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TIME-ADAPTIVE LAGRANGIAN VARIATIONAL INTEGRATORS1

FOR ACCELERATED OPTIMIZATION ON MANIFOLDS2

VALENTIN DURUISSEAUX AND MELVIN LEOK3

Abstract. A variational framework for accelerated optimization was recently introduced on normed4

vector spaces and Riemannian manifolds in Wibisono et al. [65] and Duruisseaux and Leok [19]. It was5

observed that a careful combination of time-adaptivity and symplecticity in the numerical integration6

can result in a significant gain in computational efficiency. It is however well known that symplectic7

integrators lose their near energy preservation properties when variable time-steps are used. The8

most common approach to circumvent this problem involves the Poincaré transformation on the9

Hamiltonian side, and was used in Duruisseaux et al. [20] to construct efficient explicit algorithms for10

symplectic accelerated optimization. However, the current formulations of Hamiltonian variational11

integrators do not make intrinsic sense on more general spaces such as Riemannian manifolds and12

Lie groups. In contrast, Lagrangian variational integrators are well-defined on manifolds, so we13

develop here a framework for time-adaptivity in Lagrangian variational integrators and use the14

resulting geometric integrators to solve optimization problems on vector spaces and Lie groups.15

1. Introduction16

Many machine learning algorithms are designed around the minimization of a loss function or17

the maximization of a likelihood function. Due to the ever-growing scale of data sets, there has18

been a lot of focus on first-order optimization algorithms because of their low cost per iteration. In19

1983, Nesterov’s accelerated gradient method was introduced in [54], and was shown to converge in20

O(1/k2) to the minimum of the convex objective function f , improving on the O(1/k) convergence21

rate exhibited by the standard gradient descent methods. This O(1/k2) convergence rate was shown22

in [55] to be optimal among first-order methods using only information about ∇f at consecutive23

iterates. This phenomenon in which an algorithm displays this improved rate of convergence is24

referred to as acceleration, and other accelerated algorithms have been derived since Nesterov’s25

algorithm. More recently, it was shown in [59] that Nesterov’s accelerated gradient method limits, as26

the time-step goes to 0, to a second-order differential equation and that the objective function f(x(t))27

converges to its optimal value at a rate of O(1/t2) along the trajectories of this ordinary differential28

equation. It was later shown in [65] that in continuous time, the convergence rate of f(x(t)) can be29

accelerated to an arbitrary convergence rate O(1/tp) in normed spaces, by considering flow maps30

generated by a family of time-dependent Bregman Lagrangian and Hamiltonian systems which is31

closed under time-rescaling. This framework for accelerated optimization in normed vector spaces32

has been studied and exploited using geometric numerical integrators in [3; 8; 20–22; 31]. In [20],33

time-adaptive geometric integrators have been proposed to take advantage of the time-rescaling34

property of the Bregman family and design efficient explicit algorithms for symplectic accelerated35

optimization. It was observed that a careful use of adaptivity and symplecticity could result in a36

significant gain in computational efficiency, by simulating higher-order Bregman dynamics using the37

computationally efficient lower-order Bregman integrators applied to the time-rescaled dynamics.38

More generally, symplectic integrators form a class of geometric integrators of interest since,39

when applied to Hamiltonian systems, they yield discrete approximations of the flow that preserve40

the symplectic 2-form and as a result also preserve many qualitative aspects of the underlying41

dynamical system (see [26]). In particular, when applied to conservative Hamiltonian systems, sym-42

plectic integrators exhibit excellent long-time near-energy preservation. However, when symplectic43

integrators were first used in combination with variable time-steps, the near-energy preservation44

1



2 VALENTIN DURUISSEAUX AND MELVIN LEOK

was lost and the integrators performed poorly (see [7; 24]). There has been a great effort to1

circumvent this problem, and there have been many successes, including methods based on the2

Poincaré transformation [25; 69]: a Poincaré transformed Hamiltonian in extended phase space is3

constructed which allows the use of variable time-steps in symplectic integrators without losing the4

nice conservation properties associated to these integrators. In [20], the Poincaré transformation5

was incorporated in the Hamiltonian variational integrator framework which provides a systematic6

method for constructing symplectic integrators of arbitrarily high-order based on the discretization7

of Hamilton’s principle [27; 49], or equivalently, by the approximation of the generating function8

of the symplectic flow map. The Poincaré transformation was at the heart of the construction of9

time-adaptive geometric integrators for Bregman Hamiltonian systems which resulted in efficient,10

explicit algorithms for accelerated optimization in [20].11

In [42; 60], accelerated optimization algorithms were proposed in the Lie group setting for spe-12

cific choices of parameters in the Bregman family, and [2] provided a first example of Bregman13

dynamics on Riemannian manifolds. The entire variational framework was later generalized to the14

Riemannian manifold setting in [19], and time-adaptive geometric integrators taking advantage of15

the time-rescaling property of the Bregman family have been proposed in the Riemannian manifold16

setting as well using discrete variational integrators incorporating holonomic constraints [16] and17

projection-based variational integrators [18]. Note that both these strategies relied on exploiting18

the structure of the Euclidean spaces in which the Riemannian manifolds are embedded. Although19

the Whitney and Nash Embedding Theorems [53; 63; 64] imply that there is no loss of generality20

when studying Riemannian manifolds only as submanifolds of Euclidean spaces, designing intrinsic21

methods that would exploit and preserve the symmetries and geometric properties of the manifold22

could have advantages both in terms of computational efficiency and in terms of improving our23

understanding of the acceleration phenomenon on Riemannian manifolds. Developing an intrinsic24

extension of Hamiltonian variational integrators to manifolds would require some additional work,25

since the current approach involves Type II/III generating functions H+
d (qk, pk+1), H−

d (pk, qk+1),26

which depend on the position at one boundary point, and the momentum at the other boundary27

point. However, this does not make intrinsic sense on a manifold, since one needs the base point28

in order to specify the corresponding cotangent space. On the other hand, Lagrangian variational29

integrators involve a Type I generating function Ld(qk, qk+1) which only depends on the position at30

the boundary points and is therefore well-defined on manifolds, and many Lagrangian variational31

integrators have been derived on Riemannian manifolds, especially in the Lie group [5; 27; 28; 36–32

39; 43; 56] and homogeneous space [40] settings. This gives an incentive to construct a mechanism33

on the Lagrangian side which mimics the Poincaré transformation, since it is more natural and easier34

to work on the Lagrangian side on more general spaces than on the Hamiltonian side. However, a35

first difficulty is that the Poincaré transformed Hamiltonian is degenerate and therefore does not36

have a corresponding Type I Lagrangian formulation. As a result, we cannot exploit the usual37

correspondence between Hamiltonian and Lagrangian dynamics and need to come up with a different38

strategy. A second difficulty is that all the literature to this day on the Poincaré transformation39

have constructed the Poincaré transformed system by reverse-engineering, which does not pro-40

vide a lot of insight into the origin of the mechanism and how it can be extended to different systems.41

42

Outline. We first review the basics of variational integration of Lagrangian and Hamiltonian43

systems, and the Poincaré transformation in Section 2. We then introduce a simple but novel44

derivation of the Poincaré transformation from a variational principle in Section 3.1. This gives45

additional insight into the transformation mechanism and provides natural candidates for time-46

adaptivity on the Lagrangian side, which we then construct both in continuous and discrete time in47

Sections 3.2 and 3.3. We then compare the performance of the resulting time-adaptive Lagrangian48

accelerated optimization algorithms to their Poincaré Hamiltonian analogues in Section 4. Finally,49

we demonstrate in Section 5 that our time-adaptive Lagrangian approach extends naturally to more50
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general spaces without having to face the obstructions experienced on the Hamiltonian side.1

2

Contributions. In summary, the main contributions of this paper are:3

● A novel derivation of the Poincaré transformation from a variational principle, in Section 3.14

● New frameworks for variable time-stepping in Lagrangian integrators, in Sections 3.2 and 3.35

● Discrete variational formulations of continuous Lagrangian mechanics with the new variable6

time-stepping mechanisms, in Sections 3.2 and 3.37

● New explicit symplectic accelerated optimization algorithms on normed vector spaces8

● New intrinsic symplectic accelerated optimization algorithms on Riemannian manifolds9

10

2. Background11

2.1. Lagrangian and Hamiltonian Mechanics. Given a n-dimensional manifold Q, a Lagrangian12

is a function L ∶ TQ → R. The corresponding action integral S is the functional13

S(q) = ∫
T

0
L(q, q̇)dt, (2.1)14

over the space of smooth curves q ∶ [0, T ] → Q. Hamilton’s variational principle states that δS = 015

where the variation δS is induced by an infinitesimal variation δq of the trajectory q that vanishes16

at the endpoints. Given local coordinates (q1, . . . , qn) on the manifold Q, Hamilton’s variational17

principle can be shown to be equivalent to the Euler–Lagrange equations,18

d

dt
( ∂L
∂q̇k

) = ∂L

∂qk
, for k = 1, . . . , n. (2.2)19

The Legendre transform FL ∶ TQ → T ∗Q of L is defined fiberwise by FL ∶ (qi, q̇i) ↦ (qi, ∂L
∂q̇i

), and20

we say that a Lagrangian L is regular or nondegenerate if the Hessian matrix ∂2L
∂q̇2 is invertible for21

every q and q̇, and hyperregular if the Legendre transform FL is a diffeomorphism. A hyperregular22

Lagrangian on TQ induces a Hamiltonian system on T ∗Q via23

H(q, p) = ⟨FL(q, q̇), q̇⟩ −L(q, q̇) =
n

∑
j=1

pj q̇
j −L(q, q̇)∣

pi=
∂L

∂q̇i

, (2.3)24

where pi = ∂L
∂q̇i

∈ T ∗Q is the conjugate momentum of qi. A Hamiltonian H is called hyperregular25

if FH ∶ T ∗Q → TQ defined by FH(α) ⋅ β = d
ds

∣
s=0
H(α + sβ), is a diffeomorphism. Hyperregularity26

of the Hamiltonian H implies invertibility of the Hessian matrix ∂2H
∂p2 and thus nondegeneracy27

of H. Theorem 7.4.3 in [48] states that hyperregular Lagrangians and hyperregular Hamiltonians28

correspond in a bijective manner. We can also define a Hamiltonian variational principle on the29

Hamiltonian side in momentum phase space which is equivalent to Hamilton’s equations,30

ṗk = −
∂H

∂qk
(p, q), q̇k = ∂H

∂pk
(p, q), for k = 1, . . . , n. (2.4)31

These equations can also be shown to be equivalent to the Euler–Lagrange equations (2.2), provided32

that the Lagrangian is hyperregular.33

2.2. Variational Integrators. Variational integrators are derived by discretizing Hamilton’s prin-34

ciple, instead of discretizing Hamilton’s equations directly. As a result, variational integrators are35

symplectic, preserve many invariants and momentum maps, and have excellent long-time near-energy36

preservation (see [49]).37

Traditionally, variational integrators have been designed based on the Type I generating function38

known as the discrete Lagrangian, Ld ∶ Q ×Q→ R. The exact discrete Lagrangian that generates39
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the time-h flow of Hamilton’s equations can be represented in both a variational form and in a1

boundary-value form. The latter is given by2

LEd (q0, q1;h) = ∫
h

0
L(q(t), q̇(t))dt, (2.5)3

where q(0) = q0, q(h) = q1, and q satisfies the Euler–Lagrange equations over the time interval [0, h].4

A variational integrator is defined by constructing an approximation Ld ∶ Q ×Q → R to LEd , and5

then applying the discrete Euler–Lagrange equations,6

pk = −D1Ld(qk, qk+1), pk+1 =D2Ld(qk, qk+1), (2.6)7

where Di denotes a partial derivative with respect to the i-th argument, and these equations8

implicitly define the integrator F̃Ld ∶ (qk, pk) ↦ (qk+1, pk+1). The error analysis is greatly simplified9

via Theorem 2.3.1 of [49], which states that if a discrete Lagrangian, Ld ∶ Q ×Q→ R, approximates10

the exact discrete Lagrangian LEd ∶ Q ×Q→ R to order r, i.e.,11

Ld(q0, q1;h) = LEd (q0, q1;h) +O(hr+1), (2.7)12

then the discrete Hamiltonian map F̃Ld ∶ (qk, pk) ↦ (qk+1, pk+1), viewed as a one-step method, has13

order of accuracy r. Many other properties of the integrator, such as momentum conservation14

properties of the method, can be determined by analyzing the associated discrete Lagrangian, as15

opposed to analyzing the integrator directly.16

Variational integrators have been extended to the framework of Type II and Type III generating17

functions, commonly referred to as discrete Hamiltonians (see [34; 46; 57]). Hamiltonian variational18

integrators are derived by discretizing Hamilton’s phase space principle. The boundary-value19

formulation of the exact Type II generating function of the time-h flow of Hamilton’s equations is20

given by the exact discrete right Hamiltonian,21

H+,E
d (q0, p1;h) = p⊺1q1 − ∫

h

0
[p(t)⊺q̇(t) −H(q(t), p(t))]dt, (2.8)22

where (q, p) satisfies Hamilton’s equations with boundary conditions q(0) = q0 and p(h) = p1.23

A Type II Hamiltonian variational integrator is constructed by using an approximate discrete24

Hamiltonian H+
d , and applying the discrete right Hamilton’s equations,25

p0 =D1H
+
d (q0, p1), q1 =D2H

+
d (q0, p1), (2.9)26

which implicitly defines the integrator, F̃H+

d
∶ (q0, p0) ↦ (q1, p1).27

Theorem 2.3.1 of [49], which simplified the error analysis for Lagrangian variational integrators,28

has an analogue for Hamiltonian variational integrators. Theorem 2.2 in [57] states that if a discrete29

right Hamiltonian H+
d approximates the exact discrete right Hamiltonian H+,E

d to order r, i.e.,30

H+
d (q0, p1;h) =H+,E

d (q0, p1;h) +O(hr+1), (2.10)31

then the discrete right Hamilton’s map F̃H+

d
∶ (qk, pk) ↦ (qk+1, pk+1), viewed as a one-step method,32

is order r accurate. Note that discrete left Hamiltonians and corresponding discrete left Hamilton’s33

maps can also be constructed in the Type III case (see [20; 46]).34

Examples of variational integrators include Galerkin variational integrators [46; 49], Prolongation-35

Collocation variational integrators [45], and Taylor variational integrators [58]. In many cases, the36

Type I and Type II/III approaches will produce equivalent integrators. This equivalence has been37

established in [58] for Taylor variational integrators provided the Lagrangian is hyperregular, and38

in [46] for generalized Galerkin variational integrators constructed using the same choices of basis39

functions and numerical quadrature formula provided the Hamiltonian is hyperregular. However,40

Hamiltonian and Lagrangian variational integrators are not always equivalent. In particular, it41

was shown in [57] that even when the Hamiltonian and Lagrangian integrators are analytically42

equivalent, they might still have different numerical properties because of numerical conditioning43
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issues. Even more to the point, Lagrangian variational integrators cannot always be constructed when1

the underlying Hamiltonian is degenerate. This is particularly relevant in variational accelerated2

optimization since the time-adaptive Hamiltonian framework for accelerated optimization presented3

in [20] relies on a degenerate Hamiltonian which has no associated Lagrangian description. We will4

thus not be able to exploit the usual correspondence between Hamiltonian and Lagrangian dynamics5

and will have to come up with a different strategy to allow time-adaptivity on the Lagrangian side.6

We now describe the construction of Taylor variational integrators as introduced in [58] as we7

will use them in our numerical experiments. A discrete approximate Lagrangian or Hamiltonian is8

constructed by approximating the flow map and the trajectory associated with the boundary values9

using a Taylor method, and approximating the integral by a quadrature rule. The Taylor variational10

integrator is generated by the implicit discrete Euler–Lagrange equations associated to the discrete11

Lagrangian or by the Hamilton’s equations associated with the discrete Hamiltonian. More explicitly,12

we first construct ρ-order and (ρ+1)-order Taylor methods Ψ
(ρ)
h and Ψ

(ρ+1)
h approximating the exact13

time-h flow map Φh ∶ TQ→ TQ corresponding to the Euler–Lagrange equation in the Type I case14

or the exact time-h flow map Φh ∶ T ∗Q→ T ∗Q corresponding to Hamilton’s equation in the Type II15

case. Let πQ ∶ (q, p) ↦ q and πT ∗Q ∶ (q, p) ↦ p. Given a quadrature rule of order s with weights and16

nodes (bi, ci) for i = 1, ...,m, the Taylor variational integrators are then constructed as follows:17

18

Type I Lagrangian Taylor Variational Integrator (LTVI):19

(i) Approximate q̇(0) = v0 by the solution ṽ0 of the problem q1 = πQ ○Ψ
(ρ+1)
h (q0, ṽ0).20

(ii) Generate approximations (qci , vci) ≈ (q(cih), q̇(cih)) via (qci , vci) = Ψ
(ρ)
cih

(q0, ṽ0).21

(iii) Apply the quadrature rule to obtain the associated discrete Lagrangian,22

Ld(q0, q1;h) = h
m

∑
i=1

biL(qci , vci).23

(iv) The variational integrator is then defined by the implicit discrete Euler–Lagrange equations,24

p0 = −D1Ld(q0, q1), p1 =D2Ld(q0, q1).25

26

Type II Hamiltonian Taylor Variational Integrator (HTVI):27

(i) Approximate p(0) = p0 by the solution p̃0 of the problem p1 = πT ∗Q ○Ψ
(ρ)
h (q0, p̃0).28

(ii) Generate approximations (qci , pci) ≈ (q(cih), p(cih)) via (qci , pci) = Ψ
(ρ)
cih

(q0, p̃0).29

(iii) Approximate q1 via q̃1 = πQ ○Ψ
(ρ+1)
h (q0, p̃0).30

(iv) Use the continuous Legendre transform to obtain q̇ci = ∂H
∂pci

.31

(v) Apply the quadrature rule to obtain the associated discrete right Hamiltonian,32

H+
d (q0, p1;h) = p⊺1 q̃1 − h

m

∑
i=1

bi [p⊺ci q̇ci −H(qci , pci)].33

(vi) The variational integrator is then defined by the implicit discrete right Hamilton’s equations,34

q1 =D2H
+
d (q0, p1), p0 =D1H

+
d (q0, p1).35

36

The following error analysis results were derived in [58] and [20]:37

Theorem 2.1. Suppose the Lagrangian L is Lipschitz continuous in both variables, and is sufficiently38

regular for the Taylor method Ψ
(ρ+1)
h to be well-defined.39

Then Ld(q0, q1) approximates LEd (q0, q1) with at least order of accuracy min (ρ + 1, s).40

By Theorem 2.3.1 in [49], the associated discrete Hamiltonian map has the same order of accuracy.41
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Theorem 2.2. Suppose the Hamiltonian H and its partial derivative ∂H
∂p are Lipschitz continuous1

in both variables, and H is sufficiently regular for the Taylor method Ψ
(ρ+1)
h to be well-defined.2

Then H+
d (q0, p1) approximates H+,E

d (q0, p1) with at least order of accuracy min (ρ + 1, s).3

By Theorem 2.2 in [57], the associated discrete right Hamilton’s map has the same order of accuracy.4

Note that analogous constructions and error analysis results have been derived in [20; 58] for5

discrete left Hamiltonians in the Type III case.6

2.3. Time-adaptive Hamiltonian integrators via the Poincaré transformation. Symplectic7

integrators form a class of geometric numerical integrators of interest since, when applied to8

conservative Hamiltonian systems, they yield discrete approximations of the flow that preserve9

the symplectic 2-form (see [26]), which results in the preservation of many qualitative aspects10

of the underlying system and exhibit excellent long-time near-energy preservation. However,11

when symplectic integrators were first used in combination with variable time-steps, the near-12

energy preservation was lost and the integrators performed poorly (see [7; 24]). Backward error13

analysis provided justification both for the excellent long-time near-energy preservation of symplectic14

integrators and for the poor performance experienced when using variable time-steps (see Chapter IX15

of [26]). Backward error analysis shows that symplectic integrators can be associated with a modified16

Hamiltonian in the form of a formal power series in terms of the time-step. The use of a variable17

time-step results in a different modified Hamiltonian at every iteration, which is the source of18

the poor energy conservation. The Poincaré transformation is one way to incorporate variable19

time-steps in geometric integrators without losing the nice conservation properties associated with20

these integrators.21

Given a Hamiltonian H(q, t, p), consider a desired transformation of time t↦ τ described by the22

monitor function g(q, t, p) via23

dt

dτ
= g(q, t, p). (2.11)24

The time t shall be referred to as the physical time, while τ will be referred to as the fictive time,25

and we will denote derivatives with respect to t and τ by dots and apostrophes, respectively. A new26

Hamiltonian system is constructed using the Poincaré transformation,27

H̄(q̄, p̄) = g(q, q, p) (H(q, q, p) + p) , (2.12)28

in the extended phase space defined by q̄ = [ qq ] ∈ Q̄ and p̄ = [ pp ] where p is the conjugate momentum29

for q = t with p(0) = −H(q(0),0, p(0)). The corresponding equations of motion in the extended30

phase space are then given by31

q̄′ = ∂H̄
∂p̄

, p̄′ = −∂H̄
∂q̄

. (2.13)32

Suppose (Q̄(τ), P̄ (τ)) are solutions to these extended equations of motion, and let (q(t), p(t)) solve33

Hamilton’s equations for the original Hamiltonian H. Then34

H̄(Q̄(τ), P̄ (τ)) = H̄(Q̄(0), P̄ (0)) = 0. (2.14)35

Therefore, the components (Q(τ), P (τ)) in the original phase space of the augmented solutions36

(Q̄(τ), P̄ (τ)) satisfy37

H(Q(τ), τ, P (τ)) = −p(τ), H(Q(0),0, P (0)) = −p(0) =H(q(0),0, p(0)). (2.15)38

Then, (Q(τ), P (τ)) and (q(t), p(t)) both satisfy Hamilton’s equations for the original Hamiltonian H39

with the same initial values, so they must be the same. Note that the Hessian is given by40

∂2H̄

∂p̄2
= [

∂H
∂p ∇pg(q̄, p)

⊺ + g(q̄, p)∂2H
∂p2 +∇pg(q̄, p)∂H∂p

⊺ ∇pg(q̄, p)
∇pg(q̄, p)⊺ 0

] , (2.16)41
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which will be singular in many cases. The degeneracy of the Hamiltonian H̄ implies that there1

is no corresponding Type I Lagrangian formulation. This approach works seamlessly with the2

existing methods and theorems for Hamiltonian variational integrators, but where the system under3

consideration is the transformed Hamiltonian system resulting from the Poincaré transformation.4

We can use a symplectic integrator with constant time-step in fictive time τ on the Poincaré5

transformed system, which will have the effect of integrating the original system with the desired6

variable time-step in physical time t via the relation dt
dτ = g(q, t, p).7

8

3. Time-adaptive Lagrangian Integrators9

The Poincaré transformation for time-adaptive symplectic integrators on the Hamiltonian side10

presented in Section 2.3 with autonomous monitor function g(q, p) was first introduced in [69],11

and extended to the case where g can also depend on time based on ideas from [25]. All the12

literature to date on the Poincaré transformation have constructed the Poincaré transformed system13

by reverse-engineering: the Poincaré transformed Hamiltonian is chosen in such a way that the14

corresponding component dynamics satisfy Hamilton’s equations in the original space.15

3.1. Variational Derivation of the Poincaré Hamiltonian. We now depart from the traditional16

reverse-engineering strategy for the Poincaré transformation and present a new way to think about the17

Poincaré transformed Hamiltonian by deriving it from a variational principle. This simple derivation18

gives additional insight into the transformation mechanism and provides natural candidates for19

time-adaptivity on the Lagrangian side and for more general frameworks.20

As before, we work in the extended space (q, q, p,p) where q = t and p is the corresponding21

conjugate momentum, and consider a time transformation t→ τ given by22

dt

dτ
= g(q, t, p). (3.1)23

We define an extended action functional S ∶ C2([0, T ], T ∗Q̄) → R by24

S(q̄(⋅), p̄(⋅)) = p̄(T )q̄(T ) − ∫
T

0
[p̄(t) ˙̄q(t) −H(q(t), t, p(t)) − p(t)]dt (3.2)25

= p̄(T )q̄(T ) − ∫
τ(t=T )

τ(t=0)
[p̄(τ)dτ

dt
q̄′(τ) −H(q(τ), q(τ), p(τ)) − p(τ)] dt

dτ
dτ (3.3)26

= p̄(T )q̄(T ) − ∫
τ(t=T )

τ(t=0)
{p̄(τ)q̄′(τ) − dt

dτ
[H(q(τ), q(τ), p(τ)) + p(τ)]}dτ, (3.4)27

where we have performed a change of variables in the integral. Then,28

S(q̄(⋅), p̄(⋅)) = p̄(T )q̄(T ) − ∫
τ(t=T )

τ(t=0)
{p̄(τ)q̄′(τ) − g(q(τ), q(τ), p(τ)) [H(q(τ), q(τ), p(τ)) + p(τ)]}dτ. (3.5)29

Computing the variation of S yields30

δS = q̄(T )δp̄(T ) + p̄(T )δq̄(T ) − ∫
τ(t=T )

τ(t=0)
[q′δp + pδq′ − (g∂H

∂q
+ ∂g
∂q

(H + q)) δq − gδp]dτ31

− ∫
τ(t=T )

τ(t=0)
[q′δp + pδq′ − (g∂H

∂q
+ ∂g
∂q

(H + p)) δq − (g∂H
∂p

+ ∂g
∂p

(H + p)) δp]dτ,32

and using integration by parts and the boundary conditions δq̄(0) = 0 and δp̄(T ) = 0, gives33

δS = ∫
τ(t=T )

τ(t=0)
[p′ + g∂H

∂q
+ ∂g
∂q

(H + p)] δqdτ + ∫
τ(t=T )

τ(t=0)
[g∂H
∂p

+ ∂g
∂p

(H + p) − q′] δpdτ34

+ ∫
τ(t=T )

τ(t=0)
[p′ + g∂H

∂q
+ ∂g
∂q

(H + p)] δqdτ − ∫
τ(t=T )

τ(t=0)
[q′ − g] δpdτ.35



8 VALENTIN DURUISSEAUX AND MELVIN LEOK

Thus, the condition that S(q̄(⋅), p̄(⋅)) is stationary with respect to the boundary conditions δq̄(0) = 01

and δp̄(T ) = 0 is equivalent to (q̄(⋅), p̄(⋅)) satisfying Hamilton’s canonical equations corresponding2

to the Poincaré transformed Hamiltonian,3

q′ = g(q, q, p), (3.6)4

q′ = g(q, q, p)∂H
∂p

(q, q, p) + ∂g
∂p

(q, q, p) [H(q, q, p) + p] , (3.7)5

p′ = −g(q, q, p)∂H
∂q

(q, q, p) − ∂g
∂q

(q, q, p) [H(q, q, p) + p] , (3.8)6

p′ = −g(q, q, p)∂H
∂q

(q, q, p) − ∂g
∂q

(q, q, p) [H(q, q, p) + p] . (3.9)7

An alternative way to reach the same conclusion is by interpreting equation (3.5) as the usual8

Type II action functional for the modified Hamiltonian,9

g(q(τ), q(τ), p(τ)) [H(q(τ), q(τ), p(τ)) + p(τ)] , (3.10)10

which coincides with the Poincaré transformed Hamiltonian.11

12

3.2. Time-adaptivity from a Variational Principle on the Lagrangian side. We will now13

derive a mechanism for time-adaptivity on the Lagrangian side by mimicking the derivation of the14

Poincaré Hamiltonian. We will work in the extended space q̄ = (q, q, λ)⊺ ∈ Q̄ where q = t and λ is15

a Lagrange multiplier used to enforce the time rescaling dt
dτ = g(t). Consider the action functional16

S ∶ C2([0, T ], T Q̄) → R given by17

S(q̄(⋅), ˙̄q(⋅)) = ∫
T

0
[L(q(t), q̇(t), q(t)) − λ(t) (dq

dτ
− g(q(t)))]dt (3.11)18

= ∫
τ(t=T )

τ(t=0)
[ dt
dτ
L(q(τ), dτ

dt
q′(τ), q(τ)) − λ(τ) dt

dτ
(dq
dτ

− g(q(τ)))]dτ (3.12)19

= ∫
τ(t=T )

τ(t=0)
[q′(τ)L(q(τ), dτ

dt
q′(τ), q(τ)) − λ(τ)q′(τ) [q′(τ) − g(q(τ))]]dτ, (3.13)20

where, as before, we have performed a change of variables in the integral. This is the usual Type I21

action functional for the extended autonomous Lagrangian,22

L̄(q̄(τ), q̄′(τ)) = q′(τ)L(q(τ), dτ
dt
q′(τ), q(τ)) − λ(τ)q′(τ) [q′(τ) − g(q(τ))] . (3.14)23

Theorem 3.1. If (q̄(τ), q̄′(τ)) satisfies the Euler–Lagrange equations corresponding to the La-24

grangian L̄, then its components satisfy dt
dτ = g(t) and the original Euler–Lagrange equations25

d

dt

∂L

∂q̇
(q, q̇, t) = ∂L

∂q
(q, q̇, t) . (3.15)26

Proof. Substituting the expression for L̄ into the Euler–Lagrange equations, d
dτ

∂L̄
∂λ′ = ∂L̄

∂λ , and27

d
dτ

∂L̄
∂q′ =

∂L̄
∂q , gives28

q′ [q′ − g(q)] = 0,29

and30

dq

dτ

d

dq

⎡⎢⎢⎢⎢⎢⎣
q′
∂L(q, dτdq q

′, q)
∂q′

⎤⎥⎥⎥⎥⎥⎦
= q′

∂L(q, dτdq q
′, q)

∂q
.31
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Now, q′ = g(q) > 0 so q′ = g(q), and the chain rule gives1

d

dq

∂L

∂q̇
(q, dτ

dq
q′, q) = ∂L

∂q
(q, dτ

dq
q′, q) .2

Using the equation q̇ = dτ
dq q

′ and replacing q by t recovers the original Euler–Lagrange equations. �3

4

We now introduce a discrete variational formulation of these continuous Lagrangian mechanics.5

Suppose we are given a partition 0 = τ0 < τ1 < . . . < τN = T of the interval [0,T], and a discrete curve6

in Q × R × R denoted by {(qk, qk, λk)}Nk=0 such that qk ≈ q(τk), qk ≈ q(τk), and λk ≈ λ(τk). Consider7

the discrete action functional,8

S̄d ({(qk, qk, λk)}Nk=0) =
N−1

∑
k=0

[Ld(qk, qk, qk+1, qk+1) − λk
qk+1 − qk
τk+1 − τk

+ λkg(qk)]
qk+1 − qk
τk+1 − τk

, (3.16)9

where Ld(qk, qk, qk+1, qk+1) is obtained by approximating the exact discrete Lagrangian, which is10

related to Jacobi’s solution of the Hamilton–Jacobi equation and is the generating function for11

the exact time-h flow map. It is given by the extremum of the action integral from τk to τk+112

over twice continuously differentiable curves (q, q) ∈ Q × R satisfying the boundary conditions13

(q(τk), q(τk)) = (qk, qk), and (q(τk+1), q(τk+1)) = (qk+1, qk+1):14

Ld(qk, qk, qk+1, qk+1) ≈ ext
(q,q)∈C2([τk,τk+1],Q×R)

(q,q)(τk)=(qk,qk), (q,q)(τk+1)=(qk+1,qk+1)

∫
τk+1

τk
L(q, q′

g(q) , q)dτ. (3.17)15

In practice, we can obtain an approximation by replacing the integral with a quadrature rule, and16

extremizing over a finite-dimensional function space instead of C2([τk, τk+1],Q × R). This discrete17

functional S̄d is a discrete analogue of the action functional S̄ ∶ C2([0, T ],Q × R × R) → R given by18

S̄(q(⋅), q(⋅), λ(⋅)) = ∫
T

0
L̄ (q(τ), q(τ), λ(τ), q′(τ), q′(τ), λ′(τ))dτ (3.18)19

= ∫
T

0
[L(q, q′

g(q) , q) − λq
′ + λg(q)] q′dτ. (3.19)20

21

22

We can derive the following result which relates a discrete Type I variational principle to a set of23

discrete Euler–Lagrange equations:24

Theorem 3.2. The Type I discrete Hamilton’s variational principle,25

δS̄d ({(qk, qk, λk)}Nk=0) = 0, (3.20)26

is equivalent to the discrete extended Euler–Lagrange equations,27

qk+1 = qk + (τk+1 − τk)g(qk), (3.21)28
29

qk+1 − qk
τk+1 − τk

D1Ld(qk, qk, qk+1, qk+1) +
qk − qk−1

τk − τk−1
D3Ld(qk−1, qk−1, qk, qk) = 0, (3.22)30

31

[D2Ldk + λk
1

τk+1 − τk
+ λk∇g(qk)]

qk+1 − qk
τk+1 − τk

− 1

τk+1 − τk
[Ldk − λk

qk+1 − qk
τk+1 − τk

+ λkg(qk)]

+ [D4Ldk−1 − λk−1
1

τk − τk−1
] qk − qk−1

τk − τk−1
+ 1

τk − τk−1
[Ldk−1 − λk−1

qk − qk−1

τk − τk−1
+ λk−1g(qk−1)] = 0,

(3.23)32

where Ldk denotes Ld(qk, qk, qk+1, qk+1).33

Proof. See Appendix A.1. �34

35
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Defining the discrete momenta via the discrete Legendre transformations,1

pk = −D1Ld(qk, qk, qk+1, qk+1), pk = −D2Ld(qk, qk, qk+1, qk+1), (3.24)2

and using a constant time-step h in τ , the discrete Euler–Lagrange equations can be rewritten as3

pk = −D1Ld(qk, qk, qk+1, qk+1), (3.25)4

pk = −D2Ld(qk, qk, qk+1, qk+1), (3.26)5

qk+1 = qk + hg(qk), (3.27)6

pk+1 =
g(qk)
g(qk+1)

D3Ld(qk, qk, qk+1, qk+1), (3.28)7

pk+1 =
Ldk −Ldk+1

hg(qk+1)
+ λk+1

h
+ λk+1∇g(qk+1) +

g(qk)
g(qk+1)

[D4Ldk −
λk
h

] . (3.29)8

9

10

3.3. A Second Time-Adaptive Framework obtained by Reverse-Engineering. As men-11

tioned earlier, all the literature to date on the Poincaré transformation have constructed the12

Poincaré transformed system by reverse-engineering. The Poincaré transformed Hamiltonian is13

chosen in such a way that the corresponding component dynamics satisfy the Hamilton’s equations in14

the original space. We will follow a similar strategy to derive a second framework for time-adaptivity15

from the Lagrangian perspective.16

Given a time-dependent Lagrangian L(q(t), q̇(t), t) consider a transformation of time t→ τ ,17

dt

dτ
= g(t), (3.30)18

described by the monitor function g(t). The time t shall be referred to as the physical time, while τ19

will be referred to as the fictive time, and we will denote derivatives with respect to t and τ by dots20

and apostrophes, respectively. We define the autonomous Lagrangian,21

L̄(q̄(τ), q̄′(τ)) = q′L(q, q′

g(q) , q) − λ
(q′ − g(q)) , (3.31)22

in the extended space with q̄ = (q, q, λ)⊺ where q = t, and where λ is a multiplier used to impose the23

constraint that the time evolution is guided by the monitor function g(t). Note that in contrast to24

the earlier framework, the Lagrange multiplier term lacks an extra multiplicative factor of q′.25

Theorem 3.3. If (q̄(τ), q̄′(τ)) satisfies the Euler–Lagrange equations corresponding to the La-26

grangian L̄, then its components satisfy dt
dτ = g(t) and the original Euler–Lagrange equations27

d

dt

∂L

∂q̇
(q, q̇, t) = ∂L

∂q
(q, q̇, t) . (3.32)28

Proof. Substituting the expression for L̄ in the Euler–Lagrange equations d
dτ

∂L̄
∂λ′ =

∂L̄
∂λ and d

dτ
∂L̄
∂q′ =

∂L̄
∂q29

gives30

q′ = g(q),31

and32

dq

dτ

d

dq

⎡⎢⎢⎢⎢⎢⎣

dq

dτ

∂L(q, q′

g(q) , q)
∂q′

⎤⎥⎥⎥⎥⎥⎦
= dq

dτ

∂L(q, q′

g(q) , q)
∂q

.33

We can divide by dq
dτ and use the chain rule to get q′ = g(q) and34

d

dq

∂L

∂q̇
(q, dτ

dq
q′, q) = ∂L

∂q
(q, dτ

dq
q′, q) .35
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Using the equations q̇ = dτ
dq q

′ and q′ = g(q), and replacing q by t recovers the desired equations. �1

We now introduce a discrete variational formulation of these continuous Lagrangian mechanics.2

Suppose we are given a partition 0 = τ0 < τ1 < . . . < τN = T of the interval [0,T], and a discrete curve3

in Q × R × R denoted by {(qk, qk, λk)}Nk=0 such that qk ≈ q(τk), qk ≈ q(τk), and λk ≈ λ(τk). Consider4

the discrete action functional,5

S̄d ({(qk, qk, λk)}Nk=0) =
N−1

∑
k=0

{qk+1 − qk
τk+1 − τk

[Ld(qk, qk, qk+1, qk+1) − λk] + λkg(qk)}, (3.33)6

where,7

Ld(qk, qk, qk+1, qk+1) ≈ ext
(q,q)∈C2([τk,τk+1],Q×R)

(q,q)(τk)=(qk,qk), (q,q)(τk+1)=(qk+1,qk+1)

∫
τk+1

τk
L(q, q′

g(q) , q)dτ. (3.34)8

This discrete functional S̄d is a discrete analogue of the action functional S̄ ∶ C2([0, T ],Q×R×R) → R9

given by10

S̄(q(⋅), q(⋅), λ(⋅)) = ∫
T

0
L̄ (q(τ), q(τ), λ(τ), q′(τ), q′(τ), λ′(τ))dτ (3.35)11

= ∫
T

0
{q′ [L(q, q′

g(q) , q) − λ] + λg(q)}dτ. (3.36)12

We can derive the following result which relates a discrete Type I variational principle to a set of13

discrete Euler–Lagrange equations:14

Theorem 3.4. The Type I discrete Hamilton’s variational principle,15

δS̄d ({(qk, qk, λk)}Nk=0) = 0, (3.37)16

is equivalent to the discrete extended Euler–Lagrange equations,17

qk+1 = qk + (τk+1 − τk)g(qk), (3.38)18
19

qk+1 − qk
τk+1 − τk

D1Ld(qk, qk, qk+1, qk+1) +
qk − qk−1

τk − τk−1
D3Ld(qk−1, qk−1, qk, qk) = 0, (3.39)20

21

qk+1 − qk
τk+1 − τk

D2Ldk −
Ldk

τk+1 − τk
+ qk − qk−1

τk − τk−1
D4Ldk−1 +

Ldk−1
τk − τk−1

= λk−1

τk − τk−1
− λk
τk+1 − τk

− λk∇g(qk), (3.40)22

where Ldk denotes Ld(qk, qk, qk+1, qk+1).23

Proof. See Appendix A.2. �24

Defining the discrete momenta via the discrete Legendre transformations,25

pk = −D1Ld(qk, qk, qk+1, qk+1), pk = −D2Ld(qk, qk, qk+1, qk+1), (3.41)26

and using a constant time-step h in τ , the discrete Euler–Lagrange equations can be rewritten as27

pk = −D1Ld(qk, qk, qk+1, qk+1), (3.42)28

pk = −D2Ld(qk, qk, qk+1, qk+1), (3.43)29

qk+1 = qk + hg(qk), (3.44)30

pk+1 =
g(qk)
g(qk+1)

D3Ld(qk, qk, qk+1, qk+1), (3.45)31

pk+1 =
Ldk −Ldk+1

+ λk+1 − λk + hλk+1∇g(qk+1) + hg(qk)D4Ldk
hg(qk+1)

. (3.46)32

33

34
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3.4. Remarks on the Framework for Time-Adaptivity. Time-adaptivity comes more natu-1

rally on the Hamiltonian side through the Poincaré transformation. Indeed, in the Hamiltonian case,2

the time-rescaling equation q′ = g(q, q, p) emerged naturally through the change of time variable3

inside the extended action functional. By contrast, in the Lagrangian case, we need to impose4

the time-rescaling equation as a constraint via a multiplier, which we then consider as an extra5

position coordinate. This strategy can be thought of as being part of the more general framework6

for constrained variational integrators (see [16; 49]).7

The Poincaré transformation on the Hamiltonian side was presented in [20; 25; 69] for the general8

case where the monitor function can depend on position, time and momentum, g = g(q, t, p). For9

the accelerated optimization application which was our main motivation to develop a time-adaptive10

framework for geometric integrators, the monitor function only depends on time, g = g(t). For11

the sake of simplicity and clarity, we have decided to only present the theory for time-adaptive12

Lagrangian integrators for monitor functions of the form g = g(t) in this paper. Note however13

that this time-adaptivity framework on the Lagrangian side can be extended to the case where the14

monitor function also depends on position, g = g(q, t). The action integral remains the same with15

the exception that g is now a function of (q, q). Unlike the case where g = g(t), the corresponding16

Euler–Lagrange equation d
dτ

∂L̄
∂q′ =

∂L
∂q yields an extra term λ(t)∂g∂q (q, t) in the original phase-space,17

d

dt

∂L

∂q̇
(q, q̇, t) − ∂L

∂q
(q, q̇, t) = λ(t)∂g

∂q
(q, t). (3.47)18

The discrete Euler–Lagrange equations become more complicated and involve terms with partial19

derivatives D1g(qk, qk) of g with respect to q. Furthermore, when g = g(q, t), the discrete Euler–20

Lagrange equations involve λk but the time-evolution of the Lagrange multiplier λ is not well-defined,21

so the discrete Hamiltonian map corresponding to the discrete Lagrangian Ld is not well-defined,22

as explained in [49, page 440]. Although there are ways to circumvent this problem in practice,23

this adds some difficulty and makes the time-adaptive Lagrangian approach with g = g(q, t) less24

natural and desirable than the corresponding Poincaré transformation on the Hamiltonian side. It25

might also be tempting to generalize further and consider the case where g = g(q, q̇, t). However,26

in this case, the time-rescaling equation dt
dτ = g(q, q̇, t) becomes implicit and it becomes less clear27

how to generalize the variational derivation presented in this paper. There are examples where28

time-adaptivity with these more general monitor functions proved advantageous (see for instance29

Kepler’s problem in [20]). This motivates further effort towards developing a better framework for30

time-adaptivity on the Lagrangian side with more general monitor functions.31

It might be more natural to consider these time-rescaled Lagrangian and Hamiltonian dynamics32

as Dirac mechanics [44; 66; 67] on the Pontryagin bundle (q, v, p) ∈ TQ ⊕ T ∗Q. Dirac dynamics33

are described by the Hamilton-Pontryagin variational principle where the momentum p acts as a34

Lagrange multiplier to impose the kinematic equation q̇ = v,35

δ∫
T

0
[L(q, v, t) + p(q̇ − v)]dt = 0. (3.48)36

This provides a variational description of both Lagrangian and Hamiltonian mechanics, yields the37

implicit Euler–Lagrange equations38

q̇ = v, ṗ = ∂L
∂q
, p = ∂L

∂v
, (3.49)39

and suggests the introduction of a more general quantity, the generalized energy40

E(q, v, p, t) = pv −L(q, v, t), (3.50)41

as an alternative to the Hamiltonian.42
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4. Application to Accelerated Optimization on Vector Spaces1

4.1. A Variational Framework for Accelerated Optimization. A variational framework was2

introduced in [65] for accelerated optimization on normed vector spaces. The p-Bregman Lagrangians3

and Hamiltonians are defined to be4

Lp(x, v, t) =
tp+1

2p
⟨v, v⟩ −Cpt2p−1f(x), (4.1)5

6

Hp(x, r, t) =
p

2tp+1
⟨r, r⟩ +Cpt2p−1f(x), (4.2)7

which are scalar-valued functions of position x ∈X, velocity v ∈ Rd or momentum r ∈ Rd, and time8

t. In [65], it was shown that solutions to the p-Bregman Euler–Lagrange equations converge to a9

minimizer of f at a convergence rate of O(1/tp). Furthermore, this family of Bregman dynamics is10

closed under time dilation: time-rescaling a solution to the p-Bregman Euler–Lagrange equations11

via τ(t) = tp̊/p yields a solution to the p̊-Bregman Euler–Lagrange equations. Thus, the entire12

subfamily of Bregman trajectories indexed by the parameter p can be obtained by speeding up13

or slowing down along the Bregman curve corresponding to any value of p. In [20], the time-14

rescaling property of the Bregman dynamics was exploited together with a carefully chosen Poincaré15

transformation to transform the p-Bregman Hamiltonian into an autonomous version of the p̊-16

Bregman Hamiltonian in extended phase-space, where p̊ < p. This strategy allowed us to achieve17

the faster rate of convergence associated with the higher-order p-Bregman dynamics, but with18

the computational efficiency of integrating the lower-order p̊-Bregman dynamics. Explicitly, using19

the time rescaling τ(t) = tp̊/p within the Poincaré transformation framework yields the adaptive20

approach p→ p̊-Bregman Hamiltonian,21

H̄p→p̊(q̄, r̄) =
p2

2p̊qp+p̊/p
⟨r, r⟩ + Cp

2

p̊
q2p−p̊/pf(q) + p

p̊
rq1−p̊/p, (4.3)22

and when p̊ = p, the direct approach p-Bregman Hamiltonian,23

H̄p(q̄, r̄) =
p

2qp+1
⟨r, r⟩ +Cpq2p−1f(q) + r. (4.4)24

In [20], a careful computational study was performed on how time-adaptivity and symplecticity of25

the numerical scheme improve the performance of the resulting optimization algorithm. In particular,26

it was observed that time-adaptive Hamiltonian variational discretizations, which are automatically27

symplectic, with adaptive time-steps informed by the time-rescaling of the family of p-Bregman28

Hamiltonians yielded the most robust and computationally efficient optimization algorithms, outper-29

forming fixed-timestep symplectic discretizations, adaptive-timestep non-symplectic discretizations,30

and Nesterov’s accelerated gradient algorithm which is neither time-adaptive nor symplectic.31

32

4.2. Numerical Methods.33

4.2.1. A Lagrangian Taylor Variational Integrator (LTVI). We will now construct a time-adaptive34

Lagrangian Taylor variational integrator (LTVI) for the p-Bregman Lagrangian,35

L̄p (q, q′, q) =
qp+1

2p
⟨q′, q′⟩ −Cpq2p−1f(q), (4.5)36

using the strategy outlined in Section 2.2 together with the discrete Euler–Lagrange equations37

derived in Sections 3.2 and 3.3.38

Looking at the form of the continuous p-Bregman Euler–Lagrange equations,39

q̈ + p + 1

q
q̇ +Cp2qp−2∇f(q) = 0, (4.6)40
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we can note that ∇f appears in the expression for q̈. Now, the construction of a LTVI as presented1

in Section 2.2 requires ρ-order and (ρ + 1)-order Taylor approximations of q. This means that2

if we take ρ ≥ 1, then ∇f and higher-order derivatives of f will appear in the resulting discrete3

Lagrangian Ld, and as a consequence, the discrete Euler–Lagrange equations,4

p0 = −D1Ld(q0, q1), p1 =D2Ld(q0, q1), (4.7)5

will yield an integrator which is not gradient-based. Keeping in mind the machine learning applica-6

tions where data sets are very large, we will restrict ourselves to explicit first-order optimization7

algorithms, and therefore the highest value of ρ that we can choose to obtain a gradient-based8

algorithm is ρ = 0.9

With ρ = 0, the choice of quadrature rule does not matter, so we can take the rectangular10

quadrature rule about the initial point (c1 = 0 and b1 = 1). We first approximate ˙̄q(0) = v̄0 by the11

solution ˜̄v0 of the problem q̄1 = πQ ○Ψ
(1)
h (q̄0, ˜̄v0) = q̄0 + h˜̄v0, that is ˜̄v0 = q̄1−q̄0

h . Then, applying the12

quadrature rule gives the associated discrete Lagrangian,13

Ld(q̄0, q̄1) = hL̄p (q̄0,
1

g(q0)
˜̄v0) = qp+1

0

2p(g(q0))2
h⟨ṽ0, ṽ0⟩ −Chpq2p−1

0 f(q0). (4.8)14

The variational integrator is then defined by the discrete extended Euler–Lagrange equations15

derived in Sections 3.2 and 3.3. In practice, we are not interested in the evolution of the conjugate16

momentum r, and since it will not appear in the updates for the other variables, the discrete17

equations of motion from Sections 3.2 and 3.3 both reduce to the same updates,18

rk = −D1Ld(qk, qk, qk+1, qk+1), (4.9)19

rk+1 =
g(qk)
g(qk+1)

D3Ld(qk, qk, qk+1, qk+1), (4.10)20

qk+1 = qk + hg(qk). (4.11)21

Now, for the adaptive approach, substituting g(q) = p
p̊q

1− p̊
p and22

Ld(qk, qk, qk+1, qk+1) =
p̊2

2hp3
q
p−1+2p̊/p
k ⟨qk+1 − qk, qk+1 − qk⟩ −Chpq2p−1

0 f(qk), (4.12)23

yields the adaptive LTVI algorithm,24

qk+1 = qk + h
p

p̊
q

1−p̊/p
k , (4.13)25

qk+1 = qk +
hp3

p̊2q
p−1+2p̊/p
k

rk −
Ch2p4

p̊2
q
p−2p̊/p
k ∇f(qk), (4.14)26

rk+1 =
p̊2q

p+p̊/p
k

hp3q
1−p̊/p
k+1

(qk+1 − qk). (4.15)27

In the direct approach, p̊ = p so g(q) = 1 and we obtain the direct LTVI algorithm,28

qk+1 = qk + h, (4.16)29

qk+1 = qk +
hp

qp+1
k

rk −Ch2p2qp−2
k ∇f(qk), (4.17)30

rk+1 =
qp+1
k

hp
(qk+1 − qk). (4.18)31
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4.2.2. A Hamiltonian Taylor Variational Integrator (HTVI). In [20], a Type II Hamiltonian Taylor1

Variational Integrator (HTVI) was derived following the strategy from Section 2.2 with ρ = 0 for the2

adaptive approach p→ p̊-Bregman Hamiltonian,3

H̄p→p̊(q̄, r̄) =
p2

2p̊qp+p̊/p
⟨r, r⟩ + Cp

2

p̊
q2p−p̊/pf(q) + p

p̊
rq1−p̊/p. (4.19)4

This adaptive HTVI is the most natural Hamiltonian analogue of the LTVI described in Section 4.2.1,5

and its updates are given by6

qk+1 = qk + h
p

p̊
q

1−p̊/p
k , (4.20)7

rk+1 = rk −
p2

p̊
Chq

2p−p̊/p
k ∇f(qk), (4.21)8

qk+1 = qk +
p2

p̊
hq

−p−p̊/p
k rk+1. (4.22)9

When p̊ = p, it reduces to the direct HTVI,10

qk+1 = qk + h, (4.23)11

rk+1 = rk − hCpq2p−1
k ∇f(qk), (4.24)12

qk+1 = qk + hpq−p−1
k rk+1. (4.25)13

14

4.3. Numerical Experiments. Numerical experiments using the numerical methods presented in15

the previous section have been conducted to minimize the quartic function,16

f(x) = [(x − 1)⊺Σ(x − 1)]2
, (4.26)17

where x ∈ Rd and Σij = 0.9∣i−j∣. This convex function achieves its minimum value 0 at x∗ = 1.18

19

As was observed in [20] for the HTVI algorithm, the numerical experiments showed that a20

carefully tuned adaptive approach algorithm enjoyed a significantly better rate of convergence and21

required a much smaller number of steps to achieve convergence than the direct approach, as can be22

seen in Figure 1 for the LTVI methods. Although the adaptive approach requires a smaller fictive23

time-step h than the direct approach, the physical time-steps resulting from t = τp/p̊ in the adaptive24

approach grow rapidly to values larger than the physical time-step of the direct approach. The25

results of Figure 1 also show that the adaptive and direct LTVI methods become more and more26

efficient as p is increased, which was also the case for the HTVI algorithm in [20].27

28

The LTVI and HTVI algorithms presented in Section 4.2 perform empirically almost exactly in29

the same way for the same parameters and time-step, as can be seen for instance in Figure 2. As30

a result, the computational analysis carried in [20] for the HTVI algorithm extends to the LTVI31

algorithm. In particular, it was shown in [20] that the HTVI algorithm is much more efficient than32

non-adaptive non-symplectic and adaptive non-symplectic integrators for the Bregman dynamics,33

and that it can be a competitive first-order explicit algorithm which can outperform certain popular34

optimization algorithms such as Nesterov’s Accelerated Gradient [54], Trust Region Steepest Descent,35

ADAM [33], AdaGrad [15], and RMSprop [61], for certain choices of objective functions. Since the36

computational performance of the LTVI algorithm is almost exactly the same as that of the HTVI37

algorithm, this means that the LTVI algorithm is also much more efficient than non-symplectic38

integrators for the Bregman dynamics and can also be very competitive as a first-order explicit39

optimization algorithm.40
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Figure 1. Comparison of the direct and adaptive approaches for the LTVI algorithm,
when applied to the quartic function (4.26).
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Figure 2. Comparison of the HTVI and LTVI algorithms with the same parameters.

5. Accelerated Optimization on More General Spaces1

5.1. Motivation and Prior Work. The variational framework for accelerated optimization on2

normed vector spaces from [20; 65] was extended to the Riemannian manifold setting in [19] via a3

Riemannian p-Bregman Lagrangian Lp ∶ TQ × R→ R and a corresponding Riemannian p-Bregman4

Hamiltonian Hp ∶ T ∗Q × R→ R, for p > 0, of the form5

Lp(X,V, t) =
t
ζ
λ
p+1

2p
⟨V,V ⟩ −Cpt(

ζ
λ
+1)p−1f(X), (5.1)6

7

Hp(X,R, t) =
p

2t
ζ
λ
p+1

⟪R,R⟫ +Cpt(
ζ
λ
+1)p−1f(X), (5.2)8
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where ζ and λ are constants having to do with the curvature of the manifold and the convexity of1

the objective function f . These yield the associated p-Bregman Euler–Lagrange equations,2

∇ẊẊ + ζp + λ
λt

Ẋ +Cp2tp−2gradf(X) = 0. (5.3)3

Here, gradf denotes the Riemannian gradient of f , ∇XY is the covariant derivative of Y along X,4

and ⟪⋅, ⋅⟫ is the fiber metric on T ∗Q induced by the Riemannian metric ⟨⋅, ⋅⟩ on Q whose local5

coordinates representation is the inverse of the local representation of ⟨⋅, ⋅⟩. See [1; 6; 19; 32; 35; 48]6

for a more detailed description of these notions from Riemannian geometry and of this Riemannian7

variational framework for accelerated optimization. Note that some work was done on accelerated8

optimization via numerical integration of Bregman dynamics in the Lie group setting [42; 60] before9

the theory for more general Bregman families on Riemannian manifolds was established in [19].10

It was shown in [19] that solutions to the p-Bregman Euler–Lagrange equations converge to11

a minimizer of f at a convergence rate of O(1/tp), under suitable assumptions, and proven that12

time-rescaling a solution to the p-Bregman Euler–Lagrange equations via τ(t) = tp̊/p yields a solution13

to the p̊-Bregman Euler–Lagrange equations. As a result, the adaptive approach involving the14

Poincaré transformation was extended to the Riemannian manifold setting via the adaptive approach15

Riemannian p→ p̊ Bregman Hamiltonian,16

H̄p→p̊ (Q̄, R̄) = p2

2p̊Q
ζ
λ
p+ p̊

p

⟪R,R⟫ + Cp
2

p̊
Q

(
ζ
λ
+1)p− p̊

p f(Q) + p
p̊
Q

1− p̊
pR. (5.4)17

This adaptive framework was exploited using discrete variational integrators incorporating18

holonomic constraints [16] and projection-based variational integrators [18]. Both these strategies19

relied on embedding the Riemannian manifolds into an ambient Euclidean space. Although the20

Whitney and Nash Embedding Theorems [53; 63; 64] imply that there is no loss of generality21

when studying Riemannian manifolds only as submanifolds of Euclidean spaces, designing intrinsic22

methods that would exploit and preserve the symmetries and geometric properties of the Riemannian23

manifold and of the problem at hand could have advantages, both in terms of computation and in24

terms of improving our understanding of the acceleration phenomenon on Riemannian manifolds.25

Developing an intrinsic extension of Hamiltonian variational integrators to manifolds would26

require some additional work, since the current approach involves Type II/III generating functions27

H+
d (qk, pk+1), H−

d (pk, qk+1), which depend on the position at one boundary point, and on the28

momentum at the other boundary point. However, this does not make intrinsic sense on a manifold,29

since one needs the base point in order to specify the corresponding cotangent space, and one30

should ideally consider a Hamiltonian variational integrator construction based on discrete Dirac31

mechanics [44; 66; 67].32

On the other hand, Lagrangian variational integrators involve a Type I generating function33

Ld(qk, qk+1) which only depends on the position at the boundary points and is therefore well-defined34

on manifolds, and many Lagrangian variational integrators have been derived on Riemannian35

manifolds, especially in the Lie group [5; 27; 28; 36–39; 43; 56] and homogeneous space [40] settings.36

The time-adaptive framework developed in this paper makes it now possible to design time-adaptive37

Lagrangian integrators for accelerated optimization on these more general spaces, where it is more38

natural and easier to work on the Lagrangian side than on the Hamiltonian side.39

40

5.2. Accelerated Optimization on Lie Groups. Although it is possible to work on Riemannian41

manifolds, we will restrict ourselves to Lie groups for simplicity of exposition since there is more42

literature available on Lie group integrators than Riemannian integrators. Note as well that prior43

work is available on accelerated optimization via numerical integration of Bregman dynamics in the44

Lie group setting [42; 60].45
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Here, we will work in the setting introduced in [42]. The setting of [60] can be thought of as a
special case of the more general Lie group framework for accelerated optimization presented here.
Consider a n-dimensional Lie group G with associated Lie algebra g = TeG, and a left-trivialization
of the tangent bundle of the group TG ≃ G × g, via (q, q̇) ↦ (q,Lq−1 q̇) ≡ (q, ξ), where L ∶ G ×G→ G
is the left action defined by Lqh = qh for all q, h ∈ G. Suppose that g is equipped with an inner
product which induces an inner product on TqG via left-trivialization,

(v ●w)TqG = (TqLq−1v ●TqLq−1w)g, ∀v,w ∈ TqG.
With this inner product, we identify g ≃ g∗ and TqG ≃ T ∗q G ≃ G × g∗ via the Riesz representation.1

Let J ∶ g→ g∗ be chosen such that (J(ξ) ● ζ) is positive-definite and symmetric as a bilinear form of2

ξ, ζ ∈ g. Then, the metric ⟨⋅, ⋅⟩ ∶ g×g→ R with ⟨ξ, ζ⟩ = (J(ξ)●ζ) serves as a left-invariant Riemannian3

metric on G. The adjoint and ad operators are denoted by Adq ∶ g→ g and adξ ∶ g→ g, respectively.4

We refer the reader to [23; 41; 48] for a more detailed description of Lie group theory and mechanics5

on Lie groups.6

As mentioned earlier, there is a lot of literature available on Lie group integrators. We refer7

the reader to [11–13; 30] for very thorough surveys of the literature on Lie group methods, which8

acknowledge all the foundational contributions leading to the current state of Lie group integrator9

theory. In particular, the Crouch and Grossman approach [14], the Lewis and Simo approach [47],10

Runge–Kutta–Munthe–Kaas methods [9; 50–52], Magnus and Fer expansions [4; 29; 68], and11

commutator-free Lie group methods [10] are outlined in these surveys. Variational integrators have12

also been derived on the Lagrangian side in the Lie group setting [5; 27; 28; 36–39; 43; 56].13

We now introduce a discrete variational formulation of time-adaptive Lagrangian mechanics on14

Lie groups. Suppose we are given a partition 0 = τ0 < τ1 < . . . < τN = T of the interval [0,T], and15

a discrete curve in G × R × R denoted by {(qk, qk, λk)}Nk=0 such that qk ≈ q(τk), qk ≈ q(τk), and16

λk ≈ λ(τk). The discrete kinematics equation is chosen to be17

qk+1 = qkfk, (5.5)18

where fk ∈ G represents the relative update over a single step.19

Consider the discrete action functional,20

S̄d ({(qk, qk, λk)}Nk=0) =
N−1

∑
k=0

[Ld(qk, fk, qk, qk+1) − λk
qk+1 − qk
τk+1 − τk

+ λkg(qk)]
qk+1 − qk
τk+1 − τk

, (5.6)21

where,22

Ld(qk, fk, qk, qk+1) ≈ ext
(q,q)∈C2([τk,τk+1],G×R)

(q,q)(τk)=(qk,qk), (q,q)(τk+1)=(qkfk,qk+1)

∫
τk+1

τk
L(q, ξ

g(q) , q)dτ. (5.7)23

24

25

We can derive the following result which relates a discrete Type I variational principle to a set of26

discrete Euler–Lagrange equations:27

Theorem 5.1. The Type I discrete Hamilton’s variational principle,28

δS̄d ({(qk, qk, λk)}Nk=0) = 0, (5.8)29

where,30

S̄d ({(qk, qk, λk)}Nk=0) =
N−1

∑
k=0

[Ld(qk, fk, qk, qk+1) − λk
qk+1 − qk
τk+1 − τk

+ λkg(qk)]
qk+1 − qk
τk+1 − τk

, (5.9)31

is equivalent to the discrete extended Euler–Lagrange equations,32

qk+1 = qk + (τk+1 − τk)g(qk), (5.10)33
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1

Ad∗f−1
k

(T∗
eLfkD2Ldk) = T∗

eLqkD1Ldk +
τk+1 − τk
qk+1 − qk

qk − qk−1

τk − τk−1
T∗
eLfk−1

D2Ldk−1
, (5.11)2

3

[D3Ldk + λk
1

τk+1 − τk
+ λk∇g(qk)]

qk+1 − qk
τk+1 − τk

− 1

τk+1 − τk
[Ldk − λk

qk+1 − qk
τk+1 − τk

+ λkg(qk)]

+ [D4Ldk − λk−1
1

τk − τk−1
] qk − qk−1

τk − τk−1
+ 1

τk − τk−1
[Ldk−1 − λk−1

qk − qk−1

τk − τk−1
+ λk−1g(qk−1)] = 0,

(5.12)4

where Ldk denotes Ld(qk, fk, qk, qk+1).5

Proof. See Appendix A.3. �6

7

Now, define8

pk = −D3Ld(qk, fk, qk, qk+1) (5.13)9

and10

µk = Ad∗f−1
k

(T∗
eLfkD2Ld(qk, fk, qk, qk+1)) −T∗

eLqkD1Ld(qk, fk, qk, qk+1). (5.14)11

Then,12

µk+1 =
τk+2 − τk+1

qk+2 − qk+1

qk+1 − qk
τk+1 − τk

T∗
eLfkD2Ld(qk, fk, qk, qk+1). (5.15)13

With these definitions, if we use a constant time-step h in τ and substitute g(q) = p
p̊q

1−p̊/p, the14

discrete Euler–Lagrange equations can be rewritten as15

µk = Ad∗f−1
k

(T∗
eLfkD2Ld(qk, fk, qk, qk+1)) −T∗

eLqkD1Ld(qk, fk, qk, qk+1), (5.16)16

µk+1 =
q

1−p̊/p
k

q
1−p̊/p
k+1

T∗
eLfkD2Ld(qk, fk, qk, qk+1), (5.17)17

qk+1 = qk + h
p

p̊
q

1−p̊/p
k , (5.18)18

pk+1 =
p̊ [λk+1 − λk +Ldk −Ldk+1

]
hpq

1−p̊/p
k+1

+D4Ldk +
λk+1

qk+1
(1 − p̊

p
) . (5.19)19

20

In the Lie group setting, the Riemannian p-Bregman Lagrangian becomes21

Lp(q, ξ, t) =
tκp+1

2p
⟨ξ, ξ⟩ −Cpt(κ+1)p−1f(q), (5.20)22

with corresponding Euler–Lagrange equation,23

dJ(ξ)
dt

+ κp + 1

t
J(ξ) − ad∗ξJ(ξ) +Cp2tp−2∇Lf(q) = 0, (5.21)24

where ∇Lf is the left-trivialized derivative of f , given by ∇Lf(q) = T∗
eLq(Dqf(q)). We then consider25

the discrete Lagrangian,26

Ld(qk, fk, qk, qk+1) =
qκp+1
k

hp(g(qk))2
Td(fk) −Chpq(κ+1)p−1

k f(qk), (5.22)27

where Td(fk) ≈ 1
2⟨hξk, hξk⟩, which approximates28

Ld(qk, fk, qk, qk+1) ≈ ext
(q,q)∈C2([τk,τk+1],G×R)

(q,q)(τk)=(qk,qk), (q,q)(τk+1)=(qkfk,qk+1)

∫
τk+1

τk
L(q, ξ

g(q) , q)dτ. (5.23)29
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5.3. Numerical Experiment on SO(3). We work on the 3-dimensional Special Orthogonal1

group,2

SO(3) = {R ∈ R3×3∣R⊺R = I3×3,det (R) = 1}. (5.24)3

Its Lie algebra is4

so(3) = {S ∈ R3×3∣S⊺ = −S}, (5.25)5

with the matrix commutator as the Lie bracket. We have an identification between R3 and so(3)6

given by the hat map ⋅̂ ∶ R3 → so(3), defined such that x̂y = x × y for any x, y ∈ R3. The inverse of7

the hat map is the vee map (⋅)∨ ∶ so(3) → R3. The inner product on so(3) is given by8

(η̂ ● ξ̂)
so(3)

= 1

2
Trace (η̂⊺ξ̂) = η⊺ξ, (5.26)9

and the metric is chosen so that10

⟨η̂, ξ̂⟩ = (J(η̂) ● ξ̂)
so(3)

= Trace (η̂⊺Jdξ̂) = η⊺Jξ, (5.27)11

where J ∈ R3×3 is a symmetric positive-definite matrix and Jd = 1
2Trace(J)I3×3 − J .12

On SO(3), for any u, v ∈ R3 and F ∈ SO(3),13

adûv̂ = [û, v̂] = ûv̂ − v̂û = û × v, AdF û = FûF ⊺ = F̂ u. (5.28)14

Identifying so(3)∗ ≃ so(3) ≃ R3, we have for any u, v ∈ R3 and F ∈ SO(3) that15

aduv = ûv = u × v, ad∗uv = −ûv = v × u, AdFu = Fu, Ad∗Fu = F ⊺u. (5.29)16

17

On SO(3), the Riemannian p-Bregman Lagrangian becomes18

Lp(R,Ω, t) =
tp+1

2p
Ω⊺JΩ −Cpt2p−1f(R), (5.30)19

and the corresponding Euler–Lagrange equations are given by20

JΩ̇ + p + 1

t
JΩ + Ω̂JΩ +Cp2tp−2∇Lf(R) = 0, Ṙ = RΩ̂. (5.31)21

The discrete kinematics equations is written as22

Rk+1 = RkFk, (5.32)23

where Fk ∈ SO(3), and κ = 1 so we get the discrete Lagrangian,24

Ld(Rk, Fk,Rk,Rk+1) =
p̊2

hp3
R
p−1+2p̊/p
k Td(Fk) −ChpR2p−1

k f(Rk). (5.33)25

As in [38; 42], the angular velocity is approximated with Ω̂k ≈ 1
hR

⊺
k(Rk+1 −Rk) = 1

h(Fk − I3×3) so we26

can take27

Td(Fk) = Trace ([I3×3 − Fk]Jd) . (5.34)28

Differentiating this equation and using the identity Trace(−x̂A) = (A −A⊺)∨ ⋅ x yields29

T∗
ILFk (DFkTd(Fk)) = (JdFk − F ⊺

k Jd)
∨
. (5.35)30

Then, the discrete Euler–Lagrange equations for µk and µk+1 become31

µk =
p̊2

hp3
R
p−1+2p̊/p
k (FkJd − JdF ⊺

k )
∨ +ChpR2p−1

k ∇Lf(Rk), (5.36)32

µk+1 =
q

1−p̊/p
k

q
1−p̊/p
k+1

F ⊺
k [µk −ChpR2p−1

k ∇Lf(Rk)] . (5.37)33
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Now, equation (5.36) can be solved explicitly when J = I3×3 as described in [42]:1

Fk = exp(sin−1 ∥ak∥
∥ak∥

âk), where ak =
hp3

p̊2
R

1−p−2p̊/p
k [µk −ChpR2p−1

k ∇Lf(Rk)] . (5.38)2

Therefore, we get the Adaptive LLGVI (Adaptive Lagrangian Lie Group Variational Integrator)3

Fk = exp(sin−1 ∥ak∥
∥ak∥

âk), where ak =
hp3

p̊2
R

1−p−2p̊/p
k [µk −ChpR2p−1

k ∇Lf(Rk)] , (5.39)4

Rk+1 =Rk + h
p

p̊
R

1−p̊/p
k , (5.40)5

µk+1 =
R

1−p̊/p
k

R
1−p̊/p
k+1

F ⊺
k [µk −ChpR2p−1

k ∇Lf(Rk)] , (5.41)6

Rk+1 = RkFk. (5.42)7

We will use this integrator to solve the problem of minimizing the objective function,8

f(R) = 1

2
∥A −R∥2

F = 1

2
(∥A∥2

F + 3) −Trace(A⊺R), (5.43)9

over R ∈ SO(3), where ∥ ⋅ ∥F denotes the Frobenius norm. Its left-trivialized gradient is given by10

∇Lf(R) = (A⊺R −R⊺A)∨ . (5.44)11

Minimizing this objective function appears in the least-squares estimation of attitude, referred to as12

Wahba’s problem [62]. The optimal attitude is explicitly given by13

R∗ = Udiag [1,1,det(UV )]V ⊺, (5.45)14

where A = USV ⊺ is the singular value decomposition of A with U,V ∈ O(3) and S diagonal.15

16

We have tested the Adaptive LLGVI integrator on Wahba’s problem against the Implicit Lie17

Group Variational Integrator (Implicit LGVI) from [42]. The Implicit LGVI is a Lagrangian18

Lie group variational integrator which adaptively adjusts the step size at every step. It should be19

noted that these two adaptive approaches use adaptivity in two fundamentally different ways: our20

Adaptive LLGVI method uses a priori adaptivity based on known global properties of the family21

of differential equations considered (i.e. the time-rescaling symmetry of the family of Bregman22

dynamics), while the implicit method from [42] adapts the time-steps in an a posteriori way, by23

solving a system of nonlinear equations coming from an extended variational principle. The results24

of our numerical experiments are presented in Figures 3 and 4. In these numerical experiments, we25

have used the termination criteria26

∣f(Rk) − f(R∗)∣ < δ and ∣f(Rk) − f(Rk−1)∣ < δ. (5.46)27

We can see from Figure 3 that both algorithms preserve the orthogonality condition R⊺
kRk = I3×328

very well. Now, we can observe from Figure 3 that although both algorithms follow the same curve29

in time t, they do not travel along this curve at the same speed. Despite the fact that the Adaptive30

LLGVI algorithm initially takes smaller time-steps, those time-steps eventually become much larger31

than for the Implicit LGVI algorithm, and as a result, the Adaptive LLGVI algorithm achieves32

the termination criteria in a smaller number of iterations, which can also be seen more explicitly33

in the table from Figure 4. Unlike the Implicit LGVI algorithm, the Adaptive LLGVI algorithm34

is explicit, so each iteration is much cheaper and is therefore significantly faster, as can be seen35

from the running times displayed in Figure 4. Furthermore, the Adaptive LLGVI algorithm is36

significantly easier to implement.37

38
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Figure 3. Comparison of the Adaptive LLGVI algorithm and of the Implicit LGVI
algorithm from [42] with p = 6, to solve Wahba’s problem (5.43).

6. Conclusion1

A variational framework for accelerated optimization on vector spaces was introduced [65] by2

considering a family of time-dependent Bregman Lagrangian and Hamiltonian systems which is3

closed under time-rescaling. This variational framework was exploited in [20] by using time-adaptive4

geometric Hamiltonian integrators to design efficient, explicit algorithms for symplectic accelerated5

optimization. It was observed that a careful use of adaptivity and symplecticity, which was possible6

on the Hamiltonian side thanks to the Poincaré transformation, could result in a significant gain in7

computational efficiency, by simulating higher-order Bregman dynamics using the computationally8

efficient lower-order Bregman integrators applied to the time-rescaled dynamics.9
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Figure 4. Time and number of iterations needed by the Adaptive LLGVI and
Implicit LGVI algorithms with p = 6, to satisfy the termination criterion (5.46) on
Wahba’s problem (5.43).

These variational framework and time-adaptive approach on the Hamiltonian side were later1

extended to the Riemannian manifolds setting in [19]. However, the current formulations of2

Hamiltonian variational integrators do not make sense intrinsically on manifolds, so this framework3

was only exploited using methods which take advantage of the structure of the Euclidean spaces in4

which the Riemannian manifolds are embedded [16; 18] instead of the structure of the Riemannian5

manifolds themselves. On the other hand, existing formulations of Lagrangian variational integrators6

are well-defined on manifolds, and many Lagrangian variational integrators have been derived on7

Riemannian manifolds, especially in the Lie group setting. This motivated exploring whether it is8

possible to construct a mechanism on the Lagrangian side which mimics the Poincaré transformation,9

since it is more natural and easier to work on the Lagrangian side on curved manifolds.10

The usual correspondence between Hamiltonian and Lagrangian dynamics could not be exploited11

here since the Poincaré Hamiltonian is degenerate and therefore does not have a corresponding12

Lagrangian formulation. Instead, we introduced a novel derivation of the Poincaré transformation13

from a variational principle which gave us additional insight into the transformation mechanism and14

provided natural candidates for a time-adaptive framework on the Lagrangian side. Based on these15

observations, we constructed a theory of time-adaptive Lagrangian mechanics both in continuous16

and discrete time, and tested the resulting time-adaptive Lagrangian variational integrators to17

solve optimization problems by simulating Bregman dynamics, within the variational framework18

introduced in [65]. We observed empirically that our time-adaptive Lagrangian variational integrators19

performed almost exactly in the same way as the time-adaptive Hamiltonian variational integrators20

coming from the Poincaré framework of [20], whenever they are used with the same parameters and21

time-step. As a result, the computational analysis carried in [20] for the HTVI algorithm extends22

to the LTVI algorithm, and thus the LTVI algorithm is much more efficient than non-symplectic23
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integrators for the Bregman dynamics and can be a competitive first-order explicit algorithm since1

it can outperform commonly used optimization algorithms for certain objective functions.2

Finally, we showed that our time-adaptive Lagrangian approach extends naturally to more3

general spaces such as Riemannian manifolds and Lie groups without having to face the difficulties4

experienced on the Hamiltonian side, and we applied time-adaptive Lie group Lagrangian variational5

integrators to solve optimization problems on the three-dimensional Special Orthogonal group SO(3).6

In particular, the resulting algorithms were significantly faster and easier to implement than other7

recently proposed time-adaptive Lie group variational integrators for accelerated optimization.8

In future work, we will explore the issue of time-adaptive Lagrangian mechanics for more general9

monitor functions, using the primal-dual framework of Dirac mechanics. We will also study the10

convergence properties of the discrete-time algorithms, and try to better understand how to reconcile11

the Nesterov barrier theorem with the convergence properties of the continuous Bregman flows. It12

would also be useful to study the extent to which the practical considerations recently presented13

in [17], which significantly improved the computational performance of the symplectic optimization14

algorithms in the normed vector space setting, extend to the Riemannian manifold and Lie group15

settings with the Lagrangian Riemannian and Lie group variational integrators.16
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Appendix A. Proofs of Theorems28

A.1. Proof of Theorem 3.2.29

Theorem A.1. The Type I discrete Hamilton’s variational principle,30

δS̄d ({(qk, qk, λk)}Nk=0) = 0,31

where,32

S̄d ({(qk, qk, λk)}Nk=0) =
N−1

∑
k=0

[Ld(qk, qk, qk+1, qk+1) − λk
qk+1 − qk
τk+1 − τk

+ λkg(qk)]
qk+1 − qk
τk+1 − τk

,33

is equivalent to the discrete extended Euler–Lagrange equations,34

qk+1 = qk + (τk+1 − τk)g(qk),35
36

qk+1 − qk
τk+1 − τk

D1Ld(qk, qk, qk+1, qk+1) +
qk − qk−1

τk − τk−1
D3Ld(qk−1, qk−1, qk, qk) = 0,37

38

[D2Ldk + λk
1

τk+1 − τk
+ λk∇g(qk)]

qk+1 − qk
τk+1 − τk

− 1

τk+1 − τk
[Ldk − λk

qk+1 − qk
τk+1 − τk

+ λkg(qk)]39

+ [D4Ldk−1 − λk−1
1

τk − τk−1
] qk − qk−1

τk − τk−1
+ 1

τk − τk−1
[Ldk−1 − λk−1

qk − qk−1

τk − τk−1
+ λk−1g(qk−1)] = 0,40

where Ldk denotes Ld(qk, qk, qk+1, qk+1).41
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Proof. We use the notation Ldk
= Ld(qk,qk, qk+1,qk+1), and we will use the fact that δq0 = δqN = δq0 = δqN = 0 throughout the proof.1

We have2

δS̄d = δ
⎛
⎝
N−1

∑
k=0

[Ld(qk,qk, qk+1,qk+1) − λk
qk+1 − qk

τk+1 − τk
+ λkg(qk)]

qk+1 − qk

τk+1 − τk
⎞
⎠

3

=
N−1

∑
k=1

[D2Ldk
+ λk

1

τk+1 − τk
+ λk∇g(qk)]

qk+1 − qk

τk+1 − τk
δqk −

N−1

∑
k=1

1

τk+1 − τk
[Ldk

− λk
qk+1 − qk

τk+1 − τk
+ λkg(qk)] δqk4

+
N−2

∑
k=0

[D4Ldk
− λk

1

τk+1 − τk
] qk+1 − qk

τk+1 − τk
δqk+1 +

N−2

∑
k=0

1

τk+1 − τk
[Ldk

− λk
qk+1 − qk

τk+1 − τk
+ λkg(qk)] δqk+15

+
N−1

∑
k=1

qk+1 − qk

τk+1 − τk
D1Ldk

δqk +
N−2

∑
k=0

qk+1 − qk

τk+1 − τk
D3Ldk

δqk+1 +
N−1

∑
k=0

qk+1 − qk

τk+1 − τk
(g(qk) −

qk+1 − qk

τk+1 − τk
) δλk.6

Thus,7

δS̄d =
N−1

∑
k=1

[D2Ldk
+ λk

1

τk+1 − τk
+ λk∇g(qk)]

qk+1 − qk

τk+1 − τk
δqk −

N−1

∑
k=1

1

τk+1 − τk
[Ldk

− λk
qk+1 − qk

τk+1 − τk
+ λkg(qk)] δqk8

+
N−1

∑
k=1

[D4Ldk−1
− λk−1

1

τk − τk−1
] qk − qk−1

τk − τk−1
δqk +

N−1

∑
k=1

1

τk − τk−1
[Ldk−1

− λk−1
qk − qk−1

τk − τk−1
+ λk−1g(qk−1)] δqk9

+
N−1

∑
k=1

[qk+1 − qk

τk+1 − τk
D1Ldk

+ qk − qk−1

τk − τk−1
D3Ldk−1

] δqk +
N−1

∑
k=0

qk+1 − qk

τk+1 − τk
(g(qk) −

qk+1 − qk

τk+1 − τk
) δλk.10

As a consequence, if11

qk+1 = qk + (τk+1 − τk)g(qk),12
13

qk+1 − qk

τk+1 − τk
D1Ld(qk,qk, qk+1,qk+1) +

qk − qk−1

τk − τk−1
D3Ld(qk−1,qk−1, qk,qk) = 0,14

15

[D2Ldk
+ λk

1

τk+1 − τk
+ λk∇g(qk)]

qk+1 − qk

τk+1 − τk
− 1

τk+1 − τk
[Ldk

− λk
qk+1 − qk

τk+1 − τk
+ λkg(qk)]16

+ [D4Ldk−1
− λk−1

1

τk − τk−1
] qk − qk−1

τk − τk−1
+ 1

τk − τk−1
[Ldk−1

− λk−1
qk − qk−1

τk − τk−1
+ λk−1g(qk−1)] = 0,17

then δS̄d ({(qk,qk, λk)}Nk=0) = 0. Conversely, if δS̄d ({(qk,qk, λk)}Nk=0) = 0, then a discrete fundamental theorem of the calculus of18

variations yields the above equations. �19

A.2. Proof of Theorem 3.4.20

Theorem A.2. The Type I discrete Hamilton’s variational principle,21

δS̄d ({(qk, qk, λk)}Nk=0) = 0,22

where,23

S̄d ({(qk, qk, λk)}Nk=0) =
N−1

∑
k=0

{qk+1 − qk
τk+1 − τk

[Ld(qk, qk, qk+1, qk+1) − λk] + λkg(qk)},24

is equivalent to the discrete extended Euler–Lagrange equations,25

qk+1 = qk + (τk+1 − τk)g(qk),26
27

qk+1 − qk
τk+1 − τk

D1Ld(qk, qk, qk+1, qk+1) +
qk − qk−1

τk − τk−1
D3Ld(qk−1, qk−1, qk, qk) = 0,28

29

qk+1 − qk
τk+1 − τk

D2Ldk −
1

τk+1 − τk
Ldk +

qk − qk−1

τk − τk−1
D4Ldk−1 +

1

τk − τk−1
Ldk−1 =

λk−1

τk − τk−1
− λk
τk+1 − τk

− λk∇g(qk),30

where Ldk denotes Ld(qk, qk, qk+1, qk+1).31

Proof. We use the notation Ldk
= Ld(qk,qk, qk+1,qk+1), and we will use the fact that δq0 = δqN = δq0 = δqN = 0 throughout the proof.32

We have33

δS̄d = δ
⎛
⎝
N−1

∑
k=0

{qk+1 − qk

τk+1 − τk
[Ld(qk,qk, qk+1,qk+1) − λk] + λkg(qk)}

⎞
⎠

34

=
N−1

∑
k=1

[qk+1 − qk

τk+1 − τk
D2Ldk

− 1

τk+1 − τk
Ldk

+ λk

τk+1 − τk
+ λk∇g(qk)] δqk +

N−2

∑
k=0

[qk+1 − qk

τk+1 − τk
D4Ldk

+ 1

τk+1 − τk
Ldk

− λk

τk+1 − τk
] δqk+135

+
N−1

∑
k=1

qk+1 − qk

τk+1 − τk
D1Ldk

δqk +
N−2

∑
k=0

qk+1 − qk

τk+1 − τk
D3Ldk

δqk+1 +
N−1

∑
k=0

(g(qk) −
qk+1 − qk

τk+1 − τk
) δλk.36
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Thus,1

δS̄d =
N−1

∑
k=1

[qk+1 − qk

τk+1 − τk
D2Ldk

− 1

τk+1 − τk
Ldk

+ λk

τk+1 − τk
+ λk∇g(qk) +

qk − qk−1

τk − τk−1
D4Ldk−1

+ 1

τk − τk−1
Ldk−1

− λk−1

τk − τk−1
] δqk2

+
N−1

∑
k=1

[qk+1 − qk

τk+1 − τk
D1Ldk

+ qk − qk−1

τk − τk−1
D3Ldk−1

] δqk +
N−1

∑
k=0

(g(qk) −
qk+1 − qk

τk+1 − τk
) δλk.3

As a consequence, if4

qk+1 − qk

τk+1 − τk
D2Ldk

− 1

τk+1 − τk
Ldk

+ qk − qk−1

τk − τk−1
D4Ldk−1

+ 1

τk − τk−1
Ldk−1

= λk−1

τk − τk−1
− λk

τk+1 − τk
− λk∇g(qk),5

6
qk+1 − qk

τk+1 − τk
D1Ld(qk,qk, qk+1,qk+1) +

qk − qk−1

τk − τk−1
D3Ld(qk−1,qk−1, qk,qk) = 0,7

8
qk+1 = qk + (τk+1 − τk)g(qk),9

then δS̄d ({(qk,qk, λk)}Nk=0) = 0. Conversely, if δS̄d ({(qk,qk, λk)}Nk=0) = 0, then a discrete fundamental theorem of the calculus of10

variations yields the above equations. �11

A.3. Proof of Theorem 5.1.12

Theorem A.3. The Type I discrete Hamilton’s variational principle,13

δS̄d ({(qk, qk, λk)}Nk=0) = 0,14

where,15

S̄d ({(qk, qk, λk)}Nk=0) =
N−1

∑
k=0

[Ld(qk, fk, qk, qk+1) − λk
qk+1 − qk
τk+1 − τk

+ λkg(qk)]
qk+1 − qk
τk+1 − τk

,16

is equivalent to the discrete extended Euler–Lagrange equations,17

qk+1 = qk + (τk+1 − τk)g(qk),18
19

Ad∗f−1
k

(T∗
eLfkD2Ldk) = T∗

eLqkD1Ldk +
τk+1 − τk
qk+1 − qk

qk − qk−1

τk − τk−1
T∗
eLfk−1D2Ldk−1 ,20

21

[D3Ldk + λk
1

τk+1 − τk
+ λk∇g(qk)]

qk+1 − qk
τk+1 − τk

− 1

τk+1 − τk
[Ldk − λk

qk+1 − qk
τk+1 − τk

+ λkg(qk)]22

+ [D4Ldk − λk−1
1

τk − τk−1
] qk − qk−1

τk − τk−1
+ 1

τk − τk−1
[Ldk−1 − λk−1

qk − qk−1

τk − τk−1
+ λk−1g(qk−1)] = 0,23

where Ldk denotes Ld(qk, fk, qk, qk+1).24

Proof. We use the notation Ldk
= Ld(qk, fk,qk,qk+1) and we will use the fact that δq0 = δqN = δq0 = δqN = η0 = ηN = 0 throughout25

the proof. We have26

δS̄d ({(qk,qk, λk)}Nk=0) = δ
⎛
⎝
N−1

∑
k=0

[Ld(qk, fk,qk,qk+1) − λk
qk+1 − qk

τk+1 − τk
+ λkg(qk)]

qk+1 − qk

τk+1 − τk
⎞
⎠

27

=
N−1

∑
k=1

[D3Ldk
+ λk

1

τk+1 − τk
+ λk∇g(qk)]

qk+1 − qk

τk+1 − τk
δqk −

N−1

∑
k=1

1

τk+1 − τk
[Ldk

− λk
qk+1 − qk

τk+1 − τk
+ λkg(qk)] δqk28

+
N−2

∑
k=0

[D4Ldk
− λk

1

τk+1 − τk
] qk+1 − qk

τk+1 − τk
δqk+1 +

N−2

∑
k=0

1

τk+1 − τk
[Ldk

− λk
qk+1 − qk

τk+1 − τk
+ λkg(qk)] δqk+129

+
N−1

∑
k=1

qk+1 − qk

τk+1 − τk
D1Ldk

δqk +
N−1

∑
k=0

qk+1 − qk

τk+1 − τk
D2Ldk

δfk +
N−1

∑
k=0

qk+1 − qk

τk+1 − τk
(g(qk) −

qk+1 − qk

τk+1 − τk
) δλk.30

We can write δgk as δgk = gkηk for some ηk ∈ g. Then, taking the variation of the discrete kinematics equation qk+1 = qkfk gives31
the equation δqk+1 = δqkfk + qkδfk and fk = q−1k qk+1. Therefore,32

δfk = q−1k δqk+1 − q−1k δqkfk = q−1k qk+1ηk+1 − q−1k qkηkfk = fkηk+1 − ηkfk,33

so34

δS̄d ({(qk,qk, λk)}Nk=0) =
N−1

∑
k=1

[D3Ldk
+ λk

1

τk+1 − τk
+ λk∇g(qk)]

qk+1 − qk

τk+1 − τk
δqk −

N−1

∑
k=1

1

τk+1 − τk
[Ldk

− λk
qk+1 − qk

τk+1 − τk
+ λkg(qk)] δqk35

+
N−1

∑
k=1

[(D4Ldk−1
− λk−1

1

τk − τk−1
) qk − qk−1

τk − τk−1
+ 1

τk − τk−1
(Ldk−1

− λk−1
qk − qk−1

τk − τk−1
+ λk−1g(qk−1))] δqk36

+
N−1

∑
k=1

qk+1 − qk

τk+1 − τk
(T∗

eLqk
D1Ldk

● ηk) +
N−1

∑
k=0

qk+1 − qk

τk+1 − τk
(T

∗

eLfk
D2Ldk

● [ηk+1 − f−1k ηkfk])37

+
N−1

∑
k=0

qk+1 − qk

τk+1 − τk
(g(qk) −

qk+1 − qk

τk+1 − τk
) δλk.38
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Then,1

δS̄d ({(qk,qk, λk)}Nk=0) =
N−1

∑
k=1

[D3Ldk
+ λk

1

τk+1 − τk
+ λk∇g(qk)]

qk+1 − qk

τk+1 − τk
δqk −

N−1

∑
k=1

1

τk+1 − τk
[Ldk

− λk
qk+1 − qk

τk+1 − τk
+ λkg(qk)] δqk2

+
N−1

∑
k=1

[(D4Ldk−1
− λk−1

1

τk − τk−1
) qk − qk−1

τk − τk−1
+ 1

τk − τk−1
(Ldk−1

− λk−1
qk − qk−1

τk − τk−1
+ λk−1g(qk−1))] δqk3

+
N−1

∑
k=1

qk+1 − qk

τk+1 − τk
(T∗

eLqk
D1Ldk

● ηk) +
N−1

∑
k=0

qk+1 − qk

τk+1 − τk
(g(qk) −

qk+1 − qk

τk+1 − τk
) δλk4

+
N−1

∑
k=0

qk − qk−1

τk − τk−1
(T∗

eLfk−1
D2Ldk−1

● ηk) −
N−1

∑
k=0

qk+1 − qk

τk+1 − τk
(T

∗

eLfk
D2Ldk

●Ad
f−1
k
ηk).5

As a consequence, if6

qk+1 = qk + (τk+1 − τk)g(qk),7
8

Ad
∗

f−1
k

(T∗

eLfk
D2Ldk

) = T
∗

eLqk
D1Ldk

+ τk+1 − τk
qk+1 − qk

qk − qk−1

τk − τk−1
T
∗

eLfk−1
D2Ldk−1

,9

10

[D3Ldk
+ λk

1

τk+1 − τk
+ λk∇g(qk)]

qk+1 − qk

τk+1 − τk
− 1

τk+1 − τk
[Ldk

− λk
qk+1 − qk

τk+1 − τk
+ λkg(qk)]11

+ [D4Ldk
− λk−1

1

τk − τk−1
] qk − qk−1

τk − τk−1
+ 1

τk − τk−1
[Ldk−1

− λk−1
qk − qk−1

τk − τk−1
+ λk−1g(qk−1)] = 0,12

then δS̄d ({(qk,qk, λk)}Nk=0) = 0. Conversely, if δS̄d ({(qk,qk, λk)}Nk=0) = 0, then a discrete fundamental theorem of the calculus of13

variations yields the above equations. �14
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