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ABSTRACT OF THE DISSERTATION 
 
 

Task and Stimulus Processes May Explain Diverse/Inconsistent 
 Working Memory Training Outcomes 

 
 

by 
 
 

Mahsa Alizadeh Shalchy 
 

Doctor of Philosophy, Graduate Program in Psychology 
University of California, Riverside, September 2021 

Dr. Aaron R. Seitz, Chairperson 
 

 
Working Memory (WM) is a fundamental cognitive ability that encodes, manipulates, and 

maintains information for a brief amount of time. WM is involved in vital daily functions 

such as reasoning, problem-solving, and learning. Thus, there has been an increasing 

interest in enhancing WM by the use of “training” interventions. As such, many researchers 

have utilized various experimental paradigms in the form of varied tasks and stimuli to 

train WM. On one hand, the training results report benefits of WM training and transfer of 

these beneficial effects to domains similar to WM as well as different domains. On the 

other hand, some studies fail to observe beneficial effects. These inconsistent results have 

brought controversy, dividing researchers into believers and non-believers of WM training 

interventions. This is a general problem as many studies in the WM field assume a 

straightforward relationship between the construct of WM and its measurement through 

any of the variety of available WM measures, such as N-back.  

In this dissertation, we aim to further our understanding of WM by investigating 

WM through distinct but complementary lenses. In chapter 1, we focus on WM training 
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studies that use N-back, a popular training task, to understand the efficacy of WM training 

interventions. In this chapter, we aim to point out that the features of training/assessment 

tasks and stimuli differ on many levels across different studies of WM, and that combining 

the results of these studies would be similar to mixing apples and oranges. In chapter 2, we 

bring mechanistic understanding by using brain signals as important mediators of behavior. 

Our goal is to not only understand the early and late brain mechanisms during various tasks 

and stimuli, but also to investigate other potential factors that can produce inconsistent 

results. After investigating the existing experimental paradigms and related brain signals, 

in chapter 3 we combine our knowledge of chapter 1 and chapter 2 by doing a multi-

measure experiment. Our goal is to set the stage for studying the cortical arousal system, a 

key influencer of memory processes and learning through altering brain states. In 

conclusion, this dissertation furthers our understanding of WM, its training efficacy, and 

factors impacting it. 
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General Introduction 

Working Memory (WM) is defined as a limited capacity system responsible for 

temporary storage and manipulation of relevant information over a limited time (Baddley, 

2012). WM has been studied extensively over the last few decades due to the fact that it 

correlates with a wide range of complex cognitive abilities such as problem-solving, 

reasoning, learning and planning of goal-directed behaviors (Miyake, & Shah, 1999; 

Swanson & Alloway, 2012). Due to its distributed site of functioning (Christophel et al., 

2017) and involvement in multiple processes such as encoding of information, 

maintenance, and retrieval (D'Esposito, & Postle, 2015), many researchers suggest that 

WM is the “hub” of cognition. Given its crucial role in many cognitive abilities, 

neurological disorders affecting WM, such as depression (Rose & Ebmeier, 2006), 

schizophrenia (Frydecka et al., 2014), attention-deficit hyperactivity disorder (ADHD; 

Arjona et al., 2020), Alzheimer’s disease (AD; Zokaei & Husain, 2019), and learning 

difficulties (Swanson & Seigel, 2011), can seriously impact patients’ lives.  

Thus, there has been a great interest in enhancing WM by use of “training” 

interventions (Anguera et al., 2012): numerous studies (Blacker et al., 2017; Minear et al., 

2016) have trained participants using a variety of WM tasks such as N-back, span tasks, 

immediate recall, etc. (see Pergher, Shalchy, Pahor et al., 2019). While most studies find 

improvements in the training task, it is controversial whether this gain transfers to similar 

WM tasks (near transfer) and even more so to different tasks that may involve WM (far 

transfer), such as reasoning (Melby-Lervåg & Hulme, 2013; Au et al., 2015). For instance, 
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some studies offered evidence of transfer from WM training to fluid intelligence and 

complex reasoning (Jaeggi et al., 2008; 2010; Klingberg et al., 2005), reading 

comprehension (Loosli et al., 2012), and arithmetic (Bergman-Nutley, & Klingberg, 2014), 

while others reported no transfer to fluid intelligence or any other cognitive domains 

(Thompson et al., 2013; Estrada et al., 2015). Several meta-analyses interpreted these 

findings in support of the hypothesis that WM training is only beneficial to improve the 

trained task but has limited effect on other cognitive abilities (Sala, & Gobet, 2019), while 

others (Au et al., 2016) supported generalized efficacy of WM and attributed the discrepant 

results to incorrect analysis. 

However, the studies covered in these meta-analyses share limited consistency in 

training tasks, methodology and outcome measures, which makes interpretation of their 

conclusions challenging. This is a general problem as many studies in WM field assume a 

straightforward relationship between the construct of WM and its measurement through 

any of the variety of available WM measures, such as N-back, simple span tasks, etc. (see 

Wilhelm et al., 2013). Regardless of the task at hand, the measurement of WM is assumed 

to represent the ‘ground truth’ of participants’ WM; however, our recent review of the WM 

training literature (Pergher, Shalchy, Pahor et al., 2019) as well as our empirical 

comparative study (Shalchy, Pergher, Pahor et al, 2020) suggest that the WM performance, 

and thus the WM estimation, can be influenced by many factors. Moreover, with more 

researchers using new tasks or new variations of established tasks and producing highly 

variable in findings in WM (Blasiman & Was, 2018) and WM training in particular 
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(Melby-Lervåg & Hulme, 2013; Au et al., 2015), this is an important concern that needs to 

be addressed. This issue is further complicated by the burgeoning number of studies that 

use neurophysiological data, which is sensitive not only to task types and task variations, 

but also to many other situational factors such as type of the machines used to collect the 

data, pre-processing steps, etc. (Shalchy, Pergher, Pahor et al., 2020; Brouwer et al., 2015). 

This work presents my efforts to understand the problem of inconsistent results in 

the WM training literature and by doing so to further understand WM. To do so we used 

various approaches that are divided into three chapters. First, in chapter 1 (Pergher, 

Shalchy, Pahor et al., 2019), we investigate the divergent results of WM training studies 

(Au et al., 2015; Melby-Lervåg, et al., 2016) by characterizing the broad diversity of 

features employed in N-back training tasks and behavioral outcome measures in published 

WM training literature. The N-back task is a well-established WM task (Kirchner, 1958; 

Jaeggi et al., 2008) that requires the participant to continuously store and update the last N 

items of a sequence in memory. N-back is a popular tool as it can be easily adapted to 

experimental needs and generate multiple versions that can serve either as training or 

assessment tasks. In this chapter, our aim is to point out that the features of 

training/assessment tasks and stimuli differ on many levels across different studies of WM, 

and combining the results of these studies would be similar to comparing apples and 

oranges.  Therefore, the question of “Does WM training work?” does not have a clear 

dichotomous outcome and further investigation is required to provide us with mechanistic 

understanding of the differences in task and stimulus in brain and behavior. 
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 In chapter 2 (Shalchy, Pergher, Pahor et al., 2020), we investigate EEG signatures during 

variations of N-back task structures and stimulus types. We test whether different 

combinations of experimental design parameters (i.e., stimulus type, stimulus duration, 

inter-stimulus interval, and response contingency) differentially affect electrophysiological 

signatures. This helps us understand how variations in task and stimulus may contribute to 

differences found across training approaches. In this chapter, our aim is to gain a 

mechanistic understanding of how different task structures and stimuli are processed by 

the brain during early (i.e., encoding) and late (i.e., retrieval) WM processes and to examine 

the so-called electrophysiological correlates of WM. Moreover, we evaluate the effect of 

other unconsidered factors (i.e., pre-processing pipelines, type of EEG machines, etc.) that 

are proper to electrophysiological testing. 

In chapter 3, we examine stimulus processing that may underlie encoding of 

information, a crucial first step in creating new memories. A candidate neuromodulatory 

system that affects the moment-by-moment variation in stimulus processing is the Locus 

Coeruleus (LC) – norepinephrine (NE) system (Vazey et al., 2018; Cohen Hoffing & Seitz, 

2015). LC is a nucleus in the pons of the brainstem that projects NE widely throughout the 

cortex and by doing so affects the brain states which can be manifested in stimulus 

processing, memory encoding, memorization and learning (Sara, 2009; Aston-Jones & 

Cohen, 2005; Clewett et al., 2018). Our aim in this chapter is to establish a viable 

experimental paradigm as a first necessary step to study the LC-NE system and its effect 

on WM.  
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In sum, the overarching goal of this work is to understand WM and WM training 

efficacy by testing the human behavior and related brain mechanisms. To do this, we first 

characterized the existing experimental paradigms and behavioral performance. Next, we 

brought mechanistic understanding by taking advantage of brain signals as crucial 

intermediaries of human behavior. Finally, we advanced to developing a new experimental 

paradigm combined with a tri-variate model: a model including behavioral, physiological 

and neural data. By doing this, we set the stage for studying the cortical arousal system, a 

key influencer of memory processes and learning through altering brain states.  
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Abstract 

Working memory training has been a hot topic over the last decade. Although studies show 

benefits in trained and untrained tasks as a function of training, there is an ongoing debate 

on the efficacy of working memory training. There have been numerous meta-analyses put 

forth to the field, some finding overall broad transfer effects while others do not. However, 

discussion of this research typically overlooks specific qualities of the training and transfer 

tasks. As such, there has been next to no discussion in the literature on what training and 

transfer tasks features are likely to mediate training outcomes. To address this gap, here, 

we characterized the broad diversity of features employed in N-Back training tasks and 

outcome measures in published working memory training studies. Extant meta-analyses 

have not taken into account the diversity of methodology at this level, primarily because 

there are too few studies using common methods to allow for a robust meta-analysis. We 

suggest that these limitations preclude strong conclusions from published data. In order to 

advance research on working memory training, and in particular, N-Back training, more 

studies are needed that systematically compare training features and use common outcome 

measures to assess transfer effects.  
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Introduction 

A longstanding debate has regarded the extent to which training can improve our 

basic cognitive functions (Katz et al., 2018). Here we address this issue in reference to 

working memory (WM), defined as a limited-capacity system responsible for temporary 

storage and manipulation of relevant information. WM is important for a wide range of 

complex cognitive activities, such as reading or problem-solving (Shah & Miyake, 1999). 

In the last decade, there has been a considerable amount of literature focused on WM 

training (Jaeggi, Buschkuehl, Jonides, & Perrig, 2008; Von Bastian, & Oberauer, 2014; 

Morrison, & Chein, 2011; Klingberg, 2012). For example, WM training on a given task 

can transfer to improvements in untrained working memory tasks (Blacker et al., 2017; 

Lilienthal, Tamez, Shelton, Myerson, & Hale, 2013; Chein, & Morrison, 2010; Borella, 

Carretti, Riboldi, & De Beni, 2010), as well as tasks pertaining to other cognitive domains 

such as fluid intelligence (Jaeggi et al., 2008; Heinzel et al., 2017; Chein, & Morrison, 

2010; Borella et al., 2010). While there are numerous reports of transfer in the literature, 

there is also a substantial literature showing failures of transfer (Thompson et al., 2013; 

Jackson, Hill, Payne, Roberts, & Stine-Morrow, 2012). The field has reached a point in 

which there is a battle of meta-analyses lingering with roughly half of them finding 

evidence of transfer while the others do not (see Table 1.1 for variety of individual studies 

upon which these meta-analyses are based).
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Table 1. 1. Summary of training features from the 56 studies selected. Transfer effects tests, 
N-Back type, N-Back modality, feedback, Inter-stimulus interval (ISI), Intervention 
length/training sessions (short < 10 sessions ≤ long), adaptivity, control group, education, 
single/double blind, strategies, motivation/expectation, payment, achieved N-Back levels, 
blocks, main results, transfer tasks. 
 

STUDIES 
 
 

TRANSFER  
EFFECTS 
TESTS 

SINGLE/ 
DUAL 
 
 

N-BACK 
MODALITY 
 
 

FEED
BACK 
 
 

ISI 
 
 

TRAINING 
SESSIONS 
 
 

ADAPTIVITY 
 
 

1. Anguera 
et al. 
(2012) 

within and 
beyond WM 

dual Audio/Spatial  Yes Long Long nonforgiving 

2. Beavon et 
al. 
(2012) 

within and 
beyond WM  

single Spatial  unkno
wn 

Long Long nonforgiving 

3. Blacker et 
al. 
(2017) 

within and 
beyond WM 

dual Audio/Spatial  Yes Long Long forgiving 

4. Burki et 
al. 
(2014) 

within and 
beyond WM 

single  Visual  unkno
wn 

Long Long unknown 

5. 
Buschkuehl 
et al. (2014) 

within WM single Spatial  No Long Short nonforgiving 

6. Chooi et 
al. 
(2012) 

beyond WM dual Audio/Spatial unkno
wn 

Long Long nonforgiving 

7. Clark et 
al. 
(2017) 

beyond WM dual Audio/Spatial  Yes Long Long unknown 

8. Clouter et 
al. 
(2013) 

within and 
beyond WM 

dual Audio/Spatial  Yes Long Long forgiving 

9. Colom et 
al. 
(2013) 

beyond WM dual Audio/Spatial  Yes Long Long unknown 

10. Feiyue et 
al. 
(2009) 

beyond WM dual Audio/Visual  unkno
wn 

Long Long nonforgiving 

11. Heinzel 
et al. 
(2014) 

within and 
beyond WM 

single Visual  No Short Long nonforgiving 

12. Heinzel 
et al. 
(2016) 

within and 
beyond WM 

single Visual  No Short Long forgiving 
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STUDIES TRANSFER  
EFFECTS 
TESTS 

SINGLE/ 
DUAL 
 
 

N-BACK 
MODALITY 
 
 

FEED
BACK 
 
 

ISI 
 

TRAINING 
SESSIONS 
 

ADAPTIVITY 
 
 

13. Heinzel 
et al. 
(2017) 

within WM single Visual  No Short Long forgiving 

14. Hogrefe 
et al.  
(2017) 

within WM single Spatial Yes Short Long nonforgiving 

15. Hussey et 
al. 
(2017) 

within WM single Visual  Yes Long Long nonforgiving 

16. Jaeggi et 
al. 
(2008) 

beyond WM dual Audio/Spatial  No Long Long nonforgiving 

17. Jaeggi et 
al. 
(2010) 

within and 
beyond WM 

dual Audio/Spatial  Yes Long Long nonforgiving 

18. Jaeggi et 
al. 
(2014) 

within and 
beyond WM 

single Audio  No Long Long nonforgiving 

19. Jaeggi et 
al. 
(2014) 

within and 
beyond WM 

dual Audio/Spatial  No Long Long nonforgiving 

20. Jonasson 
et al. (2011) 

within WM dual Audio/Spatial  Yes Long Short nonforgiving 

21. Katz et 
al. 
(2018) 

within and 
beyond WM 

dual Audio/Spatial  No Long Long nonforgiving 

22. Kühn et 
al. 
(2013) 

within WM single Visual/Spatial 
(numerical 
updating and 
spatial N-
Back)  

No Long Long unknown 
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STUDIES TRANSFER  
EFFECTS 
TESTS 

SINGLE/
DUAL 
 
 

N-BACK 
MODALITY 
 
 

FEED
BACK 
 
 

ISI 
 

TRAINING 
SESSIONS 
 

ADAPTIVITY 
 
 

23. Kundu et 
al. 
(2013) 

within WM dual Visual/Spatial  Yes Long Long forgiving 

24. Kuper et 
al. 
(2016) 

within and 
beyond WM 

single Visual  No Short short forgiving 

25. Lawlor-
Savage et al. 
(2016) 

within and 
beyond WM 

dual Audio/Spatial  Yes Long Long forgiving 

26. Li et al. 
(2008) 

within WM single Spatial 
(mental spatial 
shifting and 
updating) 

Yes Long Long unknown 
 
 
 

27. Lilienthal 
et al. (2013) 

within WM dual Audio/Spatial No Long short nonforgiving 

28. Loosli et 
al. 
(2016) 

within and 
beyond WM 

single Visual  No Long Long unknown 

29. Maraver 
et al. (2016) 

within and 
beyond WM 

single Audio/Spatial 
(N-Back, WM 
search, WM 
updating) 

Yes Short Short nonforgiving 

30. Marcek 
et al. 
(2015) 

beyond WM single Spatial No Long Long unknown 

31. Minear 
et al. 
(2016) 

within and 
beyond WM 

single Spatial  No Long Long nonforgiving 

32. 
Mohammed 
et al. (2017); 
game N-
Back 

within and 
beyond WM 

game Visual/Spatial 
gaming task  

Yes unkno
wn 

Long forgiving 
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STUDIES TRANSFER  
EFFECTS 
TESTS 

SINGLE/
DUAL 
 
 

N-BACK 
MODALITY 
 
 

FEED
BACK 
 
 

ISI 
 

TRAINING 
SESSIONS 
 

ADAPTIVITY 
 
 

33. 
Mohammed 
et al. (2017); 
standard N-
back; 

within and 
beyond WM 

single Visual Yes unkno
wn 

Long forgiving 

34. Nagle et 
al. 
(2015) 

within and 
beyond WM 

game Visual/Spatial 
gaming task 

Yes Long Long forgiving 

35. Preece et 
al. 
(2012) 

beyond WM single Spatial Yes Long Long nonforgiving 

36. Redick et 
al. 
(2013) 

within and 
beyond WM 

dual Audio/Spatial No Long Long nonforgiving 

37. Rudebeck 
et al. (2012) 

within and 
beyond WM 

dual Visual/Spatial  No Long Long nonforgiving 

38. Salminen 
et al. (2012) 

within and 
beyond WM 

dual Audio/Spatial  Yes Long Long nonforgiving 

39. Salminen 
et al. (2015) 
 

within WM dual Audio/Spatial  Yes Long Long nonforgiving 

40. Schwarb 
et  
al. (2015) 

within and 
beyond WM 

single Visual/Spatial  unkno
wn 

Long Short nonforgiving 

41. 
Schweizer et 
al. (2011) 

beyond WM dual Audio/Visual  unkno
wn 

Long Long nonforgiving 

42. Shahar et 
al. 
(2015) 

beyond WM single Visual/Spatial  Yes Short Long forgiving 

43. Smith et 
al. 
(2013) 

beyond WM dual Audio/Spatial  unkno
wn 

Long Long unknown 
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STUDIES TRANSFER  
EFFECTS 
TESTS 

SINGLE/
DUAL 
 
 

N-BACK 
MODALITY 
 
 

FEED
BACK 
 
 

ISI 
 

TRAINING 
SESSIONS 
 

ADAPTIVITY 
 
 

44. Soveri et 
al. 
(2017) 

within WM dual Audio/Spatial  No Long Long nonforgiving 

45. 
Stepankova 
et al. (2013); 
long 
intervention 

within and 
beyond WM 

single Visual  Yes Short Long nonforgiving 

46. 
Stepankova 
et al. (2013); 
short 
intervention 

within and 
beyond WM 

single Visual  Yes Short Short nonforgiving 

47. 
Stephenson 
et al. (2013); 
single visual 
N-Back 

beyond WM single Visual  No Long Long nonforgiving 

48. 
Stephenson 
et al. (2013); 
single audio 
N-Back 

beyond WM single Audio  No Long Long nonforgiving 

49. 
Stephenson 
et al. (2013); 
dual N-Back 

beyond WM dual Audio/Spatial  No Long Long nonforgiving 

50. 
Thompson et 
al. (2013) 
 

within and 
beyond WM 

dual Audio/Spatial  No Long Long nonforgiving 

51. Urbanek 
et al. (2015) 
 

beyond WM single Spatial  No Long short forgiving 

52. 
Vartanian et 
al. (2013) 

beyond WM single Visual  No Long short unknown 
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STUDIES TRANSFER  
EFFECTS 
TESTS 

SINGLE/
DUAL 
 
 

N-BACK 
MODALITY 
 
 

FEED
BACK 
 
 

ISI 
 

TRAINING 
SESSIONS 
 

ADAPTIVITY 
 
 

53. Waris et 
al. 
(2015) 

within and 
beyond WM 

dual Audio/Spatial 
(selective 
updating task, 
moving 
figures, dual 
N-Back) 

No Long Long nonforgiving 

54. Zajac-
Lamparska 
et al. (2016) 

beyond WM single Visual  No Long short unknown 

55. Zhao et 
al. 
(2017); 
HAM group 

within and 
beyond WM 

single Spatial  Yes Long Long nonforgiving 
 

56. Zhao et 
al. 
(2017); LAM 
group 

within and 
beyond WM 

single Spatial  Yes Long Long nonforgiving 
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STUDIES 
 
 

Control  
group 
 
 

Education 
info 
 

Single/ 
double 
blind 
info 
 

Strategies 
info 
 

Motivation/
expectation 
info 

Payment 
 
 
 

Starting/ 
ending 
(achieved
) n-back 
levels  
 

Blocks 
 
 
 

1. Anguera 
et al. 
(2012) 

Active 
(knowled
ge 
training) 

No No No Yes Low 3-Back to 
5-Back 

9 
blocks  
(20 
trials/bl
ock) 

2. Beavon 
et al. 
(2012) 

Active 
(knowled
ge 
training) 

No No No No unknown 2-Back to 
5-Back 

15 
blocks 
 (20 
trials/bl
ock) 

3. Blacker 
et al. 
(2017) 

Active 
(adaptive 
non-WM 
task 
called 
Permuted 
Rule 
Operation
s) 
 

Yes No No Yes High 1-Back to 
2-Back 

20 
blocks 
 (20 
trials/bl
ock) 

4. Burki et 
al. 
(2014) 

Active 
(implicit 
sequence 
learning 
training), 
Passive 

Yes No Yes No unknown 1-Back to 
8-Back 

15 
block  
(30 
trials/bl
ock) 

5. 
Buschkuehl 
et al. (2014) 

Active 
(knowled
ge 
training) 

No No No No Low 1-Back to 
4-Back 

15 
blocks 
 (20+n 
trials/bl
ock) 

6. Chooi et 
al. 
(2012) 

Active 
(dual 1-
Back 
training), 
Passive 
 

Yes 
 

No No  No Low 0-Back to 
4-Back 

 

7. Clark et 
al. 
(2017) 

Active 
(processi
ng speed 
training), 
Passive 

Yes Yes  
(single 
blind) 

No Yes High  4 
blocks 
(20 
trials/bl
ock) 

8. Clouter 
et al. 
(2013) 

Active 
(dual 1-
Back 
training) 

No Yes 
 (single 
blind) 

No Yes unknown 1-Back to 
4-Back 

20 
blocks 
 (20 
trials/bl
ock) 
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STUDIES 
 
 

Control  
group 
 
 

Education 
info 
 

Single/ 
double 
blind 
info 
 

Strategies 
info 
 

Motivation/ 
expectation 
info 

Payment 
 
 
 

Starting/ 
ending 
(achieved
) n-back 
levels  
 

Blocks 
 
 
 

9. Colom et 
al. 
(2013) 
 

Passive No 
 

No No Yes unknown 2-Back to 
5-Back 

 

10. Feiyue 
et al. 
(2009) 

Passive No No No No unknown 2-Back to 
3-Back 

20 
blocks  
(20+n 
trails/bl
ock) 

11. Heinzel 
et al. (2014) 

Passive Yes No No No unknown 0-Back to 
12-Back 

27 
blocks  
(20-28 
trials/bl
ock) 

12. Heinzel 
et al. (2016) 
 

Passive Yes 
 

No No No unknown  36 
blocks 

13. Heinzel 
et al. (2017) 
 

Passive Yes 
 

No No No unknown  36 
blocks 

14. Hogrefe 
et al. (2017) 

Active 
(N-Back 
training 
with no 
immediat
e 
feedback)
, Passive 

No No No No unknown 2-Back to 
9-Back 

10 
blocks 
 (20 
trials/e
ach) 

15. Hussey 
et al. 
(2017) 

Active 
(adaptive 
N-Back 
training 
without 
lures; 
non-
adaptive 
3-Back 
training 
without 
lures) 
 

Yes Yes 
(double 
blind) 

No No High unknown 2 
blocks  
(15 
trials/bl
ock) 

16. Jaeggi 
et al. 
(2008) 

Passive No No No No unknown 2-Back to 
5-Back  

20 
blocks 
 (20 
trials/bl
ock) 
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STUDIES 
 
 

Control  
group 
 
 

Education 
info 
 

Single/ 
double 
blind 
info 
 

Strategies 
info 
 

Motivation/ 
expectation 
info 

Payment 
 
 
 

Starting/ 
ending 
(achieved
) n-back 
levels  

Blocks 
 
 
 

17. Jaeggi 
et al. 
(2010) 

Active 
(adaptive 
single N-
Back 
training) 
 

No No No No High 2-Back to 
4-Back 

9 
blocks  
(20 
trials/b
lock) 

18. Jaeggi 
et al. 
(2014) 

Active 
(knowled
ge 
training) 
 

No No No Yes High 2-Back to 
6-Back 

15 
blocks 
 (20 
trials/b
lock) 

19. Jaeggi 
et al. 
(2014) 

Active 
(knowled
ge 
training) 
 

No No No Yes unknown 2-Back to 
4-Back 

15 
blocks 
 (20 
trials/b
lock) 

20. 
Jonasson et 
al. (2011) 

Active 
(face-
name 
recall 
training) 

No 
 

No No No unknown 1-Back to 
4-Back 

15 
rounds 

21. Katz et 
al. 
(2018) 

Active 
(knowled
ge 
training) 

No No No Yes High 2-Back to 
4-Back 

15 
blocks 
 (20 
trials/b
lock) 

22. Kühn et 
al. 
(2013) 

Active 
(numeric
al 
updating 
and N-
Back 
training 
with 
fixed 
difficulty 
level) 

No No No No High 2-Back to 
4-Back 

8 
blocks  
(39 
trials/b
lock) 

23. Kundu 
et al. 
(2013) 

Active 
(adaptive 
Tetris) 

No No No No unknown 2-Back to 
4-Back 

25 
blocks  
(25 
trials/b
lock) 

24. Kuper 
et al. 
(2016) 
 

Passive 
 

Yes No No No Low 2-Back to 
5-Back 

15 
blocks  
(20 
trials/b
lock) 

25. Lawlor-
Savage et 
al. 
(2016) 
 

Active 
(1-Back 
training) 

No Yes  
(double 
blind) 

No No unknown 1-Back to 
3-Back 

15 
blocks  
(20 
trials/b
lock) 
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STUDIES 
 
 

Control  
group 
 
 

Education 
info 
 

Single/ 
double 
blind 
info 
 

Strategies 
info 
 

Motivation/ 
expectation 
info 

Payment 
 
 
 

Starting/ 
ending 
(achieved
) n-back 
levels  
 

Blocks 
 
 
 

26. Li et al. 
(2008) 

Passive No No No 
 

No High  4 
blocks 
 (22 
trials/bl
ock) 

27. 
Lilienthal et 
al. (2013) 

Active 
(non-
adaptive 
dual N-
Back), 
Passive 

No No No No unknown 2-Back to 
3-Back 

20 
blocks 
 (20 
trials/bl
ock) 

28. Loosli 
et al. 
(2016) 

Active 
(recent-
probes 
and N-
Back 
training 
with low 
proactive 
interferen
ce) 

Yes Yes  
(double 
blind) 

No No Low 2-Back (100 
trials/bl
ock) 

29. 
Maraver et 
al. (2016) 

Active 
(processi
ng speed 
training), 
Passive 

No 
 

No No Yes Low 1-Back to 
3-Back 

Not 
fixed 
(18 
trials/bl
ock) 

30. Marcek 
et al. (2015) 

Active 
(non-
adaptive 
Sudoku) 

No 
 

No Yes Yes Low  20 
blocks  
(20 
trials/bl
ock) 

31. Minear 
et al. 
(2016) 

Active 
(non-
adaptive 
N-Back 
training, 
real time 
strategy 
video 
game) 

No 
 

No Yes Yes High 2-Back to 
4-Back 

15 
blocks  
(20 
trials/bl
ock) 

32. 
Mohammed 
et al. 
(2017); 
game N-
Back 

None No 
 

No No Yes Low 3-Back to 
5-Back 

8-15 
blocks  
(20-40 
trials/bl
ock) 

33. 
Mohammed 
et al. 
(2017); 
standard N-
back; 

None No 
 

No No Yes Low 3-Back to 
5-Back 

8-15 
blocks  
(20-40 
trials/bl
ock) 
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STUDIES 
 
 

Control  
group 
 
 

Education 
info 
 

Single/ 
double 
blind 
info 
 

Strategies 
info 
 

Motivation/ 
expectation 
info 

Payment 
 
 
 

Starting/ 
ending 
(achieved
) n-back 
levels  
 

Blocks 
 
 
 

34. Nagle et 
al. 
(2015) 

None No 
 

No No Yes unknown 2-Back to 
3-Back 

4 
blocks  
(15 
trials/bl
ock) 

35. Preece 
et al. 
(2012) 

Active 
(vocabula
ry and 
knowledg
e 
training) 
 

No 
 

No No No unknown 3-Back to 
5-Back 

15 
rounds 

36. Redick 
et al. 
(2013) 

Active 
(visual 
search 
training), 
Passive 

No 
 

No Yes Yes High 2-Back to 
4-Back 

20 
blocks 
 (20 
trials 
for 
each) 

37. 
Rudebeck et 
al. (2012) 

Passive Yes 
 

No No No unknown 2-Back to 
3-Back 

12 
blocks 
 (30 
trials 
for 
each) 

38. 
Salminen et 
al. (2012) 

Passive No 
 

No No No unknown 2-Back to 
5-Back 

20 
blocks 
 (22 
trials 
for 
each) 

39. 
Salminen et 
al. (2015) 

Passive Yes 
 

No No No Low 1-Back to 
2-Back 

20 
blocks 
 (22 
trials 
for 
each) 

40. 
Schwarb et 
al. (2015) 

Passive No 
 

No No No Low 4-Back to 
6-Back 

18 
blocks 
 (20 
trials/bl
ock) 

41. 
Schweizer 
et al. (2011) 

Active 
(feature 
matching 
training) 

Yes 
 

No / No unknown 4-Back to 
7-Back 

20 
blocks 
 (20 
trials/bl
ock) 

42. Shahar 
et al. 
(2015) 

Passive No 
 

Yes 
(double 
blind) 

No No Low 1-Back- 
16-Back 

10,7 
blocks 
(64 
trials/bl
ock) 
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STUDIES 
 
 

Control  
group 
 
 

Education 
info 
 

Single/ 
double 
blind 
info 
 

Strategies 
info 
 

Motivation/ 
expectation 
info 

Payment 
 
 
 

Starting/ 
ending 
(achieved
) n-back 
levels  
 

Blocks 
 
 
 

43. Smith et 
al. 
(2013) 

Active 
(strategy 
video 
game 
training), 
Passive 

No 
 

No No No unknown 2-Back- 
5-Back 

(20 
trials/bl
ock) 

44. Soveri 
et al. 
(2017) 

Active 
(non 
adaptive 
game 
Bejewele
d 2) 

Yes 
 

No No Yes Low 2-Back to 
4-Back 

20 
blocks 
 (20 
trials/bl
ock) 

45. 
Stepankova 
et al. 
(2013); 
long 
intervention 

Passive Yes 
 

No No No unknown 2-Back to 
4-Back 

20 
blocks  
(20 
trials/bl
ock) 

46. 
Stepankova 
et al. 
(2013); 
short 
intervention 

Passive Yes 
 

No No No unknown 2-Back to 
4-Back 

20 
blocks  
(20 
trials/bl
ock) 

47. 
Stephenson 
et al. 
(2013); 
single 
visual N-
Back 

Active 
(spatial 
matrix 
span 
training), 
Passive 

Yes 
 

No No No unknown  (20 
trials/bl
ock) 

48. 
Stephenson 
et al. 
(2013); 
single audio 
N-Back 

Active 
(spatial 
matrix 
span 
training), 
Passive 

Yes 
 

No No No unknown  (20 
trials/bl
ock) 

49. 
Stephenson 
et al. 
(2013); 
dual N-
Back 

Active 
(spatial 
matrix 
span 
training), 
Passive 

Yes 
 

No No No unknown  (20 
trials/bl
ock) 

50. 
Thompson 
et al. (2013) 

Active 
(multiple 
object 
tracking 
training), 
Passive 

No 
 

No Yes Yes High 3-Back to 
5-Back 

30 
blocks  
(20 
trials/bl
ock) 
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STUDIES 
 
 

Control  
group 
 
 

Education 
info 
 

Single/ 
double 
blind 
info 
 

Strategies 
info 
 

Motivation/ 
expectation 
info 

Payment 
 
 
 

Starting/ 
ending 
(achieved
) n-back 
levels  
 

Blocks 
 
 
 

51. 
Urbanek et 
al. (2015) 

Active 
(non-
adaptive 
Sudoku) 

No 
 

No No No Low 2-Back to 
4-Back 

15 
blocks  
(20 
trials/bl
ock) 

52. 
Vartanian 
et al. (2013) 
 

Active 
(reaction 
time 
training) 

No 
 

No No No unknown  4 

53. Waris et 
al. 
(2015) 

Active 
(Angry 
Birds, 
Bejewele
d 2, 
Peggle) 

No 
 

No No Yes Low 2-Back to 
4-Back 

(20 
trials/bl
ock) 

54. Zajac-
Lamparska 
et al. (2016) 

Active 
(attention
al control 
training), 
Passive 

Yes 
 

No No No unknown  (20 
trials/bl
ock) 

55. Zhao et 
al. 
(2017); 
HAM group 

None No 
 

No No Yes unknown 3-Back to 
5-Back 

15 
blocks  
(20 
trials/bl
ock) 

56. Zhao et 
al. 
(2017); 
LAM group 

None No 
 

No No Yes unknown 3-Back to 
5-Back 

15 
blocks  
(20 
trials/bl
ock) 
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STUDIES 
 

 

MAIN RESULTS 
(TRANSFER EFFECTS) 
 

TRANSFER TASKS 
 

1. Anguera et al. 
(2012) 

Transfer to the 3-Back task and 
visuospatial tasks. 
No transfer to visuo-motor task. 

N-Back, Operation span (OSPAN), Card rotation, 
Digit symbol substitution (WAIS-R), Visuomotor 
adaptation 

2. Beavon et al. 
(2012) 

No transfer effects to STM and 
WM. 
 

Numbers Reversed (WJ-III), Auditory WM (WJ-III) 

3. Blacker et al. 
(2017) 

Transfer to near WM task 
(objects N-Back). 
No far-transfer to fluid 
intelligence. 

N-Back, Symmetry Span, Spatial locations and 
relations, BOMAT 

4. Burki et al. 
(2014) 

Near-transfer effects to a similar 
spatial N-Back task. 

N-Back, Numerical updating, Reading span, RSPM, 
RAPM, Stroop, Letter and number comparison 
(pattern comparison), SRT 

5. Buschkuehl et 
al. (2014) 

Near transfer to N-Back task 
with different stimuli. 
 

N-Back 
 

6. Chooi et al. 
(2012) 

No transfer effects. OSPAN, Vocabulary (Mill-Hill, PMA), Word 
beginning & ending, Colorado perceptual speed, 
Identical pictures, Finding A's, Card rotation (ETS), 
Paper folding (ETS), Mental rotation (Shepard–
Metzler), RAPM 

7. Clark et al. 
(2017) 

No transfer effects. 
 

RAPM, WAIS-IV, CCFT, Lexical decision, Ospan, 
Spatial delayed response task 

8. Clouter et al. 
(2013) 

Transfer effects to fluid 
intelligence, WM and conflict 
resolution. 

CFIT, Stroop, Monty Hall Problem, OSPAN, 
Symmetry span 
 

9. Colom et al. 
(2013) 

No transfer to fluid intelligence, 
crystallized intelligence, WM 
and attention control. 

RAPM, Abstract reasoning (DAT-AR), Inductive 
reasoning (PMA-R), WM: reading span, 
computation span, dot matrix 

10. Feiyue et al. 
(2009) 

Transfer effects to fluid 
intelligence, larger for the 
training group. 

RSPM 
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STUDIES 
 
 

MAIN RESULTS 
(TRANSFER EFFECTS) 

 

TRANSFER TASKS 
 

11. Heinzel et al. 
(2014) 

Transfer to Verbal Fluency and 
Digit Symbol, Digit Span Fwd, 
Digit Symbol and CERAD Del 
Recall  

Digit span Fwd (WAIS), Digit span Bwd (WAIS), 
Recall (CERAD) (immediate and delayed), Digit 
Symbol (WAIS), Verbal fluency (COWAT), RSPM, 
Figural relations (LPS) 

12. Heinzel et al. 
(2016) 
 

Transfer to Sternberg task, 
processing speed, executive 
functions and fluid intelligence. 

Digit Span Fwd (Weschler), Digit Span Bwd 
(Weschler), Digit symbol substitution (Weschler), 
D2, Stroop, Verbal fluency (COWAT), RSPM, 
Figural relations (LPS) 

13. Heinzel et al. 
(2017) 

Near-transfer to N-Back.  
 

Visual and auditory single tasks, dual task 

14. Hogrefe et 
al.  
(2017) 

Transfer effects to the N-Back 
task and to numerical memory 
updating. 

N-Back, Task switching, Flanker, Stroop, Numerical 
updating, RAPM 
 

15. Hussey et al. 
(2017) 

Transfer to untrained memory 
and language conditions.  

N-Back, recognition memory, Verb generation, 
Stroop, Garden-path recovery, Relative clause 
processing 
 

16. Jaeggi et al. 
(2008) 

Transfer to fluid intelligence 
based on training amount. 
 

RAPM, BOMAT 
 

17. Jaeggi et al. 
(2010) 

Transfer effects to fluid 
intelligence for both groups 
(single and dual N-Back tasks) 

N-Back, OSPAN, RAPM, BOMAT 
 

18. Jaeggi et al. 
(2014) 

Transfer to fluid intelligence 
 

RAPM, CFIT, BOMAT, Surface Development Test 
(ETS), Space Relations (DAT), Form Board Test 
(ETS), Interference Test (ETS), Reading 
Comprehension (AFOQT), Verbal Analogies, Digit 
Symbol (WAIS) 

19. Jaeggi et al. 
(2014) 

Transfer to fluid intelligence 
 

RAPM, CFIT, BOMAT, Surface Development Test 
(ETS), Space Relations (DAT), Form Board Test 
(ETS), Interference Test (ETS), Reading 
Comprehension (AFOQT), Verbal Analogies, Digit 
Symbol (WAIS) 
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STUDIES 
 
 

MAIN RESULTS 
(TRANSFER EFFECTS) 

 

TRANSFER TASKS 
 

20. Jonasson et 
al. (2011) 

No transfer effects. 
 

N-Back, OSPAN, Addition, Trail making (TMT), 
dual task 

21. Katz et al. 
(2018) 

Transfer to visuo-spatial 
composite.  
 

RAPM, CFIT, BOMAT, Surface Development Test 
(ETS), Space Relations (DAT), Form Board Test 
(ETS), Interference Test (ETS), Reading 
Comprehension (AFOQT), Verbal Analogies, Digit 
Symbol (WAIS) 

22. Kuhn et al. 
(2013) 

Improvements on untrained 
working-memory tasks.  
 

N-Back, Spatial updating, Figural and numerical 
reasoning (Berlin Intelligence Structure Test) 
 

23. Kundu et al. 
(2013) 

Transfer to stimulus processing, 
STM and visual search 
performance 

Visual-array comparison task, Visual search, 
OSPAN, Stroop, RAPM 
 

24. Kuper et al. 
(2016) 
 

Near-transfer to a WM updating 
task. No far-transfer to switch 
costs, Stroop and matrix 
reasoning tasks. 

N-Back, Task switching, Stroop, RAPM, Digit 
symbol substitution, Spot-a-word 
 

25. Lawlor-
Savage et al. 
(2016) 
 

No transfer to fluid intelligence. 
 

Digit span (WAIS), Symbol search (WAIS), Coding 
(WAIS), OSPAN, RAPM, CFIT 
 

26. Li et al. 
(2008) 

Transfer to a more complex 
spatial N-Back task and 
numerical N-Back task. No far-
transfer to complex span.  

N-Back, OSPAN, Rotation span, Decision speed 
 

27. Lilienthal et 
al. (2013) 

Transfer effects from adaptive 
training to a running span task 
(focus of attention). 

Cued recall, Focus-switching, Grid span, Operation 
span, Running span 
 

28. Loosli et al. 
(2016) 

No transfer effects to untrained 
tasks. 
 

Verb-generation, Paired associates, Stroop, Digit 
symbol substitution (WAIS-R), TONI 
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STUDIES 
 
 

MAIN RESULTS 
(TRANSFER EFFECTS) 

 

TRANSFER TASKS 
 

29. Maraver et 
al. (2016) 

Transfer effects to reasoning for 
the inhibitory control training 
group. 

N-Back, Stroop, OSPAN, Stop-signal, AX-CPT, 
RAPM 
 

30. Marcek et al. 
(2015) 

No transfer for the single N-
Back group, transfer to RAPM 
for the control group (triple N-
Back task). 

RAPM, BOMAT 
 

31. Minear et al. 
(2016) 

Near-transfer effects to a 
different N-Back task for both 
adaptive and non-adaptive N-
Back training group. 
 

N-Back, Speed of processing, Dot judgement, Array 
matching, (Letter-Digit-Arrow-Circle-Reading-
Operation-Letter-number-Rotation-Alignment) 
span, Attention network, Simon, Nonsense 
Syllogisms (ETS), Inference Tests (ETS), RPM, 
CFIT, Mathematical aptitude (ETS) 
 

32. Mohammed 
et al. (2017); 
game N-Back 

Transfer to untrained N-Back, 
Far transfer to DRM free recall 
(falsely remembered), DRM 
(recognition), Space relations, 
Surface development, Form 
board, Delay discounting  

N-Back, AX-CPT, DRM, Space relations (DAT), 
Surface development (ETS), Form board test (ETS), 
BOMAT, Learning from lectures, Math, Delay 
discounting 
 

33. Mohammed 
et al. (2017); 
standard N-
back; 

Transfer to untrained N-Back, 
Far transfer to DRM free recall 
(falsely remembered), Space 
relations, Surface development, 
Form board, Math, Delay 
discounting  

N-Back, AX-CPT, DRM, Space relations (DAT), 
Surface development (ETS), Form board test (ETS), 
BOMAT, Learning from lectures, Math, Delay 
discounting 
 

34. Nagle et al. 
(2015) 

No transfer effects. RAPM, Digit span Fwd, Digit span Bwd, N-Back 

35. Preece et al. 
(2012) 

No transfer effects to fluid 
intelligence compared to the 
control group. 

Figure Weights (WAIS), RAPM 
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STUDIES 
 
 

MAIN RESULTS 
(TRANSFER EFFECTS) 

 

TRANSFER TASKS 
 

36. Redick et al. 
(2013) 

No transfer effects in fluid 
intelligence, WM, crystallized 
intelligence and perceptual speed 
tasks. 
 

RAPM, RSPM, CFIT, Paper folding, Letter sets, 
Number series, Inference, Verbal analogies, 
SynWin, Control tower, ATClab, Symmetry span, 
Running letter span, Vocabulary, General 
knowledge, Letter and number comparison  
 

37. Rudebeck et 
al. (2012) 

Transfer effects to episodic 
memory and fluid intelligence. 
 

BOMAT, Recognition memory 

38. Salminen et 
al. (2012) 

Transfer to WM updating task, 
switching situation task and 
attentional processing. No 
transfer to reasoning or dual N-
Back task. 

Updating (AV numbers, VS black bars that was 
shown in 4 different locations), dual task, Task 
switching, Attentional blink, RAPM 

39. Salminen et 
al. (2015) 

Transfer effects to a WM 
updating task for both young and 
older adults. 

Updating (AV numbers, VS black bars, one block 
with VS another block with AV), Task switching, 
Attentional blink 

40. Schwarb et 
al. (2015) 

Transfer effects to visual short-
term memory capacity. 

OSPAN, Symmetry span, RAPM, Motion 
interference, Rapid decision-making, Change 
detection, Short term recall 
 

41. Schweizer et 
al. (2011) 

Transfer to fluid intelligence. 
Transfer to emotional Stroop 
task only for affective training 
group. 

RPM, Stroop, Digit span 
 

42. Shahar et al. 
(2015) 

Transfer to processing speed 
compared to the control group. 

Digits updating task, shape/digit classification task, 
Stroop, stop-signal, RAPM 

43. Smith et al. 
(2013) 

No transfer effect to fluid 
intelligence. 

RAPM 

44. Soveri et al. 
(2017) 

Transfer effects to different 
single N-Back task and to a WM 
updating task. No transfer effects 
for active or passive groups. 

N-Back, Verbal running span, Visuo-spatial running 
span, Number substitution, Digit span Fwd, Digit 
span Bwd, Corsi Block 
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STUDIES 
 
 

MAIN RESULTS 
(TRANSFER EFFECTS) 

 

TRANSFER TASKS 
 

45. Stepankova 
et al. (2013); 
long intervention 

Transfer effects to WM and 
visuospatial skills. 
 

Digit span (WMS), Letter number sequencing 
(WAIS), Block design (WAIS), Matrix reasoning 
(WAIS) 
 

46. Stepankova 
et al. (2013); 
short 
intervention 

Transfer effects to WM and 
visuospatial skills. 

Digit span (WMS), Letter number sequencing 
(WAIS), Block design (WAIS), Matrix reasoning 
(WAIS) 
 

47. Stephenson 
et al. (2013); 
single visual N-
Back 

Transfer to 4 fluid intelligence 
tests (APM, Cattell, WASI, 
BETA-III). 
 

RAPM, CFIT, WASI, BETA, Mental rotation, Paper 
folding, Vocabulary, Lexical decision 
 

48. Stephenson 
et al. (2013); 
single audio N-
Back 

Transfer to 3 fluid intelligence 
tests (APM, Cattell, WASI). 

RAPM, CFIT, WASI, BETA, Mental rotation, Paper 
folding, Vocabulary, Lexical decision 
 

49. Stephenson 
et al. (2013); 
dual N-Back 

Transfer to 4 fluid intelligence 
tests (APM, Cattell, WASI, 
BETA-III). 

RAPM, CFIT, WASI, BETA, Mental rotation, Paper 
folding, Vocabulary, Lexical decision 
 

50. Thompson et 
al. (2013) 

No transfer effects to fluid 
intelligence and other cognitive 
tasks. 
 

Operation span, Reading span, RAPM, WASI, 
WAIS-III, Reading comprehension (Nelson Denny), 
Digit-symbol coding (WAIS-III), Visual matching 
(Woodcock-Johnson III), Pair cancellation 
(Woodcock-Johnson III) 

51. Urbanek et 
al. (2015) 

No transfer effects to fluid 
intelligence. 
 

RAPM, BOMAT 

52. Vartanian et 
al. (2013) 
 

Transfer effects to fluid 
intelligence. 
 

RAPM, Alternate Uses Task (AUT) - test of 
divergent thinking 

53. Waris et al. 
(2015) 

Near transfer effects in a 
different N-Back task, WM 
updating and in a WM task. 

Verbal running span, Digit span, Corsi block, Set 
shifting, Visuo-spatial running span, CFIT, Simon, 
Number substitution, Numerical updating, N-Back 
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STUDIES 
 
 

MAIN RESULTS 
(TRANSFER EFFECTS) 

 

TRANSFER TASKS 
 

54. Zajac-
Lamparska et al. 
(2016) 

Weak transfer effects to fluid 
intelligence. 
 

Attentional control, RSPM, N-Back 
 

55. Zhao et al. 
(2017); HAM 
group 

Near-transfer effects to WM. No 
far-transfer effects to executive 
functions and fluid intelligence. 

N-Back task, Running digit span, Go/no-go, Stroop, 
Task switching, RAPM. 
 

56. Zhao et al. 
(2017); LAM 
group 

Near-transfer effects to WM. No 
far-transfer effects to executive 
functions and fluid intelligence. 

N-Back task, Running digit span, Go/no-go, Stroop, 
Task switching, RAPM. 
 

 
Studies mentioned in this table are placed in the References section with a *. 
Legend: HAM = high achievement motivated group; LAM = low achievement motivated 
group
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The lack of explanation regarding this variability not only casts a shadow on WM training 

research but also poses a significant hurdle when evaluating the effectiveness of WM 

training. 

One of the most common measures of WM is the N-Back task, an updating task 

that requires multiple processes (storage, maintenance, and manipulation of information) 

and is predictive of inter-individual differences in higher cognitive functions (Jaeggi, 

Buschkuehl, Perrig, & Meier, 2010). Since the N-Back task is also one of the most 

prominent tasks used in WM training studies, here we limit our discussion on WM training 

to interventions using N-Back tasks. However, with as many studies using the N-Back task, 

there are as many variants in methodology. These range from the adopted training 

approaches (e.g. varying in terms of task timing, types of stimuli, number of stimulus 

streams, adaptive algorithms, feedback provided, number of training sessions, blind/not-

blind; see Fig. 1 for illustration; Table 1.1) to the transfer tasks that are rarely consistent 

from one study to the next with over 120 different transfer tasks used across the 56 

experiments reviewed in 51 studies (see Figure 1.1 for illustration and Table 1.1 for 

details). For example, across these experiments, 30 different tasks assess aspects of WM 

and short-term memory (STM), including N-Back and other updating tasks, simple span 

tasks and various complex WM tasks. Another 28 tasks assess aspects of fluid intelligence, 

the content of which is predominantly visuospatial (Matrix Reasoning, Block Design, 

Figure Weights, Paper Folding, Form Board, Surface Development, Space Relations, 

Abstract Reasoning, Mental Rotation, Card Rotation, TONI etc.) followed by verbal (Letter 
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Sets, Inference test, Nonsense syllogisms, Inductive Reasoning PMA-R, Verbal Analogies, 

Reading Comprehension), and quantitative (Number Series) (cf. Table 1.2). With many 

unique combinations of training methodologies and transfer tasks, and no model to 

interpret these differences (Katz et al., 2018), we are left with the difficulty of 

understanding what approaches might give rise to which cognitive outcomes, and what 

features might determine the boundary conditions of N-Back training.  

 To date, discrepant findings regarding transfer effects reported by meta-analytic 

studies, focusing primarily on healthy adults, have been discussed in regard to important 

moderators such as population demographics, training dose, training type (e.g. single task, 

multiple tasks), training task (e.g., single N-Back, dual N-Back), training modality (visual, 

auditory, both), stimulus content (verbal, nonverbal), type of transfer tasks, design type 

(randomized/not randomized), type of control group (active/passive), attrition rate, training 

location, supervision, instructional support, feedback, and publication bias (Au et al., 2015; 

Soveri, Karlsson, Waris, Grönholm-Nyman, & Laine, 2017; Melby-Lervåg & Hulme, 

2013; Melby-Lervåg, Redick, & Hulme, 2016; Schwaighofer, Fischer, & Büchner, 2015). 

While these moderators are certainly relevant, the details of procedures employed in each 

training study, such as trained and transfer tasks features, which may mediate learning, 

have been largely ignored.  

In this qualitative review, we examine a variety of design factors previously 

overlooked in N-Back training that bear potential to affect learning and transfer, such as 

task timing and adaptive procedures, types of stimuli and sensory modality.  
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Table 1. 2. Transfer tasks categorized by cognitive domain 

 

  
N 

  
N 

Working Memory N-Back 19  Identical pictures 1                      
Operation span 
(OSPAN) 

13 Vocabula
ry 

Verbal fluency 
(COWAT) 

2                                

 Symmetry span 4  Lexical decision 2                                        
 Numerical updating  6  Word beginning and 

ending 
1                  

 Reading span 4  Verb generation                       2                
 Spatial updating 3  Vocabulary (Mill-Hill, 

PMA) 
4 

 Rotation span 2 Fluid 
intelligen

ce* 

Letter sets 1 

 Grid span  1  Inference 1 
 Running digit span 1  Space relations (DAT) 5                     
 Running letter span 2  Abstract reasoning 

(DAT-AR) 
1                     

 Verbal running span 2  Matrix resoning 
(BETA-III) 

1 

 Visuo-spatial running 
span 

2  Matrix reasoning 
(WAIS) 

1 

 Arrow/Circle span 2  Block design (WAIS) 1 
 Visuospatial and 

auditory-verbal 
updating 

1  Figure weights (WAIS) 1 

 Computation span 1  Paper folding (ETS) 3 
 Dot matrix 1  Surface development 

test (ETS) 
5 

 Digit span (forward, 
backward) 

14  Form board test (ETS) 5 

 Digit symbol 
substitution (WAIS-
R) 

8  Interference test (ETS) 4 

 Corsi block 2  RSPM           
8 

 Letter number 
sequencing (WAIS) 

   1  RAPM 27 

 Number substitution  2  BOMAT 11 
 Spatial locations and 

relations 
                    

1 
 Space relations 1 

 Visual array 
comparison task  

                    
1 

 Inductive reasoning 
(PMA-R) 

1 
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 Array matching                     
1 

 CFIT 10 

 Spatial delayed 
response task 

                    
1 

 TONI 1 

 Delayed match to 
sample (single and 
dual) 

                    
2 

 Number series 1 

 Auditory WM (WJ-
III) 

                    
1 

 Mental rotation 
(Shepard-Metzler) 

2 

LTM Recall (CERAD)  
(delayed, immediate) 

                    
2 

 Figural and numerical 
reasoning (BIST) 

1 

 Cued recall                     
1 

 Verbal analogies 4 

 Recognition memory                     
2 

 Reading comprehension 
(AFOQT) 

4 

 Paired associates       
1 

 Card rotation  2 

 Learning from 
lectures  

                    
2 

Crystalliz
ed/gener

al 
intelligen

ce 

General knowledge  1 

False memory Deese–Roediger–
McDermott (DRM) 

                    
2 

 WAIS-IV 1 

Visual search Visual search                     
1 

 Spot a word 1 

 Symbol search                     
1 

 Similarities (WASI)   1 

 Finding A’s                     
1                     

 Vocabulary (WASI)   1 

 Extended Range 
Vocabulary Test 
(ETS)   

1 Attention
/cognitiv
e control 

Garden path recovery 1 

Reading Nelson-Denny 
Comprehension 

1  Set shifting 2 

 Lexical Decision Test 1  Trail making (TMT) 1 
 Nelson-Denny 

Reading Rate 
1  Stroop 12 

Math  Mathematical aptitude 
(ETS) 

1  Task switching 5 

 Arithmetic aptitude 
test (ETS) 

1  Focus switching 1 

 Addition 1  Attentional blink 2 
 Math 2  Pair cancellation (WJ-

III) 
1 

Processing speed Letter and number 
comparison (pattern 
comparison) 

                    
4 

 Stop-signal 2 

 Simon                     
2 

 Go no go  1 
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*Fluid intelligence classification was based on Au et al. (2015), Table S3. 
Legend: WM = working memory; STM = short-term memory; LTM = long-term memory; 
COWAT = Controlled Oral Word Association Test; DAT = Differential Aptitude Test; 
WAIS = Wechsler Adult Intelligence Scale; WJ-III = Woodcock-Johnson III); ETS = 
Educational Testing Service Kit; RSPM = Raven’s Standard Progressive Matrices; RAPM 
= Raven’s Advanced Progressive Matrices; CFIT = Culture Fair Intelligence Test; LPS = 
Leistungsprüfsystem; PMA-R = Primary Mental Abilities Battery; TONI = Test of 
Nonverbal Intelligence; WASI = Wechsler Abbreviated Scales of Intelligence; BOMAT =  
Bochumer Matrizen test; AFOQT = Air Force Officer Qualifying Test; BIST = Berlin 
Intelligence Structure Test; CERAD = Consortium to Establish a Registry for Alzheimer's 
Disease; SRT = Simple Reaction Time; Ax-CPT = Ax- continuous performance task; EF 
= executive functions. 
 

A summary of all training features can be found in Table 1.1. Interestingly, only 8 

experiments relied on the same training method, whereas 48 experiments had unique 

training conditions (Figure 1.1). In addition, we discuss issues pertaining to the size of the 

transfer battery and the inconsistency in transfer tasks across studies, and how these factors 

can affect the findings and their interpretation. The novelty of this review is to highlight 

 Coding (WAIS)                     
2 

 Flanker 1 

 Visual matching (WJ- 
III) 

                    
1 

 Attention network 1 

 Colorado Perceptual 
Speed Test 

1  Motion interference 1 

 Shape/Digit 
Classification 

1                    AX-CPT 3 

 SRT 2  D2 1 
 Decision speed 1  Attentional control 1 
 Dot judgement                                   1  Visuomotor adaptation 1 

Decision making, 
problem-solving  

Monty Hall problem 1 Motor 
learning 

Control tower 1 

 Rapid decision 
making 

1 Multitask
ing 

Synwin 1 

 Delay discounting  2                      Atclab 1 
 Relative clause 

processing 
1 Divergen

t thinking 
Alternate Uses Task 
(AUT) 

1 
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the fact that different training protocols and transfer tasks might differentially affect 

training efficacy and transfer results.  

 

 
Figure 1. 1. Diversity of training and transfer procedures. Each circle contains 56 sectors, 
each one corresponding to an N-Back training group included in this review (see Table 
1.1). The 6 outer circles reflect training task features whereas the 4 inner circles reflect 
transfer task features. Starting from the outer circle, each sector is colored in terms of N-
Back type (1), Stimulus modality (2), Inter-stimulus interval (ISI) (3), Adaptivity 
(forgiving vs. non-forgiving) (4), Feedback (5), Intervention length (short < 10 sessions ≤ 
long) (6), WM (transfer) task type (7), WM (transfer) task domain (8) Fluid intelligence 
(transfer) task type (9), and Fluid intelligence (transfer) task domain (10). 
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Training Task Features 

We highlight six training task attributes (types of N-Back task and stimulus 

modality, task timing, adaptive threshold, feedback, and intervention length) that 

commonly vary across implementations of N-Back training studies. In addition to these, 

numerous other factors varied across studies within training tasks, such as the number of 

blocks for each training session, response types (e.g., requiring participants to respond to 

targets only or also to non-targets), and how feedback was provided (visual/auditory). 

Within participants, there are additional factors that might determine training outcome, 

such as N-Back levels achieved, used strategies, or motivation. Note that in many cases, 

details of the procedures that might be important are simply not reported (see Table S1.1, 

Supplemental Material). Another source of variation is the inclusion of training procedures 

that go beyond the N-Back task, thereby targeting additional cognitive processes. For 

example, Li et al. (2008) incorporated mental spatial shifting in the N-Back training 

procedure and Mohammed et al. (2017) used a 2D game version of the N-Back task that 

required navigational skills. In 4 studies, participants trained on other types of updating 

WM tasks in addition to the N-Back, which precludes understanding of the individual 

contributions of these training tasks to transfer (Maraver et al; 2016, Waris et al. 2015; 

Kühn et al., 2013; Loosli et al., 2015). 

N-Back task type – single vs. dual – A main area of variation is the use of single 

or dual N-Back training. Conducting multiple N-Back tasks simultaneously places 

different demands on attentional and WM resources as compared with a single N-Back. 
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For example, Jaeggi et al. (2003) showed that single and dual N-Back tasks differ at the 

behavioral level with longer reaction times and more errors on dual N-Back tasks compared 

to single N-Back. On the other hand, no differentiation between single and dual N-Back 

tasks was observed at the neural level: prefrontal activation increased with higher load 

irrespective of task type. This may explain why single N-Back training seems to be as 

effective as dual N-Back training (Jaeggi et al., 2008; 2010 b). In the current sample, 29 

out of the 56 experiments adopted single N-Back training (13 reporting transfer within 

WM, 10 reporting transfer beyond WM, and 6 reporting no transfer1) and 27 experiments 

employed dual N-Back training (8 reporting transfer within WM, 9 reporting transfer 

beyond WM, and 10 reporting no transfer2). While this may suggest that dual N-Back 

training is more likely to yield transfer within and beyond WM, as compared to single N-

Back which seems more likely to show transfer within WM, it should be noted that not all 

studies assessed both types of transfer. Within the single N-Back studies, 2 experiments 

tested untrained WM tasks, 10 experiments tested for far transfer (6 experiments focusing 

on fluid intelligence), and 17 experiments tested both. Within the dual N-Back studies, 1 

experiment tested untrained WM tasks, 9 tested for far transfer (4 experiments using fluid 

 
 
 
 

1,2 Note that only studies that assessed transfer are reported here. 
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intelligence), and 17 experiments tested both. Even though the single vs dual N-Back 

dichotomy is the most powered of available comparisons, the differences between study 

methodologies, as described below, largely preclude strong meta-analytic conclusions.  

Stimulus Modalities – While WM is often discussed as a domain-general process 

(Kane et al., 2004), there is substantial evidence that stimuli presented in different 

modalities (i.e. visual, spatial or auditory stimuli) are processed differently in WM. Owen, 

McMillan, Laird, and Bullmore (2005) showed changes in brain activation between 

different N-Back modalities, specifically for location and for non-verbal stimuli. Similarly, 

Crottaz-Herbette, Anagnoson, and Menon (2004) found differences in neural activation for 

auditory and non-spatial WM tasks. The authors used, in a randomized order, a visual and 

an auditory N-Back task. The stimuli were either single-digit numbers (0-9) presented 

visually at the center of the screen, or binaurally in case of the auditory version. The results 

showed bilateral suppression of the superior and middle temporal (auditory) cortex during 

visual (non-spatial) WM, and changes in the occipital (visual) cortex during auditory WM, 

suggesting that although similar prefrontal and parietal regions are involved in both 

auditory and visual WM, there are important modality differences in the way neural signals 

are generated and processed.  

For the current review, we define modalities used to categorize the N-Back stimuli 

as follows: 1) ‘spatial N-Back’ is a single N-Back task that requires the processing of 

spatial locations of visual stimuli; 2) ‘visual N-Back’ describes a single N-Back task that 

requires the processing of visual stimuli (objects, colors or letters) irrespective of their 
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spatial location; and 3) ‘audio N-Back’ describes a single N-Back in which stimuli are 

presented in the auditory domain (e.g. letters, numbers or other sounds). Dual N-Back 

stimulus modalities are categorized as combinations of the three type of modalities 

described above: 1) ‘audio-spatial N-Back’ involves concurrent processing of auditory 

stimuli and spatial locations of visual stimuli; 2) ‘audio-visual N-back’ requires 

simultaneous processing of auditory stimuli and visual stimuli irrespective of their spatial 

location; and 3) ‘visual-spatial N-Back’ requires the processing of both visual stimuli and 

the spatial locations of these stimuli. In addition, ‘visual/spatial gaming N-back’ refers to 

a gamified (dual) N-Back task that involves processing of different types of visual stimuli 

presented at different locations.  

In our sample, we find that training task modalities vary widely, with 26 using 

auditory stimuli (7 reporting transfer within WM, 11 reporting transfer beyond WM, and 8 

reporting no transfer), 13 using visual stimuli (non-spatial) (5 reporting transfer within 

WM, 6 reporting transfer beyond WM, and 2 reporting no transfer), and 17 using spatial 

stimuli (9 reporting transfer within WM, 2 reporting transfer beyond WM, and 6 reporting 

no transfer). Within those using auditory stimuli, 2 experiments employed a single audio 

N-Back, 22 used dual audio/spatial N-Back, and 2 used audio/visual N-Back for training. 

The variety of the auditory stimuli is further highlighted by some studies using letters or 

syllables for the audio/spatial sub-group, others using words or other type of sounds for the 

audio/visual sub-group. Overall, N-Back training tasks implement a variety of stimuli 

(shapes, objects, letters, numbers, etc.) in different modalities (visual, auditory, with or 
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without a spatial component) (see Figure 1.1), which can be problematic for cross-study 

comparisons of transfer effects.  

Task Timing – Another training feature rarely considered as a relevant factor 

impacting WM training is the timing between stimuli in the N-Back tasks. Inter-stimulus 

intervals (ISI) can have an important impact on the time available to process each stimulus 

and to engage in strategies such as rehearsal or grouping and comparison. The use of these 

strategies can modify performance levels, give rise to very different experiences during 

training, and thus likely impact learning outcomes (Laine, Fellman, Waris, & Nyman, 

2018). Strüber and Polich (2002) showed that during an oddball task, in which participants 

needed to press a button every time the visual target stimulus appeared, shorter ISIs were 

associated with smaller P300 amplitudes. They suggested that long ISIs enables a ‘recovery 

cycle’ that can reduce task difficulty. To date, ISI has not been considered a factor relevant 

to WM training. 

In the papers that we reviewed, we screened 56 experiments across single and dual N-Back 

training and found 45 experiments that reported long ISIs (between 1800 ms and 2500 ms; 

20 reporting transfer within WM, 13 reporting transfer beyond WM and 10 reporting no 

transfer), 9 that used short ISIs (between 500 ms and 1800 ms; 8 reporting transfer within 

WM, and 1 reporting transfer beyond WM), while 2 experiments did not report ISI 

information (and did not report any transfer either).  

Adaptive threshold – The extent to which training adapts to participants’ abilities 

is another factor that can have a substantial impact on learning and transfer. For example, 
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in the case of perceptual learning, transfer is greatly impacted by task difficulty with more 

difficult/precise tasks giving rise to more specificity of learning than found through training 

involving easier/less-precise stimulus judgements (Hung and Seitz, 2014; Ahissar and 

Hochstein, 1997). Most N-Back training studies utilize adaptive training by adjusting the 

level of task difficulty based on individual performance, and it has been shown that 

adapting the difficulty level of the task is engaging for the participant (Jaeggi, Buschkuehl, 

Shah, & Jonides, 2014). Moreover, Holmes, Gathercole, & Dunning (2009) showed that 

WM training gains were significantly greater for an adaptive training group compared to a 

non-adaptive training group, although others have failed to observe any effects of 

adaptivity on learning outcome (von Bastian, & Eschen, 2016).  

In the papers that we reviewed, we distinguished experiments based on the adaptive 

threshold used to pass to the next difficulty level: most experiments used a threshold of 

90% correct responses (non-forgiving), whereas others used a threshold of 65% or 80% 

(forgiving). Of 41 experiments, 12 adopted a threshold lower than 90% to achieve the next 

level (7 reporting transfer within WM, 1 reporting transfer beyond WM, and 4 reporting 

no transfer), while 33 adopted a threshold of 90% correct (16 reporting transfer within 

WM, 9 reporting transfer beyond WM, and 8 reporting no transfer). Finally, 3 experiments 

adapted task difficulty by changing the ISI length (not considered here).  

Feedback – Feedback plays an important role in the process of learning, 

particularly in complex cognitive tasks and in monitoring goal progress (West, Welch and 

Thorn, 2001). Feedback is usually delivered based on participants’ accuracy and/or 
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response speed and is typically designed to encourage participants to optimize their 

performance to achieve better learning and/or greater reward (Simen, Buck, Holmes, Hu, 

& Cohen, 2009). Feedback can indeed facilitate learning, as demonstrated by cognitive 

training and perceptual learning research (Abe et al., 2011; Seitz, Nanez, Holloway, 

Tsushima, & Watanabe, 2006).  

Out of the 56 experiments reviewed, 24 experiments employed some type of 

feedback (11 reporting transfer to untrained WM tasks, 5 reporting transfer beyond WM, 

and 8 reporting no transfer) while 32 experiments either did not provide feedback or did 

not explicitly report the use of feedback (16 reporting transfer within WM, 9 reporting 

transfer beyond WM, and 7 reporting no transfer). Of those experiments employing 

feedback, it was provided at different times: at the end of each block (N = 8), at the end of 

each session (N = 9), after each trial (N = 4), however, in most of the experiments, timing 

was not reported (N = 33). Thus, despite the critical role of feedback in motivation and 

learning (Burgers, Eden, van Engelenburg, and Buningh, 2015), the majority of studies 

don’t describe whether or what type of feedback was employed. 

Intervention length – There is evidence that longer training leads to more learning 

in terms of more pronounced changes in brain regions involved in WM function (Dahlin, 

Neely, Larsson, Bäckman, & Nyberg, 2008; Lövdén et al., 2010). Hempel et al. (2004) 

highlighted the role of visual spatial N-Back training length, showing specific brain 

activation increases with improved performance after 2 weeks of training, and conversely, 

activation decreases at the time of consolidation of performance gains after 4 weeks. These 
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results are consistent with the hypothesis that WM training duration affects training results 

(Jaeggi et al., 2008; Stepankova et al., 2014), although the appropriate amount of training 

for a given procedure for a given participant is not well established.  

In our sample, of the 56 experiments that measured both transfer to WM and beyond WM, 

46 used training equal or longer than 10 sessions (29 reporting transfer within WM, 11 

reporting transfer beyond WM, and 6 reporting no transfer), and 10 experiments used fewer 

than 10 sessions (5 reporting transfer within WM, 2 reporting transfer beyond WM, and 3 

reporting no transfer). 

Transfer Task Features 

In addition to the parameters of the training tasks, it is important to consider the 

details of the outcome measures. Across 56 experiments, 120 different transfer tasks were 

employed (see Table 1.2), which speaks to the issue of variability in transfer tasks. The 

number of outcome measures per study ranged from 1 to as many as 20. Using large test 

batteries can give rise to participant fatigue and decreased participant engagement 

(Ackerman & Kanfer, 2009), and it can also lead to issues with multiple comparison. In 

addition, unexpected cognitive benefits may occur as a function of assessing multiple tasks 

at once, wherein the transfer battery could act as a form of training (Salthouse and Tucker-

Drob, 2008; see also Green et al., 2019; Morrison and Chein, 2011). However, using only 

one or a few outcome measures can limit opportunity to estimate latent factors. Most of the 

studies investigated transfer effects using a large variety of tests designed to measure more 

than one cognitive ability, within and beyond WM. In particular, across all the experiments, 
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9 focused on just one cognitive function (or task type), 10 experiments focused on two, 9 

on three, and 28 on four or more cognitive functions. As follows, we give an overview of 

how these outcome measures varied across experiments: 

Transfer within the domain of WM was assessed with 30 different tasks, including 

various simple span measures (Corsi Block, Digit Span, Grid Span, etc.) and complex span 

tasks (Operation Span, Symmetry Span, etc.), updating tasks (N-Back, Running Span, 

Number Updating, etc.), and other types of WM tasks such as delayed match to sample 

tasks and sequencing tasks. Fourteen experiments did not assess WM according to our 

classification (denoted as ‘N/A’ in Figure 1.1), 23 experiments reported using WM 

measures that fall under one of the four categories mentioned above, and 19 experiments 

reported using WM tasks that include at least two of these categories (denoted as ‘multiple’ 

in Figure 1.1). Out of the experiments that used only one WM task type, 5 experiments 

used simple span tasks, another 4 used complex span tasks, 13 used updating tasks, and 1 

experiment used a WM task classified as ‘other’ (for details see ‘WM task type’ in Figure 

1.1). Out of the 42 experiments that measured WM, 15 experiments reported using only 

verbal/numerical WM tasks and 3 reported using only visual/spatial WM tasks; however, 

most used WM tasks that covered both verbal/numerical and visual/spatial domains (N = 

24; see ‘WM task domain’ in Figure 1.1).  

In sum, even though they all measure some aspects of WM, these 30 different tasks 

are likely to measure a number of cognitive skills, a fact often overlooked by extant meta-

analyses. While some distinctions have been made in terms of task type (untrained N-Back 
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vs. WM tasks in Soveri et al., 2017) and task domain (verbal vs. visuospatial WM in Melby-

Lervåg & Hulme, 2013; Melby-Lervåg, Redick, & Hulme, 2016; Schwaighofer, Fischer, 

& Büchner, 2015), such categorization does not capture the full range of cognitive demands 

imposed by different WM tasks and may even mask improvements in a subgroup of tasks. 

Performance on N-Back tasks only correlates weakly with performance on complex span 

tasks (Redick and Lindsey, 2013) therefore it makes sense to consider updating and span 

tasks separately. Furthermore, even if two research groups use the same task with similar 

types of stimuli, the tasks may still differ in the choice of timing parameters, instructions, 

feedback etc., as is often the case with custom-built tasks.  

 Transfer beyond WM, in particular to fluid intelligence, was assessed with 27 

different tasks. Forty-seven out of 56 experiments reported assessing fluid intelligence. 

These tasks were categorized as:  matrix reasoning tests (including any type of Raven’s 

matrices or Bochum Matrices Test Advanced - BOMAT), spatial visualization tests (Paper 

folding, Mental rotation, Card Rotation, Surface Development Test, Form Board, Block 

Design, Spatial Relations), deduction tests (Nonsense Syllogisms, Inferences), induction 

tests (Number Series, Inductive Reasoning PMA-R, Letter Sets, Abstract Reasoning DAT, 

Verbal Analogies) and other tests (Reading Comprehension, Figure Weights). 

Approximately half of the experiments reported the use of batteries that contain multiple 

tests (e.g., WASI) or the use of multiple tests that include at least 2 of the categories 

described above (e.g. matrix reasoning and deduction), which were classified as Multiple 

(N = 24). The remaining 23 experiments included matrix reasoning tests (22 experiments) 
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and spatial visualization tests (1 experiment) (see ‘Fluid intelligence task type’ in Figure 

1.1, and Table 1.2). Moreover, in terms of ‘task domain’, fluid intelligence tests were 

categorized as: figural, verbal, or numerical (Beauducel, Brocke, & Liepmann, 2001). Most 

experiments (N = 38) reported using tests with figural content, and even though no 

experiments used only verbal or only numerical tests, 9 experiments reported using a 

combination of figural/verbal or figural/numerical tests. 

While matrix reasoning was the most common type of test used to assess fluid intelligence, 

which allows for a certain level of comparison across experiments, using just one type of 

test is not sufficient to estimate fluid intelligence at the latent level. When combined with 

other fluid intelligence tasks, which vary substantially in terms of the cognitive processes 

that are required to solve the task (i.e. visuospatial transformation, induction, deduction, 

attention, working memory), and the degree to which these overlap with the cognitive 

processes targeted during training, estimating training-related changes in the construct of 

fluid intelligence across studies becomes challenging.  

In addition to the two cognitive domains described above, studies also used other 

transfer measures representing a wide range of cognitive functions (not reported in Figure 

1.1; for further details see Table 1.2). Specifically, 5 different tasks were used to assess 

long-term memory (LTM), 1 task to assess false memory, 4 different tasks to assess visual 

search, 5 to assess vocabulary, 6 to assess crystallized/ general intelligence,  3 different 

tasks for reading, 4 for math, 9 different tasks for processing speed, 4 for decision 
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making/problem solving, 17 different tasks for attention/cognitive control, 1 for motor 

learning, and 3 for multitasking (for further details see Table 1.2).  

Overall, this diversity of transfer tasks measured across studies raises serious issues of the 

extent to which the same underlying cognitive outcomes are assessed across studies and 

thus, limits the interpretation of the extant literature.  

Test Reliability. An important factor that might impact transfer is task reliability, 

especially test-retest reliability (Jaeggi et al., 2014). However, for most of the 120 of tasks 

used, no reliability measures are reported, and it is unclear whether standard forms or 

custom forms of the tasks are employed, making it difficult to find information on the 

reliability in the extant literature. It is not uncommon for WM measures to show weak or 

inconsistent test-retest reliability (e.g. Jaeggi, Buschkuehl, Perrig, and Meier, 2010), which 

could mask transfer effects: the lower the reliability, the lower the chances for transfer 

(Jaeggi et al., 2014). Comparing transfer effects on tasks that differ substantially in their 

reliability may be misleading if this factor is not taken into account.  Unfortunately, only a 

few fluid intelligence tasks have reliable parallel test versions and the commonly used 

method of splitting tests in half can reduce the reliability and validity of the tests (Jaeggi et 

al., 2014). Recent efforts to develop multiple parallel reasoning tests may mitigate these 

types of problems in future intervention studies (Pahor et al., 2018; Kyllonen et al., 2018). 

Overall, the diversity of transfer tests and batteries used across studies poses a challenge 

as these outcome measures vary in their degree of similarity with the trained task, and 
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furthermore, their reliability and their validity in measuring the factor of interest are often 

unclear. 

Control group 

It has also been argued that the type of control group plays a significant role in 

whether transfer is observed. The impact of control groups related to the degree of 

similarity between the N-Back training and the control interventions, and/or to the 

differential participant engagement and motivation, and/or participant expectations (Green, 

et al., 2019). For example, Tsai et al. (2018) suggested that placebo effects might represent 

an additional factor that contributes to improvements achieved during cognitive training 

due to alterations in participant expectations. However, literature on WM training is mixed 

both in regard to what control conditions are employed, some using active controls and 

others passive controls, and also the extent to which the control type seems to alter the 

magnitude of observed transfer (Au et al., 2015). A simple reason for this is that the features 

and the effects of the control condition are likely to be more nuanced than what can be 

captured by simple distinction into active or passive controls. Participant recruitment and 

population, as well as other factors like engagement and self-perceived improvements 

might considerably contribute to the extent to which expectations may impact training 

outcomes. 

In our sample, 51 experiments included at least one control group: 23 experiments 

included only an active control group, 15 experiments included only a passive control 

group, 13 experiments included both. Among the 36 experiments that included an active 
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control group, 7 experiments used vocabulary or knowledge-based training, 8 used 

commercial games such as Tetris, Angry Birds, and Bejeweled, 10 used a variant of N-

Back training (typically non-adaptive and/or low-difficulty), 8 non-WM training (e.g. 

processing speed training), and 3 experiments, all belonging to one study, employed 

alternative WM training (spatial STM). These active control conditions differ in their 

cognitive and perceptual demands and similarity to the experimental condition, as well as 

most likely in the induced expectations about performance improvement due to training, 

again making it difficult to compare results across studies. 

Discussion and future directions 

Although reports on N-Back training are steadily increasing, the mechanisms of transfer 

and the factors that might impact them are still unclear. We suggest that this lack of clarity 

is due to the variety of training procedures implemented and the selection of transfer 

measures gauging training outcomes. Despite numerous meta-analyses aimed to 

understand the effectiveness of N-Back training (Au et al., 2015; Soveri, Karlsson, Waris, 

Grönholm-Nyman, & Laine, 2017; Melby-Lervåg & Hulme, 2013; Melby-Lervåg, Redick, 

& Hulme, 2016; Schwaighofer, Fischer, & Büchner, 2015), there is still disagreement about 

the extent of transfer after N-Back training. Here we show that N-Back training studies, 

while seemingly similar, employ a wide variety of training features, and in addition, they 

assess transfer effects with a large and diverse selection of outcome measures. To highlight 

this variety, we characterized some of the factors that might be important for learning, such 

as type of N-Back, stimulus modalities, task timing, adaptive threshold, feedback and 
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intervention length (see Table 1.1). Given the small sample size of certain training task 

features and the extensive variability of methods in the literature, we can only speculate 

whether these factors are meaningful mediators and moderators. The sheer number of 

transfer tasks used to assess working memory and other cognitive functions further 

complicates the matter. At this point, in order to achieve a better understanding of the 

factors that might interfere with transfer outcomes, we suggest that further training studies 

and meta-analyses should evaluate more carefully the choice of training features (type of 

stimuli, ISI, intervention length, etc.), transfer measures (for WM, fluid intelligence, LTM, 

etc.), the type of control groups, and characteristics within the individuals (educational 

background, strategies, expectation, etc.) before making inferences. Furthermore, training 

features, transfer tasks, and individual differences need to be systematically addressed, as 

the large variability represents a severe issue that limits quantitative conclusions.  

We suggest that there are several factors that are leading to this diversity of 

methods, which we argue limit progress in the field. First, there is the conceptual 

understanding of WM or fluid intelligence as domain-general processes. This view 

presumably leads researchers to overlook the importance of domain and task specificity, 

assuming that it does not matter how a specific exercise or test on WM is given (type, 

modality, etc.), as all approaches would impact the same cognitive process. Although there 

is still an ongoing debate about the relationship between specificity of cognitive functions 

and domain-general processes, emphasis should be given to the fact that all the tests used 

to investigate these constructs are only partially correlated with the underlying construct. 
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Thus, different training approaches, even if related to the underlying construct, may lead 

to distinct transfer outcomes due to task specific learning. The second factor is related to 

the relative nascence of the field. With any new discovery, it makes sense to conduct 

studies to address the validity of the results and thus using a variety of methods can be vital 

to explore the space of possibilities. However, this variance of methods produces the 

inferential problems in making comparisons across studies. 

As a first step to address these issues, researchers should both align training and 

outcome measures across studies and also conduct large-scale comparative studies. As a 

field, we need to reach some consensus about the training features that may be most 

conducive to learning, and thus, worth further study. Moreover, a core set of pre-post 

measures should be defined both within the WM domain and beyond the WM domain. 

While studies should necessarily differ in attributes, some uniformity across studies with 

common tests that have known reliability and stability will allow for comparison with other 

studies, and researches will still have the option to expand the tests battery based on their 

particular study goals. This would give more power to meta-analyses to address the 

question whether WM training is worthwhile (and more importantly, for whom it might 

work and under which circumstances). We recognize that unifying training and transfer 

task features may be difficult to achieve in practice and so another approach is to conduct 

larger scale comparative studies with sample sizes sufficient to directly examine unique 

combinations of training and transfer. Addressing these issues will elevate our 
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understanding about what approaches do or do not lead to improvements in untrained tasks, 

as well as the specific domains that are most susceptible to the effects of WM training.  

Another important step is bridging the gap between lab tests of cognitive functions 

and tests that reflect the use of cognitive functions in daily life. To enter the next stage of 

maturity in the field, new approaches that facilitate comparisons of different training 

approaches and outcomes are needed, to address issues of robustness, reproducibility and 

broader generality of findings outside of a limited set of laboratory conditions. To 

accomplish this, we need to become aware of which WM processes are differently required 

in daily life activities, and which training condition would be hypothesized to transfer to 

these conditions. To whatever extent existing tests of cognitive functions predict cognitive 

functions in daily life, this relationship may not hold after training on task structures that 

specifically resemble the cognitive tests. For example, if performance on two tasks is 

correlated, but they do not rely upon the exact same mechanisms, then a change in one may 

not predict a change in the other.  

In conclusion, we suggest that it is time for WM training research to retool. 

Methods employed to date have been valuable to identify a broad set of issues that need to 

be considered in order to understand the true benefits and limitations of WM training. 

However, to move the field forward, it will be necessary to conduct large-scale studies that 

are targeted to uncover how particular training features and transfer measures may lead to 

differential learning and generalization of that learning. Furthermore, individual 

differences that may moderate these training effects need to be considered, together with a 
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standard set of reliable outcome measures to better understand the profiles of transfer, and 

how these are reflected in daily-life activities, going beyond the simple question of whether 

or not near or far transfer occurs.  
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Method 

To identify candidate papers, we searched Google Scholar, Google, and PubMed for 

relevant research reports in the last decade, between 2008 and 2018. The search terms used 

were “N-Back training” and “updating training”/ “N-Back training game” and “updating 

training game”. In Google, citation marks were used to reduce noise in the research. The 

first run resulted in 12.100 hits in Google Scholar for “N-Back training”, 675.000 for 

“updating training”, 2.730 for “N-Back training game” and 127.000 for “updating training 
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game”. We found 219 hits in PubMed for “N-Back training”, 1501 for “updating training”, 

6 hits for “N-Back training game” and 9 for “updating training game”. In Google the hits 

were 46.300 for “N-Back training”, 71.400 for “updating training”, 2.170 for “N-Back 

training game” and no results found for “updating training game”. We screened all hits in 

the databases (Google Scholar, Pubmed and Google) thereby limiting ourselves to the first 

150 ranked ones. For a study to be included at this stage, it needed to meet the following 

criteria: 

1. Cognitive training that included game or no-game version of single or dual N-Back 

task 

2. Studies with at least one training group 

3. Sample of healthy adults (mean age range 19-69 years old) 

4. N-Back training equal to or longer than 3 sessions 

5. Focused on transfer to WM and/or other cognitive domains  

Search hits were screened in the mentioned ranking, and papers already evaluated in 

previous databases were not considered in the following screening. Our inclusion criteria 

decreased the number of the studies to 45 on Google Scholar, 6 on Pubmed and 0 on Google 

for “N-Back training”, “updating training’, ‘N-Back training game’ and “updating training 

game”. In total, our research resulted in 51 studies (excluding the number of overlapping 

studies) (Figure 1.2). Of these 51 studies, 4 studies included more than one N-Back training 

group, which we considered separately, giving rise to a total of 56 experiments.  



 
 
 
 58 

 
Figure 1. 2. Search for literature and screening process. 
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Supplementary Material 

Table S1. 1. Training and individual features that did not show substantial variability 
across studies (Age) or there was not enough information available to quantify the data 
(N-Back Strategy, Years of Formal Education, Motivation and Expectancy, Blinding, and 
Payment). 
 

Age Due to our selection criteria, all studies included healthy adults. 
45 studies focused on middle adulthood (range: 18.4-37.7 years), 
with the exception of 7 studies that included older adults (range: 
65.7-68.9 years). 

N-Back Strategy 6 studies assessed participants’ strategies during N-Back training 
in order to assess their role in transfer results. 3 studies reported 
that a task-specific strategy instruction yielded better results than 
self-reported strategies in showing transfer to other cognitive 
tasks (Redick et al., 2013; Thompson et al., 2013; Laine et al., 
2018), whereas 2 studies reported that also certain self-reported 
strategies may mediate learning and transfer (Burki et al., 2014; 
Minear et al., 2016), and 1 study reported that strategies did not 
affect transfer (Marcek et al., 2015). 

Years of Formal Education 15 studies reported years of formal education (range = 13.8-18.2 
years).  

Motivation and Expectancy 19 studies investigated the role of motivation and expectancy in 
training and transfer, but these factors were not considered due to 
the variability of methods used to evaluate these effects (such as 
self-report questionnaires, monetary compensation, or feedback).  

Blinding 3 were single-blind, 4 were double blind, and 45 did not provide 
information about blinding. 

Payment 26 studies provided information about compensation of research 
subjects, of which 15 offered low payment (equal or less than 
150$).  
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Appendix A 

We calculated the effect size by using Hedges'g for two post cognitive tests. Of all 

the papers included in this study we considered N-Back for near-transfer effects and Raven 

Progressive Matrix for far-transfer effects (when values for this task was missing in the 

paper, we used the value of another fluid intelligence test). We considered mean, standard 

deviation and sample size for each paper and for each group (training and control groups). 

Next, we calculated Hedges'g for post-tests of WM training and control groups. The 

assumption was that no group differences existed at pre-test. To check that there were not 

significant differences, we run a t-test for pre-tests between training and control groups. 

Then, we ran a t-test by using Hedges'g between training and control groups in order to see 

if there were any significant differences in Effect Size. Finally, we compared our studies 

based on our N-Back training features by using a t-test. Regardless, due to small sample 

size, we were unable to make any strong conclusions regarding the N-back training 

features. 
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Table A1. 1. Hedge’s g for post training – post control group 
 

N-Back features Study Group M SD N 
Hedges’ 

g  
 

Group M SD N 

SINGLE Maraver_2016            

AUDIO/SPATIAL    
post-
test     post-

test   

FEEDBACK  
N-Back 
training 
group      

Passive 
control 
group    

SHORT ISI near 
Spatial N-
Back  2.43 0.75 32 3.93 

Spatial N-
Back  0.07 0.30 24 

SHORT 
TRAINING 
SESSIONS far RAPM 0.47 0.17 32 0.29 RAPM 0.42 0.17 24 
SINGLE Minear_2016            

SPATIAL    
post-
test      post-

test   

NO FEEDBACK  
Spatial N-
Back 
training      

Non-
adaptive N-
Back 
training    

LONG ISI near 
verbal N-
Back 29.3 16.2 31 0.10 

verbal N-
Back 27.7 14.2 27 

LONG TRAINING 
SESSIONS  object N-

Back 15.7 18.9 31 0.21 
object N-
Back 19.3 15.4 27 

NONFORGIVING far Raven 24.1 4.5 31 0.02 Raven 24 5.1 27 
  Cattell 31.9 3.6 31 0.24 Cattell 30.9 4.6 27 
GAME/SINGLE Mohamed_2017            

VISUAL/SPATIAL    
post-
test      post-

test   

FEEDBACK  

non-
gamified N-
Back 
training      

gamified N-
Back 
training    

LONG TRAINING 
SESSIONS near 2-Back 0.84 0.13 46 0.15 2-Back 0.82 0.13 67 
FORGIVING far BOMAT 14.00  3.07 47 0.01 BOMAT 13.97 3.43 67 
  DAT 12.81 3.29 47 0.03 DAT 12.91 3.15 67 
  ETS form 

board 73.60 24.58 47 0.04 
ETS form 
board 72.56 22.07 67 

SINGLE Loosli_2015            

VISUAL    
post-
test      

post-
test   

NO FEEDBACK  

High 
interference 
N-Back 
training      

Low 
interference 
N-Back 
training    

LONG ISI near N-Back 0.16 0.17 14 0.22 N-Back 0.20 0.19 11 
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N-Back features Study Group M SD N 
Hedges’ 

g  
 

Group M SD N 

SINGLE Preece_2012            

SPATIAL    
post-
test      post-

test   

FEEDBACK  N-Back 
training      

Control 
group    

LONG ISI near N-Back 5.45 1.23 29   N-Back - - 29 
LONG TRAINING 
SESSIONS far 

Figure 
Weights 20.45 4.43 27 0.03 

Figure 
Weights 20.33 3.68 27 

DUAL Redick_2013            

AUDIO/SPATIAL    
post-
test      post-

test   

NO FEEDBACK  N-Back 
training      

Passive 
control 
group    

LONG ISI near -      -    
LONG TRAINING 
SESSIONS far RAPM 6.25 3.08 24 0.08 RAPM 6 3 20 
NONFORGIVING  RASPM 16.09 2.61 24 0.30 RASPM 16.85 2.35 20 
  Cattel 11.38 2.45 24 0.03 Cattel 11.45 2.65 20 
DUAL Rudebeck_2012            

VISUAL/SPATIAL    
post-
test      post-

test   

NO FEEDBACK  
HG N-
Back 
training      

Passive 
control 
group    

LONG ISI near N-Back 3.49 0.83 14 3.05 N-Back 1.69 0.43 28 
LONG TRAINING 
SESSIONS far BOMAT 9.93 2.13 14 0.91 BOMAT 7.75 2.53 28 
DUAL Salminen_2012            

AUDIO/SPATIAL    
post-
test      post-

test   

FEEDBACK  N-Back 
training      

Control 
group    

LONG ISI near N-Back  4.9 1.5 20 2.22 N-Back  2.3 0.5 16 
LONG TRAINING 
SESSIONS far RAPM 13.7 2.2 20 0.85 RAPM 10.9 4.3 16 
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N-Back features Study Group M SD N 
Hedges

’ g  
 

Group M SD N 

DUAL Salminen_2015            
AUDIO/SPATIA
L    

post-
test      

post-
test   

FEEDBACK  
N-Back 
training      

Control 
group    

LONG ISI near N-Back  2.4 0.7 25 1.03 N-Back  1.8 0.4 21 
SINGLE Shahar_2015            
VISUO/SPATIA
L    

post-
test  

Sampl
e size    

post-
test  

Sampl
e size 

FEEDBACK  
N-Back 
training      

Control 
group    

SHORT ISI near -      -    
LONG 
TRAINING 
SESSIONS far 

Fluid 
intelligenc
e 0.72 

0.2
0 9 0.31 

Fluid 
intelligenc
e 0.67 0.12 10 

DUAL Smith_2013            
AUDIO/SPATIA
L    

post-
test      

post-
test   

LONG ISI  
N-Back 
training      

Control 
group    

LONG 
TRAINING 
SESSIONS near -      -    

 far RPM 11.5 
2.9
9 10 0.16 RPM 11.9 1.58 9 

DUAL Soveri_2017            
AUDIO/SPATIA
L    

post-
test      

post-
test  

Sampl
e size 

NO FEEDBACK  
N-Back 
training      

Active 
control 
group    

LONG ISI near 1-Back 
96.0
4 

4.3
9 25 0.11 1-Back 

95.6
1 3.39 28 

LONG 
TRAINING 
SESSIONS  2-Back 

86.7
1 

9.0
5 25 0.60 2-Back 

80.1
1 

12.5
7 28 

DUAL 
Stepankova_20
13            

VISUAL    
post-
test      

post-
test   

FEEDBACK  

N-Back 
training 
(10 
sessions)      

control 
group    

SHORT ISI near N-Back 3.38 
0.9
2 20 1.35 N-Back 2.43 0.47 25 

LONG 
TRAINING 
SESSIONS far RPM 

20.2
5 

3.7
7 20 0.71 RPM 

17.0
4 5.02 25 
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N-Back features Study Group M SD N 
Hedges’ 

g  
 

Group M SD N 

DUAL Stephenson_2013            

AUDIO/SPATIAL    
post-
test      

post-
test   

NO FEEDBACK  
N-Back 
training      

Control 
group    

LONG ISI near N-Back 0.48 0.98 28 0.11 N-Back 0.38 0.88 26 
LONG TRAINING 
SESSIONS far Raven 17.54 4.04 28 0.91 Raven 14.15 3.32 26 
NONFORGIVING  Cattell 28.75 5.05 28 0.52 Cattell 26.26 4.59 26 
  WASI 22.04 2.33 28 0.41 WASI 21.12 2.14 26 
  BETA 22.11 2.01 28 1.20 BETA 19.42 2.47 26 
DUAL Thompson_2013            

AUDIO/SPATIAL    
post-
test     post-test   

 

NO FEEDBACK  
N-Back 
training      

Control 
group    

LONG ISI near N-Back 2.92 0.67 20   N-Back   19 
LONG TRAINING 
SESSIONS far RAPM 13.2 0.67 20 0.77 RAPM 12.7 0.62 19 

NONFORGIVING  
Matrix 
reasoning 13.4 0.6 20 0.56 

Matrix 
reasoning 13.7 0.45 19 

SINGLE Urbanek_2016            

SPATIAL    
post-
test      

post-
test   

NO FEEDBACK  
N-Back 
training      

Active 
control 
group    

LONG ISI near N-Back   37   N-Back   34 
SHORT TRAINING 
SESSIONS far 

RAPM (z-
scores) 0.10 0.94 37 0.17 RAPM 

(-) 
0.27 1.07 34 

FORGIVING  BOMAT 0.08 1.17 37 0.04 BOMAT 0.04 1.11 34 
SINGLE Vartanian_2013            

VISUAL    
post-
test      

post-
test   

NO FEEDBACK  
N-Back 
training      

N-Back 
training    

LONG ISI near N-Back   17   N-Back   17 
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N-Back features Study Group M SD N 
Hedges’ 

g  
 

Group M SD N 

DUAL Waris_2015            

AUDIO/SPATIAL    
post-
test      

post-
test   

NO FEEDBACK  
N-Back 
training      

Active 
control 
group    

LONG ISI near 1-Back 98.5 1.3 15 0.26 1-Back 98.1 1.7 16 
LONG TRAINING 
SESSIONS  3-Back 96.2 3.7 15 0.78 3-Back 92.2 6.2 16 
NONFORGIVING far RAPM 16.4 2.8 15 0.17 RAPM 15.9 3 16 
SINGLE Zhao_2017            

SPATIAL    
post-
test      

post-
test   

FEEDBACK  
N-Back 
training      

N-Back 
training    

LONG ISI near 2-Back 4.30 1.87 26 0.18 2-Back 3.98 1.76 26 
LONG TRAINING 
SESSIONS far Raven 0.73 0.13 26 0.48 Raven 0.64 0.23 26 
NONFORGIVING             
DUAL Anguera_2012            

AUDIO/SPATIAL    
post-
test      

post-
test   

FEEDBACK  
N-Back 
training      

Active 
control 
group    

LONG ISI near 3-Back 0.74 0.31 22 0.35 3-Back 0.60 0.47 22 
LONG TRAINING 
SESSIONS  4-Back 0.63 0.31 22 0.52 4-Back 0.47 0.30 22 
NONFORGIVING far -      -    
SINGLE Beavon_2012            

SPATIAL    
post-
test      

post-
test   

LONG ISI  
N-Back 
training      

Active 
control 
group    

LONG TRAINING 
SESSIONS near N-Back 4.81 1.39 26   -    

NONFORGIVING far 
WJ-III 
Test 7 18.15 4.29 26 0.07 

WJ-III Test 
7 18.43 4 21 

  
WJ-III 
Test 9 32.42 5.76 26 0.05 

WJ-III Test 
9 32.71 5.81 21 
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N-Back features Study Group M SD N 
Hedges’ 

g  
 

Group M SD N 

SINGLE Burki_2014            

VISUAL    
post-
test      

post-
test   

LONG ISI  
N-Back 
training      

Control 
group    

LONG TRAINING 
SESSIONS near verbal 2-Back 0.96 0.05 22 0.60 

verbal 2-
Back 0.92 0.08 21 

  
spatial 2-
Back 0.93 0.08 22 0.11 

spatial 2-
Back 0.92 0.10 21 

 far Raven 37.41 6.43 22 0.08 Raven 36.86 6.55 21 
DUAL Chooi_2012            

AUDIO/SPATIAL    
post-
test  S    

post-
test   

LONG ISI  

N-Back 
training (8 
sessions)      

Active 
control 
group    

LONG TRAINING 
SESSIONS near N-Back      N-Back    
NONFORGIVING far RAPM 12.7 2 9 0.24 RAPM 13.3 1.91 15 
DUAL Colom_2013            

AUDIO/SPATIAL    
post-
test      

post-
test   

FEEDBACK  
N-Back 
training      

Control 
group    

LONG ISI near N-Back      N-Back    
LONG TRAINING 
SESSIONS far RAPM 11.79 2.27 28 0.41 RAPM 10.64 3.25 28 
  DAT-AR 13.64 3.30 28 0.08 DAT-AR 13.36 4 28 
  PMA-R 11.82 2.21 28 0.16 PMA-R 11.46 2.32 28 
SINGLE Heinzel_2014            

VISUAL    
post-
test  S    

post-
test   

NO FEEDBACK  
N-Back 
training      

Control 
group    

SHORT ISI near N-Back 11.93 3.20 15 4.09 N-Back 2.27 0.96 15 
LONG TRAINING 
SESSIONS far RSPM 24.53 2.90 15 0.55 RSPM 23.07 2.34 15 
SINGLE Heinzel_2016            

VISUAL    
post-
test      

post-
test   

NO FEEDBACK  
N-Back 
training      

Control 
group    

SHORT ISI near 1,2-Back 88.4 1.6 15 3.66 N-Back 78.8 3.4 14 
LONG TRAINING 
SESSIONS far RSPM 17.73 1.20 15 1.17 RSPM 16.43 1 14 
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N-Back features Study Group M SD N 
Hedges

’ g  
 

Group M SD N 

SINGLE 
Heinzel_2017 
(older adults)            

VISUAL    
post-
test      

post-
test   

NO FEEDBACK  
N-Back 
training      

N-Back 
training    

SHORT ISI near 

single 
visual 2-
Back task 0.78 0.17 18 0.15 

single 
visual 2-
Back task 0.75 0.23 

1
6 

LONG TRAINING 
SESSIONS  

single 
auditory 2-
Back task 0.85 0.17 18 0.00 

single 
auditory 2-
Back task 0.85 0.19 

1
6 

FORGIVING  
dual 2-
Back task 0.36 0.27 18 0.14 

dual 2-
Back task 0.32 0.31 

1
6 

  
dual 2-
Back task 0.40 0.24 18 0.25 

dual 2-
Back task 0.34 0.23 

1
6 

SINGLE 
Hogrefe_201
7            

SPATIAL    
post-
test      

post-
test   

FEEDBACK  
N-Back 
training      

Control 
group    

SHORT ISI near 

N-Back 
consistenc
y 5.75 1.58 32 1.08 

N-Back 
consistenc
y 4.08 1.49 

2
6 

LONG TRAINING 
SESSIONS  

N-Back 
auditory 5.17 1.52 32 0.83 

N-Back 
auditory 4.11 0.90 

2
6 

NONFORGIVING far 

Fluid 
intelligenc
e 

10.6
3 2.67 32 0.12 

Fluid 
intelligenc
e 

10.9
6 2.63 

2
6 

DUAL Jaeggi_2010            

AUDIO/SPATIAL    
post-
test      

post-
test   

FEEDBACK  

Single N-
Back 
training          

LONG ISI near N-Back 0.64 0.18 20 1.30 N-Back 0.37 0.22 
4
1 

LONG TRAINING 
SESSIONS far RAPM 

12.8
1 2.27 21 0.44 RAPM 

11.8
1 2.27 

4
3 

NONFORGIVING  BOMAT 
13.6
7 3.17 21 0.80 BOMAT 

11.4
4 2.58 

4
3 

SINGLE Jaeggi_2014            

    
post-
test  

Sampl
e size    

post-
test   

AUDIO(SPATIAL
)  

Single N-
Back 
training      

Active 
control 
group    

NO FEEDBACK near N-Back      N-Back    

LONG ISI far BOMAT 
19.2
1 2.89 14 0.59 BOMAT 

17.1
3 3.82 

2
3 

LONG TRAINING 
SESSIONS  CFT 

20.2
9 2.43 14 0.24 CFT 

19.5
7 3.26 

2
3 

NONFORGIVING  DST 
75.3
6 

11.3
2 14 0.31 DST 

71.8
3 

11.5
1 

2
3 
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N-Back features Study Group M SD N 
Hedges’ 

g  
 

Group M SD N 

DUAL Katz_2018            

AUDIO/SPATIAL    
post-
test      

post-
test   

NO FEEDBACK  
N-Back 
training      

Active 
control 
group    

LONG ISI near N-Back      N-Back    
LONG TRAINING 
SESSIONS far BOMAT 16.58 3.52 36 0.29 BOMAT 17.63 3.78 27 
NONFORGIVING  CFT 19.31 2.96 36 0.11 CFT 19.63 3.12 27 
DUAL Kundu_2013            

VISUAL/SPATIAL    
post-
test      

post-
test   

FEEDBACK  
N-Back 
training      

Control 
group    

LONG ISI near N-Back      N-Back    
LONG TRAINING 
SESSIONS far RAPM 31 1.73 15 0.20 RAPM 30.33 4.51 15 
SINGLE Kuper_2016            

VISUAL    
post-
test      

post-
test   

NO FEEDBACK  

Single N-
Back 
training      

Control 
group    

SHORT ISI near 3-Back 20.8 2.6 18 1.03 3-Back 17.2 4.2 18 
SHORT 
TRAINING 
SESSIONS far 

Fluid 
intelligene 23.6 6.1 18 0.43 

Fluid 
intelligene 20.7 7.3 18 

DUAL 
Lawlor-
Savage_2016            

AUDIO/SPATIAL    
post-
test      

post-
test   

FEEDBACK  
N-Back 
training      

Active 
control 
group    

LONG ISI near 
N-Back 
(trained) 3.29 0.65 27   

N-Back 
(trained)   

 

LONG TRAINING 
SESSIONS far RAPM 11.48 2.98 27 0.17 RAPM 11.02 2.34 29 
FORGIVING  Cattell 29.04 4.82 27 0.19 Cattell 28.13 4.57 29 
DUAL Lilienthal_2012            

AUDIO/SPATIAL    
post-
test      

post-
test   

NO FEEDBACK  
N-Back 
training      

Control 
group    

LONG ISI near N-Back 3.56 1.43 13 1.09 N-Back 2.56 0.51 26 
DUAL Katz_2018            

AUDIO/SPATIAL    
post-
test      

post-
test   
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Table A1. 2. Comparison between WM training and control groups 

Analysis near/far tests p (t-test values) N (number of studies) 
PRE-TESTS 
DIFFERENCES (MEAN) 
BETWEEN TRAINING 
AND CONTROL GROUPS 

for N-Back 0.9844 N=29 

 
for fluid 
intelligence 0.7026 N=29 

HEDGES'G BETWEEN 
TRAINING AND 
CONTROL GROUPS 

for N-Back 0.0013 N=29 

 
for fluid 
intelligence 0.5280 N=29 

 
 
Table A1. 3. N-back training task features for near/far transfer tests 

N-Back training features near/far tests p (t-test values) N (number of studies) 
Single vs dual for N-Back p=0.7552 N=12 
 for fluid intelligence p=0.28082 N=14 
audio vs visual (modality) for N-Back p=0.9126 N=10 
 for fluid intelligence p=0.9734 N=7 
spatial vs visual (modality) for N-Back p=0.0762 N=6 
 for fluid intelligence p=0.1061 N=6 
audio vs spatial (modality) for N-Back p=0.2653 N=6 
 for fluid intelligence p=0.1005 N=6 
Feedback for N-Back p=0.8343 N=10 
 for fluid intelligence p=0.2836 N=12 
ISI for N-Back p=0.1310 N=8 
 for fluid intelligence p=0.8969 N=6 
Number of training 
sessions for N-Back p=0.7332 N=3 (sample size too small) 
 for fluid intelligence p=0.0280 N=3 (sample size too small) 
Adaptive threshold for N-Back p=0.7899 N=7 
 for fluid intelligence p=0.3394 N=7 
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Abstract 

The N-Back, a common working memory updating task, is increasingly used in 

basic and applied psychological research. As such, an increasing number of EEG studies 

have sought to identify the electrophysiological signatures of N-Back task performance. 

However, stimulus type, task structure, pre-processing methods, and differences in 

laboratory environment, including EEG recording setup employed, greatly vary across 

studies, which in turn may introduce inconsistencies in the obtained results. Here we 

address this issue by conducting nine different variations of an N-Back task manipulating 

stimulus type and task structure. Furthermore, we explored the effect of the pre-processing 

method used and differences in laboratory environment. Results reveal significant 

differences in behavioral and electrophysiological signatures in response to N-Back 

stimulus type, task structure, pre-processing method, and laboratory environment. In 

conclusion, we suggest that experimental factors, analysis pipeline, and laboratory 

differences, which are often ignored in the literature, need to be accounted for when 

interpreting findings and making comparisons across studies. 
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Introduction 

Working memory (WM), defined as a limited capacity system responsible for 

temporary storage and manipulation of relevant information (Baddeley, 2012), has been 

studied extensively in the last few decades due to the fact that it correlates with a wide 

range of complex cognitive abilities such as problem solving, reasoning, learning and 

planning of goal-directed behaviors (Miyake, & Shah, 1999). A considerable number of 

studies have addressed behavioral and neurophysiological, and underlying hypothetical 

constructs of WM using both single session (Scharinger, Soutschek, Schubert, & Gerjets, 

2015; Scharinger Soutschek, Schubert, & Gerjets, 2017) and repeated practice (Anguera et 

al., 2012; Buschkuehl, Hernandez-Garcia, Jaeggi, Bernard, & Jonides, 2014; Jaeggi, 

Buschkuehl, Shah, & Jonides, 2014).  

One of the commonly used techniques to probe WM is the N-Back task, a complex 

task that requires storage, maintenance and manipulation of information (Jaeggi, 

Buschkuehl, Jonides, & Perrig, 2008; Chen, Mitra, & Schlaghecken, 2008) as well as 

inhibitory and interference control (Oberauer, 2005; Kane, Conway, Miura, & Colflesh, 

2007). The N-Back task has been used in single-session behavioral (Brouwer, Hogervorst, 

Van Erp, Heffelaar, Zimmerman, & Oostenveld, 2012; Jaeggi, Buschkuehl, Perrig, & 

Meier, 2010) and neurophysiological (Esposito, Aragri, Piccoli, Tedeschi, Goebel, & Di 

Salle, 2009; Krause et al., 2000; Scharinger et al., 2017; Pesonen, Hämäläinen, & Krause, 

2007) studies as well as in multi-session behavioral  (Jaeggi et al., 2008; Jaeggi et al., 2014; 

Blacker, Negoita, Ewen, & Courtney, 2017; Minear, Brasher, Guerrero, Brasher, Moore, 
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& Sukeena, 2016) and neurophysiological (Chen, & Mitra, 2009; Dong, Reder, Yao, Liu, 

& Chen, 2015; Pergher, Wittevrongel, Tournoy, Schoenmakers, & Van Hulle, 2018) 

training studies, to name a few. Many N-Back studies focus on task difficulty at different 

N-levels, indicating lower ERP amplitudes for more difficult tasks (Brouwer et al., 2012; 

Herff, Heger, Fortmann, Hennrich, Putze, & Schultz, 2014; Scharinger et al., 2017; 

Pergher, Wittevrongel, Tournoy, Schoenmakers & Van Hulle 2019a) and/or stimulus type, 

such as the use of spatial (for instance when the target stimulus occurs in different locations 

on the screen) vs. verbal (for instance when presented stimulus is word or syllable) stimuli. 

This indicates that stimulus and load factors play a significant role in modulating P2, N2 

and P3 components (Chen et al., 2008; Chen, & Mitra, 2009; Ross, & Segalowitz, 2000; 

Polich, 2007). However, there are many other task parameters such as stimulus duration, 

inter-stimulus interval (ISI), feedback, etc. that, although previously explored, are rarely 

consistent across N-Back studies (for a review see Pergher, Shalchy, Pahor, Van Hulle, 

Jaeggi, & Seitz, 2019). Different combinations of these parameters may differentially 

affect electrophysiological signatures associated with task performance and thus limit the 

interpretation of functional significance of ERP components related to the N-Back task and 

their comparison across studies.   

Here we examine a number of candidate factors that may affect ERP and behavioral 

signatures during N-Back task performance, not only in terms of task parameters such as 

stimulus type (words, pictures and colors) and (stimulus duration, ISI, and feedback), but 

also in terms of different data pre-processing pipelines and laboratory effects, such as 
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differences in room setup, computer testing stations, as well as EEG hardware and 

software. While this is true of numerous areas of ERP research, the N-Back is particularly 

notorious in how it varies across studies (Kane et al., 2007; Owen, McMillan, Laird, & 

Bullmore, 2005; Mencarelli et al., 2019) and the data presented here is the first to detail 

the extent of these efforts for a variety of N-Back variations. 

Material and Methods 

Three datasets involving the N-Back task were included in the current study. 

Dataset I was collected specifically for the current study and was collected at the University 

of California – Riverside (UCR), USA. The purpose of this study was to explore the 

potential factors that affect ERP morphology and behavioral signatures of N-Back task, 

and to replicate experimental procedures described in two published datasets collected in 

different labs (Datasets II and III). Dataset II was collected at KU Leuven, Belgium 

(Pergher et al., 2018) as part of a study that investigated near and far transfer effects, the 

former involving cognitive sub-processes similar to the one practiced during training, 

whereas the latter calling upon other mental processes (de Ribaupierre & Lecerf, 2006), 

after 10 N-Back training sessions using behavioral and EEG recording. Dataset III was 

collected at the University of Maribor (UM), Slovenia (Pahor et al., 2018) in a study that 

examined the effects of transcranial alternating current stimulation on working memory 

performance and EEG responses. Participants in each dataset were healthy young subjects, 

who reported normal or corrected-to-normal vision, no history of psychiatric or 
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neurological diseases and were not taking any medication known to interfere with cognitive 

functioning.  

Table 2. 1. Demographics. Means (± Standard Deviations (SDs)) age of participants. 
Participants 

 UCR 

(Dataset I) 

KU Leuven 

(Dataset II) 

UM 

(Dataset III) 

N 36 16 16 

Age 19.58±0.97 23.42±0.98 20.56±1.59 

Sex 27 F (8M) 9 F (7M) 16 F 

 

Dataset I: UCR 

Participants. Thirty-six right-handed adults (27 females and 9 males, mean age = 

19.58, SD = 0.97), undergraduate students, were recruited from UCR. The experimental 

protocol was approved by the Institutional Review Board of UCR and all participants 

gave their informed consent prior to the experiment. They received course credit and a 

payment of $10 for participating in two sessions.  

Stimuli and task structure. Nine variants of the N-Back task were obtained by 

crossing 3 task structures (see below) with 3 stimulus types: words (i.e. so, do, up), pictures 

(i.e. apple, fish, bag) and colors (i.e. red, green, blue). task structures differed in terms of 

stimulus duration, ISI, response contingency and feedback (see Figure 2. 1) and were 
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modeled after tasks used in previous studies, as mentioned above: task 1 (Pahor, & 

Jaušovec, 2018), task 2 (Pergher et al., 2018), and task 3 (Mohammed et al., 2017). 

Task 1 had a stimulus duration of 400 ms, ISI of 1600 ms and employed a two-

alternative forced choice design for responding to targets and non-targets during the ISI. A 

white fixation cross appeared during ISI, turning blue when a response was registered or 

red if no response was detected. Task 2 had a stimulus duration of 1000 ms and ISI of 2000 

ms. During the ISI, participants viewed a white fixation cross and were instructed to press 

a button only for target trials. Task 3 had a stimulus duration of 2500 ms and ISI of 500 

ms. Participants were instructed to respond to targets during stimulus presentation, and 

were given feedback for correct (green circle around the stimulus) and incorrect responses 

(red circle around the stimulus). For task 1 and task 2 no response was allowed during 

stimulus presentation.  

Procedure. Each participant performed four out of the nine N-Back variations 

across two different sessions conducted on different days, where the same difficulty levels 

were administered each day, for a total of approximately 90 minutes per session. This 

ensured that all combination of conditions existed in a within subject design, even though 

not all participants completed every condition. The assignment of each participant to each 

N-Back variant was done randomly based on the subject number to ensure an equal number 

of participants (N = 16) in each variant. Each session consisted of 11 blocks presented in 

the following order: 1-back practice block, 2-back practice block, four 2-back test blocks, 

3-back practice block, and four 3-back experimental blocks. Instructions were provided 
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prior to each new N-level and 15 second breaks were given between blocks. Practice blocks 

consisted of sixteen trials during which the participant performed task 3 with Color stimuli 

whereas experimental blocks consisted of N+40 trials (i.e. 2-Back had 42 trials).  

The experiment took place in an electrically shielded room with DC lighting. An 

Apple Mac Mini with OS X 10.6.8 running MATLAB 2007b (Mathworks, Natick, MA, 

USA) and Psychtoolbox Version 3.0.8 were used to present the task and generate the 

stimuli (Brainard, 1997; Kleiner, Brainard, & Pelli, 2007). The stimuli were displayed on 

a 22.5-in. wide Sony Trinitron (Sony Corp., Tokyo, Japan) CRT monitor with a resolution 

of 1280 × 1024 pixels and a refresh rate of 75 Hz. In addition, to guarantee temporal 

precision of event-markers with experimental stimuli, a DATAPixx stimulus unit was used 

(VPixx, Vision Science Solutions, Quebec, Canada) that ensured that triggers were sent 

precisely at the times of the vertical interrupt of the monitor and button presses. 

EEG Recording. EEG was recorded continuously using a Biosemi Active Two 

system (Biosemi B.V. Amsterdam) operating at a sampling rate of 2048 Hz. Active Two 

system stored the EEG signal with no high-pass filter and low-pass filtered only by the 

anti-aliasing filter. Thirty-two active Ag/AgCl electrodes placed according to the 10/20 

system (Jasper, 1958) at O1,Oz, O2, , PO3, PO4,  P7, P3, Pz, P4, P8, CP5, CP1, CP2, CP6, 

T7, C3, Cz, C4, T8, FC5, FC1, FC2, FC6, F7, F3, Fz, F4, F8, AF3, AF4, Fp1, Fp2. In 

addition, six external electrodes were placed on the mastoids for referencing, and to record 

the horizontal and vertical electro-oculogram (EOG).  
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Figure 2. 1. Graphic rendition of N-Back task features for stimulus type, stimulus 
duration and Inter-stimulus Interval (ISI) for Dataset I. 
 
Dataset II: KU Leuven 

Participants. Twenty-three healthy adults (12 females and 11 males, mean age = 

24.37, SD = 1.78) were recruited via advertisements and flyers3. We randomly selected 16 

subjects out of the first two sessions of dataset II to have comparable sample size for cross-

laboratory comparison purposes (see Table 1). Prior to starting the experiment, all 

participants were informed about the experimental procedure and signed an informed 

 
 
 
 
3 Eight of these participants were included in N-Back training study conducted by Pergher et al. (2018). 
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consent. They received a payment of 20 euros for participating in two experiment. The 

study was approved by the UZ KU Leuven ethical committee (S59475).  

Stimuli and Procedure. Dataset II had a task structure similar to task 2 of Dataset 

I, mentioned above, where each stimulus was presented for 1000 ms, followed by an ISI 

of 2000 ms. The stimuli were generated using MATLAB 2007b (Mathworks, Natick, MA, 

USA) and Psychtoolbox Version 3.0.8 (Brainard, 1997; Kleiner, Brainard, & Pelli, 2007) 

and displayed on a CRT monitor. Participants had to respond only to targets. The stimuli 

used were pictures (Pergher et al., 2018). 

EEG Recording. EEG was recorded at full bandwidth with a SynAmpsRT device 

(Compumedics, Australia) at a sampling rate of 2000 Hz, using 32 Ag/AgCl electrodes 

placed at O1, Oz, O2, PO3, P8, P4, Pz, P3, P7, TP9, CP5, CP1, CP2, CP6, TP10, T7, C3, 

Cz, C4, T8, FC6, FC2, FC1, FC5, F3, Fz, F4, AF3, AF4, Fp1, Fp2. The reference was 

placed at AFz and the ground at CPz. In addition, four external electrodes around the eyes 

were used for electro-oculogram recording (EOG) following the instructions of Croft and 

Barry (2000). 

Dataset III: UM 

Participants. Seventy-two healthy adults were recruited from the University of 

Maribor, Slovenia (Pahor, & Jaušovec, 20184), 24 of which were assigned to sham 

 
 
 
 
4 Dataset 3 only included participants that were in a sham stimulation condition during their first session.  
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stimulation in the first session (all females, mean age = 20.42, SD = 1.56) and were thus 

not exposed to any active stimulation. Sixteen of these participants (session 1 data only) 

were randomly selected for Dataset III (see Table 1). The protocol was approved by the 

Commission for Ethics in Research at the Faculty of Arts. Participants gave written 

informed consent and received course credit as compensation.  

Stimuli and Procedure. Dataset III had a task structure similar to task 1 of Dataset 

I, where each stimulus was shown for 400 ms, followed by an ISI of 1600 ms. The stimuli 

were generated on STIM2 (Compumedics Neuroscan Systems, Charlotte, NC, USA) and 

displayed on a CRT monitor. Participants had to respond to both targets and non-targets. 

Two types of stimuli were used: 2-letter words and colors (Pahor, & Jaušovec, 2018). 

EEG Recording. EEG was recorded over 19 scalp locations based on the 10–20 Electrode 

Placement System using a Quik-Cap (Quik-Cap Compumedics Neuromedical supplies, 

Charlotte, NC, USA) with sintered electrodes. The EEG data were recorded using a 

SynAmps RT system and had a band-pass filter of 0.15–100.0 Hz. The 19 EEG traces were 

sampled online at 1000 Hz. Vertical eye movements were recorded using two external 

electrodes placed above and below the left eye and a ground electrode was applied to the 

forehead.  Two ear lobe references (A1 and A2) were used for online referencing, followed 

by common average re-referencing.  

Preprocessing and Analysis 

ERP Pre-processing Pipelines. Two pre-processing pipelines were used to 

analyze Dataset I: pipeline I and pipeline II. For ERP comparison across the three datasets, 
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only pipeline I was used. The pipelines were chosen as they represented different, but 

standard, approaches to ERP analysis (Delorme & Makeig, 2004; Groppe, Makeig & 

Kutas, 2009; Croft, & Barry, 2000). 

Pipeline I. Pipeline I was conducted in EEGLAB (Matlab 2015a, MathWorks, Inc.; 

EEGLAB v. 14.1.1 Delorme, & Makeig, 2004): the data was resampled to 512 Hz and 

filtered using a Butterworth filter with lower and upper cut-off frequencies of 0.1 Hz and 

40 Hz. Electrode recordings were re-referenced to the average of the mastoid recordings 

(average mastoid reference, TP9 & TP10). Manual inspection was first performed to locate 

and remove clearly visible disturbances in the data. Epochs were created from 1000 ms 

before to 2000 ms after stimulus onset, and the pre-onset average was subtracted from the 

post-onset signal (baseline correction). Independent components analysis (ICA) was used 

to extract blinking and eye movements within the data. Independent components (ICs) that 

were identified by the data analyst as ocular artifacts were rejected. Finally, epochs were 

averaged for each N-Back variant and baseline corrected using 200 ms before stimulus 

onset. 

Pipeline II. Pipeline II was conducted by using Matlab R2016a (Mathworks, Natick, 

MA, USA). The data was resampled to 1000 Hz and filtered in the 0.1 – 30 Hz range using 

a zero-phase 4th-order Butterworth filter. All electrodes were re-referenced offline to the 

average of the two mastoid signals (average mastoid reference, TP9 & TP10; Luck, 2014). 

Epochs were created from 200 ms before to 1000 ms after stimulus onset, and baseline 

correction was performed by subtracting the average of the 200 ms pre-stimulus onset 
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signal from the 1000 ms post-stimulus onset signal. The EOG recorded before and during 

the experiment was used for correcting the EEG signal for eye artifacts using Croft and 

Barry’s aligned-artifact average (AAA) procedure (Croft, & Barry, 2000). Finally, epochs 

with EEG signals greater than 50µV were also excluded as they could signify motion 

artifacts (Wittevrongel & Van Hulle, 2016; Van Vliet et al., 2016). This Pipeline has been 

developed by the computational neuroscience group at KU Leuven (van Vliet et al., 2014, 

2016; Wittevrongel & Van Hulle, 2016) and since then used in dozens of published studies 

from this group (http://lirias.kuleuven.be/cv?Username=U0013308). The method was 

developed as it accounts for eye artifacts using an automatic procedure (aligned-artifact 

average (AAA) procedure in Croft, & Barry, 2000) rather than having to rely on a post-hoc 

ICA analysis where the data analyst needs to identify which IC’s contain those artifacts (as 

in EEGLab). 

Statistical Analysis 

To assess the effect of N-Back task variations on behavioral responses (average of 

correct responses across trials) and ERP morphology (we considered the same three 

midline location electrodes: Fz, Cz, and Pz investigated by Watter, Geffen & Geffen 

(2001), we used nonparametric permutation-based tests (Derrick, White, & Toher, 2018; 

Guo, & Yuan, 2017) as our datasets failed the Shapiro-Wilk test of normality (Shapiro, & 

Francia, 1972) and the Levene test of equality of variances (Levene, 1960). Specifically, 

Dataset I utilized a mixed within/between design where each participant performed 4 out 

of 9 variations. The rationale for using a mixed design was to obtain enough power –16 



 
 
 
 92 

participants– for each of the 9 variations by recruiting only 36 subjects. Therefore, we used 

a nonparametric permutation-based test to account for the mixed (within/between) design 

(Efron & Tibshirani, 1993). The null hypothesis distribution is generated empirically 

regardless of any assumptions about the data distribution. The observed results were then 

assessed relative to the empirical null hypothesis distribution (Collingridge, 2013) and the 

p value was calculated by comparing the absolute distance between observed values of two 

groups to the absolute of the empirical null distribution (Cohen, 2017). The results were 

considered statistically significant when the p-value was less than 0.05. We ran 30.000 

iterations for permutation testing of behavioral data and 3.000 for ERP data. We adopted 

the same statistical tests for the comparison between datasets (UCR, KU Leuven, and UM), 

and for ERP and behavioral data comparisons respectively. We note that this p-value is 

monotonically relatable to other measures of reliability, such as differences in signal to 

noise ratio (SNR). 

Furthermore, we performed a power analysis for accuracy to ensure that our samples, 

considering the significant results of Figure 2. 2, were large enough. Here, we reported the 

comparison between task 1 and task 3 for words that revealed that 14 subjects were 

sufficient to support a power of 80%, for colors that showed that 16 subjects were sufficient 

to support a power of 80%, and for pictures that demonstrated that 22 subjects were 

sufficient to support a power of 80%. Although the latter did show that a bigger sample 

size would be necessary, we believe that it does not significantly affect our results. We 
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used Matlab (sampsizepwr) to conduct the power analysis and small to medium effect sizes 

supported our analysis (i.e., Cohen’s d = 0.25). 

ERP Component. We investigated the following ERP components in the 0–800 ms 

post-stimulus time window: 

P100 (P1), a positive deflection with a peak around 100 ms after stimulus presentation. It 

is distributed over the lateral occipital electrodes and reflects early sensory processing of 

visual stimuli. P1 latency depends on stimulus contrast, such as luminance or SNR, while 

its amplitude is modulated by attention (Hillyard, Vogel, & Luck, 1998) and discrimination 

processes (Vogel & Luck, 2000).   

N100 (N1), a negative deflection that peaks around 100 – 200 ms after stimulus onset. It 

has a distribution over the entire scalp, but it peaks earlier over the frontal regions of the 

scalp. It has been shown that its amplitude is modulated by attention. Larger amplitude is 

associated with attended stimuli, while smaller is associated with increasing stimulus 

presentation frequency (Luck, Heinze, Mangun, & Hillyard, 1990). N1 latency is affected 

by cognitive processing effort: the bigger the effort, the longer the latency (Callaway, & 

Halliday, 1982).  

P200 (P2), a positive deflection with a peak around 150 – 275 ms after stimulus 

presentation. It is distributed over the fronto-central and parieto-occipital regions of the 

scalp, but its maximal is over the frontal area. It is elicited by visual stimuli and modulated 

by attention (Liu, Zhang, Ma, Li, Yin, and Luo, 2013). Its amplitude is suppressed with 
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increasing of attentiveness (Kanske, Plitscha, & Kotz, 2011) and more frequent target 

stimuli (Lu, Williamson, & Kaufman, 1992). 

N200 (N2), a negative deflection detected around 200 – 350 ms after stimulus onset. It is 

distributed over the frontal regions of the scalp and posterior regions in visual attention 

tasks (Folstein & Van Petten, 2008). N2 component reflects several functions such as 

stimulus identification, attentional shift and motor response inhibition (Patel & Azzam, 

2005). 

P300 (P3), a positive deflection with a peak occurring around 250 – 600 ms after stimulus 

onset. It shows a stronger distribution over the centro-parietal electrodes on the scalp. Its 

amplitude becomes larger with infrequent target stimuli and decreases with habituation and 

task difficulty. Its latency is modulated by the difficulty in discriminating the target 

stimulus (Picton, 1992; Polich and Kok, 1995).  

N400 (N4), a negative deflection detected between 400 – 600 ms after stimulus onset. It is 

typically stronger over centro-parietal regions of the scalp and reflects brain response to 

semantically meaningful stimuli that can include visual and auditory words, sounds, 

pictures and faces (Kutas & Federmeier, 2011). N4 amplitude is affected by priming and 

frequency of the stimulus (Van Petten & Kutas, 1990). 

Positive Late Component (PLC), a positive deflection, with a peak occurring around 500-

1000 ms after stimulus onset. It is most prominent for posterior scalp channels. The PLC 

amplitude is modulated by stimulus repetition: suppressed for stimuli that have been 

already presented, and generally larger for new stimuli (i.e. ‘old-new’ effect), in both long- 
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and short-term memory paradigms (Danker, 2008; Olichney, 2000). PLC is believed to 

index top-down allocation of attention in a memory recollection process (Mecklinger, 

2000). 

Results 

Effect of stimulus type and task structure – Dataset I (UCR) 

In order to investigate the effect of experimental features (stimulus type and task 

structure type), we performed a nonparametric permutation-based analysis on behavioral 

and electrophysiological data.  

Behavioral Results. While pictures were associated with the highest accuracy level 

when holding task structure constant (Figure 2. 2A; see Tables S1, S2 and S3 in 

Supplemental Material for means, standard deviations and statistics per condition, 

respectfully), there was no statistically significant effect of stimulus type on accuracy (p>.2 

for all conditions other than for task 1: words vs. pictures: p = .075). On the other hand, 

results revealed a robust overall effect of task structure (see Figure 2. 2B), showing higher 

accuracy for task 3 vs task 1 (p<.002 for all stimulus types), and for task 3 vs task 2 for 

words (p<.001) and colors (p<.012) but only a trend for pictures (p=.067). However, there 

was no statistically significant difference between task 1 and 2 (p>.4 for all conditions other 

for words p = .074). These results show that while there is a highly significant effect of 

tasks, especially task 3 vs the others, that the choice of stimulus has a lesser effect on task 

performance.      
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Figure 2. 2. Mean accuracy and SEM for target trials in the UCR dataset. (A) Accuracy 
as a function of task type. (B) Accuracy as a function of stimulus type. * indicates 
significance of p<.05  
 

ERP Morphology. Overall, ERP morphologies changed substantially both as a 

function of stimulus type and task structure. This can be seen in Figures 2. 3 and 4 for 

channel Cz, while channels Fz and Pz are shown in Supplemental Material (Figures S2. 1-

4). We also presented topographies and reported differences between them in the 

Supplemental Material (see Figure S2. 9 and Tables S2. 6-7). In the following sections, we 

highlight some of the significant effects by running permutation tests that demonstrate the 

extent to which various differences in morphology across the time-course are different as 

a function of condition. Significant differences discussed below are in regard to shaded 

regions in graphs that indicate periods in the ERPs where differences are p-value of less 

than or equal to 0.05 for at least 12 consecutive bins with Δt of 1/512 Hz. 

Effects as a function of stimulus type. For task 1, ERP morphologies differed more 

frequently for pictures compared to colors and words, as seen in Figure 2. 3. While pictures 

vs words differed more frequently in the N1, N2, and P2 components in channels Fz, Cz, 
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and Pz (the latter only for P2), pictures vs colors showed differences in the N2, P2, and P3 

components in channels Fz and Cz. Additionally, words vs colors showed differences in 

the P2 component in channels Fz, Cz, and Pz. 

For task 2, we found that ERP morphologies differed more frequently for colors 

compared to pictures and words (see Figure 2. 3). While both colors and words differed 

from pictures more frequently in the N1 component in channels Cz, Pz, and Fz 

respectively, colors vs words and colors vs pictures showed differences mostly in the P2 

component in channels Fz and Cz. Additionally, words differed from pictures and colors 

in the N2 component for channel Cz, while colors compared to pictures differed more 

frequently in P3 component for channels Fz and Cz. 

For task 3, ERP morphologies differed more frequently for words compared to 

pictures (see Figure 2. 3). words and pictures showed differences in the N2, P2, and P3 

components in channel Fz and Cz. Additionally, words differed from colors in the P3 

component in channel Fz and Cz. 
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Figure 2. 3. Grand average and SEM of ERP curve for UCR dataset at Cz electrode for 
target trials during variations of stimulus types (words, pictures and colors). Gray shaded 
areas indicate significantly different data points (p<.05). P-values that are less than 
0.0001 are thresholded to 0.0001 for viewing purposes, as shown by the black curve at 
the bottom of each graph where log p-values are reported. 
 

Effect as a function of task structure. For words, ERP morphologies differed more 

frequently for task 3 compared to task 1 and task 2 (see Figure 2. 4). While task 3 and task 

1 showed differences in the N1, P1 and P2 components in channels Fz, Cz and Pz, task 3 

and task 2 showed differences in the N1 and P2 components in channels Fz, Cz and Pz. 

We do note, that in the case of where the stimulus offset occurred at 400 ms, waveforms 

after 400 ms may have been impacted by a stimulus offset event in addition to other task-

related factors. 
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 For pictures, ERP morphologies differed more frequently for task 1 compared to 

task 3 and task 2 (Figure 2. 4). While task 1 and task 3 showed differences in the N1 

component in channels Fz and Cz, task 1 and task 2 showed differences in the P2 

component in channels Fz, Cz and Pz. Additionally, task 3 differed from task 2 in the N1 

component in channels Fz and Cz. 

 For colors, ERP morphologies differed more frequently for task 3 compared to task 

1 and task 2 (Figure 2. 4). While task 3 and task 1 showed differences in the N1 and P2 

components in channels Fz, Cz and Pz, task 3 and task 2 showed differences in the N1 and 

P2 components in channels Cz and Pz. 

 

Figure 2. 4. Grand average and SEM of ERP curve for UCR dataset at Cz electrode for 
target trials during variations of task structure (task 1, task 2 and task 3). Gray shaded 
areas indicate significantly different data points (p<.05). P values that are less than 
0.0001 are thresholded to 0.0001 for viewing purposes. 
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Effects as a function of task load and performance. To understand how other factors 

may have influenced the ERPs, we also examined effects of memory load and performance 

on ERP waveforms (see Figure 2. 5). In regard to N-back load (N = 2, N = 3), the main 

effect of load is shown in Figure 2. 5-A with this effect of load being significant (p<0.05) 

for all the components mentioned in this paper except for P1 (see Table S2. 4 for stats).  

However, this effect was largely independent of task, and stimulus types (see Figure S2. 5 

and Table S2. 4 for break-down of ERPs and stats across the different task and stimulus 

conditions). Likewise, we also observed differences in the ERPs as a function of metrics 

of performance (Figure 2. 5-B); hits (correctly responded targets), misses (incorrectly 

responded targets), correct rejections (correctly responded non-targets), and false alarms 

(incorrectly responded non-targets). There is a significant main effect of performance 

(p<0.001) for all the components, except for P1. However, again, this effect was largely 

independent of task, and stimulus types (see Figure S2. 6 and Table S2. 5 for ERPs for 

break-down of ERPs and stats across the different stimulus and task conditions). 

 
Figure 2. 5. Grand average and SEM of ERP curve for UCR dataset at Cz electrode as a 
function of N-back load (A) and performance metrics (B).  
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Comparison between Pre-processing Pipelines in Dataset I (UCR) 

We next examined the extent to which differences in analysis pipelines used across 

labs resulted in changes in estimated ERP morphologies. Interestingly, early ERP 

components are relatively preserved across the pipelines, but that later ERP components 

showed significant differences between pipeline I and pipeline II (see Figure 2. 6). Further, 

these differences showed some interaction with task and stimulus. For example, the effect 

of pipeline was found in all variations in task structure 1 (for channels Fz, Cz and Pz). 

Moreover, the Word N-Back variation with task structure 1 showed significant differences 

in P3 components between the two pipelines. For task structure 2 and words, Cz showed 

significant difference in N2 and P3 components. For task structure 2 and pictures, Fz 

revealed significant differences in PLC, and Cz in P3 and PLC. For task structure 2 and 

color stimulus, Fz showed significant differences in P3, N4 and PLC signatures and Cz in 

P3 and PLC. For task structure 3 and words, Fz showed significant differences in N2, P3, 

N4 and PLC components. Further, Cz showed differences for N2 and P3 and Pz for PLC. 

For task structure 3 and pictures, Fz and Cz showed significant difference in PLC. Finally, 

for task structure 3 and colors, Fz showed significant differences in P3, N4 and PLC 

components and Cz showed significant difference in PLC. 
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Figure 2. 6. Grand average and SEM of ERP curve at Cz electrode for target trials for 
different pipelines (Pipeline I vs. Pipeline II) for the UCR dataset (see Supplemental 
Material for Fz and Pz, Figures S2. 7-8). Gray shaded areas indicate significantly different 
data points (p<.05). P values that are less than 0.0001 are thresholded to 0.0001 for viewing 
purposes. Data in Pipeline II was up-sampled to 512 to make the comparison possible. 
 

Due to the fact that Pipelines I and II differ in several ways ranging from analysis 

toolbox, eye artifacts removal to reference electrodes etc., there are too many candidate 

parameters to be causally related to a specific difference in an ERP component. 

Nevertheless, these results are interesting as they highlight how the use of different pre-

processing pipelines commonly used in the EEG literature can affect ERP morphology at 

an aggregate level, and in particular the choice of pipeline can impact the extent to which 

one correctly/incorrectly determines differences between conditions. While it would be 

interesting to unveil possible causal relations between these differences in the pipeline, the 

goal of the present study is to illuminate the impacts of common methodological 
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differences between studies rather than to fully explain such differences, which would 

require a larger study. Furthermore, considering the few existing studies in literature (Jiang, 

Bian, & Tian, 2019; Yao et al., 2019; Dong et al., 2019) that demonstrated a significant 

role played by pre-processing factors, we think it is likely that the eye artifacts removal 

method and reference electrodes might have greatest impacts in our pipelines on the 

resulting ERPs. Still, we note that our analysis of pipeline is merely illustrative of how the 

pipelines used in the previously published versions of these datasets give rise to different 

ERP morphologies and that a complete characterization of how pipeline elements effect 

the signal and/or SNR (Robbins, Touryan, Mullen, Kothe, & Bigdely-Shamlo, 2020) is 

beyond the scope of the present manuscript. 

Laboratory Effects 

Another potential aspect of variation is experimental location resulting in 

behavioral and ERP morphology differences. Specifically, we refer to different laboratories 

in order to explore differences in several characteristics such as lab settings, stimuli, tasks, 

subject pools, subject instructions, processing pipelines, and so on. Using pipeline I, we 

compared task 2 (pictures only, N = 16) as used in Dataset I (UCR) and Dataset II (KU 

Leuven), as well as task 1 (words only, N = 16) which was used in Dataset I (UCR) and 

Dataset III (UM). We did not compare Datasets II and III as the stimuli were different: 

pictures vs. words respectively, whereas Dataset I included both words and pictures and 

could therefore be compared to both datasets. We note, that while this analysis is far from 

comprehensive and it would be ideal to collect data on identical procedures across the labs, 
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however, this is at least illuminative of other, unexplained, variance that can be expected 

from different labs conducting similar research but not coordinating on the exact details of 

the studies, which is typical of the extant literature. 

Dataset I vs. Dataset II (UCR vs KU Leuven). Behavioral results for task 2 showed 

a significantly higher accuracy in Dataset II compared to Dataset I (p < .001) (Figure 2. 7-

A) and ERP morphology outcomes revealed larger ERP amplitudes in Dataset II compared 

to Dataset I (Figure 2. 8). Namely, significant differences between Dataset I and Dataset II 

(p < .05) were found in P1, N1, P2, N2 and P3 components, in channels Fz and Cz. 

 

Figure 2. 7. Cross- laboratory accuracy comparison. (A) Accuracy for N-Back task 2 with 
pictures in dataset I (UCR) and in dataset II (Ku-Leuven). (B) Accuracy for N-Back task 
1 with words in dataset I (UCR) and in dataset III (UM). 
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Figure 2. 8. ERP responses during task 2, only for target stimuli recorded at different 
laboratories. Gray shaded areas show significant differences at p<.05. Both datasets were 
pre-processed with pipeline I. 
 

Dataset I vs. Dataset III (UCR vs UM). For task 1, higher accuracy was observed 

in Dataset III compared to Dataset I (p < .001) (Figure 2. 7-B), and ERP morphology 

(Figure 2. 9) indicated significant differences in P1, N1, P2, N2 and P3 components, in 

channels Fz, Cz and Pz.  

 

Figure 2. 9. ERP responses during task 1 (mean and standard deviation of targets) recorded 
at different laboratories. Gray shaded areas show significant differences at p<.05. Both 
datasets were pre-processed with pipeline I. 
 

Discussion 

The goal of the present study was to fill a gap in the extant literature by illuminating 

the extent to which common procedural differences related to N-back task variants, EEG 

recording setups, and preprocessing pipelines affect behavioral and electrophysiological 
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correlates of performance. To address this, we compared variants of the N-Back task used 

in 3 laboratories, 2 in Europe (Pahor, & Jaušovec, 2018; Pergher et al., 2018) and 1 in the 

US where the behavioral and EEG datasets were replicated. Our findings suggest that 

stimulus type, task structure, pre-processing pipeline and lab factors contribute to 

differences in behavioral and neurophysiological responses on the N-Back task. 

Given the fact that most meta-analyses overlook differences in the N-Back task 

adopted in each study (Glahn et al., 2005; Redick, & Lindsey, 2013; Brunoni, & 

Vanderhasselt, 2014; Heishman, Kleykamp, & Singleton, 2010), we characterized some of 

those factors that might affect cognitive task outcomes. First we examined task structure 

and showed differences in accuracy level between tasks (task 1, task 2, task 3), revealing 

higher accuracy for task 3 compared to the other two, perhaps due to having the longest 

stimulus duration (2500 ms) thereby supporting the process for encoding of information 

that is facilitated when stimulus duration is longer. Indeed, Kunimi (2016) showed that 

increasing stimulus duration (from 500 ms to 5000 ms) improves memory performance 

during retention of visuospatial information, whereas Fox, Snyder, Vincent, & Raichle 

(2007) showed that longer ISI was associated with increased accuracy level. We also 

investigated stimulus type and observed better performance for pictures of objects 

compared to words and colors. In contrast, Nystrom et al. (2000) reported higher accuracy 

for letters compared to shapes. 

Another important aspect when considering the following factors such as task 

structure and stimulus type is their impact on ERP morphology. To highlight this variance, 
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we examined differences in several ERP components, named N1, P2, N2 and P3 for both 

factors, as previous studies suggested ERP component modulation in response to WM 

experimental features, particularly for stimulus type, and observed their spatial distribution. 

Mecklinger and Pfeifer (1996) reported that the encoding of object features was associated 

with modulation of P2 component, whereas Ruchkin, Johnson, Grafman, Canoune, and 

Ritter (1992) showed variations of N2 and P3 components for visuo-spatial stimuli 

compared to phonological stimuli, indicating that visuo-spatial stimuli were processed 

more quickly than phonological ones. Moreover, Rossion, Joyce, Cottrell, and Tarr (2003) 

observed N1 modulation in response to faces and objects compared to objects. Thus while 

it is clear in the literature that both task and stimulus should influence ERPs in systematic 

ways, to date this has been largely overlooked in the literature examining ERP signatures 

of working memory tasks such as the N-Back. 

In addition to stimulus type and task structure, we suggest that different 

experimental laboratories and pre-processing procedures might also affect accuracy and 

ERP morphology. Seemingly arbitrary procedures are employed by different laboratories, 

in terms of environment and equipment, as well as data pre-processed and analyzed by 

different pipelines, which have been shown to produce different findings (Busch, 

Herrmann, Müller, Lenz, & Gruber, 2006; for review, see Zimmer, Cohen, Foley, Guynn, 

Engelkamp, & Kormi-Nouri, 2001). Here we show that the same N-Back task performed 

in two laboratories produces different behavioral and ERP morphology results. However, 

we suggest interpreting these results carefully, as participants’ individual differences and 
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EEG and analysis operator skills may also have affected these results (Jaeggi et al., 2014). 

Green et al. (2018) observed that reward, motivation and/or participant expectations, such 

as differences in task performance, researcher instructions, etc., could also count as factors 

for behavioral differences when comparing performances between different laboratories. 

Moreover, we highlight the impact of pre-processing pipelines on ERP data, supporting the 

recommendations provided by Smith, & Kutas (2015) regarding the power of EEG data 

pipeline, including baseline correction, artifact rejection and the filtering procedure 

(Acunzo, MacKenzie, & van Rossum., 2012) on ERP analysis. In line with the goal of this 

study, we did not associate a specific step of the pre-processing pipeline procedure to an 

ERP component or cognitive process since we aimed to show at a more general level the 

impact of stimuli, task and laboratory environment on both accuracy and ERP responses.  

 Our study presents several limitations. We considered only accuracy during N-

Back performance, due to the fact that the three Datasets and the related tasks had different 

response requirements, and so it would have been very complex to compare them. As 

Dataset I utilized a mixed within/between design, individual differences might have 

affected ERP signatures attributed to laboratory effects. Indeed, a recent review paper 

highlighted the variety of features that may impact N-Back performance, including both 

task and individual features (Pergher et al., 2019). The samples compared here were of 

similar age and had a similar educational level (undergraduates), and in Datasets I and II, 

a similar distribution of gender. While Dataset III only consisted of data collected from 

females, a recent study by Pliatsikas et al. (2019) demonstrated that gender, age, and 
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education level affect response accuracy after a single N-Back training session in healthy 

older individuals. Since the present study consists of N-Back performance across 1 or 2 

sessions in young subjects, we do expect these variables to have a moderate effect on 

behavioral and electrophysiological results. Nevertheless, there might be other individual 

difference factors such as motivation, personality, and working memory capacity (Dong et 

al., 2015) that were not accounted for but could have affected the results.  Future studies 

will need to examine whether these individual differences, along with other factors such as 

time-of-day and environment, affect N-Back task performance and ERP signatures. 

Moreover, further studies should also consider the choice of words, pictures and colors, as 

they may play an important role in affecting behavioral and ERP responses due to different 

colors and shape used, and familiarity with the objects presented. Finally, since Dataset III 

represents a sham condition in a brain stimulation study (Pahor & Jaušovec, 2018) it is 

possible that placebo effects could have affected performance. Since we only retained data 

collected in session 1, i.e. prior to exposure to active stimulation, it is unlikely that these 

effects are large. Still, we suggest that while more work can be done to clarify the effects 

presented here, and that other differences still exist in the extant literature, that the present 

work is informative of how some of the most common differences in the N-Back between 

studies can impact observed behavioral and physiological measures. 

In conclusion, the present data sets help clarify the extent to which common N-

Back task variations in terms of stimulus type, task structure, and laboratory and processing 

pipeline give rise to differences in behavioral and physiological outcomes. While future 
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research is needed to help us understand the mechanisms that underly these observed 

differences, the present work can help readers appreciate effect sizes to be expected related 

to the many variations considered here. We note that while, in general, it is well 

acknowledged any difference between studies can have an impact, the significance of these 

variations in the case of the N-Back have been largely overlooked, thus limiting 

understanding of their role in affecting accuracy and ERP morphology and of potential 

important information related to the mechanisms that regulate WM processes. We suggest 

that for the field to move forward, experimental features, analysis pipeline, and laboratory 

differences need to be taken into consideration when interpreting findings and making 

comparisons across studies.  
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Supplementary Material 

Table S2. 1. Mean and SD of accuracy (%) in dataset I (UCR dataset) 
 

Task 1 Task 2 Task 3 

words M = 62.76, 
SD = 14.23  

M = 69.53, 
SD = 12.14  

M = 78.78, 
SD = 8.20  

pictures M = 70.52, 
SD = 11.78  

M = 73.18, 
SD = 17.11  

M = 80.86, 
SD = 14.95  

colors M = 65.88, 
SD = 13.65  

M = 69.01, 
SD = 13.67  

M = 80.21, 
SD = 12.55  

 
Table S2. 2. p-values for Stimulus-wise comparison for accuracy (%) in dataset I (UCR 
dataset) 

 
Task 1 Task 2 Task 3 

words vs pictures .075 .232  .589 

words vs colors .493 .893 .718 

pictures vs colors .199 .210 .851 

 
Table S2. 3. Table S1: p-values for Task-wise comparison for accuracy (%) in dataset I 
(UCR dataset) 

 

Words Pictures Colors 

task 1 vs task 2 .074 .452 .441 

task 1 vs task 3  < .001  .002  < .001  

task 2 vs task 3 < .001  .067 .012 
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Figure S2. 1. Grand average and SEM of ERP curve at Fz electrode for target trials 
during variations of stimulus types (words, pictures and colors). The gray shades show p 
<.05 

 

Figure S2. 2. Grand average and SEM of ERP curve at Pz electrode for target trials 
during variations of stimulus types (words, pictures and colors). The gray shades show p 
<.05 
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Figure S2. 3. Grand average and SEM of ERP curve at Fz electrode for target trials 
during variations of task structure types (task 1, task 2, task 3). The gray shades show p 
<0.5 
 

 

Figure S2. 4. Grand average and SEM of ERP curve at Pz electrode for target trials 
during variations of task structure types (task 1, task 2, task 3). The gray shades show p 
<0.5 
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Table S2. 4. Mixed ANOVA statistics for main and interaction effects of N-back load (N 
= 2, N = 3) 

 P1 N1 P2 N2 P3 N4 PLC 
task <0.001 <0.001 <0.005 0.488 0.929 0.984 0.017 
stimulus 0.163 <0.001 <0.001 <0.001 0.362 0.008 <0.001 
load 0.181 0.031 <0.001 <0.001 <0.001 <0.001 <0.001 
task x 
stimulus 

0.685 0.335 0.519 0.933 0.843 0.561 0.373 

load x task  0.248 0.760 0.296 0.090 0.051 0.031 0.002 
load x 
stimulus 

0.762 0.867 0.576 0.468 0.971 0.661 0.883 

load x task 
x stimulus 

0.295 0.669 0.898 0.794 0.721 0.557 0.720 

 

 

Figure S2. 5. Grand average and SEM of ERP curve at Cz electrode for N-back load (N = 
2, N = 3) across task structures and stimulus types 
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Table S2. 5. Mixed ANOVA statistics for main and interaction effects of performance 
metrics (hits, misses, correct rejection, and false alarm) 

 P1 N1 P2 N2 P3 N4 PLC 
task <0.001 <0.001 <0.001 0.029 0.030 0.049 <0.001 
stimulus 0.006 <0.001 <0.001 <0.001 0.148 0.015 <0.001 
performance 0.712 0.001 <0.001 <0.001 <0.001 <0.001 <0.001 
task x 
stimulus 

0.965 0.767 0.517 0.986 0.83 0.559 0.741 

performance 
x task  

0.739 0.236 0.432 0.121 0.031 0.07 0.029 

performance 
x stimulus 

0.376 0.708 0.209 0.025 0.004 0.011 0.003 

performance 
x task x 
stimulus 

0.946 0.368 0.780 0.600 0.53 0.49 0.652 

 

 

Figure S2. 6. Grand average and SEM of ERP curve at Cz electrode for performance 
metrics (hit, miss, correct rejection, and false alarm) across task structures and stimulus 
types 
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Figure S2. 7. Grand average and SEM of ERP curve at Fz electrode for target trials for 
different pipelines (Pipeline I vs. Pipeline II) for dataset I (UCR dataset). 
 

 
Figure S2. 8. Grand average and SEM of ERP curve at Pz electrode for target trials for 
different pipelines (Pipeline I vs. Pipeline II) for dataset I (UCR dataset) 
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Figure S2. 9. Topographical maps for dataset I (UCR dataset). The time window for each 
component is as follows: P1 = [0 100], N1 = [100 200], P2 = [150 275], N2 = [200 350], 
P3 = [250 600], N4 = [400 600], PLC = [500 1000]. 
 
 
 
 
 
Table S2. 6. p-values for different components for effect of condition x electrodes using 
Kruskal Wallis test 

  task 1 task 2 task 3 

words  
vs  

pictures 

P1 .471 <.001 .991 

N1 <.001 <.001 <.001 

P2 <.001 <.001 <.001 

N2 <.001 <.001 <.001 

P3 <.001 <.001 <.001 

N4 <.001 .235 .055 

PLC .126 .998 .999 
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words  
vs  

colors 

P1 .896 .999 .999 

N1 .053 .698 .008 

P2 .094 .991 .002 

N2 .005 .995 .001 

P3 .214 .999 .024 

N4 .042 .972 .028 

PLC .822 .991 .018 

pictures  
vs  

colors 

P1 <.001 .064 .159 

N1 .007 <.001 <.001 

P2 <.001 <.001 <.001 

N2 <.001 <.001 <.001 

P3 <.001 <.001 <.001 

N4 .003 <.001 <.001 

PLC .318 .440 .031 

 
 
 
 
Table S2. 7. p-values for different components for effect of condition x electrodes using 
Kruskal Wallis test 
 

  words pictures colors 

task 1  
vs  

task 2 

P1 .998 .249 .979 

N1 .999 .758 .914 

P2 .999 .097 .598 
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N2 .982 <.001 .101 

P3 .179 <.001 .316 

N4 .002 <.001 .601 

PLC .009 <.001 .092 

task 1  
vs  

task 3 

P1 .001 .011 .232 

N1 <.001 .011 .323 

P2 .048 .040 .854 

N2 .785 .263 .999 

P3 .897 .528 .999 

N4 .752 .579 .993 

PLC .215 .029 .699 

task 2  
vs  

task 3 

P1 .796 .973 .877 

N1 .499 .999 .944 

P2 .638 .999 .144 

N2 .568 .999 .058 

P3 .265 .999 .744 

N4 .610 .987 .942 

PLC .339 .982 .854 
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Chapter 3 

Modulation of Behavior and Auditory processing by an estimate of arousal activity 
in a modified auditory oddball task: a multi-measure study of combined behavior, 

pupillometry and fMRI 
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Abstract 

Even when presented with identical stimuli, our decisions differ from moment to moment. 

One main source of this perceptual and behavioral variability is an individual’s state of 

arousal –level of alertness and excitability. Arousal is suggested to function on a spectrum: 

The low extreme consists of sleepiness and inattentiveness while the high extreme consists 

of panic and stress-induced behavior. Optimal performance can be found in the middle of 

the spectrum. The locus coeruleus (LC) plays a significant role in cortical arousal via wide, 

non-specific norepinephrine (NE) projections. However, the interplay between arousal and 

LC-NE activity in humans has been challenging to investigate due to the lack of direct and 

robust measures of activity. Here, we examine the potential of an experimental paradigm 

–a modified auditory oddball task– to measure the variability of perceptual decision-

making across multiple levels of observation such as behavioral performance, 

pupillometry, and neural activity. These rich measures may collectively yield mutual 

information regarding cortical arousal and LC-NE activity. Our experimental paradigm 

successfully enabled extractions of stimulus-response functions –the relationship between 

an auditory stimulus and performance/activity– in all three outcome measures: behavioral 

measures, pupillometry and neural auditory Blood oxygenation level dependent (BOLD) 

activity. These findings suggest the viability of our approach in estimating activity of 

cortical arousal and LC-NE in the future. 
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Introduction 

Our world is an unpredictable place that presents us with a great amount of 

information and decision-making scenarios, which change from moment to moment. The 

ability to detect and respond to this information is crucial for survival, especially in 

uncertain and challenging environments. Interestingly, this process of perceptual decision-

making is variable even in the simplest controlled environments. For example, when 

making decisions for nominally identical stimuli, individuals may vary in response time or 

behavioral choices from one decision to another (Gold & Shadlen, 2007). One main source 

of this perceptual and behavioral variability is an individual’s state of arousal –level of 

alertness and excitability. Arousal is thought to affect brain activity and behavior in 

response to these environmental contingencies and is linked to other functions such as 

sleep-wake cycle, attention, motivation, anxiety, and stress (Sara & Bouret, 2012; Sara, 

2009). Decreased arousal results in inattentive behavior, drowsiness and, in extreme cases, 

sleep. Increased arousal, which can happen due to a sudden appearance of an 

environmentally salient stimulus or event, can facilitate behavioral performance. However, 

it can also result in distractibility and anxiety if extreme (Berridge & Waterhouse, 2003). 

A classic observation in this regard is the Yerkes-Dodson inverse-U relationship between 

arousal and performance on various perceptual/ perceptual-motor tasks, which shows that 

there is a middle ground state of arousal associated with optimal performance in a given 

task (Yerkes & Dodson, 1908). Recent studies have suggested the locus coeruleus-

norepinephrine (LC-NE) neuromodulatory system plays a significant role in regulating 
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arousal and alertness, and by doing so optimizes performance according to task and 

environment requirements (Aston-Jones & Cohen, 2005).  

LC is a cluster of neurons in the pons of the brainstem that serves as the main source 

of cortical NE in the brain. The LC-NE plays a critical role in many key cognitive functions 

including perception, attention, memory and learning besides arousal (Aston- Jones & 

Cohen, 2005; Sara, 2009). LC neurons fire in two distinct modes: tonic –spontaneous– and 

phasic –task-relevant– which have different patterns of NE release and behavioral 

manifestation. Phasic LC activity is a brief, high-frequency (10-20 Hz) burst of action 

potentials elicited by salient or unexpected stimuli, attentiveness, and response-related 

signals (Devilbiss & Waterhouse, 2011).  The release of NE in this mode enhances stimulus 

processing by increasing neuronal responsivity (gain) in task-related regions (Aston-Jones 

& Cohen 2005; Foote, Aston-Jones & Bloom, 1980; Berridge & Waterhouse, 2003). Tonic 

LC activity consists of low-frequency baseline fluctuations (.1-5 Hz) related to arousal 

levels and results in impaired attentional performance (Vazey et al., 2018). These two 

modes of activity are not mutually exclusive, and the balance between phasic and tonic LC 

activity produces an optimal level of performance (Jepma & Nieuwenhuis, 2010) in a 

manner that mirrors the inverted-U relationship between the arousal/tonic-LC and task 

engagement/phasic-LC (Aston-Jones & Cohen, 2005). Aston-Jones and Cohen (2005) 

developed the Adaptive Gain Theory to explain the role of the LC-NE system in behavioral 

and neural levels: the phasic mode of LC activity is driven by task-related decision 

processes, and it provides the target neurons with a transient gain that facilitates task-
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related behavior (exploitation). On the other hand, the tonic mode of LC activity produces 

a more enduring and less discriminative gain increase in the target neurons. Although this 

is not beneficial for the task at hand, it will facilitate the disengagement of performance 

from this task and look for other valuable opportunities (exploration). 

Much of the information on the role of LC-NE system on cognitive processes and 

behavior comes from pharmacological studies and intracranial recordings on animal 

models as well as computational models (Foote et al., 1975; Aston-Jones, Rajkowski, 

Kubiak, & Alexinsky, 1994; Manunta & Edeline, 2004; Edelin, Manunta, & Hennevin, 

2011; Servan-Schreiber, Printz, & Cohen, 1990; Usher, Cohen, Servan-Schreiber, 

Rajkowski, & Aston-Jones, 1999). Advances in the field of neuroimaging have yielded 

new opportunities to characterize LC-NE function in humans using markers such as the 

Blood-Oxygen-Level-Dependent (BOLD) signal of functional magnetic resonance 

imaging (fMRI). However, this effort is restricted as the LC’s small size and location near 

the fourth ventricle makes the extracted BOLD signal particularly sensitive to 

physiological noise such as respiration and heart pulses (Szabadi, 2013). Another marker 

for LC-NE activity and cortical arousal state is the non-luminance mediated pupil diameter 

which has shown strong correlations with LC activity directly recorded in animals 

(Rajkowski, Kubiak & Aston-Jones, 1993; McGinley et al., 2015) and links with LC-

BOLD in humans (Murphy et al., 2014; Alnæs, et al., 2014; deGee et al., 2017). 

Particularly, pupillometry seems to reflect both the tonic and phasic aspect of the LC-NE 

function. In target detection experiments in monkeys, pre-trial baseline pupils had large 
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values during tonic LC activity and relatively small values during phasic LC activity 

(Rajkowski et al., 1993). Moreover, there is increasing evidence that rapid large pupil 

dilation tracks task-related activity and task processing (Richer & Beatty, 1987; Einhäuser 

et al., 2008). Together, these studies suggest that similar to the reciprocal relationship 

between LC tonic and LC phasic, baseline pupil diameter and task evoked pupil diameter 

change should be inversely correlated. 

In the oddball target detection task, subjects are presented with sequences of 

repetitive stimuli that are infrequently interrupted by a deviant or “odd” stimulus. Detection 

of the odd stimulus reliably evokes transient activity which was initially measured by 

event-related potential (ERP) research (Squires et al., 1975; Huettel & McCarthy, 

2004). Using an auditory oddball task, Gilzenrat et al. (2010) calculated the one-second 

pre-stimulus pupil diameter as the baseline (tonic) pupil measure as well as the highest 

deviation from the baseline in the 2.5 s following the tone onset as the task-relevant (phasic) 

pupil measure. The authors showed that the increase in the baseline pupil was associated 

with degraded task performance (indexed by reaction time and phasic pupil diameter), 

whereas reduced baseline diameter (but increased task-evoked pupil dilations) was 

associated with improved task performance. Murphy et al. (2011) used an auditory oddball 

task and grouped measures of reaction time (reaction time and reaction time coefficient of 

variation) based on baseline pupil diameter quantiles. In contrast to Gilzenrat et al. (2010) 

they failed to observe any significant difference in reaction time based on baseline pupil 

diameter. However, similar to Gilzenrat (2010), the authors showed an inverse relationship 
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between tonic and phasic pupil diameters. Together, these studies suggested that despite 

the challenges in accessing LC-NE activity and lack of direct recordings in humans, 

neurophysiological markers alongside task engagement measures (indexed by behavioral 

accuracy and reaction time) can serve as estimates of cortical arousal function. However, 

this approach requires designing an experimental paradigm that is sensitive enough to 

characterize how LC engagement may change stimulus encoding, processing and behavior. 

One way to evaluate this is to extract stimulus-response functions across multiple 

measures of a perceptual decision-making task such as behavioral performance, 

pupillometry and fMRI BOLD. In principle, we can fully characterize a system’s 

(individual’s) stimulus-response function by probing the system with all the possible inputs 

or stimuli and measuring all the corresponding outputs or responses. As in practice this is 

not possible, one approach is to probe the system with a proper subset of stimuli, record 

the responses, and quantify this stimulus-response function using mathematical tools. Then 

by using this function, a feature of a stimulus (e.g., luminance for visual stimulus or 

frequency for auditory stimulus) can be mapped onto a response to generate a psychometric 

function. If the measured response is the pupillometry dilation response or the fMRI-BOLD 

change of a particular brain region, the functions are called pupillometric and neurometric 

respectively. Estimating and understanding the stimulus-response functions in various 

stages of perceptual processing is important for two reasons: 1) It give us a quantifiable 

method to describe behavioral performance and neurophysiology and predict these values 

even for stimuli that were not used in the estimation. 2) We can compare the stimulus-
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response functions to each other and explain the sensory-driven (i.e., A1-BOLD) or 

arousal-driven (pupillometry) aspects of behavior. For example, by comparing the 

neurometric function to psychometric function, we can understand whether the neural 

voxels of the sensory region (i.e., A1) constrain perceptual accuracy.  

In the current study, we took the first step towards developing a tool to properly 

study LC-NE activity, with the long-term goal of investigating the relationship between 

behavioral performance, pupillometry, A1-BOLD and LC-BOLD. This tool was tested 

during salient events in the context of a modified auditory oddball task. The oddball 

paradigm is a popular paradigm commonly used to investigate cognitive processes in 

event-related studies (Rajkowski, Kubiak, & Aston-Jones 1994; Huettel & McCarthy, 

2004; Stevens et al., 2000; Linden et al. 1999). This paradigm requires detecting the odd 

stimulus embedded in a series of frequent stimuli. Notably, the auditory oddball paradigm 

detection phase is associated with physiological indices such as pupil diameter, EEG P300 

of cognitive processing (Nieuwenhuis et al., 2005) and neural activity in primary auditory 

cortex (Chen et al., 2015; Walz et al., 2015). In this study, we systematically manipulated 

the stimulus novelty of the oddball task using a range of frequent offsets while keeping the 

probability of oddball to frequent stimuli 2:8. We extracted the stimulus-response functions 

for behavioral performance, pupillometry and neural response. We hypothesized that the 

used parameters for oddball offsets were sensitive to capture variance and changes in LC-

NE levels resulting in quantifiable functions rather than a single-point measure. Further, 

we tested the robustness of our experimental paradigm and extracted stimulus-response 
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functions by applying a physical squeeze ball stressor (Mather et al., 2020; Nielsen & 

Mather, 2015) to see whether the squeeze factor alters the stimulus-response functions by 

enhancing or disrupting the response to the attended tone. Mather and colleagues (2020) 

used an isometric squeeze ball and showed that squeezing the ball for a few seconds 

upregulates the tonic LC and arousal. Therefore, we might expect that the squeeze stressor 

modulates any of the extracted stimulus-response functions. Finally, we provided insight 

and recommendations regarding how to further enhance our experimental paradigm, 

neuroimaging data acquisition and analyses to benefit future LC studies. 

Methods 

Participants 

Thirty healthy students from the University of California, Riverside (UCR) 

participated in this study [Mage = 24.5, SDage = 4.4 years; 17 females]. All the participants 

were right-handed except for one who was ambidextrous. One additional student 

participated but their data were excluded from all analyses due to a diagnosis of attention 

deficit hyperactivity disorder (ADHD), which is an exclusionary factor for this study. 

Exclusion criteria included being left-handed, a history of cognitive disorder or 

impairment, use of psychoactive medication or failure to pass the MRI screening interview 

which conducted via email. The experimental protocol was approved by the Institutional 

Review Board of UCR, and all participants gave their informed consent before 

participating in the experiment. The data was collected at UCR’s Center for Advanced 

Neuroimaging (CAN). 
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Behavioral Protocols 

Each participant underwent a resting‐state fMRI scan. Then they engaged in either 

squeezing the stress ball (experimental condition) or holding the stress ball (control 

condition) and rested after each condition.  Next, participants performed three blocks of 

the auditory oddball task followed by a short version of the squeeze/control-rest sequence. 

Finally, they performed three more blocks of the auditory oddball task. Figure 3. 1 shows 

the structure of each of these block types. During rest, participants were instructed to relax, 

think of nothing, and maintain fixation for 5 min at a centrally presented bullseye. Prior to 

the start of the squeeze/control-rest sequence block, participants were given an isometric 

ball of normal stiffness and they either held the ball or squeezed it as hard as possible with 

the dominant hand. We used a within-subject design meaning that each participant engaged 

in both the squeeze and hold (control) condition. We counterbalanced the order by 

randomly assigning participants to either perform the squeeze first or control first. The 

original squeeze/control-rest block had 5 cycles of squeeze/control alternating with rest. 

While the duration for squeeze/control was always 18 s, the duration for rest was as 

follows: 2 min, 2 min, 5 min, 1 min, 1 min. For the short version, we only had 2 cycles of 

squeeze/control-rest with the resting duration as follows: 1 min, 1 min. The original block 

took 12.5 min, and the shortened block took 2.6 min making the total time of 15.1 min. 
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Figure 3. 1. Experimental design showing the (A) Resting-state task during which 
participants fixated on the bullseyes (B) squeeze/control- rest sequence: The participants 
performed this twice, once before the oddball task and a shortened version of it after the 
three blocks of oddball. (C) Oddball task 
 
During the oddball blocks, subjects listened to a series of tones that were either frequent or 

oddball. A frequent trial contained a sequence of five consecutive tones of the same 

frequency (1000 Hz), while an oddball trial consisted of five consecutive tones with one 

odd, embedded tone (1004, 1008, 1016, 1032, 1064, or 1128 Hz). The oddball tone was in 

either the 2nd, 3rd or 4th tone position. Duration of the auditory stimulus was 2.5 min and 

duration of each tone was 0.1 min with ISI of 0.4 min. Subjects indicated their choice on 

each trial (“oddball or frequent?”) using two 2-button MRI-compatible response boxes, 

namely responsepixx (VPixx technologies, Vision Science Solutions, Quebec, Canada). 

The response window was 1.9 min. After the response window, participants were given 

visual feedback on the screen in forms of “correct” or “wrong” text. In addition to frequent 

and oddball trials, we had trials of no tone –blank– to serve as a baseline for % signal 

change. During blank trials, participants were shown instructions on the screen for which 
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buttons to press. Each trial began with a fixation point, followed by 2.5 min of auditory 

stimulus presentation through the MRI-compatible headphones, 1.9 min of response and 

1.5 min of feedback. We added pseudorandom jitter of 1 TR at the end of each trial. Each 

block consisted of 39 trials with 4 trials per oddball level (24 oddball trials in total), 9 

frequent trials and 6 blank trials and lasted around 4.5 mins. We had a total of six runs that 

brought our oddball task time to 27 min. The experiment was generated using MATLAB 

2015b, Psychophysics Toolbox, version 3 (Brainard, 1997; Pelli, 1997). 

 
Magnetic Resonance Imaging and Preprocessing 

 Imaging data were acquired on a 3-Tesla Siemens Prisma MRI scanner (Prisma, 

Siemens Healthineers, Malvern, PA) equipped with a 64-channel head-coil at the Center 

for Advanced Neuroimaging at University of California, Riverside. Participants laid supine 

in the scanner with the head stabilized with foam pads to minimize head movements. For 

anatomic T1 image: TR/TE/TI=2400/2.72/1060 ms, flip angle = 8 degrees, FOV = 256 × 

240 mm2, voxel size = 0.8 × 0.8 × 0.8 mm3, 208 slices, GRAPPA = 2. For resting-state 

fMRI and task fMRI: TR/TE = 2000/32 ms, FOV = 224 × 196 mm2, matrix size = 112 × 

98, slice thickness 3 mm, 52 slices, flip angle = 69 degrees, multiband factor = 2, GRAPPA 

= 2, bandwidth = 1440 Hz/Px, phase encoding direction was AP. Susceptibility distortion 

correction used a spin echo EPI with spatial parameters matching those of the fMRI. The 

only differences were as follows: 1) flip angle was 90 degrees for the SE EPI, 2) no 

multiband or GRAPPA was used in either of AP or PA acquisition. 
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Preprocessing of the images was performed using Freesurfer (Fischl et al., 2002; 

http://surfer.nmr.mgh.harvard.edu) and FMRIB Software Library (FSL; Woolrich et al., 

2009; https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/). Automated gray matter parcellation was 

completed using the FreeSurfer software (recon-all). This step was used both for defining 

our region of interest (ROI) as well as to skull-strip the anatomical images. All individual 

T1 images were registered to the. A structural auditory cortex ROI for each subject was 

then constructed combining the G_temp_sup-G_T_transv, G_temp_sup-Lateral, and 

S_temporal_transverse FreeSurfer labels from Desikan-Killiany Atlas across left and right 

hemispheres. The structural A1 mask as well as the structural T1 warped into the standard 

Montreal neurological institute (MNI) space using flirt. Further we applied slice-time 

correction using a MATLAB (Mathworks, Natick, MA) code. Then we performed motion-

correction (mcflirt) and susceptibility distortion correction (topup). Finally using the FEAT 

tool we applied the temporal filter (high pass, cut-off = 100s) and spatial smoothing with 

Gaussian kernel (full-width half-maximum; FWHM= 5mm). We applied two general linear 

models (GLM) to define two functional masks: 1) We applied a GLM model with onset of 

sound (aggregate of oddballs and frequent trials) and onset of blank trials as two regressors. 

The purpose of this mask was to locate sound-responsive voxels; 2) We applied a GLM 

model with onset of oddballs (aggregate of all oddball trials) and onset of frequent trials as 

two regressors. The purpose of this mask was to locate oddball-responsive voxels. The 

final hybrid mask was the overlap of the two functional masks within the structural ROI of 

primary auditory cortex (A1). Figure 3. 2 presents a schematic of applied preprocessing to 
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preprocess the EPI images and create final hybrid mask that we later used to extract A1-

BOLD timeseries.  For the LC localization we used the mask described previously 

elsewhere (Langley, et al., 2020). 

Pupillometry and Processing 

 Pupil diameter was recorded continuously using a binocular eye-tracker 

(TRACKPixx; VPixx Technologies) with the sampling-rate of 2000 Hz. The recorded data 

had a column that showed blinks. For preprocessing, we used ET-remove semi-automated 

program (github.com/EmotionCognitionLab/ET-remove-artifacts) to interpolate the 

blinks. Then a trained user visually inspected the data to either correct or remove the 

improperly interpolated segments. For the oddball pupillometry data, we segmented the 

data based on the event types with -1 second before the sound start and +5s after the sound 

start. Further, we calculated the trial-by-trial baseline and change in pupil diameter to 

represent the tonic and phasic pupillary activity, respectively. We defined the tonic 

(baseline) pupil diameter as the average before 1-s period prior to tone onset. We defined 

the phasic pupil activity induced by the tone presentation in each trial by calculating the 

difference between the highest divergence of pupil diameter from the baseline within the 

2.5 s (Glizenrat et al., 2010). 
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Figure 3. 2. Pipeline for fMRI data pre-processing and fitting an iterative GLM model 
using the corresponding stimulus events. The hybrid mask is a result of structural 
[Primary Auditory cortex] x functional mask1 x functional mask2. The functional mask is 
a result of [sound-blank] x [oddball-frequent]. The final hybrid mask was binarized and 
generated for each individual subject. 
 
Measures 

Our study utilized multi-measure experimentation in which we collected 

behavioral measures as well as pupillometry and neural data as follows: 

Reaction Time. For each trial, reaction time was measured as the time between the 

response cue (“Is the sound oddball or frequent) and the participant’s button press 

providing an estimate of the oddball detection decision time. As the response window was 

open only after the offset of the sound stimulus, the estimated reaction time was a delayed 
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response time. This is thought to vary both by oddball and oddball saliency and may be 

impacted by the arousal or LC activity where, similar to the relationship portrayed by 

Yerkes-Dodson curve, slower responses are in the left, fast in the middle and more 

variables towards the right. Grand-average psychometric stimulus-response function was 

acquired by averaging the reaction time values across trials, sessions and across 

participants.  

Accuracy. For each trial, accuracy was considered as the binary outcome of 

whether a trial was “Frequent” or “Oddball” where correct decisions were recorded as 1 

and incorrect decisions were recorded as 0. This provides an estimate of decision 

correctness. This is thought to vary both by oddball and oddball saliency and may be 

impacted by the LC where more accurate responses happen in the middle of the Yerkes-

Dodson curve. Grand-average psychometric stimulus-response function was acquired by 

averaging the accuracy values across trials, sessions and across participants. 

Pupillometry response. For each trial, we averaged the pupil diameter for left and 

right eyes and for vertical and horizontal axes to increase the quality of the signal and then 

examined the pupil segments by locking the signal to oddball onset from .1s prior to 5 

seconds after. We considered the baseline pupil diameter during .1s as tonic pupil activity 

and baseline-corrected peak pupil between 0.75 and 1s as phasic pupil activity. Phasic pupil 

response is thought to covary with phasic LC-NE activity and tonic pupil response is 

thought to covary with tonic LC-NE activity (Gilzenrat et al., 2010). Grand-average 
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pupillometric stimulus-response function was acquired by averaging the phasic pupil 

dilation values across trials, sessions and across participants.  

A1-BOLD. For each trial, we extracted the average BOLD signal from hybrid A1 

mask during 1TR prior to the sound start time and 9TRs after. We calculated the BOLD 

signal 1TR prior to sound start as tonic A1 activity and baseline-corrected A1-BOLD at 2 

and 3 TR as the phasic activity. Phasic A1-BOLD is considered as the transient change in 

auditory activity from a baseline activity in response to a sound stimulus. Tonic A1-BOLD 

is considered as the sustained auditory activity. A1-BOLD may be modulated by LC 

activity and cortical arousal. Grand-average neurometric stimulus-response function was 

acquired by averaging the phasic A1-BOLD values across trials and across participants. 

LC-BOLD. For each trial, we extracted the average BOLD signal from LC mask 

(Langley et al., 2020) during 1TR prior to the sound start time and 9TRs after. We 

calculated the BOLD signal 1TR prior to sound start as tonic LC activity and baseline-

corrected peak LC-BOLD at 5 TR after sound start as the phasic activity. Phasic LC-BOLD 

is thought as the proxy of transient change in LC-NE activity from a baseline activity 

whereas tonic LC-BOLD is thought as the sustained LC-NE activity. LC-BOLD may be 

modulated by perceptual stimulus (i.e., saliency of the stimulus) or cognitive processing 

(i.e., performance monitoring and error related activity). LC-BOLD is extremely 

susceptible to noise due to its small size and location. Grand-average neurometric stimulus-

response function was acquired by averaging the phasic LC-BOLD values across trials and 

across participants for 10-second time point. 
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Statistical Analysis 

Before running any analyses, we have conducted data cleaning in multiple steps. In 

step A of the data cleaning, we excluded 3 participants: 1 participant excluded due to later 

diagnosis of ADHD, 2 participants excluded as their hybrid A1 mask did not result in any 

active voxels. In step B we excluded the trials and all their corresponding measures where 

the subject failed to register a response. In step C we excluded the trials and all their 

corresponding measures where the participants responses were faster than 100ms. In step 

D, we excluded the trials that had missing values in oddball-locked pupillometry segments. 

In step E we excluded the trials with missing value in BOLD signal segments. In step F we 

excluded the trials with no sound (blank). Figure 3. 3 illustrates all the applied trial rejection 

steps and the final trial counts. 
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Figure 3. 3. Data cleaning. Before doing any six steps of A to F were implemented.Final 
trial counts showed no significant difference between the trial numbers of Oddball 1004 
(O4), Oddball 1008 (O8), Oddball 1016 (O16), Oddball 1032 (O32), Oddball 1064 
(O64), Oddball 1128 (O128).    
 All the analysis were performed after the data cleaning procedure. As a first step 

we examined the extent to which the paradigm gave rise to responses in pupil, primary 

auditory cortex, and LC. Second, we assessed the effect of handgrip manipulation by 

applying non-parametric permutation tests (Cohen, 2014) to behavioral as well as 

neurophysiological data. Third, we extracted stimulus-response functions: relating the 

auditory stimuli, different oddball levels in this case, to the evoked behavioral response, 

pupillometry response and neural brain responses. For psychometric function, performance 

at each oddball level quantified as average of percent correct responses across subjects and 

across sessions. For reaction time trend, we followed a similar analysis on reaction times. 
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For pupillometric function, pupillometry response at each oddball level was quantified as 

the average of pupillometry dilation responses between .75-1 s across subjects and across 

sessions. For neurometric function in primary auditory cortex, A1-BOLD response at each 

oddball level quantified as average of A1-BOLD between 2-3 seconds across subjects and 

across sessions. For neurometric function in LC, the stimulus-locked grand-average signal 

did not show a clear peak and latency, however, we have considered the average data point 

at 10 seconds at each oddball level. We used repeated measure analysis of variance 

(ANOVA) with seven levels (Frequent, Oddball 1004, O Oddball 1008, Oddball 1016, 

Oddball 1032, Oddball 1064, and Oddball 1128). See the supplementary material (Figures 

S3. 1, S3. 2, S3. 3 and S3. 4) for stimulus-response functions of control and squeeze 

sessions. For the ANOVA tests, if the sphericity test was violated, we used Greenhouse-

Geisser-corrected degrees of freedom based on significant Mauchley’s Test of Sphericity, 

p < .05.  Finally, we compared the extracted stimulus-response functions across subjects. 

To do this we normalized the reaction time, pupillary and fMRI-BOLD data between 0 and 

1. We characterized the stimulus-response functions, by fitting a linear function (α. x + b) 

and estimating the slope (α). The linear fits can account for particularly poor fits of more 

complex models such as Weibull and logistic types. We performed correlations on the 

fitted slopes to determine the relationship between different stimulus-response functions 

across subjects. 
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Results 

As a reminder, all the analysis and depicted results in this section were performed 

after the data cleaning steps (see Methods). 

Quantifying Task-Evoked Neurophysiological Responses 

As a first step, we examine the extent to which the auditory oddball paradigm gave 

rise to responses in pupil diameter, BOLD signal of the primary auditory cortex, and LC 

BOLD activity.  

Pupillometry Data. To track phasic arousal, we measured the pupil response, a 

proxy of LC-NE activity, immediately after the oddball onset. We obtained the pupil time 

course for each frequency level by averaging across the trials of that frequency level (see 

Methods). Oddball tones evoked greater dilatory responses in the pupil diameter around 

.75-1 s after initiation of the tone for both control and squeeze sessions (Figure 3. 4-A, 3. 

4-B).  As seen in the graph the higher frequencies (saliency) showed larger changes than 

the lower frequencies, with the frequent as well as oddball tones at 4 and 8 Hz showing a 

different pattern than the other tones. There is a second peak around 3.5-4.5 s which 

according to its latency is likely related to the response (button press) or processing 

feedback (correct or wrong). 
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Figure 3. 4. Grand-average pupillary dilation response. (A) Control session (B) Squeeze 
session 
 

3.1.2. Neural Data (fMRI-BOLD) 

Here, we investigated the effect of stimulus saliency on BOLD activity of the 

primary auditory cortex (A1), a sensory region activated during auditory perception, and 

LC, a region associated with cortical arousal. Similar to the pupillometry data, oddball 

tones evoked substantial BOLD change responses in 4-6 s (2-3 TR) in auditory cortex 

voxels for both control and squeeze sessions based on the oddball saliency (Figure 3. 5-A, 

5-B). After the first peak, the BOLD signal dropped at ~10 s, followed by a small second 

peak. According to latency, the first peak was associated with stimulus processing and the 

second peak was due to response (button press) or processing feedback. We considered the 

-1TR as the baseline (in arbitrary units). Visual inspection of the A1-BOLD signals 

indicated that despite the baseline correction, some variability between frequencies 

remained during baseline period of -1TR. This remaining noise maybe due to pre-

processing steps and scanner noise. 
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Figure 3. 5. A1-BOLD epochs locked to sound start time. (A) During Control session (B) 
During Squeeze session 
 
Stimulus-locked BOLD responses of LC did not result in a clear peak for oddball tones; 

however, the BOLD time course at 10 s seemed to harbor a synchronous activity 

manifested as local peaks in the control condition (Figure 3. 6-A). Similar to A1-BOLD, 

we considered the -1TR as the baseline (in arbitrary units). Visual inspection of the LC-

BOLD after baseline correction indicated that despite the baseline correction, substantial 

variability remained at the sound start time especially for the squeeze session (Figure 3. 6-

B). This observation indicated the existence of substantial noise in the LC-BOLD measure 

which can be due to scanner noise, physiological noise such as cardiac cycles, or pre-

processing noise such as smoothing (Turker et al., 2021). 
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Figure 3. 6. LC-BOLD epochs locked to sound start time. (A) During Control session (B) 
During Squeeze session 
 
Effect of Hand Grip Manipulation 

We applied a non-parametric permutation test (Cohen, 2014) to behavioral as well 

as neurophysiological data to assess the effect of handgrip manipulation. Permutation-

based non-parametric tests are based on fewer assumptions, known as distribution-free and 

they are amenable to multiple comparisons. Therefore, these tests are suitable specially for 

neurophysiological data. For signals, we summarized the time course of the signal as 

follows: a peak at an average of .75-1s for pupil dilation, a peak at an average of 4-6 s in 

A1-BOLD, and no peak for but the activity in the LC BOLD time course at 10 s.  

Table 1 shows the p-values. Unlike Mather et al. (2020) who found that squeezing an 

isometric stress ball resulted in faster oddball detection speed and increased phasic arousal 

(estimated by pupil responses) to oddballs, we did not find any statistically significant 

difference between control and squeeze sessions.  

Table 3. 1. Results of non-parametric permutation test to compare the behavioral and 
neurophysiological values of control session to squeeze 
 

 
TRIAL 
TYPE 

ACCURACY  
MEAN (SD) 

 P-
VALUE 

REACTION TIME  
MEAN (SD) 

 P-
VALUE 

Control Squeeze Control Squeeze 

Frequent 
74.84 (16.28) 75.40 (15.05) .454 495.54 

(136.66) 

453.61 

(126.48) 

.885 

O4 
33.58 (15.09) 33.05 (14.83) .550 475.32 (143. 

04) 

495.24 

(162.06) 

.311 
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O8 
56.59 (22.05) 58.53 (20.87) .371 473.22 

(158.87) 

437.45 (139. 

46) 

.820 

O16 
84.93 (18.19) 84.77 (15.57) .523 400.05 

(123.89) 

384.91 

(131.26) 

.679 

O32 
96.53 (6.11) 94.70 (7.64) .828 382.22 

(121.37) 

345.33 

(108.41) 

.885 

O64 
97.71 (4.51) 99.31 (2.09) .053 370.37 

(112.56) 

342.83 

(86.92) 

.840 

O128 
99.51 (1.93) 99.09 (2.49) .769 346.17 

(82.29) 

333.43 

(68.35) 

.728 

 

 
TRIAL 
TYPE 

PUPIL  
MEAN (SD) 

          P-VALUE 

Control Squeeze 

Frequent 1.19 (1.01) 1.13 (1.12) .578 

O4 1.17 (1.45) 1.14 (1.51) .518 

O8 1.37 (1.49) 1.25 (1.56) .613 

O16 1.49 (1.41) 1.54 (1.74) .456 

O32 1.64 (1.78) 1.64 (1.53) .502 

O64 1.56 (1.54) 1.62 (1.92) .448 

O128 2.21 (1.84) 1.86 (1.46) .772 
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TRIAL 
TYPE 

A1-BOLD  
MEAN (SD) 

 P-
VALUE 

LC-BOLD  
MEAN (SD) 

 P-
VALUE 

Control Squeeze Control Squeeze 

Frequent -0.01 (0.09) -0.02 (0.05) .805 0.01 (0.09) -0.01 (0.11) .750 

O4 0.03 (0.13) -0.01 (0.12) .910 0.01 (0.13) -0.04 (0.12) .956 

O8 0.04 (0.07) 0.04 (0.11) .509 0.03 (0.18) -0.03 (0.16) .943 

O16 0.11 (0.14) 0.11 (0.11) .520 0.03 (0.16) -0.04 (0.14) .978 

O32 0.14 (0.12) 0.13 (0.10) .660 -0.02 (0.16) 0.00 (0.17) .277 

O64 0.15 (0.14) 0.11 (0.13) .839 -0.03 (0.13) -0.03 (0.16) .458 

O128 0.19 (0.10) 0.22 (0.25) .264 -0.02 (0.15) -0.02 (0.16) .533 

 

As there were no statistically significant differences between control and squeeze session 

in our measures of interest, we aggregated these two sessions for the remaining results.  

Stimulus-Response Functions 

 Here, we investigated the relationship between stimulus levels (frequency levels: 

frequent: 1000 Hz, oddballs: 1004, 1008, 1016, 1032, 1064 and 1128 Hz) and behavioral, 

pupillometry and fMRI-BOLD responses. 

Psychometric Function. We first determined how participants' behavioral 

responses (i.e., percentage of correct responses, reaction time in ms) acted as a function of 

stimulus frequency during the oddball task. This was done by averaging the behavioral 

responses for each stimulus frequency level (see Methods). Our goal was to determine the 

effect of stimulus saliency on behavioral performance. Figures 3. 7-A and 3. 7-B show 
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stimulus-response functions for accuracy and reaction time. Error bars represent standard 

error of the mean (SEM) across trials. 

 
Figure 3. 7. Relationship between behavioral responses and auditory stimuli in oddball 
detection task. (A)Psychometric function and (B) reaction time trend. Accuracy increased 
and reaction time decreased as a function of oddball saliency. 

There was a main significant effect of stimulus frequency level on accuracy (F(2.34,63.22) 

= 136.46, p < .001, η2 = .83) and reaction time (F(2.60,70.44) = 33.24, p < .001, η2 = .55). 

As expected, these analyses suggested that accuracy increased and reaction time decreased 

with increasing oddball frequency. These results indicated that increasing the oddball 

saliency led to higher behavioral performance in the form of more correct responses and 

faster responses. Our results demonstrated that we have utilized the appropriate range of 

stimulus frequency to capture variability in the behavioral performance for both reaction 

accuracy and reaction time.  

Pupillometric Function. Having tested the behavioral responses as a function of 

the stimulus frequency, we proceeded to investigate the effect of stimulus frequency on 

pupil dilation response while participants performed the auditory oddball task. This was 

done by averaging the pupil diameter dilation responses for each stimulus frequency level 

(see Methods). Our goal was to determine the effect of stimulus saliency on pupil dilation 
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response. Figure 3. 8 shows pupillometric function obtained by plotting the pupillometry 

dilation response as a function of auditory stimulus frequency level. Error bars represent 

standard error of the mean (SEM) across trials.  

 

 
Figure 3. 8. Relationship between pupillometry dilation response and auditory stimuli in 
oddball detection task. Pupillometry dilation response increased and reaction time 
decreased as a function of oddball saliency. 

There was a main significant effect of stimulus frequency level on pupillometry dilation 

response (F(3.67,99.13) = 5.42, p < .001, η2 = .16). This result suggested that pupillometry 

dilation responses increased with the increasing oddball saliency. Since phasic pupil 

dilation is a proxy of phasic arousal activity, the resulting pupillometric functions indicated 

that the oddball paradigm was able to capture the variability in phasic arousal.  

Neurometric Functions. Next, we investigated how the effect of stimulus saliency 

was reflected on the neural level. In the context of our perceptual decision-making task, 

A1 and LC were chosen as the task-relevant regions. Figure 3. 9 shows neurometric 

function obtained by plotting the average BOLD response within the hybrid A1 region (A1 
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mask) as a function of auditory stimulus frequency level. Error bars represent standard 

error of the mean (SEM) across trials.  

 

 
Figure 3. 9. Relationship between A1-BOLD and auditory stimuli in oddball detection 
task. A1-BOLD increased as a function of oddball saliency. 
 
There was a main significant effect of stimulus frequency level on A1-BOLD % change 

(F(3.45,93.27) = 20.32, p < .001, η2 = .42). Unlike the neurometric function for A1-BOLD 

which showed a monotonic signal increase as a function of oddball saliency, LC-BOLD 

failed to demonstrate any significant effect of oddball saliency (F(6,162) = 0.40, p = .876). 

The neurometric function for LC is shown in Figure 3.10. However, caution must be taken 

when interpreting the LC-BOLD signal change as there were many potential noise factors 

that may distort the extracted signal (Tucker et al., 2021). Examples of noise factors 

including but not limited to image noise, scanner noise, motion, cardiac pulsation and the 

respiratory cycle (Keilholz et al., 2017). 
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 Figure 3. 10. Relationship between LC-BOLD and auditory stimuli in the oddball 
detection task.  
 
Taken together, this analysis established the relationship between neuronal responses and 

the stimulus frequency. While auditory processing response (estimated using A1-BOLD) 

increased with the level of oddball saliency, we did not capture any significant variability 

in LC-BOLD response.  

Comparisons of Stimulus-Response Functions Across Measures. The extracted 

stimulus-response functions (except the neurometric function of LC) indicated that 

stimulus frequency/saliency was represented in measures of behavioral performance, 

pupillometry, and fMRI-BOLD. That is: all the responses increased as a function of 

stimulus saliency. Therefore, we compared the different stimulus-response functions to 

each other to decide whether the neurophysiological signals carry information that might 

be associated with psychophysical behavior. To do this, we characterized the stimulus-

response functions for each participant with fitting a linear model (see Figure 3.11) across 

different measures of behavior,  
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Figure 3. 11. Fitted lines across subjects before subject exclusion. (A) Accuracy (B) 
Normalized Reaction Time (C) Normalized pupil diameter change (D) Normalized A1-
BOLD change and (E) Normalized LC-BOLD change. Each line shows a fit for a 
participant 
 
pupillometry and BOLD signals. After characterizing the stimulus-response function by 

extracting slope values, we correlated the different slopes. Figure 3. 12 shows the scatter 

plots for these associations before subject exclusion. Across participants, greater accuracy 

slope value was associated with faster reaction time slope (r(26) = -0.49, p = 0.01). Greater 

A1-BOLD slope was associated with faster reaction time slope (r(26) = -0.56, p < 0.01) as 

well as higher accuracy slope (r(26) = 0.41, p < 0.02).  
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Figure 3. 12. Associations between the estimated slope of different measures (before 
subject exclusion). Behavioral performance (Accuracy and Reaction Time), pupillary 
response, A1-BOLD and LC-BOLD 
 

These correlations remained significant when we excluded 10 subjects with positive slope 

for reaction time and negative slopes for pupillometry and A1-BOLD fits. As a result, a 

positive correlation between slope of pupillary response and accuracy (r(16) = 0.47, p = 

0.03) and a negative correlation with slope of reaction time (r(16) = -0.52, p = 0.01) 

emerged. These findings are significant as pupillary dilation slope is a measure of phasic 

arousal or phasic LC-NE activity (Aston-Jones & Cohen, 2005; Murphy et al., 2011). As 

phasic arousal facilitates task-relevant activity (exploitation), it is associated with better 

performance which is indexed here by faster reaction time slope and higher accuracy slope. 
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Moreover, we found a trend for a association between pupillary slope and A1-BOLD slope 

(r(16) = 0.41, p = 0.07), indicating that phasic arousal promotes auditory processing by 

increasing A1-BOLD signal slope. Slope of LC-BOLD; however, failed to show any 

significant associations with any of the measures.  Line fits and scatter plots of the 

associations are shown in the supplementary material Figure S3. 5, Figure S3. 6 

respectively. Measures of goodness of fits (R2) can be found in the supplementary material 

Table S3.1. 

 
Discussion 

 Decades of research have revealed that by projecting NE, LC plays a significant 

role in cortical arousal, perception, attention, decision-making, learning, memory and 

cognition in general (Aston-Jones & Cohen, 2005; Murphy et al., 2011; Angela & Dayan, 

2005; Berridge & Waterhouse, 2003; Clayton et al., 2004; Cohen Hoffing & Seitz, 2015; 

Silvetti et al., 2013; Sara, 2009). Studies, majorly in animal models, have demonstrated 

that LC neurons exhibit two distinct modes of activity: phasic(task-relevant), and tonic 

(spontaneous) which differ in NE releasing properties and behavioral manifestation 

(Devilbiss & Waterhouse, 2011; Vazey et al., 2018). These two modes of activity are not 

mutually exclusive, and the balance between phasic and tonic LC activity produces an 

optimal level of performance (Jepma & Nieuwenhuis, 2010) in a manner that mirrors the 

inverted-U relationship between the arousal/tonic-LC and task engagement/phasic-LC 

(Aston-Jones & Cohen, 2005). A key challenge in understanding LC function in humans 

is the lack of direct measures. Although advances in neuroimaging have opened new 
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horizons to investigate the mechanisms of the human brain non-invasively, limitations of 

studying LC persists. Small size and near-ventricle location of the LC structure makes the 

extracted LC-BOLD signal susceptible to image noise, scanner noise, motion, cardiac 

pulsation, and respiratory cycles (Keilholz et al., 2017). Therefore, there is an increasing 

need to establish methods to estimate LC-NE and arousal functions.  Several studies have 

used pupillometry and P300 Event-related potential as electrophysiological markers of 

using an auditory oddball task (Nieuwenhuis eta l., 2005; Murphy et al., 2011). For 

example, results of Gilzenrat et al. (2010) and Murphy et al. (2011) suggest 

that integration of information across different neuropsychological markers and task 

engagement measures (indexed by behavioral accuracy and reaction time) can serve to 

estimate the cortical arousal function). However, this approach first requires designing an 

experimental paradigm that is sensitive enough to characterize how LC engagement may 

change stimulus encoding, processing and behavior. 

  Thus, in this study we conducted a multi-measure experiment and took the first step 

to develop an experimental tool to advance future non-invasive studies of the LC-NE 

system in humans. We examined behavioral performance, pupillometry response and 

neural fMRI response in the context of a modified auditory oddball task with multiple 

oddball levels. We extracted the psychometric function and reaction time trend by 

examining the behavioral accuracy and reaction time as a function of oddball strength. As 

predicted, our results showed that decision accuracy and response time improved as oddball 

saliency increased, providing proof of concept that at the level of behavioral performance, 
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the oddball detection task captures variability and enables extraction of psychometric 

function. Similarly, we extracted the pupillometric function that revealed the relationship 

between pupillary dilation response and oddball saliency. Our findings showed that 

stronger oddballs elicited larger pupil dilation and the pupillometric function captured the 

variability of responses across the group of recruited subjects. Finally, we extracted the 

neurometric functions in the task-relevant areas, the primary auditory cortex and LC, by 

examining BOLD responses in these areas as a function of oddball saliency. The 

neurometric function in primary A1 showed that auditory processing increased as a 

function of oddball saliency, suggesting the viability of our oddball detection task in 

capturing variance in the neural domain. Interpreting the neurometric function in LC should 

be approached with caution due to the substantial noise in the baseline LC-BOLD activity 

which can be due to imaging or preprocessing noise (Keilholz et al., 2017; Turker et al., 

2021)  

These results are significant as, to our knowledge, our paradigm is the first that 

enables extraction of stimulus-response functions in different levels of task processing, 

behavior, pupillometry and neural levels, which may together be used as markers of LC-

NE activity. Moreover, the monotonic increase of accuracy (and decrease of reaction time), 

pupil dilation and A1-BOLD as a function of oddball saliency possibly reflect the additive 

influence of stimulus novelty and strength. We also applied the isometric handgrip 

manipulation previously used in several studies (Mather et al., 2020; Nielsen & Mather, 

2015) which suggested that squeezing an isometric stress ball was sufficient to engage LC 
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activity in older adults and female participants; however, our findings suggest that this 

physiological stress manipulation did not induce any significant changes in LC activity 

(evaluated via pupil diameter response; see Figure S3) when tested in younger adults. 

Beside pupillometry response, this manipulation did not result in any statistically 

significant differences between other stimulus-response functions of behavior, A1-BOLD 

and LC-BOLD, (see Figures S1, S2, and S4). This showed that the extracted stimulus-

response functions were robust to a squeeze stressor. For neurometric function of LC 

however, the handgrip session resulted in substantial noise in baseline LC activity. One 

explanation for our results is the significant individual differences in cognitive abilities, stress 

response and LC-NE system function (LoTemplio et al., 2021; Wood et al., 2017). After 

demonstrating that the effect of stimulus frequency was reflected across various measures, 

we characterized the stimulus response functions using slope of linear fits and further 

investigated the relationships. This approach allowed us to summarize the captured 

variability of the responses as a function of stimulus level, in a single data point known as 

slope. Similar to above-mentioned work, we showed that phasic pupillometry slope, a 

proxy of phasic arousal, was associated with improved task performance. Higher phasic 

pupil slope was associated with higher accuracy slope and faster reaction time slope as well 

as higher slope for auditory processing. However, LC-BOLD signal did not show any 

significant relationship with any of the task related measures.  

Our study presents several limitations that should be addressed in the future 

research. As mentioned earlier LC-BOLD is susceptible to cardiac and respiratory noise 
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signals and correcting for the physiological noise is vital for the quality of LC-BOLD signal 

(Liu et al., 2017) which we were unable to do due to lack of such recordings. Therefore, 

substantial noise in LC signal has remained which makes the interpretation of LC 

neurometric function and estimated slopes unreliable. Here we used a handgrip 

manipulation as a stressor to modulate LC signal; however, this manipulation did not result 

in significant differences between the extracted stimulus-response functions. Therefore, 

future research should examine other methods of eliciting stress in a laboratory setting such 

as the cold pressor test (Marmon & Enoka, 2010; Schwabe & Schächinger, 2018) 

delivering small electric pulses (Stark et al., 2006; Oyarzún et al., 2012), presentation of 

emotionally arousing pictures (International Affective Picture System, IAPS; Lang et al., 

2008) and sounds (International Affective Digitized Sound System, IADS; Bradley & 

Lang, 2007) , besides manual compression of an isometric squeeze ball (Hartwich et al., 

2010). Also, recent research has suggested that using a manual compression concurrent 

with the task at hand can effectively modulate the arousal (Park et al., 2021). Of note, we 

aimed to go beyond the effect of normal LC activity on perceptual decision-making by 

manipulating LC activity using primary sensory stressors and investigate the human 

electrophysiology, behavior and extracted stimulus-response functions during the above-

mentioned auditory oddball task which was put to hold due to COVID pandemic. 

Moreover, future studies should increase the sample size by increasing the number of the 

trials to increase the statistical power. This is particularly important for neurophysiological 

recordings that contain extraneous noise which can be decreased by increasing the number 
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of data points. Finally, although the grand average measures effectively decrease noise, to 

draw a dynamic picture of the moment-by-moment LC activity and its markers, single-

measure variables should be used. Thus, an effective denoising procedure should be 

implemented to obtain reliable single-trial measures of pupillometry and BOLD data. For 

example, Quiroga and Garcia (2003) consider averaged electrophysiological signals as a 

denoising template and gather wavelet coefficients by applying wavelet transformation to 

this template. The retrieved coefficients were later applied to single-trial measures.  

Conclusion 

Our results demonstrated the viability of our modified auditory oddball paradigm 

in characterizing stimulus-response functions across a number of measures: psychometric, 

pupillometric and neurometric. We also introduced a stressor (handgrip) condition, aimed 

at modulating the described stimulus-response functions. The effects of this manipulation 

were subtle. After establishing the appropriate tools for experimenting and capturing the 

variability across multiple levels of processing, the next steps in our project will be to 

further optimize our experimental paradigm, neuroimage data acquisition parameters and 

use optimal pre-processing and processing methods. 
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Supplementary Material 

 
Figure S3. 1. Psychometric functions and Reaction time trend divided based on handgrip 
manipulation. (A) Psychometric function for control (B) Psychometric function for 
squeeze (C) Reaction time trend for control (D) Reaction time trend for squeeze 

 
Figure S3. 2. Pupillometric function is divided based on handgrip manipulation. (A) 
Pupillometric function for control (B) Pupillometric function for squeeze 
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Figure S3. 3. Neurometric function is divided based on handgrip manipulation. (A) 
Pupillometric function for control (B) Pupillometric function for squeeze 

 

 
Figure S3. 4. Neurometric function is divided based on handgrip manipulation. (A) 
Pupillometric function for control (B) Pupillometric function for squeeze 
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Figure S3. 5. Fitted lines across subjects after subject exclusion. (A) Accuracy (B) 
Normalized Reaction Time (C) Normalized pupil diameter change (D) Normalized A1-
BOLD change and (E) Normalized LC-BOLD change. Each line shows a fit for a 
participant 
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Figure S3. 6. Associations between the estimated slope of different measures (after 
subject exclusion). Behavioral performance (Accuracy and Reaction Time), pupillary 
response, A1-BOLD and LC-BOLD 
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Figure S3. 7. All Stimulus-response functions overlayed with fitted lines. 
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Table S3. 1. Goodness of fit (R2) for different measures. For Accuracy (ACC GOF), for 
Reaction Time (RT GOF), for Pupillometry (PUPIL GOF), for A1-BOLD (A1 GOF), and 
for LC-BOLD (LC GOF). Excluded subjects (positive slope for RT and negative slopes 
for pupillometry and A1-BOLD) are shown by orange shade. 
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General Discussion 

Working Memory (WM) is a fundamental cognitive ability which correlates with a 

wide range of complex cognitive functions such as problem-solving, reasoning, learning, 

and planning of goal-directed behaviors (Miyake, & Shah, 1999; Swanson & Alloway, 

2012). Due to the importance of WM, there has been a growing interest in understanding 

and enhancing WM by use of training interventions both in healthy individuals and 

populations with neurological disorders (Lawlor-Savage & Goghari, 2014). As a result, 

many companies started million-dollar businesses by creating off-the-shelf computerized 

programs and games. These companies claim broad generalization of training to untrained 

cognitive abilities, like Lumosity, CogniFit and Jungle Memory, to name a few.  The study 

of the benefits of WM training have been pursued in lab settings of various research groups 

using rigorous scientific methodology and objective approaches as well (Deveau et al., 

2015; Mohammed et al., 2017).  

Numerous studies (Blacker, et al., 2017; Minear et al., 2016) have trained 

participants using a variety of WM tasks such as N-back, span tasks, immediate recall, etc. 

While most studies find improvements in the training task, it is controversial whether WM 

training gains transfer to similar WM tasks, and even more so to different tasks that may 

involve WM (Melby-Lervåg & Hulme, 2013; Au et al, 2015). For instance, some studies 

offered evidence of transfer from WM training to fluid intelligence and complex reasoning 

(Jaeggi et al., 2008; Klingberg et al., 2005), reading comprehension (Loosli, Buschkuehl, 

Perrig, & Jaeggi, 2012), arithmetic (Bergman-Nutley, & Klingberg, 2014), while others 
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reported no transfer effects to fluid intelligence or any other cognitive domains (Thompson 

et al., 2013; Estrada et al., 2015). To reconcile this dichotomous view, several meta-

analyses interpreted these findings in support of the hypothesis that WM training is only 

beneficial to improve the trained task but has limited effect on other cognitive abilities 

(Sala, & Gobet, 2019), while others (Au et al., 2016) supported generalized efficacy of 

WM and attributed the discrepant results to incorrect analysis. 

To address this controversy and further our understanding of WM and the factors 

that impact it, we have conducted a series of studies that were presented in three chapters 

of this thesis. In this process, we started with carefully characterizing the existing 

experimental paradigms in the field of WM training by focusing on behavioral measures. 

We then moved to gaining mechanistic understanding of ongoing brain activity by using 

brain EEG signals as important intermediaries of behavior. Finally, we advanced to 

establishing new experimental paradigms to set the stage for noninvasive estimation of LC 

activity. LC widely projects NE, and by doing so, modulates brain states and influences 

WM in many aspects ranging from information processing to retrieval and learning (Sara, 

2009; Aston-Jones & Cohen, 2005).  

More specifically, in chapter 1, we aimed to reconcile the ongoing debate on the 

efficacy of WM training and remind the reader that a more systematic review of the specific 

qualities of the training and transfer tasks is required rather than a dichotomous “effective” 

or “not effective” approach. We characterize the broad diversity of features (e.g., 

intervention length, stimulus modality, adaptivity) used in fifty-seven published studies 
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that used N-back training tasks and measured behavioral outcomes. The methodology used 

across studies is not consistent which is often ignored by existing meta-analyses. We 

demonstrate how these limitations deter cross-study comparison and prevent strong 

conclusions regarding efficacy of training from the published data. At this point however, 

we were not able to reveal anything about the underlying brain mechanisms. This brings 

us to the second chapter of this thesis. 

In chapter 2, we aimed to understand the electrophysiological signatures of a 

popular WM task, N-Back task, by systematically comparing nine task structure and 

stimulus variations. The EEG’s high temporal resolution compared to behavioral data 

provided a better understanding of the time course of the effect of stimulus encoding and 

response processing. Our results reveal significant differences in behavioral and 

electrophysiological signatures in response to both manipulations (task structure and 

stimulus type). Additionally, we observe differences beyond our experimental 

manipulations, such as the pre-processing method and the laboratory environment. We 

suggest that experimental factors such as stimulus type and task structure, but also analysis 

pipeline and laboratory differences, which are often overlooked, need to be accounted for 

when interpreting findings and making comparisons across studies.  

After gaining mechanistic understanding using existing experimental paradigms, 

we combined our knowledge of chapters 1 and 2. This resulted in chapter 3 where we 

advanced to establish a new experimental paradigm to enable the study of the LC-NE 

system. As a first step, we verified our experimental paradigm by investigating stimulus 
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processing during a continuous performance auditory discrimination task. We collected a 

multi-measure dataset including behavioral, pupillometry and functional magnetic 

resonance imaging (fMRI) data. Our aim was to characterize LC-NE system activity by 

estimates of LC blood-oxygen-level- dependent (BOLD) signals, primary Auditory cortex 

(A1) BOLD signals, and pupillometry dilation responses and capture its moment-by-

moment effect on stimulus processing and behavior. Here, we show that the paradigm 

enables extracting stimulus-response functions across all the three measures of behavior, 

pupillometry and fMRI. Thus, our paradigm is sensitive to capture the variability across 

different measures which can in turn be used to estimate LC-NE activity. 
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