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Velocity and Shape from Tightly-Coupled LiDAR and Camera

M. Hossein Daraeil, Anh Vu? and Roberto Manduchi?

Abstract—In this paper, we propose a multi-object tracking
and reconstruction approach through measurement-level fusion
of LiDAR and camera. The proposed method, regardless
of object class, estimates 3D motion and structure for all
rigid obstacles. Using an intermediate surface representation,
measurements from both sensors are processed within a joint
framework. We combine optical flow, surface reconstruction,
and point-to-surface terms in a tightly-coupled non-linear
energy function, which is minimized using Iterative Reweighted
Least Squares (IRLS). We demonstrate the performance of our
model on different datasets (KITTI with Velodyne HDL-64E
and our collected data with 4-layer ScalLa Ibeo), and show an
improvement in velocity error and crispness over state-of-the-
art trackers.

I. INTRODUCTION

Scene understanding is an essential component for an
autonomous vehicle to safely navigate through dynamic envi-
ronments. For this purpose, sensor fusion plays an important
role in extracting relevant information from different sensors
with different characteristics. In order to model and analyze
the surroundings, the vehicle must segment the scene into
moving objects, reconstruct their shape, and find their 3D
motion. In the computer vision community, jointly solving
3D motion and depth is referred to as the scene flow
problem [2]. In this paper, we lay an object-class-agnostic
tracking and reconstruction algorithm for rigid obstacles with
arbitrary shape and appearance. In this sense, our approach
differs from tracking-by-detection [1] in which objects of
one class, e.g. cars, are detected and tracked.

Cameras produce dense grids of intensity and color, rich
in semantic information. With a single camera, however,
the problem of computing scene flow is highly under-
determined. If the camera is not moving we cannot say
much about depth, and if it is, the ambiguity lies between
the distinction of camera motion and object motion [3].
Reconstruction and tracking in 3D requires depth information
which would be available in a multi-camera system [4], [5].
Depth estimates in a stereo system have lower accuracy
than active range-finders, cannot be computed in texture-less
areas, and have limited resolution. Cameras are also sensitive
to lighting conditions and susceptible to saturation. LiDARs,
on the other hand, generate point clouds of a desired region
in the environment. If mounted with the right pose, they
can directly and quickly estimate physical obstacles. Also
most LiDARs do not interfere with ambient light and work
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Fig. 1: Our tracking and reconstruction (a) takes sequences of
LiDAR point clouds and camera images, and (b) finds 3D velocity
v for each object. It (c) estimates an intermediate surface F to fuse
sensors, and (d) accumulates points as a 3D model.

equally well under different lighting conditions. Radars are
also employed for measuring extended object velocities, but
unlike LiDARs they are not suited for reconstructing scene
structure and surfaces.

In order to achieve robustness and accuracy in depth and
motion estimation, we argue that sensors need to be fused in
a tightly-coupled fashion. This is equivalent to fusing them at
the raw measurement level, and generating joint features and
models at a low level. This is different from loosely-coupled
(high-level) fusion, in which object candidates or tracks are
generated separately for each sensor and merged in the last
step [6], [7]. There are fundamental challenges in fusing raw
LiDAR and camera measurements. First, they are different
in nature, e.g. image data is dense, while LiDAR point
clouds are sparse angle measurements that contain range and
intensity. Second, they may have different sampling rates
and time-stamps. Third, since these sensors are mounted



at different positions they are susceptible to parallax. Yet
another challenge is to efficiently represent objects in both
sensor spaces. While simple object models, such as cuboids
[8], [9], cannot properly represent an extended object, non-
parametric models, such as dense point clouds [10], [11],
are non-differentiable and unsuitable for parametric energy
minimization. To the best of our knowledge, this work is the
first to address these challenges and to lay a dense, multi-
modal and measurement-level LiDAR and camera fusion
mechanism for object tracking and reconstruction. Our main
contributions are,

« We propose an intermediate object representation F,
shown in Fig. that relates sparse 3D LiDAR data in
spherical system to dense Camera data in Cartesian 2D
system with different time-stamps.

o We directly use raw visual and range sensor measure-
ments in a differential and feature-less energy minimiza-
tion framework. This is achieved by directly minimizing
a multi-modal cost function. We accumulate points to
enrich object models and to better track them.

o Based on estimated F for all rigid objects in the scene,
occlusion and parallax are explicitly modeled.

The rest of this paper is organized as follows: In Section I}
we overview the literature on multi-sensor fusion, scene flow,
and object tracking. In Section the problem is formally
stated. Section describes the intermediate representation
and the proposed energy function. In Section [V] we evaluate
the results of various experiments and compare our method
with available trackers. And Section [V concludes the paper.

II. RELATED WORK

Loosely-coupled tracking by detection: Several methods
[6], [12], [13] first detect instances of a certain class of
objects in each sensor space, then fuse and track detections
in a multi-modal tracker, e.g. multi-object Kalman filter [6],
Dempster-Shafer combination [14]. Another approach is to
employ LiDAR for object hypothesis generation and camera
for object hypothesis verification, e.g. [15], [16], [17]. In
these methods, a set of 3D region candidates are found in Li-
DAR space based on geometric features [9]. Then the image
patch corresponding to each 3D region is checked by image-
based classifiers, e.g. Gaussian Mixture Models (GMMs)
[15], AdaBoost [15], Histogram of Gradients (HOG) [16].
These algorithms are limited by detection performance, and
work only for one object class.

Piecewise planar Scene Flow: Scene flow, first introduced
by Vedula et al, [2], is a 3D motion vector defined at each
pixel, that combines image optical flow with depth change.
These features are computed in a sparse [18], [19] or dense
[3], [20] manner and primarily using stereoscopic vision
setups. Rabe and Franke first presented 6DVision [19], which
computes sparse scene flow at distinctive pixels. In their
Dense6D [21] system, they track each pixel in 3D using a
Kalman filter and based on precomputed dense optical flow
and stereo. Yamaguchi et al, [22] use a piece-wise planar
model and break the scene into superpixels. They form a
Markov Random Field (MRF) with a static scene assumption,

then optimize segments, ego-motion, occlusion, and plane
parameters. Vogel et al, [4] find plane parameters for each
segment too, but also consider a pairwise term between
nearby planes. In order to deal with dynamic scenes, they
compute a rigid motion for each segment. Menze et al, [23]
group segments into objects, and find motion parameters for
each object rather than all segments. Quiroga et al, [20],
[24] take two consecutive intensity and depth maps from
an RGBD camera, and track pixels in both intensity and
depth using Lucas-Kanade. Sun et al, [25] decompose depth
map into layers, and minimize a Gaussian MRF to estimate
dense scene flow. Hadfield et al, [26] use particle filters
and resample from the joint depth and appearance posterior
over time. Despite their promising results, most of stereo or
RGBD-based scene flow computation methods take hundreds
of seconds to process an image pair.

Odometry and Mapping using LiDAR and Camera: In
[27] Zhang et al, propose V-LOAM which combines visual
and LiDAR odometry. They employ visual and geometric
feature matching to estimate ego-motion. The high-frequency
visual odometry handles rapid motion, and LiDAR odometry
warrants low-drift and robustness in undesirable lighting
conditions. Although such feature-based methods have been
employed and have produced promising results in Simultane-
ous Localization and Mapping (SLAM), they are not suited
for multi-object tracking. Feature extraction techniques may
fail to provide or match enough number of visual/geometric
features for some objects, especially if the object is small,
far, texture-less, or occluded.

Non-parametric object tracking: Several methods align
tracked object point clouds with new segmented scans, then
append the segment to and enrich the 3D model [28], [29],
[10]. Wyffels and Campbell [28] lay a probabilistic method to
estimate motion and shape for a single extended object using
simulated LiDAR data, but do not experiment with real-
world datasets and do not add camera. Held et al, [10] track
2D velocity vectors in real-time and accumulate points to
form a dense model for each track. A latent surface variable
is implicitly included in their velocity posterior, modeled
as a collection of points sampled from the visible surface.
They make use of a grid-based sampling method, annealed
dynamic histograms, to maximize the velocity posterior.
They start by sampling from the state space at a coarse res-
olution, using an approximation to the posterior distribution
over velocities. As the resolution increases, they anneal this
distribution so that it approaches the true posterior. Their
method is capable of tracking in colored point clouds where
RGB values are added to sparse points, but does not use
dense image data directly and as a separate modality.

Scene flow using LiDAR and Camera: 1lg et al, [29]
employ LiDAR and Camera, mounted on a stationary plat-
form, to estimate pose and reconstruct the 3D model of a
moving object. They project 3D laser points onto the image,
and constrain the 3D motion based on precomputed optical
flow at the projected pixel. They form an energy function,
adding all motion constraints, and minimize it using IRLS
to find the pose as a twist (rotation and translation). As



Fig. 2: (a) raw LiDAR measurements on a 8¢ grid in spherical
coordinates with color encoding distance, (b) projection of points
onto image, (c) estimated object domains }V and accumulated
points P*, (d) projection of object domains onto image, i.e. X.

post-processing, they employ point-to-plane Iterative Closest
Point (ICP) to refine motion. Our method has a similar
nature. But it handles multiple moving objects, does not
require a fixed platform, a nodding range finder, or an
expensive pre-computation of dense optical flow. It also
optimizes all variables in a single-stage joint optimization
framework, and does not need ICP-based post-processing.

III. PROBLEM STATEMENT

The two primary sensors, camera and LiDAR, provide
intensity (color) and depth measurements of the environment
at different times. Let P = {p1, -+ ,pn} denote a cloud
of points p; = (6; p; p;)T measured by laser scanner at
t; in spherical coordinates. The measurements are taken at
discrete # and ¢ intervals and in LiDAR reference system,
as in Fig. 2| Also let Z(x) represent an intensity (or color)
image captured by camera, and x = (z y). We assume
camera intrinsic and extrinsic parameters (with respect to
LiDAR) are calibrated. Therefore, as shown in Fig. |Z|, laser
points and image pixels can be geometrically related. Let
us also assume that a set of object candidates are provided
with the first point cloud, e.g. from dataset annotations or
using cloud segmentation methods [30]. Upon arrival of a
new image or laser sample at any time, our goal is to update
velocity v = (vzvyv,)7, 3D accumulated point cloud
P*, and surface model F for all objects. The estimation
must be cross-modality, and performed in a robust Bayesian
framework. Similar to [10] we assume v is pure translational
(rotation-free) in short time periods. In order to model sensor
uncertainties, we assume laser measurements have Gaussian
noise with covariance,

Cp = diag(og, O'?p, oi) (1
which is known from sensor characteristics.We also model
images as Gaussian random variables with pixel-wise noise
variance a? across each channel.

Image-based Estimation Object Model LiDAR-based Estimation
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Fig. 3: Block-diagram for the proposed velocity and surface
estimation method. Objects are modeled with surface F, appearance
M, and velocity v.

IV. PROPOSED METHOD

Fig. 3] represents the overall tracking and reconstruction
algorithm for one object. The object model parameters,
shown in the middle column, are updated with new LiDAR
(right side) or camera (left side) samples. In this section we
introduce object model and the estimation approach.

A. Object Representation

While in long-term we represent objects using accumu-
lated set of points P*, there is a need for an intermediate
and differentiable model in short-term.

We model the visible side of objects using an intermediate
depth map F(#,) : R? — R defined on an elevation-
azimuth (fy) grid. It is defined over a domain W (Fig.
k) and is encouraged to be piecewise-planar. It can also be
projected onto the image plane using calibration parameters,
specifying a set of pixels X belonging to the object (Fig.
[H). This surface can be directly employed to match new
laser measurements, it helps represent optical flow (on image
plane) in terms of 3D velocity vector, and also makes
possible explicit occlusion and parallax modeling. We also
add an appearance model M for each object, which is simply
an intensity (or color) template for the surface. As mentioned
earlier, each object also has a unique 3D velocity vector, v.

B. Joint Motion and Depth Estimation

Let zy.; denote the set of all sensor measurements, i.e.
all images and laser scans ordered based on synchronized
time-stamps. In the remainder of this section we focus on a
single object. The posterior distribution of velocity v; can
be written as,

P(Vt|Z1:t) = /P(Vl:t\2’1:t)dV1:t—1

2
X /p(Zt|Vt)P(Vt\Vt71)p(V1:t71|Z1:t71)dV1:t71 2)
= P(Zt|Vt)pv (Vt|21:t71)

The first term, referred to as likelihood term, captures the
fidelity of z; given state vy, and the second term is the prior
(prediction) distribution for v;. Upon receiving a new image
Z:, the likelihood can be rewritten as,

pe(Tilve) = / pr( T M1, ve) pr(Me_)dMo—y (3)



where p; is image likelihood term given object appearance,
and pj, is the appearance model. When a new laser scan P
is received the likelihood will have a form,

pu(Pylve) = / po(PUF i, ve) pr(Fe)dFiy (&)

where pp is the laser likelihood given surface model, and
pr is the surface distribution.

We represent the problem in its analogous energy form and
address it as an energy minimization problem. Let Er, E¢,
E;, and E, represent energy forms for surface distribution,
image likelihood, LiDAR likelihood, and velocity prior de-
fined above. At each iteration, we first estimate the surface F
based on accumulated object points P*. As described in Sec.
surface F is represented with a vector of coefficients
d. Surface energy Er is then formulated as,

Ep(d) = Ep(d) + AER(d) 5)

where Ep is surface data term based on P*, Er is surface
regularization term, and A is a constant. Surface coefficients
d, are updated by minimizing this energy function. Surface
distribution is then modeled as a Gaussian with mean d.
We can also estimate surface error variance, 0%, based on
surface energy term. When a new image is received, we have
in energy form,

E(v)=Ec(v)+ Ey(v) (6)

and update v by minimizing this energy. Then we update
object appearance M as pixels specified by X from the new
image. If the new sample is a laser point cloud P we have,

E(v) = EL(v) + Ey(v) ()

which is minimized in a similar fashion to update v. Finally
we add new object points from P to accumulated cloud
P*. Although the probability distributions defined above are
not Gaussian, they can be approximated as locally Gaussian
variables. This is analogous to employing an iterative en-
ergy minimization approach, e.g. Iterative Re-weighted Least
Squares (IRLS) [31], and minimizing a quadratic function at
each step. In what follows we explain each term in detail.

C. Surface Data Term, Ep(d)

Object surface F, defined on elevation-azimuth grid, is up-
dated after each iteration based on object accumulated points
‘P*. Surface probability density function is decomposed as,

pr(Fi—1|P*) o« pp(P*|Fi-1) pr(Fi-1) ¥

with pp being the data term, and pg the regularization term
enforcing piece-wise planar surfaces. Let us represent F as
a linear combination of () basis functions,

Q
F(0, ) = _dig; (0, ¢) 9)
j=1

Let ©Q; = (0;,¢;) and r; denote respectively the angular
coordinates and range of adjusted laser point p; in spherical
coordinates. We assume pp can be locally approximated as

a Gaussian distribution at each optimization iteration. Then
the log-likelihood of pp at each iteration is defined as a
quadratic function of d = (dy, - - - ,dQ)T as,

Q
Ep(@)= Y 1D die () —r)l”  (10)
pieP* [t j=1

where w; is Huber weight [31] computed from previous
iteration error, and 71»2 is the range variance of p;. Note that
P* consists of points accumulated from different times. For
points in the last laser scan 72 is equal to the characteristic
range variance ag. But older points, due to accumulation of
velocity errors, have larger uncertainties and are given less
weights. Huber weights also decrease over IRLS iterations
for outliers.

D. Surface Regularization Term, Er(d)

It is common [22], [4] to model urban driving envi-
ronments using piecewise planar surfaces. Inspired by the
regularization term in [32], [33], we minimize the second-
order derivatives of F to encourage smooth surfaces. In
addition, we allow the surface to potentially fold along sparse
line patterns to prevent over-smoothing. We define a surface
prior term as,

Er(d) = Y woo|HF 0, ¢)|r
0,pEW

(1)

where ||.|p is the Frobenius norm, 7 represents Hessian
matrix, and wg, are Huber weights at previous iteration.
Most (6, ) cells will be assigned large Huber weights,
resulting in penalization of second-order derivatives and
smooth surface. But these weights are small for a sparse
set of cells, which leads to less regularization and possibly
surface bending (as in Fig. ). We also define object extent
W to be the convex hull of {(6;,;)} for all points in P*.
As shown in Klowsky et al [32], the energy in (II)) can be
represented in terms of d as a quadratic function,

Eg(d) =d"Qd (12)
where elements of QQ are computed as,
Qlas = D wop < Hoa(0,0), Hop(0,9) > (13)

6,00

where < .,. > denotes sum of the element of Hadamard
multiplication, which are all pre-computed.

E. LiDAR Likelihood Term, E,(v)

The expression in () represents the input data likeli-
hood for a new laser cloud P,. This integral depends on
surface distribution and laser data term. The laser data
term pp(P|Fi—1,V:) encourages each new point, p; =
(0; @i )T, to fit to surface F;_; when adjusted with v;.
Let p; = (0}, ¢}, r:) denote time-adjusted points,

p; = pi — At;Rv (14)

where At; is the difference between ¢; (time-stamp for p;)
and F;_; time reference. Also R = (ry r, r,)7 is the
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Fig. 4: Reconstructed surface F for a vehicle (a) projected on the
image, (b) represented as a 2D depth map on discrete 6 grid, and
(c) corresponding weights for each grid cell. The surface is allowed
to bend along patterns with low weights.

linearized transformation at p; that maps velocity v from
Cartesian to spherical coordinates. Note such transformation
is not in general a linear operator, and R; is approximated
for each p;. Now let Rg be (ry rgp)T. The energy form of
laser data term is,

Wy
Ep(v) = Y =5 |F () — il
picP 't
Wy 2
= Z ﬁ ”]:(Qz - AtiRQV) - ’I“iH

pi€P *

>
2

pieP *

5)

S s (Q — AtiRav) — r;HZ
J

Similar to surface term, we add Huber weights w; to elim-
inate outlier points. Assuming ¢;’s are twice differentiable,
and At;Rqv is small relative to voxel size,

005, @7) ~ ¢;(0i, i) — At;V[ Rov  (16)

where V¢;; is the gradient of ¢; evaluated at ;. By
substituting in and setting 7} = ; —At;r]v we get
a quadratic laser energy term corresponding to a Gaussian
distribution. Now let d be the estimated basis function
coefficients from surface reconstruction and 0% denote the
surface error variance. The integral in () then results in
LiDAR negative log-likelihood,

Erv)= > % ch,-Ta — i+ AL(e] — EITV<I>iRQ)v"2 17
pieP Tt

where ®; is a vector whose elements are basis functions

evaluated at §2;, and V@, is the matrix of stacked gradients.

Also it can be shown p? = 72 +0%. Also note P is the most

recent laser scan, therefore 77 is equal to sensor characteristic

range variance aﬁ.

F. Image Likelihood Term, Ec(v)

The image-based term minimizes the photometric error
between appearance model M and new images as a function
of 3D velocity v. We model the appearance distribution in
as a Gaussian with current appearance model M as
mean and a pixelwise error variance of o3,. After processing
each new image, we update M as the projection of F on
the new image. Following the work of Kerl et al, [34], we
assume the photometric error between M and a new image

Fig. 5: Relationship between 3D velocity vector v at an arbitrary
point p on reconstructed surface F, and the induced displacement
7(x,v) (optical flow) on the image plane.

T follows t-distribution for each pixel. This assumption

leads to non-quadratic log-likelihood which can be handled

using iterative reweighting. The energy form corresponding
to pr(Z|My_1,vy) is,
1

E = — M V) —I(x)|? 18

1) = 3 S IMe+ (V) ~IE)IFa8)

xex X

where X is the image region corresponding to W, and o2
denotes t-distribution weights, computed based on [34]. The
effect of t-distribution weighting is conceptually similar to
Huber weights, where outliers get down-weighted to have
less influence in the overall estimated motion. The function
7(x,Vv) denotes the pixel displacement induced by three-
dimensional velocity v,

T(x,v) = AtBxv (19)

where At is the time difference between appearance M and
the new image. The 2 x 3 matrix By projects 3D velocity
v = (v vy v;)T (in the camera reference system) onto
image-space as a pixel-wise optical flow vector (see Fig. [3).
It can be shown [20] that this matrix can be approximated

as,
7i fz 0 _frx
Bx*ﬂz (O fy _fvy>

for pixel (x,y) with depth p,. Pixel depths can be derived
from reconstructed surface . This is where the intermediate
model connects two sensor spaces. We convert 3D points on
F to camera reference system, and then project them onto
the image plane in order to determine pixel depths.

By linearizing M in (I8) around x we get,

(20)

1
Ei(v)=)Y_ 0—2|\AtVM,€ Bxv — Mx|?

xex X

2n

where M, x = M(x) — Z(x) is the photometric error for
x, and VM is appearance gradient at x. Since M has a
Gaussian distribution, the image likelihood integral in (3]
results in another Gaussian with log-likelihood,

1 . .
Eo(v) =) . [AtVMIByv — Mix|? (22)

XEX M



G. Velocity Prior Term, E,(v)

This term couples velocity estimates through time,
and enforces a smooth motion trajectory. Let us assume
vi_1 ~ N(¥4_1;Cs_1) as the result of last estimation
step. We model the transition distribution as p(v;|vi—1) =
N(vi_1;Ca¢) with Ca; = At?C,,. At is time difference
between processing time of v; and v;_;, and C,, is a
hyperparameter. It models the change in velocity over one
second as a covariance matrix. The prediction distribution
from () can be rewritten as,

pv(Vr,|Z1:t—1) = /p(Vt|Vt—1) p(Vt—1|21:t—1)th—1 (23)

which is another Gaussian distribution. In energy form
(negative log-likelihood) it can be represented simply as,

Ev(Vt) = (Vt - "}t—l)TFv(Vt - Vt—l)

where T',, = CE(Ig — (C[_ll + CZ%)”CE)

(24)

H. Occlusion and parallax modeling

Object domain WV determines the span of angles (6 and )
that the object surface F is defined for. As shown in Fig. 2k,
we process all object domains at the same time. This enables
us to explicitly model occlusion for objects with overlapping
domains for their . In handling both occlusion and parallax,
we are merely using scene geometry from estimated F for all
objects. For the overlapping 6 cells, we mark the domain
of the farther object as occluded. Another problem is that
sensors at different positions lead to parallax. This means
LiDAR and camera are exposed to different regions of the
scene. In order to handle parallax, we use the projection of
object domains onto image, i.e. X shown in Fig. 2d. In a
similar way, we mark the overlapping image pixels for the
farther object as occluded.

1. Multi-resolution analysis

For first-order approximations in and to be valid,
variations in v and d must be small compared to grid
size. This is guaranteed by employing a coarse-to-fine and
incremental approach. We start from a low-resolution grid
for both F and M, and continue to finer levels. Motion
and surface parameters are updated at each iteration as
v v+Avand d + d+ Ad.

We construct a Gaussian pyramid for M, and make sure
velocity variations are small relative to grid size at each
pyramid level. We also employ coarse-to-fine basis functions
® for F. Let L*(R) denote the set of all functions f :
R — R for which ||f||? is integrable over R. A multi-
resolution analysis of L? is a nested set of vector spaces
VO c VvVl c V2 C ... where closp:(UgezVE) = L2(R).
The basis functions for the spaces V7 are called scaling
functions {¢?}. There are many possibilities for the choice
of multi-resolution basis functions, but we prefer square B-
spline wavelets due to their simplicity and continuous first
and second order derivatives.

The pyramid implementation makes possible to com-
promise between accuracy and performance, analogous to

histogram annealing of Held et al, [10]. If we have more
processing capacity, finer levels of the pyramid are processed
to attain higher accuracy.

V. EXPERIMENTS

This section covers the results of experiments with the pro-
posed method and other tracking/velocity estimation meth-
ods. We compare our results with classic point set registration
methods, e.g. ICP and Kernel Correlation (KC). To compare
with multimodal trackers, we use the C++ implementation 1]
of Any-time Tracker (Held et al, [10]), and implement the
method of Ilg et al, [29]. In order to tune hyperparameters
in the model we use 5% of sequences in each dataset for
training. We need to find the optimum values for Huber
function thresholds as well as step size parameters for all
terms . We use Nelder-Mead to find the best set of parameters
that minimize average velocity error for all objects in the
training set. Also since we are experimenting with different
LiDARs, each dataset requires separate parameter tuning.

A. Evaluation metrics

In order to compare the results, we use two primary
metrics to evaluate estimated velocity vectors. First we define
||Av|| in [m/s] as the magnitude of the error vector between
estimated motion ¥ and ground truth v,.

We also build object models by aligning the point clouds
using our estimated velocity. If estimates are not accurate,
the resulting accumulated point cloud will be noisy. For each
object, we compute the crispness score [35] as,

1 1
7 2 2 ]

i=1 j=1

> G(pi,—p}) (25)
pLEP:

where T' is number of frames that object is visible, P;
denotes ith scanned cloud for object, and p{c denotes the
nearest point in P; to pi Also, G denotes a multi-variate
Gaussian function. Crispness score computed above has a
minimum of zero (poor reconstruction) and a maximum of
one (perfect reconstruction).

B. Velocity estimation w/o Tracking

We have implemented a simple version of our method
which estimates instantaneous velocity for each object with-
out tracking. This is achieved through replacing the soft
constraint of (24) with a velocity constancy assumption over
a short time period. We employ this version to assess our
method as a velocity estimation module. For this experiment
we use 612 joint image-laser segments collected using a
24Hz camera and a 25Hz Valeo Scala B2 laserscanner.
This LiDAR scans at a higher frequency compared to
Velodyne HDL-64 but has only 4 vertical layers. Each
segment includes five consecutive laser point clouds and
five consecutive images (captured in a short time window
of 200ms) of the same object. These segments are extracted
by first removing ground plane from point clouds and then
applying the point cloud clustering method of [30]. Also

https://github.com/davheld/precision-tracking
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’ |Av]|[m/s] ‘ crispness

Proposed 0.57 0.18
ICP 1.08 0.1
KC 0.89 0.13

TABLE I: Magnitude of velocity error (|| Av||) and crispness score
for different methods tested on our collected data.

car + van pedestrian cyclist
1AVl ‘ crisp. | [|Av]| ‘ crisp. | ||Av]| ‘ crisp.
Proposed 0.47 0.43 0.55 0.38 0.56 0.38
ICP+Kalman 1.07 0.17 1.35 0.15 1.24 0.14
Ilg, [29] 0.88 0.28 1.05 0.23 1.04 0.25
Held, [10] 0.59 0.35 0.61 0.38 0.55 | 0.41

TABLE II: Results of different methods tested on KITTI Raw [36]

note unlike next experiment, laser and camera samples are
not synchronized in this experiment. Fig. [2] demonstrates
one example of our collected data, and it shows the narrow
LiDAR vertical field of view (3.2°) for this experiment. We
limit the dataset to scenarios in which cars and other object
are all stationary with respect to scene, but the ego-vehicle is
moving. Objects in the scene, then, appear to be moving in
the reverse direction of ego motion. Since we are measuring
ego motion using Applanix POS LV El we can compute the
ground-truth relative velocity of a parked vehicle in this local
reference frame and quantitatively evaluate the precision of
our tracking velocity estimates.

Table |[| summarizes the quantitative results of this exper-
iment for various methods. ICP and KC are LiDAR only
velocity estimation methods, and they work by matching
each new laser point to the nearest (ICP) or all points (KC)
in the 3D model P*. The proposed method, which employs
both sensors, outperforms ICP and KC by a large margin.

C. Velocity estimation + Tracking

In this experiment we track object velocities over longer
time periods. We employ velocity prior term as in (24) to
enforce a smooth motion. We benchmark our results with
ICP coupled by Kalman filtering, Any-time Tracker of Held
et al, [10] and the method proposed by Ilg et al, [29].
For this experiment, we use KITTI Raw [36] dataset which
consists of color images and high-resolution Velodyne HDL-
64 point clouds synchronized with a 10Hz sampling rate. Fig.
represents a typical driving scenario for this experiment
involving two cars. As shown in Fig. an independent
model is estimated for each object. Object segments are
extracted from dataset annotations along with object ground
truth velocities. We also use object crispness as another
metric to compare methods.

Table [[] shows the results for this experiment over KITTI
Raw dataset. All three methods exploit both sensor mea-
surements in order to track objects. The proposed method
achieves better results compared to state-of-the-art methods

Zhttp://www.applanix.com/products/poslv.htm
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(a) Laser points projected on image. Color encode:

(b) Tracked objects after 3 point clouds and 3 images.
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Fig. 6: (a) shows raw LiDAR and camera measurements. (b) shows
tracked cars after processing 3 point clouds and 3 images. (c-
e) represent reconstructed surface, accumulated point cloud, and
velocity curve for the left (near) car. (f-h) represents the results for
the right (far) car.

almost all object classes. Any-time Tracker (Held et al,[10])
has slightly better performance for cyclists. The primary
strength of the proposed method is in tracking extended
objects, e.g. cars. For objects that have negligible extent (far
or small-size objects like cyclists), methods which perform
point-matching achieve better results.

Also, [10] achieves velocity error magnitude of 0.56[m/s]
and 0.58[m/s] for objects with distance less than and more
than 45m. These numbers are, respectively, 0.48[m/s] and
0.57[m/s] for the proposed method. As shown in Fig [6]
the reconstructed surface and 3D model of near objects is
richer due to more laser samples falling in each discrete
0y grid cell. The proposed method is currently implemented
in Python, and takes 3.55 seconds per frame (KITTI Raw)
to run on an Intel Core i7 CPU (single core). A real-time
implementation which runs in parallel on multiple processors
is to be done as future work.

VI. CONCLUSION

A multi-object tracking and reconstruction method was
prototyped in this paper which combines raw measurements


http://www.applanix.com/products/poslv.htm

from LiDAR and camera. We introduced a piece-wise pla-
nar surface which serves as an intermediate representation
between two sensor spaces. The quantitative results prove
the robustness of the proposed method when used with
different laserscanners. Currently, our method requires object
clusters to be given as annotations or by a separate clustering
algorithm. One direction for future work could be joint image
and LiDAR object segmentation and coupling it with the
estimation framework of this paper. This will also help refine
object contours over time, i.e. object angular domain W or
its image domain &', and will contribute to the estimation
robustness as well.
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