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Abstract 
Mn-Ni-Si intermetallic precipitates (MNSPs) that are observed in some Fe-based alloys following 

thermal aging and irradiation are of considerable scientific and technical interest. For example, large 

volume fractions (f) of MNSPs form in reactor pressure vessel low alloy steels irradiated to high fluence, 

resulting in severe hardening induced embrittlement. Nine compositionally-tailored small heats of low Cu 

RPV-type steels, with an unusually wide range of dissolved Mn (0.06-1.34 at.%) and Ni (0.19-3.50 at.%) 

contents, were irradiated at ≈ 290°C to ≈ 1.4x1020 n/cm2 at an accelerated test reactor flux of  ≈ 3.6x1012 

n/cm2-s (E > 1 MeV). Atom probe tomography shows Mn-Ni interactions play the dominant role in 

determining the MNSP f, which correlates well with irradiation hardening. The wide range of alloy 

compositions results in corresponding variations in precipitates chemistries that are reasonably similar to 

various phases in the Mn-Ni-Si projection of the Fe based quaternary. Notably, f scales with ≈ Ni1.6Mn0.8. 

Thus f is modest even in advanced high 3.5 at.% Ni steels at very low Mn (Mn starvation); in this case Ni-

silicide phase type compositions are observed. 

Key Words: Pressure Vessel Steels; Radiation Damage; Atom Probe Tomography; Nano-Scale 

Precipitates; Irradiation Embrittlement 
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1. Introduction 

Formation of nm-scale Mn-Ni-Si precipitates (MNSPs), like the G-phase, is observed in a number 

of Fe-based alloys, during long-time, intermediate temperature thermal aging, as well as in under irradiation 

[1–4]. Recently, precipitation of an ultrahigh density of Ti-Ni-Si G-phase precipitates, with Ti replacing 

Mn, was used to create very high strength steels [5]. However, there is little experimental insight on the 

alloy Mn-Ni-Si dependence of the MNSP number densities (N), sizes (d), volume fractions (f), chemistries 

and crystallographic phases. Here we characterize a matrix of nine compositionally tailored low Cu steels, 

with systematically varying dissolved Ni (0.19-3.50 at.%) and Mn (0.06-1.34 at.%) contents, at an 

approximately constant 0.44±0.05 at.% Si. Note the square root of the f of MNSPs largely controls 

hardening and embrittlement [6,7]. Thus, the primary objective of this study is to provide fundamental 

insight on the Mn-Ni dependence of N, d, f, and MNSP composition and the corresponding effect on 

irradiation hardening (y). 

One application of this work, relates to the extended operation of light water reactors for 80 years, 

which is needed to sustain nuclear power as a carbon-free energy source [8]. Life extension will require 

ensuring the integrity of the massive thick-walled reactor pressure vessels (RPV) in the face of neutron 

irradiation embrittlement. Embrittlement is manifested as upward ductile-to-brittle transition temperature 

shifts. The primary cause of embrittlement is irradiation hardening, characterized by y [9–14]. As 

described in the cited papers, neutrons create high-energy primary recoil atoms that produce excess 

vacancies and self-interstitial defects in displacement cascades [15]. The diffusion, clustering and 

annihilation of these defects lead to: a) formation of defect-solute complexes; and, b) radiation enhanced 

solute diffusion (RED) precipitation [9–14]. Note, radiation induced segregation also plays a role in MNSP 

nucleation, especially at lower solute contents [16–20]. The nano-scale precipitates and defect clusters 

result in hardening (Δσy) by acting as dispersed obstacles to dislocation glide. Hardening results in 

embrittlement by increasing the temperature at which the blunting crack tip field can reach the critical stress 

and volume for cleavage fracture [21–24]. Thus understanding these microstructural evolutions under 

irradiation as a function of the neutron fluence (t, n/cm2), flux (, n/cm2-s), irradiation temperature (Ti), 

alloy composition (Cu, Ni, P, .. in at.%) and start of life microstructure, is required to develop robust, 

physically-based predictive hardening and embrittlement models, like that developed by Ke et al.[25]; and 

the reduced order formulation proposed by Eason, Odette, Nanstad and Yamamoto (EONY) fitted to the 

surveillance embrittlement database on embrittlement [26].  

The RPV embrittlement issue has been recognized since the beginning of light water reactor 

service, and pressure vessel surveillance capsules and testing have been required, starting with the first fully 

commercial pressurized water reactor, Yankee Rowe. Embrittlement as a research topic published in the 

open literature has a long history, beginning in the mid-1960s at the Naval Research Laboratory [27]. The 

first paper identifying and modeling the primary RPV steel embrittlement mechanism as being RED 

acceleration of the formation of Cu-rich precipitates (CRPs) was published in 1983 [13]. Subsequently, a 

worldwide research effort, continuing to this day, has led to the following set of conclusions. Note, only a 

few references are given as key examples. 

As well as Cu, Ni plays a major role in embrittlement and is enriched in CRPs, along with Mn and 

Si [14].  

Ni-Mn-Si precipitates (MNSPs) form at high fluence even in the absence of Cu, typically as G 

(Ni16Mn8Si7) and 2 (Ni3MnSi)-type phases [28,29]. 

The MNSPs mostly evolve from precursor defect solute-cluster complexes formed by segregation 

of solutes to small dislocation loops formed in displacement cascades [25,28].   
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In the presence of Cu, the MNSPs first form a shell around CRPs at low fluence, and subsequently 

evolve as appendages on CRPs at higher fluence [28,30].  

Hardening and embrittlement are approximately proportional to the square root of the precipitate 

volume (or mole) fraction (f) [6,7]. 

Since typical RPV steels contain Mn + Ni + Si as alloying elements in much higher concentrations 

(usually > 2%), compared to dissolved impurity Cu (< 0.3%), the resulting volume fraction of 

MNSPs, f, and the corresponding Δσy and embrittlement, are potentially much larger than for CRPs 

alone, but only at sufficiently high fluence [28].  

MNSPs are not explicitly accounted for in current US regulatory embrittlement models, that are 

based on lower fluence RPV surveillance data [26]. Notably, these models underpredict high 

fluence (and flux) test reactor data [11]. 

The results reported here are for a small subset of data from the UCSB ATR-2 irradiation 

experiment, involving a large matrix of 172 alloys irradiated to high ϕt over a range of Ti. The objective of 

the UCSB ATR-2 study is to evaluate and model: a) the formation of and hardening by CRPs, MNSPs and 

solute cluster complexes at high ϕt, pertinent to the extended nuclear plant life of 80 years, or more; and, 

b) the effects of dose rate, as a basis to extrapolate the ≈ 290°C, intermediate ϕ (≈ 3.6x1012 n/cm2-s) ATR-

2 irradiation results to low ϕ vessel service conditions (≈ 4x1010 n/cm2-s). Here, we use atom probe 

tomography (APT) to characterize the MNSPs and tensile (and, or shear punch and microhardness) tests to 

measure the corresponding Δσy. The data, newly reported here, is for a subset of 9 steels, selected from a 

new compositionally tailored low alloy series, with systematic Ni and Mn variations that are much wider 

than previously studied [31]. The alloys were selected from a total of 50 steel compositions, which we call 

the Advanced Steel Matrix (ASM) for reasons described below. The matrix of nine steels provides a clean 

and quantitative basis to evaluate the effects of Ni-Mn interactions on MNSPs, and the correspondingy 

in steels with compositions that are otherwise similar. Specifically, we explore and quantify the hypothesis 

that large reductions in the alloy Mn content to 0.3%, or less (typically Mn concentrations are more than 

0.8%), can suppress the formation of MNSPs sufficiently to compensate for high ≈ 3.5% Ni [32]. 

An immediate practical motivation for this work is that such high Ni steels have outstanding 

unirradiated strength and toughness properties [32–36]. As a specific example, the A508 Gr. 4N steel, with 

> 3.2% Ni, has a room temperature yield stress that is typically ≈ 25% higher than for A508 Gr. 3 with ≈ 

0.6%Ni. The corresponding master curve fracture toughness 100 MPa√m reference temperature, To, is 

lower, with typical values -140°C, compared to -90°C (or higher) for Gr. 3 steels. The improved properties 

are associated with smaller prior austenitic grains and carbides, and finer martensitic-bainitic lath and 

packet structures. The corresponding Mn contents are typically ≈ 0.3% versus 1.5% for A508 Gr. 4N and 

Gr. 3, respectively. The lower Mn in Gr. 4N reduces the irradiation hardening and embrittlement sensitivity, 

so as to offset the effect of high Ni. To compensate for low Mn, it is important to keep the S and other 

impurities low. Thus for RPV applications, A508 Gr. 4N is part of an alloy class known as “superclean” 

steels. Practical issues aside, the fundamental scientific objective of this work was to probe and quantify 

Ni-Mn interactions in terms of the MNSP characteristic N, d, f, compositions and their associations with 

other microstructural features, and their effects on the corresponding irradiation hardening. 

In summary, the results show that: a) f and Δσy decrease with decreasing Mn at all Ni levels; b) at 

very low Mn and high, to very high, Ni, the observed precipitate chemistries are not close to those for G or 

Γ2 phases and Ni-silicide type compositions are the observed alternative, leading to lower f due to Mn 

starvation; c) the MNSP f correlates well with an empirical chemistry factor of Ni1.6Mn0.8, quantifying the 

effect of Mn starvation at ≈ 0.4 at.% Si; d) at a specified Ni content, the MNSP Si/Mn ratio decreases with 

increasing Mn, demonstrating the trade-off between these elements; and, e) Δσy correlates well with the √f.  
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2. Materials and Methods 

2.1 Alloys and Irradiations 

The UCSB ATR-2 experiment was designed to investigate embrittlement at extended life fluences 

at intermediate flux of 3.6x1012 n/cm2-s for Ti from 250 to 310°C. The peak ATR-2 flux is ≈ 90 times than 

that experienced by an in-service vessel. The ATR-2 alloy matrix includes ≈ 172 RPV alloys, in several 

sample geometries, yielding a total of ≈ 1600 specimens. The ASM, supplied by Rolls Royce, is comprised 

of 55 new split-melt advanced steels, spanning 50 compositions and an additional 5 heat treatments on 

selected alloys. All the alloys were irradiated in ATR-2 in the form of 20 mm diameter, 0.5 mm thick disc 

multipurpose coupons, along with 62 alloys in the form of subsized SS-J2 16 x 4 x 0.5 mm tensile 

specimens. The primary focus of this paper is on the APT characterization of 9 ASM steels neutron 

irradiated to ≈ 1.4x1020 n/cm2 at ≈ 290°C. The bulk alloy compositions are given in Table 1 (in at.%), along 

with the baseline heat treatment.  

Table 1. Nominal steel compositions (at.%)  

Alloy 
Bulk at% 

Cu Ni Mn Si Cr Mo P C Fe 

R1 0.05 0.28 0.26 0.41 0.11 0.28 0.009 0.97 Bal. 

R17 0.05 3.26 1.52 0.39 0.11 0.29 0.005 1.06 Bal. 

R19 0.05 1.57 0.26 0.39 0.14 0.30 0.014 1.06 Bal. 

R22 0.05 1.58 1.51 0.41 0.11 0.30 0.011 1.34 Bal. 

R26 0.04 3.29 0.25 0.37 0.11 0.30 0.016 1.20 Bal. 

R34 0.06 3.25 0.08 0.38 0.10 0.30 0.011 1.02 Bal. 

R35 0.05 0.22 1.51 0.41 0.12 0.28 0.012 1.24 Bal. 

R39 0.03 0.66 1.47 0.41 0.12 0.28 0.007 0.97 Bal. 

R48 0.06 3.29 0.77 0.41 0.11 0.29 0.005 1.29 Bal. 

Austenitized at 920°C for 1 h followed by an air cool, then tempered at 600°C for 5 h followed by an air 

cool. 

 

2.2 Precipitate Characterization 

Atom probe tomography (APT) is a well-known, high-resolution microscopy technique which 

provides information on the atomic positions and chemical identity in the extremely small volume of a 

needle shaped tip, with a typical hemispherical radius of ≈ 50 nm and ≈ 500 nm length. APT is an extremely 

powerful tool for characterizing the high number density of nm-scale precipitates in irradiated RPV steels. 

We refer the reader to details of the APT technique described in several outstanding books [37,38] and 

numerous journal papers, for example [39–41]. Field evaporation of ions from the sharp needle tip, subject 

to enormous local electric field gradients of tens of V/nm, is driven by a combination of a high standing 

potential and precisely timed, high frequency voltage or laser pulses. An ion is field emitted on the order 

of one in every 100 pulses. The ion position in the tip is determined by back projection from a 2D position 

sensitive detector site, with a wide field of view; the isotope species is determined by the corresponding 

time of flight.  

Multiple field evaporations of various alloy constituents produce a spectrum of flight times that are 

directly related to the ion’s mass to charge ratio (MCR). Sharp peaks in the MCR spectrum mark a particular 

isotope and charge state. Note the 58Ni+2 and 58Fe+2 peaks overlap, hence it is necessary to deconvolute the 

contributions of these two elements. Since this peak contains 68.01% of all naturally occurring Ni and 



   
  

 5 

0.28% of all the corresponding Fe, it is initially ranged to be Ni. After the solute clusters have been 

identified, a correction is made to the number of Fe and Ni atoms using abundance ratios for other Ni and 

Fe isotopes. This correction results in a slightly reduced Ni content in the bulk, matrix and solute clusters 

relative to the initial ranging of the mass spectrum. There is sufficient Ni in the bulk (0.19-3.50 at.%) to 

warrant this correction. Note, some studies have neglected the 58Ni+2 and 58Fe+2 peak in the initial cluster 

identification step [42,43]. However, depending on the algorithm used, this method leads to large 

underestimates of the cluster size and volume fraction, since it misses a large fraction of the Ni actually 

present. This is the case for the Integrated Visualization and Analysis Software (IVAS) maximum 

separation distance algorithm. 

The sequence of detector ion hit x, y positions is recoded for subsequent 3D reconstruction. The z 

position, in the tip axis direction, assumes a uniform erosion of atoms due to ion emissions from a smooth 

hemispherical tip surface. Typical APT runs detect to 106 to 107 ion counts at an efficiency (ions detected 

to ions field evaporated) that depends on the APT tool, but ranges from ≈ 37%, as in this case, to 80%. The 

overall results of an APT run depend on many factors such as the tip temperature, voltage versus laser 

pulsing, the time-position dependent geometry of the tip as it erodes, including deviations from a 

hemispherical geometry, and the details of the particular microstructure under study.  

The recorded x, y, z isotope positions are reconstructed by proprietary post processing codes like 

the IVAS (3.6.12), which was used in this work. There are a large number of assumptions in the standard 

reconstruction algorithms, like the uniform erosion of the tips and the assumed shape evolution of its shape 

as a perfect hemisphere. Further, the results are sensitive to the method and parameterization of analyzing 

the precipitates in terms of their number densities, sizes, shapes, mole fractions and compositions. Note, 

precipitate compositions typically vary spatially in a complex manner, like core-shell and precipitate 

appendage structures [30]. Finally, APT is subject to a number of artifacts such as surface diffusion, 

chromatic aberrations, multiple hits, pre-emission and variations in the local magnification factor [2,44–

47]. The latter is a particularly important issue, since favored, lower evaporation potential emission of 

certain less strongly bound elements changes the local topology of the tip. Precipitates with lower 

evaporation potentials than the matrix result in local flattening, or dimpling, of the tip; and in more complex 

cases even selective evaporation of parts of the precipitate itself [2,48]. The local changes in tip topology 

lead to trajectory aberrations (TA), which change the local magnification factor, and can cause evaporated 

matrix atoms to appear as though they are part of the precipitates. The effects of TA increase with 

decreasing precipitate size and generally lead to a precipitate-matrix mixing zone artifact over a length scale 

of ≈ 1 to > 2 nm [49]. In this work, the precipitate diameters average only ≈ 2.4 nm, thus we assume that 

the Fe content indicated by a standard IVAS analysis is a TA and reconstruction artifact. Both STEM-EDS 

and multi technique characterization studies (small-neutron scattering, temperature dependent small angle 

magnetic neutron scattering, small-angle X-ray scattering, positron annihilation coincidence Doppler 

broadening orbital electron momentum spectrum measurements and combined electrical resistivity and 

Seebeck coefficient measurements) have all clearly shown that high concentrations of Fe in the precipitates 

is an APT artifact [2,47].  

The APT analyses were performed using the 3000X HR Local Electrode Atom Probe (LEAP) at 

the University of California Santa Barbara (UCSB), and a 4000X HR LEAP at the Idaho Center for 

Advanced Energy Studies (CAES). The APT tips were prepared by standard Focused Ion Beam liftout and 

annular milling methods to form a tip radius of 50-100 nm. The FIB voltages and beam currents were 

reduced to 5 kV and 48 pA and 2 kV and 27 pA for final cleanup steps and removal of Ga damage layer 

[50]. APT was performed in voltage mode with a tip temperature of 50K, a pulse fraction of 20%, an ion 

detection rate of 0.50%, and a pulse repetition rate of 200 kHz. The residual Ga-ion damage region was 

excluded from the analysis.  

IVAS cluster analysis maximum separation algorithms were used to determine the number density 

(N), size distribution, average diameter (<d>), volume fraction (f) and compositions of the precipitates. 
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Fine-tuning of the image compression factor and k-value was required to reach an accurate planar d spacing, 

identified by low-index crystallographic poles, such as (110) and (200). The dataset image compression 

factor ranged between 1.50 and 1.65 and the k-value between 2.7 and 5.2. The maximum separation method 

was used to distinguish the clustered solutes from those in the surrounding matrix [51,52].  

The key cluster analysis parameters are a maximum separation distance to define a solute atom (Ni, 

Mn, Si, Cu, P) as being part of a cluster (dmax) and a minimum number of solute atoms that defines a cluster 

(Nmin). Notably, the results of the cluster analysis can be strongly influenced by these parameters [53]. A 

dmax that is too large will include some solutes in the cluster that are actually in the matrix. Using a dmax that 

is too large may also incorrectly merge closely adjacent clusters. Values of dmax (and Nmin) that are too small 

can result in incorrect classification of random fluctuation as clusters, and underestimate the number of 

solutes in larger clusters. Thus in all cases, a sensitivity analysis was performed to determine the most 

suitable values of dmax and Nmin. The optimal dmax, based mainly on the solute separation distance distribution 

deviations from random, was found to be 0.50-0.60nm, with a corresponding Nmin of 15-30 atoms. The 

maximum separation envelope of additional elements (L) and the erosion distance (E) were taken as equal 

to dmax, consistent with the less than or equal to recommendation in [53]. These values have been found to 

produce self-consistent results for a large RPV steel database. Note, however, lower L and E do not have a 

significant effect, and there is no absolutely “correct” values of these parameters that can be chosen. More 

details on the principles and practice of the APT technique, and selecting appropriate reconstruction 

parameters, can be found elsewhere [37,38,40]. As noted above, the Fe nominally in the precipitates was 

treated as an artifact and was removed when calculating the precipitate size and compositions [2,45–47]. 

After correction for detector efficiency, the sizes and volume fraction of the precipitates were determined 

from the number of solute atoms they contain, assuming a spherical morphology and an atom density equal 

to bcc Fe. Note, the nominal IVAS Fe content is also provided in the Table 2 below. N was calculated by 

dividing total identified clusters by the total APT tip volume. Clusters that intersect the tip surface were 

counted as half of a precipitate. The f was determined by dividing the number of solute atoms in all clusters 

by total number of atoms of a dataset.  

2.3 Irradiation Hardening Measurements 

Irradiation hardening was measured based on tensile, Vickers microhardness (Hv) and shear punch 

tests (SPT) [31]. In 7 out of the 9 alloys tensile data was available. For the other 2 alloys, the estimated Δσy 

was taken as the average of that based on Hv and SPT Δσy. Procedures to convert the Hv and SPT to Δσy 

are described in [31] and summarized below. The tensile and averaged Hv and SPT Δσy are generally in 

good agreement.   

At least three room temperature tensile tests on SS-J2 tensile specimens, with gauge sections 1.2 

mm wide, 5 mm long, 0.5mm thick, were carried on a MTS 810 frame with a 1000lb load cell at a strain 

rate of 1.5x10-3/s. A 0.2% offset was used to define the σy.  

Vickers microhardness tests were performed on a modified LECO 400 series instrument, using a 

diamond pyramid indenter at a 500g load with a 10 second dwell time. The specimens were in the form of 

3 mm discs, loaded in a multi-disc holder, and polished on a Buehler Vibromet with colloidal silica 

suspension down to 0.05µm. The spacing between indents was more than 3 times their size. The Hv was 

calculated by measuring the diagonal lengths of the indents with a 40x digital microscope. If the difference 

between two indent diagonal lengths was greater than 5%, the data was discarded. A minimum of 10 indents 

was made in each case, and the average and standard deviation of Hv were tabulated. Changes in Vickers 

hardness after irradiation (ΔHv = Hvi - Hvu) were used to estimate the corresponding changes in yield stress 

as Δσy (MPa) ≈ 3.33*ΔHv (kg/mm2) [45]. 

A semi-automated shear punch test tool, developed by UCSB, was used to measure the shear yield 

stress (y) and maximum shear load (m). Details describing the operation of the tool and its calibration can 



   
  

 7 

be found in [31]. The SPT tool clamps round coupons, 8 to 20 mm in diameter (d) and 0.5 mm thick (t), 

between an upper punch plate assembly and die. A hydraulic actuator drives the 3 mm diameter (dp) punch, 

and an in-line load cell provides the punch pressure (P) data. A lower die plate assembly extensometer 

measures the displacement (D) of the bottom of the disc being punched. The resulting P(D) curve manifests 

a quasi linear elastic region, followed by a non-linear plastic deviation of P with increasing D up to a 

maximum load (Pm). The shear yield pressure (Py) is determined by the intersection of a 0.9% parallel 

displacement from the elastic load line with the P(D) curve. The shear yield stress is defined as y = Py/πdpt, 

where t is the local coupon thickness. A large tensile and SPT database for irradiated and unirradiated alloys 

was used to develop fitted relations between y and y. In the case of unirradiated alloys yu is ≈ 1.81yu, 

while for irradiated alloys yi is ≈ 2.04yi. The difference in the coefficient is associated with the effect of 

irradiation on reducing strain hardening. Thus, the SPT y is ≈ 2.04yi - 1.81yu. Typically, 5 SPT were 

made on each 20 mm diameter disc, although more are possible, and retesting was carried out as needed in 

some cases. 

3. Results 

3.1 MNSP Characterization 

Figure 1 shows typical solute maps for 4 irradiated alloys with 0.19 to 3.50 % Ni, 0.03 to 0.06% 

Cu, 0.80 to 1.34% Mn, and 0.39 to 0.49% Si. The volume fractions of the MNSPs visibly increase with 

increasing alloy Ni content. Table 2 summarizes the average APT bulk, matrix and MNSP compositions 

for the 9 alloys with systematic variations in bulk Ni and Mn and low <0.06% Cu and typical 0.44±0.05% 

Si contents. The measured bulk solute values are in reasonably good agreement with the nominal alloy 

compositions for Cu, Ni, and Si (see Table 1). However, the dissolved Mn is lower than the nominal value 

by ≈ 0.02 to 0.67%. The lower concentration, and inhomogeneous distribution of dissolved Mn, are 

primarily due to its sequestering in pre-existing coarse-scale (Mn0.8Fe0.2)3C, carbides [28].     

 

Figure 1. Solute maps for irradiated ASM alloys with systematically varying Ni from 0.19-3.30 at.% in 

steels with 0.03 to 0.06 % Cu, 0.80 to 1.34 % Mn and 0.39 to 0.49 % Si. All compositions are in at.%.  
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MNSPs are found in all cases at the high fluence of ≈ 1.4x1020 n/cm2 and 290°C. Note, well-defined 

CRPs form only at levels more than ≈ 0.07% Cu, thus were not found in these steels [13,14,26]. However, 

Cu likely still has a catalyzing effect on the formation of MNSPs even at low levels [28], and all the MNSPs 

contain ≈ 1% Cu, typically involving 8-32 atoms.  

Table 2. Average APT bulk, matrix and precipitate compositions (at.%) for the 9 ASM alloys  

Alloy 

Bulk 
 

Matrix 
  

Precipitate  

Cu Ni Mn Si  Cu Ni Mn Si 
 

 Cu Ni Mn Si Fe* 

R1 0.05 0.24 0.24 0.49  0.04 0.21 0.22 0.44   1.5 37.1 14.6 46.8 58.2 

R17 0.04 3.50 1.04 0.44  0.02 2.15 0.51 0.15   0.9 62.8 23.9 12.5 57.8 

R19 0.05 1.80 0.24 0.47  0.05 1.55 0.22 0.35   1.0 64.4 5.1 29.4 64.3 

R22 0.05 1.62 1.23 0.46  0.04 1.25 1.06 0.33   0.8 54.1 26.5 18.6 63.4 

R26 0.04 3.40 0.22 0.39  0.04 2.91 0.19 0.25   0.9 73.5 4.7 20.8 58.1 

R34 0.06 3.39 0.06 0.40  0.05 3.09 0.06 0.31   0.9 75.9 1.2 22.0 58.2 

R35 0.04 0.19 1.34 0.46  0.04 0.17 1.27 0.44   1.3 26.4 42.4 30.0 65.1 

R39 0.03 0.75 0.80 0.46  0.03 0.63 0.75 0.37   0.8 46.8 19.7 32.7 65.5 

R48 0.05 3.45 0.48 0.42  0.04 2.58 0.32 0.19   1.0 69.2 12.5 17.2 58.6 

*The nominal IVAS Fe found in all the MNSPs that is thought to largely be an artifact. 

Table 3 summarizes the APT MNSP <d>, N and f. Multiple tips were measured and the 

corresponding +/- “uncertainties” in Table 3 reflect the variability between all the tips for the same alloy. 

The MNSP f increases synergistically with Ni and Mn. At high 3.5% Ni and 1.04% Mn f is 2.44%, while f 

is ≈ 0.44% in the high 3.5% Ni, low 0.06% Mn steel. The f is very low at ≈ 0.08% in the steel with only ≈ 

0.24% Ni and Mn. These results demonstrate the strong synergistic effect of Ni and Mn on MNSPs.  

Figure 1 also shows that the MNSPs in the low-medium Ni steels (0.3-0.8% Ni) are 

heterogeneously distributed, and are primarily (≈ 70%) located on dislocations (and grain boundaries when 

present). Note, several of the low ≈ 0.3 % Ni alloy tips did not contain any MNSPs, due to their small APT 

sampling volume. These empty volumes were included in calculating N and f. The Mn, Ni, and especially 

Si, are highly segregated to dislocations. The role of solute segregation to dislocations, and dislocation 

loops, is important, and has been modeled [17,54], but we will not pursue this mechanism in detail further 

here. However, we note the models based on CALPHAD thermodynamics and radiation enhanced diffusion 

kinetics, reported by Ke et al., strongly support the critical role of heterogeneous MNSP nucleation in low 

to medium Ni steels [25]. The average MNSP compositions on dislocations are essentially the same as those 

observed in the matrix. The corresponding MNSP <d> and N are plotted in Figure 2 as a function of Ni for 

high and low Mn alloys. The average precipitate diameter, <d>, is ≈ 2.36 ± 0.24 nm, and is insensitive to 

both Ni and Mn. However, the MNSP N increases by a factor of ≈ 10 between ≈ 0.25 and 1.5 % Ni, and by 

a factor of 2-3 between low and high Mn steels. Between 1.5 and 3.5 %, the effect of Ni on N is weaker in 

the high Mn steel.   
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Table 3. Bulk Cu, Ni, Mn and Si compositions and APT precipitate <d>, N and f 

Alloy 

APT Bulk Composition 

(at%) 
<d> +/- N +/- f +/- 

106 

atoms 

Cu Ni Mn Si (nm) (nm) (1023 m-3) (1023 m-3) (%) (%)  

R1 0.05 0.24 0.24 0.49 2.31 0.02 0.92 0.40 0.08 0.15 9.8 

R17 0.04 3.50 1.04 0.44 2.58 0.09 22.2 0.12 2.44 0.17 11.6 

R19 0.05 1.80 0.24 0.47 2.47 0.03 5.07 0.09 0.42 0.04 17.8 

R22 0.05 1.62 1.23 0.46 2.15 0.08 13.4 0.15 0.89 0.12 10.3 

R26 0.04 3.40 0.22 0.39 2.46 0.04 8.37 1.69 0.69 0.11 48.9 

R34 0.06 3.39 0.06 0.40 2.17 0.10 6.53 2.05 0.44 0.10 21.9 

R35 0.04 0.19 1.34 0.46 2.22 0.03 1.83 0.27 0.11 0.08 20.8 

R39 0.03 0.75 0.80 0.46 2.60 0.13 2.42 0.40 0.29 0.04 23.5 

R48 0.05 3.45 0.48 0.42 2.29 0.08 21.2 0.60 1.41 0.22 38.9 
 

 

Figure 2. The effect of Ni at 0.25 and 1.5at%Mn (nominal) on the precipitate: a) average diameter, <d>; 

and, b) number density, N. 

Figure 3 shows a cross plot of f versus Ni at low, intermediate and high Mn. At low Mn (filled red 

circles), f is very low, as is the corresponding N. At low Ni, the effect of increasing Mn from 0.24% to 

1.34% is minimal. In contrast, at high Mn (filled green diamonds), f increases approximately linearly with 

Ni up to ≈ 2.44%. The increase in f with Ni at 0.23 % Mn is less rapid, but is also approximately linear. 

The atoms maps in Figure 4a and b, and the f versus Mn cross plot in Figure 4c, demonstrate the profound 

and systematic effect of Mn in the 3.5% Ni steels. The increase in f with Mn is linear in the high Ni steels. 

As discussed in the next section, the reason is primarily related to phase composition selection, and 

corresponding solute balance requirements. That is, at very low Mn, the formation of Ni-Mn-Si phase 

compositions, which can incorporate the largest amount of Ni, is not possible. Indeed, at full decomposition, 

Ni ≈ 1-1.2(Mn+Si). Thus, the low f can be viewed as being due to Mn starvation. In this case, Si enriched 

phase compositions are selected, with Ni/Si ratios of ≈ 2 to 3. At high alloy 3.5% Ni and 1.04% Mn contents, 

2.15% Ni remains dissolved in the matrix, while 3.09% Ni remains dissolved in the high 3.39%Ni, lower 
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0.06% Mn steel. The Ni-silicide type phase composition f is limited by the primary presence of only 2 

elements, and a relatively low amount of bulk Si. Note, the increase in f from 0.44 to 0.69%, between the 

0.06 and 0.25% Mn, is not primarily due to the precipitate Mn fraction; rather this is associated with a 

higher N in the latter case. This observation suggests that Mn also enhances Ni-silicide type phase 

composition nucleation rates. Similarly, the increase in f of 0.69% to 2.44%, between the 0.25 and 1.50 

Mn, as shown in Figure 4, is associated with a Ni2(MnSi) type phase composition. 

 

 

 

 

 

 

 

 

Figure 3. The effect of Ni on f for various Mn contents.   

 

Figure 4. a) An APT solute map for a high 3.4% Ni, low 0.22% Mn steel; b) an APT solute map for a high 

3.5% Ni, high 1.04% Mn steel; and c) a f versus bulk Mn cross plot for the high 3.5% Ni steels.  
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3.2 Irradiation Hardening 

The isolated contribution of MNSPs to hardening is proportional to (d)√2f/d [6], where (d) is an 

obstacle strength factor. Since the precipitates are roughly the same size, it is expected that the dispersed 

dislocation obstacle hardening will scale with the √f. Figure 5 shows the measured irradiation yield stress 

increase (Δσy), summarized in Table 4, versus the √f for the 9 alloys in this study. The filled circles are 

tensile data, while the unfilled squares are the average of the Δσy estimates from the Hv and SPT. The half-

filled squares are the cases where there is no tensile data. The least square fit slope is Δσy ≈ 300 MPa/√f 

(%). These results are reasonably consistent with previous studies with f between 0.2 and 1.25% based on 

isolated precipitate strength contributions of 520√f (MPa) that is root sum square superimposed with ≈ 175 

MPa of unirradiated (and unchanged) obstacle strength contributions. However, the wide range of 

unirradiated yield stress values and microstructures for the steels in this study complicate a more detailed 

analysis.    

Table 4 shows the bulk Ni and Mn compositions, and the precipitate Ni, Mn and Si compositions 

for the alloys in this study along with the corresponding f and y. Figure 5 shows that y ≈ 314√f.  

Table 4. Bulk Ni and Mn compositions and precipitate Ni, Mn and Si compositions (at%), along with f 

and y 

 

 

 

 

 

 

 

 

 

 

 

*Plus 0.39 – 0.49% Si (at.%)   +Shear punch and microhardness Δσy averaged 

Alloy 
Bulk (at.%)* Precipitate (at.%) f(%) Δσy(MPa) 

Ni Mn Cu Ni Mn Si   

R35 0.19 1.34 1.3 26.4 42.4 30.0 0.11 138 

R1 0.24 0.24 1.5 37.1 14.6 46.8 0.08 100 

R39 0.75 0.80 0.8 46.8 19.7 32.7 0.29 172 

R22 1.62 1.23 0.8 54.1 26.5 18.6 0.89 291 

R17 3.50 1.04 0.9 62.8 23.9 12.5 2.44 472 

R19 1.80 0.24 1.0 64.4 5.1 29.4 0.42 235 

R48 3.45 0.48 1.0 69.2 12.5 17.2 1.41 320+ 

R26 3.40 0.22 0.9 73.5 4.7 20.8 0.69 260 

R34 3.39 0.06 0.9 75.9 1.2 22.0 0.44 169+ 
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Figure 5. The measured Δσy plotted as a function of the √f. Note the half-filled squares are cases where 

there is no tensile test data.  

4. Discussion  

The ternary Mn-Ni-Si projection (see schematic quaternary figure insert) of the Fe-Mn-Ni-Si 

quaternary CALPHAD based phase diagram at 277°C is shown in Figure 6 [25,55]. Note there is no 

significant difference between the CALPHAD predictions at 277 and 290°C. The filled symbols are the 

average compositions of the precipitates in the various alloys. With one exception CALPHAD predicts that 

the precipitates do not contain Fe, consistent with experiment[2,47]. The exception is that, at very low Mn, 

CALPHAD predicts the formation of L12 Ni3Fe phase. The open symbols specify the relative dissolved 

Mn-Ni-Si compositions in the unirradiated bulk matrix Fe-Mn-Ni-Si ferrite phase, and they do not represent 

phases that actually lie in the ternary Mn-Ni-Si projection. These relative bulk solute compositions are 

included only to illustrate how they relate to the precipitate compositions. Thus, the arrows should not be 

confused with compositions crossing phase boundaries, as the various tie lines are between the matrix (top 

of the tetrahedron – see insert) and the precipitate phases. Figure 6 shows that in 8 out of the 9 cases, the 

precipitate Si fraction is higher than the Si solute fraction in the unirradiated bulk. For typical RPV steel 

compositions (e.g., ≈ 0.7% Ni, > 1.0% Mn, and 0.4%-0.8% Si), CALPHAD predicts the predominant 

selection of G-phase (Mn6Ni16Si7) or 2 phase (Mn2Ni3Si).  

Note, the CALPHAD database used in this case effectively either only predicts stoichiometric 

phases, or in some cases, a narrow phase field. However, the actual precipitate compositions vary somewhat 

with the corresponding alloy bulk composition, suggesting that there may be larger G and 2-phase fields, 

which primarily extend towards higher Mn and lower Ni, over a range of Si. Such composition variations 

are to be expected, and can be the result of both the higher chemical potentials of the dissolved solutes in a 

matrix that is still supersaturated (e.g., the system is not fully decomposed in the equilibrium condition), as 
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well as composition dependent interface energy Gibbs-Thomson effects on the precipitates free energies. 

Thus, the free energy of the system is reduced over a range of precipitate compositions, even if the fully 

decomposed equilibrium phase is stoichiometric. This concept is illustrated in the Supplemental Material 

using a binary alloy analog. It is important to emphasize that, while the structural identities of both these 

phases have been confirmed by X-ray diffraction measurements for very high fluence irradiations [29], they 

have not yet been demonstrated for the MNSPs in this study. Thus, in this case, while we note compositional 

adjacency to various specific phases, we do not claim the precipitates have the corresponding crystal 

structures. Further, we cannot rule out the possibility that the precipitate compositions are slightly modified 

by radiation induced segregation.  

As shown in Figure 7, the precipitate compositions vary in a way such that increases in Mn lead to 

decreases in Si, at a ratio of ≈ 0.4 to 0.6 lower Si/higher Mn numbers of atoms (that is a 10% increase in 

Mn lead to a 4 to 6% decrease in Si). These variations mirror the effect of bulk alloy Mn and Si variations. 

The individual supersaturated solute chemical potentials also explain why the precipitate compositions vary 

with the alloy bulk chemistry, and the observed tradeoff on the Mn-Si sublattice. The stoichiometric G and 

 phases have (Mn +Si)/Ni ratios of ≈ 0.8 to 1, respectively. Given this rough Mn - Si tradeoff, it is to be 

expected that f would approximately scale with ≈ 1.6 to 2Ni at full decomposition. Indeed, in the nearly 

fully precipitated case, at very high fluence, f ≈ 1.38Ni + 0.49 in the six core alloys with G and 2 phases 

[28]. Again, this relation holds at nearly full decomposition, and only if the Mn alloy content is sufficient 

to form G and 2 phases. At the lower fluence in this study, f ≈ 0.71Ni - 0.16 for alloys with ≈ 1.2% Mn. 

Note, that even when nearly fully decomposed, the nm scale precipitate f is less than the equilibrium values 

due to the Gibbs-Thomson effect.  

To reiterate, Figure 6 simply intended to point out the location of the APT data on the ternary 

projection relative to possible phases. We made no claims that they are specific equilibrium phases, since 

we have not explicitly measured their crystal structures in these particular alloys. Rather, we simply attempt 

to note their compositional adjacencies (or lack thereof). For example, the compositions of three 1.7-3.5 Ni 

low < 0.25 Mn alloys (R19, 24 and 34) are clearly compositionally adjacent to Ni-silicide phases. The low 

Ni and Mn alloy (R1) is compositionally adjacent to the MnSi phase field. The low Ni, high Mn alloy (R35) 

is compositionally adjacent to the T8 phase field. One high Ni and Mn alloy (R22) is compositionally 

between G and 2 phases. Two others with very high 3.5Ni and intermediate 0.5 to 1Mn alloys (R17, 39) 

are compositionally further from stoichiometric G or 2 phase compositions, and have higher Ni contents 

(≈ 12% higher). Finally, the medium 0.7Ni intermediate 0.8Mn alloy has Ni similar to the 2 phase field, 

but lower than the G-phase. All of this seems thermodynamically reasonable. Again note the composition 

of the nm-scale precipitates may be affected by supersaturated solutes and the interface energy that is, in 

turn, a function of the interface composition. Thus, small to modest deviations from nominal stoichiometric 

compound compositions are to be expected. Even if they have not been modeled, various stoichiometric 

phases may actually have finite composition fields. Further, as seen in Figure 6, and found in LMC studies 

of the B2 Mn-Ni-Si phase, Mn and Si are relatively interchangeable on their sublattice and thus react to the 

solutes chemical potential variations in the matrix. However, we have not made claims for this or that 

specific phase.  
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Figure 6. Bulk matrix and precipitate compositions plotted on the Mn-Ni-Si ternary projection of the Fe-

Mn-Ni-Si phase diagram at 277°C. The APT measured precipitate compositions are filled symbols and the 

corresponding bulk alloy Mn-Ni-Si compositions are unfilled symbols [25,55]. Note, the open symbols are 

the relative fractions of dissolved solutes in the matrix ferrite phase, at the top of the tetrahedron, and they 

are not in the Mn-Ni-Si projection. The open symbols are only meant to show how the precipitate 

compositions relate to the solutes in the bulk. The dashed lines between the open and closed symbols are 

not tie lines. 

While widely different alloy compositions result in different precipitate composition selection, it is 

useful to seek an alloy chemistry (composition) factor that correlates the precipitate f data for all 9 of the 

very diverse steels in this study. A natural choice is NinMnm (since Si is approximately constant), which 

reflects the thermodynamic reaction product driving precipitation (or an effective supersaturation) [25]. For 

example, for the 2 phase the reaction is  

 3Ni(S) + 2Mn(S) + 1Si(S) ⇆ Ni3Mn2Si 

Here S indicates a dissolved solute. The corresponding reaction product is K(T)[Xni]3[Xmn]2[Xsi]. For the 

G phase the precipitation reaction is  

16Ni(S) + 6Mn(S) + 7Si(S) ⇆ Ni16Mn6Si7   

The corresponding reaction product is KG(T)[Xni]16[Xmn]6[Xsi]7. Here, the K(T) are the temperature 

dependent reaction constants. Reducing these exponents to the n/m ratios, gives 2.67 for the G-phase and 

1.5 for the 2 phase. Figure 8 shows a least square fit to f as a function of NinMnm, that yields n ≈ 1.6 and 

m ≈ 0.8. Thus, the observed n/m ratio of 2, which is close to the average, which is 2.08 for stoichiometric 
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G and 2 phases. Note, this should be considered an empirical observation, and a more detailed 

thermodynamic analysis will be needed to fully explain the relation, especially for Ni silicide phase 

compositions, in steels with low Mn contents.  

 

 

 

 

 

 

 

 

 

Figure 7. Precipitate composition Mn-Si variations for different Ni groupings. 

 

 

 

 

 

 

 

 

 

Figure 8. The NinMnm reaction product versus average f, and a least square fit to the data points for the 9 

very compositionally diverse alloys in this study. 

Perhaps most importantly, however, the results of this study clearly show that for the very high 

3.5% Ni steels, low Mn greatly reduces the amount of precipitation, in a way that can be thermodynamically 

qualitatively understood. However, even at low Mn, Ni-silicide phases form in lower, but still significant, 

f. For example, f is ≈ 0.69% for the 3.4% Ni, 0.22% Mn, 0.39% Si steel. We do not yet have APT data on 

steels with lower Si, but there is no significant effect of this element on Δσy in the overall ATR-2 database. 

For example, in the case of 3.5% Ni steels with ≈ 0.25 Mn, the Hv based Δσy actually decreases, but by only 

21 MPa, in going from 0.38 to 1.28% Si; and for 3.5% Ni steels with ≈ 0.06 Mn, Δσy decreases 3 MPa in 

going from 0.38 to 1.28% Si. These differences are insignificant and well within the data scatter.  
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Summary and Conclusions 

This paper reports on the results of characterization of MNS precipitates by APT and irradiation hardening 

(Δσy) by tensile, shear punch and microhardness tests in specially prepared heats of compositionally tailored 

RPV-type steels, with a wide range of systematically varying Ni and Mn compositions and an 

approximately constant Si content, that were irradiated to a high fluence 1.4x1020n/cm2 at 290°C in the 

Advanced Test Reactor. Analysis of the data leads to the following conclusions. 

 Significant volume fractions (f) of MNSPs form in all of the steels at the high ATR fluence. 

   

 While Ni generally plays the strongest role in the formation of MNSPs, f and Δσy increase 

synergistically and systematically with Mn, especially at higher Ni.  

 

 In the absence of sufficient Cu and low to intermediate Ni, the MNS precipitates have difficulty 

nucleating homogeneously in a defect free matrix, and microstructural features such as network 

dislocations and irradiation induced interstitial loops act as heterogeneous nucleation sites.   

 

 The wide range of compositions in the 9 alloys results in very different precipitate compositions - 

for example, near G (Mn6Ni16Si7) or Γ2 (Mn2Ni3Si) phases in alloys with 0.75% to 1.62% Ni with 

≥ 0.8% Mn, versus Ni-silicide type compositions in alloys with very low ≤ 0.24 Mn and high ≈ 1.6 

to 3.4% Ni. Note that, the G and Γ2 phases have been identified at high fluence at typical RPV 

compositions, the specific phase structures not yet confirmed identified in this work. 

 

 The Mn and Si in the precipitates roughly trade off depending on the alloy Mn content.   

 

 At normal levels of > 1% Mn, very large MNS precipitate f form in 3.5% Ni advanced steels at 

high fluence. 

 

 However, f decreases approximately linearly with the alloy Mn content, and is found to vary as f ≈ 

0.13 + 0.3Ni1.6Mn0.8. 

 

 Precipitation hardening is much lower in high ≈ 3.5% Ni < 0.3% Mn steels due to Mn starvation. 

 

 The Δσy is well correlated with the √f and can be understood based on dispersed barrier hardening 

models.  
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Discussion of Equilibrium Phases 

The nm-scale precipitates cannot be expected to have the same composition as bulk equilibrium phases due 

to the Gibbs-Thomson effect and compositionally dependent interface energies, even if their structure phase 

is the same as that of the bulk equilibrium phase. Further, in this case the alloys are not fully decomposed; 

that is they remain supersaturated.  Thus the chemical potentials remain higher in solution than at 

equilibrium. For any reasonable intermetallic free energy curve, this provides thermodynamic access to a 

wider range of compositions, that still reduce the free energy G. This is schematically illustrated in Figure 

1Sa for a binary with a terminal phase – AB intermetallic phase. The green line represents the equilibrium 

condition while the red line is for the partially decomposed state. The Gibbs-Thomson effect shifts the G-

curve up in energy and typically to lower XB due to the composition dependence of the interface energy 

(red dashed line). Thus a range of compositions is thermodynamically accessible. Further, the precipitate 

composition would be expected to vary with the chemical potential of the various dissolved solutes as 

governed by Henry’s law. That is more dissolved/supersaturated matrix Ni would lead to more precipitate 

Ni (or Mn or Si). Figure 1Sb APT shows the range of compositions narrows with increasing precipitate size 

as would be expected from the considerations outlined above. Note that in this case the composition of the 

precipitates are 10% lower in Ni and 10% higher in Mn + Si (that trade-off), which does not seem that large 

a deviation.  

 

 

 

 

 

 

 

 

 

(a)                                                                                 (b) 

Figure 1S. (a) Molar gibbs free energy curves for a binary with an AB intermetallic phase (b) APT spread in 

3.5% Ni 1.0at% Mn alloy of precipitate composition plotted against precipitate radius  




