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APPLICATION OF LINEAR PROGRAMMING 
TO THE NUMERICAL SOLUTION 

OF LINEAR DIFFERENTIA~ EQUATIONS 

Jonathan Do Young 

Lawrence Radiation Laboratory 
University of California 

Berkeley, California 

March 1, 1962 

ABSTRACT 

The linear programming procedure is applied to obtain an 

optimal solution to an overdetermined system of linear inequalities 

that are derived from the localization of the differential equation to 

some set of discrete points, from the prescribed conditions, and 

from the application of approximation formulas, 

The method is applied to linear ordinary differential equations 

and systems and to first-and second-order partial differential equations 

and systems in two independent variables, Extensions are suggested. 

Many examples illustrating the method are provided. 

,._I 
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L INTRODUCTION 

A linear program is a representation of a decision situation as 

a mathematical model in which the objective is to optimize a linear 

function of nonnegative variable subject to linear restraints. Although 

the most exte11sive development in procedure and application has taken 

place in the last twenty years (Ref. l, p. 3 ), the theoretical origins may 

be traced well into the nineteenth century. The minimax theory, which 

is essential to linear programming methods, arises from the concept 

of using inequalities to determine relative maxima {Fourier) and from 

the geometric treatment of inequalities as properties of convex sets 

(Minkowski). 

The mathematical approach to game theory was initiated by von 

Neumannin 1928.
2 

Weyl' s exposition on the properties of convex poly­

hedra followed in 193 5. 3 The economic application of minimax theory 

to games of strategy appeared in 1944 in the well-known treatise, 
11 Theory of Games and Economic Behaviour, 11 by von Neumann and Mor­

genstern. 
4 

The theory was applied with varying success to more spe­

cific problems; foremost among these were the transportation problen'"l 

(1941) of Hitchcock
5 

and the diet problem (1945) of Stigl~r. 6 

In 1947 a group of mathematicians investigated the possibility of 

devising mathematical approaches to the complex planning and program-

.. ming problems of the U.S. Air Force, The linear analogue was pro­

posed by George B. Dantzig. Project SCOOP was organized to exploit 

this idea. 7 A major result of the work on this project was the develop­

ment by Dantzig o£ a systematic procedure for the linear programming 

computation. The algorithm that he constructed is called the Simplex 
8 . 

method. The rapid progress in the design and use of electronic high-

speed computers made it possible to apply the algorithm to larger and· 

larger models. 

In June, 1949, several papers were presented at the Conference 

on Linear Programming held at the University of Chicago. These were 

edited by T. C. Koopmans and his associates and published by the Cowles 

Commission, 9 Symposia on linear programming were held in 1951 and 
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19 55. The published proceedings of these meetings show the rapid 

progress which took place in that period. lO, 
11 

In 1953 the first intro-
12 

ductory text on linear programming appeared. 

The Rand Corporation, in a joint effort with various industrial 

interests, has been most acitve in the improvement of computational 

procedures and the preparation of computer codes for linear program­

ming. The. work of Orchard-Hays and his associates has been extremely 
. . h" d 13,14,15 1mportant 1n t 1s en eavour. 

The comprehensive bibliography by Riley and Gass (1958) pres­

ents at least a thousand abstracts of articles and books on linear pro­

gramming and related subjects. 
1 

Some of these are of a theoretical 

nature, others deal with computational procedures; but the greatest 

number make more or less specific application of the method to such 

diverse fields as industry, military planning, and agriculture. 

Little has been done toward applying linear programming to a 

class of problems phrased in m:athematical language per se. We offer 

here a novel effort in this direction which we hope will be interesting 

and useful. Our purpose is to develop a numerical method for solving 

linear diffei-ential equations by means of linear programming and to 

investigate the validity and practicality of such a method. The expo­

siti'on stresses procedure and illustration rather than abstract rigor 

and generality. 

Our subject brings together two mathematical areas, linear 

programming and differential equations, which have had very little 

common background. It seems that some readers may be familiar with 

one of these areas but somewhat unfamiliar with the other. For this 

reason we discuss each of them independently, linear programming in 

Chapter II, and differential equations in Chapter IlL The material 

offered in each case is limited to that which is useful to our purpose. 

For more complete information on either topic, the reader may resort 

to the many references. 

The two topics are brought together in Chapter IV, in which we 

construct linear programs for solving linear differential equations. 
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Our conclusions on the merits of the proposed method are 

given in Chapter V. Many examples are given in the Appendix. 

The author wishes to particularly acknowledge the assistance 

and encouragement of D. H. Lehmer and the constructive suggestions 

of P. L. Chambre' in connection with the preparation of this' thesis. 

' 
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II, FUNDAMENTAlS OF .LINEAR PROGRAMMING 

Preliminary Discussion 

Decision situations present the possibility of engaging in 

various activities at varying levels in order to best attain some speci­

fied objective, They are exemplified in the theory of games and in 

operations analysis, but in fact they are found in almost every area of 

human action, Some of these situations have been found to be readily 

amenable to mathematical representation or approximation, The 

resulting model is characterized by many possible solutions, among 

which an optimal selection must be made, Often this choice is not 

unique, Programming means the construction and solution of the 

mathematical system that adequately represents the given situation, 

The linear program has been found to be a most useful and 

convenient form of mathematical representation, In the linear pro­

gram, the variables are restricted to nonnegative values and are sub­

ject to other linear restraints, The objective is to optimize (either 

maximize or minimize) a linear function of the variables, There will, 

of course, be no solution if the restraints are contradictory, Linear 

programming will usually involve 

a, the given description of the decision situation, 

b, an adequate linear representation, 

c, the linear program, 

d, the computation leading to 

( 1 L a demonstration that no solution exists, or 

(2), a determination of an optimal solution, 

e, the interpretation of the result, 

Simple examples illustrating the above procedure are given in the 

Appendix, and many others may be found in the references (e, g,, 

Refs, 8, 12, 16, 17), 
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General Linear Program 

The most general form for a linear program is: 

Optimize the objective function, 

z = L: c.x., 
J J 

(Al) 

subject to the restraints, 

L: a .. x. =b.; i = 1(1) m
1

-1, (B1) 
1J J 1 

L: a .. x. ~b.; i = m
1
(l)m

2
-1, (B2) 

1J J 1 

L: a .. x. ?c b.; i = m
2
(l)m, (B3) 

1J J 1 

X. ~ 0; j = 1(1)n
1

. (C 1) 
J 

If the required optimization is to minimize z, we can choose 

instead to maximize - z, The order of the inequalities (B3) can be 

reversed to that of (B2) by changing the signs of the terms. With 

·these formal operations and the slight obvious redefinition, the program 

can be written in the form: 

Maximize the function, 

z = L: c.x. 
J J 

(AV) 

subject to 

L: a .. x. = b.; i = 1 (1) m
1

-1, 
1J J 1 

(B 1) 

L: a .. x. ~b.; i = m
1
(l)m, 

1J J 1 
(B2') 

x,. :;i 0; j = 
J 

1 ( 1 ) n1. (C 1) 

Into each of the inequalities (.B2') we can introduce a nonnegative 

slack variable with unit coefficient, and replace the inequality by an 

equality. All the b. can be made nonnegative by changes of signs of 
1 

the terms in those equations where necessary, With these formal 

changes, we can write our program in matrix-vectOr notation as: 

a standard linear prograrr1. 
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Maximize z = CX, 

subject to AX = B; B =? 0, 

and X=? 0, 

(A) 

(B) 

(C) 

where X (which now includes the slack variables) and C (many of 

whose components may be zero) now have n (n =?n
1

) components; the 

matrix A is m Xn, and B has m components. 

In the linear system (B) let r be the rank of A, and s be the 

rank of the augmented matrix A, B. The following cases may occur: 

r = s = m ~ n, 

r = s < m, 

-r < s. 

(a) 

(b) 

(c) 

For case (b) the system (B) has redundant equations; for (c) the system 

is inconsistent. The effect of these conditions will appear in later 

developme11ts.. We confine our attention to Gase (a) in which the system 

(B) has at least one solution. 

For case (a) the matrix A has at least one set of m linearly 

independent column vectors. Any such set of vectors is called a basis. 

Suppose, for convenience, that the first m columns of A constitute 

a basis, then a solution to (B) may be readily obtained by setting 

x. =·0, 
J 

j = m + l (1) n, 

and solving the (possibly) abbreviated system for x.; j = 1(1) m. 
. J 

Such a solution corresponding to any choice of basis is called a basic 

solution. The number of basic solutions is finite; there is at least one, 

and there are no more than (g,_), the number of combinations of n 

things taken m at a time. 

Any solution to (B) which also satisfies (C) is said to be feasible. 

If there is no solution to the system (B) that satisfies restraints (C), 

we say our program is infeasible. [ This statement is applicable to 

case (c) above. ] 
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If the linear function x defined in (A) can be made arbitrarily 

large for a feasible solution, we day our objective is unbounded. Other­

wise there is at least one feasible solution for which z has a maximum 

value. Any such solution is called an optimal solution. 

The following may be readily proved: 

Lemma 1. 

Theorem 1. 

solution. 

Lemma 2. 

Theorem 2. 

solution. 

The set of feasible solutions is a convex set. (ReL 16) 

If there is a feasible solution, there is a basic feasible 

(Ref. 18) 

The set of optimal solutions is convex. (Ref. 18) 

If there is an optimal solution, there is a basic optimal 

(Ref. 18) 

The above theorems enable us to look for an optimal solution 

in the finite set of basic solutions. The following theorem, for which 

we later give a constructive proof, makes it possible for -q.s to search 

for an optimal solution along some direction of greatest ascent. 

Theorem 3. With a known nonnegative basic solution, it is possible to 

select successive basic solutions in such a way that these solutions 

are nonnegative, and the objective function does not decrease. The 

order of selection may not be unique. 

Duality of Linear Models 

Analogous to the duality of points and planes m projective geo­

metry, there are linear models that involve a duality of variables and 

linear restraints. Thus the dual of our standard linear program, 

maximize 

subject to 

and 

z = ex, 
AX = B, 

X ~ 0, 

is an unrestricted (as to sign of the variables) linear model, 

minimize w = BU, 

subject to 

with no restriction on the sign of the components of U. 
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We have the following theorem on duality (for proof, see Ref. 19. 

Theorem 4.- If either of the dual models has'.an optimal s·olution, then 

so does the-other; further, the optimal objective values are equal, 

that is, max z = min w. 

The power of this theorem is immediately apparent. If our 

decision situation can be represented as the unrestricted linear model 

above, then its dual is a standard linear program_ whc>se computation 

gives coincidentally the unrestricted solution we are seeking. This 

procedure is illustrated in the Appendix, 

The Simplex Algorithm 

The simplex algorithm is a method of steepest ascent for solving 

the standard linear program, 

maximize z. = ex,· (A} 

subject to AX ·- B· B ~o. (B) 
' 

with X ~ 0, {C) 

where X has n components, and B has m. 

For an initial feasible basis, we should like to have foremost an 

mXm identity matrix; then the corresponding basic solution would be 

X = B, 0. It is unlikely that our model will have the above highly 

desirable form, but we can modify it in a rather formal manner by 

introducing m artificial variables, assigning them indices 

j, j =n + l{l)n+m inthenowexpandedvector X (with n =m+n 

components}, and including them one at a time in Eq. {B), so that the 

now expanded coefficient matrix of {B) has the ibrm I , A. Because 
m 

any eventual optimal solution in which the artificial variables appeared 

with nonzero values would be meaningless, we also must include them 

in the objective function with predominantly negative, but unspecified, 

coefficients that will insure {if possible) that they are forced to 

"nonbasic" status or to zero values. The introduction of these artifi­

cial variables and the elimination of their corresponding column vectors 
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from the basis is called Phase I of the Simplex process. Aside from 

the convenience, the introduction of these artificial variables has 

presented us with an initial system (B') replacing (B), which cannot be 

redundant or inconsistent and for which there is an obvious nonnegative 

basic solution. 

We are now in position to assume the hypothesis of Theorem 3. 

Let X' be any current nonnegative basic solution, and suppose for 

convenience X' = X':', 0 where X>:< = x{, · · · x:n. The coefficient matrix 

has the for·m Q, o
0

, where Q is our current basis. Abbreviating our 

model by discarding zero terms, we have 

(c':' = c . . . c ) 
1 ' m' 

and 

QX'!' =B. 

We assume the complete coefficient matrix to consist of column vectors 

P., j = 1 ( 1) n':'m, and compute 
J 

z. = CC>:'()-l P., 
J J 

j = 1 (1) n + m, 

and let 

w. = z. 
J J 

c., 
J 

j = 1 ( 1) n + m. 

If all these w. ~ 0, z has attained a maximum value. If all the 
J 

artificial variables have zero values, we already have an optimal 

solution, If some nonzero artificial variables still appear at this opti-

mum, the program is i:hfe·asible. 

If some wj are negative, then for some k, wk = min w .. 
J 

For 

the corresponding column vector Pk of the matrix A, we compute 

and 
R. = x ~/ x.

1
, for x 1 =f 0 and i = 1(l)m. 

1 1 1C 1< 
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If all the. R. < 0, our objective is .unbounded, other:w:ise some 
1 

of the R. are nonnegative and, for s,ome i, 
1 

R~ =min R. ~o. 
X 1 "· . 

and the vector P
1 

replaces pk in the basis. The solution X" correspond-

ing to this new basis will be 

x''· = x' R 1 xjk' J 
j = 1 ( l) m, except for J., 

x" = 0, 
!. 

~ = Ri' 
x'! = 0, 

J 
j =in+l{l)n+m, exceptfor k, 

and is obviously nonnegative. The new value for the linear function z is 

z'' = z::( - R w ~ z* J. k , ' 

and we have proved Theorem 3 of page 7, We now note that neither the 

choice of wk or R
1 

need have been l.:).nique, The sequence of basic solutions 

and the ultimate numerical values of the variables in the optimal solution 

may depend. on the arbitrary choices made when ''ties'' occurred. In com­

moh practice a "tie" is resolved by selecting the lowest qualifying index. 

Computer Codes 

The computation involved in the Simplex algorithm is intricate 

but well defined and highly repetitive, Because of the latter properties it 

may be readily codified for high-speed computers, 

Such codes require only that the linear program be input in some 

specified foi-m, and direct the computer through the necessary process to 

an optimal solution or to a demonstration of infeasibility or unboundedness. 

The code used by the computation of the linear programs which 

appear in the Appendix was the IBM-704 code SCROL (Ref, 30) which is 

available from the "SHARE" organization of IBM machine users. Recently1 

(Nov .. 1961) a linear program code, LP-90, has been released by the same 

organization for use on the IBM-7090. For other computers, there are 

doubtless similar codes available or soon to be released. 
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III. LINEAR DIFFERENTIAL EQUATIONS, 
ORDINARY AND PARTIAL 

Preliminary Discussion 

The mathematical m.odel chosen to represent a given situation 

need not be limited to algebraic processes. -Nhen the known relations 

involve rates of change of one or more quantities with respect to one 

or more others, the p:.:ocess of differentia:tion (or integration) is im­

plicit to the representation, ·and the model may consist of or contain 

differential equations, 

A differential equation 1s an equation connecting certain inde­

pendent variables s, t, · ·· ·, certain (unkno\vn) functions · u, v, · · · of 

these variables, and certain derivatives of these functions with respect 

to those variables (Ref. 20, p. 2). The order of a differential equation 

is that of its higi.1.est-ordered derivative, A differential systern consists 

of as rnany simultaneous differential equations as there are unknown 

functions. 

A linear differential equation is linear in the unknown functions 

and their derivatives; that is, these occur to the first degree only and 

not as higher powers or products (Ref. 21, p. 3). In a linear differential 

system all the equations are linear. As for those known functions of 

the independent variables that appear as coefficients or "constant terms'', 

we assurne that they are numerically defined, single-valued and contin­

uous, and that those appearing as coefficients of tbe highest-order 

derivative terms do not vanish. 

An o-rdinary different_~-~J:~~qu~_tion relates one independent va:c­

iable s, one dependent variable u(s) and the (ordinary) derivatives of 

u with respect to s. An ordina1:-y differential system relates one 

independent variable s, two or n1.ore dependent variables u(s), v(s), 

and their ordinary derivatives wi'th respect to s. 

A partial differential equa_tion relates two· or 1nore independent 

variables s, t, one dependent variable u(s, t, ... ) and the partial 
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derivatives of u with respect to ~. t, .. · · · • A partial diffe.rential 

system relates two or more indep~ndent variables, s, t, · · · two or 

more dependent variables u (s, t, ... ) ' v (s, t, ) ' and the par-

.tial derivatives of u, v, ... with respect to s, t, · · · 

A solution to a differential equation is an extraction (free of 

derivatives) of the intrinsic relation between the unknown dependent and 

indepenc;lent variables. The existence of a continuous solution cannot 

always .be predicted. A functional solution to a differential eq1-1ation is 

an equation that does not involve derivatives, that relates the 'tnknown 

function(s) and independent variable(s ), and that can be subjected to 

differentiation and algebraic processes to yield the di,fferential equation. 

As differentiation with respect to a variable results in the elimination 

of constants or functions not involving that variable, a fup.ctional solu­

tion may contain arbitrary constants and/ or arbitrary functions. Such 

a solution is called a general solution. 

A particular solution is a functional solution that d,oes not in­

volve arbitrary constants or functions. If sufficient conditions are 

prescribed,: it may be possible to specify the arbitrary constants or 

functions in a general solution and obtain thereby a particular solution 

that satisfies both the prescribed conditions and the differential equa­

tion. 

The Differential Problem 

A differential problem consists of a differential equati,on or 

system, together with any additional conditions that may be prescribed. 

The solution to the differential problem must. satisfy the differential 

equation or system and the prescribed conditiorrs. A differential problem 

has a unique solution for some domain if, for each point of, this domain, 

there is one and only one solution. Even a particular solution need not 

be unique since it need not be single-valued. In a linear differential 

problem both conditions and equations are linear in unknown functions '"' .. \ . '. 

and derivatives. 
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A well-posed differential. problem admits of a unique continuous 

solution on the domain of interest. The question of the existence of a 

u:n:ique solution to a differential problem has been investigated exten­

sively. A comprehensive treatment of this subject is beyond the scope 

of this work. We shall limit ourselves to the statement of two important 

theorems. For further· information, the reader is advised to consult 

Refs. 22 and 23. 

Theorem 5. If in the linear ()rdinary differential equation 

a
0

(s} u + a
1 

(s) u' + · .. + aJ(s) u(J) = c(s) 

the functions ao, a1' ... ' aJ and c are continuous for the interval 

domain, s .::; s .::; s, and the function aJ does not vanish therein, then 

there exists a unique solution u that, together vith its first J -1 

derivatives, is continuous on (~. s) and that satisfies the prescribed 

conditions 

u (s
0

) = u
0

, 

u~(so) = uo, 

where s
0 

is a point of (s, s). (Ref. 21, p. 73.) 

Theorem 6. (Kowalewski) If · g(t) and all its derivatives are continuous 

for ~-t 0 J < 6, if s
0 

is a given number and u 0 = g(t
0

) and uso= g' (t
0

), 

and if f (s, t, u, ut) and all its partial derivatives are continuous in a 

region defined by 

Js - s0 / < 6, 
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then there exists a unique function <P (s, t) so that. 

(a) <P (s, t) and all its partial derivatives are continuous in a 

region defined by 

Is - so I < 61, 

(b). For all (s, t) in this region, u = <j>(s, t) is a solution of the 

equation,. u =f{s,t,u,ut); s . . 
(c) For all values of t in the interval Jt-t

0 
J < 6

2
, 

<P (s
0

, t) = g{t); 

(ref. 24, p. 49; ref. 23, p. 32 through 36). 

Limited Solution of a Differential Problem 

In most practical work with differential problems, only a limited 

or tabulated solution is required. Such a solution consists of a table of 

values of the unknown function(s) for a relatively small number of 

specified values of the independent variable(s). 

Sometimes a general solution or solutions can be found for the 

differential equation or system. If the problem is well-posed, it may 

be possible then to specify the arbitrary constants or functions so that 

the prescribed conditions are satisfied. The resulting particular solu­

tion is perforce unique. Then, by substitution of the specified values of 

the independent variable(s ), we can obtain the required limited solution. 

Even here the work of finding the numerical values may be arduous, 

involving the use of tables, interpolation,· and perhaps integration. 

Usually the numerical values cannot be expressedprecise1y in termi­

nating decimals; of necessity then the results are approximations to the 

number of decimal places employed (Ref. 25; p. 13, 19). When a 

limited solution is attempted by the procedure outlined in this para­

graph, we say we have used an analytic approach, 
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The numerical approach may be used to obtain a limited solution 

to a differential problem without recourse to any functional solution. 

In this appr'oach we attempt to solve the differen!ial problem in toto. by 

numerical methods;:that is, the prescribed conditions are involved at 

t}:le very start (Ref. 26, p, 3)o If the problem is not well-posed we 

cannot hope for any result from this approach other than perhaps to 

learn this sad fact. The numerical procedures, if successful, will 

.. give us a satisfactory approximation of thelimi;te~ solution desired. 

Even for a limited solution, the analytic approach is usually 

attempted first. Its advantages are that.the amount of computation 

required may be .slight and that limited solutions for other prescribed 

conditions may be obtained by respecifying the arbitrary constants or 

functions. When, the analytic approach fails because there is no known 

analytic method applicable, or when it leads to tedious computation, we 

resort tp numerical methClds that have .more widespre~d application and 

that encompass all the nec.essary computation. 

In the numerical approach, a mesh is constructed over the 

domain. The set of mesh points must include all the points for which -. ' ' 

t:!;.~ limited solution was requi~ed and some or all (if the number is 

finite) of the points at which conditions are prescribed. Approximation 

for~ulas are used that relate the values of the unknown function(s) and 

d~ri-::atiyes at adjacent poi:nts of the mesh. For example, if the value 

of an unknown function and some of its derivatives are prescribed, or 

can be computed at one mesh point, it may be possible to approximate 

the value of the unknown function at an adjacent point by means of a 

Taylor expansion truncated at the highest-known derivative. The trun­

cation error may be reduced by iterative techniques or by use of for­

mulas of greater sophistication. 

Generally, these formulas have the property that they approx­

imate the solution by some polynomial, and the degree of the poly­

nomial for which the method is exact is a fairly good measure of the 

validity of the method. Often (but not always) the apprdximation may 

be improved by refinement of the mesh. Descriptions of the many 

numerical methods is beyond our scope, and the reader is advised to 
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consult ReL 25, 27, 28. 

Linear Model Approximation of a Linear Differential Problem 

A linear differential equation applied at a specific mesh point 

becomes a linear algebraic equation in which the unknowns are solution 

and derivative values at that point. If we consider only prescribed 

conditions which are linear in solution and derivative values (this is 

almost invariably the case), the~ a prescribed condition at a rriesh 

point becomes a linear algebraic equation in solution and derivative 

values at this point. Most approximation formulas have the property 

that they are linear in solution and derivative values for two or more 

mesh points, hence they are linear algebraic equations in these values 

when applied to specific points. Using the linear algebraic equations 

available frorh the three sources, it is possible to construct an algebraic 

system in which the unknowns are solution and derivative values for the 

meS'h p·oints. Fox gives a complete discus-sion of this techniq'tt~ for the 

boundary-condition problem for an ordinary differential equation. 
26 

In Chapter IV, we construct such an algebraic system, which 

can be made overdeterminate. We allow for error in the approximation 

formulas by introducing the maximum absolute value of the error as a 

new variable, which we wish to minimize. The result is an unrestricted 

(as to sign of variables) linear model whose dual is a standard linear 

model (See pp. 7, 8); 

. ., 
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IV. LINEAR PROGRAMS 
FOR ·WELL-POSED LINEAR DIFFERENTIAL PROBLEMS, 

ORDINARY AND PARTIAL 

Preliminary Discussion 

The linear program.method, which we describe, applies very 

generally to well-posed linear differential problems for which a limited 

solution is required. It is a. numerical method and concerns itself with 

solution and derivative values for a finite set of values (mesh points) ofthe 

independent variable (s ). The set of mesh points must includ~ those points 

:for which a limited solution is required and a sufficient number .of the 

points at which conditions are prescribed. The method represents the dis­

cretized differential problem by a linear model consisting of a. system of 

linear inequalities whose variables denote the maximum error of approx­

imation and the values of the solution and derivatives at the mesh points. 

The maximum absolute error is to be minimized. The foregoing model is 

the dual of a linear program whose computation provides optimal values 

for its dual variables which indicate the error of approximation and which 

approximate the solution and its derivatives at the mesh points. The re­

quired limited solution appears among those values. 

Despite the generality of the method, we shall follow the traditional 

pattern in the succeeding sections by constructing programs for linear pro­

. blems involving, first, an ordinary differential equation, than an ordinary 

system, then a partial differential equation and, finally, a partial differen­

tial system. The number of variables in the linear model is a rapidly in-

• creasing furictiori of the number of mesh points, the order of the equations 

involved, the .number of unknown functions, and the number of independent 

·:variables; hence there is a practical limit on the complexity of the problem 

which can be treated. For this reason, and because of the dearth of infor­

mation as to what constitute well-posed problems, in the case of partial 

differential problems, we shall limit ourselves to equations of second 

order in two unknown functions of two independent variables. 

All superscripts and subscripts appearing in the equations of 

this section are indices except except for the super scripts associated with 

the mesh-step quantities, h or ..A, these superscripts are exponents. 
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Linear Ordinary Differential Equation Problem 

The linear program method applies rather universally to well­

posed problems for a linear ordinary differential equation of reasonable 

order, provided the number of mesh points is not excessively large. 

No special treatment is required for subclasses as to order, homog­

eneity or type of prescribed conditions, except that the latter must be 

numerical conditions on linear combinations of the unknown function 

and derivatives at specified points. 

We have a differential equation that holds on some closed inter­

val S of a):l independent variable s and that has the form 

( 1) 

where 

u is an unknown function of s, the superscripts indicate derivatives, 

J is the order of the equation, the aj and c ar~ numerically defined 

and contim,1ous on S, and a. does not vanish in S. 
J 

For a well-posed proble1n (Theorem 5, Chapter III), we must 

have J independent conditions prescribed ata point or points s
1 

of 

S. The conditions must have the form 

1(1) J, (2) 

whe:re 
J. J. 

the a. and c are real numbers, the superscript i. indices the 
J 

conditions, and the subscript i. indicates value at s 1 . 

A limited solution is required consisting of a table of solution 

values at a finite number of points s>:< of S. We consider a set of 

K mesh points s i. in S. This set includes, but is not limited to, the 

points s 1 and s>:<. For a nontrivial problem, there must be at least 

two mesh points. The linear-program method does not require a uni­

form step-length in the mesh. 



-19-

The differential problem discretized to the points ~ involves 

KJ + K unknown quantities, namely, the numerical values of the 

solution and its first J derivatives at the K mesh points. In Eq. (2}, 

we have J linear relations for some of these tinknowns. An additional 

K linear equations may be obtained by applying differential Eq. (1) at 

the mesh points to obtain 

k k k (J) k 
a0~ + a 1'k +·· ·+ aJ~ = c ; k = 1(1)K, (3) 

where 

the af and ck are the real numerical values at sk, and the subscript 

k indicates value at sk. 

As yet we have not represented the intrinsic relation between a 

function and its derivatives. If the solution u is an analytic function 

of s, a Taylor expansion provides a linear relation for solution and 

derivative values at adjacent points of the mesh. However, we have 

not assumed that u is analytic, nor could we deal numerically with 

the possible infinitude of terms if it were. If the solution u is a 

polynomial, the Taylor expansion terminates with·the highest-ordered 

nonzero derivative, but here we have gained finiteness of terms at the 

expense of even greater restriction on the nature of the solution. 

We assume only that the solution function is continuous and has 

continuous derivatives up to the order J -L (See Theorem 5, p. 13). 

In general then, by numerical metho,ds, we can only hope to approx­

imate the solution by son1.e polynomiaL It is well known that a con­

tinuous function such as u can be approximated by a polynomial over 

a closed interval such as S. In fact we are limited to polynomials of 

de::::xee J, since we have no knowledge of higher -ordered derivatives. 

For a sufficiently small closed interval, such as any of the [sK ~+ 1 ], 
it is possible that the solution function u can be approximated by a 

polynomial of degree J or less. We shall make K-1 such approx­

ima 6ons and use ~aver. each mesh-step a Jtll_ degrcee polyris>mia:l­

approximation to· the osolution, u. 
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For the set of consecutive mesh points sk' sk+ 1, k = 1 ( 1) K-1, 

we write the forward (from sk to sk+ 1) Taylor expansions: 

where 

h u' + h 2
u!' + · · · k k k 1<. 

0 

0 

0 

+ h~uk(J)/(J-1)!- hkuic+l = E2k' 

k = l(l)K-1, 

(4) 

hJ -1 (J-1)+ hJ (J) hJ-1 (J-1) = E 
k ~ -k ~ - k ~+1 Jk' 

hk = sk+l- sk, and the Ejk represent. remainder (or error) terms. 

We have inse-rted the common factor h~ in the expansions for each 

derivative (j) so that all the remainder terms are of the order h~ + 
1

, 

if u is, in fact, an analytic function. 

where 

w-e can ·also write the backward (from sk+ 1 to sk) expansions: 

d I dJ (J) /J I - F ~+1 + kuk+l +··· + k~+l .-uk- lk' 

0 

0 

0 

+ d~u~~V(J-1), - dk~=F zk' 

k - 1 ( 1 )K-1, 

(5) 

~=sk-sk+l·= -hk' andthe Fjk representerrortermsof.the 

order hJ + 1 . 
k 

We now think of Eq. (4) and (5) as being homogenous (zero 

right-hand sides) but involving pos si b1e errors. Then the linear system 

consisting of the "homogenized" equations (4) and (5) and Eq. (2) and 

(3) has 

J(K-1) + J(K-1) + K +J or 2KJ + K- J equations, 

KJ + K unknowns. 
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For K ~ 2, there are obviously more equations than unknowns. In 

order to ad-mit the :approxir:hatiOO:n e:r:rors, we cons-ider. the sysfterri to be 

overdetermined. Such an overdetermined system can be solved opti­

mally by linear programming (see Example 3 in the Appendix). 

We define the Chebyshev norm of the errors, 

u 0 = max ( jEjk /. /F jk /), (6) 

and seek ~o minimize u
0

• (7) 

For reasons that will be apparent, we formally replace Eq. (2) 

and (3) by inequalities, 

J_ 1 
a0u1 +a 1 u~+ 

1 £ ' -a
0

u
1 

- a
1

u
1

-

k k I 

ao uk + a lllk_ + 

1 
~-c 

k 
c 

1=l(l)J, ( 2' ) 

k = 1(1) K. (3') 
k 

-c 

We can deduce the following inequalities from our definition of 

u
0 

1n Eq. (6): 

u 0 ± Ejk ~ 0, 

u 0 ± Fjk ~ 0, 

and then replace the Ejk and Fjk by their equivalents from Eqs. 

(4) and (5) to obtain 

0 

0 

(hJ- 1 (J- 1 )+ ohJ (J) -. hJ- 1 (J- 1) ) >- 0 ,· 
uO ± k ~ kuk uk+l "' 

( 6' ) 

(6') 

(4') 
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0 

0 ( 5' ) 
0 

uO ± (dJ -lu (J -1) + dku.(J+)l 
k • k+l K 

If we now use (7) as our objective and the inequalities (2' ), (3' ), 

(4' ), and (5 1
) as restraints, we have a linear model in matrix-vector 

. ' 

notation of the form, 

minimize w = BU, 

subject to AU ~ C, 

with no restriction on the sign of U, 

where 

the vector U consists of u and solution and derivative values, the 
0 . 

vector B = (1, 0, · · ·, 0), the matrix A is the coefficient matrix for the 

inequallties, and the vector C is the constant terms from the inequal­

ities. 

The above linear model is the dual of a standard linear program 

(seep. 7) of the form, 

maximize z = ex, 
subject to A' X = B and X ~ 0, 

where 

the matrix A' is the transpose of A, the variables X are for our 

purposes purely formaL 

The computation of the linear program gives by duality the 

optimal values for the components of U; L e., for the error and for the 

solution and derivatives up to the .order J at each of the K mesh points. 

If the solution u is in fact a polynomial of degree J or less, 

then there is a certainty that the value zero will be attained by u
0 

in 

the line.ar program. Therefore, the linear program method gives us 

an exact result for such a polynomial, and we have completely estab­

lished the following: 
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Theorem 7. If a well-posed linear problem for a linear ordinary 

differential equation of order J on .a closed interval s is discretized 

for a mesh of two or more points in S, these mesh points including all 

points at which a limited solution is required and all points at which the 

linear conditions are prescribed, then there is a linear program whose 

computation rrtinirilizes approximation errors, gives the maximum ab­

solute value of such errors, and provides approximate values for the 

solution and its. first J derivatives at each of the mesh points. The 

approximation includes the required limited solution and is exact for a 

polynomial solution of degree J or less. 

Except for a mesh of only two points, the last statement of the 

theorem does not fully reflect the accuracy of the approximation. For 

K :;;;:. 3, we are actually approximating the solution by polynomial arcs 

rather than by a single polynomiaL 

As is the case with many numerical methods, improvements of 

the proposed procedure may suggest themselves. Other than mention­

ing the more obvious ones of mesh-refinement, of other approximation 

formulas and, where possible, of differentiation of the original equation, 

we shall le'ave variations of the procedure to the ingenuity and imag­

ination of the reader. 

Example 4 in the Appendix illustrates the linear program method 

as applied to a linear ordinary partial differential equation. 

Linear Ordinary Differential System Problem 

The procedure outlined in the previous section is readily ex­

tended to a well-posed linear problem for an ordinary differential 

system. There are, of course, practical limits on the number of equa­

tions, their orders, and the number of mesh points. All of the equa­

tions are assumed to hold on some common closed interval S of the 

independent variable s. 

For the sake of notational simplicity, we shall limit our expo­

sition to a linear system of two differential equations of second order. 

The extension to more elaborate systems is obvious. 
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We consider the linear ordinary differential system, 

where 

u and v are unknown functions of s, u', v', u 11 and v 11 are ordinary 

derivatives with respect to s, the q.,. and c. are ~mmerically defined and 
~ 1 . 

continuous on S, and a 
15 

and a
22 

do not vanish on S. 

For a well-posed linear problem, we must have four independent 

local conditions prescribed at points s£ of S: 

J_ J. i f I j! 1(1.) a u+a u +a v +a v =c·· n=. 4 
10 1 11 '- ·13 1 14 e ' .x. ' 

(1 0) 

where 

the a~. and c·e are real numbers, the. superscript £ indices the 
~ l 

conditions, and the subscript l denotes the function value at s . 

We are required to find a table of values for u and v at a 

finite number of points s >!< of S. We consider a set of at least two mesh 

points. sk' k = 1(1) K, in S which includes the points s£ and s>!<. The 

problem as discretized to the mesh points involves 6K unknown quan-

t . t. 1 th 1 . i i II d II t th K . t 1 1es, name y, eva ues uk' vk' uk, vk' uk,. an vk a e po1n s 

sk, When the differential equations (8) and (9) are applied at the mesh 

points, we obtain: 

where 

the 
k 

a .. 
1J 

and 
k 

c. 
1 

are numerical values at sk, 

(11) 

( 12) 

For the consecutive points sk, sk+ 
1

, k = 1) 1 )K-1, we can write 

the Taylor expansions from sk. to sk+ 
1

: 

2 
uk +. hk tk + hk uk/ 2 - uk + 1 = E 1 k; k = 1 ( 1 ) K- 1 , 

hktk + h~uk -· hk'-k+l = E 2k; k = 1 ( 1 )K-1; 

(13) 
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vk + hkvk + h~vi12- vk+l = E 3k; k = l(l)K-1, 

h v 1 + h 2v" ~ h v' = E
4

k; k = l(l)K-1, 
k k k k-1 

and the expansions from sk+l to sk: 

· ~- uk+l + hkuktl - h~ukt/2 = F lk; k = l(l)K-1, 
. 2 

hk'J~ - hkul<+l + hk~tl = F 2k; k = l(l)K-1; 

. 2 . 
vk- vk+l + hkv

1
k+l - hk vk_t/2 = F 3k; k = l(l)K-1, 

vk- vk+l + hkvk+l - h~vkt/2 = F 3k; k = l(l)k-1, 

2 
hkvk = hkvk+l + hkvk+l = F 4k; k = l(l)K-1, 

where 

hk = s·k+l - sk' and the Ejk and Fjk represent error te:rms. 

As in the previous section, we define 

u 0 = max ( IEjk 1. IFjk 1), 
and seek to minimize u

0
. 

(14) 

(15) 

(16) 

( 17) 

( 18) 

We formally replace Eq. ( 1 0), ( 11 ), and (12) by the inequalities, 

f. + P. i £ f. I :_:::. c P. 
£ a lOu£ all uP. + al3vP. + al4vP. ' 

P. P. i -~ f. I :_:::. -c £ 
£ -al 0 u£ - alluP. - al3vP. - a 14 vP. ; 

k k I 

alOuk + all '-k 
k 

+ al3 vk 
k I 

+ al4vk 
k II 

+ al5vk 

From our definition (17), we have 

u 0 ± Ejk :;::. 0, 

u 0 ± Fjk :.:::- 0, 

= 1 ( 1) 4, 
( l 0 1 

) 

= 1(1) 4; 

k 
:_:::. c 1; k = 1 ( 1) K, 
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which we can use with Eq. (13), (14), (15), and (16) to obtain 

u 0 ± (~ +hk~ + h~ukf2- uk+l) ~0; k = l(l)K-1, 

u 0 ± (hktk + h~uk- hk~+l) ~0; k = l(~)K-1; 

u 0 ± (v k + hk vk + h~vk/ 2 - v k+ 1) ~ 0; k = 1 ( 1 )K-1, 

u 0 ± (hkvk ~ h~vk- hkvk+l) ~0; k = l(l)K-1; 

u 0 ± (uk- uk+l + hk~+l - h~ukt/2) ~0; k ~ l(l)K-1, 

(hku' -hu' th2u" )>-0· k=l(l)K-1· uo ± k kt 1 k k+ 1 :;.-- ' ' 

u 0 ± (vk- vk+l- hkvk+l + h~vkt/2) ~0; k = l(l)K-1, 

2 
u 0 ± (hkvk- hkvk-l + hkvk-l) ~ 0; k = l(l)K-1, 

The inequalities (10'), (11'), (12'), (13'), (14'), (15'), and 

( 13 I) 

( 14') 

( 15' ) 

( 16') 

(16' ), with the objective (18), constitute a linear model which is the 

dual of a standard linear program. By virture of duality, the compu­

tation of the linear program gives us coincidentally the optimal values 

for the maximum absolute error and for the solutions and their deriva­

tives at the mesh points. 

If the solution functions u and v are in fact parabolas the 

value of zero is attained by u
0

. In this case, the linear program method 

gives an exact result for the solutions. For the problem described, we 

have established: 

Theorem 8. If a well-posed linear problem for a linear ordinary dif­

ferential system on a closed interval S is discretized for a mesh of 

two or more points in S, these mesh points including all points at 

which linear conditions are prescribed, then there is a linear program 

which gives the maximum absolute error of approximation and the 
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approximate values of the unknown solution fun~tions and som:e of their 

derivatives at each of the mesh points. For a solution function whose 

Jth .derivative appears in the syst.em, the approximation is exact if this 

function is in fact a polynomial of degree J. 

Example 5 in the Appendix illustrates the application of the 

linear program to a system of linear or:dinary differential equations. 

Linear Partial Differential Equation Problem- -Two Independent Variables, 
First-Order Linear Partial Differential Equation 

We consider a partial differential equation which holds on a 

clc>sed rectangular domain R and has the form, 

0 s 
a (s, t)u +a (s,t)u 

. . s 
t 

+ a (s, t)ut = c(s, t), 

where 

( 19) 

u is an unknown function of (s, t), us and ut are first partial derivatives, 

the a a and c are numerically defined and continuous on R, and as 

and at do not vanish on R. 

Because we have two unknown derivative functions in Eq. ( 19), 

we say this is a "two-condition" problem. The conditions ma.y be pre­

scribed on various point set~. We shall cover the possibilities rather 

generally for lattice points (s-k_ ; tk)' .k = 1 ( 1 L~. and k = 1 ( 1 )K, by 

( 1) On any line t = tk considered, we prescribe two independ­

ent local conditions at a point or points (s 1 , tk) of· R. These conditions 

have the form, 

(20) 

where 

a 
the a

1
k and cl'k are real numbers. 

(2) Or. any line s = s.k_.... considered, we prescribe two independent 

local conditions at a point or points (sk, tl') of R. These conditions 

have the form: 

0 Jd s i? .. P. A. 17)/ 
a:h.J. u + a.Je.£ us = c./2£; 1' - 1, 2, .rc.= 1 ( 1) ..I\ ~ K, (21) 
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vvhere 

the a 
a Je.1. .· and c)d_ are real numbers. 

(3) Or any line t - tk considered, we prescribe conclition (20) 

for .e =. 1, and on any line 

(21) for £ = 2. 

s = st.. considered, we presc·ri be condition 
-f.':Y 

We are required to find a limited solution consisting of numerical 

values of u for some finite set of points (s~:~, t>:<) in R. We consider a 

set of :f)(. K lattice points, (s.k,tk)' }e, = 1.(1) ~-t', k = 1 ( 1) K, ..:'<~ 2, K ~ 2. 

This set must include all the points (s':~, t>!<), and the lines s = s~:< and/or 

case. 

must be considered under the pertinent prescribed-condition 

Further, the closed rectangular domain R~:<:s 1~ s ~ ~C).(' t 1~ t~ tK 

must lie entirely in R, and the set of lattice points must include per­

tinent points (s.e, tk) and/ or (~ t.e ), for which conditions are prescribed. 

The differential equati~n ( 19) applied at each of the lattice points 

yields .')( K algebraic equations: 

where 

the akk and c~k are real nume.rical values 9-t (~, tk)' and the 

superscripts -k k indicate function values at (sk , tk). 

On eve.ry line t = tk, k = l (1 )K, for consecutive values 

sk, s k+l; for ~= l(l)Y( -1, construct.the Taylor expansions: 

kk ,kk ~+1, k C' L · r:J/ 
u + h kus - u = ~k; -;rc:.. = 1(1)-..-'\ -1, k = l(l)K; 

(23) 

ukk uk+l,k+ h..ku:-+l,k =ifkk; }c= l(l}_;:-1, k = l(l)K, 

where 

,hk= s-R+l- s..k, and the ~k and}.Ak areer.r,or terms. 

Similarly, for every line. s ~ s.k, /<2- = l (l ),.?(and for tk, 

k = l ( l)K-1, we obtain Taylor expansions, 

(24) 

" 
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u..kk+ hkut~- u.k' k 1= E _.,{:k;k=· 1(1)~ k,; 1(1)K-1; (25) 

u,)ek- u/3· k+ 1+ hkut k. k+ 1 F -kk;.k= 1(1.)~ ,k = 1(1)K-1, 

(26) 

hk = tk+ 1 - tk' and the E_kk and F ..k.k are error terms. 

We now proceed as in the previous section's: We regard Eq. 

(23), (24), (25), c;tnd (26) as being homogeneous but subject to some 

errors which we wish to minimize. When we use these equations along 

with (ZO) and/ or (21) as pertinent and (22), we have an overdetermined 

system whose unknowns are solution and first partial derivative values 

at the lattice points. 

We define 

and convert the equations of the previous paragraph to linear inequalities 

(;::::.) involving u
0 

and the solution and derivative. values. Our objective 

is to minimize u
0

. 

Computation of the linear program, for which the linear model of 

the previous paragraph is the dual, gives, by virtue of duality, an opti-

. ·mal value for u
0 

and approximations for u, us and ut .at each of the 

lattice -points. 

For the cases considered, we have established the following: 

Theorem 9. If a well-posed linea.r problem for a linear first-order 

partial differential equation with two independent variables on a closed 

rectangle is discretized for a nontrivial ryctilinear lattice, then there 

is a linear program whose computation minimizes the e.rror, of approx­

imation and provides approximate values for the solution Junction and 

its first partial derivatives at the lattice points. 

The procedure· described above is illustrated in Example 6 in 

the Appendix. Ppssible improvements on the approximation and mod­

ifications for other domains and conditions we leave to the ingenuity of 

the reader. 
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Se,cond-Order Linear Partial Differential Equation 

For second-order (or higher) linear partial differential equa­

tions in eveii two independent variables, there is a lack of comprehen­

sive theory on the well-posed problem. The equations are traditionally 

subclassified, and even within the subclassification it is common to 

consider very special problems. Fr.om the physical point· of view, this 

specialization is a natural one arising from the situation for which the 

differential problem is a.mathematical model. For the .mathematician, 

the ppecialization is useful in that the special prpperties of_the problem 

may make it possible to decide on a domain of solution,, ,to ~etermine 
. . . . ·'". ·: . ~ 

the. nature ·Qf the prescribed conditions, to make assumptio!ls con-

cerning the solution, and even, in some cases, to c;leyise an analytic 

approach. We shall return to special problems.later~.! 

We now consider a general linear second-order partial differen­

tial equation in the two, independent variables s and t that holds on a 

closed re~tangular domain R: SXT and has the form, 

0 
u+ 

.s 
+ 

t 
+ 

ss 
+ 

st 
+ 

tt 
a a u ·a ut a ·u a u st 

a utt s ss 
where ·_i 

u is an unknown function of s ahd .t, · u , u , u ·•· , 
s t ss 

0 
• • to . l d . 0. t' 0 s t . s s tt d 1ts par 1a · . er1va 1ves, a·, a , a , a· a · an c 

defined, continuous functions of s, t on R, and ass, 

not vanish on R. 

='.C, (2 7) 

·. r: .~ . 
·' 

u~t and uss are 

are numerically 
st . tt a.· ··anda do 

Because we have five unknown derivative functions in Eq. (27), 

we say this is a "five-condition11 problem.· Conditions may be pre­

scribed at various point sets. For a discretization of the problem for 

lattice points (s .k , tk)' ../21 = l (l ).:(; k = l ( l )K, in R, we cover the 

possibilities rather generally by the following cases: 

l. On the lines t = tk considered, we prescribe fiye independ­

ent local (.ized) conditions at points (s
1 

k' tk) of the f-ot:rn, ·.. . .. 

o P k ·. s J1 k t 1 k st J1 k tt J1 k · 
a u· + a u +a u +a u +a u = c 
.:Jil Jlk s J1k t Jlkr st Jlk tt . Jlk 

J1 k = 1 ( l ) 5, k = l (1 )K ~~ ( 2 8 ) 
·.·, 
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2. On the lines s = ~ considered, we p:escribe five independ..., 
' ..... 

ent local (ized) conditions at points (s 4,' t ~.£) of the form, 

o 1:..£ s ld . t ./:..£ s s ./cJ. st h. . 
a .1!. .£ u + a .k.£ us + a-k..£ ut + a.k-fs s+~ ust = c k1, 

k = l{l)J;', )d = l(d 5, (29) 

:k'~K. 

3. We prescribe five conditions from (28) and (29). 

The set of lattice -points (sk, tk) considered must include all the 

points (s~ t:o'() at which a limited solution is required and must include 

pertinent prescription points (~ }., k' tk) and/ or (s ~, t ~P. ). 

The differential equation (27) applied at the lattice points yields 

o kk s k k t kk s s kJ< st ~k tt .kk 
ak.ku + a.,kkus + ~kut + a.k, kuss + ~kust + ~kutt = ckk' 

{30) . 

Along each line t = tk' k = l (1 )K, for consecutive values 

s -k., sk+ 1, we have the following Taylor expansions: 

kk .A;. ik+ 12 2 J:_k12 .. 4+l,k_~o. "'- l(l) .,_, 1 u + -t-.Us rvl->u l -u -e<:> k' r~- """'- , 
~ -~c SS . 

(31) 

k= I(1)X -1; (3 2) 

A= 1 o ) .?( - 1 ; (33) 

k,k- k+1, k + h .k.-+1, k J 2 k+l, k/2- '2.0 . J...-1(1\~ l· U U L U - .n./ 4. U - 7' A k • /~- }./\- ' 
,r~ s rc:.. s s #C. 

(34) 

4 uk -Au -l,k+.A}u -1,k=!J.s . .!=1(1)J('-l· 
.,JuS /2_S k:SS .kk' ' 

(3 5) 

/) k IJ -·1 k -A., 2 - 1 k ..,_ t 11 ~u 
.n,..k ut - ..l'!.._lt ' + Est ' =7'~k; ~e.= l{l)~- 1, (36) 

where 
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Similarly, along the lines s = sk..' h 1 ( 1 ))(, we have: 

(3 7) 

h_ ~s~k + hk2us-h.kt - hkus/a, k+ 1 s 
-"k = E)a,k; k = l(l)K-1; (38) 

h_ .@<+ h 2 kk - h ./9,, k+ l Et k l ( 1 )K-.·1,· --k ut k utt k ut = kl<.; = (39) 

~ 
u 

(39) 

.kk- J:., k+1 h )3, k+l - h2 h_, k+l/2 = Fo . k = 1(_1)K-1,· 
u u + kut kutt .kk' 

(40) 

h kk h .Jok+1 h2 .k-,k+1- Fs . k- 1(1) K-1, 
kus - kus + kust - k..k' - · J 

( 41) 

h U kk -h u/G_,k+ 1 +h2uk.-.k-l Ft ·k 1(l)K-1, 
k t k t k tt = kJ<.' = 

(42) 

where 

As before, we regard Eq. (31) to (42) as being homogeneous but 

subject to errors, which we wish to minimize. These equations along 

with Eq. (28) and/ or (29) as pertinent, together with Eq. (30), constitute 

an overdetermined linear algebraic system whose unknowns are the 

values of u, us, ut, uss' ust and utt at the lattice points. 

We define 

uO = max ( I C k I. ~~ I. IE -hk I, f /vk 1), 

and convert to a system of inequalities ( ;::. ) involving u
0 

and the 

solution and derivative values. Our objective is to minimize u
0

. 

Computation of the linear program for which the foregoing linear 

model is the dual gives, by the duality principle, the optimal value for 

u 0 and approximate values for u, us' 

(s lcJ tk). 

u , u , u and utt · at the t ss st 
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For the cases considered, we have established: 

Theorem 10. If a well-posed linear problem for a linear second-order 

partial differential equation in two independent variables_on a closed 

rectangle is discretized for a nontrivial rectilinear lattice, then there 

is a linear program whose computation rninirnizesthe,error of approx­

imation and provides approximate values for the solution function and 

its first and second partial derivatives at the lattice points. 

We leave refinements and improvements on the foregoing to the 

reader and turn now to subclassification of the second-order equation. 
. . 

A linear second-order differential equation in two independent 

variables, whose discriminant H, defined by 

H - ( . s t) 2 4 s s tt - a - a a , 

does not change sign on the two -dimensional domain being considered, 

may be classified as parabolic, hyperbolic, or elliptic. 

Parabolic Equations. If H is everywhere zero on the domain, the 

equation is said to be parabolic. An equation of sufficient generality 

for this class is the following (Ref. 27, p. 107, Ref. 29, p. 73): 

0 s 
a u + a u - u + u = c. (43) 

s t ss 

Problems involving this equation may be "three -condition" on a rec­

tangle whose sides are parallel to the coordinate axes. Care must be 

exerCised in the discretization. A safe rule to follow is to require that 

every point (s.k.' tk)' the grid step in t in either directio:q., be less than 

or equal to twice the square of the grid step in s in either direction 

(Ref. 27, p. 92ff. ). This precaution will insure that errors do not corn­

pound to render the numerical solution unstable. Enumeration of all 

the possible conditioning which would provide a well-posed problem will 

not be attempted here. Three possibilities may occur: ( l) the problem 

may be underconditioned; (2) the problem may be properly conditioned; 

and (3) the problem may be overconditioned. In ( l) the linear program 
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method will find a solution whicl: satisfies all the prescribed conditions. 

Such a solution is not likely to by unique, rior is it likely to ?e much of an 

approximation to the true solution sought. In (2), the conditioning may 

be barely sufficient, so that app~oximation formulas must be treated 

as exact equations, and there is no opportunity for minimization of 

approximation error. In this instance, the solution may be found by 

solving a linear. system of algebraic equations for it!? unique solution. 

Otherwise the linear program method may be used to minimize the 

a,pproximation errors. In {3) it is unlikely that the conditioning will be 

precisely consisten~ because of errors in measuremen~ or in rounding 

of numerical values for functions. The linear program method then can 

be used either by allowing tolerances on the numerical values, or by 

allowing these errors to be minimized by the program. Without one or 

the other of the above, the linear program will have an unbounded solu­

tion because of the inconsistency. 

In many problems, particularly where uniform grid steps are 

used, it is more accurate and efficient to employ approximation formulas 
r 

other than truncated Taylor series. Central finite-difference approx-

imations, for example, may be used. 

The numerical solution of several parabolic problems is illus­

trated in Example 7 of the Appendix. As with most numerical methods, 

the user must exer.c.ise some ingenuity in applying this method to a 

specific pro blemo 

Hyperbolic Equations. If H is everywhere strictly positive on the 

domain being considered, the equation is said to l:>e hyperbolic. An 

equation of sufficient generality for this class is the folrowing/(Ref. 2.9, 

p. 73): 

(44) 

Problems on this equation may be "three-condition,'' or even "two­

condition," on domains bounded by appropriate characteristic curves of 

the equation. Conditioning should not be along any line or curve whose 
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direction at any point of the domain is the same as that of a character­

istic curve through the same point, 

The only safe rule for discretization for any conditioning is the 

use of uniform equal grid steps in s and t. Whether it is safe to use 

a larger grid step for one variable than the other depends on the con­

ditioning (Ref. 27, 1. 18). 

The remarks on conditioning given in connection with parabolic 

equations apply here. For illustrations on the solution of hyperbolic 

problems see Example 8 in the Appendix. 

If the discriminant H is strictly negative on the two -dimen­

sional domain considered, then the linear second-order partial diffen­

tial equation in two independent variables is said to be elliptic. For 

such equations, we can, without loss of generality, restrict ourselves 

to (see Ref. 29, p. 72): 

(45) 

Since the partial derivative u does not appear, a problem involving 
st 

Eq. (45) may be a "four-condition11 problem, even without limiting the 

considered domain to the rectangle R: SXT. 

·We consider a closed two-dimensional domain D whose bound-

ary consists of the closed continuous curve (s) r: 0 
We denote by D the 

open 1·egion D less r. From the historical and practical standpoint, 

the problems involving the elliptic differential equation are those in which 

conditions are prescribed along r, while the equation is assumed to hold 

only on D
0

• Traditionally, the problems treated have been highly spe­

cial as to the equation, domain, and conditions. We shall attempt a 

rather general treatment. 

By means of lines s = ~and t = tk' we construct a rectilinear 

grid over the domain D. We speak of portions of these lines which lie 

1n D as being included segments, and insist that each of these have 

two points in common with r and that each be intersected by at least 

one orthogonal included segment at a point in D
0

. We discretize the 

problem for the set of points consisting of (a) the intersections of 
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included segments with r (call_ed boundary points), and (b) the inter­

sections of included segments wi. th each other (called lattice points), 

We seek a limited solution consisting of values for u, u , ut' u and . s ss 
utt at the .lattice -points subject to linear local(ized) conditions at the 

boundary points. These conditions may have the form, 

(46) 

where 
0 s t d 1 b 1 u1 and .R. . . ap_, a

1
, a

1 
an c 

1 
are rea. num ers, nonzero, u , s 

< ut represent values at boundary points, .R. indices the local(ized) 

conditions, and L is the number of included segments. 

Each included segment has at least one lattice point, and about 

each such point we can write Taylor expansions along the segment for 

u and a first partial derivative (either us or ut, according to the 

direction of the segment) at the two adjacent discrete points (either 

lattice po:lnts or boundary points). Each included segments has two 

boundary points and from each of these we can write a (first-order) 

Taylor expansion for u at the adjacent lattice point. These expansions, 

. considered as homogeneous equations but subject to approximation 

error, together with Eq. (46) and Eq. (45) applied at the lattice points, 

provide us with a linear system whose unknowns are the values of u, 

u and ut at the boundary points and of u, u , ut, u and utt at the s . s ss 
lattice points. With the objective of minimizing the maximum-error 

magnitude, we have a linear model which is the dual of a linear program. 

Computation of this linear program will minimize the error and give 

approximate values for afore1nentioned unknowns. 

Many problems involving elliptic equations do not have boundary 

conditions -prescribed that meet the nonzero "coefficient" requirement 

imposed on Eq. (46). These cases may require special treatment in 

setting up the Taylor expansions. For example, if the value of u is 

prescribed on the boundary, we have localized conditions of the form 

(47) 
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For this problem, the Taylor expansions from the boundary points should 

- be omitted, the numerical value c f. ·can be substituted for u
11 

wherever 

it appears in the other expansions, and the result will be an overdeter­

mined linear system obtained from the expansions and from Eq. (45) 

applied at the lattice points whose unknowns are the values of u, us, ut, 

us s and utt at the lattice points only. Similar modification can be made 

in other cases. The solution of problems involving elliptic equations is 

illustrated in Example 9 o£ the Appendix. 

Problems for Linear Partial Differential Systems 

The procedure of the previous section can be extended to some 

problems involving a system of linear partial differential equations. 

There is, of course, a 'practical limit on the number and orders of the 

differential equations, In the extension, the constructed li:q.ear. system 

involves, as unknowns, the values of all the solution functions and some 

of their partial derivatives at some set of discrete points. Obviously 

a solution can be attempted only on a domain having common propriety 

for all the equations. Any general discussion of necessary conditioning 

for a well-posed problem is beyond our scope. Even without this ques­

tion, a detailed description of the linear program method for a probleni 

of any generality would be lengthy, notationally difficult, and, in a great 

measure, repetitive, For these reasons, we content ourselves with a 

simple illustration in Example 10 of the Appendix. Following this 

example as a guide, the ready may apply the method to other, not-too­

elaborate problems involving linear partial differential systems. 

Use of Computers 

The formulations in the preceding sections, f~ightening in their 

literal expression, may be readily codified for high-speed computers .. 

Rather general but simple codes can be written which will convert a min­

imum amount of problem information into suitable input for an existing 

linear programming code. Some such codes have been written by the author 

and used in connection with the examples given in the Appendix, Preparatory 

codes together with available linear program codes such as SCROL (Ref. 30) 

reduce the human participation in ·~he computation to the preparation of a 

few data and control cards, 
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V. CONCLUSIONS 

In this chapter, we atternpt to draw some conclusions with re­

spect to the merits of the linear p:rogram meth~d for the numerical 

solution of linear differential problems. The following properties are 

considered: stability, accuracy, convenience, andversatility. Special 

features of the method, which are not possessed by other methods, are 

discussed. 

Stability is a property of the approximation formulas used, ofthe 

problem itself, and of the discretization. A problem is said to be stable 

for a particular approximation if the small errors, which are almost 

certain to appear in rounding and truncation, have relatively small ef­

fect on the final result. For a thorough discussion of stability (in the 

case of difference equations), the re.ade_r is referr;ed to Forsythe and 

Wasow (Ref. 27, pp. 29 to 35). Because the linear program method may 

employ several approximation formulas on a particular problem (see 

.Examples 7, 8, 9, 10 in the Appendix), it inherits their.stability attributes. 

In this method, it is possible to choose the approximation formulas least 

likely to be unstable, or to use one approximation formula to offset the 

instability of another. Unfortunately, and contrary to a .too popular be­

lief, finer discretization or the use of higher -order approximation for­

mulas do not always improve stability. Unlike most numerical methods 

that are satisfied with a determined numerical approximation, the linea:c 

program method operates on an overdetermined situation. In the set of 

approximations employed,· it need not force compliance with any approx­

imation formula, but rather can minimize departures from severaL 

This advantage of the linear program method is not present in other non­

iterative methods for the numerical solution of differential problems. 

Unlike stability, accuracy is concerned with the inception of 

errors rather than with their. growth. It is generally assessed for a 

small domain containing a few points of discretization. Sometimes 

accuracy is expressed by a statement that the numerical approximation 

is exact for a polynomial of some specified degree. In other cases an 

.error term is formulated. The linear program method derives its ac­

curacy from the approximation formulas it employs. In the previous 
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discussion nonuniform mesh or grid steps have been stressed, Flex­

ibility in discretization is desirable in many problems, However, if 

the mesh or grid steps are uniforrn, the linear program method is usu-

ally able to effect a better approximation, For example, for an ordi­

nary differential equation of order J, by use of only backward and for­

ward Taylor Expansions with ± u
0 

replacing all terms above the contain­

ing the Jth derivative, the linear program method gives an approximation 

which is ~xact if the solution is a polynomial of degree J + L This is be­

cause the error term u
0 

is forced to take the absolute value of 

h J + 1u (J + l) / (J + 1) ! , which is a constant for such a polynomiaL Again 

the use of diverse approximation formulas makes possible the reduction 

of the error that would be produced by any one of them, 

The linear program ·method is not very convenient to use, The 

construction of an overdeterminate system is certain· to require more 

formulation than would be the case for a determinate system, The fact 

that the linear model evolved, which is the dual of a standard linear 

program, must consist of linear inequalities ( ~) in effect doubles the 

amount of formulation, Thus the linear model that represents a fairly 

simple problem may appear too expansive to be practical (see Example 

4, Appendix), Certainly the linear program method should not be ap­

plied where much simpler but entirely satisfactory methods are avail­

able, Computer time is another factor which should be considered under 

convenience, The computation of a linear program of any size is likely 

to be more time-consuming than a simple step-by-step noniterative 

method, For ordinary differential problems with initial conditions, the 

latter should be used unless, of course, they lack sufficient accuracy or 

are unstable, For boundary condition problems on ordinary differential 

equations, the linear program method is probably no more awkward 

than other existing methods (e, g,, ReL 26, pp, 67 through 79), The result 

that the linear program method supplies approximations both for deriva­

tives and for solutions may be sufficiently useful to offset some or all of 

the inconvenience, Except for the very rare problems for which an analytic 
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approach is possible, all methods for solving partial differential equa­

tions are tedious. Usually the soluh.on of a system of linear algebraic 

equations·is necessary. Where this is the case, the linear program 

method is not much more elaborate or expensive in computer time. 

The linear program metho<;l is restricted to linear differential 

problems. Aside from this admittedly serious limitation, the linear 

program"jnethod can be applied very generally to well-posed problems 

on linear iordinary, or partial differential equations or systems. It can 

be applie~ to any linear differential problem for which there is an ap­

plicable ~xisting method. It can, in fact, incorporate two or more such 

methods, and apply them, not independently to small sets of mesh or 

lattice points but .simultaneously to all such sets over the entire domain. 

The linear. program method is unique in its· ability to use discrete 

measured data for prescribed conditions. No other method which relies 

on a determined linear model can allow for errors in measurement or 

satisfy an overconditioned problem with minimum discrepancy. 

Examples 7 and 10 on partial differential equations illust~ate this power. 

Another advantage of the linear program method rtot common in 

other methods is its ability to utilize a nonuniform mesh or grid. This 

property can be important where measurements to provide conditioning 

data can riot be made uniformly, as on the boundaries ofthe domain for 

the elliptic partial differential equation in Example 10. 

In the last analysis the merits of any numerical method must be 

determin~d in extensive application to a great diversity of problems. 

This work must be suggestive rather than conclusive. The linear pro­

gram method presents great opportunity for the exercise of ingenuity. 

Final judgment on its value is relegated to those who may enjoy exper-
. . ~ 

imentation in a fresh approach to the very important and often perplexing 

task of approximating the solution of a well-posed differential problem. "" 
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APPENDIX 

·· Example L Illustration of Simplex Computation 

iA company has three warehouses. Because of r~modeling, it is 

necessary to transfer a ce·rtain quantity of material from War·ehouse 

No.3 to the other warehouses. The movement of material is to be made 

at least cost. 

Formulation 

No.1, 

Noo 2. 

; ( 

Activities: 

(1) 'Movement of material from Warehouse No.3 to Wal'ehouse 

(2) Movement of material from Warehouse Noo 3 to Warehouse 

Variables: 

x
1 

Quantity moved from Noo 3 to No. 1, 

x
2 

Quantity moved from Noo 3 to No. 2, · 

. y Total cost to be minimizedo 

Constants: 

bl Available storage at. Noo 1, 

b2 Available storage at Noo 2, 

b3 Quantity to be moved from Noo 3, 

cl Cost to move unit quantity from 

c 
2 

Cost to move unit quantity from 

Relations: 

Y = c 1x
1 

+ c
2

x
2 

to be minimized, 

xl~ bl' 

x2~ b2, 

xl + x2 ~b3' 
x

1
, x

2 
~00 

No.3 

Noo 3 

I. , • 

to No.1, 

to No.2. 
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We introduce nonnegative slack variables x
3

, x
4

, and ~6 to 

obtain equality,· and an artificial variable x
5 

to construct an initial 

feasible ba·sis.. The latter must also be included in the cost function 

• with a predominantly large cost coefficient M. With a new objective 

function z (z = - y) we have the .following: 

Standard Model: 

rnaximize 

subject to 

z =-c
1
x

1 
- c

2
x

2
- M.x 

5
, 

x3 + xl = bl' 

x4 + x2 = b2, 

x5 - x6 + xl + x2 = b3, 

X. :;;,. 0; 
1 

i = l, .. ·,6. 

Irnplementation 

Suppose c = l 
$5 and c 

2 
= $ l 0, then we have for our objeCtive 

n1.axir11.ize z = - Sx -lOx -lVLx,... 
1 2 J 

vle conside::.· the following cases: 

(a) b 1 = 100; b
2 

= 200; b
3 

= 400, that is, 

x 3 + x 1. = 100, 

x 4 + x
2 

= 200, 

x
5 

- x
6 

+ x
1 

+ x
2 

= 400, 

X.:;;,. 0; i = 1, ... ,6; 
1 

(b) b 1 = 200; l::>
2 

= 300; 1::>
3 

= 400, that is, 

x
3 

+ x
1 

= 200, 

Computation 

?C4 + xz = 300, 

x
5 

- x
6 

+ x
1 

+ x
2 

= 400, 

X· :;;,. 0; 
1 

i = l, ... , 6. 

The com.putation involved in the Sin'lplex process is more easily 

followed ifthe data is arranged in tableau form. 
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(a) Computation for case (a) above: 

Tableau I Basic Solution 
c. 0 0 -M 0 - ·-. i -10 

J =' 100 

c. ~ p3 p4 Ps p6 pl p?. B 1 - zoo .. 
,,, 

0 p~ l 0 0 ·o l .,, 
0 100 

= 400 
'" 

0 p4 0 0 0 0 0 l zoo 
= 0 

. -M Ps 0 l l -·1 l l 400 

z. 0 0 
J 

M M -M -M 

w.=z.-c. 0 0 M M ?M _1£: 
J J J 
.. 

Since -M is predominantly negative.' we have 

w =min w. < O· P 
1 

is to enter the basis, and l J ' 
R3 = min R. ~ 

1 
0; P 

3 
is to be replaced. The new basis is 

pl' P4, Ps. The pivot element is indicated by an asterisk. 

Tableau II is constructed as follows: The first row is designated 

as f:> 1 and computed by dividing the corresponding elements of the first 

row (P3 ) of Tableau I by the pivot element; other elements, a.n. (row 
1J 

. P., column 
1 

P.) are computed from a .. (row P., column P. of I), 
J . . 1J 1 . J 

ail (row Pi' column P 1 of I), and a]j (row P
1

, column Pj) by 

a'. = a .. - a.
1 

a 1 
•• 

1J -1J 1 lJ . 

This c amputation, which seems quite tedious even f~r the simple 

problem under discussion, is usally done or;t high-speed computers. 
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We now have: 

Tableau II 

I 
! ' 

c. 0 0 ! -M 0 j 
I 

J i i 

.~ P3j p41 p5 p6 

' I I 

I pl 1 I 0 i 0 0 i 

PA 0 
i 
I 1 ! 0 0 

p5 - 1 I 0 i 1 -1 

I 
I M I z. 

-5 0 -M ·M l J 
w.iM I 

I 

I 0 
I 

0 M 
I J I ...: 5 I i I 

i 
-5 I -10 

pl p2 

1 0 

0 1 

0 1 

-5 -M 

0 I 10 
-M 

I 
j 
l 

i 

i 

I 
i 

B 

100· 

200 

3001 
! 
I 
I 

i 

I 
I 

Basic Solution 

X = 100 
1 

x
4 

= 200 

X = JQQ 
5 

x
2

, x
3

, x
6

= 0 

w 
2 

= rrhn wj < 0 and R
4 

= min Ri; P 
2 

replaces P 
4 

in the 

Tableau III is derived from Tableau II by the process previously 

described. 

c. 
1 

-5 

-10 

-M 

c.j 0 
J· I 

Tableau III 
I 

o I -M io 1-5 l-1o Basic Solution 
I ' 

!~IP3! P41PsfP6 p1 I p2 I B 
; X = 100 

1 

I 
I 

I 
i 

I 
! 
i 

.! 
I 
I 
I 

I 

I 
l I i 

1100 p1 i 1 
1 0 0 0 1 10 i 

i j 

10 I 
j2oo lo 

I 

0 )1 P2 I 1 0 
i 

X = 200 
2 

X = 100 
5 

t 1 i lo p5 -1 . 1 1-1 0 100 I - .L 

M M 
zj -5 -10 -M M -5 -10 

x3,x4,x6 = 0 

wi 
M M 
-5 -10 M 0 0 

Now all w. ~ 0, hence no new vector can enter the basis; however, .J 
the vector P 5 , which corresponds to the artificial variable x

5
, is still 

in the basis. This model is infeasible. 
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(b) Computation for case (b): 

Tableau I 

0 I 0 I -M I 0 -5 -10 

:-----..__ i I I I 
ci j Ba~·s·-- .. _>C-~ _3__! ~.4L_P5_) __ -~-6 __ ~l-'+I_P_-'+7_B_, 

P 3 I 1 ! o 1 o i o 1 o 0 zoo 

0 300 

400 l i I 0 I 0 i l : -l I -M Ps i I l ! l 
1-----+--~--"----~--~------~--r-~--4---~ 

! j zjll 0 ' 0 -M r M 1-M j -M~ 

c 

-5 

I 

I 
I 

wj: 0 0 0 M l :M:l-~ 
w 1 = min wj < 0.; 

R 3 = min Ri ~ 0; 

New basis is P 
1

, 

Tableau II 

c 0 0 

P 
1 

to enter basis, 

P 
3 

to be replaced. 

P4, Ps. 

l-M I 0 -5 -10 

b~ p3 
I 

p41 Ps J 
p6 pl Pz 

I ' I I 
IPl l j 0 I 0 I 0 l 0 

! 

B 

zoe, 

j-10 
! i ! 
!P4 0 l 0 I 0 0 l 300' I 

! ) 
I i I 

-M iPs i - l 0 l I -l 0 l zoo 
l ( 

! !M 
!-M I i I zj 0 M -5 -M ; -5 i 

! M 10, I wj 0 I 0 M 0 -5 I i -M ' i 

Basic Solution 

x
3 

= ZOO 

X = 300 
4 

X = 400 
5 

xl' xz, x6 = 0 

Basic Solution 

x
1 

= ZOO 

x
4 

= 300 

xs = zoo 

xz, x
3

, x
6 

= 0 

wz =min wj < 0; R 5 =min Ri > 0; PZ replaces P
5 

in the 

basis. 

New basis is P
1

,- P 
4

, PZ. 



c. 0 0 
J I 

I 
c. p3 p4 

1 Basis I i -
i i -5 ip1 1 0 i 

I 
0 !P4 0 - 1 

-10 
i 

-1 0 I I :P 
i 2 
) I 

zi 10 0 I 

! 

w. 10 0 
t J 
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-M 0 1-5 i-10 
I ' I 

l 

.PS. ' p6 i pl p 
I i 2 

0 .. I 0 1 io 

I 0 0 -1 
I 

1 

1 i -1 0 1 I 
I 

-10 I 10 0 ! 0 

M 
10 5 10 

-10 

i 
i 

B 
i 

·I 
i 

200/ 

100 

200 

i 

I 

Basic Solution 

x
1 

= 200 

X = 100 
4 

X = 200 
2 . 

= 0 

All wj ~ 0 and P 
5 

is not in the basis, 

z = -5(200) - 10(200) = -3000. 

This is an optimal 

solution: 

Interpretation 

(a) The space available at Warehouse No. 1 and No. 2 is not sufficient 

to store the material that must be moved from Warehouse No.3. 

(b) Of the 400 units of material which must be moved from Warehouse 

No.3, 200 should be moved to No. 1, and 200 should be moved to No. 2. 

The total cost will be $3000. 

Example 2. Illustration of a. Use of Duality. 

We are given three points (a
1

, b
1

), (a
2

, b
2

}, and(a
3

, b
3

), and are 

required tofit a straight line to them. We assume the points are not 

collinear, and that a
1 

< a
2 

< a
3

; 

Formulation 

The desired straight lin~ will be determined by its ordinate u
1 

at abscissa a 
1 

and by its slope s from the equation, 

wP,ere v is the variable abscissa 
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Tll;e error of the fit can be measured by 

e = max J ui - bi J, i = 1, 2, 3. 

Variables: 

u
1 

or din ate on the line ·at a 
1

, 

s slope of the line, 

e maximum absolute error. 

Constants: 

bl given ordinate at al' 

b 
2 

given ordinate at a2, 

b3 given ordinate at a3' 

h2 a2 - al' 

h3 a3 - a 1" 

Relations: 

w = e to be minimized, subject to 

u
1

- e :::::: b
1

, 

u 1 +e~b1 , 

ul + h2s - e ~ b2, 

u
1
+ h

2
s + e ~b2 , 

u
1 
+ h

3
s - e :::::: b

3
, 

u
1
+h

3
s + e ~b3 . 

No restriction on the sign of u
1 

or s. 

By appropriate changes of sign we reverse the order of some of 

the inequalities and obtain . 
.... 

minimize w = e, 

subject to , -ul + e ~- bl' 

ul + e ~ bl' 

-ul - h s 
2 

+ e ~-b 2' 

ul ·-th2s· + e ~ b2, 

-ul - h s 
3 

+ e ~-b 3' 

ul + h
3

s + e ~ b3, 

which is in the form of Model II of our discussion of duality. The dual 

'model for the above is 
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z = !.b
1
x

1 
+ b

1
x

2
.;. b2x~+ b

2
x

4
- b

3
x

5
+ b

3
x

6
, 

-X + X · - X + X ·- X · + X = 0 
l -· 2 3 4 5 6 ' 

-h
2

x
3 

+ h
2

x
4 

- h
3

x
5 

+ h
3

x
6 

= 0, 

x
1 

+ x
2 

+ x
3 

+ x
4 

+ x
5 

+· x
6 

= l, 

xl ~-o; i = 1,···,6 .. 

We introduce the a1·tificial variables, x
7

, x
8 

and x
9 

to obtain 

an initial feasible basis. Then our model becomes standard: 

maximize 

subject to 

z = - Mx
7 

-Mx
8 
~b1x 1 + b

1
x

2 
-b

2
x

3
+ b

2
x

4 

-b3x5 + b3x6, 

x
7 

-x
1 

+ x
2 

- x
3 

+ x
4 

-x
5 

+ x
6 

= 0, 

x
8 

-h
2

x
3

, h
2

x 
4 

- h
3

x
5 

+ h
3

x
6 

= 0, 

x
9

+x
1 

+x
2
+x

3
+x

4
+x

5
+x

6
=l, 

X. ~ 0; i = l, • • • 9, 
1 

with M a predominantly positive number. 

Ir.n plementation 

we 

Suppose the three given points are {l, 2), · (2, 4) and (3, 5), then 

have: b
1 

= 2~ b
2 

= 4, b
3 

= 5, h
2 

= l, h
3 

= 2. We now have 

maximize 

'subject to 

z = -Mx
7 

-Mx
8 

-Mx
9

-2x
1

+ 2x
2

-4x
3

+ 4x
4

-5x
5 

+ 5x
6

, 

x
7

-x
1

+ x
2

-x
3 

+ x
4

-x
5 

+ x
6 

= 0, 

x8-2x3+2x4- 3x5 + 3x6 = 0, 

x
9
+x

1
+ x

2
+ x

3 
+ x

4 
+ x

5
+ x

6 
= l, 

x. ~ 0; - 1 = l, ... 9. 
1 
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Computation 

The Simplex algorithm applied to the above gives the following: 

Final Tableau 

! I I 
I I 

4 f 
-51 5 I I c -M I -M -M L-2 i 2 -4 I 

! ! 1 : I 

' 
I 

t---
i c. I Basis 

i p7 
' l p8 !P9 r1 ip2 ' p3 p~ p) p6~ B 

Basic Solution 
I I 

! 1 
j 9 +---- i I I ! I 

I I I i I I I ;____ ___ ~---+-' _o. _s-+J_o----~1-o_. s___;,;_o~!_l_-+-_o_.+l-l-+--o-ilr---1 -+-1-o_. s_ i 
i i lo?sjos lozsl 1 '-5, o~o o!osio25i 

X, = 
"± 

xl = 

xr.: = 
::> 

I i '' i 
. - I '0 ! ! i i 

. 
I ~ 

I I I I 
I I i l 

!o.2s Jo. 5 
i 0.5 I :-.5: 0.25 i 0. 25 1-,5 0 I 0 l 
i ; ! !-----·-·-··--· 

-2 12.5 
i . l i i z 2, 25 1.5 0,25 -3,5 

I 
j 4 1-5 i5.5j 

~M6 
I I ! i w. ~~ o+if 0 .5 . sf 0 i 0[ 

' J . i 
! 

All w. are nonnegative, artificial variables eliminated, this is an 
J 

optimalsolution, To obtain the values of u
1

, s and e, we take the 

0.5 

0.25 

0.25 

w 1, w 
2 

and w 
3 

without the M, which has served its purpose, 

then have· 

We 

u
1 

= 2,25; s = 1.5; and e = 0.25, 

as the optimal solution for the line fit. 

Interpretation 

The Chebyshev approximation for a line fit is the line through 

the point (1, 2.5) with the slope L5. It should be noted that a different 

fit, namely, the least-square fit, is usually preferred. 

Exampe 3. An Overdetermined Linear System 

Vve are given three linear equations in two unknowns, which are 

inconsistent due to errors in measurements by which the right-hand 

sides were obtained, We wish to find values of the unknowns which will 

fit all three equations within an error of minimum magnitude, 
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Formulation 

Let r. represent the error on b., i = 1, 2, 3, and let 
1 1 

u 3 = max / r i I· 

Variables: 

u 
1 

the first unknown, 

u
2 

the second unknown, 

u
3 

maximum magnitude of error. 

Constants: 

a.. coefficients in given system, i = 1, 2, 3; j = 1, 2, 
1J 

b. right-hand sides, i = l, 2, 3. 
1 

Relations: 

minimize w = u3' 

subject to ail ul+ ai2u2+ u3~bi' i = l, 2, 3, 

-ail ul - ai2u2+ u3:;?- bi' i = l, 2, 3. 

The standard model, which is the dual of above, is 

maximize z = -Mx
7 

-Mx
8 

-Mx
9

+b
1
x

1 
+ b

2
x

2 
+ b

3
x

3 
-b

1
x

4 
-b

2
x

5 
-l1

3
x

6
, 

subject to x7+allxl +a2lxl+a3lx3 -allx4 ~a2lx5-31::;:6 = 0, 

x8+al2xl +a22x2 +a32x3 -al2x4 -a22x5 -a32x6=0, 

x
9 

+x
1 

+x
3 

+x
4 

+x
5 

+x
6 

= l, 

X. ~Q; j = 1,.' ·9. 
J 

Implel-nentation 

.. Suppose, for the given problem, we have 

all = 1· al2 = l· b = L 1; 
' ' 1 

a = 2; a22 = 1; b2 = 1.6; 
21 

a3l = 1· 
' a32 = 2; b3 = 1.6. 

These numerical values are substituted in the standard model. 

" 
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Computation 

The Simplex algorithm applied to the above fives 

u
1 

= 0. 54; u
2 

= 0. 54; u
3 

= 0.02. 

This computation was performed on the IBM 704 and required less 

than one minute of machine time, and much of that was consumed in 

reading in control and data cards. 

Interpretation 

The best Chebyshev fit fo·r the three equations indicates that 

the unknowns have values, 0. 54 and 0. 54, with the error on measure­

ment at 0.02, 

Example 4. Problem on a Linear Second Order 
·· · ·_ ~. Ordiriaryo'Di'fferential Equation 

An unknown function u(s) satisfies the differential equation, 

u" + u = s, 

<;m the interval S: 0 ~ s ~ 0. 2, 

and satisfies the prescribed conditions, 

u(O) + u 1 (0) = 2.0, 

u(0.2) = 1,18007. 

We are required to find u(0.08). 

Formulation and Implementation 

We consider three mesh points: s 
1 

= 0, s 
2 

= 0. 08, and 

s 3 = 0.2, and use as approximation formulas Taylor expansions re­

lating values of u, u' and u" at adjacent mesh points. 

Variables: 

~ u(sk); k = 1(1)3, 

u' u' (sk); k = 1(1)3, 
k 

u" u"(sk); k -- 1(1)3, 
k 

Ejk' Fjk approximation errors j = l, 2; k = 1, 2, 

u 0 max( JEjk I, IFjk 1). 
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Constants: 

1 
2.0, c hl 0.08, 

2 l. 18008, c h? 0.12, ... 

cl 0, 2 0.0064, '~1 
.c2 0.08, h2 

2 
0.0144. 

c3 0.2, 

Relations: 

u 1 + u! = 2.0 
1 prescribed conditions. 

u
3 

= 1.18007 

u + u" = 0 

. u
2 

+ u'z = 0. 08 differential equation discretized. 1 1 . J 

u 3 + u3 = 0.2 . 

u 1 + 0.08U:l + 0.0032u'1 - u 2 = E
11 

u 2 + 0.12uz + 0.0072uz- u 3 = E 12 

0. 08u]_ + 0. 0064u'l - 0. 08uz = E 21 

o.12uz + o.ol44u'2 - o.12~ = E 22 

u
2 

- 0.08uz + 0.0032u'z - u 1 = F 11 
u

3 
- 0 12· u..'. + 0 0072u" - u = F 

• .:S • 3 2 12 
- 0.08uz + 0.0064u'z + 0.08u]_ = F 21 
_ o.12~ + o.ol44u3 + o.12uz = F 22 

Linear model: 

minimize 

Taylor expansions 
(forward) 

Taylor expansions 
· (backward) 
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subject to cO'nditions: 

(x
1

) u 1 + u]_ ~2.0, 

{x
2

) -u 1 - u]_~ -2.0, 

(x
3

) u
3 
~ 1.18007, 

,(x
4

) -u
3 
~-1.18007, 

(x
5

) u 1 + u'i ~0.0, 

{) U U ">-00 . x6 - 1 - 1 ,__ . ' 

(x7) u2 + u'2 ~0.08, 

(x8) -u
2 

- u'z ~-.08, 
(x9) u3 + u'} ~0.2, 
(x10>-u

3 
- u3 ~-.2, 

(x11) u
0 

+ u
1 

+ 0.08u'
1 

+ 0.0032u'i - u
2 
~0, 

(x12) u
0 

- u
1 

- 0.08u'
1

- 0.0032u'i + u
2 
~0, 

(x13) u
0 

+ u
2 

+ 0.12uz + 0.0072uz- u
3 
~0, 

(x14) u
0

- u
2

- 0.12~- 0.0072u'z + u
3 
~0. 

(x15) u
0 

+ 0.08u{ + 0.0064u'{ - o.o8uz ~o. 
(x16) u

0 
- 0.08u{ - 0.0064u'{ + o.osuz ~o. 

(x17> u 0 + o.1zuz + o.0144u'2- o.12u_3 ~o. 
-<x18> u

0 
- o.12uz - o.0144u'2 + o.12u_3 ~o. 

(x19) u
0 

+ u
2 

- 0.08u~ + 0.0032u'z - u 1 ~o, 
(x20) u

0 
- u

2 
+ 0.08uz - 0.0032uz + u 1 ~0. 

(x2l) u
0 

+ u
3

- 0.12u3 + 0.00}2u'3-: u2~o~ 
(x22) u

0
- u

3 
+ O,l2u_3- 0.0072u'} + u2 ~o, 

(x23) u - 0 08u' + 0 0064u" + 0 08u' ~0 0 . 2 . 2 ° 1 ' 
(x24) u 0 + o.o8uz - 0.0064u'2 - 0.08u]_ ~o. 
(x25 > u 0 - o. 12u_3 + o.0144u3 + o. 1zuz ~o. 
(x26) u 0 + o.12u_3 - o.Ol44u'3 - o. 12uz ~o. 

\ 

The above linear model is the dual of a linear program whose 

variables are n = 1(1)26. 
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Linear program: 

maximize the linear function 

z = zx
1
-zx

2
+l.l8007x

3
-Ll8007x

4
+0.08x

7 
-0.08x8 

+ O.zx
9 

-O.zx
10

, 

subject to restraints: 

(uO) x9 + xlO + xll + xl2 + xl3 + xl4 + xl5 + xl6 + xl7 + xl8 + xl9 

+ xl9 + x20 + x2l + x22 + x23 + x24 = l.O, 

(ul) xl- x2 + x5- x6 + xll- xlz·- xl9 + x20 = O.O, 

(u{) x
1 

- x
2 

+ 0.08x
11 

-0.08x
12 

+0.08x
15 

-0.08x
16 

+0.08x
23 

-0.08x24= 0.0, 

(u'i) x
5

- x
6 

+ 0.003x
11 

-0.003Zx
12 

+0.0064x
15 

-0.0064x 16 = 0.0, 

(u2) x7- x8- xll + xl2+ xl3- xl4 + xl9- x20- x2l + x22 = O.O, 

(u2_) O.lzx
13 

-O.lzx
14 

-0.08x
15

+0.08x
16 

+O.lzx
17 

-O.l2x 18 -0.08x
19 

+0.08x
20 

-0.08x
23 

+0.08x
24 

+0.1Zx
25 

-0. 1Zx
26 

= 0.0, 

(u'z) x
7 

- x
8 

+0~0072x 13 -0.007Zx
14 

+0.0144x
17 

-0.0144x18 -

+0.003'2x
10 

-0.003Zx
20 

+0.0064x
23 

-0.0064x
24 

= 0.0, 

(u3) x3 - x4 + x9 - xlO - xl3 + xl4 + x2l - x22 = O.O, 

(u}) -.lzx
17 

+0.12x,18 -O.l2x
21 

+0.1Zx
22 

-0.1Zx
25 

+0.1Zx26 = 0.0, 

(u'3) x
9 

- x 10 +0.007Zx
21 

-0.0072x
22 

+0.0144x
25 

-0.0144x
26 

= 0.0, 

(The above formulation appears very tedious, but it is given in 

all detail for reasons of clarity. Both the linear model and the linear 

program can be presented in a single tableau that, columnwise, depicts 

original model and, rowwise, the program. Even this detail can be by­

passed by computer code that will take minimum problem information 

and prepare an input data tape for the SCROL linear program code. ) 
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Computation 

_Computation of the above program by the IBM 704 code, SCROL, 

gave the .following results: 

uo = 0000004 (maximum approximation error), 

u(O) = 00 99998, u(Oo08) = L07682, u(Oo2) = L 18007, 

u 1 (0) = L00002, u' (Oo08)= 0.92052, u' (0~2) -- 0.80124, 

u"(O) -· - 0 99998, u"(0.08)= -:o99682, u"(0.2)= -.980070 

Interpretation 

The required solution value, u(Oo08), 'is approximately 1.07682 

with a possible error of 00000040 

Comment . 

The analytic function J.£= s + cos s satisfies the differential 

equation and· prescribed conditions. The given differential system can 

be transforme-d into a system of first-order differential equations with 

continuous "coefficients'' and continuous right-hand sides satisfying 

Lepschitz conditions. Two independent conditions are prescribed, hence 
. 21 

according to !nee, the differential problem admits of a unique con-

tinuous solution u and u' having continuous first derivatives. The 

functions u and u' are of this kind, hence are unique among functions 

of this kind. 

Comparison of values for/~'..-(.., ,u!., and itL..! with the computed 

values u, u', u" at the mesh-points reveals a close agreement parti­

cularly for u and u". The discrepancy in u 1
, although larger, still 

permits a very good approximation to p_ for any point s in· S by means 

of truncated expansions about the mesh points using computed values for 

u, u', and ·u'' 0 

The finite-difference method described by Fox (Ref. 26) applied 

to this problem gives u(Oo08) = 1.07681, which is a slightly better approx­

imation to ~J-(0.08 = L07680 than we obtained. However, this method re­

quires additional mesh points (to provide a uniform mesh}, the first of 

which is outside the specified domain and does not give approximate values 

for the first and second derivatives. 
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Example 5. Problem on a Linear Ordinary Differential System 
of Two Second-Order Equations · 

The unknown functions u(s) and v(s) satisfy the differential equations, 

u + v + 2v' + v" = cos s } 

u + u" - v - v' = 0 · 
on the interval S: 0.4 ~ s ~ 0. 7, 

and satisfy the prescribed conditions, 

u' (0. 4) = -,38942, 

u'(0.7) = -.64422, 

v'(0.5) = -.60653, 

v'(0.6) = -.54881. 

We are required to find the values of u and v at s = 0'.4, 0. 5; 0.6, 0. 7. 

Formulation and Implementation 

We consider the four mesh points s
1

= 0.4, s
2

= 0.5, s
3 

= 0.6, and 

s 4~ 0. 7, and for approximation we use Taylor expansions relating u, u' 

and: u'.' and relating v, v' and v" at adjacent mesh points. These linear 

relations, together with the differential equations localized at the mesh 

points and the prescribed conditions, provide us (as in the previous 

example) with a system of linear inequalities involving as variables uo, 

the absolute approximation error, and values of u and v and their first 

two derivatives at the mesh points. With the objective of minimizing u
0

, 

we have a linear model whose dual is a linear program in unknowns, 

x , n = 1( I )7 2. n 

Computation and Interpretation 

Computation of the above linear program by the Simplex algorithm 

using the SCROL code gives these results: 

u 0 = o. o·oo3, 
u(0.4)= 0.92460, u(0.5)- 0,88072, u(0.6) = 0.82810,· u(0.7)=0.76719,. 

v(0.4) = 0.67081, v(0,5) = 0,.60683, v(0,6) = 0.54891, v(O. 7)=0.4970},, 

along with first and se~ond derivative values for the same points. 
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The values given above approximate the required solution. The 

error variable u
0 

applies to a single mesh step. ··Such errors can ac­

cumulate, hence the error in any one of the solution values may be much 

greater. 

Comment 

The analytic functions u., = cos s and v= e- s satisfy the differ­

ential equations and prescribed conditions. According to the same 

argument given for Example 4, these solution functions are unique among 

functions having continuous first and second derivatives. 

Comparison of values for .)A .. and ~v- with the computed values u and 

v given above reveals a maximum difference between u and J.bOf .00354 

at the mesh point s = OA and a maximum difference between v and 7/ of 

.00049 at s = 0.4 and at s = 0.8. The derivative value u', v' have max­

imum departures from d· of . 00032 at s = 0, 5, and from v' of . 00029 at 

s = 0.4. For u" and v" the maximum departures are ,00061 at s = 0.4 

and .00305 at s = 0.5 respectively. The close agreement on the first 

derivatives is due to the fact all the prescribed conditions assign nu­

merical values to first derivatives, 

Example 6. Problem on a First-Order Partial Differential 
Equation in Two Independent Variables 

The unknown function u(s, t) must satisfy the partial differential 

equation, 

2 
2u - sus + ut = s on R: 0.6~ s ~ LO; 0 ~ t ~ 0.2, 

and the prescribed conditions, 

u(s, 0) = 0, 

u (0.6, t) = L2t. 
s 

We are required to find u for s = 0. 6, 0, 8, L 0, and t = 0. l, 0. 2. 



Formulation and Implementation 

We consider the grid, 

sl = 006, tl = 

s2 = 008, t = 2 
s3 = 1.0, t3 = 
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: k>= 1, 2, 000, hE 002, 

001 h = 0. 1, k = 1, z, 
k 

0.2, 

_ and construct a linear model whose unknowns are an error variable u
0 

and values of u, us and ut at the lattice points (sk,;, tk)' /d= 1(1)3, and 

k = 1(1)3o We seek to minimize u
0 

subject to linear inequality restraints 

as follows: 

1k lk lk .. 

±
± ((22u 2k - 00.86uZk ++ u~J)~±± . 6346 } k .-_ 

u - 0 u ut .:;:;- . 

±(2u
3

k l.Ou!k+ u;k)~±.l.OO 
1 (1 )3, (+, +; -, -), 

± u ~1 ~o. .0= 1(1)3, 
11 

~o. ± u 

± u 
21 

~± 012, (+, +; -' - ), 

± 
31 

~± .24, (+, +; -' -), u 
s 

(ukk + 00 2u.kk- u.h- 1• k) ~0 t 
uo ± ~ )b= 1(1)3, s 1, 2, k= 

uo ± (uk}c- u)ol-1,k+ Oo2~1,k) ~0 J . s 

± ( k_k 0 1 kk . )3, k+ 1 ) 0 
uo u + u -u ~ 

} Je~ 1(1)3, k = 0 t ' 1, 2, 

(u 
k ..k, k+1 0 1 .k. k+1 

~0 uo ± - u + . ut 

The above restraints are obtained from the localization of the differential 

equation and prescribed conditions and from Taylor expansions" The 

associated linear program has 28 (equality) restraints in 78 nonnegative 

(formal) unknowns x . 
n 



Computation and Interpretation 

Computation of the linear program gives the following results: 

u = 0.0032 

u(0.6, 0.1) = 0.0387, u(0.6, 0.2) = 0.0769, 

u(O. 8, 0. 1) = 0. 0659, 

u(LO, 0. I)= 0,0951, 

u(O. 8, 0. 2) = 0. 1282, 

u(LO, 0.2) = 0.1859, 

along with approximation for first partial derivative values at the nine 

lattice points. 

The above values approximate the required solution. As shown 

by the comparative magnitude of u
0

, the approximation is admittedly 

crude, If greater accuracy is desired, any one or more of the following 

modifications can be employed: 

a. refinement of the lattice; 

b. three -point approximation; 

c. term- by-term differentiation of the original differential 

equation with respect to s and to t, to provide two second-order partial 

differential equations which must be satisfied by u. 

Comment 

The analytic function IJ. = s 
2

t satisfies the partial differential 

equation and the prescribed conditions, and is the only such function 

that does (extension of Theorem 6, see Ref. 23). 

Comparison of the computed values for u above with IJ. 

shows a maximum difference of . 0141 or about 7o/o at ( L , 0. 2) The 

difference at (0. 8, 0. 1) is only .0019 or about 3o/o, which shows 

the effect on the departure from the theoretical solution which occurs 

when the solution is extended to points farther from points of prescrip­

tion. Test runs on simpler problems have indicated that the departure 
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can definitely be reduced by use of fine·r mesh; the results are not 

conclusive enough to project a definitive statement as to the degree 

of improvement attainable, Other tests indicate that much more 

significant improvement can be made by following modification c 

above . 

. Example 7. Problems on a Parabolic Partial DifferentialEquation 

A. The unknown function u(s, t) must satisfy the linear second-order 

differential equation, 

-t 
u = e jt, for 0.5 < s < 1.5; t>O, 

ss 

and the conditions, 

u(l.O, 0) = 1 (exact) 

u(0.5, 0,05) = 0. 50595 (measured), 

u( L 5, 0, 0 5) = L 43801 (measured). 

Values for u and its derivatives at (1.0, 0.05) are desired. 

Formulation and Implementation 

Let u>:~, u >:~ u >'.< u * denote the required values at (1.0, 0.05). 
s ' t ' ss 
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Localizing the differential equation at this point yields. 

u*+20u~:C+u~c-u* = 19.0246. 
s t ss 

Central difference approximation gives 

usoJ.c - (1.43801- 0.50595)/2(0.5), 

u ~:c - (1.43801 - 2u;'<- 0.50595/0,25. 
ss 

Linear approximation in t gives 

Because we have four linear relations in four unknowns, the 

problem is barely conditioned. There is no opportunity for minimi­

zation of approximation errors, The approximations are treated as 

equations producing a linear algebraic system to be solved. 

Computation and Interpretation 

The linear algebraic system is satisfied by 

U ):c = 0,9321, 
s 

u* = -.602, s 

u ~:c = 0.0156. 
ss 

The approximations for u):c and 

that more data be obtained, 

u ~:c are suspect. 
t 

It is suggested 
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Comment 

Since the conditions are prescribed in discrete form (not as 

functions) we are not able to predicate a unique functional solution . 

Additional discrete data might completely alter the numerical result. 

We are confronted here Vii:th a problem analogous to curve-fitting to 

discrete data--we simply use all the data available to obtain the best 

answer possible. 
-t -s 

However, the analytic function -¥-' = se + te does satisfy 

the partial differential equation and prescribed conditions, At 

(LO, 0.05) we have 

1L = , 9693, ,U.. = .9328, ~M= -.5834, 1..-U = .0184 s . t . ss 

to compare with the values for u* and its derivatives above, It 

seems we have a surprisingly good approximation despite the sparse 

data, 

B. The differential equation, 

I -t; u + u t + ut - u = e · t, s ss 

holds on the closed domain: 0, 5 ~ s ~ 1. 5; 0,0 5 ~ t ~ L 0, and the 

following values of . u are furnished: 

u(0.5, 0) = 0.5, u(LO, 0) = 1.0 u(L5, O) = 1.5, 

which are exact, and 



u(0.5, 0.05) = 0.50595, u,(l, 0.05)= 0.970, u{l.5, 0.05) = 1.43801, 

u{0.5, 0.1) '= 0.51307, 

u(0.5,0.2) =0.53066, 

u{l.5, 0.1) = 1.37957, 

u{l.5, 0.2) = 1.27272, 

which are measured with a possible error of 5 in the last digit. 

Approximate values for u at {1, 0.05), 1, 0~1) and {1, 0.2) are 

required. Values of u , u· and u at these points and at the meas-
s t ss 

ured prescription points· would be very usefuL 

Formulation and Implementation 

We consider the grid, 

sl = 0. 5, .~ = 0. 5, tl = 0.05, hl = 0.05, 

s2 = 1.0, -Mz = 0. 5, t2 = 0.10, h2 = 0.10, 

s3 = 1. 5, t3 = 0.20, 

and the unknowns, 

..kJ., h. 
u , us k = 1, 2, 3. 

We allow for measurement errors, and write the prescribed 

conditions as inequalities: 

11 
u ~0. 50590 

11 
-u ~-.50600 

12 
u ~0.51302 

12 
-u ~-.51312 

u
13 ~0.53061 
13 

-u ~-.53071 

' 

u
21 ~0.965 
21 

-u ~-.975 

u
31 ~1.43796 
31 

-u ~-1.43806 

u
32 ~1.37952 
32 -u ~ 1.37962 

u
33 ~1.27267 
33 . 

-u ~ 1.27277 

Localization of the differential equation, with allowance for 

rounding errors in evaluating e -·t/t, provides 



-u£'?-l_ 20ukl_ uj}.l + uk1 ~-19.02465 
s t ss 

10u.k2 + u/li.t - u~2 ~ 9.04835 
s ss 

.,U 
u + 

lOuk_z - u./c,2 + u)e_z ~ -9.04845 
s t ss 

)a 
-u 

5uh3 + ~tk 3 - u~3 ~ 4.09360 
s ss 
k3 -k-3· /e.3 

5u - ut + u ~-4.09370 s ss 
h 

-u 

l 
~~= 
j 

1, 2, 3. 

Central difference formulas are assumed to hold for s = 1. 

( 
2k 

± u 
s 

( 
2k 

± u 
ss 

lk 3k . 
- u - u )~0 (implies equality) J k = 

- 4ulk+ 8u2k - 4u3k) ~0 (implies equality 

and for t = 0.05 and 0.1, 

±(lOu 
12 11 

5.0, - u' ) ~ ± t 

±(lOu 22 - jl) ~± 10.0, ·. 
t 

±(lOu 
32 31) 

~± 15.0, ut 

±(5u 
13 - }2) 

t 
~± 2. 5, 

± (5u 
23 _ u22) 5.0, ~± t 

± (5u 33 
- u

3l t ~± 7. 5. 

Simpson's Rule is assumed to hold in s; 

1, 2, 3, 

Taylor expansions, with errors to be minimized, applied at the 

s- boundary points give 

lk lk lk 2k u:0 ± (u + 0. 5u + u - uO ) ~ 0 s ss 
3k 3k 3k 2k 

u 0 ± ( u - 0. 5u + u - uO ) ~ 0 s ss 
J k = 1, 2, 3. 
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The trapezoid rule, with errors to be minimized, applied at the 

upper t points yields 

2 2 k 3 --.. 
u 0 ± (u + 0.05ut - u + 0.05ut ) -:/0, = 1, 2, 3. 

The linear model consisting of the above inequalities with the 

objective of minimizing u
0 

is the dual of a standard linear program. 

Computation and Interpretation 

Computation of the linear program was performed by the IBM 

709 code, SCROL. The problem required six minutes of computer 

time. 

The following results were obtained: 

u(0.5, 0.05) = 0.5060, u(l, 0.05) = 0.9709, u(l.5, 0.05) = 1.4380, 

u = 0.9218, 
s 

ut = 0.1312, 

u = 0.0493, 
ss 

u "' 0.9320, s 
ut =-. 5770, 

u = 0.0183, 
. ss 

u = 0. 9420, 
s 

ut = -1.2048, 

u = 0.0091; 
ss 

u(0.5, 0.10) = 0.5131, u(1, 0.10) = 0.9423, u(l.5, 0.10) = 1.3795, 

u = 0.8452, 
s 

ut = 0.1530, 

u = 0.0699, ss 

u = 0.8664, 
s 

ut = -. 5258, 

u = 0.0321 
ss 

u = 0.8875, 
s 

ut = - L 1366, 

u = 0.0197; 
ss 

u(0.5, 0.20) = 0.5306, u(1, 0.20) = 0.8948, u(l.5, 0.20) = 1.2727, 

u = 0. 7045, s 
u = t 

0.1535, 

u =0.1130, 
ss 

u 
s 

ut 

u 
ss 

= 0.7421, 

=-A570, 

= 0.0545, 

u = 0. 7796,. 
s 

ut = -.9641, 

u = 0.1128. 
ss 

The value for the error term u
0 

was 0.0022. The values given for 

t = 0.10 may be in error by this amount. The values at t = 0.2, par-

ticularly for u and u , are not very reliable because of lower-
ss t 

order approximations that had to be used for these points. More data 

for additional (increasing) t values along the s boundaries will make 



-66-

extension of the tabulationin t possible, wit~ greater accuracy, except 

that the values at the greatest twill always be more or less suspect. 

Comment 

Again as in A, discrete conditions do not predicate unicity. This 

discrete problem is also satisfied by 
-t -s 

!h=se +te . At(l.O, 0.2)wehave 

/A-= .8923, A.-0 = . 7452, v.-t= -.4508, ,v.., = .0736, s . ss 

which compares very favorably with the computed values for this point 

given above. 

A technique for measurement-error allowance is illustrated in 

this example. 

Example 8. Problems on a Hyperbolic Partial 
Differential Equation ', 

A. An unknown function u(s, t) must satisfy the linear second-order 

partial differential equation, 
2 

u - u / s + u - utt= t - 1, s ss 
for s >0, t >0, 

and the conditions, 

u(O. 2, 0) = 1. 04 

u(O. 5, 0) = 1. 25, 

u(l.O, 0) = 2.00, 

ut(0.2, 0) = 0.04, 

ut(0.5, 0) = 0.25, 

ut ( 1. 0, 0) = 1. 0 0. 

Values for u, u , ut and u are desired at the points (0.2, 0.1), (0.5, 0.1), 
. s ss 

and (1.0, 0.1): 

Formulation and Implementation 

The points (0.2, 0.1) and (1.0, 0.1) lie outside the domain deter­

mined by characteristics through (0.2, 0) and (1.0, 0). Values at these 

points cannot be determined from the given data (Ref. 27, p. 16). 

We consider the grid points, 

s 0 = o.z: ~ = 0.3, t 0 = o, h
0 

= 0.1, 

s
1 

= 0.5, A/
1 

= 0.5, t
1

·= 0.1 

52 = 1.0. 

Localization of the differential equation yields 

u 1 1 - 2 u 11 + u 1 1 - ulttl = - . 9 9. 
s ss 

Taylor expansions at (s 
1

, t
0

) give 
10 10 

1.25 - 0.3u + 0.45u - 1 04 s ss . • 
10 10 1.25 + 0. 5u + O.l25u - _2.00, s ss 
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10 10 
0.25- 0.3u t + 0.045u t~o.04, 

s SB 
0.25 + 0.5ust + 0.125u~st~ LOO, 

10 ~ 11 
u +0.1ut u , s s s 

10 10 11 
us s + 0 0 1 u t~ u ss ss 

Expansions at (s 
1

, t 
1

) yield 
. 11 11 11 

u - 0.1ut + 0.005utt ~ L25, 
11 11 

u · - 0. 1 utt - 0 . 2 5, 

Altogether there are nine linear relations in nine unknowns. The 

problem is barely conditioned,. The approximations must be treated as 

equalities. 

Computation and Interpretation 

The linear algebraic system is satisfied by 
11 

u = 1.2714, 

u
11 = 1.1000, s 

uf
1 = 0.4788, 

utt = 2. 2000, 
ss 

u£t 1 = 2. 2 8 7 8. 

Linear approximation had to be used for ut and utt' hence 

these values are suspect, More data along the line t = 0 would be 

. useful to improve accuracy and extend the scope of the problem. 

Comment 

Remarks on discrete conditions given in comment on Example 

7 A also apply here. An analytic function that satisfies the discrete 

bl 
. 2t 2 

pro em 1s ,u. = s e + t + 1. 

At (0.5, 0.1) we have 

P- = L 2 6 3 8, ~i.r s = L 1 0 52, /At= 0 .4 53 8, .«..s s = 2 . 2 1 0 4, .utt = 2. 2 53 8, 

which compares favorably with computed values for u and its derivatives 

given above . 

B. The function u(s, t) must satisfy 

u- us/s + uss- utt = t 2
- 1, for s>O, t >0, 
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and the conditions, 

u(O. 20, 0) = 1.0400, '\ ( 0 0 2 0 ' 0 ). = 0.0400, 

u(0.35, 0) = L 1225, ut(0.35, 0) = 0.1225, 

u(0.50, 0) = L2500, ut(0.50, 0) = 0. 2500, 

u(0.75, 0) = L 5625, ut(0.75, 0) = 0.5625, 

u(LOO, 0) = 2. 0000, ut(LOO, 0) = LOOOO. 

Values for u, us' ut' uss' and utt are desired at the points, 

(0.35, 0. 1), (0.50, 0.1), 

(0.50, 0.2). 

(0.75, 0.1), 

Formulation and Implementation 

The characteristics for the equation are 

s ± t = constant. 

The requirement points along t = 0. 1 all lie within the domain bounded 

by the characteristics, 

s±t=0.20, s±t=LOO; 

hence the values at these points can be determined from the data given 

along the segment t = 0, 0.20 ,:::; s ,:::; 1.00. The point (0.50, 0.2) lies 

in the domain bounded by the characteristics, 

s ± t = 0.45, s ± t = 0 . .85; 

hence the values here can be determined once the values along the 

segment t = 0. 1, 0. 35 ,:::; s ,:::; 0. 7 5 are known. This is true because 

the segments are nowhere parallel to the characteristics. 

We consider the grid, 

so = 0.20, iva = 0.15, to = 0, h
0 

=.O.l, 

sl = 0.35, AI = 0. 15, tl = 0. l, h 
1 

= 0. L 

s2 = 0.50, )vl = 0.25, t2 = 0.2, 

s3 = 0. 75, )v = 0.25, 
3 

s4 = 1.00. 

~ 

' 
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At every lattice point, grid steps in t are less than those in s with 

u, and ut are given along a line t = constant, namely t = 0; therefore 

there should be no stability difficulty( Ref. 27, p. 24). 

Localization of the differential equation yields 

±(u
11

- 2.85714u
11 

+ u
11 

s ss 
ll -

- utt ) ~+ . 99, 

±(u
21

'"' 2.00000u
21 

+ u
21 

s ss 
21 -

- utt) ~ + . 99, 

±(u
31

- l.33333u
31 

+ u
31 

s ss 
31 -

- utt ) ?:-+ • 99, 

± (u
22 

- 2.00000u22 + u 22 
s ss 

22 -
- utt) ~+ .96. 

The following approximations are used with no error admitted 

where known numerical values appear. (This concession is forced by 

the fact that the differential equation is not assumed to hold along the 

line t = 0. ) 

Second-order expansions in s along t = 0 yh:Hd 

± ( l. l 2 2 5 - 0 . l 5 u l 
0 

+ 0 . 0 112 5 u 
1 0 

) ~ ± l. 0 40 0' 
s ss 
10 10 

±(l.l225+0.15u +O.Oll25u )~± 1.2500, s ss 

±(1.2500- O.l5u
20 

+ O.Oll25u
20

) ~± 1.1225, 
s ss 
20 20 

±(1.2500 + 0.25u + 0.03125u ) ~± 1.5625, 
s ss 

±(1.5625- 0.25u
30 

+ 0.03125u
30

) ~± 1.2500, 
s ss 

± ( l. 5625 + 0. 25u
30 

+ 0.03125u
30

) ~± 2. 0000, 
s ss 

±(0.1225- 0.15u
1
t
0

+ O.Oll25u 
10

\ ~± 0.0400, 
s sst' 

±(0.1225 + O.l5u
1
t
0 + O.Oll25u

10
\ ~ ± 0.2500, s sst 

±(0.2500- O.l5u
2

t
0 + O.Oll25u

20 
\ ~± 0.1225, s sst' 

· ±(0.2500 + 0.25i
0
t + 0.03125~20 \ ?:-± 0 . .5626, 

s sst 

±(0.5625 + 0.25u
3

t
0 + 0.03125u

30
) ~± 1.0000. 

s sst' 



.· Second-order expansion in s along t = 0. l yield 

uo ± ( u 1 1 + 0. 15 u 
1 

l + 0 . 0 1 1 2 5 u 
11 

s ss 
21 

- u ) ~0, 

u
0 

± (u
21 

+ 0.25u
21 

+ 0.03125u
21 

s ss 
31 

- u ) ~0, 

u.O ± (u
11

- u
21 

+ 0.15u
21

- 0.01125u
21

) ~0, s ss 
21 31 31 31 ~ 

u ± (u - u + 0.25u - 0.03125u ) ~0, 
0 s ss 

u 0 ± (u;
1 

-0.15u;; + 0.01125u;~t-u; 1 ) ~0, 
( 21 0 5 21 0 03125 21 31

) >-0 uO ± ut + · 2 ust + · usst- ut ,__.. · 

'Expansions in t give 

(u 11 1'1 11 1.1225) ~0, ± - 0. 1 ut _ + 0.005utt -

± (u 21 21 
- 0. 1 ut 

21 
+ 0.005utt - 1.2500) ~0, 

± (u 31 31 
0.1ut 

31 
+ 0.005utt - l. 5625) ~ 0, 

uo"± ( u 
2 1 

+ 0. 1 u; 
1 21 

+ 0.005utt 
22 - u ) ~0, 

(u 22 22 22 21 
uo± - 0.1ut + 0. 005utt - u ) ~o. 

± ( 11 
ut -

11 
0.1 utt - 0.1225) ~0, 

21 
± (ut 

21 
- 0. 1 utt - 0.2500) ~o. 

( 31 31 
- 0.5625) ~0. ± ut - 0. 1 utt 

( 21 21 31 
uo ± ut + 0.1utt - u ) ~0 

t ' 
( 31 31 - i 1) ~0 uo ± ut - 0. 1 utt t • 

(u
10 

+ 0.1u 1 ~ 11 
uo ± - u ) ~ 0 s s s ' 

uo ± (u
20 

+ 0. 1 u2~ 21) ~ 0 - u -;;::::;-
s s s ' 
30 30 -u31)~0 uo ± (u + 0. 1 u t s s s ' 

(u21 +0.1u2 ~ 22 
uo ± - u ) ~0 

s s s ' 

uo ± (u
22 

+ 0.1i; s s 
- u21) ~0 

s ' 

uo ± (u10 + 0.1u10 
s sst 

- u11) ~0 
ss ' 
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uo ± (u20 't 0.1 u20 t 21 ) )o 0, - u ss 
uo ± 

(uz5 t 0.1 u s2s0 - il ) )o 0, ss sst 
_ u3 f ) uo ± (u20 + 0. 1 u30 )o0, 

ss sst ss 
uo ± (u21 + 0 1 21 _ u22 )o0, ss · usst ss 
uo ± 

22 22 21 
(uss - O, lusst - u ) )o0, 

ss 

The above linear restraints with the objective of minimizing 

u
0 

constitute a model which is the dual of a standard linear program . 

. Computation and Interpretation 

Computation of linear program ,by the SCROL code gives 

uo = 0.0013, 

u(O. 35, 0, 1) = L 145, u = 0. 771, ut=0.336, u = 2.201, utt =2.133, 
s ss 

u(O. 50, 0. 1) = 1.286, u = 1.101, ut =0.478, u =2.201, utt =2. 27 5, 
s tt 

u(0.75, 0.1) = 1.632, u = 1.651, ut = 0,824, uss=2.199, utt=2.619, s 
u(O.SO, 0.2) = 1.3 4, u = 1.212, ut = 0. 706, u = 2.421, utt =2. 302. s ss 

The approximation error along t = 0. l is no greater than u 0 . 

For increased accuracy, data at intermediate points along t = 0 is needed. 

A smaller grid step in t can then be used, 

·Comment 

The differential equation and prescribed conditions are satisfied 
2 t 2 

by ft = s e + t + L At the point (0.5, 0,2) we have 

f:.{- = 1.345, lL = 1.221, u = 705, a = 2.443, u..t= 2.305. s ·. t . ss -t 

Despite the fact that this comparison point is four times as far from 

the prescription, we have essentially as good comparison of u and 1-1 

as in A. This result shows the effect of the mesh refinement in s. 

Example 9. Problems on an Elliptic Partial Differential Equation 

A. An unknown function u(s, t) must satisfy Laplace's partial differ­

ential equation for two independent variables, 

us s + utt = O, 

on an open two-dimensional domain consisting of those points (s, t) that 
2 2 

are in the circle, s + t < L 0, hut not in the square, 

-.6 ~ s ~ 0,6, -.6 ~ t ~ 0.6. 
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The potential u can be measured on the inner and outer 

boundaries 0 The following measurements have been made: 

u(Oo 6, O) = 00564, 

u(Oo8, Oo6) = L307, 

u(LO, 0) = 00841, 

u(Oo8, -0 6) = Oo394o 

Values for u and its derivatives at (0.8, 0) are desiredo 

Formulation. and Implementation 
• 

We denote the required values at (008, 0) by u~:~, u;, ttf• u~~· 

and uft and use the following central difference approximations: 

u~c - (Oo 841 Oo 564)/0A, s 
'" - (Oo84l zu~~ + Oo564)/0o04, U''' ss 

u:~ 
t 

(L307 Oo394)/ LZ, 

u:::c - (L307 zu~~ + 00 394)/ 00 360 
tt 

Localization of the differential equation yields 

u * + u~c = 00 
ss tt 

As there are only five linear relations in five unknowns, the 

problem is barely conditionedo The approximations must be treated 

as equalities 0 

Computation and Interpretation 

The linear algebraic system is satisfied by 

u(Oo8, O) =00717, 

us(Oo8, 0} = 00692, 

Ut(Qo8, O) = 0 0 761, 

u (008, 0) = -0 740, 
ss 

utt ( 0 o 8, 0 ) = 0 0 7 40 0 

The above results are the best obtainable with the given data. 

For greater accuracy, it is suggested that additional measurements 

be made, to four decimal places if possible, at the following boundary 

points (s, t): 
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(a} The points already measured; 

(b) Those points at which t = 0, 3 and t = -,. 3. 
1.) 

Comment 

This example may be thought of as a discretization of a plane 

Dirichlet problem of the form 

on D, a bounded region in the sxt plane 

with 

u = f(s, t} on r, the bounda~:-y of D, 

in which a solution u is sought which is analytic on D and continuous on 

D + r, This problem has been the subject of considerable mathematical 

investigation, the question usually being on sufficient conditions of f(s, t} 

as to differentiability in order to insure the existence and uniqueness 

for a more-or-less specific domain D of a solution u as required. 

The discrete problem differs from the above in that ( 1 } the 

prescribed condition is 

u = F(P ), 
'{ 

where F is not a function of continuous variables s, t along r but rather 

a function of some finite set of discrete points P of r, and (2} the only 
'{ . 

solution attainable is likewise not the function u of continuous variables 

s, t but rather a function U of a finite set of discrete points (s_,v- tk) in D, 

Forsythe and Wasow (Ref, 27, p, 177) list some eight questions 

relative to discretization of elliptic partial differential problems, and pre­

face this listing with the statement, ''The answers to these problems are 

generally unknown, and their tentative answers already fill a considerable 

literature which records some of the current state of the art," 

When confronted with the problem of finding potential values at 

some points within a specific domain D when values are known (presumably 

measured) at some points on the boundary r of D, one is forced to an ex­

perimental attitude, 

Two questions arise: 

(l) How to use the known information (boundary values and dif­

ferential equation) to obtain approximations for the required potential 

values? 
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{2} How can the approximation be tested and improved? 

On ( 1) we have the reassurance that there is a polynomial P 

(s, t) which satisfies the discrete problem, that is the polynomial whose 

values at the (discrete) boundary points (P ) coincide with those of F 
'I 

and whose second derivatives at all the discrete requirement points 

(~ tk) satisfy the localized differential equation. Usually some other 

function U is constructed, since the determination of P may be indeed 

a cumbrous process. 

In (2) we are concerned with what can happen if more data are 

available.. Presumably it is impossible or impractical to measure u 

at all the requirement points (s , tk), but spot measurement would cer-
lv 

tainly provide information on the agreement of u and U. It may be 

possible that values for u may be .o.btained at additional points of T. 

The question then becomes: For a sequence of discrete problems ap_ 

preaching the analytic problem, do the discrete solutions approach the 

analytic solution? This question requires considerable investigation, 

and it is hoped the linear program method may provide some q.ssistance. 

There is an analytic function, ~ = e t sin s which satisfies the 

differential equation and prescribed conditions. The computed values 

for u and its derivatives at (0.8, 0) compare quite well with those of ,u. 

B. The potential u for part A above has been remeasured to obtain 

u( 0. 8, 0. 6) = L 3 0 7 2, 

u(0.954, 0.3) = 1.1011, 

u( 1.0, 0) = 0.8415, 

u( 0.954, -.3) = 0.6043 

u(0.8, -.6) = 0.3937, 

u(0.6, 0.3) = 0. 7622, 

u(O. 6, 0) = 0. 5646, 

u(0.6, -.3) = 0.4182. 
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Values for u and its derivatives at u and its derivatives at the 

interior points (0.8, 0.3), (0.8, 0} and (0.8; -.~} are desired. 

Formulation and Implementation 

We consider the grid 

tl = - .6, hl = 0.3, For t3: For t2, t4: 

t = - .3, 2 h
2 

= 0.3, sl = 0.6, AI = 0.2, sl = 0.6, ~ = 

t3 = 0, h3 = 0.3, s - 0.8, h= 0.2, s2 = 0.8, ~= 2 - 2 2 

t = 4 
0.3, h = 

4 
0.3, s3 = 1.0; s3 = 0.954, 

t = 
5 

0.6; 

0.2 

0.154, 

and seek values for u, us, ut' uss at the points (s 2, tk}' k = 2, 3, 4. 

Localization of the ,differential equation at these points gives 

k = 2, 3, 4. 

Taylor expansions in t along the line s = s2 give 

uo ± (u2k + 2k 2k 
0. 3ut + 0. 045utt - u2' k+l} ~ 0, k= 2, 3, 

uo ± (u
24 

+ 0. 3u;
4 

+ 
24 

0.045utt } ~ ± 1.3072, 

uo ± (u 
22 22 

0.3ut 
22 

+ 0. 045utt } ~· ± 0.3937, 

. uo ± (u 
2k 2, k+l 0 3 2, k+l 0.045ut!' k+ 

1
} ~ 0, k 2, 3 . - u + . ut = 
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Taylor expansions in s .. give 

(u
22

- 0.2u
22 + o.02u

22
) ·~ ± .·'l:i82, s ss 

(u22
t O.l54u

22 + O.Oll86u
22

) ?c± .6043, s .. ss 

uo ± (u
23

- 0.2u
23 + 0.02u

23
) ?c± .5646, 

s ss 

uo ± (u
23 + 0.2u

23 + 0.02u
23

) ?c± .8415, 
s ss 

24 24 24 
uo ± (u -0.2u +0.0Zu··)?c±.7622, 

s ss 

uo ± (u24
t O.l54u24

t 0.01186u24 ) ?c± .1011 
s ss 

Since there are uniform steps in t, Simpson's Rule can be 

applied to yield: 

± (u2t2 + 0 1 22 0 4 23 24 0 1 24) ~ 0. · utt + · utt - ut + · utt .,;:- · 

(The above is assumed to hold without admitted error because it is a 

higher -order approximation. ) 

With the objective of minimizing u
0

, the above linear model is 

the dual of a· standard linear program. 

Computation and Interpretation 

Computation of the above linear program by the SCROL code 

required four minutes on the IBM 704 computer. The following results 

were obtained: 

uo = 0.00015; 

u(0.8, -.3) = 0.53168, u = 0.51348, u = -.53161, 
s ss 

lit = 0. 54018, utt = 0.53161; 

u(0.8, 0) = 0~71750, u = 0.69225, u = -.73021, 
s ss 

lit = 0. 72844, utt = 0.73021; 

u = 0.93506, u = -.96905, 
s ss 

u(0.8, 0.3) - 0.96874, 

lit = 0.98232, utt = 0.96905. 

The accuracy of the approximation for u is very nearly the same as 

that of the measured values. Additional values for u at nearby points 

.,-\ 
/ 

.<, 
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m either the s or t direction may be obtained by using a truncated 

Taylor expansion with the given derivative values. Increased accuracy 

in derivative values could be obtained by more measurements, 

Comment 

General comments on 9A also apply here. The agreement be­

tween computed values for u and its derivatives and ,/..1.. = e t sin s 

(which satisfies the problem} and its derivatives is quite good. 

Example 10, Problem on a System of First-Order 
Partial Differential Equations 

The unknown functions u(s, t) and v(s, t) must satisfy the partial 

differential equations: 
. s t 

us + vt = e + e , 

su - tv = 0 
t s ' 

for s > 0, t > 0. 

Along the line t = LO, measurements of u and v give 

u(0.6, LO) = 2,822, v{O, 6, LO) = 3.078, 

u(0,8, LO) = 3,225, v(0,8, 1.0) = 3.358, 

u(LO, LO) = 3, 718, v(l.O, 1.0) = 3. 718, 

u(L2, l. 0) = 4. 320, v(L2, 1. O) = 4.158, 

u(L4, LO} = 5.055, v( 1.4, 1. 0) = 4.678, 

with possible errors of ± .0005. 

Values for the first partial derivatives at the above points and 

for the solution functions and these derivatives at the points (0.8, 1.2), 

(1.0, L2), and (L2, L2) are desired. 

Formulation and Implementation 

Required values are determinable from the given data. Stability 

is ensured for the following grid 

sl = 0.6, .A_,. = 0.2, tl = l. 0, hl = 0.2. 
1 

s2 = 0.8, ~ = 0.2, t2 = 1,2, 

s3 = 1.0, -Jv,· = 0.2, 
3 

s4 = l. 2, -/u.l = 0,2, 
4 

s5 = 1.4, 
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Loca1ization of the differential equations yields 

± (ull + vll) 
s t 

~± (4. 540 + 0.0005), 

± (u! 1 + v~l) ·.~± (4.944 + 0.0005), 

± (~;l+v~l) ~± (5.437 + 0.0005), 

± (u!l + v!l) ~± (6.038 + 0.0005), 

± (u~l + v~l) ~± (6. 773 + 0.0005), 

± (u;2 + v~2) :;::::.± (5.546 + 0.0005), 

± (u;2 + v~2) ~± (6.038 + 0.0005), 

± (u!2 + v!2) ~± (6.640 + 0.0005), 

with allowance for rounding error in the numerical evaluation of 
s t 

e + e , and 

11 
± (0.6ut -

21 
± (0.8ut -

31 
± { 1. Out -

41 
± (1.2ut -

51 
± (1.4ut -

22 
± (0.8ut -

32 
± (O.Out -

11 -1. Ov ) .,;::;.0, 
s 
21 -l.Ov ) ?0, 
s 

, 0 31)>-0 
l. v s ""' , 

l.Ov 
41

) ~o. 
s 
51 -l.Ov ) ""'0, s 

1. 2v
22

) ~o. 
s 

1. 2v~ 2 ) ~ 0, 

42 
± (1.2ut - l.2v42) _ 0 s -;;:::, . 

Prescribed conditions yield 

11 
± u ~± (2.822 + 0.0005), 

± u 21 
~± (3.225t 0.0005), 

± u 
31 

~± (3.718t 0.0005), 

± u 
41 

~± (4.320t 0.0005), 

± u 51 
~± (5.055t 0.0005), 

11 
± v ~± (3.078+ 0.0005), 

21 ± v ~± (3.358 + 0.0005), 

31 
± v ~± (3. 718 + 0.0005), 

41 
± v ~± (4.158 + 0.0005), 

51 
± v ~± (4.678+ 0.0005). 

'~) 
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Taylor expansions in s yield 

( 
.k1 + 

0 2 
-kl . k+ 1, 1,) __ 

0
.

1
. · 

uo ± u u - u . ~ . 

(v-lzl+ 0:2;1- v.-k+l, 1) ~0 /t2.:= 
uo ± s 

qi)4, 

( liz +. 
0 2 

i:z k+l, 2) _ ,
0
·

1
. . . · .. 

u .u -u ~· · 
. . .. s . . Je= 2 3 

(vJez + O.~v-/2.Z- v.k+l, 2 ) ~0 ._. ' 
. s . 

/2.... 1 1 './2..1 . k 1 
u 0 ± (u ' - u + o.zus ) ~o~ 

J 
)e_= 2(1)5, . k-1 1 hi .1,1 

u
0 

± (v ' - v""'C+ O.zv: ) ~0 

Taylor expansions in t yield 

· u
0 

± '(uk
1 + O.Zu~l - uk2 ) ~0 

uo ± (v-k
1 

+ 0. zv--:-
1 

- v-':.
2

) ~0 
u

0 
± (u-k-

1 
- /c-2 + 0.2u~2 ) ~0 

u
0 

± (v-kl - /2 + 0. Zv~) ~0 

.Computation and Interpretation 

lc.= 2, 3, 4. 

Computation of the linear program, minimizing u
0

, gives 

uo = 0.0655, 

u(0.6, l.O) = 2.822, 

u(0.8, 1.0) = 3.225, 

u = 1.692, 
s 

u = 2~132, 
s 

u(l.O, 1.0) = 3.718, u 
s 

= 2. 788, 

u(l.Z, 1.0) = 4.320, u = 3.342, 
s 

u(l.4, 1.0) = 5.055, 

u(O.S, 1.2) = 3.643, 

u(l.O, 1.2) = 4.207, 

u(l. 2, 1.2) = 4.807, 

u = 3.342, 
s 

u = 2. 734, 
s 

u = 3.148, 
s 

u = 3.326, s . 

ut = l. 796, 

ut = 2 .167, 

ut=2.122, 

ut = 1.623, 

ut = l. 623, 

ut = 2.417, 

ut = 2. 270, 

ut = 2.267; 
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v(0.6, 1.0) = 3.078, v = 1.078, v = 2.847, 
s t 

v~0.8, 1.6) = 3.358, v = 1.732, v = 2.812, 
s t 

v(l.O, 1.0) = 3.717, v = 2.122, v = 2.649, 
s t 

v(l.2, 1.0) = 4.157, v = 2.528, v = 2.695, 
s t 

v(l.4, 1.0) = 4.677, v = 2.272, vt = 3.430, 
s 

v('O. 8, l. 0) = 3. 855, v = 1. 612, vt = 2.812, 
s 

v(l.O, 1.0) = 4.243, v = 2.266, v·· = 2.891, 
s t 

v( l. 2, l. 0) = 4. 762, v = 2.266, vt = 3.313. s 

The relatively low accuracy as reflected in the size of the error 

term u
0 

is caused by the use of linear approximations on a rather 

coarse grid. Greater accuracy can be attained if values for u and v 

are prescrib~d for a finer grid in s along t = l. 0. It is preferable 

that the grid be uniform. The grid step in t can then be reduced cor­

res pondingl y. 

Comment 

The differential equations ·and prescribed conditions ar·e satis-

fied by 

t 2 
,1f = e + s . 

Comparison of the computed values for u, u , u , v, v , and vt with 
s t s 

their counterparts in ~'and Aiat the mesh points shqws agreement to 

two-deCirrial_;place accuracy. 

-") 

• 
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This report was prepared as an account of Government 
sponsored work. Neither the United States, nor the Com­

m1ss1on, nor any person acting on behalf of the Commission: 

A. Makes any warranty or representation, expressed or 
implied, with respect to the accuracy, completeness, 

or usefulness of the information contained in this 
report, or that the use of any information, appa­

ratus, method, or process disclosed in this report 
may not infringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, 
or for damages resulting from the use of any infor­

mation, apparatus, method, or process disclosed in 
this report. 

As used in the above, "person acting on behalf of the 
Commission" includes any employee or contractor of the Com­
mission, or employee of such contractor, to the extent that 
such employee or contractor of the Commission, or employee 

of such contractor prepares, disseminates, or provides access 
to, any information pursuant to his employment or contract 

with the Commission, or his employment with such contractor . 




