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5Center for Research Acceleration by Digital Innovation, Molecular Analytics, Amgen Research, 
Thousand Oaks, CA, USA

Abstract

Monoclonal antibodies (mAbs) and antibody-drug conjugates (ADCs) are important 

biotherapeutics with large size (~150 kDa) and high structural complexity that require extensive 

sequence and structure characterization. Middle-down mass spectrometry (MD-MS) is an 

emerging technique that sequences and maps subunits larger than those released by trypsinolysis. 

It avoids introducing artifactual modifications that may occur in bottom-up MS, while achieving 

higher sequence coverage compared to top-down MS. However, returning complete sequence 

information by MD-MS is still challenging. Here, we show that assigning internal fragments 

in direct infusion MD-MS of a mAb and an ADC substantially improves their structural 

characterization. For MD-MS of the reduced NIST mAb, including internal fragments recovers 

nearly 100% of the sequence by accessing the middle sequence region that is inaccessible by 

terminal fragments. The identification of important glycosylations can also be improved after 
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including internal fragments. For the reduced lysine-linked IgG1-DM1 ADC, we show that 

considering internal fragments increases the DM1 conjugation sites coverage to 80%, comparable 

to the reported 83% coverage achieved by peptide mapping on the same ADC.1 This study 

expands our work on the application of internal fragment assignments in top-down MS of 

mAbs and ADCs, and can be extended to other heterogeneous therapeutic molecules such as 

multispecifics and fusion proteins for more widespread applications.

INTRODUCTION

The first monoclonal antibody (mAb) drug was approved in 1986;2 since then, mAb-based 

therapeutics have become increasingly important for the treatment of a host of human 

diseases including cancer, metabolic disorders, and viral infections.3-6 The success of mAbs 

stems from their unique pharmacological properties such as target specificity and affinity, 

long circulating half-life, and extraordinary safety profiles.7, 8 MAbs possess high molecular 

complexity due to their large size (~150 kDa), multiple disulfide bonds within and between 

light and heavy chains, and a series of post-translational modifications (PTMs)9-11 that could 

impact their critical quality attributes (CQAs).12 Therefore, comprehensive sequence and 

structure characterization of these intricate molecules as a function of manufacturing and 

accelerated stability13-15 is imperative for the production of high quality mAb therapeutics.

In recent years, new mAb formats including nanobodies, fusion proteins, multispecific 

antibodies, and antibody-drug conjugates (ADCs) have been evolving.16-18 These formats 

have enabled new immunotherapy approaches through multitargeting and enhanced 

antitumor efficacy, of which ADCs have emerged as a promising therapeutic drug 

classes.19-23 ADCs couple the target specificity of mAbs with the toxicity of small molecule 

payloads to enable their “magic bullets” feature, which allows them to selectively kill 

antigen-expressing targets with higher potency than their mAb counterparts.24, 25 ADCs 

are even more heterogeneous molecules than mAbs due to the conjugation of payloads at 

varying sites, depending on the type of the linker that bridges the payload to the antibody.22, 

26 One common linker strategy targets primary amines (lysine side chains or N-termini), 

which produces highly heterogeneous nonspecific lysine-linked ADCs in which a large 

array of locations are conjugated with differing number of payloads.27-29 Drug conjugation 

sites are one of the most important CQAs of ADCs because they play a significant role 

in affecting the physical and pharmaceutical properties of ADCs.30-32 Therefore, they need 

to be unambiguously determined to avoid the instances that the conjugation occurs in 

complementarity-determining regions (CDRs), which could impact the target specificity of 

lysine-linked ADCs.1, 33, 34 Robust and reliable analytical techniques need to be established 

to resolve such molecular heterogeneity.

Among various available analytical techniques, liquid chromatography coupled with 

mass spectrometry (LC-MS) has been the most popular method routinely used for the 

characterization of mAbs and ADCs.35-42 In particular, peptide mapping measures trypsin 

or Lys-C digested peptides of mAbs/ADCs by reversed phase LC-MS (RPLC-MS).1, 33, 

43-46 This well-established bottom-up approach offers high sequence coverage with amino 

acid resolution, and can detect low levels of PTMs and identify drug conjugation sites 
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of ADCs.47, 48 The development of novel digestion methods to automate and reduce 

sample handling largely decreases the possibility of introducing artifactual modifications.47, 

49-51 On the other hand, top-down MS (TD-MS) measures intact gas-phase mAb/ADC 

ions, which minimizes sample preparation and preserves endogenous modifications, but 

suffers from relatively low fragmentation efficiency for proteins of this large size and high 

complexity.34, 52-57

Middle-down MS (MD-MS) is a promising technique for the characterization of mAbs/

ADCs that sequences and maps subunits larger than those released by trypsinolysis.55, 

57-64 It bypasses the digestion step required in bottom-up MS, while achieving higher 

sequence coverage compared to top-down MS; however, obtaining the same level of 

sequence and drug conjugation information as peptide mapping remains challenging. 

Various fragmentation methods have been applied to improve the MD-MS fragmentation 

efficiency of mAbs and ADCs including collision-,60, 62, 63 electron-,55, 57-62, 64 and 

photon-based dissociation,55, 57, 60, 62, 64 among which electron-based dissociation (ExD) 

has shown promising results, particularly with the aid of collisional activation.55, 57, 60, 

64 Typically, such MD-MS experiments involve analyzing ~25 kDa subunits produced by 

FabRICATOR/reduced treated mAbs/ADCs using online denaturing RPLC-MS. However, 

ExD MD-MS can require meticulous parameter tuning to achieve optimal fragmentation, 

rendering online RPLC-MS relatively inefficient and time-consuming due to the need to 

consider RPLC elution time. An alternative approach is direct infusion MD-MS, which 

offers higher flexibility in adjusting ExD parameters to maximize fragmentation efficiency.

In addition to applying multiple fragmentation methods, incorporating internal fragments 

into the data analysis workflow represents a viable strategy to enhance sequence 

information. These noncanonical internal fragments, which arise from multiple cleavage 

events on the protein backbone,65 have been demonstrated in previous studies to 

significantly improve the characterization of proteins,34, 66-72 protein complexes,73, 74 and 

even proteome-wide analysis.75 Specifically, the inclusion of internal fragment assignments 

has shown to be valuable in the TD-MS analysis of mAbs and ADCs,34 which motivates us 

to explore the employment of internal fragments in MD-MS of mAbs and ADCs to obtain 

more comprehensive characterization results.76 A recent study applied MD-MS aided with 

internal fragment analysis using online denaturing LC-MS/MS to characterize a cysteine-

linked therapeutic site-specific ADC, achieving sequence coverages ranging from 70% to 

90%.77

In this study, we show that assigning internal fragments in native direct infusion MD-MS 

recovers nearly 100% of the mAb sequence and facilitates the elucidation of various types of 

N-glycosylations. Notably, this represents the highest sequence coverage of mAbs achieved 

by methods other than peptide mapping reported to date. For a therapeutic IgG1-DM1 

lysine-linked ADC, we successfully determined 80% of all putative DM1 conjugation sites, 

comparable to the reported 83% coverage achieved by bottom-up peptide mapping on the 

same ADC.1 These results highlight the added benefits of analyzing internal fragments in 

MD-MS and establish MD-MS as a valuable complementary technique to the conventional 

peptide mapping method for characterizing a variety of therapeutic proteins.
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EXPERIMENTAL SECTION

Materials and Reagents.

The humanized IgG1k monoclonal antibody reference material 8671 was purchased from 

the National Institute of Standards and Technology (NIST, Gaithersburg, MD). The 

therapeutic ADC supplied by Amgen is an IgG1 covalently conjugated with maytansinoid 

DM1 payloads on native lysine residues. Details on its preparation and production has 

been described previously.1 FabRICATOR (IdeS) protease was purchased from Genovis 

(Lund, Sweden). Tris-HCl buffer solution (pH 7.5) and tris(2-carboxyethyl)phosphine 

hydrochloride (TCEP) were acquired from Thermo Fisher Scientific (Bremen, Germany). 

Ammonium acetate solution (7.5 M) was purchased from Sigma-Aldrich (St. Louis, MO, 

USA) and diluted to 200 mM.

Sample Preparation.

The mAb and ADC stock samples (10 mg/ml) were diluted in 50 mM Tris-HCl buffer, 

followed by IdeS digestion (1 unit per μg of mAb/ADC) at 37°C for 1 hour. Subsequently, 

the IdeS-digested mAb and ADC samples were reduced with 25 mM TCEP in 50 mM Tris-

HCl buffer at 37°C for 90 minutes. Additionally, ADC samples were prepared with IdeS 

digestion alone by treating diluted ADC samples with IdeS protease at a ratio of 1 unit per 

μg of ADC, with incubation at 37°C for 1 hour. All reduced mAb and ADC samples were 

buffer exchanged into 200 mM ammonium acetate using Amicon ultra centrifugal filters 

(10k MWCO) and diluted to a final concentration of ~5-20 μM prior to mass spectrometry 

measurements.

Native Middle-down Mass Spectrometry.

All reduced samples were directly infused into a Thermo Q Exactive Plus UHMR Orbitrap 

(Thermo Fisher Scientific, Bremen, Germany) modified with an electromagnetostatic ExD 

cell (e-MSion Inc., Corvallis, OR) by nanoelectrospray ionization (nESI) using Pt-coated, 

in-house pulled borosilicate capillaries. The capillary voltage on the nESI source was set 

between 1.1 and 1.7 kV. The source temperature was set at 250 °C, and the S-lens RF level 

was set at 200. Other crucial instrument parameters corresponding to ion transmission are 

listed in Table S1. In the case of NIST mAb subunit fragmentation, individual charge states 

of the LC subunit (ranging from 6+ to 11+), the Fd’ subunit (ranging from 5+ to 9+), and 

the Fc/2 subunit (ranging from 5+ to 10+) were isolated in the quadrupole using a 20 m/z 
isolation window. For ADC subunit fragmentation, individual charge states of the LC-DM1 

subunit (ranging from 7+ to 10+), the Fd’-DM1 subunit (ranging from 7+ to 9+), and the 

Fc/2-DM1 subunit (ranging from 6+ to 9+) were isolated in the quadrupole using a 60 m/z 
isolation window. Only a singular charge state was isolated each time for subsequent ECD 

fragmentation. Following isolation, the ions were directed from the ExD cell into the HCD 

cell, where electron capture dissociation (ECD) took place. Optimization of the ExD cell is 

described in Figure S1.

Post-ECD collisional activation was applied to minimize the impact of electron capture 

without dissociation (ECnoD)53 with collision energy values ranging from 70 to 150V, 

depending on the isolated charge state. All ECD MS/MS spectra were collected with a noise 
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threshold set at 3, a resolution of 200,000 at m/z 400, AGC target of 1e6, and maximum 

inject time of 200 ms. Each spectrum was averaged over 100 to 200 scans.

Data Analysis.

Peak Assignments.—All raw MS/MS spectra were deconvoluted using Thermo 

BioPharma Finder 5.0 (Xtract algorithm). Signal-to-noise ratio (S/N) was varied between 

5 to 20 to maximize the ratio of the number of matched fragments to the number of 

deconvoluted peaks. The resulting deconvoluted mass lists were exported as .csv files for 

terminal and internal fragment assignment in ClipsMS.68 Overlapping internal fragments 

resulting from arrangement and/or frameshift ambiguity69 were eliminated. Theoretical 

fragment lists were generated by ProteinProspector v6.4.2.78 The assignments result of 

an ECD data of NIST mAb LC subunit is shown as an example in Table S2. Additional 

information is described in the Supporting Information.

Protein Sequence Coverage.—Protein sequence coverage is determined by dividing the 

number of observed inter-residue cleavage sites by the total number of inter-residue sites on 

the protein backbone.

RESULTS AND DISCUSSION

A Native Direct Infusion MD-MS Platform for the Characterization of mAbs and ADCs.

We have developed an innovative native direct infusion MD-MS platform that integrates 

IdeS digestion and TCEP reduction of mAbs and ADCs with nontraditional ExD 

fragmentation of direct-infused mAb/ADC subunit ions under native condition (Figure 

S2). The IdeS protease cleaves antibodies below the hinge region followed by disulfide 

bond reduction to produce approximately 25 kDa subunits (Figure S2A). Traditionally, 

these subunits are separated by RPLC, and subsequent MS/MS analysis generates sequence-

informative fragment ions.55, 58, 61, 64 This well-established workflow can be operated 

with high automation, achieving efficient separation of all distinct reduced subunits and 

their variants of mAbs or ADCs. However, the use of ECD in RPLC-MS/MS can lead to 

decreased experiment efficiency due to the need to consider the chromatography run time 

during the delicate ECD parameter tuning step.

As a result, optimizing ECD fragmentation becomes a time-consuming process. Therefore, 

we took an alternative approach to directly infuse reduced mAb/ADC subunits under 

native solution conditions (Figure S2B). Contrary to RPLC-MS/MS, a long-lasting 

nanoelectrospray provides increased flexibility and efficiency in fine-tuning ECD parameters 

to maximize fragmentation efficiency. The native condition also ensures that fewer charge 

states were generated for each subunit, enabling their separation in the m/z dimension in 

a single MS spectrum. Finally, by consolidating all validated ECD data from each isolated 

charge state (Figure S2C), we aim to design a comprehensive and fast workflow to obtain 

optimized fragmentation results.
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Characterization of NIST mAb Subunits.

All three NIST mAb subunits, LC, Fd’, and Fc/2, can be effectively separated by native MS 

in the m/z dimension, allowing their subsequent isolation and ECD fragmentation (Figure 1). 

Importantly, the major glycosylations occurring on the Fc/2 subunit were identified through 

native MS (Figure 1B). While these measurements offered a bird’s-eye view of the attributes 

of NIST mAb, it is necessary to unambiguously determine the sequence and PTMs of 

the antibody by MS/MS, in which internal fragment analysis can play a significant role. 

To maximize sequence information obtained by MD-MS, ECD was applied on the most 

abundant charge states of all three subunits (Figures 2, S3, S4). Both terminal and internal 

fragments were generated by ECD on the NIST LC subunit, with numerous previously 

unassigned signals now assigned as internal fragment ions (Figure 2A). Notably, internal 

fragments largely complement the sequence information obtained by terminal fragments, 

covering the interior sequence that is largely inaccessible to terminal fragments (Figures 

2B, 2C). Similar results were observed for the Fd’ and Fc/2 subunits, in which the 

incorporation of internal fragments substantially enhanced sequence information obtained 

for these subunits (Figures S3, S4).

By incorporating internal fragment assignments, we achieved near complete sequence 

coverage of NIST mAb LC, Fd’, and Fc/2 subunits. Through the integration of one 

optimized ECD data per charge state for each subunit, the sequence coverage increased from 

74% to 95% for the LC subunit, 58% to 92% for the Fd’ subunit, and 55% to 92% for the 

Fc/2 subunit after considering internal fragments (Table S3). Unsurprisingly, this significant 

improvement is largely due to the ability of internal fragments to access the interior protein 

sequence. The coverage increased from 76% to 100% for the LC subunit middle region 

(residues 71-142), 37% to 91% for the Fd’ subunit middle region (residues 79-158), and 

37% to 89% for the Fc/2 subunit middle region (residues 70-140) with the inclusion of 

internal fragments. Furthermore, internal fragments possess two cleavage sites on the protein 

backbone, whereas terminal fragments only cleave the protein once. This difference enables 

internal fragments to inherently carry more sequence information than terminal fragments, 

contributing to the enhancement in sequence coverage.

The complementarity-determining regions (CDRs) play a vital role in defining the antigen 

specificity of mAbs; thus unambiguous determination of their sequences is necessary. In 

addition, the possible presence of problematic chemical liabilities such as deamidation, 

isomerization, and oxidation within the CDRs highlights the need to thoroughly characterize 

the CDRs sequences.80 Overall, the assignment of internal fragments improved sequence 

coverages of both LC CDRs, increasing from 70% to 100%, and Fd' CDRs, increasing 

from 89% to 94%. Only two missed cleavages in CDRs, including K66∣D67 within CDR2 

of the Fd’ subunit, and R99∣D100 at the beginning of CDR3 of the Fd’ subunit, were 

observed across all CDRs of the NIST mAb after including internal fragments, and both 

can be accommodated in different ways. The first missed cleavage at K66∣D67, is covered 

by incorporating adjusted ECD data (vide infra), while the second missed cleavage at 

R99∣D100 is complemented by the cleavage occurring at the subsequent site at D100∣M101. 

This cleavage captures any potential chemical liability that may occur at residue D100 as 

R99 is not part of CDR3 of the Fd’ subunit. This demonstrates the power of incorporating 
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internal fragments to comprehensively and unambiguously determine the CDRs sequence. 

Lastly, although with little automation and relatively low throughput, the high flexibility 

of our native direct infusion MD-MS platform allowed for the integration of one or two 

additional adjusted ECD datasets per charge state of each subunit with minimal time loss. 

This further increased the sequence coverage of all three subunits even closer to 100% (98% 

for the LC subunit, 97% for the Fd’ subunit, and 97% for the Fc/2 subunit), with only one 

single missed cleavage observed in the CDRs sequence (Table S4).

In addition to enhancing sequence information, the assignment of internal fragments also 

contributes to identifying various types of prevalent N-glycosylations. By consolidating 

one ECD data per charge state, MD-MS of the NIST mAb Fc subunit generated a total 

of 21 terminal fragments containing G0F (11), G1F (4), and G2F (6) N-glycans, while 

33 internal fragments were generated containing these three predominant N-glycosylations, 

with 19 containing G0F, 8 containing G1F, and 6 containing G2F (Figure S5A). This 

highlights the value of analyzing internal fragments for N-glycosylation identification. The 

flexibility of tuning ECD parameters within our native direct infusion MD-MS platform 

further improved the detection of N-glycosylations. By integrating one or two additional 

adjusted ECD datasets per charge state, we observed an increase of the number of assigned 

G0F/G1F/G2F-bound terminal and internal fragments to 42 and 50, respectively (Figure 

S5B). Furthermore, Lippold and coworkers showed that internal fragments generated from 

denaturing RPLC MD-MS of individual antibody glycoforms using HCD can be used to 

assess functional relevant deamidation at Asn 325 both qualitatively and quantitatively.81 

This demonstrates that internal fragments can potentially play a bigger role in identifying 

and quantifying low-level problematic PTMs such as oxidation or deamidation, as these 

modifications may not be accessible by terminal fragments.

Characterization of IgG1-DM1 ADC Subunits.

The naked antibody of the IgG1-DM1 ADC used in this study contains a total of 90 putative 

conjugation sites, including 11 from the LC subunit, 16 from the Fd’ subunit, and 18 from 

the Fc/2 subunit. The large number of potential conjugation sites and the inherent random 

nature of lysine conjugation result in the high heterogeneity of this ADC. To determine 

the DM1 conjugation sites of the ADC, we took a similar native direct infusion MD-MS 

approach by applying ECD on isolated DM1-bound subunit ions of the ADC. However, 

the close mass similarity between the Fd’ and Fc/2 subunits of the antibody used in this 

ADC makes it challenging to isolate each subunit individually within a single spectrum 

due to potential peak overlaps. Therefore, we performed two reduction experiments, one 

involving both IdeS digestion and TCEP reduction (Figures 1C, 1D), and the other with 

IdeS digestion alone (Figures 1E, 1F), to produce Fd’ and Fc/2 subunits separately. Native 

MS of the reduced ADC offers a global overview of the conjugation level and reveals that 

DM1 is conjugated to all three subunits of the antibody, confirming the high heterogeneity 

of this ADC (Figures 1D, 1F). Only 1DM1 binding was observed for all three subunits, 

possibly due to the native condition they were ionized in. It was observed before that 

DAR values under native condition are measurably lower than under denaturing condition 

because conjugates with higher DAR values are more hydrophobic, thus ionize more 

efficiently under denaturing condition.82 ECD on all three DM1-bound subunits generated 
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both terminal and internal fragments as well as their DM1-bound forms, providing direct 

evidence to determine the DM1 conjugation sites (Figures 3A, S6A, S7A).

Similar to our report on ADC characterization using TD-MS,34 here we define localizing a 
conjugation site as being able to specify the exact lysine residue where the conjugation 

occurs, while identifying a conjugation site refers to confirming the conjugation on 

several possible lysine residues without pinpointing the exact one. ECD analysis of the 

LC subunit generated 24 DM1-bound terminal fragments and 43 DM1-bound internal 

fragments, enabling the localization of 6 conjugation sites and identification of 3 additional 

conjugation sites (Figure 3B). Assigning DM1-bound terminal fragments could only identify 

2 conjugation sites without localizing any (Figure 3B). In contrast, adding DM1-bound 

internal fragments allowed us to localize 6 conjugation sites (K46, K67, K106, K114, 

K133, K190) and identify 3 extra conjugation sites (Figure 3B). Specifically, the conjugation 

site at K46 was localized by 5 DM1-bound internal fragments (CZ20-51, CZ31-62, CZ37-53, 

CZ42-57, CZ46-61), K67 by DM1-bound CZ59-80, K106 by DM1-bound CZ104-109, K114 by 

3 DM1-bound internal fragments (CZ107-115, CZ108-127, CZ110-129), K133 by DM1-bound 

CZ118-136, and K190 by DM1-bound CZ184-206 (Figure 3B). Similar results were observed 

for the Fd’ and Fc/2 subunits (Figures S6, S7). ECD of the Fd’ subunit generated 35 

DM1-bound terminal fragments and 30 DM1-bound internal fragments (Figure S6). Only 2 

conjugations sites were identified with terminal fragments alone, whereas 4 conjugation sites 

were localized (K13, K43, K67, K153) and 5 additional conjugation sites were identified 

with the inclusion of internal fragments (Figure S6). In the case of Fc subunit, 43 DM1-

bound terminal fragments and 72 DM1-bound internal fragments were generated by ECD 

(Figure S7). The assignment of internal fragments localized 5 conjugations sites (K98, 

K124, K134, K178, K203) and identified 8 other conjugation sites, significantly improved 

from 2 identified conjugation sites with terminal fragments alone (Figure S7).

The determination status of each potential conjugation site across all three subunits is 

summarized in Figure 4. The identified but not localized conjugation sites were shown 

as blue-colored residues (determined) on the lysine site closest to either terminus for 

illustration purposes. Terminal fragments mainly determined conjugation sites close to the 

termini while internal fragments largely improved the determination of interior conjugations 

sites (Figure 4). In total, the incorporation of internal fragments resulted in the determination 

of 62 conjugation sites (30 localized, 32 identified), covering 69% of all putative conjugation 

sites of the antibody (Table S5). Importantly, the flexibility of our native direct infusion 

MD-MS system shows promising value for characterizing the IgG1-DM1 ADC. By adding 

one or two ECD datasets per charge state for each subunit, we increased the number of 

determined conjugation sites from 62 to 72 (44 localized, 28 identified), resulting in an 80% 

DM1 conjugation site coverage (Table S6). This result is comparable to the reported 83% 

coverage obtained from peptide mapping on the same ADC,1 demonstrating the immense 

value of analyzing internal fragments for characterizing ADCs by MD-MS, boosting its 

performance to a level close to that of peptide mapping. Importantly, the conjugation sites 

determined in our study are largely complementary to those achieved by peptide mapping 

(Figure 4, middle row vs. bottom row). For example, K106 on the LC subunit, K127 and 

K153 on the Fd’ subunit, and K102, K134, K173 on the Fc/2 subunit were not determined 

by peptide mapping, whereas they are determined by our MD-MS workflow (Figure 4). 
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In contrast, the conjugation sites not determined in our study (K170 and K175 on the 

LC subunit, K54, K139, K211, K219, K220, K224 on the Fd’ subunit, and K52, K54, 

K84, K86 on the Fc/2 subunit) were all determined by the bottom-up peptide mapping 

method.1 It has to be noted that the referred peptide mapping study only utilized trypsin 

for digestion which may have limited the digestion efficiency because the conjugation of 

DM1 molecules on lysine residues may affect the enzymatic cleavages on these sites. In 

this case, chymotrypsin might be a more viable option to digest this ADC. Nevertheless, the 

complementary conjugation information obtained by our MD-MS system demonstrates the 

benefits of combining multiple characterization workflows.

CONCLUSIONS

Here we report the primary benefits of including internal fragments for the MD-MS 

characterization of the NIST mAb and a heterogeneous lysine-linked IgG1-DM1 ADC. 

We developed a native direct infusion MD-MS platform that provides high flexibility to 

maximize ECD performance with high efficiency, which is difficult to achieve by traditional 

MD-MS methods using RPLC. The assignment of internal fragments increases the sequence 

coverage of all three NIST mAb subunits to nearly 100% by accessing the interior protein 

sequence that is challenging to probe by terminal fragments. Important N-glycosylation 

information can be elucidated by analyzing internal fragments, which opens the potential 

of applying internal fragments to identify other low-level PTMs, such as deamidation, 

oxidation, isomerization, and other unexpected PTMs. In addition, we show that assigning 

internal fragments significantly improves the determination of drug conjugation sites of a 

IgG1-DM1 ADC to achieve an 80% drug conjugation site coverage, comparable to the 83% 

coverage obtained from a previous report using peptide mapping approach.1 Importantly, 

with the integration of internal fragments, our MD-MS workflow provides complementary 

DM1 conjugation information to peptide mapping. However, caveats still exist in the current 

workflow. The optimization of ECD conditions for every subunit and charge state as well as 

the manual validation of all assigned internal fragments not only are labor-intensive, but also 

require experienced operators. The time needed for the entire workflow also largely limits its 

throughput, preventing this direct infusion MD-MS platform from being applied for routine 

analysis of mAbs and ADCs.

The results presented here build upon and demonstrate improvements from our previous 

work on applying internal fragments for native TD-MS characterization of intact mAbs 

and ADCs.34 Although TD-MS offers easier sample preparation, it cannot reach the 

extensiveness of MD-MS characterization in terms of sequence and drug conjugation 

coverage. Nonetheless, our TD-MS platform possesses a unique advantage in determining 

intra-chain disulfide connectivity which cannot be achieved by MD-MS.34 While bottom-

up MS remains a well-established approach in the pharmaceutical industry, the MD-MS 

platform described in this study achieves comparable results and holds great potential if 

supported by robust automation (e.g., sample processing, nESI) and informatics tools. These 

findings highlight the potential of MD-MS and internal fragment analysis to enhance the 

analytical capabilities of MS-based methodologies in characterizing biotherapeutic proteins. 

It also features the increasing role that native MS could play in therapeutic protein analysis. 

If ECD tunning can be more efficient within the LC timeframe in the future, online 

Wei et al. Page 9

Anal Chem. Author manuscript; available in PMC 2025 February 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



denaturing MD-MS can be a higher throughput approach. Furthermore, supported by a 

previous report that showed the extensive presence of internal fragments in bottom-up 

proteomics,83 this study suggests that incorporating internal fragments into the bottom-up 

MS workflow could enable comprehensive characterization of mAbs and ADCs on a routine 

basis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Native MS spectra of (A) the IdeS/TCEP reduced NIST mAb, (C) the IdeS/TCEP reduced 

IgG1-DM1 ADC, and (E) the IdeS digested IgG1-DM1 ADC. Deconvolved zero-charged 

spectra79 of (B) the IdeS/TCEP reduced NIST mAb, (D) the IdeS/TCEP reduced IgG1-DM1 

ADC, and (F) the IdeS digested IgG1-DM1 ADC. All three subunits of the NIST mAb, all 

three subunits and their DM1-bound forms of the ADC can be separated and observed from 

our native direct infusion middle-down MS experiments. The heterogeneity of the intact 

mAb and ADC were well displayed in Figure 1 of our previous report34, and the need of two 

individual reduction experiments to separate all subunits and their drug-bound forms of the 

ADC exemplified its high structural heterogeneity.
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Figure 2. 
MD-MS characterization of the NIST mAb LC subunit. (A) A representative ECD MS/MS 

spectrum of the NIST mAb LC subunit, [NIST-LC + 9H]9+, with a zoomed-in spectrum 

in the range from m/z 1200 to 2500 showing both terminal and internal fragments are 

generated. Theoretical isotope distributions are overlaid on representative terminal and 

internal fragment ions to confirm the assignments. (B) A sequence map showing the 

sequence coverage achieved by terminal (top panel) and internal (bottom panel) fragments. 

Deeper color indicates higher fragment intensity on the cleavage site. (C) A fragmentation 

map showing cleavage sites by terminal and internal fragments. Blue, red, and green 

cleavages on the protein backbone represent a or b/x or y terminal, c/z· terminal, and 

cz· internal fragments, respectively. The solid line above the sequence represents terminal 

fragment sequence coverage, while the solid line beneath the sequence represents internal 

fragment sequence coverage. The black dashed lines represent intrachain disulfide bonds, 

with the complementarity-determining regions (CDRs) covered in orange.
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Figure 3. 
Middle-down characterization of the IgG1-DM1 ADC LC subunit. (A) A representative 

ECD MS/MS spectrum of the ADC LC subunit, [ADC-LC + 10H]10+, with a zoomed-in 

spectrum in the range from 1100 to 2400 m/z showing both terminal and internal fragments, 

and their DM1-bound forms are generated. A superscripted asterisk (*) indicates fragments 

that contain a DM1 payload. Theoretical isotope distributions are overlaid on representative 

terminal and internal fragments to confirm the assignments. (B) A fragment location map of 

the ADC LC subunit showing all DM1-bound fragments after combining ECD data from all 

isolated charge states. Black vertical dashed lines represent lysine positions.
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Figure 4. 
A sequence map that shows the conjugation determination status of each putative 

conjugation site for the (A) LC, (B) Fd’, and (C) Fc/2 subunit of the IgG1-DM1 ADC 

with only terminal fragments considered (top row), both terminal and internal fragments 

considered (middle row), and using bottom-up peptide mapping method (BU-MS, bottom 

row, data from a previous report1). All potential conjugation sites (all K residues and 

the N-terminus of the Fd’ subunit) are highlighted. Orange-colored residues represent 

undetermined conjugation sites and blue-colored residues represent determined conjugation 

sites. A comparison between the middle and bottom rows of each subunit reveals that the 

determined conjugation sites from MD-MS (this study) and peptide mapping1 are largely 

complementary to each other.

Wei et al. Page 19

Anal Chem. Author manuscript; available in PMC 2025 February 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	INTRODUCTION
	EXPERIMENTAL SECTION
	Materials and Reagents.
	Sample Preparation.
	Native Middle-down Mass Spectrometry.
	Data Analysis.
	Peak Assignments.
	Protein Sequence Coverage.


	RESULTS AND DISCUSSION
	A Native Direct Infusion MD-MS Platform for the Characterization of mAbs and ADCs.
	Characterization of NIST mAb Subunits.
	Characterization of IgG1-DM1 ADC Subunits.

	CONCLUSIONS
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.



