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Pulling the Plug: Equitable Guidelines for Machine Learning Neuroprognostication

Abstract

Neuroprognostication is the field of predicting recovery from comas or other disorders of

consciousness after experiencing brain injury. Unfortunately, many comatose patients are

withdrawn from life-sustaining treatment by medical professionals if they are predicted to have a

poor outcome within a certain timeframe. This practice is a confounding factor in clinical

neuroprognostication studies because of the human bias known as self-fulfilling prophecy,

whereby taking a patient off life support because of a prediction turns out to be the reason they

die when they may have lived otherwise. In recent years, the growth of machine learning has

resulted in the creation of coma prognostication algorithms in order to improve patient care and

healthcare decision-making. This paper proposes and elaborates on a data equity-informed

approach to creating equitable guidelines for machine learning prognostication by concentrating

on the data lifecycle and medical staff training.
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Pulling the Plug: Equitable Guidelines for Machine Learning Neuroprognostication

Introduction

Archie Battersbee, a 12-year old boy, died in a London hospital on August 5, 2022. After

remaining in a coma for four months, his parents begged doctors not to withdraw life-sustaining

treatment such as his medications and ventilator because they were convinced he would wake up.

This plea was rejected in Archie’s best interests since the hospital argued he had “no chance of

recovery,” (Kirka).

Coma prognostication is one of the most difficult areas in the medical field because of the

level of uncertainty and unpredictability of recovery estimates. While ascertaining the numerical

estimates of coma incidence has not been feasible in the past, one research group found that there

are at least 250 annual coma cases for every 100,000 people (Kondziella et al.). That amounts to

more than 20 million people affected globally. Many of these individuals will not wake up unless

they experience adequate brain activity within a crucial time frame. Gorelova, a University of

Pittsburgh corresponder, comments, “It often takes two weeks for [traumatic brain injury (TBI)]

patients to emerge from their coma and begin their recoveries—yet severe TBI patients are often

taken off life support within the first 72 hours after hospital admission,” (Gorelova and Davis).

In order to enhance patient care and outcomes, predictive machine learning (ML) has

been gaining traction in prognosis efforts. In the context of comatose patients, this subset of ML

refers to the creation of systems by scholars that predict the prognosis, or likely outcome, of a

coma by training algorithms on information, known as a dataset. One limitation to these

algorithms is the many biases that result from their creation, from overreliance on ML tools,

known as automation bias, to data bias, where aspects of data are over- or under-represented.

This raises the question, To what extent do withdrawal of life-sustaining therapy and
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self-fulfilling prophecy play a role in coma prognostication algorithms in healthcare, and how

can this inform future guidelines and decision-making?

History and Current Machine Learning Approaches

In the past few years, researchers have started creating ML methods to predict

neurological outcomes in comatose patients. Many of these models utilize fMRI or EEG data to

train and test a model. These models analyze the data and learn patterns to predict a good or poor

outcome. For example, Gorelova’s sentiment about withdrawal of life support was a response

contrasting traditional approaches with a predictive algorithm created by Shandong Wu, an

associate professor of radiology and bioengineering at the university. The algorithm used brain

imaging data to predict 6-month survival and recovery rates of patients, which would inform

doctors about when to withdraw treatment (Pease et al.). Algorithms further add context by using

well-known objective scales in the world of

coma prognostication, including the

Glasgow Coma Scale and Cerebral

Performance Category (CPC) Scale to make

results more interpretable. Figure 1 has

descriptions of each cerebral performance

category, with 1-2 predicting a good

outcome and 3-5 predicting a poor outcome.

Many studies predict coma recovery

outcomes based on datasets made up of electroencephalogram (EEG) data, which are recordings

of brain activity. The model trains on thousands of pieces of data just like the sample below in

Figure 2 in order to detect patterns in the data and create an accurate model.
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The benefit of ML tools is that they can be used in conjunction with professionals as a

second opinion of sorts. In 2018, a system

predicting recovery scores for comatose patients

proved this sentiment true. A group of doctors

in China assessed seven patients with very low

recovery scores. The system gave them close to

full scores and a predicted recovery of within a

year (Chen). The patients all recovered. In a

world without ML, the hospital would likely

have taken the patients off life support.

Self-fulfilling Prophecy

Consider Archie’s accident. On April 6, Archie’s mom found him unresponsive after a

cardiac arrest due to strangulation. He was rushed to the hospital, resuscitated, and confirmed to

have suffered hypoxic ischemic brain injury (caused by lack of oxygen to the brain). For the next

four months, Archie was monitored in his coma, and traditional prognostication techniques were

probably used to determine brain damage and recovery potential. The damage was severe and

prognosis was poor, so medical professionals suggested withdrawal of life-sustaining treatment

(WLST).

In cases like Archie’s, the age-old adage “To expect defeat is nine-tenths of defeat itself,”

has the potential to take on a much graver meaning. Who decides when to “pull the plug”? How

can medical professionals be sure they aren’t making an incorrect evaluation? In some tragic

cases, a patient could have lived if the doctor decided not to withdraw treatment. Can this

horrifying reality be prevented? It all comes down to medical decision-making and the human



Iyer 5

bias known as a self-fulfilling prophecy (SFP). SFP in neuroprognostication occurs when “a

patient in coma is predicted to have a poor outcome, and life-sustaining treatment is withdrawn

on the basis of that prediction, thus directly bringing about a poor outcome (viz. death) for that

patient,” (Mertens et al.).

SFP and Machine Learning

SFPs have long been studied in fields that use clinical trials and pose a concern to

healthcare professionals. However, their significance to predicting clinical outcomes with ML is

just being realized due to the recent emergence of these technologies. As a result, the interplay

between the two concepts in coma recovery is understudied, and there is not an abundance of

literature published. Existing exploration of the topic suggests that ML can both mitigate or

exacerbate SFPs.

As previously mentioned, the system created by the Chinese Academy of Sciences saved

seven patients. The scientists even claimed, “The possible prediction of the recovery of patient

consciousness will directly affect the choice of clinical treatment strategies, and even the choice

of life or death by the patient’s relatives,” (Chen). This suggests that such models can mitigate

SFP and prevent countless deaths.

On the other hand, these algorithms can amplify existing human bias. Maria De-Arteaga,

a researcher working in algorithmic fairness and human-AI interaction, is one of the first to

acknowledge the challenge posed by SFP to ML by diving into this theme through a scoping

review. De-Artega concludes, “Models (and providers) trained to predict outcomes based on data

available prior to transfer may learn erroneous relationships between clinical patterns that

predict” (De-Artega and Elmer) the decision to withdraw treatment rather than the poor outcome
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itself. This is how medical professionals’ SFP is encoded into data and therefore model

predictions.

The term “feedback loop” is often used when discussing SFP in psychology. A feedback

loop is “a system in which two or more aspects of the system influence each other,” (Loper).

Figure 3 outlines De-Artega’s findings with the dangerous feedback loop created by algorithms

and humans. It details how human-machine interactions compound SFPs by encoding SFPs into

algorithms with flawed data, which in turn creates more SFPs in clinical settings and repeats the

cycle. This means if there is a data point where a doctor wrongly suggested WLST for a Patient

X — leading to Patient X’s unnecessary death — then this data point could have long-lasting

consequences on the algorithm and its implementation.

A metric that has showcased this amplification already exists. It is called the false

positive rate (FPR) of an algorithm and is increased when the algorithm predicts a poor outcome

falsely, when it should actually be a good outcome. One study looked at the FPR of the absence

of one biomarker of poor outcome, called somatosensory evoked potential (SSEP). The authors

defined FPR in this case as “the proportion of subjects with initially absent SSEPs who would
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eventually achieve a good neurological recovery in a setting where life-sustaining therapy is

continued indefinitely,” (Amorim et al.). They showed that the general FPR estimate of SSEP

was around .7%, but after accounting for the average rate of WLST in the studies they reviewed,

the calculated FPR came out to be 7.7%. This is 11 times higher than what was widely accepted

by the general public at the time, which demonstrates the amplification effect of SFPs. This

study of the SSEP biomarker was applicable to traditional clinical prognostication, but this

reasoning can be extended to ML where computers extract patterns from data since they also

require similar consideration of WLST. Lack of such consideration could lead to a much higher

FPR in algorithms.

Data Guidelines

In order to account for the aforementioned factors within the feedback loop pointed out in

De-Arteaga’s study, it is clear that the training data of such models must be addressed. In fact,

De-Arteaga claims, “Training models on data accrued in settings [where] withdrawal of

life-sustaining therapies is prohibited or strictly protocolized and potential confounders are

minimized can help prevent providers’ biases, mistaken beliefs and clinical choices from

becoming encoded in algorithmic predictions,” (De-Artega and Elmer). Tracking the source of

training data is imperative to create comprehensive models for coma recovery prediction. At the

crux of the solution lies data equity. Data equity is “the consideration, through an equity lens, of

the ways in which data is collected, analyzed, interpreted, and distributed,” (Lee-Ibarra) and it

must be present throughout the data lifecycle. Parallels can be drawn between the feedback loop

and these four target areas since they are the main stages of the data lifecycle (Gaddy and Scott)

according to correspondents from the Urban Institute, an organization striving to advance equity

through research. One caveat of SFP is that it is rooted in human decision-making and thoughts.
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This is why it is necessary to bring the concept of data equity into conversation with WLST to

understand how bias can prevent equity in the neuroprognostication field and the guidelines

needed for a resolution.

Equitable data collection methods should be the standard in neuroprognostication

research, which raises the concern of whether this is ensured when it comes to data inputs for

such algorithms (See “History and Current Machine Learning Approaches”). “Systemic Racism

in EEG Research: Considerations and Potential Solutions,” is a theoretical paper which dives

into some of the rampant racial bias in the EEG research field over time and the exclusion of

marginalized communities in EEG datasets (Choy et al.). This exclusion has been tied to Black

hairstyles and hair texture, which complicates the attachment of electrodes to collect data. In a

recent attempt to change the course of EEG research, a group of undergraduates created Sevo

electrodes, which harness the transformation of a traditional African hairstyle. The electrodes are

fashioned as a hair clip in order to separate coarse and voluminous hair and successfully attach to

the scalp (Etienne et al.). As EEGs are one of the most common data inputs in

neuroprognostication algorithms, preventing exclusionary traditions is a precursor to dealing

with WLST in data.

Data bias stemming from WLST can be broken down into subcategories. A Duke study

analyzing how brain injury patients are treated showed that “race, geographic region, and

payment status were significantly associated with the decision to withdraw life support,”

(Williamson et al.) as well as patients with Medicare in contrast to those with other means of

insurance. Even the number of neurosurgeons present in the hospital carried immense weight

when analyzing association with WLST. This is why neuroprognostication algorithms must take
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into account other biases relevant to SFP in order to minimize SFP and be truly reliable for

patients.

While neuroprognostication algorithms have not risen to this challenge yet, biases in

healthcare algorithm data usage have begun to be addressed in different clinical prediction

settings. For instance, in order to reduce bias when predicting the occurrence of postpartum

depression, authors from the IBM TJ Watson Research Center incorporated two debiasing

approaches in their algorithm. The first was preprocessing of data, which means working to

remove the bias before data analysis, by re-weighting based on bias. The second was

in-processing by minimizing prejudice while training on the dataset (Park et al.). When working

with vast amounts of data for training these algorithms, preventing human bias during data

collection may not always be feasible. Debiasing mandates in algorithm design would be an

alternative that seeks to prevent encoding SFPs into algorithms.

Training Guidelines

After addressing data-driven concerns, the regulation of researchers and medical

professionals still remains. Mayli Mertens, an associate researcher at Copenhagen University,

states in her staff recommendations in the Journal of Medical Ethics, “When possible, treating

medical staff should be completely blinded from neuroprognostic studies,” (Mertens et al.) so

that their decision is not influenced by the prediction of the algorithm, which can further

introduce SFP. This means they should not be aware of the algorithm or technological tool being

tested. This is similar to De-Artega’s conclusions about how human-computer interactions can

amplify SFP in data. Blinding is a well-known technique applied in clinical research to prevent

bias not limited to SFP. There has been no research into how unblinded studies can interact with

bias in the context of ML studies. Consequently, unblinded studies could encode bias into



Iyer 10

algorithms. In coming years, algorithmic studies may begin to focus on clinical testing,

especially with the exponential growth of artificial intelligence. Thus, blinding should be a

prerequisite for conducting algorithmic clinical practice research.

Finally, guidelines would not be complete without thinking about how these algorithms

will eventually be implemented in a healthcare setting. After tackling equity in data collection

and analysis, the final stages are interpretation and distribution. The overlap of research and

implementation is extremely important in the field of medicine, and one area where this comes

into play is in the evaluation of new tools. This overlap relies on a key building block in ML

approaches for neuroprognostication: interpretability. Medical interpretability refers to “a degree

to which a human can understand the cause of a decision from an ML model,” (Abdullah et al.).

If the doctor told Archie’s parents he had a 95% chance of a poor outcome, would they really

have a better comprehension of the

situation? Conventional ML techniques

operate using “black box” logic, which is

less interpretable. The previous example of

such logic is tied to the traditional binary

classification model, which outputs a

decimal value from 0 to 1 representing the

sliding scale from a poor outcome to a

good outcome. However, there are many

factors indicative of a poor outcome, and

interpretable algorithms grant more

transparency and information to families of coma victims.
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Interpretable algorithms try to employ “fuzzy logic” by integrating human concepts to

make more sense of uncertainty. One visually exceptional example of this was conducted by

researchers from the University of Michigan. The model predicted poor outcomes of patients

hospitalized with traumatic brain injury. The cherry on top was that the algorithm achieved this

goal by extracting “simple, human-understandable rules that explain the model’s predictions”

(Minoccheri et al.), which can be seen above in Figure 4. The presence or absence of certain data

can satisfy the rule and produce the likelihood of that rule at the bottom of the figure. Rather than

a single number, these rules are clinically acceptable so medical professionals could use them as

a tool to explain their final decision. This paper was only published in August 2022, so a deeper

evaluation of interpretability standards of algorithms is necessary to aid medical professionals in

developing more interpretable ML models.

Solution

Based on the above analysis, the proposed equitable guidelines for preventing bias in

coma recovery algorithms should be rooted in minimizing human bias from WLST and

maximizing data equity. This requires attention in two areas: the data lifecycle and medical staff

training. Many other sources have alluded to the fact that WLST should be emphasized more

with respect to data usage and professional decision-making. After a scoping search on Google

Scholar and PubMed, the aforementioned opinions of De-Arteaga and Mertens were the only two

sources with concrete guidelines-informed approaches to preventing SFP in ML for

neuroprognostication. Existing standards like the “Standards for Studies of Neurological

Prognostication in Comatose Survivors of Cardiac Arrest” by the American Heart Association

inform researchers that “establishing a strict protocol for WLST, complying with it consistently,

and carefully describing the causes of death in all patients may help control for the self-fulfilling
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prophecy bias,” (Geocadin et al.). Protocols for WLST can mitigate SFP, but the field still lacks

wider enforcement of equitable data guidelines that can standardize the data lifecycle and

eliminate bias.

The implementation of ML in clinical settings is still a relatively new playing field.

Mertens’s publication from this November is one of the first to start directly addressing the

shortcomings of technological neuroprognostication methods in the context of augmented SFP

bias. It is significant to note that most of the literature considered in this paper has been

conducted over the past five years, with the majority having been published in 2022.

Technological neuroprognostication still has a long way to go before systems can come to

fruition in clinical settings. Guideline-recommended algorithms have already been developed,

such as the four-step algorithm informed by the European Resuscitation Council and the

European Society of Intensive Care Medicine guidelines. The algorithm did not have false

positives and was able to identify 38.7% of patients with a poor outcome (Moseby-Knappe et

al.). WLST was permitted in the data according to specific criteria. The researchers, who work

with the Department of Clinical Sciences at Sweden’s Lund University, acknowledged the

inherent bias in this approach because of this, asserting that “influence from the self-fulfilling

prophecy cannot be excluded,” (Moseby-Knappe et al.).

In order for guideline-recommended algorithms to see a significant change, support in the

form of expert collaboration is needed. One initiative launched by the Neurocritical Care Society

to fill this deficit was The Curing Coma Campaign, which strives towards the mission of “idea

generation, expert consensus, and strategic planning,” (Mainali et al.). The campaign’s

neuroprognostication team identified five gaps in efforts, one of which was the lack of standard

methods for decision-making in WLST. Although the formal protocolization of WLST may be a
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long time coming, the proposed data and training techniques can be applied to make an impact in

the present. Furthermore, they can be applied to other clinical contexts that deal with SFPs and

inherent human bias.

The bottom line is that guidelines themselves must adapt to encompass new technologies

and their interaction with human biases. This solution entails the adoption of a data equity

section in future iterations of neuroprognostication guidelines and forums. By diminishing

human bias and promoting data equity, these two-pronged guidelines will make it easier on the

loved ones of patients like Archie to accept medical professionals’ decisions by shedding more

light on the reasoning behind them. Guidelines bring algorithms one step closer to becoming

prevalent in clinical settings and one step closer to saving countless patients like Archie.
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