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Abstract of the Thesis

A Study of Crimes Near Marijuana Dispensaries

Through a Slew of Modern Statistical

Approaches

by

Michael Tzen

Master of Science in Statistics

University of California, Los Angeles, 2012

Professor Robert Gould, Co-chair

Professor Frederic P. Schoenberg, Co-chair

In the past decade, marijuana laws have come under scrutiny with Los Angeles

serving as an epicenter and testing ground for regulations concerning the use and

distribution of marijuana. The topic is polarizing, acting as a divide amongst

the inhabitants of Los Angeles. In this paper, an analysis of crimes near legal

marijuana dispensaries is pursued through a few modern statistical tools. This

paper is motivated and built upon the 2011 research conducted by RAND authors

Chang and Jacobson which sparked a commotion amongst supporters of anti and

pro marijuana laws. An alternative view of Chang and Jacobson’s result is pur-

sued through the quantification of temporal sources of variation in the sampling

distribution of a key regression parameter as well as classical spatial statistical

tools. Further, we will make use of Voronoi tessellations in two ways. First, we

will provide an alternative spatial regularization when interpreting crimes clus-

tered around the marijuana dispensaries. Lastly, an application of the Voronoi

Estimator, which estimates the intensity of an inhomogeneous point processes,

will be implemented.
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CHAPTER 1

Introduction

In the Summer of 2011, RAND, the Santa Monica based think tank, published

a report, later retracted, which riled up both parties that form the great divide

amongst the medicinal marijuana community. The authors Chang, Jacobson,

et.al, presented a technical report entitled “Regulating Medical Marijuana Dis-

pensaries” [JCa11] in which the derived result cut against conventional wisdom.

Their analysis, which focused on the effects of medical marijuana dispensary clo-

sures on crime counts, was a novel look at a hot topic amongst Californians. In

this paper, we will study the effects and limitations under the assumptions made

by the RAND authors.

First, a brief overview of RAND’s analysis is presented. Using crime data ob-

tained through crimereports.com, Chang and Jacobson looked at crimes occurring

within a 21 day window centered around Dday = June 7th, 2011.

[Dday − 10, Dday + 10]

Further, the attention was focused specifically on crimes occurring within the

union of circular regions (Fig. 1.1) each centered at the 600 dispensaries scattered

throughout LA city with varying radii of 0.3, 0.6, 1.5, and 3 miles.

Domain =
⋃600
j=1Br(Dispensaryj) for j = 1,...,600 and r ∈ {0.3, 0.6, 1.5, 3}

We will look specifically at the context when radius r = 0.3 miles, since this

is the setting that is showcased in RAND’s technical report (Note: a sensitivity
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Figure 1.1: Spatial Domain: Union of Balls

analysis using the various radii was also conducted by RAND). With 21 days

of crime and 600 dispensaries (170 open, 430 ‘closed’), RAND approached the

analysis by fitting a linear model of the following form

Crimedt = αd + β ∗ 1(date>june7) ∗ 1closed + δt + εdt (1.1)

αd is the fixed effect for dispensaries

β the interaction effect of the two indicator covariates

δt is the fixed effect for day

d is the dispensary index {1,2,. . . ,600}

t is the time index corresponding to the day {1,2,. . . ,21}

The conclusion that crimes increased when dispensaries were “shut down” was

derived by interpreting the β̂ coefficient (an estimated value of 0.013 with standard

2



error 0.006) which corresponds to the interaction 1(date>june7) ∗ 1closed [JCa11].

Some skeptics, e.g. Dennis Romero, have pointed out that a handful of mari-

juana dispensaries listed as “closed” were in actuality open [Rom] . Other sources

of criticism were directed at the 21 day time window Chang and Jacobson used,

suggesting that the window length was not large enough to capture the effect of

interest. The RAND paper was later withdrawn, with acknowledgements to the

above critiques.

With the above context and possible problems in mind, this paper explores

alternative analytical methods of the proposed model. We will look at a possi-

ble “null” distribution of the β̂’s found in RAND’s proposed model. The null

distribution corresponds to the hypothesis that the β̂ value RAND obtained for

June 7th, 2011 is no different then the β̂ value for any other day of the year 2009.

We proceed by using various 21 day time frames throughout the year of 2009,

(in a sampled manner) and later extending the analysis to the full year. We still

consider the same model RAND used. Essentially, the analysis will “relabel” the

days of the year; with each relabeled day acting as a possible designated closure

day.

Further, a look into the intrinsic spatial characteristics of the marijuana dis-

pensaries and crimes are also pursued. Tools employed in the analysis of point

patterns are leveraged in an exploratory manner. The purpose is to provide an

alternative exploration of clustering (or inhibition) of the marijuana dispensaries

touted by Chang and Jacobson. Also, an alternative regularization of the spatial

domain is implemented with the use of Voronoi Tesselations.
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CHAPTER 2

Data Used

The data used in this paper’s analysis are gathered from two sources. All of the

data processing and analysis are done in [R], the statistical programming language

[R D12]. The crime data is supplied by the LAPD. Each row entry corresponds

to a recorded crime incident. While the marijuana data is pulled from the API of

the LA Times website.

> dim(lapd09.data.raw)

[1] 339688 57

1 2 3 4 5

1 DR PREMISE WEAPONCODES VICAGE BEGWEEK

2 CRIMETYPES PREMISECODE WEAPONCODE VICVEHMAKE ENDYEAR

3 CRIMETYPE SUSPECTS MOCODES VICVEHMODEL ENDMONTH

4 CASESTATUS POENTRY NARRATIVE VICVEHSTYLE ENDDAY

5 CRIMECLASSCODES POENTRYCODE SUSPVEHMAKE VICVEHYR ENDWEEK

6 RD POEXIT USPVEHMODEL VICVEHTOP DISTRICT

7 BASICCAR POEXITCODE SUSPVEHSTYLE VICVEHBOT x

8 BEGTIME PROPERTY SUSPVEHYR TYPEWATCH y

9 ENDTIME PROPCODE1 SUSPVEHTOP TYPE WATCH dateconv

10 WATCH PROPCODE2 SUSPVEHBOT BEGYEAR

11 DOW PROPCODE3 VICSEX BEGMONTH

12 ZIP PRIMARYWEAPON VICDESCENT BEGDAY

> dim(disp.data)

[1] 431 10

1 2 3

1 Collective Notified x

2 Address lon y

3 Applied.for.lottery lat

4 Ordered.to.close index

4



The raw LAPD dataset contains 7 observations that have missing entries and

183 observations where the geo-location pairs of (x, y) take on values (0, 0). We

make the strong assumption that these 190 observations are missing completely

at random. As the missing data mechanism is not the focus of our study, we treat

the 190 observations as ignorable and move on.

We will make use of crime occurrences that were recorded by the LAPD in

2009 with focus on the number of crimes, the date, and the location. From the

LA Times, we will use the locations of the marijuana dispensaries and the binary

variable depicting if the dispensary was ordered to close. The reader should be

aware that there are obvious differences between the data used for our analysis

and the data used by RAND. The following highlights the key differences between

the datasets.

Differences in Datasets:

1. Mine: 431 Dispensaries

Rand: 600 dispensaries

2. Mine: March 7th 2011 Ordered to Close (Letters Sent Out)

Rand: June 7th 2011 Ordered to Close

3. Mine: LAPD for Crime Data (Recorded Crimes)

Rand: crimereports.com for Crime Data (Reported Crimes)

4. Mine: 2009 Crime Data

Rand: 2011 Crime Data

With the above differences, RAND’s results cannot be compared to ours in

a direct cross referential fashion. However, by paying careful attention in con-

structing a similar context, analysis of our results provide additional insight into

RAND’s conclusion.
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For the time being, we work with crime data from 2009 recorded by the LAPD

consisting of 339,688 recorded crime incidents throughout LA (city). Emperically,

crime rates have seem to be historically declining from 2005 to 2009 (Fig. 2.1-2.3).

It would be of interest to work with data from the past, specifically 2009, and see

how it stacks up with a result obtained from 2011 data.
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Figure 2.1: Crime Counts (all) across time from 2005-2009

Figure 2.2: Crime Counts (0.3 mi around disp.) across time from 2005-2009

Figure 2.3: Decomposed time series of crimes 0.3 mi around disp. from 2005-2009
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CHAPTER 3

Quantifying Sources of Temporal Variation in β̂

3.1 Intro

Chang and Jacobson’s novel use of an OLS regression model, although nice, has

its limitations. One major obstacle is the narrow 21 day time frame employed in

the regression model. By using such a model, the question of window size comes

to question. Of concern would be the reported standard error of the estimated β̂

when used to interpret β̂’s significance. By taking Chang and Jacobson’s result,

as is, no further context is provided when trying to discern if their estimated β̂ is

atypical. Interpretation relies on the assumed asymptotic qualities commonplace

to a classical simple regression analysis. In this part of the paper, we provide a

possible null distribution of β’s with the null hypothesis of “no label difference”

when looking at relabeled closure dates. The method of analysis draws conceptual

similarities to Fisher’s permutation test and Efron’s bootstrap. Essentially, we

embed the 21-day RAND regression model into a larger dataset containing 365

days, and look at possible contiguous 21-day regression models. The sampling

distribution of β̂ would thus serve as the null distribution previously described.

3.2 Appx. Null Distribution using 100 sampled days

We first proceed by drawing randomized k=100 days sampled in 2009 without

replacement. We work under the assumption that each of the 100 days acts as the

designated closure date denoted as “rDday.” This assumption implies that any of

8



the sampled rDday’s can act analogously to June 7th 2011, the day RAND drew

their gaze upon.

One detail worthwhile of mention is how the values of the two indicator covari-

ates in “β ∗1(date>rDday) ∗1closed” are coded (equation 3.1). The term 1closed should

really be interpreted as 1ordered to close on March 7th . (We are thus making the

underlying assumption that the March 7th closure from LATimes, corresponds to

RAND’s closure date of June 7th 2011). For ease of notation, we consider the two

indicator variables discussed above as functions of the indices d, t, and k, where

d is the dispensary index, t is the time index, and k is our rDday index.

1date = f(t, k) =

 1 t > k

0 otherwise

1closed = g(d, k) =

 1 Dispd ordered to close on day k

0 otherwise

This is to illustrate that we will fix the values of 1closed = g(d, k) for k =

1, . . . , 100. This reduces the indicator of 1closed to a function depending only on

the dispensaries. We will fix the values of 1closed using the observed data from

”gmarijuana.txt”[Tim]. The justification of doing this is warranted. If we let

1closed represent if the dispensary ‘truly’ was ordered to close on dayk (i.e. a varying

function of the sampled rDdays), almost all the interaction terms will drop out,

with the only remaining interaction term corresponding to the regression where

the sampled rDday = March 7th.

Fixing 1closed (i.e. a fixed function of the sampled rDdays where the values are

fixed across all rDdays) keeps the interaction terms (corresponding to RAND’s

regression). Hence, the choice of fixing the 1closed indicator ensures correspondence

to the dispensaries RAND focused on when looking at June 7th, 2011. Hence,

throughout all possible 21-day windows of 2009, we are looking at similar models as

9



the one proposed by Chang and Jacobson in 2011. With the discussed precautions,

extra care is needed when wrangling the data. If the reader is interested, the

documentation on the data wrangling procedure can be viewed in the Code section.

Proceeding with the construction of our approximate null distribution, we

draw, without replacement, 100 rDdays ∈ {10, 11, . . . , , 354, 355} and focus on

[rDday−10, rDday+ 10]. For each rDdayk where k = 1, . . . , 100, we run an OLS

regression of the form

Crimedt = αd + β ∗ 1(date>rDday) ∗ 1closed + δt + εdt (3.1)

Note that the linear equation in (3.1) is analogous to the RAND equation shown

in (1.1). We essentially ran k = 100 OLS regressions corresponding to the sam-

pled central cut-off day rDday. We then analyze the distribution of {β̂k : k =

1, . . . , 100}.

We now “retroactively” compare our results (2009 data) to RAND’s (2011

data) by looking at the the following summary statistics in Table 3.1 and the

distribution in Figure 3.1. One thing to note, RAND’s numbers, in the first row,

will be point estimates from a single OLS model, while the values in the second

row (using 100 subsets) will be averages of the 100 point estimates output from

the OLS models of Equation 3.1.

Table 3.1: Radius = 0.3 Miles and Total Crime Counts as a response

β̂ SE(β̂)

RAND (2011) 0.013 0.006

mean(β̂) sd(β̂)

100 Subsets (2009) 0.010 0.062

We see that RAND’s 2011 β̂ coefficient estimate falls near the mean of our Null

distribution derived from 2009 data. The direct interpretation of our findings tell

10



Figure 3.1: Distribution of β̂∗ through 100 samples w/o replacement

us that RAND’s results would not be atypical if they were to conduct the same

study in 2009. Specifically, under the null hypothesis of ‘no label difference’ that

is, the β̂ estimate using Dday = June 7th 2011 is not more unusual than the β̂

estimate when using any random day in 2009 should not be rejected.

The reader might see how the use and interpretation of our preceding analysis

has similarities to an approximate Fisher’s permutation test, where the distinction

is we are looking at possible combinations in the “ambient space” the 21-day model

is embedded in as opposed to possible combinations within the 21-day window

itself. Our null distribution is deemed approximate since we only used k=100

sampled 21-day windows. Thus, our obtained null distribution is a Monte Carlo

approximation of the full null distribution using all the days of 2009. In the next

section, we explore the full null distribution of β̂.

3.3 Full Null Distribution Using 345 Days

The developments in the preceding section laid the foundational groundwork for

our method of analysis. The approximate null distribution obtained (using 100

11



sampled center days) served as a proof of concept which also provided some insight

on the behavior of RAND’s β̂. With a slight modification to the schematic and

code, we can look at the full null distribution of β̂.

Utilizing all of the days, as opposed to just 100 random days, in 2009, we

run the same scheme of looking at OLS regression models using 21-day windows

(Equation 3.1). Incorporating all 365 days in 2009 serves two fold. We get to check

for the robustness of our previous approximate null distribution by comparing it

to the full null distribution. Specifically, we would like to see if the properties of

the null β̂ distribution we saw previously contained artifacts due to the sampling

scheme. Further, the assessment of the temporal variation in the coefficient of

interest β̂ is preferred when using the full null distribution.

Instead of sampling the designated closure dates (or equivalently the center day

in the 21 day interval), we now look at all designated closure dates by “lagging”

the designated closure date across the whole year of 2009. The null distribution of

β̂ is thus the distribution of the set of parameter estimates when using all possible

21 day subsets in 2009.

Table 3.2: Radius = 0.3 Miles and Total Crime Counts as a response

β̂ SE(β̂)

RAND (2011) 0.013 0.006

mean(β̂) sd(β̂)

345 Subsets (2009) -0.0008 0.057

We see that the distribution has a mean that is still extremely close to 0 as

well as being uni-modal and more symmetric. A difference between our previous

“sampled” distribution is that the “full” distribution has the mean on the negative

side. Most importantly, we still see that the difference between RAND’s beta

estimate and the mean of our null distribution is small. Most of the properties

12



Figure 3.2: Distribution of β̂∗ using 345 samples w/o replacement

of the approximate null distribution is represented in the full null distribution. A

conclusion based on the full null distribution tells us that once again the β̂ Chang

and Jacobson obtained is not atypical of a β̂ obtained by using any day of 2009.

Specifically, Chang and Jacobson’s β̂ estimate of 0.013 is enveloped by temporal

variations in β̂.

Another view of the temporal variations in β̂ is seen by looking at how β̂

changes over time. This analysis draws similarities to using time plots of the

outputted samples from an MCMC algorithm. The time plots are used to diagnose

if adequate “mixing” of samples in an MCMC algorithm is prevalent. In our case,

we are interested in any striking patterns prevalent in the plot of (β̂k, k). A plot

of the β̂ over ordered rDdays is presented in Figure 3.3. We see that there is

fluctuations of β̂ reminiscent of random noise. Upon inspection, there does not

seem to be any grotesque structure. If the values of β̂ were consistently low for

days before a specific day and consistently high for days after, the null distribution

in the form of the density provided previously would not be able to pick up this

striking time dependent pattern.

13



Figure 3.3: β̂∗ against ordered rDdays

3.4 Simulated Null Distribution using 10,000 samples w/

replacement

Our previous null distributions drew similarities with Fisher’s permutation test,

in an “approximate” followed by an “exact” manner. By allowing the rDdays to

be drawn with replacement, we would have a null distribution similar to Efron’s

bootstrap. Once again, the difference is we are drawing samples from the “ambi-

ent” temporal space in which the 21-day regression model is embedded in.

Using data from 2009, we have conducted various sampling schemes on the

parameter of interest found in RAND’s regression model. The same methodology

(and code) can be applied to crime data from 2011. Using crime data from 2011

would give us a more direct comparison to RAND’s regression result. At the time

of this study, 2011 crime data was not available. However, combining our result

(using 2009 data) and the empirical evidence of declining crime, it would not be

14



Figure 3.4: Distribution of β̂∗ using 10,000 samples w/ replacement

surprising to see a similar result using 2011 crime data. The value of β̂ = 0.013 is

quite common for any contiguous 21-day subset of 2009.

3.5 Translating the Analysis to a 31-Day Window

In the preceding sections’ analysis, results suggested that the allocation of the

observed β̂’s variability was associated with the randomly chosen designated clo-

sure date. In this section, we translate the preceding analysis to a 31-Day window

from the, previously studied, 21-Day window.

The regression equation found in Equation 3.1 is still the one of study. How-

ever, the modification is looking at crimes in the window [rDday−15, rDday+15]

instead of [rDday − 10, rDday + 10]. The motivation in pursuing this analysis

comes from addressing the “small window” size critiques of Chang and Jacobson’s

2011 paper. The posed problem suggested the 21-Day window was potentially too

small to correctly capture the correlation of crime counts and the dispensary clo-

sures. For this paper’s study, the sensitivity of β̂’s null distribution to the window

size is presented.
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We want to compare the null distribution of the sampled β̂’s when using a 31-

day window to a 21-day window. Figure 3.5 is the null distribution of (the same)

100 sampled days in 2009. When compared with Figure 3.1, we immediately

see striking similarities. Moving on, we compare and contrast the “full” null

distribution using all days of the year by looking at Figure 3.6 and Figure 3.2.

Both “full” null distributions are, uni modal, symmetric, and supported on similar

ranges of β̂. The similarities between the β̂’s when using the 31 and 21 day

windows continue to be seen in the time plots seen in Figure 3.7 and Figure 3.3.

As a last comparison, we turn to Figure 3.8 and Figure 3.4, which are the two

distributions when 10,000 closure dates are sampled with replacement. The 31-

day distribution once again mimics the 21-day distribution in range, symmetricity,

and even in the pattern of local modes.

Our exploration of our null distribution’s sensitivity to an increase in win-

dow size has presented two conclusions. The 31-day and 21-day windowed null

distributions are very similar in their moments. Since the qualities of the null

distributions are mirrored, the analysis in the preceding sections (using the 21-

day window) can be carried over when we talk about a 31-day window. Whether

we use a 21-day window or a 31-day window, the variability in the observed β̂ is

associated with the randomly chosen designated closure day. This suggests that

the estimate Chang and Jacobson obtained is not atypical in both window size

contexts.
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Figure 3.5: 31 Day: Distribution of β̂∗ using 100 samples w/o replacement

Figure 3.6: 31 Day: Distribution of β̂∗ using 345 samples w/o replacement
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Figure 3.7: 31 Day: β̂∗ against ordered rDdays

Figure 3.8: 31 Day: Distribution of β̂∗ using 10,000 samples w/ replacement
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CHAPTER 4

Spatial Clustering and the Voronoi Tessellation

4.1 Intro

In the preceding discussion, we have looked at Chang and Jacobson’s regression

model and came to the conclusion that their interpretation of the proposed model

was not an “atypical” result (if it were 2009). We now shift our analysis on

the assumptions Chang and Jacobson proposed in regards to defining the spatial

domain of interest. Noting the irregular shape of Los Angeles’ (city) boundary

(Fig. 4.1-4.2), as well as the slight nuances of zoning restrictions, the question that

comes to mind is whether the use of the spatial domain depicted in Fig. 1.1 is a

reasonable one. We present two applications of Voronoi Tesselations when dealing

with the point pattern of dispensary locations. Our first Voronoi application

proposes an alternative spatial regularization when analyzing the regression model

of Chapter 3. The unique properties of the Voronoi cells are also leveraged when

used as an estimator, the Voronoi Estimator.
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Figure 4.1: Dispensaries in DTLA and Culver City with Neighboring Landmark

References

Figure 4.2: Dispensaries in LA with Natural and Street References
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4.2 Clustering of Dispensaries as Point Patterns

Recall that the previous analysis’ (in both this paper d=431 and RAND’s d=600)

focused exclusively on crimes that fall in the union of circular regions given by

Domain =
⋃600
j=1Ballr(Dispensaryj) for j = 1,,d and r = 0.3.

Although this approach of binning crimes into such a domain seems intuitive, we

will explore if it’s a reasonable one. The RAND author’s specification of this

domain was motivated by previous research conducted by the same authors and

also referenced in [JCa11]. The paper was a preceding and separate analysis con-

ducted by Chang and Jacobson where they investigated the spatial characteristics

of crime and marijuana dispensary locations.

Specifically, the problem of interest was whether dispensaries (open and closed)

showed signs of clustering. The clustering of dispensaries is an important charac-

teristic to diagnose, since the estimates of the effects in the OLS linear regression

model were at the dispensary-level. Through regression analysis, the authors

concluded that “. . . clustering is independent of closure status, meaning that the

likelihood that a closed dispensary is near another closed dispensary is the same

as the likelihood that an open dispensary is near a closed dispensary.”

Pr(Dispj = Closed|Dispi = Closed) ≈ Pr(Dispk = Open|Displ = Closed)

(4.1)

where {i,j} are the indices of dispensaries that are nearest neighbors

We will investigate this result through a point process framework with the aim

of assessing the plausibility of the defined spatial domain aforementioned.

By only modeling the crimes within the union of epsilon balls, the analysis

masks and restricts data which might be relevant. This potential problem can be
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seen in the point plots (Fig 4.3) of crime and dispensaries.

Figure 4.3: Various Point Plots of Crime

We proceed by utilizing the J, K, and L functions that are commonly used to

investigate the clustering (or inhibition) of point patterns. We first look at the

dispensary locations provided by the LA Times API [Tim].

Working under the point process framework treats the dispensary locations as

a stochastic process. Theoretically, the marijuana dispensaries can set up shop

anywhere in LA. The real dispensary locations (Figure 4.3) would be an instance

or realization of this underlying stochastic point process. We first address if the

dispensaries are clustered or inhibited (as a function of distance s) through the

use of Ripley’s K-Function (and related L-Function) [DV03].

K̂(s) = λ−1n−1
∑
i 6=j

I(dij < s) (4.2)

L̂(s) =

[
K̂(s)

π

] 1
2

(4.3)

By default, the K and L functions are utilized by defining some a priori bound-

ary window with an applied “boundary correction.” The values of the K-Function
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is sensitive to the boundary window of choice [ESR], and thus the interpretation of

clustering is reliant on a suitable apriori window choice. We choose a non-convex

polygon (the boundary of LA City) as our reasonable a priori window choice (Fig.

4.4).

Figure 4.4: Boundaries: Rectangular / Convex / Non-Convex

As an aside, we have also looked at both rectangular and convex boundaries

and its effect on the K-Function (Fig. 4.5). The use of the non-convex polygon

as our a priori boundary is suitable and the most reasonable.

Interpreting the L-Functionnon−convex, we can say that the locations of dispen-

saries (up to 100,000 feet) are a smidgeon more clustered than what a pure (or

homogeneous) poisson process would be. That is, the intensity (or rate) parameter

in a theoretical model for dispensary counts is not the same as the rate parame-

ter of a homogeneous poisson process. This tells us that marijuana dispensaries

(without the consideration of closure status) are clustered.

Moving forward, we now look at the clustering of different types of dispensaries

by incorporating an indicator variable representing if the dispensary was ordered
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Figure 4.5: K-L Functions on 3 boundaries

to close. This point process is now “marked” (Eq. 4.4) which allows us to distin-

guish between the dispensaries that were ordered to close relative to dispensaries

that were not.

z(x, y) =

 1 Dispd ordered to close

2 otherwise.
(4.4)

The generalization of the previous single-type K and L functions (Eq 4.2 and

4.3) to their multi-type counterparts are used to look at the marked point pro-

cess. Like the earlier version of the K and L functions (single-type), the values

of the multi-type K and L functions tell us the amount of clustering as a func-

tion of distance. However, with two “subprocesses” (open dispensaries and closed

dispensaries) we are interested in comparing the interdependencies between one

subprocess relative to the other across all distances.

The observed multi-type K and L functions (Fig. 4.6) suggests that relative

clustering is prevalent between the two types of dispensaries.
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Figure 4.6: Multi-J/K/L functions of Open and Closed Disp.

Specifically, the two types of dispensaries exhibit similar K-L function values.

Dispensaries that were ordered to close are found near dispensaries that were not

ordered to close. Through alternative tools, we arrive at similar conclusions in

regards to Chang and Jacobson’s (2010 unpublished) analysis of dispensary to

dispensary clustering. With the assessment of dispensary-status independence,

The preceding spatial exploration confers the ability to talk about dispensary-

level effects in the regression models of equation 1.1 and 3.1. However, we can

also look at an alternative spatial regularization instead of the one used in Fig

1.1.

4.3 Spatial Regularization of a Domain: Voronoi Tessella-

tion

We introduce a spatial domain that serves as an alternative to the one used by

RAND authors Chang and Jacobson. We employ the Voronoi tessellation (also
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called Dirichlet tessellation) on our marijuana dispensaries. There have been many

successful applications of the Voronoi tessellation in various fields [OBS00]. The

classical example can be found in the use of the tessellations conducted by the

Cholera inquiry Committee (1855). The intent was to study potentially problem-

atic water pumps with concerns to cholera outbreak.

The motivation for entertaining the use of the Voronoi tessellation are both

intuitive and statistical. Medicinal marijuana dispensaries are brick and mortar

operations whose spatial location should acknowledge competing dispensaries in

regards to territorial concerns over customers (and therefore the potential for

crime). Further, the Voronoi tessellation provides a disjoint spatial regularization,

a quality not present in RAND’s union of epsilon balls. Another attractive feature

of the tessellation are the non-parametric qualities present in its derivation.

For a point set P = {p1, . . . , pn} in R2, the planar ordinary Voronoi diagram

generated by P is defined as

V (pi) = {x : ||x− xi|| ≤ ||x− xj|| for j 6= i, j ∈ In} (4.5)

We let each cell of the Voronoi tessellation, whose generating point is the

unique dispensary, represent the “territory” attributed to its corresponding dis-

pensary.

Figure 4.7 shows the 431 − 7 = 424 cells of the Voronoi Tesselation cor-

responding to the set of 424 unique marijuana dispensaries (Note: There are

3 + 3 + 2 + 2 + 2 = 12 marijuana dispensaries that are found in 5 of the Voronoi

cells. Therefore, 12−5 = 7 dispensaries did not generate their own unique Voronoi

cell. The red tiles in Figure 4.7 depict the 5 cells that contain an additional mari-

juana dispensary). We proceed in analyzing the 424 dispensaries that correspond

to the Voronoi Tesselation composed of 424 unique cells.

A visual comparison of the union of 0.3 mile radius balls and the Voronoi
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Figure 4.7: Removed 5 Dispensaries to Generate 424 Vor Tess

tesselation is presented in Figure 4.8. The trade off for gaining non-overlapping

bins, by using the Voronoi tessellation, is seen in the exchange for larger area of

the cells generated by fringe dispensaries. One can imagine that the Voronoi cells

with large area, generated by the fringing dispensaries, would capture more crime

occurrences than its radius ball counterpart.

For the whole year of 2009, we compare the two spatial domains in regards

to the number of crime occurrences falling within a dispensary’s region. Looking

at Figure 4.9, we see how assigning larger area to a dispensary’s territory (in our

trade-off) attributes more crime counts to fringing dispensaries.

The difference in scale is highlighted when looking at the overlaid plots in

Figure 4.10 as well as the comparison of the distributions in Figure 4.11. We

see that by using the Voronoi tesselation, a handful of dispensaries allocate more

crime counts than the ball bin does. The re-allocation of crime counts is seen in

how the Voronoi bin’s density plot contains more mass in the right tail than the

density plot of the ball bin.
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Figure 4.8: LA City, Union Ball Domain, Voronoi Tess. Domain

Figure 4.9: Voronoi and Ball Bin: Crime Counts

For a last visual exploration of the Voronoi Tesselation’s effect on the allocation

of crime counts, we turn to Figure 4.12. The 424 Voronoi tiles are plotted along

with each tile’s crime count (all of 2009) in the form of a gray-scale gradient fill.
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Figure 4.10: Voronoi and Ball Bin: Crime Counts Overlaid

We see that for the annual raw crime counts, a relatively few number of tiles take

on high values. A log scaled version is presented alongside to get a sense of how

log(crime) differs from tile to tile. In the raw crime count scale, the standout

black tile corresponds to areas near Compton.

The preceding exploration has suggested that on an annual level, a few Voronoi

cells attribute more crime counts to its corresponding dispensary than their ball

bin counterpart. However, when we focus on a smaller time frame, say 21-day

windows, the argument can be made that gaining the non-parametric and non-

overlapping qualities of the Voronoi regularization outweighs the annual-level “in-

flation” seen in a few fringe dispensaries. The next section pursues the implemen-

tation of the Voronoi tesselation’s spatial regularization in such a context.

29



Figure 4.11: Voronoi and Ball Bin: Distribution of Crime Counts

Figure 4.12: Voronoi Bin: Crime Counts and log(Crime Counts)

4.4 Null Distributions of β̂ using Voronoi Bins

With our Voronoi tesselation generated by our set of dispensary locations, we take

another look at the now familiar regression equations discussed in Chapter 3. In
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this section, we repeat the analysis of Sections 3.1-3.2, where we analyze the null

distribution of β̂’s under various sampling schemes.

We begin our study by using the Voronoi Tesselation of 424 cells (Figure

4.7) obtained from the previous section. Specifically, instead of using the ball

spatial domain (Figure 1.1), we will only look at crimes that fall into the 424 tiles

{C(dispi) : i = 1, . . . , 424} generated by

C(dispi) = {x : ||x− xi|| ≤ ||x− xj|| for j 6= i, j ∈ In} (4.6)

Note that the use of crimes in the Voronoi tiles, above, is the key difference

from the analysis done in Chapter 3. We then use our Voronoi binned crime

counts to estimate the regression model found in Equation 3.1.

We first look at 100 sampled rDday’s (designated closure dates without re-

placement), while using a 21-day window. The resulting null distribution of β̂ is

given in Figure 4.13. Comparing the same sampled 100 days, the null distribution

when using a ball bin (Figure 3.1) differs from our null distribution when using

the Voronoi bin. The difference in inflection points of the two density plots is the

major difference. We can attribute this change in densities to the use of Voronoi

binning. Of concern is how close the mean of our null distribution is from 0.013,

the point estimate of RAND. When looking at our two null distributions, we see

that the mean of our sampled β̂’s are both close to 0.013. One difference is the

Voronoi-binned mean is slightly larger than 0.013, while the ball-binned mean is

slightly smaller.

We now proceed to look at all contiguous 21-day windows of 2009. Instead of

using 100 sampled rDday’s, we look at 345. The resulting “full” null distribution

of β̂ is given in Figure 4.14. Compared to our approximate distribution (using 100

samples), our full distribution has similar spread yet contains more observations

near its center (higher kurtosis). Similarly, when compared to the ball-binned
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Figure 4.13: Voronoi Bin: Distribution of β̂∗ using 100 samples w/ replacement

“full” null distribution (Figure 3.2) our “full” voronoi-binned distribution shows

higher kurtosis as well as less symmetry. We still see how RAND’s estimate of

0.13 is higher than the mean of our sampled β̂, yet the difference is pretty small.

Although slight, the mean being less than 0.13 was not seen in our voronoi-binned

distribution when using 100 samples. This suggests that when using 100 samples,

the mean of β̂ having a value less than 0.13 is an artifact of of the sampling

scheme. However, this sampling “artifact” was not seen in our ball-binned null

distribution.

We conclude our analysis of the voronoi-binned full null distribution by looking

at the time plot of (β̂k, rDdayk) in Figure 4.15. The time plot does not seem to

contain grotesque time dependent structure. We do however see a difference of

the time plots when comparing Figure 4.15 (voronoi bin) to Figure 3.3 (ball bin).

Although the actual time plots take on different values, the acf plots are very

similar.

We have looked at how using a Voronoi tesselation, to regularize crime count
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Figure 4.14: Voronoi Bin: Distribution of β̂∗ using 345 samples w/ replacement

locations, affects the null distribution of β̂, the parameter of interest. The Voronoi

tessellation has attractive qualities (non-parametric and disjoint) when construct-

ing the spatial domain to be analyzed via a regression model. The slight drawback

Figure 4.15: Voronoi Bin: β̂∗ against ordered rDdays
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is for some fringe generating spots, in our case marijuana dispensaries, the area as-

sociated to the dispensary, in the form of a tessellation, can be quite large. When

aggregating the crime counts to an annual level, the crime counts falling within a

large tessellation changes the distribution of crime occurrences quite drastically.

However, for the purpose of studying a smaller time frame, 21-days, the inflation

of crime counts due to a large Voronoi tile, diminishes. Interpreting the voronoi-

binned null distribution of β̂, we again see that the value of 0.013 is quite common

for 2009.

4.5 The Voronoi Estimator for Dispensary Intensity

In the preceding, we have used the tessellation of one point pattern to regular-

ize another point pattern. There are however, quite diverse applications of the

tesselations. Another use of the Voronoi tiles would be to apply its properties as

an estimator. Barr and Schoenberg, in a 2010 paper [BS10], have explored the

statistical properties of a non-parametric estimator based on the Voronoi tessela-

tion. The authors have shown that the Voronoi Estimator takes on low bias when

estimating the intensity of an inhomogeneous poisson process. For our paper’s

purposes, we will implement the Voronoi Estimator on the point pattern of mar-

ijuana dispensaries. The goal would be to estimate the intensity of the expected

number of dispensaries.

The Voronoi Estimator is defined by

λ̂y = 1/µ(Ci). (4.7)

For a point pattern P = {p1, p2, . . . pn}, let the set of tiles {C1, C2, . . . Cn}

represent the Voronoi tessellation generated by the point pattern. Let µ(.) be the

Lebesgue measure, which corresponds to area when considering S, a compact sub

space of R2. The subscript y in λ̂y indicates that we are estimating the potentially
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varying intensities

λy = lim
δ→0

E[NB(y; δ)]

πδ2
. (4.8)

Thus, we are considering an inhomogeneous poisson process. That is, we allow

for different means (intensities) of any y ∈ S ⊂ R2.

Entertaining the idea that our dispensaries are a realization of an inhomoge-

neous poisson process is motivated by our previous exploration. In section 4.2,

we have looked at the presence of clustering and inhibition of our dispensaries

through J/K/L functions. The set of marijuana dispensaries exhibited charac-

teristics that are similar to an inhomogeneous poisson process. For our study,

the set of marijuana dispensaries P = {d1, d2, . . . d424} will be our point pattern;

generating the Voronoi cells {C1, C2, . . . C424} shown in Fig. 4.7. We can look at

the areas of cells µ(Ci) (measured in ft2 as recorded by the LAPD), through its

distribution shown in the first row of Figure 4.16. Of interest would be the inverse

of the areas; (second row of Fig. 4.16) as these are the Voronoi estimates for the

inhomogeneous intensity.

The distribution of area is quite peaked near zero with a right tail since many

of our cells Ci have small area (measured in ft2) while certain fringe cells have

rather large area. By looking at the log-scaled version, we see a more suitable

visual. In Figure 4.17, we continue to look at the estimates of intensity through

the Voronoi Estimator, by plotting the estimates overlaid on each cell Ci.

Looking at the scale of the intensity and log(intensity), returned from our

Voronoi Estimator, we see that the intensity is small (and even negative on the

log scale) since this is given in units per ft2. This is saying for a given location

y ∈ S ⊂ R2 and looking at a neighboring area measuring a unit ft2, there is a

small expected number of dispensaries. A more reasonable interpretation would

come after converting the intensity into a more practical scale such as mile2 (this
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Figure 4.16: Distributions of Voronoi Area and Voronoi Estimator

is left to the interested reader).

As we’re assuming our observed point pattern of dispensary locations are an

instance of some stochastic process (inhomogeneous poisson), we infer that our

Voronoi estimates of intensities are given by Equation 4.6 and shown in Figure

4.17. In conclusion, the Voronoi estimator is quite intuitive in general; and espe-

cially for our marijuana dispensaries. For a given point pattern where many of

the points are found near each other, there would be many tiles with respectively

small area. When the tile’s area measure is inverted, we have a large intensity

estimate. That is, when we observe many points near each other, the intensity

estimate takes on an appropriately high value, as churned out by the Voronoi

Estimator.
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Figure 4.17: Values of Voronoi Estimators for Dispensary Intensity
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CHAPTER 5

Concluding Remarks

Through various methods, we have assessed that RAND’s estimated value of the

‘Marijuana Dispensary Closure Effect’ associated with crime counts around a local

neighborhood of a dispensary is not an atypical value. By embedding a regression

model into a larger dataset, all the while paying close attention in the preservation

of an analogous structural form studied by Chang and Jacobson (2011 paper), we

have been analyzing a context resembling the one set up by the RAND authors.

Chang and Jacobson’s ambitious foray into modeling human behavior has gar-

nered interest from the fervorous marijuana legislation community as well as sta-

tistical practitioners. However, the argument that the expected crime counts near

marijuana dispensaries increase are associated with the closure of said dispensaries

was hinged on a single “smoking gun” parameter estimate.

We have introduced and analyzed a few alternative methodological tools mo-

tivated by intuitive statistical underpinnings. The results presented in this paper

suggest that the “smoking gun” β̂ value, obtained by RAND, is not an atypical

result. Specifically, when using any randomly chosen day in 2009 as a surrogate

for the marijuana dispensary closure date of June 7th, 2011, the observed β̂ is

quite common.
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CHAPTER 6

Code

All of the analysis was done in [R] vers. 2.14.2 with use of packages: ‘sp,’[PB05]

‘fields,’[FNS12] ‘spatstat,’[BT05], ‘splancs,’[RDa12], ‘maptools,’[LBE12] and ‘deldir’

[Tur11]. As well as a custom script ‘geoCovertCoords.R’ (by Dave Zes which

converts latitude/longitude into the LAPD’s coordinate system). The following

scripts are suggested to be executed in order.

Data Scrubbing

‘data_scrub.R’

EDA

‘eda.R’

‘vor_eda.R’

Ball Bin: Null Distributions

‘gen_df_wrangle_ball_bin.R’

‘general_samp_coef_lm_model_serv.R’

Point Pattern Analysis

‘point_analysis.R’

Voronoi Tess: Null Distributions

‘gen_df_wrangle_vor_bin.R’

‘general_samp_coef_lm_model_vor_serv.R’

Analyzing Coefficient Output

‘analysis_coef_output.R’

Voronoi Estimator

‘vor_est_final.R’
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