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APPLICATION OF LINEAR PROGRAMMING
TO THE NUMERICAL SOLUTION
OF LINEAR DIFFERENTIAL EQUATIONS

‘Jonathan D, Young

Lawfence Radiation-Laboratory
University of California
Berkeley, California

March 1, 1962

ABSTRACT

The linear programming procedure is applied to obtain an
optimal solution .to an overdetermined system .of linear inequalities
that are derived from the localization of the differential eqﬁation to
some set of discrete points, from the prescribed conditions, and
from the application of approximation formulas.

The method is applied to linear ordinary differential equations
and systems and to first-and second-order partial differential equations
and systems in two independent variables, Extensions are suggested.

Many examples illustrating the method are provided,



I. INTRODUCTION

A linear program is a representation of a decision situation as
a mathematical model in Whichthe objective is to optimize a linear
function of nonnegative variable subject to linear .restraints., Although
the most extensive develépment in procedure and application has taken
place in the last twenty years (Ref. 1, p. 3), the theoretical origins may
be traced well into the nineteenth century, The minimax thedi‘y, which
is essential to linear programming methods, arises from the concept
of using inequalities to determine relative maxima.(Fourier) and from
the geometric tré_atment‘ of inequalities as properties of convex sets
(Minkowski). |

The mathematical approach to game theory was initiated by von
Neumann in 1928\,2 Weyl's exposition on the properties of convex poly-
hedra followed in 1935‘,3 The economic application of minimax theory
to games of strategy appeared in 1944 in the well-known treatise,
"Theory of Games and Economic Behaviour," by von Neumann and Mor -
‘genstern.4 The theory was applied with varying suc’cessvto more spe-
cific problems; foremost among these were the transportation problem
(1941) 6f Hitchcock5 and the diet problem (1945) of Sti.gle-r,,_véA

In 1947 a group of mathematicians investigated the possibility of
devising mvathematical approaches to the complex planning and program-
. ming problems of the U, S, Air Force. The linear analogue was pro-
posed by George . B. Dantzig. Project SCOOP was organized to exploit
this idea..7 A major result of the work on this prbject was the develop-
ment by Dantzig of a systematic procedure for the linear programmihg
computation. The algorithm that he constructed is called the Sifnplex
Jmet.hod° 8 The rapid progress in the design and use of elecfronic high-
speed computers made it possible to apply the algorithm to iarger and ’
larger models,

In June, 1949, several pé.pers were presented at the Conference
on Linear Programming held at the University of Chicagb, These were
edited by T.C. Koopmans and his associates and published’by' the Cowles

Commissionug Symposia on linear programming were held in 1951 and



1955. The published proceedings of these meetings show the rapid
progress which took place in that period, 10, 11 In 1953 the first intro-
ducvtory text on linear programming appeared.

 The Rand Corporation, in a joint effort with various industrial
interests, has been most acitve in the improvement of computational
procedures and the preparation of computer codes for linear program-
ming, The work of Orchard-Hays and his associates has been extremely
1mportant in this endeavour. 13,14, 15

The comprehenswe blbhography by Riley and Gass (1958) pres-
ents at least a thousand abstracts of articles and books on 11near pro-
gramming. and related subjects. ! Some of these are of a theoretical
. nature, others deal with computational procedures; but the greatest
number make more or less specific application of the method to such
diverse fields as industry, military planning, and agriculture.

Little has been done toward applying linear programming to a
class of problems phrased in mathematical language per se. We offer
here a novel effort in this direction which we hope will be interesting
and useful, . Our purpose is to develop a numerical method for solving
linear diffe?rential equations by means of linear programming and to
investigate the Valldlty and practicality of such a method. The expo-
sition stresses procedure and i}lustration rather than abstract rigor
and generalltyc

' Our subject brings together two mathematical areas, linear
programming and differential equratibns; which have had very little
common background. It seems that some readers may be familiar with
one of these areas but somewhat unfamiliar with the other. For this
reason we discuss each of them independently, linear programming in
Chapter II, and differential equations in Chapter III. The material
offered in each case is limited to that which is useful to our purpose,
For more complete information on either topic, the reader may resort
to the mény references. .

| The two topics are brought together in Chapter IV, in which we

construct linear programs for solving linear differential equations,



Our conclusions on the merits of the proposed method are
given in Chapter‘V., Ma.ny. examples are given in the Appendix.

The author wishes to particularly acknowledge the assistance
and encouragement of D. H. Lehmer and the constructive suggestions

of P. L. Chambré in connection with the preparation of this thesis.



II. FUNDAMENTAIS OF LINEAR PROGRAMMING

Preliminary Discussion

Decision situations presenf the posysibil‘ity of engaging in
various activities at varying l,evéls in order to Ee_st attain sorﬁe speci-
fied objective. They are exemplified in the theory of games and in
operations analysis, but in fact they are found in almost every area of
human action. Some of these situations have beenfound to be readily
amenable to mathematical representation or approximation. The
resulting model is characterized by many possible solutions, among
which an optimal selection must be made, Often this choice is not
unique. Programming means the construction and solution of the
mathematical system that adequately represents the given situation.

The linear program hag been found to be a most useful and
convenient form of mathematical representation. In the linear pro-
gram, the variables are restricted to nonnegative values and are sub-
ject‘td other linear restraints. The objective is to optimize (either
maximize or minimize) a linear function of the variables. There will,
of course, be no solution if the restraints are contradictory. Linear
programming will usually involve

a. the given description of the decision situation,

b. an adequate linear representation,

¢]

the linear program,
the computation leading to
(1). a demonstration that no solution exists, or
(2). a determination cof an optimal vsolution,
e, the interpretation of the result,
Simple examples illustrating the above procedure are given in the
Appendix, and many others may be found in the references (e. g.,

Refs, 8, 12, 16, 17).



General Linear Program

The most general form for a linear program is:

Optimize the objective function,

JJ

subject to the restraints,

z =% c.X,, ' ' (A1)

Z)aijxj :bi; i =‘1(1)m1—1, : (B1)

vzaijxjgbi; o =ml(1)m2-1, (‘BZ)

Z a ~. . : —_

| 'ijxj //bi, i = mZ(l)m, (B3)
x 2 0; j = 1(1)n,. (C1)

If the required optimization is to minimize z, we can choose
instead to maximize -z, The order of the inequalities (B3) can be

reversed to that of (B2) by changing the $igns of the terms. With

‘these formal operations and the slight obvious redefinition, the program

can be written in the form:

Maximize the function,

z= % c.x, , (A1%)
i73 .
subject to:
= aijxj = bi; i=1(1) ml-l, (B1l)
. - ) l
= aijxj < bi’ i= ml(l) m, A (B2")
x 20; j=1(n. (C1)

Into each of the inequalities (B2') we can introduce a nonnegative
slack variable with unit coefficient, and replace the inequality by an
equaiity, All the b,1 can be made nonnegative by changes of signs of
the terms in those equations where necessary. With these formal
changes, we can write our prog_ram in matrix-vector notation as:

a standard linear program.



Maximize 2z = CX, , o (A)
subject to "AX =B; B =0, o (B)
and X = 0, _ (C)

where X (which now includes the slack variables) and C (many of
whose components may be zero) now have n (n an) components; the
matrix A is mXn, and B has m components.

In the linear system (B) let r be the rank of A, and s be the

rank of the augmeh’ced matrix A, B. The following cases may occur:

r=s5=m<n, (a)
r=s <m, (b)
r < s, (c)

For case (b) the system (B) has redundant ec:iuations; for (c) the system
. is inconsistent., The effect of these conditions will appear in.later
deyeippmentSO. We confine our attention to case. (a) in which the system
(B) has at least one solution, , _

For case (a) the matrix A has at least one set of m linearly

independent column vectors. Any such set of vectors is called a basis.

- Suppose, for convenience, that the first m columns of A constitute

a basis, then a solution to ( B) may be readily obtained by setting
x. =0, j=m+ 1(1) n,

and solving the (possibly) abbreviated system for xj; j= 1{1l)m,

Such a solution corresponding to any choice of basis is called a basic

" solution, The number of basic solutions is finite; there is at least one,
and there are no more than (En)" the number of combinations of n
things taken m at .a time. :

‘Any solution to (B) which also satisfies (C) is said to be feasible.
If there is no solution to the system (B) thé,t satisfies restraints (C),
we say our program is infeasible. [ This statement is applicable to

case (c) above. |



.

If the linear function x defined in (A) can be made arbitrarily
large for a feasible solution, we day our objective is unbounded. Other -

wise there is at least one feasible solution for which z has a maximum

value., Any such solution is called an optimal solution,

‘ The following m-a.yvbe readily proved:

Lemma 1, The set of feasible solutions is a éonvex set. (Ref. 16)

Theorem 1. If there is a feasible solution, there is a basic feasible
solution. (Ref. 18) v |

Lemma 2. The set of optimal solutions is convex, (Ref, 18)

Theorem 2. If there is an optimal solutio:q, there is a basic optimal
solution, (Ref, 18) '

- The above theorems enable us to look for an optimal solution
in the finite set of basic sol.utio'nso The following theorem, for which
we later give a constructive proof, makes it possible for ys to search
for an optimal solution along some difection of greatest ascent.
Th'eorem”3. With a known nonnegativé basic solutioh, it is possible to

select successive basic solutions in such a way that these solutions
are nonnegative, and the objective function does not decrease. The

order of selection may not be unique.

Duality of Linear Models

Analogous to the duality of points and planes in projective geo-
metry, there are linear models that involve a duality of variables and

linear restraints. Thus the dual of our standard linear progré,m,

maximize z = CX,
subject to AX = B,
and X =20,

"is an unresfricted (as to sign of the variables) linear model,

minimize w = BU,

subject to AU =2 C,

with no restriction on the sign of the components of U,



~We have the following theorem on duality (for proof, see Ref. 19.
Theorem 4.° If either of the ‘dual models has’an optimal solution, then
--so does the-other; further, the optimal objective values are equal,
that is, max -  z = min w,

The power of this theorem is immediately apparent. If our ¥

decision situation can be represented as the unrestricted linear model
- above, then its dual is a standard linear program whose computation
gives coincidentally the unrestricted solution we are seeking. This

procedure is illustrated in the Appendix.

The Simplex Algorithm

The s1mp1ex algorithm is a method of steepest a.scent for solving

v the standard linear program

maximize z = CX,° - (A)
subject to AX = B; B=0, ) (B)
with - X 0, (C)

where ‘X has n components, and B has m. v

For an initial feasible basis, we should like to have foremost an
mXm identity matrix; then the corresponding basic solution would be |
X =B,0. Itis unlikely that our model will have the above highly
‘- de31rable form, but we can modify it in a rather formal manner by
1ntroduc1ng m art1f1c1a1 variables, assigning them 1nd1ces
j» J=n+ l(l) n + m in the now expanded vector X (with n =m+n
components), and including them one at a time in Eq. (B), so that the
now expanded coefficient matrix of (B) has the form Im, A. Because
any eventual optimal solution in which the artificial variables appeared
with nonzero values would be meaningless, we also must include them
in the objective function with predominantly negative, but unspecified,
coefficients that will insure (if possible) that they are forced to
""nonbasic'' status or to zero values. The introduction of these artifi-

cial variables and the elimination of their corresponding column vectors



from the basis is called Phase I of the Simplex process. Aside from
the convenience, the introduction of these artificial variables has
presented us with an initial system (B') replacing (B), which cannot be
redundant or inconsistent and for which there is an obvious nonnegative
basic solution.

We are now in position to assume the hypothesis of Theorem 3.
Let X' be any current nonnegative basic solution, and suppose for
convenience X' = X%, 0 where X% =x!,.. -xr'n. The coefficient matrix
has the form Q, QO’ where QO 1is our current basis. Abbreviating our
model by discarding zero terms, we have

z% = CHX% (Cé=c o, c_

and

We assume the complete coefficient matrix to consist of column vectors

s

Pj’ j = 1(1) n' m, and compute

1

zj=cc=:o' ‘pj, j=1(1)n + m,

and let

I

1(1) n + m.

If all these w. = 0, 2z has attained a maximum value. If all the
artificial variables have zero values, we already have an optimal
solution. If some nonzero artificial variables still appear at this opti-
mum, the program is infeasible;

va some wj are negative, then for some Kk, Wy = min wj., For

the corresponding column vector Pk of the matrix A, we compute

1(1) m,

e
i

and

— i , 3
Ri = Xi/xik’ for %k# 0 and i = 1(1)m.
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If all the. Ri< 0, our objective is -unbounded, otherwise some
of the Ri are nonnegative and, for some ¢,
RE- = -min Ri >0, ‘
and the vector PI replaces Pk in the basis, The solution-X" correspond-

ing to this new basis will be

K= % -Rexg,  § = 1(1) m, except for 4,
Tt - .
x, = 0,
1t — |
= Rg’
x:i' =0, j- = m+1(1) n+m, “except for Kk,

and is obviously nonnegative. The new value for the linear function z is

Tt —_ o, oo
Z =z% =R w, > z%
L7k ” ’

and we have proved Theorem 3 of page 7. We now note that neither the
choice of Wy or Rz need have beenynique. The sequence of basic solutions
and f.he ultimate numerical values of the variables in the optimal solution
may depend‘; on the arbitrafy choices made when "ties" occufred, In com-
mon Ppractice a '""tie' is reso].ved>by s.electing the lowest qualifying index.

Computer Codes

The computation involved in the Simplex algorithm is intricate
but well defined and highly repetitive. Because of the latter properties it
may be readily codified for high-speed computers.

Such codes require only that the linear program be input in some
specified fo’i'm, and direct the computer through the necessé.ry process to
an optimal solution or to a demonstration of infeasibility or unboundedness.

The code used by the.computat’ion of the linear programs which
appear in the Appendix was the IBM-704 code SCROL (Ref. 30) which is
available from the '""SHARE" vorganization of IBM machine users, Recently,
(Nov.. 1961) a linear program code, LP-90, has been released by the same
organization for use on the IBM-7090. For other computers, there are

doubtless Simiiar codes available or soon to be released.,
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III. LINEAR DIFFERENTIAL EQUATIONS, -
ORDINARY AND PARTIAL

Preliminary Discussion

The mathematical model chosen to represent a given situation
need not be limited to algebraic processes. When the known relations
involve rates of change of one or more quantities with respect to one
or more others, the process of differentiation (or integration) is im-
plicit to the representation, - and the model may consist of or contain
differential equations,

A differential equation is an equation connecting certain inde-

<

pendent variables s,t,:: -, certain (unknown) functions u,v, - of
these variables, and certain derivatives of these functions with respect
to those variables (Ref. 20, p.2). The order of a differential equation

is that of its highest-ordered derivative. A differential system consists

of as many simultaneous differential equations as there are unknown
fanctions, | |

A linear differential equation is linear in the unknown functions
and their derivatives; that is, these occur to the first degree only and
not as higher powers or products (Ref. 21, p.2). In a linear differential
system all the equations are linear. As for those known functions of
the independent variables that appear as coefficients or ''constant terms'",
we assume that they are numerically defined, single-valued and contin-
uous, and that those appearing as coefficients of the highest-order
derivative terms do not vanish, '

An ordinary differential equation relates one independent var-

iable s, one dependent variable u(s) and the (ordinary) derivatives of

u with respect to s. An ordinary differential system relates one
independent variable s, two or more dependent variables u(s), v(s), -
and their ordinary derivatives with respect to . s. |

A partial differential equation relates two or more independent

variables s,t,..., one dependent variable u(s,t,-.-) and the partial
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derivatives of u with respect to s,t,.--- . A partial differential

system' r.elates two or more independent ’variablés, sv, t, -~ two or

more dependent variables uf(s, t,.-- ),‘_ v(s,t, ---), --- and the par-

tial derivafives of u,v, ... with réspéct to s, t, .- o

A solution to a differential equation is an extraction (free of
derivatives) .of the intrinsic relation between the unknown dependent and
independent variables, The existence of a continuous solution cannot

always be predicted. A functional. solution to a differential equation is

an equation that does not involve derivatives, that relates the unknown
function(s) and independent variable(s), and that can be subjected to
differentiation and algebraic processes to yield the differential equation.
As, differentiation.with respect to a variable results in the elimination
of constants or functions not involving that variable, a functional solu-
tion may contain afbi'trary constants and/ or arbitrary functions. Such

a solution is called a general solution.

A particular solution is a functional solution that does not in-

volve arbitrary constants or functions, If sufficient conditions are
prescribed, it may be possibie to specify the arbitrary constants or
functions in a general solution and obtain thereby a particular solution
that satisfies both the prescribed conditions and the differential equa-

tion,

The Differential Problem

A differential problem consists of a differential equation or

system, together with any additional conditions that may be prescribed.
The solution to the differential problem must satisfy the differential
equation or system and the prescribed conditioms. A differential problem

has a unique solution for some domain if, for each point of this domain,

there is one and only one solution. Even a particular solution need not

be unique since it need not be single-valued. In a linear differential

problem both conditions and equations are linear in unknown functions

and derivatives,
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A well-posed differential problem admits of a unique continuous
solution on the domain of interest. The question of the existence of a
unique solution to a differential problem has been 1nvest1gated exten-
sively, A comprehenswe treatment of this sub_]ect is beyond the scope
-of this work, We shall limit ourselves to the statement of two important

theorems. For further information, the reader is advised to consult

- Refs. 22 and 23.

Theorem 5. If in the linear ordinary differential equation

3

aol(s)u+a1(s)u' + oot aJ(s) u = ¢(s)

o 21 T aJ and c¢ are continuous for the interval
domain, s <s < s, and the function a. does not vanish therein, then
— ’ J‘ )

the functions a

there exists a unique solution u that, together with its first J-1
derivatives, is continuous on (s, s) and that satisfies the prescribed

conditions -

ulsy) =ug,
u' (so) :vub,
u_(J) (so) = u,

~ where S is a point of (E,E), (Ref. 21, p. 73.)
. Theorem 6. (Kowalewski) If g(t) and all its deriv,atives are _contimious
Ck-tgl<s if s

and if f (s, t,u, u, ) and all its partial der1vat1ves are continuous in a

is a given number and ug = g(t ) and U o® g'(to),
reg1on defmed by

Is-sol<6, _.;,1t—-t(-)|<6;|ut U <6
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then there exists a’ﬁniqu‘e function ¢ (s, t) so that.
‘ (a) & I(s,"c) and alll its partial derivéfi\}es are conjtinuous in a
» vreyg-ion defined by ) ’ - . '
S ls - sO] < 61, - {t _-t‘O’ <,62;-
(b) .For all (s, t) in this region, u = ¢(s,t) is a solution of the
equation, u = f(s,t, u, ,u‘.t);

(c) For all values of t in the interval ]t-tO l < 62,
b (s5t) = glt);

(ref. 24, p. 49; ref. 23, p. 32 through 36).

Limited Solution of a Differential Problem

In most practical woerk with differential problems, only a limited
or tabulated solution is required. Such a solution consists of a table of
values of the unknown function(s) for a'relvat'ive'ly. small number of
specified values of the independent variable(s).

Sometimes a general solution or solutions can be found for the
differential equation or system. If the problem is well-posed, it may
be possible then to specify the arbitrary constants or functions so that
the prescribed conditions are satisfied. The resulting particular solu-
tion is perforce ﬁnique.' Then, by substitution of the specified values of
the independent variable(s), we can obtain the required limited solution.
Even here the work of finding the numerical values may be arduous,
involving the use of tables, interpolation, and pe‘rhéps integration.
Usually the numerical values cannot be expressed precisely ih termi-
nating decimals; of necessity then the results are approximations to the
number of decimal places employed (Ref, 25, p. 1:3, 19). When a
limited solution is attempted by the procedure outlined in this para-

graph, we say we have used an analytic approach.
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The numerical approach may be used to obtain a limited solution
to a differential problem without recourse to any functional solution.

) In this approach we attempt to solve the differential problem in toto. by
numerical methods;that is, the prescribed conditions are involved at
the very start (Ref. 26, p. 3). If the problem is not well-posed we
cannot hope for any result from this approach other than perhaps to
learn this_sad fact. The ,nnr_nerical procedures,, if successful, will
_give us a satisfactory approximation of the limi,.ted solution -desired.,

Even for a limited solution, the analytlc approach is usually
attempted first, Its advantages are that the amount of computation
required may be slight.and thatriimited solutions for other prescribed
conditions may be obtained by respecifying the arbitraryb constants or
fanctions. When the analytic approach fails because there is no known
analytic method applicable, .or when it leads to tedious computation we
resort to numerical methods that have more widespread application and
that encompass all the necessary computation |
' In the numerical approach a mesh 1s constructed over the
domain. The set of mesh points must 1nc1ude a.ll the p01nts for which
'the limited solution was required and some or all (1f the number is
f1n1te) of the p01nts at Wthh conditions are prescribed Approx1mation
formulas are used that relate the values of the unknown function(s) and
vderivatives at ad_]acent p01nts of the mesh For example, if the value
of an unknown function and some of 1ts derivatives are prescribed, or
can be computed at one mesh point, it may be possible to approximate
the value of the unknown function at an adjacent point by means of a
Taylor expansion truncated at the highest-known derivative. The trun-
cation error may be reduced by iterative techniques or by use of for-
mulas of greater sophistication,

Generally, these formulas have the property that they approx-
imate the solution by some polynomial, and the degree of the poly-
nomial for which the method is exact is a fairly good measure of the
validity of the method. Often (but not always) the apprdximation may
be improved by refinement of the mesh, .Descriptions of the many

numerical methods is beyond our scope, and the reader is advised to
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consult Ref, 25, 27, 28,

Linear Model Approximation of a Linear Differential Problem

A linear differential equation applied at a specific mesh point
becomes a linear algebraic equation in which the unknowns are solution
and derivative values at that point. If we consider only prescribed
conditions which are linear in solution and derivative values (this is
almost inﬁafiably the case), then a prescribed condition at a mesh
point bécorﬁes a linear algebraic equation in solution and derivative
values at thfs point. Most approximation formulas have the property
that they are linear in solution and derivative values for two Oor more
mesh points, hence they are 11near algebraic -equations in thesevalues
'whén applied to specific points. Using the linear algebraic equations
available from the three sources, it is possiblé to construct an algebraic
sy‘étem in which the unknowns are solution and derivative values for the
mesh points, Fox gives a corriplete discussion of this technigué for the
‘boundary- cond1t10n problem for an ordinary differential equation, °

~In Chapter 1V, we construct such an algebralc system, which
"'cah be made overdeterminate. We allow for error in the approximation
formulas by introducing the maximum absolute value of the error as a
‘new variable, which we wish to minimize. The result is an unrestricted
(as to'signvof variables) linear model whose dual is a standard linear

model (See pp. 7, 8).
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- 1IV. LINEAR PROGRAMS
FOR WELL-POSED LINEAR DIFFERENTIAL PROBLEMS,
 ORDINARY AND PARTIAL

Preliminary Discussion

The linear program method, which we describe, applies very
generally to well-posed linear differential problems for which a limited

solution is required. It is a numerical method and concerns itself with

-solution and derivative values for a finite set of values (mesh points) ofthe

independent variable(s). The set of mesh points must include those points

for which a limited solution is required and a sufficient number of the

points at which conditions are prescribed. The method represents the dis-
cretized differential problem by a linear model consisting of a. system of
linear inequalities whose variables denote the maximum error of approx-
imation and the values of the solution and derivatives atthe mesh points,
The ‘maximum absolute error is to be minimized. The foregmng model is
the dual of a linear program whose computation prov1des opt1ma1 values
for its dual variables which indicate the error of approx1mat10n and which

approximate the solution and its der1vat1ves at the mesh po1nts The re-

- qu1red limited solution appears among those values.

Despite the generality of the method we shall follow the traditional

pattern in the succeeding sections by constructing programs for linear pro-

-blems involving, first, an ordinary differential equation, than an ordinary

system, then a partiai differential equation and, finally, a partial differen-

tial system. The number of variables in the linear model is a rapidly in-

‘creasing function of the number of mesh points, the order of the equations

involved, the number of unknown functions, and the number of independent

‘variables; hence there is a practical limit on the complexity of the problem

- which can be treated. For this reason, and because of the dearth of infor-

mation as to what constitute well-posed problems, in the case of partial

+ differential problems, we shall limit ourselves to equations of second

‘order in two unknown functions cf two independent variables.

All superscripts and subscripts appearing in the equations of
this section are indices except except for the superscripts associated with

the mesh-step quantities, h or .4 , these superscripts are exponents,
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Linear Ordinary Differential quiation Problem

The linear program method applies rather universally to well-
posed problems for a linear ordinary differential equation of reasonable
order, provided the number of mesh points is not excessively large.

No special treatment is required for subclasses as to order, homog-

eneity or type of prescribed conditions, except that the latter must be
numerical conditions on linear combinations of the unknown function

and derivatives at specified points.

We have a differential equation that holds on some closed inter-

val S of an independent variable s and that has the form

ao(s)u + al(s)u' +... 4 aJ(s)u(J) = c(s), l (1)

-

where
u 1is an unknown function of s, the superscripts indicate derivatives,
J 1is the or_rder of the equation, the aj and ¢ are numerically defined
and continuous on S, and a, does not vanish in S,

For a well-posed problem (Theorem 5, Chapter III), we must
have J independent conditions prescribed at a point or points s of

S. The conditions must have the form

£ (J-1) J (2)

atu + aﬁ =Ly =11 g,

i
oY%y u + + a

[ T-1%

where
the aﬂ. and cz are real numbers, the superscript £ indices the
condi‘gions, and the subscript £ indicates value at s

A limited solution is required consisting of a table of solution
values at a finite number of points . s* of 5. We consider a set of
K mesh points s, in S. This set includes, but is not limited to, the
points sz and s*. For a nontrivial problem, there must be at least
two mesh points. The linear-program method does not require a uni-

form step-length in the mesh.
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The differential problem discretized to the points § .involves
KJ + K unknown quantities, namely, the numerical values of the
solution and its first J derivatives at the K mesh points, In Eq. (2),
we have J linear relations for some of these unknowns. An additional
K linear equations may be obtained by applying differential Eq. (1) at
. the mesh points to obtain | |

alguk + alliul'( S al;uk(J) = ck; k = 1(1)K, (3)

where

the aﬁ( and ck are the real numerical values at 81 and the subscript
k indicates value at 8-

As yet we have not represented the intrinsic relation between a
function and its derivatives. If the solution u is an analytic function
of s, a Taylor expansion provides a linear relation for solution and
derivative values at adjacent points of the mesh, However, we have
not assumed that u is analytic, nor could we deal nurherically with
the possible infinitude of terms if it were. If the solution u is a
polynomial, the Taylor expansion terminates with the highest-ordered
nonzero derivative, but here we have gained finiteness of terms at the
expense of even greater restriction on the nature of the solution,

We assume only that the solution function is continuous and has
continuous derivatives up to the order J-1. (See Theorem 5, p.13).
In general then, by numerical methods, we can only hope to approx-
imate the solution by some polynomial. It is well known that a con-
tinuous function such as u can be approximated by a polynomial over
a closed interval such as S. In fact we are limited to polynomials of
degree J, since we have no knowledge of higher-ordered derivatives.
For a sufficiently small closed interval, such as any of the [sk, sk+1] ,
it is possible that the solution function u can be approximated by a
polynomial of degree J or less. We shall make K-1 such approx-
imations and use-over. each:mesh-step a’ Jt}'} ‘degree polyrnomial -

‘approximation to the solution, u, . ;
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For the set of consecutive mesh points—~sk s k= 1(1) K-1

k+1’

we write the forward (from Sk to sk+'1) Taylor expansions:
+hou! +.-+h) (J)/Jl-u = E
b O N k"k ktl 1k’
2.n J . (J) o -
hu +hu.k -+ hyuk /(J’—l)!—-hkukJrl—EZk
o k = 1(1)K-1,
° (4)
J-1 (J-1), . J_ (J) J-1 (J-1) _
b Twe R oy = Ene
where
' bk = Sk+1- Sk, and the Ejk represent. remainder (or error) term»s.
We have inserted the common factor h} in the expansions for each

k
derivative (j) so that all the remainder terms are of the order hl‘?l

if u is, in fact, an analytic function.

‘We can also write the backward (from 8341 tO sk) expansions:

+1
' J (J)
U T F e A A /T = Fyy
J (J) | - |=
v ki * dk“k+1 cotdu YT - dp g =F
: k - 1(1)K-1,
° - (5)
S1(3-1) T (3) (T-1)_ o

4 Y1 ot Wy - 9% % Tk

where

= - S = »
dk Sk Kk+1 hk’ and the ij represent error terms of the
order hl‘i+1 .

We now think of Eq. (4) and (5) as be1ng homogenous (zéro
r1ght hand sides) but 1nvolv1ng possible errors. Then the linear system
consisting of the "hornogemzed" equations (4) and (5) and Eq. (2) and
(3) has

J(K-1) + J(K-1) + K+J or 2KJ + K - J equations,
KJ 4+ K unknowns.,
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For K = 2, there are obviously more equations than unknowns. In
order to admit the approximation errors, we consider 'the system to be
overdetermined. Such an overdetermined system can be solved opti-
mally by linear programming (see Example 3 in the Appendix).

We define the Chebyshev norm of the errors,

u, = max’(lEjkl, lFJk’), ' (6)

and seek to fninirnize u,. ' (7)

'Fé)r reasons that will be apparent, we formally replace Eq. (2)

and (3) by inequalities,

£ . J4 (J-1) £
aouﬁ +a1u1+ +aJ_1u£ 2 c |
= 1(1) J, (2')
e -at u (J-1) >-ct
0« 172 J-177¢ :
k k., k (J) k
aouk + alu,k + + ;.LJuk =2 C
k = 1(1) K. (3')
k \ k  (J) k : '
B0 e "t B Tary - Zc

We can deduce the following inequalities from our definition of

u, in Eq. (6):
. {
u, * Ejk = 0, | (6)
. 1!
ug * ij = 0, (6')

and then replace the Ejk and ij by their equivalents from Egs.
(4) and (5) to obtain

J
uo + (uk + hkulé 4 oeo e +,hkuk(J)/ J1 - uk‘i_l.)‘2 0,

O @) T (@-1)

T-1 (3-1) .
e Kk Wy 120

Uy (hk
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! .
Y Loy Tyt am) /J =%
o INCY
s @ LU= L @) (3-1)
Yo * (@ k o Vke1 F dkuk+1 ) = 0.

If we now use (7) as our objective and the inequalities (2'), (3'),
(4'), and (5') as restraints, we have a linear model in matrix-vector

notation of the form,

minimize w = BU,
subject to AU = C,
with no restriction on the sign of U,

where

the vector U consists of 'uO and solution and derivative values, the
vector B =(1,0,---,0), the matrix A is thevcovefficient matrix for the

inequalities, and the vector C is the constant terms from the inequal-
ities. '
The above linear model is the dual of a standard linear program

(see p. 7) of the form,

maximize z = CX,

subject to A'X =B and X =0,
where
the matrix A' is the transpose of A, the variables X are for our
purposes purely formal,

- The computation of the linear program gives by -duality the
optimal values for the components of U; i.e., for the error and for the
solution and derivatives up to the order J at each of the K mesh points.

If the solution u is in fact a> pblynomial of degree J or less,
then there is a certainty that the value zero will be attained by vy in
the linear program. Therefore, the linear program method gives us

an exact result for such a Polynomial, and we have completely estab-

lished the following:
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Theorem 7. If a well-posed linear problem for a linear ordinary
differential equation of‘ order J oh.a closed interval S is discretized
for a mesh of two or more points in S, these mesh points including all
points at which a limited solution is required and all points at which the
linear conditions are prescribed, then there is a linear program whose
computation minimizes approkimation errors, gives the maximum ab-
solute value of such errors, and provides approximate values for the
solution an.d. its first J derivatives at each of the mesh points. The
approxifnati()n /inclu‘des the required limited solution and is exact for é.
polynomial’ solution of degree J or less. |

Except for a mesh of only two point‘s, the last statement of the
theorem does not fully reflect the accuracy of the approximation. For
K = 3, we are actually approximating the solution by poiynomial arcs
rather than by a single polynomial.

As is the case with many numefi-cal methods, improveinents of
the proposed procedure may suggest themselves., Other than mention-
ing the more obvious ones of mesh-refinement, of other approximation
formulas and, where possible, of differentiation of the original equation,
we shall leave variations of the procedure to the ingenuity and imag-
ination of the re‘ader,

Example 4 in the Appendix illustrates the linear program method

as applied to a linear ordinary partial differential equation.

Linear Ordinary Differential System Problem

The procedure outlined in the previous section is readily ex-
tended to a well-posed linear problem for an ordinary differential
system. There are, of course, practical limits on the number of equa-
tions, their orders, and the number of mesh points. All of the equa-
tions are. assumed to hold on some common closed interval S of the
independent variable s. |

For the sake of notational simplicity, we shall limit our expo-
sition to a linear system of two differential equations of second order.

The extension to more elaborate systems is obvious.
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We consider the linear ordinary differential system,

(s)v' 4’,.3’1:5(‘?)""' = C1(5)§ (8)

sjuta, . (sju' +a, _(s)v+a

ajo(s) 11

13 14

a. (s)u + a 1(s)u' +a__(s)u" + a,, (s)v ¥ oa. (s)v' = c(s), (9)

20 2 22 23 24

where

" and v'"" are ordinary

u and v are unknown functions of s, u', v',v u
derivatives with respect to s, the 2, and c, are L1umerica11y_defined and
continuous on S, and a‘15 and az2 Jdo not vanish on S.

For a well-posed linear problem, we must have four 1ndependent

local conditions prescribed at points sz of S:
=c; ¢ = 1(1)4, (10)

where 5
the afj and cf are real numbers, the supers;ript { indices t};e
conditions, and the subscript ¢ denotes the function value at s~

- We are required to find a table of values for u | and v | at a
finite number of points s* of S, We consider a set of at least two mesh
points S k = 1(1)K, in S which includes the points s2 and s* The
problem as discretized to the mesh points involves 6K unknown quan-

. tities, namely, the values U Vi u}'{, vf(y u'lé,‘ and v'lé at the K points
S When the differential equations (8) and (9) are appliéd at the mesh
points, we obtain:

k. k l k k § k " o— Jk. —_ .
alouk+ 11 % + a3V + a1 4% + a5V - cl,,k—l(l)K, (11)
kK, k ,  k k kK, k..
aZOuk a5 1% + a,,u k .21.23\7k + a5 4% = CZ’k_,l(l)K’ (12)
. wWhere
k k .
the aij and c, are numerical values at sk.c
For the consecutive points S0 Sppl k =" 1)1)K-1, we can write
the rI}"aylor expansions from i to Ska1’
uk+h uk+hu/2 - =E1k;k:-l(1)K-1, 13)

- i = - = .
kuk+hkuk h1<‘ﬁ<+1 Eo & = HK-1
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" _ = . _ ~
vk+hkvk+h v /2 v E3k’k 1(1)K-1
1 "o [ — . - _
th + th hkvk-l E4k’ k 1(1)K-1,
a/nd the gxpan§1ons from Sitl to 5!
Uy '“k+1+hkuk+1 hku'lé+1/2=F1k;k= 1(1)K-1
3 _ |
T A kuk+1 F . k= I{1)K-1;
- 1 _ .1 - _
Ve T Vie1 TPV ket thkH/Z F o k= I(1K-1,
- ! " _ . - _
i T Viern T PV thkH/ 2= Fyp5 k= 1(1)k-1
[ 1 - . _ )
hkvk hkvk+l + hkvk+l _ F4k’ k = 1(1)K-1,
where
hk = s’k+1 - S and the Ejk and ij represent error terms,

As in the previous section, we define

0

and seek to minimize u_.

0

u, = mak ( IEJ.

We formally replace Eq.

2 . L
alOu,Q + a11u£ + al3v2 + a14v£ =

’ 2, 0
“210% T 211Y T 313V T 214Y 2

kK .k k k
210% T 211% Y2V Tk T
ak u, - ak ! kv k v -

10 " %11% T %13Vk T 214k

k kK K Kk
3o0% T3 % t 2 TasY T
Lk R N k .

20% T %21% 22% " %247k

From our definition (17), we have

U + Ejk ,

uO:I:FJ.k ,

c”; £ =1(1) 4,

-cl; £ =1(1)4

a¥ vl =N k= 1K,
alfsvi{. cll{,k— 1(1)
al;4vl'('>/ c];,kl—-‘l(l)’K
a1;4v1'< --clg,'kzl(i)K.,

(14)

(15)

(16)

(17)
(18)

(10), (11), and (12) by the inequalities,

(10")

(117)

(12')
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which we can use with Eq. (13), (14), (15), and (16) to obtain

, ok B
u, * uk+h uk+hku/z u, ) 205k 1(1)K-1,

(13")
') 20 k= -1;
U, * (h Uk+hkuk kuk+1) 0; k l(l)K
u, * (vk+hkvk+h v /2 k+1 ) 20; k = 1(1)K-1,
(14')
U, * (h v + hkvk — hk k+1) 20; k = (1)K
2 .
! _ > - -
ug = (W - +hk%+1 h k_H/Z) 0; k= 1(1)K-1,
, 5 (15")
- [ 1 - -1
U, + (hkli( huk +hk k+1) =20; k = 1(1)K-1;
2
’ = -—
uy £ (Ve - Vi - h vl +hk k+1/2) =20; k= 1(1)K-1
(16')

T 1 " >0: - _1
u, + (hkvk hkvk—l +hkvk 1) 20; k= 1(1)K-1,

The inequalities (10'), (11'), (12'), (13'), (14'), (15'), and
(16'), with the objective (18), constitute a linear model which is the
dual of a standard linear program. By virture of duality, the compu-
tation of the linear progrand gives us coincidentally the optimal values
for the maximum absolute error and for the solutions and their deriva-
tives at the mesh points,

If the solution functions u and v are in fact parabolas the
value of zero is attained by Uy In this case, the linear program method
gives an exact result for the solutions. For the problem described, we
have established:

Theorem 8. If a well-posed linear problem for a linear ordinary dif-
ferential system on a closed interval S is discretized for a mesh of
two or more points in S, these mesh points including all points at

which linear conditions are prescribed, then there is a linear program

which gives the maximum absolute error of approximation and the
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. approximate values of the unknown solution functions and some of their
derivatives at each of the mesh points. For a solution function whose
Jth derivative appears in the system, the appr_oximatio'n is exact if this
function is in fact a polynomial of degree J;

Exafnple 5 in the Appendix illustrates the application of the

linear program to a system of linear ordinary differential equations. .

Linear Partial Differential Equation Problem--Two Independent Variables,
First-Order Linear Partial Differential Equation ‘

We consider a partial differential equation which holds on a

closed rectangular domain R and has the form,

aov(s,vt)u +a(s, thu, + at(s,t)ut = c(s, t), (19)

where

u is an unknown function of (s, t), u and u_ are first partial derivatives,

the aavand ¢ are numerically defined andtcontinuous on R, and a®
and at do not vanish on R, '

Because we have two unknown derivative fﬁnctions in Eq. (19),
we say this is a ''two-condition'" problem. The conditions may be pre-
scribed on various point sets. We shall cover the possibilities rather
Pt A =1(1)X, and k = 1(1)K, by

considered, we prescribe two independ-

generally for lattice points (s

*

k
ent local conditions at a point or points (sﬁ9 tk) of R. These conditions

(1) On any line t =t

have the form,

o 4k , .t gk _ B
ap Fa e s =12 ko= LK =X, . (20)
where . '
a ,
the a.£k and 'Cjzk are real numbers,

(2) Or any line s =s , considered, we prescribe two independent
- local conditions at a point or points (séy tf) of - R. These conditions

have the form: -

o A s A . _
a4,Y + 2, = C.él’ 2-1,2, A= 1(1)5(2 K, ‘ (21)
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- where .
the aj@ - and C,/e,@ are real numbers.
(3) Or any line t --‘tk considered, we prescribe condition (20)

(21) for £ = 2.

We are required to find a limited solution consisting of numerical

for ¢ = 1, and on any line s = s}JconSidered, we prescribe condition

values of u for some finite set of points (s%*,t*) in R. We consider a
“set of 2’ K lattice points, (S/a’:tk)’. A= D&, k=1(1K, X=22,K=2
This set must include all the points (s*,t%*), and the lines s = s* and/or
-t = t¥ must be considered under the pertinent prescribed-condition

case. Further, the closed rectangular domain: R¥:s 1S8S8 Sttt

s

must lie entirely in R, and the set of lattice points must include per-
tinent points (s ﬂ', t, ) and/or (s fu’ 1:1Z ), for which conditions are prescribed.

The differential equation (19) apphed at each of the lattice points
ylelds 3’<K algebralc equations: ” ‘

o. Ak, s «ék t Ak _ £
a,,éku + 2 1 g tagu, —/Bk’ 2= 1(1) ﬂ( k =1(
LU . . v : (22)
where : 3
the a&k and Cék are real numerical values at (i%,’ tk), ‘and the
- superscripts ,{%k indicate functlon values at. (s/e ) ‘
. On every line t = teo k = 1(1)K, for consecutlve values
é*’l ; for %,‘: 1(1) X -1, construct the Taylor expansions:
£k Ak 4é+1 k é _ N e .
W hu /ék,é_ 1)1, k= 1(DK;
7 2 (23) .
Ak A+1,k +tl,k _ A _
s +h,ul ék, = 1(1)/(1 k = 1(1)K,
(24)
where o
h,=s -8 and the é and } Lare.error terms
T el T4 ok O Ty BT S CTEOT LeTmS.

Similarly, for every line s =. sdé, /q’,: 1(1);’%and for tk’

k = 1(1)K-1, we obtain Taylor expansions,
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' K fek JQ k 1 .
| +hkut - . kk,é— 1( 9( k = 1(1)K-1; . (25)
£k 2, k+1 j@,k+l 3
T RAGE h, u, ,@k’ =1 1)}’{/ k = 1(1)K |
, (26)
where
hk = tk-.l—i -'tk, and the E,,ék -and F,é,k are error terms. .

‘We now proceed as in the previous vsection‘s,‘ ‘We regai‘d Eq.
. _(23),' (24), (25), and ‘(26) as' being homogeneous but subject to some
eérrors which we wish to minimize. When we use these equations along
with (20) and/or (21) as pertinent and (22), we have an overdetermined
Vsys'tevm whose unknowns are solution and first partial derivative values
at the lattice points, | |

We define

u, = max ( lgék l’ ,Zék |’ IE F,’ék ‘).’

and convert the equations of the previous parag‘raph ”to: '1inea‘.'r inequalities
(=) involving u, and the splution- and derivative .values. Our objective
-is to minimize Uy
Computation of the linear program, for which the linear model of
the 'pre;vious para.gr:aph is the dual, gives, by virtue of duality, an opti-
'mal value for ug and approximations for u, us-_and u, .at each of the
lattice-points.
| For the cases considered, we have established the following:
Theorem 9. If a well-posed linear problem for a linear first-order
partial differential equation with two independent variables-on a closed
. 'rectangle is discretized for a nontrivial rectilinear lattice, then there
is a linear program whose computation minirrﬁzes the -error. of approx-
- imation and provides approximate values for the solution function and
its first partial derivatives at the lattice poinfs.
The procedu're"described above is illust_;r,ated in Example 6 in
the Appendix, Pbssible improvements on the approximation and mod-
1f1cat1ons for other domains and cond1t10ns we leave to the ingenuity of

the reader,
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Second-Order Linear Partial Differential Equation

For second-order (or higher) linear partial differential equa-
tions in everd t-woindependént variables, :there is a lack of comprehen-
sive theory on the well-posed problem. The equations are traditionally
subclassified, and even within the subclassification it is common to
consider very special problems. From the physical point of view, this
specialization is a natural one arising from the siltuati‘gn for which the
differential problem is a mathematical model. Fot' the mathematician
the spe01a11zat10n is useful in that the special propertles of the problem
- may make it p0551ble to decide on.a doma1n of solutlon to determlne
the nature of the prescr1bed cond1t1ons to rnake assmnptlons con-
cerning the éolution, and even, in some cases, to 'd_eV1‘SG an analytic
approach. We shall return to special problems_:;late.re._% |

We now consider a general linear second-order partial differen-
tial equation in the two,independent variables s and t that holds on a
closed rectangular domain R: SXT and has the form,

ss st tt

0 s . t ‘
+ a- : ' + a . L =LG, s S
a u+a us+aut+a U ust+a U, =C, (27)
where e
u is an unknown functiéon of s and t,’u, u, u ', u’ andu are
S t ss st ss
e ... .o _s t _ss tt, ) .
its partial derivatives, a’, a-, -a,-a -, a and :c are'numerically
ss st . tt

defined, continudus functions of s,ton R, and a ., a~ -and-a do
not vanish on R,

Because we have five unknown derivative functions in Eq. (27),
we say thisis a ''five-condition'" problem. Conditions.may be pre-
scribed at various-point sets. For a discretization of the problem for
lattice points ('s/'é., tk),/e/z 1(1)X; k= (1)K, in:R; we cover the
possibilities rather generally by the following cases:.. . -

1. 'On the lines t' =t, considered, We:pr.escr-«ibe- five independ-

k

ent local (ized) conditions-at points (s tk) of the form, -, -

2k’

o 1k’ s gk, t gk st gk tt Sk _
2t s P A T Aatst T kMt T Sk

= 1(1)5, k = 1(1)K=X" (28)
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2. On the lines s = S b considered, we prescribe five independ-

ent local (ized) conditions at points (s , tféﬂ) of the form,

© .éJZ a® M> ¢ ”éﬂ+azséfé£+a u _c/d'
t 3
A 1Z a =105 (29
=K.

a

L1t Tt T2yt

3. We prescribe five conditions from (28) and (29).

The set of lattice-points (sk_g tk) considered must include all the
points"(s'*, t*) at which a limited solution is required and must include
pert}nent prescription points (s‘. ik tk} and/or (S,é , t,.él)"

The differential equation (27) applied at the lattice points yields

) ,ék s ék t Ak ss ék st »ék tt /é_k
2p1" “acs T2kt T 24k"ss T %kst T Akt T
' ' (30) .

~Along each line t = tk” k = 1(1)K, for consecutive values

s/a, Spr1r We have the following Taylor expansions:
o) S'ékM,Z é/z ALk =& A= 1(1)X-1, (31)
R SOV SR (1L SITR D
Ap +hé2,sfk A’Jat/&l k_éék’ £= 1K -1 (33)
Gk ALK N héu,éjl,k Ebzus;éﬂ,k/z‘:;,zk;/aﬂ(nk.u
| (34)
| /»,;1; -Akus'lvk +/,,2:155“1 K25 10X -1 (39)
| ,t,fi Ay, AT T 230 A1) X, (36)
where ‘ :

/bé_: 'Sl‘é_+l - S/é/;
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Similarly, along the lines s = S o s vy l(l)X, we have:

4k Ak, .2 Kk 4 A K+l po _ .
u +vhk ¢t hui/2 - =E, k= HK-L (37)
2 Ak A, k+l
hku st~ PiYs = Ep 5k = (K- (38)
' 2 ék A ktl ot L .
hk Ak, hk IR WAV = Ef&k, k = 1(1)1; 1; (39)
£k A ktl A ktl_ 2 pktl, Lo )
ut o - u + by - hyut /Z—Fék,k— 1(1)K-1;
. (39)
Ak k+1 ,@ k+1 2 é k+1 o .. _ :
u - u by u’ - by w /Z—F&k,k—l(;)K-l
(40)
Lk Aokt 2-/2k+1_ s . )
hkus - hkqs + hk ot = F&k’ k=1(1) K 15 (41)
£k Ak+1 2 k-1 _ ot )
h u® - hu + hy i -Fék,k— 1(1) K-1, (42)
where :
h, =t -t

k k+l k’

As before, we regard Eq. (31) to (42) as béing homogeneous but
subject to errors, which we wish to minimize. These equations aldng
with Eq. (28) and/or (29) as pertinent, together with Egq. (30(),’ constitute
an overdetermined-linear algebraic system whose unknowns are the
values of u, U, u

We define

u s u and u_, at the lattice points,

t’ st tt

, [E

and convert to a system of inequalities ( =) involving U and the

solution and derivative values. Our objective is to minimize uy-

U, =max(]£kl,

Computation of the linear program for which the foregoing linear
model is the dual gives, by the duality principle, the optimal value for

u, and approximate values for u, u, u, u u and u,_, ~at the

0o - , s t ss’ st tt

(s/‘y, tk).
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For the cases considered, we have established:

Theorem 10, Ifa well-posed linear problem for a linear second-order

. partial differential equation in two independent variables on a closed

rectangle is d_iscrefized for a nontrivial rectilinear lattice, then there

is a linear program whose computation minimizes'the error of approx-

imation and provides approximate values for the solution function and

its first and second partial derivatives at the lattice points.

- . We leave refinements and improvements on the foregoing to the

reader_ and turn.now to vsubclassiﬁcati-on of the second-order equation.
A linear second-order differential equation in two independent

variables, whose discriminant H defined by

9

H = ('ast)z _ 4assatt

does not change sign on the two-dimensional domain being considered,
may be classified as parabolic, hyperbolic, or elliptic. |

Parabolic Equations. If H is everywhere zero on the domain, the

equation is said to be parabolic, An equation of sufficient generality
for this class is the fqllowing (Ref, 27, p. 107, Ref. 29, p. .73):
a®u+a’u_ - u +u _=c. ' | (43)
s t ss
Problems involving this equation may be ''three-condition'" on a rec-
tangle whose sides are paraliel to the coordinate axes, Care must be
exercised in the discretization, A safe rule to follow is to require that
_évery' point (s ,, tk),_ the grid step in t in either direction, be less than
or equal to twice the square of the grid step in s in either direction
(Rei. 27, p. 92ff.). This precaution will insure that errors do not com-
pound to render the numerical solution unstable. Enumeration of all
the possible conditioning which would provide a well-posed problem will
not be attempted here. Three possibilities may occur: (1) the problem
may be underéonditioned; (2) the problem may be properly conditioned;

and (3) the problem may be overconditioned. In (1) the linear program
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method will find a solution which satisfies all the prescribed conditions.
Such a solution is not likely to be unique, noris it 11kely to be much of an
-approximation to the true solutlon sought. In (2), the cond1t1on1ng may
be barely suff1c1ent, so that appx_tox1mat10n f_o.rmulas must be treated

as exact equations, and there is no opportunity for minim‘ization of
approximation error. In this instance, the solution méy be found by
solving a linear system of algebraic equations for its unique solution.
Otherwise the linear program method fnay be used to minimize the
approximation errors, In (3)itis unlike.ly that the conditioning will be
precisely cc_)ns_isten_t because of errors in measurement or in rounding
of numerical values for functions. The linear prog_ra'.rnﬂ method then can
be used either by allowing tolerances on the numerical values, or by
allowing these errors to be minimized by the program, Without one or
the other of the above, the linear program will have an unbounded solu-
tion because of the inconsistency. '

In many problems, particularly where uniform grid steps are
used, it is more aCCurate and efficient to employ approximation formulas
other than truncated Taylor series, Central finite-difference approx-
imations, for example, may be used. . |

The numerical solution of several parabolic problems is illus-
trated in Example 7 of the Appendix. As with most numerical methods,
the user must exercise some ingenuity in applying this method to a
specific problem. |

Hyperbolic Equations., If H is everywhere strictly positive on the

domain being considered, the equation is said to be hyperbolic. An
.equation of sufficient generality for this class is the following’(Ré€f. 29,
p. 73):
.o s .t ' . :
au{raus+aut+uss+utt—c, (44)
Problems on this equation may be "three—coﬁdition, " or even '"two-

conditior/l.,’ " on domains bounded by appropriafe characteristic curves of

the e"quation. Conditioning should not be along any line or curve whose
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direction at any point of the domain is the same as that of a character-
istic curve through the same point. -

The only safe rule for discretization for any conditioning is the
use of uniform equal gri'dvsteps in s and t, Whether it is safe to use
a larger grid s.tep for one variable than the other depends on the con-
ditioning (Ref. 27, 1. 18).

The remarks on conditioning given in connection with parabolic
equations apply here. For illustrations on the solution of Hyperbolic
problems see Example 8 in the Appendix. - ‘

If the discriminant H is strictly negative on the two-dimen-
sional domain considered, then the linear second-order partial diffen-
tial eciuation in two independent variables is said to be elliptic, For
such equations, we can, without loss of generality, restrict ourselves
to (see Ref. 29, p.72):

o’ S t - . ’
avu+aus+aut+uss+utt—c, (45)

Since the partial derivative u_, does not appear, a problem involving

‘Eq. (45) may be a |'four—condist'icon“ problem, even without limiting the
considered domain to the rectangle R: SXT.

"We consider a closed two-dimensional domain D whose bound-
ary consists of the closed continuous curve(s)I, We denote by D° the
open region D less I. From the historical and practical standpoint,
the problems involving the elliptic differéntial equation are those in which
conditions are prescribed along T, while the equation is assumed to hold
only on D°, Traditionally, the problems treated have been highly spe-
‘cial as to the equation, domain, and conditions. We shall attempt a
rather general treatment, o

By means . of lines s = %and t = tk’ we construct a rectilinear
grid over the domain D. We speak of portions of these lines which lie

in D as being included segments, and insist that each of these have

two points in common with I" and that each be intersected by at least
one orthogonal included segment at a point in D°. We discretize the

problem for the set of points consisting of (a) the intersections of
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included segments with I" (called boundary points), and (b) the inter-
sections of included segments wi th each other (called lattice points),

We seek a limited solution consisting of values for u, Uy, g, U and

u, at the lattice-points subject to linear local(ized) conditions at the

boundary points, These conditions may have the form,

o ! ! t £ o, 7
a,u +a£u +a£t—cﬁ, 2 = 1(1) 2L, _ (46)
where. N _
' a;); a'j, a; and Cl are real numbers, nonzero, uﬂ, ui and

u,f .represent values at boundary points, "ﬂ indices the local(ized)
conditions, and L 1is the number of included segments,

| Each included segment has at léa'st one lattice point, and about
each such point we can write Taylor expansiohs along the segment for

u and a first partial derivative (eithe'r‘ u, or ut,. according to the
direction of the segment) at the two adjacent discrete points (either
lattice pdints or boﬁndary point.s)? Each included segments has two
boundary points and from each of these we can write a (first-order)
Taylor expansion for u at the adjacent lattice point. These expansions,
.considered as homogeneous equations but subject to approximation
error, together with Eq. (46) and Eq. (45) applied at the lattice points,
provide us with a linear system whose unknowns are the values of u,

u and u, at the boundary points and of u, u, U, U and U, at the
lattice points. With the objective of minimizing the maximum-error
magnitude, we have a linear model which is the dual of a linear program.
Computation of this linear program will minimize the error and give
approximate values for aforementioned unknowns.

Many problems involving elliptic equations do not have boundary
conditions:.prescribed that meet the nonzero '"coefficient'" requirement
imposed on Eq. (46). These cases may require special treatment in
setting up the Taylor expansions. For example, if the value of u is
prescribed on the boundary, we have localized conditions of the form

u, = c,; L= 1(1)2L¢ , (47)
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For this problefn, the Taylor expansions from the boundary points should

) ‘can be substitﬁted for u_l wherever

it appears in the other expansions, and the result will be an overdeter-

be omitted, the numerical value c¢

mined linear s‘ystem obtained from the expansions and from Eq (45)

applied at the lattice points whose unknowns are the values of wu, U, U,
Uy and u, at the lattice points only. Similar modification can be made
in other cases. T}fe solution of problems involving elliptic equations is

illustrated in Example 9 of the Appendix.

Problems for Linear Partial Differential Systems

'The procedure of the previous section can be extended to some
problems involving a systefn of linear partial differential equations.
There is, of course, a practical limit on the number and orders of the
differential equations. In the extension, thé constructed linear. system
involves, as unknowns, the values of all the solution functions and some
of their pértial derivatives at some set of discrete points, Obviously
a solution can be attempted only on a domain having common propriety
for all the equations. Any general discussion of necessary conditioning
" for a well-pdsed problem is beyond our scope., Even without this ques-
tion, a detailed description of the linear program method for a problem
of any generality would be lengthy, notationally difficult, and, in a great
measure, repetitive, Fo; these reasons, we content ourselves with a
simple illustration in Example 10 of the Appendix. F.ollowing this
example as a guide, the ready may apply the method to other, not-too-

elaborate problems involving linear partial differential systems.

Use of Computers

The formulations in the preceding sections, f'rightening in their
life;al expression, may be readily codified for high-speed computers..
VR‘ather general but simplé codes can be written which will.convert a min-
imum amount of problém information into suitable input for an existing
linear prdgran’iming code. | Some such codes have been written by the author
and uvsed'bin connection with the examples given in the Appehdix, Preparatory
codes together with available linear program codes such as SCROL (Ref, 30)
reduce the human participation in the computation to the preparation of a

‘few data and control cards.
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V. CONCLUSIONS

In th1s chapter we attempt to draw some conclusmns ‘with re-

- spect to the merits of the linear program method for the numerical
solution of 11near differential problems. The following propert1es are
co.rvlsider,ed:" stability, accuracy, convenience, andversatility. Special
features of the method, which are not possessed by other methods, are
discussed, l ‘ . ' .

Stability is a propterty of the approximation formulas used, ofthe
p'roblemvitself, and of the discreti‘zationn. A problem-is said to be stable
lfor a'partiélﬁlar approximation if the smal.l erroré, which are almost
certain to appear in rounding and truncation, have relatively small ef-
fect on the final result, For a thorough discussion of stabili‘ty> (in the
case of difference equatibns), the reader is referred to qusythe and
Wasow (Ref, 27, pp. 29 to 35). Because the linear program method may
employ. several approximation formﬁl'a.s on a particular problem (see
-Examples 7,8, 9, 10 in the Appendix), it inherits their stability attributes.
In this method, it is possible to choose the approximation formulas least
likely to be unstable, or to use one approximation formula to offset the
instability of another, Unfortunately, and contrary to a too ‘popular be-
lief, finer discretization or the use of higher-order approx1mat10n for-
mulas do not always improve stability. Unlike most numerical methods
that are satisfied with a determined numerical approximation, the linear
program method operates on an overdetermined situation. In the set of
approximations employed, it need not fofce compliance with any approx-
imation formula, but rather can minimize departures from several,
This advantage of the linear program method is not present in other non-
itefative methods for the nutnerical solution of differential problems,

Unlike stability, accuracy is concerned with the inception of
errors rather than with their growth. It is generally assessed for a
small domain containing a few points of discretization. Sometimes
aqcﬁracy is expressed by a statement that the numerical approximation
is exact for a polynomial of some specifiéd degree. In other; cases an
.'error term is formulated. The linear program triethéd dverlives its ac-

curacy from the approximation formulas it émploys., In the previous
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discussion nonuniform mesh or grid steps have been stressed. Flex-
ibility in discretization is desirable in many problerris., However, if
the mesh or grid steps are uniform, the linear program method is usu-
‘ally. able to effect a better approximation. For example, -fof an ordi-
nary differential equation of order J, by use of only backward and for-
ward Taylor Expansions with tu, replacing all terms above the contain-
ing the Jth derivative, the linear program method gives an approximation
which is exact if the solution is a p_olyno'rniallo_f degree J+1, This is be-
cause the error term ug is forced to take the absolute value of
hJ+lu(J+l>/(J+l) !, which is a constant for such a polynomial. Again
‘the use of diverse appfoxima’cion formulas makes possiblle the reduction
of the error that would be produced by any one of them. '

The linear progrém ‘method is not very convenient to use, The ,
construction of an overdeterminate system is certain to require more
formulation than would be the case for a determinate system. The fact

“that the linear model evolved; which is the dual of a standard linear
program, must consist of linear inequalities (=) in effect doubles the
amount of formulation, Thus the linear model that represents a fairly
simple problem may appear too expansive to be practical (see Example
4, Appendix)., Certainly the linear program method should not be ap-
plied where much simpler but entirely satisfactory_>methods are avail-.
able, Computer time is another factor which should be 'cohsidered under
convenience, The computation of a linear program of any size is likely

. to be more time-consuming than a simple step-by-step noniterative
method, For ordinary differential problems with initial conditions, the
latter should be used unless, of course, they lack sufficient accuracyor
are unstable, For boundary condition problems on ordinary differential
equations, the linear program method is probably no more awkward

than other existing methods (e.g., Ref, 26, pp. 67 through 79). The result

that the linear program method supplies approximations both for deriva-
tives and for soldtions may be sufficiently useful to offset some or all of

the inconvenience. Except for the very rare problems for which an analytic
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approach is possible, all methods for solving partial differential equa-
tions are tedious. Usually the solution of a system of lineaf algebraic
equations“is necessary., Where this is the case, the linear program
method is not much more elaborate or expensive in computer time.

The linear pfogram method is restricted to linear differential

‘pr‘oble-ms. Aside from this admittedly serious limitation, the linear
program~®method can be applied very generally to well-posed problems
on lineér?or‘dinafy, or partial differential equations or systems. It can
be appliea to any linear differential problem for which there is an ap-
piicablé é‘xisting method, It can, in fact, incorporate two or more such
‘methods, and épply them, not independently to small sets of mesh or
lattice points but simultaneously to all such sets over the entire domain,

~ The linear program method is unique in its ability to use discrete
' measured data for prescribed conditions, No other method which relies
on a determined linear model can allow for errors in measurement or
séﬁsfy an overconditioned problem with minimum discrepancy,
Examples 7 and 10 on parﬁal differential equations illusflia_te this power.

" Another advantage of the linear program method not common in
other methods is its ability to utilize a nonuniform mesh or grid. This
property can be important where measurements to provide conditioning
data can not be made uniformly, as on the boundaries of the domain for
the ‘ellipti‘c partial differential equation in Example 10,

In the last analysis the merits of any numerical method must be

‘ vdete_rminf‘éd in extensive application to a great diversity of problems,
This work must be suggestive rather than conclusive. The linear pro-
gré.rh method presents great opportunity for the exercise of ingenuity,
Final Judgment on its value is relegated to those who may enjoy exper-
imentation in a fresh approach to the very 1mportant and often perplexing

task of approximating the solution of a well-posed differential problem. *
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S o . - . APPENDIX

'Exét‘rﬁp‘lé 1. Illustration of Simplex Computation

A _c'orripany. has three warehouses., Because 6f-remodeling, it is
necessary to transfer a certain quantity of material from Warehouse
No. 3 to the other warehouses, The movement of material is to be made
at least cost.

Formulation

© Activities:
(1) ‘Movement of material from Warehousé No. 3 to Warehouse
No. 1, .

_(2) Movement of material from Warehouse No. 3 to Warehouse

Variablés: -

X, Quantity moved from No. 3 to No. 1,

x, Quantity moved from No, 3 to No. 2,
'y Total cost to be minimized.

Constants: . _ |
b. Available st(;-rage_ at. No. 1,

Available storage at No. 2,

Quantity to be moved from No. 3,

Cost to move unit quan’éity from No. 3 to No. 1,

<, Cost to move unit quantity from No. 3 to No. 2.

Relations:
Y =cxg + c, %, to be minimized,
xls bl’ C
xzs bZ’
x1+ X, 2b3,
Xy X2 =0,
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We introduce nonnegative slack variables x3, x4, and X, to
obtain equality, and an artificial variable X to construct an initial
feasible basis. The latter must also be 1nc1uded in the cost function
s with a predom1nant1y large cost coeff1c1ent M With a new objective
function z (z = - y) we have the following:

Standard Model:

maximize zZ =-C lxl - CZXZ - Mx 5

subject to Xyt x) = bl’
Xy + X, = bZ’
Xg - X6 + % + _XZ = b3,
x, = 0; i =1, 46

Implementation '
Suppose ¢, = $5 and c, = $10, then we have for our objective
maxiraize Z = - Exl -10X2 —I\/Lx5.

We consider tie following cases:

(a) b 100; b = 200; b, = 400, that is,

1 ’ 3
X3 + x1. = 100,
Xy +x2 = 200,
Xy - X6 + x1 + XZ = 400,
x1>0'; io=1,...,6;

(b) b, =.200; b, =3060; b, = 400, that is,

1 2 3
x3+x1 = 200,
Xy + X, = 300,
Xg - x6+xl +XZ: 4C0,
%x. = 0; i =1, ,

Computation

The computation involved in the Simplex process is more easily

followed if the data is arranged in tableau form,.
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(a) Computation for case (a) above:

Tableau I — L - Basic Solution
‘ c, 0 {0 |-Mm|0 |-=1-10 :
N : _ %, =100
R RN x, = 200
0 Py 1 [0 Jo jo 17| 0 jio0 | x, = 400
0 P4 0 1|0 0 0o 1" (200
. — xl,xz,_x6 =0
=M | P o |1 F1 L1 ]1 1 |400 e
Zj o |0 LM (M M | -M
w.=z.-c.|go |0 M \ 5 110
‘]. _] j 0 M| 2m —M
Since -M is predominantly negative, we have
Wy = min Wj < 0; P is‘to enter the basis, and
R3 = min Ri = 0; P3 is to be replaced. The new basis is
Pl’ P4, PS" The pivot element is indicated by an asterisk,

Tableau II is constructed as follows: The first row is designated
as Pl and computed by dividing the corresponding elements of the first
Trow (P ) of Tableau I by the pivot element; other elements, a.l“. (row
. :Pi, ‘column Pj) are computed from aij» (row P19 column 'Pj of I),

a., (row P., .column P_. of I), and a!. (row Ply

i1 (FOW Py, column P, 1j cotumn Py by
t —_ o = 7
45 7 %457 %41 Ay

This computation, which seems quite tedious even for the simple

problem under discﬁss_ion, is usally done on high-speed computers.
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Tableau II
¢ 0 0 -M| O -5 -10 | Basic Solution
: ]
- i
B | x, =100
i | Basis Pal Pa| Ps| Pe| P1| P, LTl
-5 | Py 170 0lo |1 |o 100; ¥4 7 200
T x_. = 300
0| P 0 1 0 ]o0 0 1 | 200 5 :
4 J -
: x , x, x,=0
-M P5 -1 0 1 §-1 0 1 300 2" 73 A6
M
Zi1°5 M |M |- M
w, | M 0 0 M 10
J1 -5 -M
= i = 3 T ; : h
w2 min Wj < 0 and R4 min Ri’ P‘2 replaces P4 in the
basis,
Tableau III is derived from Tableau II by the process previously
- described.
.Tablleau 111
c. |0 0 .M 10 -5 -10 Basic Solution
J ‘ ,
-5 P, 1 0 0 o |1 0 100 x, = 200
-l0 | P, 0 1 |0 0 |0 1 200 xg = 100
-M | P5 -i -1 L1 1 0 0 100 x3,x4,x6=0
ji-51.10|-M M |-5 |-10
M M
Wil-5 |-10 M |o |o

Now all WJ. z 0, hence no new vector can enter the basis; however,

the vector PS’ which corresponds to the artificial variable x

in the basis,

This model is infeasible.

5 is still
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(b) Computation for case (b):

Tableau 1

B c.| 0] 0 | -M| 0]-5]-10 Basic Solution
\\ . . ! X3 = 200
c; | Basis P.l P, P! P PP | B = 300
, B 47
0 Py 1 0 0 [ 010|200 x; = 400
| | i,
0 P, I 0 | 1 0 | 0] 017 300 XXy, Xy 0
M P5 0 | 0 tol ' -1 171 400
zj'osol‘-M?M-M-M
: , . . 510 i
: Wj 0 0.0 , M -M' -M ’
Wy = min w, < 0; P1 to enter basis,
R3 = min Ri =z 0; P3 to be replaced.
New basis is Pl’ P4, P5°
Tableau II -
c 0 0 |-M | 0]-5|-10 ‘Basic Solution
c basis P3 P4 P5 P6 Pl P2 B x1 = 200
-5 P1 1 10 0 | 0] 1 0 | 200 X, = 300
-10 P, 10 1|0 S 0o |1 ]300 x; =200
-M ;P5 -1 0!l 1 j-1]0 |1 |200 TF2r¥3%e " 0
M ) ;
| 2|5 0 -M {M|-5|-M
' M : 10
0 :0 M |0
WJ -5 i i ‘M[
w, = min Wj < 0; R5 = min Ri. >0; P2 replaces P5 in the
basis,

N basis i _
ew basis is Pl’ 4 5
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i c.lo o -M! 0 |-51i-10 Basic Solution
| j | o T
: :‘ P B | x, =200
i Basis Py Py Py | Pp Py Py B ™1
-5 f;’P1 . 1 0 0. 0 {1 0 |200] *4° 100
0P, 0. 1 -1 1 [0 |0 |100] ¥, =200
S0P, . -1 [0 |1 -1 |0 |1 [200] X3%5 % =0
z, |10 | 0 |{-10}10 [0 [0 |
W,
jl1o o [Heft0 (s [10

All "'w >0 and P5 is not in the basis:. This is an optimal

J
solution: z =.-5(200) - 10(200) = -3000,

Interpretation

(2a) The space available at Warehouse No, 1 and No, 2 is not sufficient
to store the material that must be moved from Warehouse No, 3.

(b) Of the 400 units of material which must be moved from Warehouse
No. 3, 200 should be moved to No. 1, and 200 should bé moved to No. 2.
The total cost'\;vill be $3000,

Example 2, Illustration of a Use of Duality.

_We are given three points (a-l, bl), (az, bz), andv(a?’, b3), and are
required to fit a straight line to them. We assume the points are not

collinear, and that a, <a_ <a,:

1 2 3

‘Formulation

The desired straight line will be determined by its ordinate uy

at abscissa a) and by its slope s from the equation,

cu=u ts (v—al),

1

where v 1is the variable abscissa
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The error of the fit can be measured by

e = max ui-b,., i=.1,2,3,"

Variables: -
u'1 ordinate on the line at ays
s -slope of the line,

e maximum absolute error.

Constants:
b1 given ordinate at as
bZ given ordinate at a.z,
b given ordinate at as,
h.2 a2 a‘l,
| h3 a; -aj.
Rélations: :

w = e to be minimized, subject to
-e S"bl,'

+ e >b1 . |
+ hzs - e sbz,
+ hZS + e >b
+h,s -e< b

3. 3’
+h3s+eZb

3¢

)_-l‘-—d.—ly_‘.—l'—-l

No restr1ct1on on the s1gn of u, or s.
By appropr1ate changes of sign we reverse the order of some of

the inequalities and obtain’

minimize w = e,

subject to oy + e.Z-bl,
1_11 +e= bl’
-uy - hzs + e b2
uy ¥ hzs +e= b2
-ug - h3s +e=- b3
Uy + h3s +e = b3

which is in the form 6f Model II of our discussion of duality. The dual

'model for the above is
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maximize z blx + blx2 - b2x3+ b x4— b3x5+ b3x6
0 .

: i - X_. - -x_+
subject to X1+X2 x3+x4 xp+ X,

—h2x3 + hzx4 h3x5 + h X6 = 0,

x1+xz+x3+:>(4:+x5 +~x6-,= 1,

X =20, i=1,-.-.,6. "

IIN

We introduce the artificial variables, X Xg and x9 to obtain
an initial feasible basis. Then our model becomes standard:
maximize z = -.Mx7 -M?S__-b_l-_xl-*- vblx -b x3+ b2x4
-b x5 + b3X6’
0,

I W

subject to X,
*8
*9
X.
! A . . 1 .
with M a predominantly positive number,

Irnplementation

Suppose the three given points are (1, 2) (2, 4) and (3, 5), then

we have: b1 = 2, b2 = 4, b3 = 5, h2 =1, h3“ 2. We now have

maximize z = —Mx7 -Mx8 -Mx9—2xl+ 2x2-4x3+ 4x4—5>§5

+ 5X6’
subJe.-ctr to: x7—xl+ xZ-x3 + x4 X, + X6 =

x8—2x3+2x4— 3x5 + 3x6 0,

x9+x1+ x2+ x3 + x4 + x5+ X() =1,

3120;' i=1,:..-.9.
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"The Sihlplex algorithm applied to the above gives the following:

Final Tableau

| M | -M|-Ml2 2 | -4|4]|-5 5 |
ifL c P P P P P ;p Plpip o Basic Solution
| i |Basis 7 g 159 1Pyt Fa g P P By
| ™ — T X, = 0.5
i 05 | o o510 1 o f1ji0;1 05
! - g Pox =0.25
0.75(0.5 l0.25/1 .5 | 0.50 | 0/0.50.25 !
: ‘ {r i X = 0.25
0.25[-.5 10.25{0 0.5 | 0.50 | 1.-.5 0.25
2.2511.5 |0.25|-22.5|-3.5 4 |-5!5.5 |
| 2.26 0 | I
| 2086 | Lk logp| 0 | -5 | slo 00 |
All Wj are nonnegative, artificial variables eliminated, this is an

s and e, we take the
We

To obtain the values of ug,

without the M, which has served its purpose.

optimal solution.

> and W3

- then have

Wi, W

u, =-2.25;

1 s =1.5; and e =

0.25,

" as thé optimal solution for the line fit.

Interpretation

The Chebyshewv appr_oximation for a line fit is the line through
the point (1, 2.5) with the slope 1.5, It should be noted that a different
' fit, namely, the least-square fit, is usually preferred.

Exampe 3. An Overdetermined Linear System

We are given three linear equations in two unknowns, which are
inconsistent due to errors in measurements by which the right-hand
sides were obtained. We wish to find values of the unknowns which will

fit all three equations within an error of minimum magnitude,



Formulation

Let ri represent the error on b,
i
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i=1,2,3, and let

u, = max f ri!
Variables:
uy the first unknown,
g u, the second unknown,
u, maximum magnitude of error.
Constants:
'aij coefficients in given system, i=1,2,3; j=1,2,
b, right-hand sides, i=1,2,3.
Relations:
minimize w = u3,
subject to a; 'u-l+ a.lzu2+ u3//bi, i=1,2,3,
- - =b., i= 3.
a;y u1 ai2u2+ u3 b1’ i 1,2,3
“The standard model, which is the dual of above, is

maximize

Implernentation

. Suppose,

211
221

z = —Mx Mx8 Mx9+b X, + bZXZ + b3x3
- T
| CPyxy Py 3X6’
subject to x7+a11x1+a21x1+a31x3 —ayXy T3,1Xg75 g T
Xgta Xy ta,, %, tag Xy w2y ,%, ~3,,%5 733,560
x9 +x1 +x3 +x4 +x5 +x6 =1,
x.z20; j=1---9, -
J
for the given problem, we have -
= 1; alzzl; bl: 1.1;
= 2. - 1- b =16é6:
-.2, 3.22 1; 2 ~=6s
= 1; a3, = 2; = 1.6.

a3

These numerical

Qalues are substituted in the standard model.



-51-

Computation . ‘
The Simplex algorithm applied to the above fives
u, = 0.54; u2 = 0.54; u; = 0.02.
This computation was performed on the IBM 704 and required less
than .one minute of machine time, and much of that was consumed in

reading in control and data cards.

Interpretation
The best Chebyshev fit for the three equations indicates that

the unknowns have values, 0.54 and 0.54, with the error on measure-

ment at 0.02,

Example 4. Problem on a Linear Second Order
“ o~ Ordinary-Differential Equation

An unknown function wu(s) satisfies the differential equation,

u' +u=s,
on the interval S: 0<ss < 0.2,
and satisfies the prescribed cdnditions, :
u(0) + u'(0) = 2.0,
u(0.2) = 1,18007,
We are required to find u(0.08).

‘Formulation and Implementation

We consider three mesh points: s, = 0, s, = 0.08, and
Sy = 0.2, and use as approximation formulas Taylor expansions re-

lating values of u, u' and u'" at adjacent mesh points,

Variables:
u, u(sk), k = 1(1)3,
1 1 . —
u'y oo (sk), k = 1(1)3,
1" 1 . -
u k u (sk)’ k 1(1)3,
'Ejk’ ij approximation errors j=1,2; k=1,2,
U max( IEjk . ]ij’).
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Constants:
el 2, h,  0.08,
c? ' 1.18008, h,  0.12,
> .
cy 0, h1 0.0064,v
2
<, 0.08, . 'hZ 0.0144.
c3 0.2,
Relations: N
| I
b e 2.0 prescribed conditions.
u, = 1.18007
3 !
| B
uy; tuy o= 0.
u, '7: = 0.08 differential equation discretized.
| I -
ug +uy = 0.2 .
S "o_ -
u, + 0,0811l + 0.,00321).1 u, E11
u, + 0.12u! + 0.0072u" - u, = E Taylor expansions
2 2 2 3 12 (forward)
0,0Su_i + 0,0064u'1' - 0,08u2' = E21
0.12u + 0.0144u}j - 0.12w = E,,
_ 1 "o -
u, 0n08112 + 0,0032u2 u, F11
u3 - O.,].ZU:;, + 0.007211'3| - U.Z = F]_Z v Taylor expansions
- 0.08u, + 0.0064u) + 008y =F_, [  (Packward)
- 0.12u) + 0.0144u}] + 0.12w, = F

Linear model:

minimize w = uys
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subject to conditions: .

c

+ ul‘ =2.0,

- u'lz -2.0,
=1.,18007,

-1.18007,
u'l' =0.0,
u'!' = 0.0,
>0.08,

» »
or
' 1
£ & & ¢
+

!
c

N‘.—‘.—ww.—«»—
]

-+
e

=2-.08,
z0.2,
z-.2,
+ 0.08u" + 0.0032u" -
- 0.08u - 0. 0032u" +

u
1 u

+012u2+00072u -u, =

u

+
e g e
[SS = \N]

vV N = = W

+
o

R

2 3
- 0,12\)2 - 0, 0072u'2' + 3
+ 0,08ul“ + 0,0064u'1' - 0,081»)2'2
- 0.08u.i - 0.0064u'1' + O.OS_\.LZ'Z'
+ O,IZué + 0,0144u‘2' - 0.12113; =0,
- O.l-Zuz' - 0,0144u” + O,IZu‘,’) =0,
+u, -0, O8u + 0, 0032u'2' - u1>0
- 1" =
+ O.,08u2 0.0032u2 + u, = o,
- 0,12u"3 + 0.00_7,211'3: - uz/O
1 - 1 >
+ 0,,121% 0‘,0072u3 + u, = 0,
- 0.08u£ + 0,,0064u'?l +0.08u >0,
+ 0\,081% - 0,0064u'?l - 0,08u1' =0,
- 0,12\% + 0.0l44u'?; + 0.'12u2' ZQ,

[ "no_ 1>
+ O.,lZu3 0‘,0144u3 0.12u2 =0,

—
U1v
£ &£ £ £ £ £ £ @6
O O O O © O O O O © O O O O © © W W N
’ 1
c

g £ g g g £

£
N
o
o

The above linear: model is the dual of a linear program whose

variables are ‘xn, n = v1(1)26,
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Linear program:
maximize the linear function

z = 2x.-2x.+1.18007x. -1.18007x

1 5 3 4+0.08x7 -0.08x

8

+ O,,ng -O,leo,

subject to restraints:

O) x9+x10+xll+xlz+ x13+x14;+".x15+x16+x>17 +x18+x19

+ x19 + XZO + le + XZZ + x23 + x24 = l.Q,

(ul) X - %, + Xg - X, X - X157 %19 + %50 = 0,0',

+0,08x2 -0.08x_ ,= 0.0,

(ul') Xy - ?{2 + O,,08x11 -O.O8X12 4—0‘,08x15 -0008X16 3 24

»(u'l') Xg - X, + 0,003x11 —O‘,OO32x12 +0,,0064x15 —0,0064x16 = 0.0,

(y) 3, = xg = x F R X X Ry - Ky Xy F Xy, = 0.0,

(u'Z) 0‘,12x:13 _0'12X14_0°08X15+0°08X16+0°12X17 —Q.lels —0.08x19
+0.08x, -0.08x,, +0.08x,,+0.12x,, -0.12x,, = 0.0,

(wh) x, - xg +0:0072x); -0.0072x, , +0.0144x,, -0.0144x, g -
+0..,O‘0'_3'2x110 -0.0032x,, +0.0064x23 -0.0064324 = 0.0,

(g) x5 =%y +xg x5 - X8 %), 4%, - x,,= 0.0,

I

' — - -
(u3) .,le17 +O.,12x_18 OGIZX21 +O‘,12x22 0,12x25 +O°12X26 0.0,

N - - -
(u'!) x9 X0 +O‘,0072x‘21 O,,0072x22 +0,0144X25 O.,0144x26 0.0,

(The above Vformurlatio‘r.l appears very tedious, but it'is given in
all detail for reasons of clarity. Both the linear model and the linear
program can be presented in a single tableau that, columnwise, depicts
original model and, rowwise, the program. Even this detail can be by-
pé.ssed by com'putér code that will take minimum problem information

and prepare an input data'tape for the SCROL linear pi‘ogram code. )
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: Computantion .
Computatlon of the above program by the IBM 704 code, SCROL,

- gave the follong results:

1

u 0.00004 (maximum approximation error),

0

u(0) = 0.99998, 1(0.08) = 1.07682, u(0.2) = 1,18007,

uw'(0) = 1.00002, u'(0.08)= 0.92052, u'(0.2) = 0.80124,

‘u'"(0) = -.99998, u'"(0.08) -.99682,u'(0.2)= -.98007,
Interpretatmn

The required solution value, u(0.08), ‘is approxunately 1.07682
with'a pOSS1b1e error of 0.00004,

Comment .

The analytic function ,u.,=s + cos s satisfies the differential
equatlon and prescrlbed conditions. The g1ven differential syStem can
‘be transformed into a system of first- order d1fferent1al equatlons with
v_cont1n'uovus "coefficients" and continuous right-hand sides satisfying
Lepschitz conditions. Two independent condifions are prescribed, hence
according to Ince,z'l the differential problem admits of a unique con-
tinuous solution u and u' having continuous first derivatives, The
.functions u and u' are of this kind, hence are unique afnong functions
of this kind.,

Comparison of values for 4, &), and 4! with the computed
values u, u', u" at the mesh-points reveals a close agreement parti-
cularly for uand u'. The discrepancy in u', although.larger, still
permits a very good approximation to &« for any point s in‘S by means
of truncated expansions about the mesh points using computed values for
u, u', and u'. .

The finite-difference method described by Fox (Ref. 26) applied
.to this problem gives u(0.08) = 1.07681, which is a slightly better approx-
imation to p(0,08'= 1,07680 than we obtained. However, this method re-
quires additional mesh points (to provide a uniform mesh), the first of
which is outside the specified domain and does not give approximate values

for the first and second derivatives.
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Example 5. Problem on a Linear Ordinary Differential System
: of Two Second-Order Equations

The unknown functions u(s) and v(s) satisfy the differential equations,

u+v+2v +v'" = cos s
U +u' v =v' =0 : on the interval S: 0.4< s < 0.7,

and satisfy the prescribed conditions,

.38942,

u'(0.4) = -
u'(0.7) = -.64422,
v'(0.5) = -.60653,
v'(0.6) = -.54881,

We are required to find the values of u andv ats = 0.4, 0.5, 0.6, 0.7.

Formulation and Implementation

‘ Wev consider the four mesh points = 0.4, sz=' 0.5, 8= 0.6, and
8 4= 0.7, and for approximatior} we use Taylor expanSions‘ relating u, u'
and.u' and relating v, v' and v' at adjacent mesh points. These linear
‘ r'elatioris, together with the differential equations localized at the mesh
péints and the prescribed conditions, provide us (as in the previous
exai'nple) with a system of linear inequalities involvin'g as Qariables uo,.
the absolute approximation error, and values of u and v and their first
two derivatives at the mesh points, With the objective of minimizing ﬁo,
we have a linear model whose dual is a linear program in unknowns,
X'n, n = I(1)72.
- Computation and Interpretation

Computation of the above linear program by the Simplex algorithm

using the SCROL code gives these results:

ug 0.0003, . )
u(0.4)= 0.92460, u(0.5) = 0,88072, u(0.6) = 0.82810, u(0.7)=0.76719,,

v(0.4)= 0.67081, v(0.5) = 0.60683, v(0.6) = 0.54891, v(0.7)=0.49707,,

along with first and se_éond derivative values for the same points.



The values given above approximate the required solution. The

error variable u_  applies to a single mesh step. ~Such errors can ac-

0
cumulate, hence the error in any one of the solut1on values may be much
greater,
Comment

The analytic functions = cos s and v/ = e ® satisfy the differ-
ent1al equatlons and prescr1bed conditions. According to the same
argument g1ven for Example 4, these solution functions are unique among
‘functions having continuous first and second derivatives.

Comparison of values for .t and - with the 'computed values u and
v given above reveals a maximum difference between u and z¢ of 00354
at the mesh point s = 0.4 and a maximum difference between v and 7 of

.00049 at s = 0.4 and at s = 0.8, The derivative value u', v' have max-

imum departures from 1/ of .00032 at s = 0.5, and from 7' of .00029 at
= 0.4. For u" and v" the maximum departures are ,00061 at s = 0.4

and .00305 at s = 0.5 respectively. The close agreement on the first

derivatives is due to the fact all the prescribed conditions assign nu-

merical values to first derivatives,

Example 6, Problem on a First-Order Partial Differential
Equation in Two Independent Variables

The unknown function u(s,t) must satisfy the partial differential

vequation,
2u - su, +u = szonR: 0.6<s<1.0; 0<t=<0.2,

“and the prescribed conditions,
u(s, 0) = Os .
us(0,6,t) = 1.2t

We are required to find u for s = 0.6, 0.8, 1.0, and t =0.1, 0.2.
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“"Formulation and Implementation

We consider the grid,

s = 0.6, t, = 0.0, hjéJ: 0.2, A= 1., 2,
s, = 0.8, t2=0,1 hk=0.1, k =1, 2,
Sy = 1.0, 'c3 = 0.2,

. and construct a linear model whose unknowns are aﬁ error variable Uy
and vqlues of u, u and u, at the lattice points (sé/, tk)’_ /é‘= _1_(1)3, and
k = 1(1)3. We seek to minimize u, subject to linear inequality restraints
as follows: ,
lk.

£2ut® - 0.6ul® + )22 36 |
£ (202X _ 0.8uky s 64 b ko= 13, (4 o),
+(2uF - l.0u§k+ ugk)Z:I:,I,OO
w® 2o, L= 1(1)3,
u11 =0,
uil =2+ .,12, (+a +; T ")’ )
u§l =+ "24, ) (+: +; T _))
Ak Ak Al Kk 1
. - 'y =0
ug (B LR 002u*§’+1'k) >0 |
AR o AR k] ,
uy * (u +»0;éut u ) =0 Je=1(1)3, k = 1, 2,
uy * (u k_ u ’k+1+>0.lutk’k+l) =0 o

The above restraints are obtained from the localization of the differential
equation and prescribed conditions and from Taylor expansions. The

associated linear pi‘ogram has 28 (equality) restraints in 78 nonnegative

(formal) unknowns X .



Computation and Interpretation

Computation of the linear program gives the following results:
~ u.= 0.0032 1

u(0.6,0.1) = 0.0387, (0.6, 0.2) = 0.0769,

u(0.8,0.1) = 0.0659, u(0.8,0.2)=0.1282,

u(1.0,0,1) = 0,0951, u(1.0,0.2) = 0.1859,

- along with approximation for first partial derivative values at the nine
lattice points, |

The above values approximate the required solution, As shown
by the éompa'rative magnitude of Ugs the approximation is admittedly
~crude. If greater accuracy is desired, any one or more of the following

modifications can be employed:

~a. refinement of the lattice;
b. three-point approximation;
¢, term-by-term differentiation of the original differential
equation with respect to s and to t, to provide two second-order partial

differential equations which must be satisfied by u,

Comment

The analytic function p = sztv satisfies the partial differential
equation and the prescribed conditions, and is the only such function

that does (extension of Theorem 6, see Ref, 23).

Comparison of the computed values for u above with [
shows a maximum difference of ,0141 or about 7% at (1., 0.2) The
difference at (0.8, 0.1) is only ,0019 or about 3%, which shows
the effect on.the departure from the theoretical solution which occurs
when the solution is extended to points farther from points of prescrip-

tion. Test runs on simpler problems have indicated that the departure
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can definitely be reduced by use of finer mes"hzj the results ar‘e not
" conclusive éhoughAto project a definitive statement as to the degree
of improvement attainable, Other tests indicate that much more
significant impfovement éa.n be made by following modification ¢

above,

~Example 7. Problems on a Parabolic Partial Differential Equation

A. The unknown function u(s,t) must satisfy the linear second-order

differential equation,
: ¢ .
- = < < ; >
u +us/1:+u,c u =e /t, for ‘_005 s 1‘,7.5, t >0,

and the conditions,

u(l.0, 0) =1 (exact)

u{0.5, 0.05) 0.50595 (measured),

u(l.5, 0,05) 1.43801 (measured).

~Values for u and its derivatives at (1.0, 0.05) are desired.

Formulation and Implementation

Let u%*, us*, ut*, us-"-; denote the required values at (1.0, 0.05).
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Localizing the differential equation at this point yields.

u¥ + 20.u %+ u¥ - u % = 19,0246.
s t ss

Central difference approximation gives
u ~ (1.43801 - 0.50595)/2(0.5),

u¥ ~ (1.43801 - 2u% - 0.50595/ 0.25.

Linear approximation in t gives

u* - OcOSut'n*. 1.

Because we have four linear relations in four unknowns, the
problem is barely conditioned, There is no opportunity for minimi-
zation of approximation errors, The approximations are treated as

equations producing a linear algebraic system to be solved.

Computation and Interpretation

The linear algebraic system is satisfied by

u* = 0,9699,
us* = 009321,
u* = -,602,
S
u¥ =0.0156.
SSs

The approximations for u%* and ut* are suspect. It is suggested

that more data be obtained,
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Comment

Siﬁce the conditions are prescribed in discrete form (not as
functions) we are not able to predicate a unique functional solution .
Additional discrete data might completely alter the numerical result,
We are confronted here wth a problem analogous to curve-=fitting to
discrete data--we simply use all the data available to obtain the best
answer possible.

However, the analytic function w = se-‘C +te ® does satisfy
the partial differéntial equation and prescribed conditions. At

(1.0, 0.05) we have
= ,9693, A%:=9328, py = -.5834, Mg =.,0184

to compare with the values for u%* and its derivatives above. It
seems we have a surprisingly good approximation despite the sparse

data.

B. The differential equation,

.
u+us/t+ut-uss—e /t,

holds on the closed domain: 0,5< s < 1.5; 0.05 <t < 1.0, and the

following values of u are furnished:
u(0.5, 0) = 0,5, u(l.0, 0) = 1.0 u(l.5, 0)= 1.5,

which are exact, and



u(0.5, 0.05) =0.50595, u(l,0.05)= 0.970, u(l.5,0.05)=1.43801,
u(0.5,0.1) =0.51307, u(l.5,0.1) =1.37957,
u(0.5,0.2) =0.53066, o u(l.5,0.2) =1.27272,

which are measured with a possible error of 5 in the last digit.

Approximate values for u ét (1,0.05), 1,0.1) and (1, 0.2) are
required. Values of ug, ug and u o at thgse points and at the meas-
ured prescription points- would be very useful.

Formulation and Implementation

We consider the grid,

s, = 0.5, %/1 = 0.5, t, =0.05 h = 0.05
s, = 1.0, %=Q°5’ t,=0.10, h,=0.10,
s, = 1.5, t, = 0.20,

- and the unknowns,

A usék, ut/ak, and &5, L= 1.2,3, k =1,2,3.

We allow for measurement errors, and write the prescribed

conditions as inequalities:

utl 20.50590 w?l 20.965 w2l =1.43796

—utl = 50600 w2l s 975 o3l = 1.43806

u'?20.51302 C w3% 2137952

wl?=_51312 : w32 >1.37962
13 33

u ~ =20.53061 u " =1.27267
13 | 33

-u =-.53071 -u =1.27277

Localization of the differential equation, with allowance for

. . . -t .
rounding errors in evaluating e /t, provides
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u"él + ZOuél + u’/él - u'él
s t 8s

u/d1 - ZOuél - u"é’l + uél‘
] t sSs

>19.02455

>-19.02465 1

i
4§
1

u'@J“ 10uf? of? - f? > 9.04835 E/é,: 1,2, 3.
k2 lOuf’Z - ufz + u’ff >-9,04845
i3 5u%3 4 th ; u"séz > 4.09360
A3 5us‘é3 ; f3’+ u/f“: > -4.09370
Central difference formulas are assumed to hold for s = 1.
:I:(uik - ulk - u3k)>o | (irriplies equality) } . | ;
i(ugls( - aut® guk - 4u3k)20' (irhpiies ‘equality. TR
and for t = 0.05 and 0.1, |
+(10ut? - utll) >+ 5.0,
+ (10u’? -,uil») >+ 10.0,"
+(10u>2 - u?;l) >+ 15.0, ‘
+(5uld - uiz) >+ 2.5,
+ (5u23 - uiz) z+ 5.0,
£ (5077 - LY =2 7.5,
Simpson's Rule is assumed to hold 1n S;
+ [ul® 4 ((.).‘5ulsk + 2u§k + o.5u2k)/3 s 20, k=1,23.

Taylor expansions, with errors to be minimized, applied at the

s-boundary points give

ug * T R L
S Ss k = 1, 2’ 3
Uy * (u3k— 0.5u2k + u3ls{ - uak)z 0



The trapezoid rule, with errors to be minimized, applied at the

upper t points yields

2 2 k 3, -

u, = (u + 0e05ut -u + 0\,05u,c )y =0, = 1, 2, 3.

0

The linear model consisting of the above inequalities with the

objective of minimizing v,y is the dual of a standard linear program.

Computation and Interpretation

Computation of the linear program was performed by the IBM
709 code, SCROL. The problem required six minutes of computer
time. '

The following results were obtained:

u(0.5,0.05) = 0.5060, u(l, 0.05) = 0.9709, u(l.5,0.05) = 1.4380,

ug = 0.9218, u, = 0.9320, u, = 0.9420,

u, = 0.1312, u = -.5770, u, = -1.2048,

u__=0.0493, u__=0.0183, u_ = 0.0091;
u(0.5,0.10) = 0.5131, u(l, 0.10) = 0.9423, wu(l.5,0.10) = 1.3795,

u_ = 0.8452, u, = 0.8664, u = 0.8875,

u, = 0.1530, u, = -.5258, u = -1.1366,

u = 0.0699, uss=O°O321 . u = 0.0197;

u(0.5,0.20) = 0.5306, u(l,0.20) = 0.8948, u(l.5,0.20)= 1.2727,

u = 0.7045, . u = 0.7421, u, = 0.7796,"
u, = 0.1535, uy =-.4570, u, = -.9641,
u_ =0.1130, u_ = 0.0545, u =0.1128.
ss Ss _ ss

The value for the er_ror‘ term u, was 0.0022. The values given for

t = 0.10 may be in error by this amount. The values at t = 0.2, par-
ticularly for U and u, are not very reliable because of lower-
order approximations that had to be used for these points. More data

for additional (increasing) t values along the s boundaries will make
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extension of the tabulation in .t possible, with greater accuracy, except
that thé values at the.gr'eat.és‘.c t will always be more or less suspect.

Comment .
Again as in A, discrete conditions do not predicate unicity. This

discrete problem is also satisfied by

Cw=set+te™S. At (1.0, 0.2) we have

= ,8923, M= .7452, s = -.4508, ar, = 0736,

which compares very favorably with the computed values for this point
given above. .
A technique for measurement-error allowance is illustrated in

this example.

Example 8. Problems on a Hyperbolic Part1a1
: Differential Equation

A. An unknown function u(s, t) must satisfy the linear second-order

partial differential equation,

u - u_s/s tu  -ou= t2-1, for s >0; t >0,
and the conditions,

u(0.2,0) = 1,04 u (0.2, 0) = 10.04,

u(0,5, 0) = 1,25, u, (0.5, 0)=0.25,

u(1.0, 0) = 2.00, ut(l.;Og 0)= 1.00,

Values for u, u_, u and u _ are desired at the points (0.2, 0.1), (0.5, 0.1),
and (1.0, 0.1).
Formulation and Implementation

The p01nts (0.2,0.1) and (1.0, 0. 1) lie outside the domain deter-
mined by characterlstlcs through (0.2, 0) and (1.0, 0). Values at these

' points cannot be determlned from the given data (Ref, 27, p. 16).

We consider the grid points,

- 0.2, 4 - _ 3
5o 0.2, tO_ o, ho 'f),l,
s, = 0. 5, ,4/ t, = 0.1
SZ = 1.0. o
Localization of the differential equation yields
ull 11 11 11 h '
-2u tu oo-u = - .99
Taylor expansmns at (s ty ) give

]10

1.25 - 0,3u + 0. 45u ~1.04,

1.25 + 0, 5u1° " 0,125uss~z.oo,
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0.25 - 0.3u0 + 0.045u'% ~0.04,
st ssgt
0.25 + 0.5u_, + 0.125ulY ~1.00,
10 st 11 sst
- +0.Iu, ~u 7,
o LRS!
u o + O“lusst~uss .
Expansions at (s1y tl) yield
11 11 11 _
u - 0,1u, " + O°005utt 1.25,
L1 3!

- 0, lutt ~0.25.

Altogether there are nine linear relations in nine unknowns. The
problem is barely conditioned. The approximations must be treated as
equalities.

Computation and Interpretation

The linear algebraic system is satisfied by
11
u

= 1.2714,
at = 1.1000,
11
U, " = 0.4788,
uft = 22000,
ss
11 _
ust = 2.2878. |
Linear approximation had to be used for uy and U hence

these values are suspect. More data along the line t = 0 would be
_useful to improve accuracy and extend the scope of the problem.
Comment

Remarks on discrete conditions given in comment on Example
7A also apply here. An analytic function that satisfies the discrete
problem is 4« = szet + t2+ 1.
At (0.5, 0.1) we have

w=1,2638, At = 1.1052, b= 0.4538, Ugg™ 2.2104, U= 2.2538,

which compares favorably with computed values for u and its derivatives

given above,.

B. The function u(s,t) must satisfy

2
- - = - >
u us/s + u oot Uy t 1, for s . 0, t>0,
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and the conditions,

u(0.20,0) = 1.0400, ut(O,ZO, 0) = 0.0400,
u(0.35,0) = 1.1225, ut(0.35, 0) = 0.1225,
u(0.50,0) = 1,2500, ut(O.SO, 0) = 0.2500,
u({0.75,0) = 1.5625, ut(0075,0)_= 0.5625,
u(l.00,0) = 2.0000, ut(l,OO, 0) = 1.0000.

Values for u, u, ou, u, and o are desired at the points,
(0.35, 0.1),  (0.50, 0.1),  (0.75, 0.1),

(0.50, 0.2).

Formulation and Implementation

The characteristics for the equation are
s = t = constant,

The requirement points along t = 0.1 all lie within the domain bounded

oy the characteristics,

s+ t=0.20, s £t=1.00;

hence the values at these points can be determined from the data given
along the segment t =0, 0.20 <s < 1.00. The point (0.50, 0.2) lies

in the domain bounded by the characteristics,
s .+t = 0.45, : s £ t=0.85;

hence the values here can be determined once the values along the
segment t = 0.1, 0.35<s <0.75 are known. This is true because
 the segments are nowhere parallel to the characteristics.

We consider the grid,

sy = 0.20, Ay =0.15, tg=0, hy=0.1,
s, = 0.35, /”1 =0.15, t, =0.1, h,=

s, = 0.50, /4/2 = 0.25, t, = 0.2,

s, = 0.75, ,/»3 = 0.25,

s4 =1.00,

A
1}
P
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At every lattice point, grid steps in t are less than those in. s with
u, and u, are given along a line t = constant, namely t = 0; therefore
there should be no stability difficulty(Ref. 27, p.24).

Localization of the differential equation yields

:L-(u11 --Z.85714u;1 + u;; - utltl) =+ .99,
(! < 2.0000000 + w2l S L)) =7 99,
sl - 133333020 4 w! o wl) 27 .99,
i(u?z -VZ,OVOOOOu§2+ uszs2 - utztz) =¥ .96.

The:.follow'iﬁ'g :a{pp;rdximaﬁons are used with no error admitted
where known numerical values appear. (This concession is forced by
the fact that the differential equation is not assumed to hold along the
line t =0.)

Second-order expansions in s along t = 0 yield

+(1.1225 - O,ISu;O + 0.01125\1;2) >+ 1.0400,
+£(1.1225 + 0.15ui0 + o.o1125u;2) >+ 1.2500,
+(1.2500 - 0.15u§0 + o.onzsugg) >+ 1.1225,
£(1.2500 + 0.25u2° + 0.03125u>0) ># 1.5625,
£(1.5625 - 0.25u>" + 0.03125u>0) ># 1.2500,
+(1.5625 + 0,2.51120 +0.03 1251122) >+ 2.0000,
£(0.1225 - 0.15u'%+ 0.01125u 1ot) >4+ 0.0400,
st ss
+(0.1225 + 0.15u0 4 0,01125u1°g >+ 0.2500,
st Ss
. £(0.2500 - 0.15u%0 + 0.01125u20t) >+ 0.1225,
st ss
©£(0.2500 + 0.250° + 0.03125&2% >+ 0.5626,
st ss
+(0.5625 + 0.25u0 + 0.03125u30t) >+ 1.0000,
st ss :
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: Second-order expansion in s along t = 0.1 yield

11 11 21
u

'uo + (u" ™ + 0‘.151111 +0.01125u__ - ) =0,
) T8 ss :
u, + (@?h 4 025021 4 0.03125u2) - W?Y) 2o,
“2 s ss
w o+ @l o w?l v o156t - 0.01125u2Y) 20,
0 7 s ss
g+ (@l - w3l v 02503t - 0.0312502)) 20,
. 'S 88
21 21 21 11, _
u, (ut -0.15u_, + 0.01125u__, -u ) =0,
21 21 21 31
uy + (47 + 0.25u + 0.03125u_ - ;") 0.

" '‘Expansions in t give

! oond? +o.00sull - 11225) 20,
+ (w2l - O,Iuil + 0,00Suitl - 1.2500) =0,
'+ @0l +0.0058, - 1.5625) 20,
g (@l 0.'1\1%1 +0.005u2! - u??) =0,
uyx (w22 0.1:% +0.005:27 - w?ly =0,
£ (' - 0w, - 0.1225) 20, |
£ - o,h;%tl -.0.2500) =0,
£l - o.mitl - 0.5625) =0.
up 2 (1 + 0.1l -l 20,
uOI:I: (u.?:l - 0‘,lu§tl - uil) =0,
uo':lz (u;0 + O,lu;? - u;l) =0,
'u(') + (uiO + Oalugg - usl) =0,
u, (¥ + o.mi’f -wl) =0,
Uy * (u.g1 + O.lu?;i - uzz) =0,
uy * (u.g2 + O,qusi -_uil) =20,
u, * (uio + o.mlszt - u;;) >0,
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a0+ 0.1020 - W2l o,
P D
uo + (u + Onlu - 1u ) =
| 50 88" 8%,
u, + (u20+051u -u’ ) =0,
O DT A
Uy * (ugi + Ouluggt - ug? } =0,
ug * (ugg - 0lul - ul ) 20

The above linear restraints with the objective of minimizing

u, constitute a model which is the dual of a standard linear program,.

O ' .
Computation and Interpretation

- Computation of linear program by the SCROL code gives
ug = 0.0013,

u(0.35, 0.1) = 1,145, u_=0.771, =0.336, u__=2.201, v =2.133,
u(0.50, 0.1) = 1.286, u_=1.101, =0.478, u =2,201, uttzz,'275,
u(0.75,0.1) = 1.632, u_=1.651, u =0.824, u__=2.199, u =2.619,

u(0.50,0.2) = 1.3 4, u =1.212, u =0.706, u_=2.421, u_=2.302,
‘ s ' 88 tt

o+ o e e

The approximation error along t = .Oclvis. no greater than ug-
For increased accuracy, data at intermediate points along t = 0 is needed.
A smaller grid step in t can then be used. -
Comment A

The differential equation and prescribed conditions are satisfied

by u = _sZe‘c + t2+ 1. At the point (0.5, 0.2) we have

w=1.345, u_ = 1.221, ey =705, w = 2.443, 1 = 2.305.

Despite the fact that this comparison point is four times as far from
the prescription, we have essentially as good comparison of u and M

as in A, This result shows the effect of the mesh refinement in s,

Example 9, Problems on an Elliptic Partial Differential Equation

A. An unknown function u{s,t) must satisfy Laplace's partial differ-
ential equation for two independent variables,

u +u
s

1s tt = O

on an open two-dimensional domain consisting of those points (s, t) that

are in the circle, s2 + t2< 1.0, but not in the square,

-6 £8<0,6, -.6<t<0.6.
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The potential u can be measured on the inner and outer

boundaries. The following measurements have been made:

u(0. 6, 0) = 0.564, u(l.0, 0) = 0.841,
u(0.8, 0.6) =1.307, u(0.8, -. 6) = 0.394.

Values for u and its derivatives at (0.8, 0) are desired.

Formulation and Implementation

e

We denote the required values at (0.8, 0) by u*, u:;, 1}",-:, uk,

and u* and use the following central difference approximations:

tt
wk  ~ (0.841 - 0.564)/0.4,
wk_ o~ (0.841 - 2u* + 0.564)/0.04,
w ~ (1,307 - 0.394)/1.2,
u¥  ~ (1.307 - 2u* + 0.394)/0.36.

Localization of the differential equation yields

As there are oniy five linear relations in five unknowns, the
~ problem is barely conditioned. The approximations must be treated

as equalities.

Computation and Interpretation

The linear algebraic system is satisfied by

u (0.8, 0) =0.717,
u (0.8, 0) =0.692,
1w, (0.8, 0) = 0.761,
u__(0.8, 0) = -.740,
u, (0.8, 0) = 0.740.

I

The above results are the best obtainable with the given data.
For greater accuracy, it is suggested that additional measurements
be made, to four decimal places if possible, at the following boundary

points (s, t):
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(a) The points already measured;

(b) Those points at which t=0,3 and t = -.3.

J
Comment

This example may be thought of as a discretization of a plane
Dirichlet problem of the form
u_ + U, = 0 on D, a bounded region in the sxt plane
with
u = f(s,t) on I, the boundary of D,

in which a solution u is sought which is analytic on D and continuous on
D+ I This problem has been the subject of considerable mathematical
investigation, the question usually being on sufficient conditions of f(s, t)
as to differentiability in order to insure the existence and uni‘queness
for a more-or-less specific domain D of a solution u as required,

The discrete problem differs from the above in that (1) the

prescribed condition is
u = F(P ),
Y

"where F is nota funct.ion of continuous variables s,' t along I' but rather

a function of some finite set of discrete points P_of I, and (2) the only
solution attainable is likewise not the function u o\£ continuous variables
s;t but rather a function U of a finite set of discrete points (s4é/’tk) in D,

Forsythe and Wasow (Ref., 27, p. 177) list some eight questions
relative to discretization of elliptic partial differential problems, and pre-
face this listing with the statement, ''The answers to these problems are
generally unknown, and their tentative answers already fill a considerable -
literature which records some of the current state of the art, "

When confronted with the problem of finding potential values at
some points within a specific domain D when values are known (presumably
measured) at some points on the boundary I'of D, one is forced to an ex-
perimental attitude.

Two questionsarise:

(1) How to use the known information (boundary values and dif-

ferential equation) to obtain approximations for the required potential

values ?
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(2) How can the approximation be tested and improved?

On (1) we have the reassurance that there is a polynomial P
(s, t) which satisfies the discrete problem, that is the polynomial whose %
values at the (discrete) boundary points (P_) coincide with f;hosé of F
and whose second derivatives at all the disc?(rete requirement points
(s, tk) satisfy the localized differential equation. Usually some other
function U is constructed, since the determination of P may be indeed
a cumbrous process,

In (2) we are concerned with what can happen if more data are
available.” Presumably it is impossible or impractical to measure u
at all the requirement p'oints (S/e/’ tk)’ but spot measi;rement would cer-
tainly provide information on the agreement of uand U, It may be
possible that values for 4 may be .obtained at additional points of T.
The question then becomes: For a sequence of discrete problems ap-
: proachin’g the analytic problem, do the discrete solutions approach the
analytic solution? This question requires considerable investigation,
- and it is hoped the linear program method may provide some assistance,

- There is an analytic function, & = et sin s which satisfies the
kdifferen‘tial equation and prescribed conditions., The computed values

for u and its derivatives at (0.8, 0) compare quite well with those of .
B. The potential u for part A above has been remeasured to obtain

u(0.8, 0.6) = 1.3072,

" u(0.954, 0.3) = 1,1011, u(0.6, 0.3) = 0,7622,

(1.0, 0) = 0.8415, (0.6, 0) = 0.5646,
u(0.954, -.3) = 0.6043 u(0.6, -.3) = 0.4182.

u(0.8, -.6) = 0.3937,
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Values for u and its derivatives at u and its derivatives at the

N interior points (0.8, 0.3), (0.8, 0) ‘and (0.8; -.3) are desired.

Formulation and Implementation

We consider the grid

t = - .6, h1 = 0.3, For ty - For t,, ty:
t,=-.3, h, =03, él=o.-6, A =02, 8 =06, A =02
ty = 0, h, = 0.3, s, = 0.8, %zé =0.2, s, = 0.8, %é = 0.154,
t4=03, h4=0,3, 85 = 1.0; s3 = 0,954,

t5:=0.6,

and seek values for u, u, u u_ at the points (52’ tk), k = 2,3, 4.

s t’

Localization of the .differential equation at these points gives

£ (u, +u,)>0; k=2, 3, 4

Taylor expansions in t along the line s = s, give -

ug = (@ + 0,307 4 0.04585 - uP =0, k=23
) t tt .
ug * w2+ 0.3u%% + 0.045u%%) = = 1.3072,
) : t tt
- 22 22 22
ug # (@ - 0.3u% +0.045u°%) > + 0.3937,
- u, RICA TS O.3ut2" ktl 0,045ué’ ktly S 0, x = 2,3,
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- Taylor expansions in s give

22 . 22 22
u -

u, + ( 0.2u”" + 0.02u”%) =+ .4182,

0 S ss

u, = (@2 0.154u%% + 0.01186u%) 22 6043,
wox (@232 0.2u%3 + 0.02u%3) =+ .5646,

0 s ss. R

w o+ (w234 0.20%3 4+ 0.02u%3) =+ .8415,

0 s ss

wox (w2t 020244 0.020%% 2 2. 7622,

0 s ss

u, * (w244 0,154u§4+ o,onséug‘:) >+ .1011

o Since there are uniform steps in t, Simpson's Rule can be
applied to yield: ‘

22 22 23 24 24, _,
u;s o+ O.,lutt + O°4utt - U, + O,lutt) >0.

£ (
(The above is assumed to hold without admitted error because it is a
higher-order approximation. )

~ With the objective of'minirnizin-g‘ u the above linear model is

O’
the dual of a'standard linear program.. '

- Computation and Interpretation .

Computation of the above linear program by the SCROL code
required four minutes on the IBM 704 computer. The following results

were obtained:

"u, =0.00015; '

u(0.8, -.3) = 0.53168, u, = 0.51348, u = -.53161,
| | u, = 0.540'18, v, = 0.53161;
u(0.8, 0) =0.71750, us‘ = 0.69225, u o= -.73021,
o | u = 0.72844, U, = 0.73021;
u(0.8, 0.3) - 0.96874, u_ =0.93506, wu__ = -.96905,
u =0.98232, u  =0.96905.

The accuracy of the approximation for u is very nearly the same as

that of the measured values, Additional values for u at nearby points



-77-

in either the ‘s "or 't direction may be obtained by using a truncated
Taylor expansion with the given derivative values. Increased accuracy

in derivative values could be obtained by more measurements.

Comment
General comments on 9A also apply here, The agreement be-
tween computed values for u and its derivatives and .. = e‘c sin s

(which satisfies the problem) and its derivatives is quite good.

Example 10, Problem on a System of First-Order
Partial Differential Equations :

The uynknown functions u(s, t) and v(s, t) must satisfy the partial

differential equations:
u +tv,_= eS + et,
st for s>0, t>0,
su, - tv_ =0,

5

Along the line t = 1.0, measurements of u and v give

(0.6, 1.0) = 2.822, (0.6, 1.0) = 3,078,
(0.8, 1.0) = 3.225,  v(0.8, 1.0) = 3.358,
w(1.0, 1.0) = 3.718,  v(1.0, 1.0) = 3.718,
w(l.2, 1.0) = 4.320,  v(L.2, 1.0) = 4.158,
u(l.4, 1.0) = 5.055,  v(1.4, 1.0) = 4.678,

with possible errors of +,0005.
Values for the first partial derivatives at the above points and
for the solution functions and these derivatives at the points (0.8, 1.2},

(1.0, 1.2), and (1.2, 1.2) are desired,

Formulation and Implementation

Required values are determinable from the given data. Stability

. is ensured for the following grid

s, = 0.6, »A_-l = 0.2, t, = 1.0, hy = 0.2
s, = 0.8, %/2=0,29 t, = 1.2,

s, = 1.0, ¢V3 = 0.2,

s, = 1.2, %,i: 0.2,

s5 = 1.4,
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Localization of the differential equations yields

+
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Prescribed conditions yield

il
u

+

+

*

+

+

21

u

31

u

41

u

51

u

=+ (2.822+ 0.0005), + v

W

+*

(3.225+ 0.0005), + Vv
(3.718+ 0.0005), + v
(4.320+ 0.0005), + v

(5.055+ 0.0005), + v
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21
31
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+

\Y)

+

\

+
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(3.078% 0.0005),
(3.358F 0.0005),
(3.718+ 0.0005),
(4.158% 0.0005),

(4.678+ 0.0005).
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Taylor expansions in s yield

U + (u{él + O.Zuél —‘u/rdfl’lﬁ)

-
=

}./LJ_:: 1(1)4,
0 L Yo

S
ug s WLy OGZV»/;;I S AL
ug * W2 4 o.dez S Z‘O}"/a L
o _ =2,3
uy W2 4 0.2v%% - AL 2y ool T
ub (uﬁ"l’ L. {1/&1+ O,ZuS’él) =0, N
= 2(1)5,
uy (b1 —'v@'+'0.2vf’=l)‘ 20 5
v, + :(ué'—l’ 2. 1'142 + 0,v2\1§2) 20
P ' - = 3, 4.
Uy ..(vé"l’ 2 _ v‘é2 + o.zﬂsz),;o}

Taylor expansions in 't yield

""'uo :t:’(u'#al + O,Zu"/&]? - u’éz) =0

t
ug * (v‘é1 + 0,,?_v:él - v’é?‘) =0

F=2,3,4
u, * (uk'%l - déz + O,Zuf’z) =0 _ .
u, * Wl #2 o,ZVfZ) >0 )

.. .Computation and Interpretation

Computation of the linear program, minimizing Uy gives

u, = 0.0655,

(0.6, 1.0) = 2.822, u_=1.692, u = 1.79,
u(0.8, 1.0) = 3,225, u, = 2.132, u, = 2.167,
u(1.0,1.0) = 3.718, u_=2.788, u = 2.122,
u(1.2,1.0) = 4.320, u_ =3.342, u = 1.623,
u(l.4,1.0) = 5.055, u_=3.342, u =1.623,
u(0.8,1.2) = 3,643, u_=2.734, u = 2.417,
u(1.0, 1.2) = 4.207, u_ =3.148, u = 2.270,
u(l.2, 1.2) = 4.807, u_ =3.326, u = 2.267;

ot
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v(0.6, 1.0) = 3',Q7'8, v =1.078, v, =2.847,
v(0.8,1.0) = 3.358,  v_=1.732, v, =2.812,
v(1.0,1.0) = 3.717,  v_=2.122, v, = 2.649,
v(1.2,1.0) = 4.157, - v_=2.528, v, = 2.695,
v(1.4,1.0) = 4.677,  v_=2.272, v, = 3.430,
v(0.8,1.0) = 3.855,  v_=1.612, * v, = 2.812,
v(1.0,1.0) = 4.243,  v_=2.266, v, = 2.891,
v(1.2,1.0) = 4.762,  v_ =2.266, v, = 3.313.

The re'lé.tiVely low accuracy as reflected in the size of the error
term u, is caused by the tise of linear approximation-s on a rather
coarse grid.. Greater accuracy can be attained if values for u and v
are prescribed for a finer gfid in s along t=1,0. Itis preferable
hat the grid be uniform. 'The'gri'dbstep in t can then be reduced cor-

respondingly.
Comment

The differential equations and prescribed conditions are satis-

fied by

Comparison of the computed values for u, U, W, v, v, and \£ with
their counterparts in 4¢ and 4~ at the mesh points shows agreement to

- two-~decimal-place accuracy.

/‘5
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