.  
 

Annotated images from three data sources were combined to create the training and 
validation datasets. First, two hundred annotated images including three green space categories 
were obtained from ADE20K dataset, which is a densely annotated dataset covering a diverse set 
of scenes and object categories (Zhou et al., 2017). The existing public datasets of annotated 
green space images are not big enough to train and test the model. Therefore, 1000 additional 
Google/Tencent Street View images randomly located in southern California (N = 500)/Beijing, 
China (N = 500) were manually annotated using the open annotation tool “LabelMe” (Russell et 
al., 2008) by three researchers, and verified by a senior researcher from April 2020 to June 
2020.We further increased the sample size of the training and validation data by annotating 300 
street images from Cityscapes, which focuses on semantic understanding of complex urban street 
scenes (Cordts et al., 2016). In total, 1500 annotated images were obtained as the training and 
validation data for the model. Ninety percent of the annotated images were randomly selected as 
the training dataset and the remaining 10% as the validation dataset. 

Since the proportion of images with low-lying vegetation (14.3% of images) or grass 
(19.1% images) was much smaller compared to that with trees (66.6% of images), we used the 
focal loss instead of the cross entropy in the original model to address sample imbalance (Lin et 
al., 2017). For the training process, we combined the focal loss function with the Adam 
optimizer (Kingma and Ba, 2015), which improved the model performance by 4% compared 
with the use of cross entropy and stochastic gradient descent (SGD) optimizer in the original 
model (Robbins and Monro, 1951). 

We obtained image segmentations by feeding the street view images into the trained 
model. Then, the total number of pixels of each green space type (i.e., tree, low-lying vegetation, 
grass) were identified and the proportion of each type was determined (in % of pixels) for each 
image. 
 
2.3.2.3. Model validation.  
 

Intersection over union (IoU) was used to evaluate the performance of the models. 
Briefly, IoU is the number of overlap pixel between predicting and ground-truth divide by the 
union of the predicting and ground-truth, which is a common method in image segmentation 
field to judge the quality of predicting images (Garcia-Garcia et al., 2017).Werun a 10-fold 
cross-validation to further evaluate the accuracy of the model (Bengio and Grandvalet, 2004). 
The original dataset was randomly partitioned into 10 equal-sized subsets. Of the ten subsets, one 
subset was retained as the validation data for testing the model, and the remaining nine subsets 
were used the training data. The cross-validation process was then repeated 10 times, with each 
of the 10 subsamples used exactly once as the validation data. Additionally, one hundred Google 
street view images of Los Angeles County were randomly selected as an independent test set to 
assess the performance of the model. 

 
 

 



2.3.3. Normalized difference vegetation index (NDVI) 
 

To compare the street view green space with satellite imagery-based green space, we also 
used the NDVI (Tucker, 1979) to characterize green space. Briefly, NDVI ranges from−1 to 1 
and describes the different reflectance between visible and near-infrared wavelength of 
vegetation cover from satellite data, where higher values indicate more greenness. Negative 
values, representing water bodies, were recorded to zero before further analyses were conducted 
(Markevych et al., 2017), so that the effects of blue space do not negate the presence of green 
space. The NDVI estimates were based on the Moderate Resolution Imaging Spectroradiometer 
(MODIS) products from NASA. We combined measurements from both the Terra (MOD13Q1) 
and the Aqua (MYD13Q1) satellite instruments. The data had a spatial resolution of 250 m × 250 
mand a temporal resolution of every 8-days (46 time-points annually). Because of the year-round 
mild-to-hot climate in Los Angeles County, green spaces do not change substantially across 
seasons. Previous study showed the NDVI values are highly correlated during the entire year in 
California (Sun et al., 2020b). Therefore, the distinction between seasons and thus the 
recognition of species (evergreen or deciduous species) was not taken into account. Annual 
average NDVI in 2015 was calculated and assigned to each census tract based on the NDVI 
values in all 250m grids within the census tract. In addition to the census tract-level assessment, 
we extracted the NDVI grid's value at the location of each sampling point along the street (N = 
361,213) to examine the correlation between NDVI and street view-based green space at point 
level. 
 
2.4. Statistical analyses 
 

A GIS map was generated to show the spatial pattern of street green space across census 
tracts. The street green space level was calculated based on all sampling points along the road 
network within each census tract, and the percentage of green space for all points were averaged 
to assess the census tract-level street green space. The outcome variables in our analysis are four 
percentage of street green space (greenery pixels/total pixels) variables at a continuous scale: 
total and three types of green space, tree, low-lying vegetation, and grass. Percentage of green 
space was visualized according to their quintiles. Pearson's correlation was used to examine the 
correlation between green space types; t-test was applied to determine the difference between 
disadvantaged and other communities. 

The generalized linear mixed models (GLMMs) with an identify link function and normal 
distribution were applied to examine the association between SES factors and street green space 
levels (Proc GLIMMIX in SAS). Ordinary least squares (OLS) regression was not employed 
because significant spatial autocorrelation was found among the residuals of OLS. Thus, we used 
GLMMs with spherical spatial covariance structure to account for the spatial autocorrelation in 
the green space outcome variables. All models included one of SES factors as the main fixed 
effect and adjusted for population density and rural/urban status. 

The distribution of street network and spatial size vary across different census tracts 
(Appendix B). The sampling points in larger rural areas with sparse street network may not 
represent the true green space level at census tract-level due to a small number of sampling 
points. Therefore, we conducted sensitivity analyses restricting to only urban areas. Urban areas 
were defined as those with a rural-urban commuting area (RUCA) code of 1.0,which indicates 



the metropolitan area core with primary flow of the population within an urbanized area (U.S., 
2020) (Appendix B). All analyses were conducted with SAS 9.4 (SAS Institute, Inc., Cary, NC). 
 
3. Results 

 
The accuracy of our model was high with 92.5% mean IoU. The IoU values for tree, low-

lying vegetation and grass were 96.2%, 86.5% and 94.4%, respectively (Appendix E). Fig. 2 
shows examples of training and predicting process through the HRNetV2 + OCR+ model. The 
results of cross-validation were shown in Appendix F. The mean IoU in 10-fold cross-validation 
was 90.6% with a range of 89.4% and 91.9%, demonstrating the reliability and stability of our 
deep learning model. The average IoU in 10-fold cross-validation for tree, low-lying vegetation 
and grass were 95.4%, 84.9%, and 92.0%, respectively. Moreover, the mean IoU in the 
independent test set was 83.8%, and the IoU for tree, low-lying vegetation and grass were 93.7%, 
71.3%, and 86.6%, respectively. 
 

 
 
Fig. 2. Examples of green space type segmentation through HRNetV2+ OCR+. 
 
 
 
 
 
 



Los Angeles County population characteristics with definitions and street green space 
levels are presented in Table 1. Total green space and the three specific types were lower in 
disadvantage communities than in other communities (p<0.001). The spatial distribution of street 
view green space and neighborhood SES in Los Angeles County at census tract-level are 
depicted in Fig. 3. The map shows that total street green space had a similar spatial pattern with 
street tree coverage and NDVI; whereas the total green space, street tree coverage and NDVI 
value showed an opposite distribution pattern of CES scores. 
 
Table 1 
Description of the population characteristics and street green space levels. 

 
 
 
 



 
 
Fig. 3. Spatial pattern of street green space and neighborhood socioeconomic status in Los 
Angeles County, census tracts. 
 
 



Table 2 shows the correlations between each type of green space from street view images 
and NDVI. Total tract-level green space was positively correlated with all green space types, and 
the correlations were most pronounced with tree (r=0.90), followed by low-lying vegetation 
(r=0.36) and grass (r=0.29). The correlations between street tree, low-lying vegetation and grass 
were weak. For NDVI, it was moderately highly correlated with total tract-level green space 
from street view imagery (r = 0.73). Point-level correlation between NDVI and street view green 
space was lower than the tract-level (r = 0.57). NDVI was moderately correlated with street tree 
for both point- and tract-level. However, the correlations between NDVI and low-lying 
vegetation and grass were weak. Moreover, green space indicators were negatively correlated 
with all CES socioeconomic factors. Summary statistics of green space indicators and 
socioeconomic factors are shown in Appendix A. 

 
Table 2 
Correlations between tract-based types of street green space, point- and census tract-based 
NDVI, and census tract socioeconomic factors. (Number of sampling points: 361,213; number of 
census tracts: 2343.) 
 

 
 
 
Table 3 shows the results of the GLMMs to assess the association of street green space 

with neighborhood SES, controlling for population density and urban/rural status. Overall, we 
found statistically significant inverse associations between SES factors and street green space. 
For example, for each interquartile range (IQR) increase in CES score (26 unit), the percentage 
of total green space decreased by 2.62 (95% CI:−3.02 to −2.21, p<0.001). The percentage of total 
green space in disadvantaged communities was 1.26 less than in other communities, accounting 
for approximately 5% of average street green space in Los Angeles County. 

A similar trend was observed in sensitivity analyses by restricting to urban areas. In 
addition, associations between socioeconomic factors and street green space were slightly 
stronger after restricting to urban areas (Appendix G). 

 



 



 
 
4. Discussion 

 
To the best of our knowledge, this is the first study to examine different types of green 

space using street view images in combination with deep learning techniques. The results from 
this study suggest that Bing StreetSide images are valuable sources and machine learning 
techniques are powerful tools to measure overall and types of street green space. In this analysis, 
street view-based green spaces were inequitably distributed in populations with different 
neighborhood SES in Los Angeles County, the most populous county in the U.S. We found that 
communities with a higher percentage of low SES and higher percentage of residents from 
racial/ethnic minority groups had substantively less street green space availability. 

The fact that low-income neighborhoods have less green space is well established (Astell-
Burt et al., 2014; Dai, 2011; Wen et al., 2013; Wolch et al., 2014). Several studies have revealed 
that the distribution of urban green space often disproportionately benefits predominantly non-
Hispanic White and more affluent communities. However, most previous studies used 
geographic information system-based methods to measure green space from an overhead view 
(e.g., satellite data). Our results support the previous findings by measuring eye-level street 
view-based green space, suggesting that populations who have higher prevalence of poor health 
outcomes (Shaw, 2016) live in environments that contain the least green space for supporting 
positive lifestyle modification. Furthermore, our results showed that the magnitude of association 
between green space and neighborhood SES varied between vegetation types. The greatest 
reduction was observed among the tree, followed by grass. However, we observed inconsistent 
associations of low-lying vegetation and neighborhood SES, which warrants further research. In 
addition, the relative associations of lower SES with NDVI are greater than total street green 
space, suggesting that deprived communities may contain additionally reduced “unseen” green 
space, such as private green spaces or large areas of park, forest away from the road.  

Street view data and deep learning techniques are increasingly used for environmental 
exposure assessments for health-related studies. Previous studies have suggested that walking 
behavior and physical activity is affected by eye-level street green space (Lu, 2018; Villeneuve 
et al., 2018). For example, a study in Canada compared the NDVI with the google street 
viewmeasure of green space, and found that only street green space was positively associated 
with participation in recreational physical activities (Villeneuve et al., 2018). In addition, contact 
with surrounding green space might be more important if green space has the greater influence 
on health via restorative properties and stress reduction (Mitchell et al., 2011). For instance, 
street view green spaces were protective against depression for the elderly in China, whereas no 
significant associations were found with satellite-based green space estimates (Helbich et al., 
2019). Two previous studies used the FCN-8 s and PSPNet models to identify total green space 
from street view images with moderate to excellent performance (81.4% and 93.4% accuracy, 
respectively) (Helbich et al., 2019; Lu, 2018). However, no prior study has applied street view 
data in conjunction with deep learning approach to classify vegetation types. Measuring types of 
green space is important to better understand the mechanisms linking green space to health and 
design urban planning interventions. Different vegetation types shown different capacity to 
provide the ecosystems services of air purification and microclimate regulation (Vieira et al., 
2018). In addition, green space types can affect human behaviors. For example, more proportions 
of walking and running people were observed on the lawn and in the shade of trees than in other 



settings (Wang et al., 2019). Investigating their different roles may contribute to better 
understanding of etiological mechanisms and the ability to design targeted interventions. 
Existing studies regarding different types of green space and health are sparse and mainly 
focused on tree canopy. Two recent studies measured green space using machine learning and 
image classification processes across satellite imagery (Astell-Burt and Feng, 2020; Brandt et al., 
2020). However, grass and low-lying vegetation were likely under-estimated in areas where they 
were beneath tree canopy. Our model overcomes the limitations of existing green space metrics 
and contributes to the improvement of green space exposure assessment methodology for health 
studies. Future studies are warranted to investigate the relationships between types of green 
space and other environmental factors and health outcomes using this deep learning 
technique. 

Previous studies observed poor correlation between street view-based green space and 
satellite-derived NDVI (Helbich et al., 2019; Larkin and Hystad, 2019; Villeneuve et al., 2018). 
In our correlation analyses, we observed that both community-level and point-level street view-
based total green space were moderately correlated with NDVI. The differences in the climate 
and vegetation density in the study area may partially explain the variation in results compare to 
the literature. First, green spaces did not change substantially across seasons due to the year-
round mild-to-hot climate in Los Angeles County. The NDVI values are highly correlated during 
the entire year in California (Sun et al., 2020b). However, the variation of NDVI and street view 
green space in Los Angeles County might not represent green space levels in other geographical 
settings, such as Beijing, China (Helbich et al., 2019), and Ottawa, Canada (Villeneuve et al., 
2018) with four distinct seasons. Second, the overhead-view assessments cannot fully capture the 
vertical dimension of green space, especially in locations with high-density vegetation (Jiang et 
al., 2017; Li et al., 2018). The substantially lower NDVI in Los Angeles County suggested it has 
thinner greenness than other study regions, such as Portland and Ottawa (Larkin and Hystad, 
2019; Villeneuve et al., 2018). Thus, the NDVI may be more highly correlated with overall street 
green space in Los Angeles County than those in previous research. Moreover, the NDVI 
captures both public and private (e.g., residential backyard or gated community) green spaces, 
while the street view imagery mainly captures publicly accessible street-based green spaces that 
may be most relevant to people's daily activity patterns, such as walking, jogging/running, and 
driving. Los Angeles metropolitan area has the nation's densest road network (road 
length≈55,785 km) (Sorensen, 2009). Therefore, we may expect the denser street network, the 
higher correlations between NDVI and street view green space. Indeed, we found the correlation 
coefficient for urban census tracts (r = 0.77) with denser streets was higher than rural census 
tracts (r = 0.54) in this study. Furthermore, the method of extracting green space and the density 
of street networks might be potential explanations of the differences between point-level and 
tract-level correlations. The point-level variations can be caused by the different perspective and 
spatial resolution between NDVI and street view green space. The street view-based estimate 
represents the horizontal panoramic 360 degrees view of each sampling point along the road thus 
localized green space at the particular point; while the NDVI-based estimate reflects the bird's 
eye view green space within a grid with cell size 250m× 250m. The street view sampling points 
are likely not in the center of satellite-based NDVI grids. The tract-level green space that 
contains multiple points or grids may smooth out the local variations and spatial mismatch in 
point vs. grid measurements, thus we observed higher correlation (r = 0.73) between tract-level 
street view green space and NDVI, both of which reflect overall community green space level, 
especially for urban areas with high-density roads. It is also noteworthy that tree canopy is what 



people see the most for the total green space (64%) at the horizontal level. The correlation is only 
0.49 for point-based NDVI and tree, indicating that vertical NDVI may not be a good indicator 
of horizontal tree canopy at a local level. In addition, correlations between NDVI and low-lying 
vegetation or grass were weak, indicating that the street view-based metrics capture additional 
information of visible street green space. Street view and satellite data reflect different aspects of 
natural environments. Green space assessments combining remote-sensing imagery and street 
view imagery may therefore represent more comprehensive characteristics of green space than 
assessments based on a single green space indicator (Larkin and Hystad, 2019), and provide a 
potential new approach to examine green space in epidemiological research. 

The main strengths of our study include the diversity of the types of street view-based 
green space as well as the diversity of race/ethnic composition and SES of the population in Los 
Angeles County; the comparison with the predominant, satellite-based green space indicator - 
NDVI; the use of Bing Maps data that are publicly available and provides high-resolution images 
with mostly full coverage in the U.S.; the robust performance and application of an advanced 
deep learning model; and the generalizability of this deep learning approach in other regions in 
the future. 

However, this study has limitations, which suggest avenues for further research. First, 
street view images from Bing Maps were captured in different years and dates thus this database 
is most suitable for long-term estimation rather than seasonal or higher temporal resolution 
measurement. Nevertheless, given the year-round mild and dry climate in LA, the temporal 
variation of green space in urban areas tends to be small. Moreover, the training data directly 
impact the quality of the prediction. This model was trained mainly based on the street view 
images from southern California. Further evaluation of the model is warranted when the model 
applies to other regions with different streetscapes or landforms. Additionally, a single-round 
annotation was used in this study. Future studies may perform double annotation (i.e., a second 
round of annotation) to minimize the misclassification. Next, more sophisticated subtypes of 
green space were not examined in this research. Future studies may take into account other 
vegetation types (e.g., flowers), and quality of green space (e.g., wild vegetation vs. cultivated 
and well-maintained vegetation). Further, because the sampling points were extracted along the 
road, and the density and pattern of street networks could vary across different regions. Thus, the 
study findings need to be interpreted with caution, particularly in large rural areas. Nonetheless, 
the street level images, even though having sparse road network in rural areas, still represent 
publicly available eyelevel green space. The “private” or not accessible greenery in both rural 
and urban areas may have less impact on human behaviors due to the lack of accessibility. In 
addition to the amount of green space, perceived quality and accessibility of green space may 
play an important role, because they could affect the use of green space (de la Barrera et al., 
2016; Zhang et al., 2017). Further research is needed considering more information on the use of 
green space and individual activity patterns, especially for epidemiological studies linking green 
space to health outcomes. 

This study provides a unique understanding of the relationship between green space and 
neighborhood SES. Compared to remote sensing data, street view data reflect different aspects of 
natural environments. Street view images coupled with deep learning approach can accurately 
and efficiently extract street green space and recognize different vegetation types, which can 
contribute to methodological development and mechanistic understanding of green space-related 
health studies. Results from this study indicate that green spaces were inequitably distributed in 
populations with different SES in Los Angeles County. Communities with a higher percentage of 



low SES and racial/ethnic minority communities had substantively lower street green space 
level. Governments and urban planners may consider not only the size or density of green space, 
but also the type and visibility of street green space from pedestrian's perspective. 
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