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ABSTRACT OF THE DISSERTATION 

 
Development of multiple conformation Monte Carlo method and its application to protein 

aggregation in cataract formation 
 

By 
 

Vera Dmitrievna Prytkova 
 

Doctor of Philosophy in Chemistry 
 

 University of California, Irvine, 2018 
 

Professor Douglas Tobias, Chair 
 
 
 

      Realistic biological conditions are characterized by high concentrations of biomolecular 

solutes. Protein conformations and protein-protein interactions can be affected by crowding. 

The inclusion of a high number of proteins to model such environments necessitates the use of 

computationally inexpensive methods, such as rigid-body Brownian dynamics or Monte Carlo 

(MC) simulations. However, the rigid body representation of many protein systems gives rise to 

artifacts in protein-protein interactions. Presented here is the multi-conformational Monte Carlo 

(mcMC) method that avoids such artifacts by incorporating molecular flexibility at a low 

computational cost. We employ it to study the interaction of eye lens proteins, crystallins. In a 

healthy eye lens crystallins are the structure proteins. Their solubility at concentrations 

exceeding 400 mg/mL ensures lens transparency. The aggregation of crystallins leads to lens 

opacification, called cataract. We study how known point mutations associated with cataract 

formation lead to altered protein-protein interaction and creation of large aggregates.  
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INTRODUCTION 

The living systems are characterized by highly concentrated solutions consisting of various 

macromolecules in solvent, such as the cytoplasm and the extracellular matrix.(1) The high 

concentration affects the process of protein folding, biochemical reactions, protein-protein 

interactions.(2) Fully atomistic simulations of highly concentrated biological environments in 

explicit solvent remain extremely computationally demanding. However, inexpensive 

computational algorithms have been developed to study such environments. We employ one 

such algorithm, Monte Carlo method. 

Theory of Monte Carlo Simulations  

In equilibrium statistical mechanics the integrals that must be evaluated generally take the 

form(3) 

𝐼 = ∫𝑑𝑥	𝜑(𝑥)𝑓(𝑥)                                                              (1) 

where x is an n-dimensional vector, 𝜑(𝑥) is an arbitrary function, 𝑓(𝑥) is a probability distribution 

function. This integral represents the ensemble average of a physical observable. Central limit 

theorem tells us, that if we take a set of M n-dimensional vectors 𝑥+, 𝑥-,… , 𝑥/ that are sampled 

from 𝑓(𝑥) and approximate the average: 

𝐼/0 = +
/
∑ 𝜑(𝑥2)/
23+                                                                (2) 

Then it can be considered to be an estimator of the integral 𝐼 considering M is large.  

lim
/→8

𝐼/0 = 𝐼                                                                            (3) 

For Monte Carlo Simulations the vectors 𝑥+, 𝑥-,… , 𝑥/ are generated sequentially 𝑥+ → 𝑥- →

⋯ → 𝑥/ with a rule that specifies how to generate 𝑥2:+ given 𝑥2. This sequence of vectors is 

called a Markov chain. If x and y are accessible microstates of a physical system, and 𝑅(𝑥|𝑦) is 
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the probability for moving to a state x given that the system is currently in the state y. For this 

probability to be a valid rule for a Markov chain, it must satisfy the detailed balance: 

𝑅(𝑥|𝑦)𝑓(𝑦) = 𝑅(𝑦|𝑥)𝑓(𝑥)                                                                 (4) 

Detailed balance ensures microscopic reversibility of the process and guarantees unbiased 

sampling of the state space. 

Metropolis et al. have proposed the technique in 1953, which they called M(RT)2 algorithm (it 

stands for the first letters of the authors’ names)(4). The algorithm starts with a rule for 

generating a trial move from y to x. We call it 𝑇(𝑥|𝑦) and it is normalized 

∫𝑑𝑥	𝑇(𝑥|𝑦) = 1                                                                      (5) 

When the trial move is generated, it can be either accepted or rejected. If the move is accepted, 

the system moves to state x, otherwise it returns to state y. 𝐴(𝑥|𝑦) is the probability that a move 

is accepted. The transition probability is 

𝑅(𝑥|𝑦) = 𝐴(𝑥|𝑦)𝑇(𝑥|𝑦)                                                                     (6) 

Considering the detailed balance, 

𝐴(𝑥|𝑦)𝑇(𝑥|𝑦)𝑓(𝑦) = 𝐴(𝑦|𝑥)𝑇(𝑦|𝑥)𝑓(𝑥)                                                    (7) 

We can find the relation of the acceptance probabilities 

𝐴(𝑥|𝑦) = AB𝑦C𝑥DE(F)
AB𝑥C𝑦DE(G) 𝐴(𝑦|𝑥) = 𝑟(𝑥|𝑦)𝐴(𝑦|𝑥)                                              (8) 

If the move from y to x is favorable, then 𝐴(𝑥|𝑦) = 1, then the reverse move from x to y is less 

favorable and 𝐴(𝑥|𝑦) < 1, implying that 𝑟(𝑥|𝑦) > 1. Then  

𝐴(𝑥|𝑦) = min	[1, 𝑟(𝑥|𝑦)]                                                                   (9) 
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In the case of the canonical ensemble that we employ in our simulations, for a system of N 

particles with coordinates 𝒓+, 𝒓-,… , 𝒓P  the acceptance probability from configuration 𝒓 ≡

𝒓𝟏, 𝒓-, … , 𝒓P  to 𝒓S becomes 

𝐴(𝒓S|	𝒓) = min	[1, 𝑒UVWXB𝒓YDUX(𝒓)Z]                                                 (10) 

Where 𝑈(𝒓) is the potential energy, and 𝛽 = 1/𝑘_𝑇. Therefore, the acceptance probability is 

determined by the change in the potential energy that results from the move.  

In our simulations, the trial moves are attempted either to displace a protein or to rotate it. When 

this method is used to model rigid proteins in implicit solvent, artifacts arise due to the lack of 

protein flexibility. This can be avoided by introducing flexibility by a MC move, where in addition 

to translation or rotation a protein attempts to swap the conformation from a library of rigid 

conformations. Each protein conformation has a weight assigned to it.  

Several questions can be asked to such a scheme. The first question – does this swap move satisfy 

the detailed balance condition? 

Let’s reinstate: 

𝑅(𝑥|𝑦) = 𝑇(𝑥|𝑦)min `1, 𝑒U
abcad
ef g                                                              (11) 

In our case we want to include extra information on the relative stability of the states y and x via 

the a priori weighting factors. Hence, we intend to change the equilibrium properties on the 

system, because we include additional free energy information. In mcMC, this describes the 

relative internal free energy of the distinct conformations. Expressed for two states y and x, with 

intrinsic free energies 𝐺G2ij  and 𝐺F2ij , we obtain: 

𝑒WU(kblmnUkdlmnD/oA] = pb
pd

                                                                       (12) 
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Effectively, we want to modify the relative stability of the two states y and x to obtain as a result: 

𝑓∗(𝑦) = 𝑤G𝑓(𝑦)                                                                    (13) 

𝑓∗(𝑥) = 𝑤F𝑓(𝑥)                                                                    (14) 

In the algorithm, this is achieved by modifying the a priori probabilities 𝑇(𝑥|𝑦) and 𝑇(𝑦|𝑥), which 

now become: 

𝑇∗(𝑦|𝑥) = 𝑤G𝑇(𝑦|𝑥)                                                            (15) 

𝑇∗(𝑥|𝑦) = 𝑤F𝑇(𝑥|𝑦)                                                            (16) 

Or alternatively 

𝑅∗(𝑥|𝑦) = 𝑤F𝑇(𝑥|𝑦)min	[1, 𝑒
sU
abcad
ef t]                                         (17) 

𝑅∗(𝑦|𝑥) = 𝑤G𝑇(𝑦|𝑥)min	[1, 𝑒
sU

adcab
ef t]                                         (18) 

We simply modify the chance of attempting a trial move that generates y or x state, irrespective 

of the state the system is currently in. The detailed balance condition now becomes: 

𝑓∗(𝑦)𝑅∗(𝑦|𝑥) = 𝑓∗(𝑥)𝑅∗(𝑥|𝑦)                                                       (19) 

Now that we put equations together, we get: 

𝑤G𝑤F𝑓(𝑦)𝑅(𝑦|𝑥) = 𝑤F𝑤G𝑓(𝑥)𝑅(𝑥|𝑦)                                          (20) 

This equation is exactly equivalent to the detailed balance condition stated earlier. Therefore, 

detailed balance is not affected by the modified a priori probabilities, only the equilibrium 

between the states y and x is modified as intended. 

E∗(G)
E∗(F)

= pbE(G)
pdE(F)

= 𝑒[U
ublmncudlmn

ef ] E(G)
E(F)

                                                     (21) 

Another question of interest is – what is the size of the conformational library necessary to 

represent the flexibility of a protein? The answer to this question depends on the conformational 
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flexibility of the protein. Crystallins, the eye lens proteins, that we will further consider, do not 

significantly change their conformation under physiological conditions – at high concentrations 

and neutral pH. A fairly small number of conformations will be necessary to represent a crystallin. 

However, proteins like intrinsically disordered proteins may have so many conformations, that 

their representation will require a very large conformational library. Another important 

parameter is aggregation propensity. The conformations are chosen with respect to the 

orientations of protein side chains, since they are the ones primarily responsible for protein-

protein interactions. Since the conformations we were able to obtain were typically generated 

from Molecular Dynamics simulations of proteins at infinite dilution or a protein dimer at a higher 

concentration, but with limited protein-protein sampling capability, simulation of high 

concentration solutions is no easy task. The conformational library at high protein concentration 

may be different from that at lower concentration, especially if proteins interact a lot. Using 

conformation library from dilute MD simulations is not ideal for high concentration mcMC 

simulations, but it is a lot better than using one protein conformation.  

We use mcMC to explore eye lens proteins, crystallins, and mutations that are known to be 

associated with cataract. Our hypothesis states – mutations, that lead to changes in protein-

protein or protein-solvent interactions, cause proteins to aggregate without significant 

conformational change. The reason for this assumption is that neither MD simulations, nor 

experimental data at physiological conditions – high protein concentrations and neutral pH – 

have observed significant protein unfolding. This fact makes mcMC a great method to study 

potential aggregate formation in such a system due to a relatively small size of a necessary 

conformational library necessary to represent each protein.  
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Eye lens proteins – crystallins 

The primary function of the eye lens is to focus light on the retina. The eye lens is composed of 

bundled fiber cells that loose their nuclei, ribosomes, and organelles during embryonic 

development. These cells contain structural proteins, called crystallins, at very high 

concentrations. The liquid-like and short-range order of the crystallins lead to the transparency 

and refractive properties required for the proper lens function. When crystallins begin to 

aggregate, either due to inherent or acquired mutations or due to age-related changes such as 

oxidation, deamidation, truncation, glycation, or methylation, the eye lens becomes cloudy and 

the cataract forms.(5)  

There are two classes of crystallins: the bg-crystallins are purely structural, while the a-crystallins 

have a chaperone function of binding to misfolded proteins to keep them in solution.(5)  

gD crystallin is the third most abundant of the g-crystallins. It is expressed primarily in the central 

lens nucleus. gS crystallin is expressed postnatally and is located preferentially in the lens cortex 

(periphery). g-crystallins are compact, ~21 kDa, primarily b-sheet proteins consisting of two 

double Greek key domains. The two domains are not identical, but highly symmetric.(6) High 

resolution structures have been determined for wild type gD-crystallin and its congenital 

cataract-related R58H and P23T variants by x-ray crystallography and solution NMR.(7-9) 

Physicochemical and biophysical studies of several cataract-related gD-crystallin mutants have 

shown that, although certain mutations produce negligible or minor structural changes, they 

have profound effects on interprotein interactions. For example, the alteration in surface charge 

in the R58H and R26S mutants reduces solubility and promotes the formation of protein crystals, 

while the change in hydrophobicity associated with the P23T mutation produces non-crystalline 
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aggregates with low and retrograde solubility.(10) A 1.7 Å resolution x-ray crystal structure of the 

congenital cataract-related W42R mutant of gD-crystallin has been solved.(11) The crystal 

structure reveals no significant difference between the mutant and native structure. Our MD 

simulations show fluctuation of domain positions with respect to one another without separate 

domain unfolding, but with an exposure of hydrophobic residues positioned at the interdomain 

interface that remained buried in the wild type gD crystallin. These residues lead to increased 

protein-protein interactions and large amorphous in shape aggregates.  

Biophysical studies have shown that the bg-crystallins exhibit attractive interactions despite their 

very low aggregation propensity(12), which implies a delicate balancing act between attractive 

and repulsive interactions among the crystallins. The solution state NMR structures of gS-

crystallin and its childhood-onset cataract-related variant G18V have been solved.(13) G18V 

variant is structurally very similar to the wild type gS crystallin, but has a lower thermal stability 

and solubility.(14, 15) It exhibits strong interaction with aB-crystallin.(13) Despite the abundance 

of information on aggregation propensity and reduced solubility of the variant, the molecular 

mechanism of aggregation remains unknown.  

Chapter 1 of this dissertation describes the introduction of conformational flexibility as a move 

in Monte Carlo simulations. Chapter 2 explores the question of the conformational library size 

and the amount of sampling necessary to generate the library. This chapter is focused on Monte 

Carlo method development, however simulations of gB and gD crystallins are used. Chapter 3 

addresses the question of weights adjustment for a high protein concentration. Chapters 4 and 

5 show how cataract-related mutations in gD and gS crystallins lead to local structural changes 

with subsequent enhancement in protein-protein interaction. Chapter 5 shows that new MD 
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simulations of G18V variant started from a solution state NMR structure reveal a small structural 

change that may be responsible for increased protein-protein interaction. 
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CHAPTER 1 

Multi-conformation Monte Carlo: A Method for Introducing Flexibility in Efficient 

Simulations of Many-protein Systems 

This chapter was published by V. D. Prytkova, B. M. Heyden, D. Khago, J. A. Freites, C. Butts, R. W. 
Martin, D. J. Tobias, Multi-Conformational Monte Carlo: A Method for Introducing Flexibility in 
Efficient Simulations of Many-Protein Systems, J.Phys.Chem. B, 120 (33), 2016 

 
INTRODUCTION 

 
Biological environments, such as the cytoplasm and the extracellular matrix, are characterized by 

high concentrations of proteins and other biomacromolecular solutes (e.g., 300-400 mg/mL in 

the cytoplasm of Escherichia coli(1)). Under such crowded conditions, intermolecular interactions 

cannot be neglected and have a significant influence on the stability of folded proteins as well as 

their dynamics and aggregation propensities.(16) 

To model protein-protein interactions and protein aggregation using computer 

simulations, multiple protein molecules must be included in the simulation system.  Fully 

atomistic simulations including explicit representations of the aqueous solvent are currently only 

feasible for systems containing a limited number of biomolecular solutes (on the order of 10) and 

100 ns timescales.(17) Brownian dynamics (BD) simulations employing an implicit representation 

of the solvent have emerged as a powerful approach to modeling many-protein systems on 

significantly longer timescales.(18-21) In BD simulations protein molecules are usually modeled 

as rigid bodies and their translational and rotational motions are generated with picosecond 

timesteps using the Ermak-McCammon algorithm.(22) Fast potential and force calculations are 

achieved through the use of pre-evaluated, constant potential terms on space-filling grids. This 
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approach allows the simulation of solutions containing ~1,000 atomically detailed protein 

molecules for ~10-100 µs, which is long enough to obtain converged structural and 

thermodynamic properties for concentrated protein solutions in which the proteins are not 

aggregating strongly.(18-20) In addition to providing structural and thermodynamic information, 

BD simulations have been used to investigate the effects of crowding on diffusion in protein 

solutions and a model of the E. coli cytoplasm.(19, 23) 

Monte Carlo (MC) simulations are potentially an attractive alternative approach for the 

modeling of aggregating systems,(24, 25) or to generally improve the configurational sampling 

efficiency when the sampling of explicit dynamics is not the primary goal. MC simulations based 

on highly coarse-grained colloidal sphere protein models have been employed to investigate 

phase behavior in protein solutions and protein crystallization.(26-30) MC simulations of more 

detailed protein models with residue level coarse-graining have been used to study the effects 

of solution conditions and ion binding on protein-protein interactions,(31-33) as well as protein 

self-assembly.(34) As we will show below, Metropolis MC simulations(4) of atomically detailed 

proteins can be used to investigate the structural and thermodynamic properties of crowded 

protein solutions with at least as good sampling efficiency as BD simulations. For more efficient 

sampling of strongly aggregating systems, MC simulations offer the possibility of specialized trial 

moves designed to expedite the formation and destruction of clusters, such as in the aggregation-

volume-bias MC method pioneered by Siepmann, Chen, and co-workers.(24, 25, 35) 

Here, we evaluate the feasibility of performing MC simulations using the protein-protein 

interaction potential developed by Wade and co-workers(20) for BD simulations of many-protein 

systems. We use new experimental static light scattering (SLS) data for the optimization of the 
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interaction potential parameters in simulations of solutions of hen egg white lysozyme (HEWL). 

The optimized parameters were validated by comparing structure factors computed from the 

simulations to those derived from small-angle x-ray and neutron scattering measurements. In 

conventional rigid-body MC simulations using a single protein configuration, we find a strong 

dependence of both structural and thermodynamic properties on the specifics of the protein 

conformation. These results highlight the importance of incorporating protein conformational 

flexibility in the simulations. We have, therefore, implemented a new technique, which we refer 

to as multi-conformation Monte Carlo (mcMC); mcMC incorporates conformational flexibility by 

swapping protein conformations within a discrete library determined by clustering of protein 

configurations from an atomistic MD simulation of a single protein in explicit solvent. The 

approach is similar in spirit to the use of pre-evaluated libraries of molecular fragment 

conformations in configurational-bias Monte Carlo simulations.(36-39) However, in mcMC 

simulations sampling of intramolecular degrees of freedom is restricted to a set of discrete 

conformations, which allows the use of pre-evaluated potential grids for highly efficient energy 

calculations.(18-20) The HEWL solution simulations with mcMC show better agreement with 

experimental data compared to the results of scMC simulations using a single protein 

configuration, and eliminate the bias imposed by the use of a single structure. 

 

METHODS 

Protein-protein interaction potential. The overall protein-protein interaction potential 

we employ, which was developed by Mereghetti et al. for many-protein Brownian dynamics 

simulations using the SDAMM software package by Mereghetti et al.,(20, 40) contains four 
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contributions. The first two account for the interactions of the charges on one protein with the 

electrostatic potential of a second protein and an “electrostatic desolvation” penalty when the 

charges on one protein enter a low dielectric cavity of a second protein. The two electrostatic 

contributions contain an explicit dependence on the solution ionic strength. The third 

contribution is a short-ranged attractive “nonpolar desolvation” potential that mimics 

hydrophobic interactions, and the fourth term describes soft-core repulsive interactions between 

atoms on different proteins. 

Prior to the simulations the potentials for each simulated protein conformation were pre-

computed on cubic grids. To determine the appropriate grid sizes, we examined the convergence 

of the radial distribution functions, g(r), of the protein centers-of-mass with grid size (Figure S1 

in the Supporting Information) in single-conformation MC simulations (described below). The 

results reported herein were generated using 200 x 200 x 200 grids with a 1 Å spacing for all of 

the terms in the interaction potential; Figure S1 shows that these grids are sufficient to obtain 

converged g(r)s.  

The electrostatic potential grids were computed at each ionic strength considered for an 

atomistic representation of the proteins with charges corresponding to the OPLS force field(41) 

by finite-difference solution of the non-linear Poisson-Boltzmann equation using either the 

UHBD(42) or APBS(43) software packages. Dielectric constants of 78.4 and 2.0 for the solvent and 

protein, respectively, and ion exclusion radii of 1.5 Å were used. For increased computational 

efficiency, the number of charged protein sites involved in the evaluation of the electrostatic 

potential terms during the simulations was reduced by using the effective charge formalism of 

Gabdoulline and Wade(44). 
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We used the parameters in the potential function reported by Mereghetti et al.(20) with 

the following exceptions: (1) the empirical scaling coefficients of the electrostatic and nonpolar 

desolvation potentials were varied and optimized by comparing simulated osmotic virial 

coefficients with experimental data (see Figure S1.2). Unless otherwise noted, the default scaling 

parameters of 0.36 (unitless) and −0.0090 kcal/mol/Å2 were used for the electrostatic and 

nonpolar desolvation terms, respectively; (2) we increased the parameter σ in the soft-core 

repulsion potential from 3 Å to 10 Å in order to increase the energetic penalty of overlapping 

protein atoms. This was necessary because MC trial moves with such unfavorable configurations 

need to be rejected. With the original parameter, the energetic penalty for overlapping protein 

molecules was too small, allowing compensation via electrostatic terms. In BD simulations, such 

configurations are not accessible, allowing a lower penalty and a smoother soft-core repulsion 

that, in turn, prevents the occurrence of large forces. 

Single-conformation Monte Carlo simulations. We implemented single-conformation 

MC (scMC) simulations based on translational and rotational trial moves of randomly selected 

molecules in the SDAMM software package for BD simulations of many protein systems.(20) The 

step size of the translational and rotational trial moves adapts during the simulation to yield an 

acceptance ratio of roughly 50% to produce efficient sampling under all conditions. Trial moves 

are accepted with a probability given by the Metropolis criterion:(4) 

,       (1.1)  

where DDU is the difference in the protein-protein interaction potential between the current and 

trial configurations, kB is Boltzmann’s constant, and T is the temperature. 

Pacc =min 1, exp −ΔΔU
kBT
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We performed scMC simulations of HEWL solutions over a range of protein 

concentrations and ionic strengths (Table S1.1) using three different structures obtained from 

neutron diffraction(45, 46) (PDB IDs 1IO5 and 1LZN) as well as solution NMR(47) (PDB ID 1E8L, 

model 1) experiments, all of which contain information on protonation states and proton 

coordinates in addition to the heavy atom coordinates. 1LZN has two protonated glutamates and 

a total charge of +11e, while 1IO5 and 1E8L carry a total charge of +9e. 

Multi-conformation Monte Carlo simulations. To incorporate flexibility of the simulated 

proteins, we introduce a Monte Carlo trial move that, in addition to translational and rotational 

trial moves, attempts to swap protein conformations drawn from within a discrete library of 

conformations. This library is generated by clustering of protein conformations from an atomistic 

MD simulation of a single protein in explicit solvent. The candidate conformation is selected at 

random from the library with probability proportional to the population size of the corresponding 

cluster in the MD simulation (see below). As in the scMC simulations, a standard Metropolis 

acceptance criterion is used. This approach ensures that, in the dilute-solution limit (i.e., no 

protein-protein interactions), the resulting distribution of conformational states converges to the 

distribution observed in the MD simulation of a single solvated protein. In the case of interacting 

proteins, the distribution of protein conformations can change due to the 

stabilization/destabilization of conformations in bound states. Potential grids are pre-computed 

for each of the structures in the library. The size of the library is limited only by the memory 

requirements of these grids. The conformational swap moves allow sampling of the most 

favourable conformations of interacting proteins at a computational cost that is the same as that 

of the rigid-body translational or rotational moves. The algorithm is sketched in Scheme 1.1. 
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Scheme 1.1: Sketch of the multi-conformational Monte Carlo algorithm for the simulation of flexible 

proteins using a library of conformations and standard translational and rotational trial moves. 

Various approaches could be employed to generate a suitable library of conformations. 

Here, we used a 150 ns atomistic MD simulation trajectory of a single protein in explicit solvent 

using a HEWL solution NMR structure(47) (PDB ID 1E8L, model 1) as the initial configuration. To 

generate the library of protein conformations, we computed the heavy (not hydrogen) atom 

root-mean squared deviation (RMSD) matrix between configurations saved every 10 ps, and 

employed a simple clustering algorithm(48) using a 1 Å RMSD cutoff to extract the 50 most 

populated clusters. By including all non-hydrogen atoms, we ensure that backbone and side chain 

fluctuations give rise to distinct conformations in the library. The cluster centroids constitute the 

library of conformations, and the cluster populations were used to assign a statistical weight to 

each conformation in the library. 

The MD trajectory was generated using the GROMACS software package.(49) The OPLS 

all-atom force field(41) was used for the protein and ions, and the TIP3P model(50) was used for 

water. The charge of the protein was neutralized with chloride ions, the system was solvated by 
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3579 water molecules, and periodic boundary conditions were applied in three dimensions.  

Short-ranged interactions were truncated with a 9 Å cutoff, while long-ranged electrostatic 

interactions were computed with the smooth particle-mesh Ewald method(51) on a 1.2 Å real-

space grid. Covalent bonds and the geometry of water molecules were constrained with the 

LINCS(52) and SETTLE(53) algorithms, respectively. After an initial energy minimization, the 

system was equilibrated for 100 ps using a 1 fs integration time step in the isothermal-isobaric 

ensemble with harmonic restraints on protein heavy atom positions using a force constant of 

1000 kJ/mol/nm2, followed by a 1 ns unrestrained equilibration using a 2 fs time step. During 

equilibration, a Berendsen(54) weak coupling thermostat and barostat was employed with time 

constants of 0.5 ps and 1.0 ps, respectively, and 300 K and 1 bar target values. The production 

simulation of 150 ns duration was generated with a 2 fs time step and the Nosé-Hoover 

thermostat(55) for temperature control and the Parrinello-Rahman barostat(56) for pressure 

control.  

Calculation of osmotic second virial coefficients and structure factors. The osmotic 

second virial coefficient, B2, is the second-order coefficient in the Taylor series expansion of the 

osmotic pressure in terms of number density;(57) it provides one of the very few experimental 

measures of pairwise interactions between protein molecules in solution: B2 < 0 implies attractive 

interactions, while B2 > 0 implies repulsive interactions, and the magnitude of B2 quantifies the 

strength of the interactions. The osmotic second virial coefficient is computed from simulations 

according to:(57)  

,       (1.2) B2 = −2π g r( )−1"
#

$
%r

2 dr
0

∞

∫
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where g(r) is the radial distribution function of the protein centers-of-mass. Here, the radial 

distribution function describes a potential of mean force between two molecules, W(r) = –kBT ln 

g(r), which includes averaging over all possible orientations and conformations of both 

molecules. 

The structure factor, S(q), is an interference function that arises from interparticle 

interactions and can be extracted from small-angle x-ray and neutron scattering measurements.  

The structure factor is also readily computed from the protein-protein radial distribution function 

according to:(58) 

,     (1.3) 

where q is the modulus momentum transfer vector, and r is the solution density.  

Sample preparation and static light scattering experiments. Lyophilized hen egg white 

lysozyme (Cat. No. 195303) was purchased from MP Biomedicals (Solon, OH). Lysozyme was 

dissolved in 10 mM sodium phosphate buffers containing 0.05% sodium azide (pH 4.7 and 6.9) 

with NaCl concentrations of 50, 75, 100, 125, 150, 200, 250, and 300 mM for a final protein 

concentration of 50 mg/mL. Serial dilutions were performed to prepare samples with protein 

concentrations ranging from 2.5 to 50 mg/mL for light scattering measurements. The 

concentrations were checked by UV absorbance measurements using e = 2.64 mL mM-1 cm-1 at 

280 nm. A Dawn HELEOS multi-angle light scattering instrument and an Opitlab rEX refractive 

index detector (Wyatt Technology, Santa Barbara, CA) were used to collect the data required for 

experimental B2 determination. Samples were injected using the batch-mode technique from 

lowest to highest concentrations after filtering to ensure monodispersity. 

S q( ) =1+ 4πρ g r( )−1"
#

$
%
sin qr( )
qr

r 2 dr
0

∞

∫



18 
 

Estimation of osmotic second virial coefficients from static light scattering data. 

Scattering intensity data at each concentration was processed to remove artifacts caused by 

sample injection, and the median of the remaining observations employed as the scattering 

intensity measurement for each detector.  Medians were also taken for the refractive index 

increment at each concentration; readings at concentrations greater than 0.02 g/mL exceeded 

the range of the differential refractometer, and were treated as missing for purposes of analysis. 

For small particles in dilute solution, Zimm's (59) second order expansion of light 

scattering intensity (in terms of the excess Rayleigh ratio, ) with respect to concentration leads 

to the approximation:(60) 

,        (1.4) 

where , with dn/dc the refractive index increment, n0 the solvent 

refractive index, 𝜆w the vacuum wavelength of the incident light, NA Avogadro's number, M the 

(mass weighted) mean particle mass, c the protein concentration,  a size-specific factor that 

depends upon the detection angle q relative to the angle of incidence, and  is the 

osmotic second virial coefficient in a power series expansion of the osmotic pressure in terms of 

concentration. The  limit is realized as the particle radius of gyration rg approaches 0; 

for monomeric or small oligomeric particles with rg << 𝜆w, angular dependence is negligible, and 

we employ this limit here.  Note that no angular dependence was detected in our experiments, 

which is consistent with predictions for a beam wavelength of 658 nm and rg  0.14 nm.(61) 

Rθ

Kc
Rθ

≈
1

MP θ( )
+ 2A2c

K = 4π 2 dn / dc( )
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2 /NAλ0
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As B2 represents a very small deviation in local effective particle density (relative to 

uniform mixing), it is challenging to estimate with high precision. We employ a number of 

techniques to address this issue. Given multiple observations of  at varying concentration, it 

is natural to estimate A2 by regression of  on 2c; when the scattering particles are 

monodisperse and of known mass, improved precision can be obtained by employing 

 as the response and fitting a zero-intercept model.  When particles are known to 

be monodisperse but the oligomer size is not known, greater precision can still be obtained by 

fitting models to k-mers of orders 1, 2, … and selecting the k that minimizes the squared error in 

the predicted scattering intensity.  As our samples were filtered to ensure monodispersity (with 

verification by dynamic light scattering) and the monomer mass is known, we employ this 

strategy here. This estimate also depends upon dn/dc, which must itself be estimated by 

regressing nc (the measured refractive index at concentration c) against c.  Because nc is in 

practice far more reliably measured than c itself, further gains in precision can be obtained by 

using the refractive index data to correct the measured concentration values prior to estimation 

of A2 (i.e., regressing c on nc and employing the predicted cx values in place of c).  Combining the 

above leads to the following multi-stage procedure for estimating A2: (1) regress nc on c to obtain 

an estimate of dn/dc (dn dc⁄z ); (2) regress c on nc to obtain corrected concentration estimates ; 

(3) for 1, 2, …, regress  on   to obtain A2{|k, selecting the k leading to the 

minimum squared error in  and associated A2{ for the final B2 estimate. 

Classical estimates of the precision of A2{ are problematic both because of the 

interdependence of A2{ on dn dc⁄z  and because of the contribution of concentration to both sides 

Rθ

Kc /Rθ

Kc /Rθ −1/M

ĉ

k ∈ Kc /Rθ −1/ kM( ) 2ĉ

Rθ
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of the regression.  Here, we instead employ a non-parametric bootstrap procedure (using the 

boot library for R(62)) to estimate confidence intervals.  Specifically, the above procedure was 

repeated for 5000 random with-replacement joint resamples of the refractive index and 

scattering intensity data (with sample sizes preserved for each subset), and 95% confidence 

intervals were estimated from the resulting bootstrap replicates using the bias-

corrected/adjusted percentile (BCa) method of Efron (63).  These are shown in Figures 1.3 and 

1.10 as vertical lines.  Oligomer size estimates were further inspected by examination of 

bootstrap standard errors for signs of instability; samples were estimated to be monomeric for 

all replicates in all conditions examined.  

RESULTS AND DISCUSSION 

Single-configuration Monte Carlo simulations. In protein solution simulations at low to 

medium concentrations (e.g., < 100 mg/mL), translational MC trial move steps can be significantly 

larger than BD time steps, increasing the efficiency of configurational sampling. This is illustrated 

in Figure 1.1, which displays the convergence of the radial distribution function between protein 

centers-of-mass in scMC and BD simulations of HEWL under identical conditions at a 

concentration of 10 mg/mL. The sampling efficiency in the scMC simulations is increased by 

roughly two orders of magnitude compared to BD, producing a converged radial distribution 

function after 100k MC cycles (one cycle consists of Nprot trial moves, where Nprot is the number 

of protein molecules in the simulation). 
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Figure 1.1: Convergence of the protein-protein radial distribution function from scMC (left panel) and BD 

(right panel) simulations of HEWL solutions containing 200 rigid proteins (1LZN structure) at a 

concentration of 10 mg/mL and ionic strength of 200 mM.  The sampling efficiency, in terms of CPU hours 

needed to generate a converged radial distribution function, is roughly two orders of magnitude higher 

for scMC than BD simulations (CPU h on single Intel Xeon E5430 processor with 2.66 GHz). scMC simulation 

lengths are expressed in MC cycles; a single MC cycle consists of Nprot trial moves, where Nprot is the number 

of protein molecules in the simulation. 

The scMC sampling efficiency advantage over BD vanishes at high concentrations, when 

the step size of translational MC trial moves need to be reduced in order to maintain acceptance 

ratios on the order of 50%, as shown in Figure 1.2 for a 169 mg/mL HEWL solution. However, we 

point out that MC simulations offer additional advantages for the simulation of slowly converging 

systems, e.g., in the event of protein aggregation. For example, biased sampling schemes, such 

as the aggregation volume biased MC technique developed by Siepmann and co-workers (24, 

�� ��� ��� ���
���

���

���

���

�(Å)
�(
�)

�� ��� ��� ���
���

���

���

���

�(Å)

�(
�)

�������� �������������� ������������ ����� �����

���� μ� ��� ��� ������ (���) ��� �
��� �
��� ��
��� ��
��� ���
��� ���

�� ���
�� �
��� �
���� ��



22 
 

25), can be readily implemented to improve the sampling of the formation and destruction of 

clusters. 

 

Figure 1.2: Convergence of the protein-protein radial distribution function from scMC (left panel) and BD 

(right panel) simulations of HEWL solutions containing 475 rigid proteins (1E8L structure) at a 

concentration of 169 mg/mL and ionic strength of 100 mM. The sampling efficiency is similar for both 

scMC and BD simulations at this concentration (CPU h on single Intel Xeon E5430 processor with 2.66 

GHz); scMC simulation lengths are expressed in MC cycles; a single MC cycle consists of Nprot trial moves, 

where Nprot is the number of protein molecules in the simulation. 

Previous BD simulations of HEWL solutions using the same (20) or similar (18) protein 

interaction potentials were validated using osmotic second virial coefficients as a function of 

solution ionic strength reported in the literature (58). Here, we report two new sets of B2 values 

from SLS measurements on HEWL at two different pH values (see Figure 1.3). Our experimental 

results are in good agreement with the literature (58, 64-67) and are consistent with Derjaguin-

Landau-Verwey-Overbeek (DLVO) theory for colloidal systems (65, 68). 
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Figure 1.3: HEWL second virial coefficient (B2; in units of B2 for hard spheres, BHS = 4 x protein volume) 

estimated from static light scattering experiments and scMC simulations as a function of solution ionic 

strength. Solution pH values of 4.7 and 6.9 reported in the experimental measurements correspond to 

estimated HEWL net charges of +10e and +8e, respectively (69). Proteins in solution simulations based on 

crystal structures (1IO5 and 1LZN, net charge +9e and +11e, respectively) are overall more repulsive than 

indicated by experiments. HEWL in simulations based on the solution NMR structure (1E8L), which has 

the same net charge as 1IO5, are overall more attractive than in crystal structure simulations, and appear 

to be consistent with experiments (see text for more details) at ionic strength values less than ~0.2 M. 

However, at higher ionic strengths, the proteins appear to be more attractive than indicated by 

experiments. 

Comparison of the ionic strength dependence of the B2 values computed from scMC 

simulations at a concentration of 10 mg/mL using different input structures reveals that the 

protein-protein interactions are strongly dependent on the choice of structure, and shows that a 

�� ���
�� ���
���� ����
���� ����
���� ����

� �� ��� ��� ��� ��� ��� ���-�

-�

�

�

�

�

����� �������� (��)

�
�/�

�
�



24 
 

single structure is not able to reproduce the trend in the experimental data (Figure 1.3). 

Electrostatic repulsion is overestimated and, hence, B2 is too large, in the two simulations based 

on crystal structures (1IO5 and 1LZN, net charge +9e and +11e, respectively). At ionic strength 

values below ~0.2 M, the B2 values obtained from the solution NMR structure (1E8L, net charge 

+9e) follow the correct qualitative trend compared to the experimental data, but the 

preponderance of electrostatic interactions is evident by the lack of a plateau at ionic strength 

values above ~0.2 M. Notably, the protein-protein interactions are significantly more attractive 

in the 1E8L simulations than in the simulations based on the crystal structure with the same net 

charge (1IO5). 

In addition to the overall increased protein-protein attractive interaction, the 

corresponding radial distribution functions between protein centers exhibit a spurious peak at r 

~ 30 Å in simulations of the 1E8L HEWL structure, corresponding to specific protein-protein 

contacts that are not present in the simulation based on the 1IO5 and 1LZN crystal structures 

(Figure 1.4). Furthermore, the differences between the 1E8L and 1IO5 radial distribution 

functions are much greater than the differences between the 1IO5 and 1LZN simulations, 

suggesting that the specifics of protein conformations can have a much more dramatic effect 

than the total charge. 
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Figure 1.4: Protein-protein radial distribution functions g(r) from the scMC simulations from which the B2 

values plotted in Figure 1.3 were obtained (10 mg/mL). In addition to a spurious peak at ~30 Å in 

simulations based on the 1E8L structure, there is more contrast in the protein-protein interactions when 

comparing the provenance of the protein structure (e.g., 1E8L vs. 1IO5) than when comparing different 

protein net charges (1IO5 vs. 1LZN). 

In Figure 1.5, we compare isosurfaces of spatial distribution functions (SDFs), specifically, 

distributions of the density of other protein centers-of-mass around a tagged central protein, 

normalized by the bulk density at a protein concentration of 10 mg/mL with an ionic strength of 

100 mM. Despite the apparent similarity of the radial distribution functions for scMC simulations 

based on the two crystal structures 1IO5 and 1LZN, the SDF from the simulation based on the 

1IO5 structure reveals interaction sites that are not observed in the SDF from the simulation 

based on the more repulsive 1LZN structure. Similarly, the comparison to the SDF obtained from 

the simulation based on the solution NMR structure (1E8L) shows not only an overall increased 

attraction, but also additional locations of preferred contact sites.  
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Figure 1.5: Spatial distribution functions (see text for details) for scMC simulations at 100 mM ionic 

strength. The green surfaces represent regions of 1.7 times the bulk density computed on a 160 Å cubic 

grid with a 4 Å grid spacing centered on and aligned with respect to the reference molecule shown in red. 

In addition to the greater protein-protein attraction in the 1E8L simulation, the simulations based on the 

two crystal structures exhibit interaction sites that are distinct from each other.  

The SDF for the 1E8L simulation as shown in Figure 1.5 computed with an increased 

resolution on a 1 Å grid (Figure 1.6A) reveals two highly localized sites with a more than 1500-

fold increase of the concentration relative to the bulk solution (corresponding to a stabilization 

in free energy of –4.3 kcal/mol). The corresponding dimer structures, extracted from the 

simulation trajectories, show binding motifs characterized by energetically favorable contacts of 

charged side chains (Figure 1.6B). Such specific binding motifs were not observed in simulations 

of the 1LZN and 1IO5 HEWL structures. The highest local density represents only 9-fold and 20-

fold increases relative to the bulk density in scMC simulations based on the 1LZN and 1IO5 

structures, respectively. 
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Figure 1.6: (A) Spatial distribution function for the 1E8L simulation at 100 mM ionic strength computed 

on a 100 Å cubic grid with a grid spacing of 1 Å. The green isosurfaces correspond to a 1500-fold increase 

of the local density relative to the bulk density. (B) Dimer configurations corresponding to the regions of 

increased concentration shown in (A). Solvent exposed basic (blue) and acidic (red) side chains are 

rendered in ball-and-stick representation.  

The fact that 1IO5 and 1E8L structures have the same total charge and protonation state 

indicates that the highly specific binding observed in the 1E8L simulations originates in the 

specific arrangements of side chains on the protein surface, which is a consequence of the 

differences in structure determination methods. The 1E8L structure represents a protein in an 

aqueous solution environment where the charged side chains are in more extended 

conformations than those in the crystal environment required for the determination of the 1IO5 

structure via neutron diffraction. A superposition of the 1IO5 and 1E8L structures (Figure 1.7) 

indicates, apart from the almost perfect alignment of the protein backbone, that the basic side 
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chains tend to be significantly more extended and solvent exposed in the solution NMR structure 

than in the crystal, where they are, on average, more folded onto the protein surface. The solvent 

exposed basic side chains will be floppy and explore multiple conformations in solution. However, 

in scMC simulations as well as in rigid-body BD simulations, they are rigid, effectively losing their 

conformational entropy. This leads to enhanced favorable inter-protein interactions between 

exposed side chains of opposite charge, as observed in Figure 1.6, which in turn create highly 

specific binding motifs. This behavior is unrealistic, as the conformational entropy of the solvent-

exposed side chains should decrease the population of such highly specific conformations. Thus, 

our results demonstrate that artifacts in inter-protein interactions may arise due to including only 

single side chain conformations in rigid-body BD or MC simulations of many-protein systems.  
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Figure 1.7: Conformations of basic side chains in the neutron diffraction structure 1IO5 (orange) and the 

solution NMR structure 1E8L (green) of HEWL (A), and distances between the centers of charge and the 

protein surface (B), indicate that they are more extended and solvent-exposed in the solution NMR 

structure than in the crystal structure. The behavior of these side chains in solution is poorly modeled 

with a single protein configuration. 

Multi-conformation Monte Carlo simulations. To eliminate the dependence of the 

simulation results on the specifics of the protein conformation, we implemented the mcMC 

method, which introduces conformational flexibility in the protein molecules by allowing them 

to convert from one conformation to another within a structural library generated from an all-

atom MD simulation (see Methods for details). While the degree of flexibility introduced this way 
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is obviously limited and not able to describe the entire protein conformational space, we posit 

that any reasonable choice of the ensemble will provide a significant improvement over the 

modeling of proteins in solution as single-conformation rigid bodies.  

Our library consists of 50 structures that collectively represent a broad sampling of the 

basic and acidic side chain conformations without significant structural changes to the HEWL 

backbone (backbone RMSD < 2 Å). The variation of the positions of the positive and negative 

charge centers within the ensemble is shown in Figure 1.8A. The statistical weights associated 

with the library of conformations, obtained from the relative population of each cluster in the 

MD trajectory and used in the generation of conformational swap trial moves, are depicted in 

Figure 1.8B. 

 

Figure 1.8: Structural library of HEWL employed in mcMC simulations obtained from a 150 ns all-atom MD 

simulation trajectory. (A) Superposition of the charge centers of basic (blue) and acidic (red) amino acid 

side chains in the 50 conformations that comprise the library. B) The statistical weights of individual 

structures, determined by their relative populations along the MD trajectory, are used as probabilities for 

the generation of conformational swap trial moves in the mcMC simulations. 

To maximize agreement between experimental second virial coefficients and simulations 

with the mcMC algorithm, we adapted the protein-protein interaction potential by rescaling the 
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empirical nonpolar desolvation (ND) potential term (as also described in other studies with the 

employed interaction potential (20, 40)). This term describes a short-ranged, uniform attraction 

between protein surfaces and mimics hydrophobic interactions. We also considered the effects 

of simultaneous rescaling of the empirical electrostatic desolvation, ED (repulsive, non-uniform), 

and nonpolar desolvation, ND (attractive, uniform), terms.  We found that the two desolvation 

terms have compensating effects, resulting in a set of optimal ED and ND scaling factor pairs that 

include the default scaling value of the ED term (Figure S1.2). Therefore, we opted for leaving the 

ED scaling factor at its default value and explored in more detail the consequences of variations 

in the ND scaling factor. 

Figure 1.9 shows the effects of changing the strength of the nonpolar desolvation 

potential on the protein-protein radial distribution function. When the default value of the 

scaling parameter (ND = −0.0090 kcal/mol/Å2) is used, the resulting radial distribution functions 

(Figure 9, left panels) are very similar to the ones obtained from scMC simulations based on the 

1IO5 structure under identical conditions (middle panels of Figures 1.4 and 1.5), suggesting a 

comparable radially averaged interaction potential between the HEWL proteins in both 

simulations. However, the SDFs at 100 mM ionic strength again show significant differences 

between the two simulations (compare the left panel of Figure 1.9B with the middle panel of 

Figure 1.5), indicating the importance of side chain conformation and flexibility in determining 

the preferred binding geometries. The radial distribution functions from mcMC simulations with 

increased strengths of nonpolar desolvation interactions (ND = −0.0098 kcal/mol/Å2 and ND = 

−0.0100 kcal/mol/Å2) and the 1E8L scMC simulation (Figure 1.4, left panel) exhibit comparable 
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main peaks at ~35 Å separation distance. However, the spurious peak at ~30 Å is absent in the 

mcMC simulations, as expected for simulations with flexible side chains. 

 

Figure 1.9: (A) Protein-protein radial distribution functions from HEWL mcMC simulations at three 

different values of the scaling parameter of the nonpolar desolvation potential, ND (from left to right, ND 

= −0.0090 kcal/mol/Å2 , −0.0098 kcal/mol/Å2 , −0.0100 kcal/mol/Å2  ). (B) Isosurface contours (green) at 1.7 

times the bulk density in the corresponding spatial distribution functions at 100 mM ionic strength. 

The experimental osmotic second virial coefficients are reproduced well by the mcMC 

simulations with stronger nonpolar desolvation interactions (Figure 1.10). Notably, however, the 

SDFs, which define the preferred protein-protein binding interfaces, apart from the overall 

interaction strength, do not depend on the scaling factor of the nonpolar desolvation term 

(Figure 1.9B) as expected given the uniform attraction relative to the solvent accessible surface 

area described by the scaled ND potential term. In the scMC simulation that employed the 1E8L 

solution NMR structure, the agreement with the experimental B2 values at ionic strength below 

200 mM was fortuitously achieved via increased exposure of the polar and charged side chains 
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with zero conformational entropy.  The exposure of polar and charged side chains is comparable 

for the structures in the ensemble used for the flexible mcMC simulations, as they are obtained 

from MD simulations in an explicit solvent environment. Thus, in contrast to the scMC case, in 

the mcMC simulation energetically highly favorable protein-protein interactions between 

individual structures lead to a compensating decrease of the conformational entropy, thus 

weakening the total binding affinity. 

 

Figure 1.10: HEWL second virial coefficient (B2; in units of B2 for hard spheres, BHS = 4 x protein volume) 

estimated from static light scattering experiments and mcMC simulations as a function of solution ionic 

strength at a protein concentration of 10 mg/mL. The mcMC simulations were performed using the 

optimal value of the nonpolar desolvation strength determined from the experimental estimates (ND = 

−0.0098 kcal/mol/Å2; see Supporting Information for more detail on the potential parameter 

optimization). 
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While osmotic second virial coefficients are determined at low concentrations (i.e., 2.5–

50 mg/mL), structure factors allow us to validate our simulations against experimental data 

obtained at high protein concentration. Structure factors are interference functions that arise 

from protein-protein interactions in small-angle x-ray and neutron scattering measurements on 

protein solutions; peaks in the structure factors occur at values of the wave-vector transfer, q ~ 

2π/d, corresponding to preferred interactions on length scales d.  Results from mcMC simulations 

with variable scaling of the nonpolar desolvation potentials are shown in Figure 1.11 in 

comparison to experimental results (70, 71) and a previous BD simulation study by McGuffee et 

al (18). The concentration used in all cases is 169 mg/mL. In order to compare our simulations 

with experiments at low ionic strength, we employed an ionic strength of 50 mM to ensure a 

sufficient decay of the electrostatic interactions within the employed potential grids. We note 

that the experimental studies have been carried out at a neutral pH with a slightly different 

protonation state (charge of +8e), while the HEWL proteins in our mcMC simulations carry a 

charge of +9e. Thus, minor differences between the simulation and experimental data are 

expected based on slight differences in solution conditions. 
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Figure 1.11:  Structure factors from mcMC simulations (with varying nonpolar desolvation strength) of a 

HEWL solution at 169 mg/mL and 50 mM ionic strength in comparison to experimental data and a 

previous BD simulation, both at neutral pH. The choice made for the nonpolar desolvation strength 

parameter after optimization using B2 estimates from low-concentration simulations (ND = 

−0.0098 kcal/mol/Å2) also produces the best match to experimental structure factors at high 

concentration. 

The main peak at q = 2.0 nm-1 and the shoulder at q = 0.9–1.0 nm-1 are qualitatively 

reproduced by the mcMC simulations with modified nonpolar desolvation potentials (ND = 

−0.0098 kcal/mol/Å2 and −0.0100 kcal/mol/Å2) (Figure 1.11). In the simulation with the default 

scaling factor (ND = −0.0090 kcal/mol/Å2), the low q-shoulder is shifted towards higher q-values 

and is increased in intensity. At q-values below 0.7 nm-1, the structure factors obtained from 

mcMC simulations are lower than the experimental structure factors, indicating some 

discrepancy in the long-range order. This discrepancy could be due to the increased long-ranged 

repulsion caused by the additional charge, and/or to the lack of convergence of the values of the 
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radial distribution functions at large distances that are necessary to compute accurate values of 

S(q) at very low q.(18) Nonetheless, the simultaneous overall good agreement of the mcMC 

simulation results (for a particular choice of the nonpolar desolvation scaling factor, ND = 

−0.0098 kcal/mol/Å2) with experimentally determined osmotic second virial coefficients and 

structure factors shows that the mcMC simulations can provide a realistic description of protein-

protein interactions. Moreover, the conformational sampling provided by mcMC alleviates the 

unwanted dependence of the simulated protein-protein interactions on the choice of input 

structure, which is an issue with conventional rigid-body simulations. 

High concentrations and the resulting prevalence of protein-protein interactions also 

affect the population of HEWL conformations in the mcMC simulations. Conformations that are 

able to form dimers or oligomers with low intermolecular potential energies are stabilized, while 

conformations that interact less favorably with other proteins are destabilized. Figure 1.12 shows 

the distribution of conformations sampled by the MD simulation represented by the 50 individual 

conformations in the library (gray bars) together with interaction-induced changes observed in 

the mcMC simulations at 169 mg/mL for the three values of the nonpolar desolvation potential 

considered here (colored bars). Both, stabilization and destabilization effects are monotonic and 

approximately proportional to the scaling factor of the nonpolar desolvation potential. This result 

shows how mcMC simulations allow the system to adapt the distribution of protein 

conformations from dilute-limit conditions, in which the structural library was generated, to the 

high concentration regime, in which inter-protein interactions become relevant. This adaptation 

is limited to a change in the population of discrete conformations represented in the employed 

library of structures. Conformations that are unfavorable under dilute conditions and only 
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become stable due to interactions with other proteins will have low statistical weights in a library 

generated by a MD simulation of a single solvated protein and, hence, require many trial moves 

to be sampled, even if they are energetically favored in high concentration conditions. Alternative 

procedures for generating the library of protein conformations, such as a more computationally 

demanding MD simulation of multiple protein molecules at high concentration, might be 

considered in such a case. 
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Figure 1.12: Distribution of protein conformations sampled by the MD simulation (gray bars, proportional 

to the statistical weights shown in Figure 1.8B) together with changes induced by inter-protein 

interactions in mcMC simulations at high protein concentration (169 mg/mL) for varying strength of the 

nonpolar desolvation potential term (colored bars). 
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SUMMARY 

We have shown that MC simulations of many-protein systems can be performed using protein-

protein interaction models developed for BD simulations. We used scMC simulations to analyze 

the effects of fixed side chain conformations in rigid-body simulations of systems containing 

many interacting proteins. Differences in the exposure of charged basic side chains, in particular 

between solution NMR structures and structures obtained from crystallography, can significantly 

modify preferential protein-protein interaction sites and the overall attraction of the proteins. 

Within the framework of MC simulations of protein solutions, we introduced a simple approach, 

mcMC, to account for molecular flexibility by allowing molecules to switch between multiple 

conformations within a discrete library of conformations, e.g., as obtained herein from a MD 

simulation of a single, fully-flexible protein in aqueous solution. Statistical weights used in the 

generation of mcMC trial moves for conformational changes allow us to describe distinct 

thermodynamic stabilities of individual conformations in the infinite dilution limit. Our approach 

removes potential artifacts observed in simulations of rigid protein structures, such as highly 

specific binding motifs involving fixed conformations of long, charged side chains, whose 

flexibility needs to be accounted for. In particular, after a minor reparameterization of empirical 

scaling parameters in the protein-protein interaction potential, we demonstrated improved 

agreement of simulated osmotic second virial coefficients with light scattering experiments at 

low protein concentrations and various salt concentrations. In addition, we could demonstrate 

improved agreement with experimental structure factors obtained at high protein concentration.  

The mcMC approach can be employed for simulations of aggregating protein systems and 

crowded biomolecular solutions. Introducing flexibility for the simulated proteins, even if only 



40 
 

within a limited set of discrete, Boltzmann-weighted conformations, will improve predictions of 

specific binding modes as well as overall aggregation propensities. Furthermore, the use of MC 

simulations allows implementation of enhanced sampling procedures for strongly aggregating 

systems (such as aggregation volume biased Monte Carlo(24, 25, 27, 35)), which are otherwise 

challenging to sample in conventional BD or MC simulations. 

 

SUPPLEMENTAL INFORMATION 
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Table S1.1. Single-conformation Monte Carlo (scMC) simulations of hen egg white lysozyme solutions 
 

 
  

Protein 
Structure 
(PDB ID) 

Net Charge 
(e) 

Number of 
Proteins 

Concentration 
(mg/ml) 

Ionic Strength 
(mM) 

MC cyclesa 
(x 103) 

1E8L +9 200 10 50 1500 

1E8L +9 200 10 100 1500 

1E8L +9 200 10 150 1500 

1E8L +9 200 10 200 1500 

1E8L +9 200 10 250 1500 

1E8L +9 200 10 300 1500 

1E8L +9 200 10 500 1500 

1E8L +9 475 169 100 385 

1IO5 +9 200 10 50 1500 

1IO5 +9 200 10 100 1500 

1IO5 +9 200 10 150 1500 

1IO5 +9 200 10 200 1500 

1IO5 +9 200 10 250 1500 

1IO5 +9 200 10 300 1500 

1IO5 +9 200 10 500 1500 

1LZN +11 200 10 50 1500 

1LZN +11 200 10 100 1500 

1LZN +11 200 10 150 1500 

1LZN +11 200 10 200 1500 

1LZN +11 200 10 250 1500 

1LZN +11 200 10 300 1500 

1LZN +11 200 10 500 1500 
aOne MC cycle consists of Nprot trial moves, where Nprot is the number of protein molecules in the 
simulation. 
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Table S1.2. Multi-conformation Monte Carlo (mcMC) simulations of hen egg 
white lysozyme solutionsa,b 

 
 
 
 
 
 
 

 
   
 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Dependence of protein-protein radial distribution functions on the size of the interaction 

potential grids. All of the terms in the protein-protein interaction potential are mapped onto 

cubic grids for computational efficiency. We investigated the optimal grid size for each potential 

term in turn by varying the grid size between 603 and 2003 Å3, while using a 2003 Å3 grid for all 

the other potential terms. Figure S1.1 shows the corresponding radial distribution functions for 

each test set. Figure S1.1 shows radial distribution functions obtained from scMC simulations 

using the 1E8L NMR solution structure at 10 mg/mL concentration and 100 mM ionic strength. 

The results suggest that convergence is achieved for the electrostatic potential at a minimum 

grid size of 1003 Å3 (at this ionic strength) and at 803 Å3 for all other potential terms. The 

Number of 
Proteins 

Concentration 
(mg/ml) 

Ionic Strength 
(mM) 

MC cyclesc (x 
103) 

200 10 50 1500 

200 10 100 1500 

200 10 150 1500 

200 10 200 1500 

200 10 250 1500 

200 10 300 1500 

200 10 500 1500 

475 169 50 300 
aThe structure library used in the mcMC simulations was 
generated from an all-atom MD simulation with the 1E8L 
structure (net charge +9e) as the initial configuration. 
bEach simulation indicated in this table was performed three 
times, each with a different value of the nonpolar desolvation 
parameter. 
bOne MC cycle consists of Nprot trial moves, where Nprot is the 
number of protein molecules in the simulation. 
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conservative use of 2003 Å3 potential grids in the remainder of this study therefore ensures 

minimal influence of this effective interaction potential cutoff on the reported results.  

 
Figure. S1.1. Protein-protein radial distribution functions from HEWL scMC simulations performed with 

the 1E8L structure at a concentration of 10 mg/mL and an ionic strength of 100 mM. Each panel shows 

the effect of varying the grid size of a specific interaction potential term while using a grid size of at 2003 
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Å3 for all others: (A) Electrostatic potential term. (B) Electrostatic desolvation potential. (C) Nonpolar 

desolvation potential. (D) Soft-core repulsion potential. 

 

Optimization of the parameters in the desolvation potentials. In the SDAMM potential,(72) the 

strength of the electrostatic and nonpolar desolvation potential terms are specified by empirical 

scaling paramters (ED and ND, respectively).(40, 72) As the ionic strength is increased, the 

Coulomb interactions are screened and the short-ranged desolvation potentials dominate the 

protein-protein interactions. In order to optimize the values of ED and ND, we performed a 

systematic search of the ED/ND parameter space by computing B2 values in HEWL mcMC 

simulations at a concentration of 10 mg/ml and ionic strengths of 100 and 300 mM. We 

calculated the root-mean squared differences (RMSD) between the simulation values and our 

two sets of experimental B2 estimates (pH 4.7 and 6.9) in the same range of ionic strength. The 

ND parameter was varied from –0.0114 kcal/mol/Å2 to –0.0088 kcal/mol/Å2 and the ED 

parameter from 0.1 to 0.5. The logarithm of the RMSD is shown as a function of the ND and ED 

parameters in Figure S1.2. It is evident that the attractive and repulsive contributions to the 

overall protein-protein interaction potential due to the two desolvation potentials can 

compensate each other to some degree, hence the corresponding scaling parameters are not 

entirely independent. 

Because the resulting set of optimal (ED,ND) pairs includes the scaling value of the electrostatic 

desolvation term employed in previous HEWL BD simulations(72) (ED = 0.36), we opted for 

leaving ED at this default value and explored the effect of changing ND in more detail. In addition 

to the ND value used in HEWL BD simulations(72) (ND = -0.090 kcal/mol/Å2), we report in the 
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main text mcMC simulation results for the two ND values corresponding to the minimum B2 

RMSDs for ED = 0.4 (ND = –0.098 kcal/mol/Å2 when comparing to B2 experimental estimates at 

pH 4.7; ND = –0.0100 kcal/mol/Å2 RMSD when comparing to B2 experimental estimates at pH 

6.9). 

 

Figure. S1.2: Logarithm of the root-mean squared differences (RMSD) between B2 estimates from mcMC 

HEWL simulations (using the indicated desolvation potential parameters) and experimental 

estimates at pH 4.7 (top) and pH 6.9 (bottom) and ionic strengths of 100 mM and 300 mM. The 

optimal ND values (at ED = 0.4) are encircled. 
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CHAPTER 2 

The role of conformational flexibility in the simulation of many-protein systems 

This is a manuscript in preparation by B.Majumdar, V.D. Prytkova, J.Freites, M.Heyden, D.J.Tobias. 

INTRODUCTION 

The crowded conditions encountered by biomacromolecules in cellular environments dominate 

their mobility and stability as well as the nature of their interactions (1). Experimental studies 

involving biomolecules are mostly carried out in vitro using buffer solutions, often neglecting the 

effects of macromolecular crowding. Several experimental techniques (73-79) have recently 

become available to study biomolecular interactions in crowded media both in vitro and in vivo. 

Atomistic simulations of such crowded systems in explicit solvent are still restricted to small 

numbers of biomolecules due to often prohibitive computational costs.(17, 80) Computationally 

inexpensive modeling approaches, such as rigid-body Brownian Dynamics and Monte Carlo (MC) 

simulations in implicit solvent, can provide a powerful alternative to fully atomistic 

simulations.(19, 31, 72) However, the accuracy of rigid-body simulations is limited due to the 

neglect of conformational fluctuations. Recently, Prytkova et.al. (81) described an efficient 

method to introduce conformational flexibility in MC simulations of many-protein systems. In 

this approach, termed multi-conformation Monte Carlo (mcMC), protein flexibility is 

incorporated via a conformational swap trial move from a pre-determined library of structures. 

In principle, the library of structures used in mcMC simulations can be generated by any suitable 
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experimental or computational method that samples protein conformations. The probability of 

a conformational swap trial move can be used to describe free energy differences between 

protein conformations in the infinite dilution limit. The mcMC sampling then takes into account 

changes in the relative stability of conformations due to interprotein interactions at increased 

concentration.  

While the mcMC approach represents an improvement compared to simulations based on a 

single conformation rigid-body simulation (81), a limited-size, discrete library of protein 

structures remains an approximate representation of the configurational space that describes 

the structure and dynamics of polypeptide chains. A natural question to ask in this context is how 

many protein structure independent samples are needed to effectively describe molecular 

flexibility using a finite library of protein conformations? An associated query is how much 

conformational sampling is required to adequately capture the portions of the protein 

configurational landscape that may affect protein-protein interactions. Here, we address these 

questions in the case of library of structures generated using all-atom molecular dynamics (MD) 

simulation of a single protein in explicit solvent under infinite dilution conditions. We perform 

mcMC simulations of 10 mg/ml solutions of hen egg white lysozyme (HEWL), with a library of 

conformations generated using enhanced-sampling methods; and human gD-crystallin, using 

long-timescale trajectories to generate the library of conformations. In addition, we consider the 

case of bovine gB-crystallin, which is homologous to gD-crystallin but with no net charge. We find 

that structural observables computed from the mcMC simulations converge rapidly for weakly 

interacting systems such as the g-crystallin solutions or for solutions of HEWL under conditions 

where electrostatic repulsion dominates protein-protein interactions. In contrast, the specifics 
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of the construction of the library of protein conformations become key in the structural 

characterization of strongly attractive systems such as HEWL solutions a high ionic strength.   

 

METHODS 

Protein-protein interaction potential. We employ the grid-based protein-protein interaction 

potential introduced by Mereghetti et al.(72) for many-protein BD simulations in the SDAMM 

software package(82), which consists of four contributions: the electrostatic interaction energy 

due to the electrostatic potential of one protein with the charges of a second protein;(83) an 

electrostatic desolvation penalty due to bringing solvated polar groups of one protein into a low 

dielectric environment upon binding another protein with the simultaneous loss of their 

solvation shell;(84) a short-range attractive non-polar desolvation interaction due to the burial 

of solvent exposed hydrophobic surface atoms of one protein by a second protein;(82) and a soft-

core repulsive interaction energy between atoms from different proteins. The two electrostatic 

contributions depend explicitly on the solution ionic strength. The non-polar desolvation 

interaction can be modified by varying a scaling factor in the potential, which is used to convert 

the protein buried area into an energy. Proteins are modeled using an atomistic representation. 

All the terms of the interaction potentials were computed on 200 × 200 × 200 grids with a grid 

constant of 1Å. 

The electrostatic potential grids were computed at different ionic strengths (see Supplemental 

Information) with atomic charges according to the OPLS force field(85) by finite difference 

solution of the linearized Poisson-Boltzmann equation using the UHBD(86) software package. 

Dielectric constants of 78.4 and 2.0 were used for solvent and protein, respectively. A reduced 
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number of charged sites in each protein was used during the evaluation of the electrostatic 

potential energy with charge magnitudes calculated using the effective charge approximation 

(83) implemented in the SDAMM software package. We used the SDAMM potential function 

parameters reported by Prytkova et al. (81), except for the simulations of gB-crystallin, where a 

nonpolar desolvation parameter of −0.0082 kcal/mol/Å2 was used in order to match a second 

virial coefficient experimental datum (87).  

Multi-conformation Monte Carlo simulation. The multi-conformation Monte Carlo (mcMC) 

algorithm extends the conventional rigid-body simulation scheme by introducing protein 

conformational flexibility through a trial move that attempts to swap conformations between a 

protein in the simulation system and a discrete library of protein structures. In this context, under 

the canonical ensemble, the probability of finding the system in the state 𝑖, 𝑝2, is proportional to 

𝑝2	~	𝑤2 exp s−
�l
o�A

t                                                              (2.1) 

where 𝐸2  is the corresponding protein-protein interaction energy and 𝑤2  is a statistical weight, 

independent of the Monte Carlo sampling, given by 

𝑤2	~ exp s−
kl
o�A

t	                                                                 (2.2) 

 where 𝐺2  is the intrinsic free energy of all the protein conformations present in the state 𝑖, which 

includes all intramolecular and protein-solvent interactions in the infinite dilution limit. 

The underlying transition matrix element corresponding to the conformational swap move from 

state 𝑖 to state 𝑗, 𝛼2�, is given by 

𝛼2� = 𝑤�                                                                                   (2.3) 

In other words, in contrast to rigid-body translational and rotational trial moves, the Markov 

chain underlying the conformational swap trial move consists of independent events. 
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Imposing detailed balance leads to following acceptance criterion 

min �1, ��l
�l�

��
�l
� = min �1, exp s− ∆�

o�A
t�                                                        (2.4) 

where ∆𝐸 = 	𝐸� − 𝐸2 , which is identical to the acceptance criterion associated with the rigid-body 

motion trial moves. Thus, only the ordinary Metropolis21 acceptance criterion is needed in mcMC 

simulations. 

The mcMC algorithm has been implemented (81) into a customized version of the SDAMM 

software package (82). In this implementation, a Monte Carlo cycle comprises as many trial 

moves as the total number of proteins in the system. In a trial move, a rigid-body translation, 

rigid-body rotation, or conformational swap is chosen with equal probability, and applied to a 

single protein in the simulation system also selected with equal probability. Rigid-body 

translational and rotational trial moves are adjusted to yield an acceptance ratio of 

approximately 50%. In the conformational swap trial move an alternative protein conformation 

is chosen from the protein structure library with probability given by (2.3). The library of protein 

conformations and the corresponding probability distribution are sampled from extensive all-

atom MD simulations of a single protein in explicit solvent, as described in the next section. 

All mcMC simulations were carried out at a concentration of 10 mg/ml using 200 protein 

molecules. The HEWL and gB-crystallin simulations were run at 300 K, and the gD-crystallin 

simulations were run at 310 K. See Supporting Information for more details. 

Generation of protein structure libraries. The library of protein structures employed in the 

mcMC simulation can be generated using several methods. Here, we used a 400-ns replica 

exchange molecular dynamics (REMD) simulation for HEWL, and conventional equilibrium MD 

simulation trajectories of 40 µs and 500 ns for gD- and gB-crystallin, respectively, all under infinite 
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dilution conditions. To generate the library of protein structures, we computed the heavy atom 

RMSD matrix between protein configurations over selected portions of each trajectory (see Table 

S2.1), and performed a cluster analysis using the algorithm of Daura et al. (48), implemented in 

the GROMACS software package(49), with a RMSD cutoff of 1 Å for HEWL and gB-crystallin, and 

1.7 Å for gD-crystallin. The configurations corresponding to the cluster centroids constitute the 

library of conformations, and the respective cluster population sizes were used to construct the 

underlying probability distribution used in the conformational swap trial move (cf. equations 2.2 

and 2.3).  

A 400-ns REMD simulation was performed in explicit solvent starting from a solution NMR 

structure of HEWL (PDB ID 1E8L).(47) The protonation states of the protein at pH 7 were set using 

the H++ webserver.(88) A temperature range of 300-375K was chosen and a REMD temperature 

generator webserver (http://folding.bmc.uu.se/remd/) was used to determine the optimum 

number of replicas.(89) REMD trajectories for 22 replicas were generated using the GROMACS 

4.5.6 software package.(49) The OPLS all-atom force field(85) was used for the protein and ions, 

and the TIP3P model was used for water(90). The system was neutralized with eight chloride ions 

and solvated by 8819 water molecules. Covalent bonds and the geometry of water molecules 

were constrained with the LINCS (53) and SETTLE (53) algorithms, respectively. Short-range 

interactions were truncated with a 9Å cut-off and long-range electrostatics were computed using 

the fast smooth particle-mesh Ewald method (51) on a 1.2 Å grid. After energy minimization, the 

system was equilibrated for 100 ps with a 2 fs time step at constant temperature and pressure 

applying harmonic restraints on the protein heavy atom positions using a force constant of 1000 

kJ mol-1 nm-2.  This was followed by a consecutive 1-ns unrestrained equilibration. During the 
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equilibration, a Berendsen weak coupling thermostat and barostat (54) were used with a target 

temperature of 300K and a pressure of 1 bar respectively with a 1 ps time constant. The REMD 

simulation was performed with a 2 fs time step with an exchange attempt every 200 fs. Therein, 

the Nosé-Hoover thermostat (55) was used for temperature coupling and the Parrinello-Rahman 

barostat (56) was used for pressure coupling.  

The γD-crystallin simulation system was built from the crystal structure reported by Basak et. al. 

(9) (PDB ID code 1HK0). The solution state NMR structure of the γD-crystallin P23T variant (PDB 

ID code 2KFB) (91) was used to determine the histidine protonation states for wild-type γD-

crystallin. The γB-crystallin simulation system was built from the crystal structure reported by 

Kumaraswamy et al. (92) (PDB ID code 1AMM) with protonation states consistent with neutral 

pH. The CHARMM36 (93) force field was used for protein and ions, and the TIP3P model was used 

for water (27). The proteins were solvated in a cubic 80 Å x 80 Å x 80 Å box with the nearest box 

boundary at least 12 Å from the protein. Crystal structure waters were preserved and the γD-

crystallin system was neutralized with chloride counterions. The resulting systems contain 48,309 

and 48,222 atoms for γD-crystallin and γB-crystallin, respectively. The VMD 1.9.1 software 

package (94) was used to assemble the systems. 

The initial part of the γD-crystallin simulation was first carried out for 20 ns using the NAMD 2.9 

software package (95) following 10000 steps of conjugate-gradient energy minimization and a 

200 ps MD simulation during which harmonic positional restraints placed on each protein heavy 

atom were gradually relaxed. The γB-crystallin simulation was run for 500 ns using the NAMD 

2.11 software package, with a pre-equilibration consisting of 500 steps of conjugate-gradient 

energy minimization and a 500 ps harmonically restrained run. Both simulations were run at 
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constant temperature (300 K for gB-crystallin and 310 K for gD-crystallin) and pressure (1 atm). 

The smooth particle mesh Ewald method (51, 96) was used to calculate electrostatic interactions. 

Short-range, real-space interactions were cut off at 11 Å by means of a switching function. A 

reversible, multiple time-step algorithm (97) was used to integrate the equations of motion with 

a time step of 4 fs for electrostatic forces, 2 fs for short-range nonbonded forces, and 1 fs for 

bonded forces. All bond lengths involving hydrogen atoms were held fixed using the SHAKE (98) 

and SETTLE (53) algorithms. A Langevin dynamics scheme was used for temperature control, and 

a Nosé-Hoover-Langevin piston was used for pressure control (99, 100).  

The γD-crystallin simulation was extended for another 46-μs on the Anton 2 supercomputer, a 

special-purpose computer for molecular dynamics simulations of biomolecules (101). The 

CHARMM36 force field (93) was used for protein and ions, and the TIP3P model was used for 

water (90). The reversible, multiple time-step algorithm (RESPA) (102) was used to integrate the 

equations of motion every three timesteps for long-range non-bonded forces, and every 

timestep for short-range nonbonded and bonded forces. The k-Gaussian split Ewald method(103) 

was used for long-range electrostatic interactions. All bonds lengths involving hydrogen atoms 

were fixed using the SHAKE (98) algorithm. The simulation was performed at constant 

temperature (310 K) and pressure (1 atm) using Nose-Hoover chains (104) and the Martyna-

Tobias-Klein barostat (104). The RESPA algorithm and temperature and pressure controls were 

implemented using the multigrator scheme, allowing the simulation to run with a 2.5 fs time step 

(105). The last 40 μs of this trajectory were used in the generation of the protein structure 

libraries for mcMC (see Fig. S2.1). 
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RESULTS AND DISCUSSION 

 

Protein conformational flexibility is introduced in mcMC simulations by allowing molecules to 

swap conformations drawn from a library of structures generated, in this particular case, from 

all-atom MD simulations under infinite dilution conditions. To assess how the specifics of the 

library generation protocol affect the convergence of structural quantities computed from mcMC 

simulations of protein solutions, we performed simulations of 200 rigid molecules at 10 mg/ml 

of either HEWL, with libraries of conformations generated from a 400-ns REMD simulation, or gB- 

and gD-crystallin, with libraries of conformations generated from 40-µs and 500-ns MD 

simulation trajectories, respectively. Figure 2.1 illustrates the influence of the library size on the 

protein-protein interactions in HEWL solutions at various ionic strengths. Overall, the largest 

differences occur upon increasing the library size from five structures to ten structures. The 

results appear to be strongly dependent on the ionic strength, which is to be expected given that 

HEWL at neutral pH carries a net charge of +8e. At low ionic strength (100 mM), where the 

electrostatic repulsion between the proteins dominates, all of the libraries produce essentially 

Figure 2.1: Protein-protein radial distribution functions from mcMC simulations of HEWL solutions 
with varying library sizes formed by the (5, 10, 20, 50, or 100) most populated conformations from a 
400-ns REMD trajectory. 
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identical results except for the one with five structures, which exhibits a small shift of the 

maximum of the radial distribution function. For higher ionic strengths, the structural details of 

the interacting proteins become more relevant as the electrostatic repulsion is increasingly 

screened and close encounters become more important. At both 300 and 500 mM ionic strength, 

simulations based on a library with only five structures result in an increased overall attraction 

between the proteins, as evidenced by peak shape a maximum value of the radial distribution 

function. Larger library sizes yield radial distribution functions that are more uniform and with 

lower maximum values as the library size is increased. The strongest dependence of the protein-

protein radial distribution function with the library size occurs at 500 mM ionic strength where 

protein interactions are expected to be most attractive. 
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Because gD- and gB-crystallin have a much lower net charge at neutral pH than HEWL (+2e and 

0, respectively) protein-protein interactions are already dominated by attractive dispersion 

forces at low ionic strength. Consistent with the results of single-conformation rigid-body MC 

simulations of HEWL reported by Prytkova et.al.,(81) use of a single protein structure in either 

crystallin simulation system results in a nonuniform protein-protein radial distribution function 

that suggest the presence of artifacts in the underlying interprotein interactions (Fig. 2.2). 

Notably, in contrast to HEWL, the size of the protein structure library has no effect on the 

corresponding radial distributions (Fig. 2.2).  

As described in detail in the Methods section, the transition matrix of the conformational swap 

trial move is generated from the relative population sizes of the MD simulation trajectory protein 

conformation clusters whose centroids constitute the mcMC protein structure library. 

Figure 2.2:  Protein-protein radial distribution functions from mcMC simulations of gD- and gB-
crystallin solutions with varying library sizes formed by the (1, 5, 10, 20, or 50) most populated 
conformations from a 40-µs and 500-ns MD trajectory, respectively. 
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 Within the timescale of each MD simulation trajectory, these cluster population sizes essentially 

encode the relative stability of each protein conformation included in the library under infinite 

dilution conditions, i.e. in absence of protein-protein interactions. In the analyses reported in 

Figs. 2.1 and 2.2, the protein structures were added  

to the library in a ranked fashion, starting with the centroid of the most frequently observed 

conformational cluster in the corresponding MD simulation. Thus, increasing the size of the 

structure library only adds protein configurations that are less likely to be encountered, at least 

in the absence of protein-protein interactions. As shown in Fig. 2.3, the sampling frequency of 

each protein structure in the mcMC simulation system coincides with the corresponding prior 

probability in the library, irrespective of their specific statistical weight. Chi-square goodness-of-

fit tests (results not shown) indicate that each observed per protein probability distribution 

constitutes a statistical sample of the corresponding library of conformations prior distribution. 

Nevertheless, the similarity between the library prior probability distribution and the distribution 

sampled during the mcMC simulations, as measured by the Euclidean distance between them 

Figure 2.3: Prior probability distribution function for the 50-structure libraries (shown as bars) 
compared to the observed probability distribution function in mcMC simulations at 10 mg/ml (shown 
as dots). 
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(see Fig. 2.4), are positively correlated with the strength of the protein-protein interactions. 

Specifically, in the HEWL simulations, the mcMC sample distributions deviations from the library 

prior probability distribution increases with ionic strength in the HEWL simulations. Similarly, the 

gB-crystallin system, which exhibits the weakest protein-protein interactions generates the 

closest mcMC samples to the library probability distribution. 

These results suggest that under conditions where few protein pairs are formed, radially resolved 

interactions between proteins do not necessarily require a detailed description of the protein 

conformational flexibility. In the case of HEWL, the number of  

 

protein-protein pairs increases with ionic strength, and the size of the protein library becomes 

increasingly relevant (see Fig. 2.1).  

 HEWL
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Figure 2.4: Euclidean distance between the probability distribution of the 50-structure 
library and the corresponding sampled distribution from mcMC simulations. In all cases, 
the mean value and standard error were computed from samples of 1000 Monte Carlo 
cycles over the whole simulation. 
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Simulations of protein solutions with the mcMC algorithm implicitly include stabilization effects 

of specific protein conformations due to protein-protein interactions (81). Hence, even protein 

conformations that are highly unlikely to be observed in dilute conditions, might become relevant 

in the formation of multiprotein configurations, e.g. protein dimers, if they are sufficiently 

stabilized energetically by interprotein interactions. When these interactions become more 

attractive, the inclusion of conformations that are less populated in infinite dilution conditions 

becomes more important, as they might be stabilized in complexes even at the relatively low 

protein concentration of 10 mg/ml employed in our simulations. Correspondingly, libraries 

containing 50 protein structures are required to obtain a converged protein-protein radial 

distribution at an ionic strength for HEWL at 300 mM ionic strength, while at 500 mM ionic 

strength, small changes in the protein-protein radial distribution function are still observed upon 

increasing the size of the structure library from 50 to 100. 

The length of the MD simulation trajectory used to generate the library of structures is a 

complementary aspect to the library size that may also play key role in the description of protein 

conformational flexibility in mcMC simulations. Figure 2.5 shows the protein-protein radial 

Figure 2.5: Protein-protein radial distribution functions from mcMC simulations of HEWL solutions 
with a library of 50 protein structures sampled using four different REMD trajectory lengths (from left 
to right: 100, 200, 300 and 400 ns). 
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distribution function from simulations of HEWL at varying ionic strengths generated with a library 

of 50 protein structures sampled from 100 ns, 200 ns, 300 ns and 400 ns of REMD trajectory. As 

indicated before, the monotonic increase of the maximum value of the radial distribution 

function with increasing ionic strength can be attributed to electrostatic screening. The results 

indicate qualitative changes in the average protein-protein interactions as the REMD sampling 

for the generation of the structural library is increased, most notably at higher ionic strengths. In 

particular, at 500 mM ionic strength there is an increase in the strength of the protein-protein 

interaction as the REMD sampling is increased from 100 ns to 200 ns. This indicates the 

occurrence of conformations within 200 ns of REMD sampling, which enhance protein-protein 

interaction and are not sufficiently explored within the first 100 ns, and is consistent with an 

analysis of the protein root mean squared fluctuations in the REMD trajectory (see Fig. S2.2).  No 

major change in the coordination number is observed for longer REMD trajectory lengths but 

changes in the radial distribution peak shape suggest the formation of different protein dimer 

configurations with protein libraries of equal size generated from different REMD trajectory 

lengths. The results for HEWL (Figs. 2.1 and 2.5) indicate that dimers are the dominant protein 

complexes at 10 mg/ml, in agreement with previous simulations and experimental studies.11,49 
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Protein-protein radial distribution functions from mcMC simulations of gD-crystallin generated 

with a library of 50 protein structures sampled from MD trajectory lengths of 500 ns through 40 

µs are essentially independent on the extent of sampling by MD (Fig. 2.6). This is due in part to 

the limited internal conformational dynamics of this protein fold (see Fig. S2.1). Taken together 

the 

mcMC results for gD-crystallin (Figs. 2.2 and 2.6), suggest that in weakly-interacting systems 

mcMC simulations do not require extensive conformation libraries. Overall, the radial 

distribution function main peak shape for all the systems considered here suggest that protein 

pairwise configurations develop through specific relative orientations and/or interaction sites.  

To assess the effect of the mcMC protein structure library on the sampling of specific modes of 

protein-protein interaction, we computed spatial distribution functions (SDF) from the HEWL 

system at 100 mM ionic strength and the gD-crystallin crystalline system as a function of the 

protein structure library underlying conformational sampling (Figs. 2.7 and 2.8). SDFs represent 

the spatial density distribution of protein centers-of-mass around a tagged protein at the origin, 
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Figure 2.6: Protein-protein radial distribution functions from mcMC simulations of gD 
solutions with libraries of 50 protein structures sampled using four different MD 
trajectory lengths. 
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normalized by the bulk density (81). In Figure 2.7, we compare HEWL SDF isosurfaces from mcMC 

simulations with protein structure libraries sampled from REMD simulations of increasing 

trajectory length, the observed preferred interaction sites tend to be more populated in the 

simulations with libraries sampled from 200 ns or longer REMD trajectories, which is consistent 

with the corresponding radial distribution functions (Fig. 2.5). Although there are minor 

differences among the SDFs, the main modes of interaction appear to be preserved after 

structures from the first 200 ns of the REMD conformational sampling are included into the 

structural library used to describe intramolecular flexibility. 

The SDF analysis for gD-crystallin reveals a dominant interaction surface on the C-terminal 

domain that is essentially independent of the extent of conformational sampling used to 

generate the protein structure library (see Fig. 2.8). There are two secondary interaction regions, 

one on either protein domain, whose extent and specific location vary among the simulations. 

This variability may be attributed to the accumulated effect of rare conformational excursions 

that occur at intervals on the order several µs (see Fig. S2.1). 
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Figure 2.7: Spatial distribution functions from mcMC simulations of HEWL solutions generated with a 
library of 50 protein structures sampled using four different REMD trajectory lengths (from left to right: 
100, 200, 300 and 400 ns). a) SDF isosurface at 1.7 times the bulk density, b) SDF isosurface at 2.7 times 
the bulk density, c) SDF isosurface at 4.0 times the bulk density. The arrows point to the dominant 
interaction sites in each simulation. The protein structure with the highest statistical weight sampled 
from the 400-ns REMD trajectory is shown in all panels in the same orientation. 
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. 

SUMMARY 

 
In the characterization of protein-protein interactions using Monte Carlo simulations of many-

protein systems, mcMC augments the computational efficiency of rigid-body modeling 

approaches with increased realism through the incorporation of a novel MC trial move, which 

approximates the intramolecular degrees and interactions between a single protein and its 

solvation shell via a finite-size library of protein conformations. Moreover, mcMC eliminates the 

undesirable dependence, observed in rigid body MC simulations, on the initial structure chosen 

to initiate the simulation (81). The conformational library is generated using atomistic MD 

simulations under infinite dilution conditions. We demonstrated here that, in the case of weakly-

interacting systems or when electrostatic repulsion dominates interprotein interactions, the 

library size and the extent of conformational sampling involved in its generation do not play a 

crucial role in the description of protein-protein interactions. These factors do become relevant 

Figure 2.8: Spatial distribution functions from mcMC simulations of gD-crystallin solutions with 
libraries of 50 protein structures sampled using four different MD trajectory lengths. The isosurface 
contours (shown in green) correspond to 7.5 times the bulk density. The protein structure with the 
highest statistical weight sampled from the 40-µs MD trajectory is shown in all panels in the same 
orientation.  

500 ns 10 μs 20 μs 40 μs
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under conditions in which protein-protein interactions are increasingly attractive (e.g. high ionic 

strength HEWL solutions). We find that insufficient conformational sampling in the generation of 

the library of structures results in a pronounced underestimation of attractive protein-protein 

interactions. However, we also find that specific high-affinity pairwise configurations do not 

change significantly with prolonged sampling. This result is encouraging because it demonstrates 

that information on the most relevant modes of interactions between the proteins, which may 

lead to dimer and oligomer formation and eventual aggregation, can already be obtained with a 

limited description of the protein conformational flexibility. Predicted dimer structures can then 

be used as starting points for additional simulations with fully flexible proteins, e.g. using 

atomistic MD, which can then be used to study the interactions in more detail.  

 

SUPPLEMENTAL INFORMATION 

 

Table S2.1. Multi-conformation Monte Carlo (mcMC) simulations of hen egg white lysozyme 
10 mg/ml solutionsa 

REMDb 
trajectory 
length (ns) 

Library Size  
(number of protein 

conformations) 

400 5c 

400 10c 

400 20c 

400 50d 

400 100c 

300 50d 

200 50d 

100 50d 
a All simulations systems consisted of 200 proteins and were run for 0.6 x 106 MC cycles. Every MC cycles 
comprised 200 trial moves. bThe structure libraries used in the mcMC simulations were generated from 
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an all-atom REMD simulation of the specified trajectory length, and with the PDB ID 1E8L structure (net 
charge +8e) as initial configuration. cSeparate simulations were performed at 100, 300, and 500 mM 
ionic strength. dSeparate simulations were performed at 50, 100, 150, 200, 250, 300, and 500 mM ionic 
strength. 
 
Table S2.2. Multi-conformation Monte Carlo (mcMC) simulations of gD-crystallin 10 mg/ml 
solutionsa 

MDb trajectory 
length (µs) 

Library Size  
(number of protein 

conformations) 

40 1 

40 5 

40 20 

20 50 

10 50 

0.5 50 
a All simulations systems consisted of 200 proteins and were run for 4.0 x 106 
MC cycles. Every MC cycles comprised 200 trial moves. bThe structure 
libraries used in the mcMC simulations was generated from an all-atom MD 
simulation of the specified trajectory length, and with the PDB ID 1HK0 
structure (net charge +3e) as initial configuration.  
 

Table S2.3. Multi-conformation Monte Carlo (mcMC) simulations of gB-crystallin 10 mg/ml 
solutionsa 

MDb trajectory 
length (ns) 

Library Size  
(number of protein 

conformations) 

MC cyclesc (x106) 

500 1 2 

500 5 2 

500 20 2 

500 50 3 
a All simulations systems consisted of 200 proteins. bThe structure libraries 
used in the mcMC simulations was generated from an all-atom MD simulation 
of the specified trajectory length, and with the PDB ID 1AMM structure (no 
net charge) as initial configuration. cEvery MC cycles comprised 200 trial 
moves.  
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Figure S2.1: Evolution of the gD-crystallin heavy atom root mean squared deviation (RMSD) from the initial 

configuration in a 46-µs all-atom MD trajectory under infinite dilution conditions. The first 6 µs of the 

trajectory exhibit a transient and were not included in the generation of mcMC conformation libraries. 

The portions of the trajectory used in the RMSD cluster analysis correspond to 500 ns, 10 µs, 20 µs, and 

40 µs after the first 6 µs of the trajectory. 
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Figure S2.2: HEWL heavy atom root mean squared fluctuations (RMSF) for four portions of a 400-ns REMD 

trajectory. The RMSF converges for most residues after the first 100 ns.  
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CHAPTER 3 

Multi-conformational ensemble refinement for high concentration protein 

simulations 

 

An ensemble of input conformations for mcMC simulations is chosen by running an MD 

simulation of a protein at infinite dilution and selecting protein conformations most likely 

appearing in that simulation based on sidechain fluctuations. However, at higher protein 

concentrations, the protein may take different conformations due to crowding and protein-

protein interactions that never appear in simulations at infinite dilution. Ideally, we’d need to run 

an MD simulation at a concentration similar to an intended concentration in mcMC simulation, 

however such calculations are usually computationally expensive at a time range necessary to 

sufficiently sample the conformational space of a protein.  

As was mentioned in chapter 1, each conformation sampled by MD simulation is assigned a 

weight proportional to the frequency of occurrence of this conformation in a simulation. This 

weight is used in mcMC simulations to limit how frequently the conformation shows up. After 

running mcMC simulation, the agreement between input weights and the frequency of 

conformational occurrence can be checked.  

The convergence of distribution of input weights and output conformational frequency will be 

checked for gS crystallin. In case of a low concentration mcMC simulation, such as 10 g/L, the 

agreement is exact, as presented in Fig. 3.1. This result is expected since infinite dilution MD 

simulation, from which the conformations of gS crystallin were extracted are representative for 

mcMC simulation at 10 g/L.  
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Figure 3.1: In red – the input weights of every conformation in mcMC library. In gray – the probability of 

each conformation showing up as the result of mcMC simulation of wild-type gS protein at 10 g/L.  

	
However, in case of a much higher concentration, such as 200 g/L, differences between 

distribution of input weights and output conformational frequency become apparent (Fig.3.2).  

	
	

Figure 3.2:  In red – the input weights of every conformation in mcMC library. In gray – the probability of 

each conformation showing up as the result of mcMC simulation of wild-type gS protein at 200 g/L. 

	
We set to test the following hypothesis. If at higher protein concentration, the conformations of 

proteins are the same as the ones at lower concentrations, but the probability of them appearing 

is different, we can update the distribution of input weights in mcMC simulation until it matches 
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the output conformational frequency. The input ensemble was updated every 2x104 MC cycles. 

The output conformational frequency of one run would become the set of input weights for the 

next run. Each time the two were compared.  

In addition, we wanted to find if this way we can assign the weights for NMR conformations of 

wild-type gS protein (13). In this case the initial input weights were all set equal since no 

information about weights could be obtained.  

The results of these computer simulations are presented in figures 3.3 and 3.4. In figure 3.3 gS 

crystallins MD conformational library was used. After 2x105 mcMC cycles, we can observe that 

only a small number of conformation stays, while the weights of some others appear to be zero 

or very close to zero. This situation is even more extreme in a simulation of NMR ensemble. 

Conformation number 17 has the highest weight in this ensemble.  

If we consider the energy per protein in figures 3.5 and 3.6, we can see that particular 

conformations are chosen to minimize the energy of the system. Unfortunately, instead of 

reweighting the entire ensemble to create new weights more representative of a higher 

concentration, this method selects only a few conformations defeating the purpose of mcMC, 

that is to make proteins flexible by introducing multiple conformations. In fact, it is unclear, that 

selecting a conformation of a protein that leads to maximum aggregation and therefore to lowest 

energy of the protein system is representative of a realistic protein behavior at high 

concentrations.  

Reflecting on this experience, it rather makes sense to establish the particular selection of 

conformations for the library and weights assigned to each conformation not through the mcMC 

simulation, but by running an MD simulation at an appropriate concentration.  
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Figure 3.3:  In red – the input weights of every conformation in mcMC library for a previous run of 20000 

mcMC cycles. In gray – the probability of each conformation showing up as the result of mcMC simulation 

of wild-type gS protein at 200 g/L for a conformational library obtained from MD simulations. 

	

	
Figure 3.4:  In red – the input weights of every conformation in mcMC library for a previous run of 20000 

mcMC cycles. In gray – the probability of each conformation showing up as the result of mcMC simulation 

of wild-type gS protein at 200 g/L for a conformational library obtained from NMR experiments. 
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Figure 3.5:  The total energy per protein in a simulation of wild-type gS protein at 200 g/L for a 

conformational library obtained from MD simulations. 

	

	
Figure 3.6:  The total energy per protein in a simulation of wild-type gS protein at 200 g/L for a 

conformational library obtained from NMR experiments. 
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METHODS 

mcMC simulations of wild type gS crystallin were created from two input ensembles of 

conformations. One ensemble was generated from MD simulation and 50 input conformations 

were used. 

The MD simulations were run by Eric Wong. The MD simulation system of γS-crystallin was built 

from the lowest energy solute-state NMR conformations deposited in the Protein Data Bank by 

Kingsley et al. (13) (PDB ID code 2M3T). Protein atoms were parameterized with the 

CHARMM36(93) force field. The protein was solvated in an orthorhombic box of TIP3P(90) 

waters, 70 Å x70 Å x70 Å in size. The net charge of the system was neutralized with chloride 

counterions. The VMD 1.9.1 software package (94) was used to assemble the system. 

Pre-production simulation was carried out using NAMD 2.9. The protein-solvent system was 

minimized for 10,000 steps at constant temperature (300 K) and pressure (1 atm). Harmonic 

positional restraints placed on each protein heavy atom and were gradually relaxed over 1 ns. 

The system was then equilibrated at constant temperature and pressure for a total of 434 ns. 

The smooth particle mesh Ewald method (51, 96) was used to calculate electrostatic interactions. 

Short-range, real-space interactions were cut off at 11 Å by means of a switching function. A 

reversible, multiple time-step algorithm (97) was used to integrate the equations of motion with 

a time step of 4fs for electrostatic forces, 2 fs for short-range nonbonded forces, and 1 fs for 

bonded forces. All bond lengths involving hydrogen atoms were held fixed using the SHAKE (98) 

and SETTLE (53) algorithms. A Langevin dynamics scheme was used for temperature control, and 

a Nosé-Hoover-Langevin piston was used for pressure control (99). 
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 The initial weights were generated by calculating the RMSD based clustering of side chain 

fluctuations. Another ensemble was generated by NMR and published by Kingsley et al (13). The 

weights were assigned to be equal due to a lack of a better method. The four potential terms 

were computed in exactly the same way as described in chapters 1 and 2, apart from the nonpolar 

term, where a nonpolar desolvation parameter of −0.0078 kcal/mol/Å2 was used to set the 

second virial coefficient to zero. Typically, an experimental value of the second virial coefficient 

would be used, however no such value was found in up to date literature. For the present study, 

however, the value of nonpolar desolvation parameter has no effect. The grids were calculated 

at 300 K and 50 mM ionic strength. Simulation, result of which is presented in figure 3.1, is run 

at 10 mg/mL protein concentration using 200 proteins. All other simulations are run at 200 

mg/mL protein concentration using 375 proteins.  

Input weights were updated every 2x104 mcMC cycles. MD ensemble was run for 3.2x105 mcMC 

cycles, while NMR ensemble was run for 1.6x105 mcMC cycles until little change between the 

distribution of input weights and output conformational frequency is observed.  
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CHAPTER 4 

Cataract-related W42R gD-crystallins show spontaneous domain separation and 

increased propensity for interprotein interaction at high concentration 

This is a manuscript in preparation by E.Wong, V.Prytkova, J.Freites, D.Tobias. 

INTRODUCTION 
	
Cataract, the opacification of the eye lens, is the leading cause of blindness in many developing 

countries (106). This opacification is caused by the aggregation of a family of proteins in the eye 

lens called crystallins (107). These proteins make up 90% of the protein content in the eye lens 

fiber cells. Upon cell differentiation, these cells are denucleated, resulting in the loss of protein 

turnover for all eye lens proteins. Thus, in order for the eye lens to maintain its function, crystallin 

proteins must remain soluble at concentrations exceeding 400 g/L for an entire lifetime (5). 

However, congenital defects and post-translational modifications, such as UV photo-oxidation, 

deamidation, and truncation, can result in the formation of large protein aggregates that diffract 

light (108-110). These light diffracting aggregates make up the cloudiness that is characteristic of 

nuclear cataract. 

Crystallin proteins are divided into 3 families: α-, β-, and γ-crystallins. α-Crystallins are heat shock 

proteins that serve as holdase chaperones. These chaperones bind misfolded β/γ-crystallins, but 

do not refold them, preventing further aggregation (13). β- and γ-crystallins are dimeric and 

monomeric structural proteins, respectively. These structural proteins allow the eye lens to 

modulate the index of refraction while maintaining its lens transparency. Many congenital (8, 11, 

111, 112) and post-translational modifications (113, 114) have been linked to cataract formation, 

often through different mechanisms of structural change. In this paper, we focus on the 
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aggregation-related properties of the monomeric human γD-crystallin (WT HγD) and its cataract-

related W42R variant (W42R HγD). 

γD-crystallin is a 173 residue, ~21 kDa, monomeric protein comprised of primarily β-sheets 

organized into two Greek key domains. The congenital cataract-related W42R variant was 

reported to have changes in tertiary structure and a reduced thermal stability (115). However, 

the reported crystal structure of W42R HγD is near identical to that of wild-type (11). Recent 

experiments have identified the formation of internal disulfide cross linkages upon denaturation 

of the N-terminal domain (116), suggesting the existence of a small population of partially 

unfolded intermediates. However, structural details of this intermediate state and its aggregation 

pathway at physiological conditions remain uncertain. 

Several mechanisms of aggregation have been reported, often involving different degrees of 

unfolding. Large-scale denaturation of the Greek key domain structure can lead to the formation 

of amyloid fibrils, characterized by fibrillar aggregates containing intermolecular β-sheets (10, 

117). Moderate unfolding, resulting in the separation of the N- and C-terminal domains, can lead 

to domain-swapped aggregates, where the separated domains reform new inter-protein domain 

interfaces (118). Lastly, minimal unfolding can alter interprotein interactions such that the 

proteins aggregate in a native-like state (119, 120). It is important to note, that the aggregation 

pathway is dependent on the type of stress (chemical, pH, thermal, etc.) put on the protein. pH 

stress on γ-crystallins has been shown to form amyloid fibrillar aggregates that differ from 

aggregates formed at physiological conditions (10, 112). Furthermore, some cataract-forming 

crystallin variants have been shown to be more thermally stable than non-cataract forming 
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variants (15). Therefore, it is important to characterize γ-crystallins variants at physiological 

conditions to understand the pathway to cataract formation. 

To computationally investigate the cataract-related conformations and interactions of W42R HγD 

and its aggregates, we use a combination of microsecond-scale molecular dynamics (MD) 

simulations and Multi-Conformation Monte-Carlo (mcMC) simulations to model the single 

protein dynamics and interactions at high concentration, respectively. Additionally, we use 

network analysis to investigate the morphologies of the aggregates. We show that the N- and C-

terminal domains of W42R HγD separate in absence of thermal or chemical denaturation. The 

resulting domain-separated conformations contain patches of exposed hydrophobic residues 

that, in turn, become the primary sites of interprotein interaction in Monte Carlo simulations of 

W42R HγD at high concentrations. These domain-separated conformations of W42R HγD show a 

propensity to form higher order aggregates than WT HγD in mcMC simulations. Based on our 

overall results, we provide atomistic computational evidence of significant conformational 

changes in W42R HγD that result in large-scale aggregation. 

 

METHODS 
	
Single Protein Molecular Dynamics Simulation System Preparation and Equilibration 

The initial protein coordinates of WT HγD and W42R HγD were built from the crystal structures 

deposited into the Protein Data Bank (PDB ID code 1HK0 for WT HγD and 4GR7 for W42R HγD) 

(9, 11). Histidine protonation states were set to be the same as those published in the solution 

state NMR structure of the P23T variant of γD-crystallin (PDB ID code 2KFB) (91). Protein atoms 

were parameterized with the CHARMM36 force field (93). The crystal structure waters were kept 
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and the proteins were solvated in a cubic TIP3P (90) water box measuring 80 Å on a side. The 

system was neutralized with chloride counterions. The single protein systems contained 48,309 

atoms and 48,367 atoms for WT HγD and W42R HγD, respectively. All system preparation was 

performed using the VMD 1.9.1 software package (94). 

A 20 ns pre-production simulation equilibration was performed with NAMD 2.9 (95). The 

prepared systems were minimized for 10,000 steps in the NPT ensemble at 310 K and 1 atm. 

Protein heavy atoms were restrained with harmonic positional restraints and were gradually 

relaxed over 200 ps. NAMD was parameterized with the smooth particle mesh Ewald method 

(96, 121) for long-range electrostatic interactions, a real space interaction cutoff at 11 Å, and an 

integration time step of 2 fs/timestep. The RESPA algorithm (97) was used with a timestep of 4 

fs for electrostatic forces, 2 fs for nonbonded forces, and 1 fs for bonded forces. Hydrogen 

covalent bonds were held fixed using the SHAKE (98) and SETTLE (53) algorithms. Constant 

temperature and pressure was maintained using a Langevin thermostat and a Nosé-Hoover-

Langevin piston (99, 100). 

 

Microsecond Time Scale Molecular Dynamics Simulations 

Production simulations were performed on the Anton 2 supercomputer, a special-purpose 

computer for molecular dynamics simulations of biomolecules (101). Protein and solvent atoms 

were parameterized with the CHARMM36 (93) and TIP3P (90) force fields, respectively. The 

multigrator scheme (105) was used to integrate Newton’s equation of motion at 2.5 fs/time step. 

Using the RESPA algorithm (97), long-range nonbonded, short-range nonbonded, and bonded 

forces were calculated at a timestep of 7.5 fs, 2.5 fs, and 2.5 fs, respectively. Long-range 
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electrostatic forces were calculated using the k-Gaussian split Ewald method (103). Hydrogen 

covalent bonds were held fixed using the SHAKE (98) algorithm. Constant temperature and 

pressure was maintained using Nose-Hoover chains (104) and the Martyna-Tobias-Klein barostat 

(99), respectively. Single protein simulations of WT HγD and W42R HγD were run for a total of 50 

μs and 17 μs of production simulation, respectively. 

 

W42R HγD Dimer System Preparation and Simulation 

To prepare the two protein MD simulation of W42R HγD, the protein and its solvation shell 

(waters within 6 Å of the protein) were extracted from the last frame of the 17 μs single protein 

MD simulation. Two copies of the proteins were placed such that the proteins are separated by 

at least 9 Å and the solvating waters do not overlap. The cubic water box is parameterized, 

solvated, neutralized, and equilibrated as previously described. The resulting system contains a 

total of 46,655 atoms contained in an 80 Å x 80 Å x 80 Å periodic cell, the same dimensions as 

the single protein simulation. The two-protein simulation of γD-W42R was run for a total of 7 μs 

on the Anton 2 supercomputer using the same parameters as the single protein simulation. 

 

mcMC simulation protein-protein interaction potential 

Our mcMC simulation employ protein-protein interaction potential developed by Mereghetti et 

al. (122). Two proteins interact through the following potential function: 

	
∆𝑈 = +

-
∑ Φ���B𝑟2�D2� ∙ 𝑞2� +

+
-
∑ Φ���B𝑟��D�� ∙ 𝑞�� + ∑ Φ���B𝑟2�D2� ∙ 𝑞2�

- + ∑ Φ���B𝑟��D�� ∙ 𝑞��
- +

∑ ΦP��B𝑟��D ∙ 𝑆𝐴𝑆𝐴���� + ∑ ΦP��B𝑟i�D ∙ 𝑆𝐴𝑆𝐴i�i� + ∑ 𝐸��Ej�����B𝑟��D�� +
∑ 𝐸��Ej�����B𝑟i�Di� 		 	 	 	 	 	 	 	 	 	 (4.1) 
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The first two terms denote the interaction of electrostatic potential of one of the proteins with 

the charges of another protein (83). The charges are computed through the effective charge 

approximation implemented in SDAMM software package. The second two terms refer to 

electrostatic desolvation penalty that appears due to location of solvated polar groups of one 

protein in proximity of the low dielectric environment of another protein and consequential 

simultaneous loss of solvation shell (123). Terms five and six correspond to an attractive short-

range non-polar desolvation interaction between two proteins that appears when solvent 

exposed hydrophobic atoms of one protein are buried by another protein. This interaction can 

be scaled by modifying a prefactor β used to convert the buried area of the protein surface into 

a desolvation energy. The value used in our simulation is -9 cal mol-1 Å-2. Seventh and eighth 

terms denote the softcore repulsive interaction energy terms.  

The interaction potential terms were computed prior to simulations on 200 Å x 200 Å x 200 Å 

grids with the grid spacing of 1 Å. The electrostatic potential grids were computed at 50 mM ionic 

strength according to OPLS force field (85) by finite difference solution of the linearized Poisson-

Boltzmann equation using the UHBD (86) software package.  

 

Multiple conformation Monte Carlo simulations 

A multiple conformation Monte Carlo (mcMC) algorithm (81) employs translational and 

rotational moves on randomly selected proteins in combination with a conformational swap from 

a finite size library of structures. For rotational and translational moves a basic Metropolis 

scheme (124) is used and the size of moves is adjusted to provide a 50% acceptance ratio. The 

appearance of each conformation in the simulation is proportional to its probability of 
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appearance in MD simulation from which it was extracted. The entire MD simulation is used for 

clustering based on sidechain orientation. Top fifty structures are selected for the mcMC 

conformational swap library.   

Each trial move is accepted according to the Metropolis criterion with acceptance probability: 

	

	 	 	 	 𝑃¡�� = min �1, exp sU∆�
o�A

t�                                                        (4.2) 

	
Where ∆E is the difference between the energy of the system before and after the trial move, kB 

is the Boltzmann constant and T is the temperature. All simulations were performed with 375 

proteins at 200 mg/mL protein concentration, which is approximately half the density of the eye 

lens. A total of 2x105 MC cycles at 310 K are performed for each protein type.  

 

RESULTS 

W42R HγD domains separate after salt-bridge interaction 

To investigate the conformational dynamics of wild-type γD-crystallin and its cataract-related 

W42R variant, single protein MD simulations of WT HγD and W42R HγD were run for 50 μs and 

17 μs, respectively. Although the crystal structure of W42R HγD contains the W42R point 

mutation, the mutant structure is strikingly similar to that of the wild-type protein (backbone 

RMSD of 0.795 Å).(11) In the MD simulation of W42R HγD, the protein structure remains similar 

to its initial structure for several microseconds. Over the course of 6 μs, the residue R42 gradually 

becomes solvent exposed and ultimately forms a salt-bridge with the C-terminal carboxyl group 

(Figure 4.1A).  Upon salt-bridge formation, the N- and C-terminal domains separate, resulting in 

a > 10 Å increase in the αC-RMSD for W42R HγD (Figure 4.1B). As the domains separate, the C-
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terminal domain rotates such that the set of hydrophobic interdomain residues become solvent 

exposed for both domains (Figure 4.2B). Interestingly, the internal fluctuations of the N- and C-

terminal domains of the domain-separated W42R HγD is similar to that of WT HγD (Figure 4.2C). 

This gives no indication for further unfolding of the Greek key domains after domain separation 

in W42R HγD. In the case of the wild-type protein, the protein maintains its native conformation 

over the course of 50 μs of simulation (Figure 4.2B).  

	

	
Figure 4.1: (A) Left: Initial conformation of W42R HγD. The black arrows indicate the R42-CTD carboxyl 

salt bridge and the separation of the CTD. Right: Snapshot of the conformation of W42R HγD after domain 

separation. (B) Root mean square deviation (RMSD) of the backbone alpha carbons plotted vs. time. WT-

HγD and W42R HγD is plotted on the top and bottom, respectively.  
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Figure 4.2: Conformational snapshots of (A) WT HγD and (B) W42R HγD taken after microsecond-scale MD 

simulations. Residues with a > 0.13 increase in relative solvent exposure (ΔRSA) from the W42R point 

mutation are represented in VDW spheres on both wild-type and mutant proteins. Residues are colored 

by residue type. Non-polar residues are colored white, polar residues are colored green, basic residues 

are colored blue, and acidic residues are colored red. (C) Intra-domain root mean square fluctuations of 

WT HγD and W42R HγD shown in black and red, respectively. (D) Difference in RSA between W42R HγD 

and WT HγD. Positive ΔRSA values correspond to an increase in residue exposure for W42R HγD. 

 
	

To identify the exposure of new potential interprotein contacts, the relative solvent 

accessibilities (RSA) of WT HγD and W42R HγD were calculated for each clustered conformation 

prepared for the mcMC simulations (Figure 4.2D). The RSA represent the residue solvent 

accessibility normalized over the theoretical maximum solvent accessibility for each type of 

residue (125). Residues with a change in RSA > 0.13 are all located at the interdomain interface 

in WT HγD (shown as VDW spheres in Figure 4.2A&B). These are primarily patches of hydrophobic 

residues that form the hydrophobic core of the N- and C-terminal domains. These exposed 
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hydrophobic patches give opportunities for the formation of new interprotein contacts. To test 

the role of these residues in interprotein interaction, we performed multi-conformation Monte-

Carlo simulations of WT HγD and W42R HγD at high concentrations. Clustered conformations 

were obtained for WT HγD and the open conformation of W42R HγD. The top 50 most populated 

clusters were used as input for mcMC simulations of WT HγD and W42R HγD at 200 g/L. 

 

Monomer mcMC simulation results 

After performing Monte Carlo simulations of wild-type and W42R variant at 200 g/L for 2x105 MC 

cycles, domain center of mass based radial distribution functions were computed. The domain-

based radial distribution functions were considered instead of the center of mass based radial 

distribution function due to the shape of the protein. Since gD-crystallin is composed of two 

highly homologous domains – N-terminal and C-terminal, the entire protein has an elongated 

structure. Considering the radial distribution function of the center of mass of each domain 

allows us to see which domain has the strongest preference for interaction.  

	
Figure 4.3: Radial distribution functions of domain centers of mass of wild type and W42R variant 

(structures obtained in monomer MD simulation). 
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According to domain-based radial distribution functions, N-terminal of W42R variant has the 

strongest preference for interaction with N-terminal of other proteins comparing to that of the 

wild-type. N-terminal to C-terminal interactions are less strong, but also more prevalent in the 

W42R variant, while C-terminal to C-terminal interactions are very similar in W42R variant and in 

the wild-type crystallin.  

To examine the origin of this preferential interaction in W42R variant all protein pairs 

contributing to the radial distribution function were selected and the contacts between them 

were analyzed. The protein pairs were selected based on the distance between the centers of 

mass of protein domains. Two residues are said to be in contact if any two heavy atoms are within 

3.5 Å distance of each other. Based on these criteria, the total number of contacts found in the 

wild type simulation is 24991, and for W42R simulation – 47887, which is almost twice as many 

as that for the wild type. The plot below shows the total number of contact found for each 

residue. The contacts are displayed if their number exceeds twenty. W42R has slightly more 

contacts between C terminals than the wild type. Specifically, residue 144, Leucine is responsible 

for the increased interaction between C terminals. N terminal interacts more with both N and C 

terminal of other proteins through residues 53, Leucine, 69, Methionine, and 71, Leucine. As can 

be observed in the contact analysis plot, these hydrophobic residues don’t make a single specific 

contact, but instead contact many other residues. If we compare these residues to Figure 28D 

showing RSA of fifty mcMC configurations extracted from the MD simulations, we can see that 

these residues indeed belong to those patches of the protein that are more exposed in W42R 

than in the wild type.  
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Figure 4.4: The total number of contacts of HγD and its W42R variant protein residues with other protein 

residues in mcMC simulations. No preferential contacts are found between wild-type proteins. The 

darkest points relate to contacts of the flexible end on C-terminal. However, W42R variant contacts 

multiple residues of other proteins with residues 53, 69, 71.		

	
Two protein MD Simulations of W42R HγD show increased domain separation 

As the increased interaction of the W42R variant is apparent both from the radial distribution 

functions and contact analysis, we decided to perform another MD simulation of a W42R dimer 

starting from the final structure of a monomer MD simulation. This allows us to see whether 

there is any further structural change, as well as to expand the ensemble of input structures for 

mcMC simulations. An MD simulation of W42R HγD was prepared with two copies of W42R HγD 

and their solvation shells. The two protein copies were placed such that no protein heavy atoms 

are within 9 Å of each other. Over the course of the 7 μs MD simulation, the two proteins diffuse 

together and interact such that the exposed hydrophobic interdomain residues (specifically, L53, 

F56, M69, and L71) from the N-terminal domain of both proteins form a new interprotein 
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hydrophobic core. Apart from L53, these are the same residues with strong contacts observed in 

the monomer mcMC simulations. The interprotein contacts for the two protein W42R HγD 

simulation are rather sparse. However, these few contacts are sufficient to keep the two proteins 

associated for the duration of the simulations. When the two proteins interact, the C-terminal 

domain separates further from the N-terminal domain resulting in a fully exposed interdomain 

interface for both proteins (Figure 4.6). This results in residue F56, located deeper in the 

interdomain interface, becoming exposed to protein interaction.  

	

	
Figure 4.5: Snapshots of the highest probability structures used in mcMC simulations. In orange is the wild 

type structure, in grey – the W42R variant structure from monomer MD simulation. In green – W42R 

variant structure from dimer MD simulation. C-terminal domain is tilted by 45.2 and 65.5 degrees in 

monomer and dimer structures respectively comparing to the wild type.  
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Figure 4.6: Snapshots of the two-protein MD simulation of W42R HγD after (left) initial binding and (right) 

after binding-induced conformational change. The change in protein conformation results in increased 

domain separation and increased exposure of interfacial residues. This co-conformation persists from the 

2.4 μs mark to the end of the 7 μs simulation. Binding residues identified from the mcMC simulations are 

shown as VDW spheres on the NTD of both proteins. 

	
Dimer MC Simulation results 

The two protein MD trajectory was clustered once again based on the sidechain RMSD to create 

a new ensemble of fifty conformations for mcMC simulations. We further denote this ensemble 

as “dimer” simulation ensemble. Below we consider the domain-based radial distribution 

function of the dimer ensemble of W42R variant. It can be observed that the N-terminal domain 

has an even higher propensity to interact in the dimer ensemble of the W42R than in the 

monomer ensemble.  

1.0 μs 2.4 - 7.0 μs
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Figure 4.7: Radial distribution functions of domain centers of mass of W42R variant from structures 

obtained in monomer and dimer MD simulations. 

	
	
The total number of protein pairs found in the contact analysis for the dimer ensemble is even 

higher - 67415. The comparison of the contact analysis between two ensembles of the W42R 

variant – the one generated from the monomer MD simulation and from the dimer MD 

simulation – is presented on the plot below. The main features of interaction are preserved, the 

same residues are participating in contact, however N terminal interacts even more in the dimer 

ensemble.  
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Figure 4.8: The total number of contacts for each residue of W42R variant from monomer and dimer 

conformations with other protein residues in mcMC simulations. Dimer conformation of W42R variant 

have a higher number of contacts than the monomer conformation for residues 53, 56, 69, 71. 

		
The open conformation of W42R HγD forms larger sized aggregates relative to wild-type 

We further investigate the effect of the W42R point mutation on the size and morphologies of 

γD-crystallin aggregates. Monte Carlo simulations indicate that increased exposure of the inter-

domain interface leads to a larger number of contacts between proteins in a solution of W42R 

γD-crystallins. We analyze how this increased propensity to make contacts leads to cluster 

formation. Two proteins are said to be in contact with one another if the distance between the 

centers of mass of their domains is within 31 Å. Such distance is chosen due to the position of 

the maximum of the domain-based radial distribution function. Clusters of proteins chosen by 

the above criteria are now analyzed. In the plot below the probability density of cluster size 

distribution is shown for the wild type γD simulations as well as for the two ensembles of the 

W42R variant. The cluster size distributions of the monomer and dimer simulations of W42R HγD 
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show a significant increase in cluster size over wild-type. Though WT HγD shows some propensity 

to form small clusters, the W42R HγD clusters can be composed of more than half of the proteins 

present in the simulation (375 proteins total). When the domains are further separated 

(represented in the dimer simulation of W42R HγD), the distribution of clusters becomes much 

broader, signifying a large proportion of higher order aggregates.  
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Figure 4.9: (Top) Probability density of the largest cluster sizes from Monte-Carlo simulations of 375 

proteins (200 g/L). (Bottom) Distribution of the size of all clusters present in Monte-Carlo simulations of 

375 proteins (200 g/L) 
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Figure 4.10: Isolated cluster conformations taken from the 95th percentile of the cluster size distribution. 

Clusters were formed in mcMC simulations using conformations of WT HγD (left) and the W42R HγD 

monomer (right) at 200 g/L. The N- and C- terminal domains of the proteins are colored in red and blue, 

respectively. Cluster sizes are 54 and 181 proteins for WT HγD and W42R HγD, respectively. 

	
Visually inspecting the morphologies of the isolated clusters (Figure 4.10), there is an amorphous 

structure in both mutant and wild-type aggregates. However, the clusters of the mutant protein 

have a much larger apparent size. This is a result of the increased propensity for interprotein 

interaction. Additionally, the newly exposed hydrophobic interfacial residues in W42R HγD 

introduce a new interprotein interaction surface, allowing for a single protein to interact with 

several more proteins. By representing the clusters as a network of interprotein interactions, the 

W42R HγD conformation is shown to be capable of a higher degree of interactions (Figure 4.11). 

Most of these high order interactions come from interactions with the N-terminal domain. 
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Figure 4.11: Histogram of the interprotein domain interactions involving more than one neighbor. 

	
 

DISCUSSION 
	
	
We compare the conformational change of W42R HγD in a long MD simulation to the wild type 

protein. The simulation of HγD was conducted for 50 μs and no structural change was observed. 

However, after 6 μs of W42R simulation the protein undergoes structural change due to solvent 

exposure of residue R42 and formation of a salt bridge between this residue and C-terminal 

carboxyl group. This leads to separation of two domains while the structure of separate domains 

stays intact. This structural change exposes several hydrophobic residues on the interdomain 

interface of both domains that were buried in the wild type HγD protein. No other significant 

conformational changes occur for the remaining 11 μs of simulation, suggesting that this 

conformation of the protein is stable in dilute protein concentrations.  Simulation of W42R 

variant dimer reveals that hydrophobic interdomain residues participate in protein-protein 
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interaction, and two domains separate even further as a result of protein-protein interaction, 

fully exposing the interdomain interface.  

Early experiments by Wang et al. (115) report an initial comparison of the hexahistidine-tagged 

HγD and W42R. They report similar secondary structure between W42R and wild-type through 

far UV CD spectroscopy. However, ANS fluorescence experiments show a significant increase in 

hydrophobic exposure in W42R compared to wild-type. They suggest that this hydrophobic 

exposure is a result of a change in tertiary structure in W42R, consistent with the separation of 

intact Greek key domains observed in our MD simulations. 

F. Ji et. al. report shows the crystal structure of W42R variant has two domains tilted only by 9 

degrees comparing to the wild type while structurally each domain remains intact (11). They find 

that wild type protein and W42R variant possess almost identical solvent accessible surface areas 

(8894.32 and 8546.23 Å2, respectively, as calculated by VMD). However, the unfolding curve of 

W42R variant under close to physiological conditions (37 ˚C and 7 pH) shows two-step unfolding, 

indicating that an unfolding intermediate exists and that W42R variant has a lower chemical 

stability than HγD.  A domain-separated conformation has been observed in annealing 

simulations of wild-type γD-crystallin (118). They proceed to observe domain swapping 

interactions with the CTD. It is worth noting, however, that the unfolding simulations involved 

simultaneous thermal and chemical denaturation with urea, resulting in an unfolded NTD. We 

observe a separation of intact domains in absence of thermal and chemical denaturation.  

Our MD simulations under physiological conditions, and therefore close to eye lens conditions, 

reveal that without unfolding the structure of separate domains, just by further tilting the angle 
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between them, solvent accessible surface area increases from 8991.08 Å2 in HγD to 9615.64 Å2 

in W42R HγD monomer conformation to 9784.23 Å2 in W42R dimer conformation. 

Serebryany et al. also report that tryptophan fluorescence spectra – an evidence of 

conformational change in HγD (references 18, 20, 39, 49, 50 in that paper) – show no difference 

between WT and W42R variant (126). They observe how in oxidizing solution, W42R spectra 

becomes red-shifted indicating the process of unfolding. The spectral change was observed over 

the course of 60 minutes – the time yet inaccessible to simulations. However, the presence of 

unfolded proteins was either observed or indicated to exist in conditions that were far from 

physiological – in the presence of oxidizing agents and at very low protein concentration. It is 

possible that if we had the time scale of minutes or hours, more conformational changes would 

take place. However, HγD proteins exist in the eye lens at concentrations exceeding 400 mg/mL, 

and even small structural changes associated with point mutations may lead to enhanced local 

interaction and aggregation while full protein unfolding may become impossible under 

physiological conditions.  

High concentration (200 g/L) mcMC simulation of 375 proteins with conformations extracted 

from the MD monomer simulations show that W42R variant has a higher propensity to aggregate 

than the wild type HγD protein. Dimer ensemble of W42R is even more likely to aggregate than 

the monomer ensemble since further conformational change of the protein occurs due to 

protein-protein contact. The radial distribution function indicates that N-terminal of W42R 

variant interacts with both N-terminal and C-terminal of other proteins, while C-terminal to C-

terminal interaction in W42R variant are very similar to those in wild type.  
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Hydrophobic residues, specifically residues 53, Leucine, 69, Methionine, and 71, Leucine, located 

on the interdomain interface of N-terminal, come in contact with many other residues of other 

proteins. Therefore, many orientations of proteins with respect to one another are possible 

during aggregation, as long as the residues mentioned above are participating in contacts. Those 

contacts are successful in creating clusters of W42R variant much larger than clusters of WT 

protein. The isolated aggregates are amorphous and stringy in shape since each protein may have 

only a few neighbors. Aggregates of similar shape were recently detected by Boatz et al. in 

negative-stain TEM images for another HγD variant – P23T (10). In fact, the shape of the 

aggregates is sensitive to aggregation conditions – when the pH of solution is decreased to 3, the 

proteins form amyloid fibrils containing interprotein β-sheets. ssNMR spectroscopy did not 

detect any structural change of the Greek key domains in the P23T variant at neutral pH. This 

indicates that at high concentrations of HγD, small changes of protein surface charge of structure 

disrupt the careful balance of protein solubility and aggregates form. 
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CHAPTER 5 

Cataract related G18V variant of gS-crystallin shows increased protein-protein 

interaction 

 
INTRODUCTION 

 
gS crystallin belongs to a family of eye lens structural proteins. Its solubility at concentrations 

exceeding 400 mg/mL is crucial for keeping the eye lens transparent. Like other structural eye 

lens proteins, gS crystallin is b-sheet protein consisting of two Greek key domains. G18V variant 

of gS crystallin is linked to hereditary childhood-onset cortical cataract (14). This chapter will 

investigate the possible molecular mechanism for increased propensity for protein association 

between G18V variant of gS crystallins.  

METHODS 

Molecular Dynamics Simulation System Preparation and Equilibration 

MD simulations were run by Eric Wong. The simulation system of wild type γS-crystallin and its 

G18V variant were built from the lowest energy solute-state NMR conformations deposited in 

the Protein Data Bank by Kingsley et al. (13) (PDB ID codes 2M3T and 2M3U). Protein atoms were 

parameterized with the CHARMM36(93) force field. The proteins were solvated in an 

orthorhombic box of TIP3P (90) waters with the nearest box boundary at least 12 Å from any 

protein atom. The net charge of the system was neutralized with chloride counterions. The VMD 

1.9.1 software package (94) was used to assemble the system. 

Pre-production simulations were carried out using NAMD 2.9 (95). Each protein-solvent system 

was minimized for 10,000 steps at constant temperature (300 K) and pressure (1 atm). Harmonic 
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positional restraints placed on each protein heavy atom and were gradually relaxed over 1 ns. 

The system was then equilibrated at constant temperature and pressure for a total of 434 ns. 

The smooth particle mesh Ewald method (51, 96) was used to calculate electrostatic interactions. 

Short-range, real-space interactions were cut off at 11 Å by means of a switching function. A 

reversible, multiple time-step algorithm (97) was used to integrate the equations of motion with 

a time step of 4 fs for electrostatic forces, 2 fs for short-range nonbonded forces, and 1 fs for 

bonded forces. All bond lengths involving hydrogen atoms were held fixed using the SHAKE (98) 

and SETTLE(53) algorithms. A Langevin dynamics scheme was used for temperature control, and 

a Nosé-Hoover-Langevin piston was used for pressure control (99). 2 µs production run was 

performed for wild type γS-crystallin. 

Molecular dynamics simulations of G18V variant performed on Anton 

Additional trajectory was obtained on the Anton supercomputer, a special-purpose computer for 

molecular dynamics simulations of biomolecules (127). Protein and water atoms were 

parameterized with the CHARMM36(93) and TIP3P (90) force fields, respectively. The multiple 

time-step algorithm (97) was integrate the equations of motion with a time step of 7.5 fs for long-

range non-bonded forces, 2.5 fs for short-range non-bonded and bonded forces. The k-Gaussian 

split Ewald method (103) was used for long-range electrostatic interactions. All bonds lengths 

involving hydrogen atoms were fixed using the SHAKE (98) algorithm. The simulation was 

performed at constant temperature (310 K) and pressure (1 atm) using Nose-Hoover chains (104) 

and the Martyna-Tobias-Klein barostat (99). The RESPA algorithm and temperature and pressure 

controls were implemented using the multigrator scheme, allowing the simulation to run at 2.5 
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fs/timestep(105). The simulation was run for 960 ns, leading to a total trajectory length of 1.394 

μs from the combined trajectories from NAMD 2.9 and Anton. 

mcMC simulations 

Top 50 structures were selected as the input conformational library for both wild type γS-

crystallin and its G18V variant after clustering the entire available trajectory with respect to side 

chain orientations. The method for computing potential terms can be found in chapters 1 and 2. 

The nonpolar desolvation parameter was set to −0.0078 kcal/mol/Å2. The grids were calculated 

at 300 K and 50 mM ionic strength. All simulations are run at 200 mg/mL protein concentration 

using 375 proteins at 300 K. Each simulation is 2x105 mcMC cycles long.  

RESULTS 
 

The conformational dynamics of wild type gS crystallin and its cataract-related G18V variant were 

investigated in 2 microseconds MD simulations. The structure of C terminal domain is very similar 

for the two proteins. The largest structural difference comes from deviation in N-terminal 

domain.  
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Figure 5.1:Root mean square deviation (rmsd) of the backbone in wild type and G18V variant of gS 

crystallin. The largest difference appears in N terminal domain RMSD.  

To find the origin of this difference arising in N-terminal of G18V variant, we can consider the 

structure difference between the two proteins.  G18V variant has the loop near residue 30 that 

fluctuates a lot more than that in wild type. This leads to the exposure of a hydrophobic residue, 

phenylalanine, in position 30, that previously seemed to be buried in the wild type gS crystallin. 
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Figure 5.2: Aligned conformations of wild type and G18V variant. Position of a flexible loop is marked. 

 
The MD trajectories were clustered to obtain 50 conformations for each protein as the input for 

mcMC simulations. 

The domain-based radial distribution function – based on the center of mass of each domain – 

was computed from mcMC simulations. Figure 5.3 shows that in each case G18V variant has a 

higher propensity for interaction than the wild type gS crystallin.  

 

 
Figure 5.3: Domain-based radial distribution function. On the left it is the N-terminal to N-terminal radial 

distribution function. In the center – N-terminal to C-terminal, on the right – C-terminal to C-terminal. In 

each case the peak of the G18V variant radial distribution function is higher than that of the wild type. 
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The distance of the peak of the radial distribution function is used for distance cutoff to separate 

protein pairs from the entire trajectory. This new trajectory of pairs is then used to analyze 

contacts between proteins. Figure 5.4 displays the probability of making a contact mapped on a 

protein. In wild type crystallin the highest probability belongs to isoleucine in position 161. In the 

case of G18V phenylalanine in position 30 makes most contacts. In MD simulation G18V variant 

gets a temporarily disrupted loop that contains residue 30 that starts to stick out and make a lot 

of contacts. The second highest contact is phenylalanine in position 104.  

 

 

 
Figure 5.4: The probability of making a contact is mapped on to protein. The highest probability is shown 

in red, while the lowest is in white. G18V has residues 161 and 104 making highest number of contacts.  

 
In the Figure 5.5 residues 30 and 104 of G18V variant make contacts with many other residues. 

Both wild type gS crystallin and its G18V variant make some contacts with residues 161.  
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Figure 5.5: Contact probability map for wild type gS crystallin (on the left) and its G18V variant (on the 

right).  

When the above criterion for making clusters is used (based on the peak of the radial distribution 

function), the distribution of cluster sizes can be plotted. G18V variant tends to make clusters of 

a larger size than the wild type crystallin.  
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Figure 5.6: Distribution of cluster sizes in 200 g/L wild type gS crystallin simulation and its G18V variant. 
 

From the results presented above, we can conclude that the partial unfold around the mutation 

site creates a flexible loop in G18V variant that exposes residue 30, which starts to highly interact 

with other proteins. Residue 161 also becomes exposed and creates a second location for 

protein-protein interaction. These interaction locations increase the propensity for interprotein 

interaction and lead to increased aggregation. 
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