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BAYESIAN NETWORKS: A MODEL OF SELF-ACTIVATED
MEMORY FOR EVIDENTIAL REASONING*

Judea Pearl
Cognitive Systems Laboratory, Computer Science Department, UCLA

ABSTRACT

The paper reports recent results from the theory of Bayesian networks, which offer a vi-
able formalism for realizing the computational objectives of connectionist models of knowledge.
In particular, we show that the Bayesian network formalism is supportive of self-activated, mul-
tidirectional propagation of evidence that converges rapidly to a globally-consistent equilibri-
um.

1. INTRODUCTION

This study was motivated by attempts to devise a computational model for humans’ in-
ferential reasoning, namely, the mechanism by which people integrate data from various
sources and generate a coherent interpretation of that data. Since the knowledge from which
inferences are drawn is mostly judgmental--namely, subjective, uncertain, and incomplete--a
natural place to start would be to cast the reasoning process in the framework of probability
theory. Probability theory is also useful because it is the simplist calculus which permits infer-
ences to flow two ways: from hypothesis to evidence (predictive), as well as from evidence to
hypothesis (diagnostic). Unfortunately, traditional probability theory has erected cultural bar-
riers against its usage in modelling human cognition. Scholarly textbooks on probability theory
try hard to create the impression that to construct an adequate representation of probabilistic
knowledge we must first define a joint distribution function on all propositions and their combi-
nations, and that this function should serve as the basis for all inferred judgements— a rather
distorted picture of human reasoning.

Human judgments regarding a small number of propositions (such as the likelihood that
a patient suffering from a given disease will develop a certain type of complication) are issued
swiftly and reliably, while judging the likelihood of a conjunction of many propositions is done
with great degree of difficulty and hesitancy. This suggests that the elementary building blocks
which make up human knowledge are not entries of a giant joint-distribution table, but rather
low-order probabilistic relations between small clusters of semantically-related propositions.

Additionally, a person reluctant to giving a numerical estimate for the conditional pro-
bability P(A|B), will normally show no hesitation to state whether propositions A and B are
dependent or independent,given C, namely, whether knowing the truth of B will or will not
alter the belief in A, assuming that C is true. Evidently, the notion of conditional dependence
is more basic than the numerical values attached to probability judgments, contrary to the pic-
ture painted in most textbooks on probability theory, where the latter is presumed to provide
the criterion for testing the former. This suggests that the fundamental structure of human
judgmental knowledge can be represented by dependency graphs and that mental tracing of
links in these graphs are responsible for the basic steps in querying and updating that
knowledge. Bayesian networks offer an effective formalism for these graph operations.

*This work was supported in part by the National Science Foundation, Grant #DSR 83-13875
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2. BAYESIAN NETWORKS

Bayes Networks are directed acyclic graphs in which the nodes represent propositions
(or variables), the arcs signify the existence of direct causal influences between the linked pro-
positions, and the strengths of these influences are quantified by conditional probabilities (Fig-
ure 1).

Xg
Figure 1

Thus, if the graph contains the variables x;, . . . ,x,, and §; is the set of parents for variable x;,
then a complete and consistent quantification can be attained by specifying, for each node x;,
an assessment P’(x; | §;) of P(x; | §;). The product of all these assessments,

P(x,, . - xa) = L P'(x,}S) )

constitutes a joint-probability model which supports the assessed quantities. That is, if we
compute the conditional probabilities P(x; | §;) dictated by P(x,, . . . ,X,), the original assess-
ments are recovered. Thus, for example, the distribution corresponding to the graph of Figure
1 can be written by inspection:

P(x,x;x3,%,,%5.X5) = P(xlxs) P(xs|x;.x;) lP(Ill"l,‘!i!) P(x]x,) P(‘zhl) P(x,).

An important feature of Bayes network is that it provides a clear graphical representa-
tion for many independence relationships embedded in the underlying probabilistic model. The
criterion for detecting these independencies is based on graph separation: namely, if all paths
between x; and x; are "blocked” by a a subset § of variables, then x; is independent of x; given
the values of the variables in §. Thus, each variable x; is independent of both its siblings and
its grandparents, given the values of the variables in its parent set S;. For this "blocking” cri-
terion to hold in general, we must provide a special interpretation of separation for nodes that
share common children. We say that the pathway along arrows meeting head-to-head at node
x; is normally "blocked”, unless x; or any of its descendants is in §. In Figure 1, for example,
x, and x; are independent given §; = {x,} or §; = {x,,x,}, because the two paths between x,
and xy are blocked by either one of these sets. However, x, and x; may not be independent
given S3 = {x,,x;}, because x5, as a descendant of x5 , "unblocks” the head-to-head connection
at x5, thus opening a pathway between x, and x;.
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3. AUTONOMOUS PROPAGATION AS A COMPUTATIONAL
PARADIGM

Once Bayesian network is constructed, it can be used to represent the generic causal
knowledge of a given domain, and can be consulted to reason about the interpretation of
specific input data. The interpretation process involves instantiating a set of variables
corresponding to the input data and calculating its impact on the probabilities of a set of vari-
ables designated as hypotheses. In principle, this process can be executed by an external inter-
preter who may have access to all parts of the network, may use its own computational facili-
ties, and may schedule its computational steps so as to take full advantage of the network to-
pology with respect to the incoming data. However, the use of such an interpreter seems
foreign to the reasoning process normally exhibited by humans [Shastri and Feldman, 1984].
Our limited short-term memory and narrow focus of attention, combined with our inflexibility
of shifting rapidly between alternative lines of reasoning seem to suggest that our reasoning
process is fairly local, progressing incrementally along prescribed pathways. Moreover, the
speed and ease with which we perform some of the low level interpretive functions, such as
recognizing scenes, comprehending text, and even understanding stories, strongly suggest that
these processes involve a significant amount of parallelism, and that most of the processing is
done at the knowledge level itself, not external to it.

A paradigm for modeling such active knowledge base would be to view a Bayesian net-
work not merely as a passive parsimonious code for storing factual knowledge but also as a
computational architecture for reasoning about that knowledge. That means that the links in
the network should be treated as the only pathways and activation centers that direct and pro-
pel the flow of data in the process of querying and updating beliefs. Accordingly, we assume
that each node in the network is designated a separate processor which both maintains the
parameters of belief for the host variable and manages the communication links to and from
the set of neighboring, logically related, variables. The communication lines are assumed to be
open at all times, i.e., each processor may at any time interrogate the belief parameters associ-
ated with its neighbors and compare them to its own parameters. If the compared quantities
satisfly some local constraints, no activity takes place. However, if any of these constraints is
violated, the responsible node is activated to revise its violating parameter and set it straight.
This, of course, will activate similar revisions at the neighboring nodes and will set up a mul-
tidirectional propagation process, until equilibrium is reached.

While constraint-propagation mechanisms have found several applications in Al, such as
vision [Rosenfeld, Hummel and Zucker, 1976; Waltz, 1972] and truth maintenance [McAllester,
1980], their use in evidential reasoning has been limited to non-Bayesian formalisms [e.g.
Lowrance, 1982, Shastri and Feldman, 1984]. The reason has been several-fold.

First,the conditional probabilities characterizing the links in the network do not seem to
impose definitive constraints on the probabilities that can be assigned to the nodes. The
quantifier P(A|B) only restricts the belief accorded to A in a very special set of circumstances:
namely, when B is known to be true with absolute certainty, and when no other evidential data
is available. Under normal circumstznces, all internal nodes in the network will be subject to
some uncertainty and, more seriously, after observing evidence e the conditional belief in A is
no longer governed by P(A|B) but by P(A|B, e), which may be totally different. The result is
that any assignment of beliefs, P(A) and P(B), to propositions A and B can be consistent with
the value of P(A|B) initially assigned to the link connecting them; therefore, no violation of
constraint can be detected locally.

Next, the difference between P(A|B, ) and P(A|B) seems to suggest that the weights on
the links should not remain fixed but should undergo constant adjustment as new evidence ar-
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rives. This, in turn, would require an enormous computational work and would wipe out the
advantages normally associated with propagation through fixed constraints.

Finally, the fact that evidential reasoning involves both top-down (predictive) and
bottom-up (diagnostic) inferences has caused apprehensions that, once we allow the propaga-
tion process to run its course unsupervised, pathological cases of instability, deadlock, and cir-
cular reasoning will develop [Lowrance, 1982]. Indeed, il a stronger belief in a given hypothesis
means a greater expectation for the occurrence of its various manifestations and if, in turn, a
greater certainty in the occurrence of these manifestations adds further credence to the hy-
pothesis, how can one avoid infinite updating loops when the processors responsible for these
propositions begin to communicate with one another?

This paper reports that coherent and stable probabilistic reasoning can be accomplished
by local propagation mechanisms while keeping the weights on the links constant throughout
the process. This is made possible by characterizing the belief in each proposition by a vector
of several parameters, each representing the degree of support that the host proposition obtains
from one of its neighbors. Maintaining such a breakdown record of the sources of belief is also
postulated as the mechanism which permits people to trace back reasoned assumptions for the
purposes of modifying the model and generating explanatory arguments.

4. PROPAGATION IN SINGLY-CONNECTED NETWORKS

The problems associated with asynchronous propagation of beliefs, can be solved com-
pletely if the network is singly connected, namely, if there is one underlying path between any
pair of nodes. These include trees, where each node has a single parent, as well as graphs with
multi-parent nodes, representing events with several causal factors. The analysis of trees is car-
ried out in Pearl [1982], and the extension to general singly connected graphs is reported in
Kim and Pearl [1983]. In both cases, the belief-updating scheme possesses the following proper-
ties:

New information diffuses through the network in a single pass, i.e., equilibrium is
reached in time proportional to the diameter of the network.

2 The primitive processors are simple, repetitive, and they require no working memory ex-
cept that used in matrix multiplication.

3. The local computations and the final belief distribution are entirely independent of the
control mechanism that activates the individual operations. They can be activated by
either data-driven or goal-driven (e.g., requests for evidence) control strategies, by a
clock, or at random.

Thus, this architecture lends itself naturally to hardware implementation, capable of
real-time interpretation of rapidly changing data. It also provides a reasonable model of neural
nets involved in cognitive tasks such as visual recognition, reading comprehension [Rumelhart,
1976), and associative retrieval [Anderson, 1983], where unsupervised parallelism is an uncon-
tested mechanism.



5. MANAGING LOOPS AND THE DEVELOPMENT OF CAUSAL MODELS

The efficacy of singly-connected networks in supporting autonomous propagation raises
the question of whether similar propagation mechanisms can operate in less restrictive networks
(like the one in Figure 1), where multiple parents of common children also possess common
ancestors, thus forming loops in the underlying network. If we ignore the existence of loops
and permit the nodes to continue communicating with each other as if the network was singly-
connected, it will set up messages circulating indefinitely around the loops and the process
most probably will not converge to a coherent equilibrium.

A straightforward way of handling the network of Figure 1 would be to appoint a local
interpreter for the loop x,, x5, X3, x5 that will account for the interactions between x, and x;.
This amounts basically to collapsing nodes x, and x4 into a single node, representing the com-
pound variable (x,, x,). This method works well on small loops, but as soon as the number of
variables exceeds 3 or 4, collapsing requires handling huge matrices and washes away the na-
tural conceptual structure embedded in the original network.

A second method of propagation is based on "stochastic relaxation” [Hinton, Sejnowski
and Ackley, 1984]. Each processor interrogates the states of the variables within its influencing
neighborhood, computes a belief distribution for the values of its host variable, then randomly
selects one of these values with probability given by the computed distribution. The value
chosen will subsequently be interrogated by the neighbors upon computing their beliefs, and so
on. This scheme is guaranteed convergence, but usually requires very long relaxation times to
reach a steady state.

A third method called conditioning is based on the ability to change the connectivity of
a network and render it singly connected by instantiating a selected group of variables. In Fig-
ure 1, for example, instantiating x, to some value would block the pathway x,, x,, x; and
would render the rest of the network singly connected, where the propagation techniques of the
preceding section are applicable. Thus, if we wish to propagate the impact of an observed
data, say at xg, to the entire network, we first assume x; = 0, propagate the impact of x4 to
the variables x,, . . . ,x5, repeat the propagation under the assumption x; = 1 and, finally,
linearly combine the two results weighed by the prior probability P(x,). It can also be executed
in parallel by letting each node receive, compute, and transmit several sets of parameters, one
for each value of the conditioning variable. This mode of propagation is not foreign to human
reasoning. The terms "hypothetical” or "assumption-based” reasoning, "reasoning by cases,”
and "envisioning” all refer to the same basic mechanism of selecting a key variable, binding it
to some of its values, deriving the consequences of each binding separately, and integrating
those consequences together.

Finally, an approach is described in Pearl [1984] which introduces auxiliary variables
and permanently turns the network into a tree. To understand the basis of this method, con-
sider an arbitrary tree-structured network. The leaves in this network are tightly coupled in
the sense that no two of them can be separated by the others, and therefore, if we were to con-
struct a Bayes network with these variables alone, a complete graph would ensue. Yet, togeth-
er with the intermediate variables, the interactions among the leaf variables are tree structured,
thus demonstrating that some networks can be broken up into trees by introducing dummy
variables. This scheme enjoys the advantage of uniformity: the processors representing the
dummy variables can be identical to those representing the real variables, in full compliance
with our architectural objectives. Moreover, there are strong reasorns to believe that the pro-
cess of reorganizing data structures by adding fictitious variables mimics an important com-
ponent of conceptual development in human beings, the evolution of causal models.

People often invent hypothetical unobservable entities such as "ego”, "elementary parti-
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cles”, and "supreme beings” to make theories fit the mold of causal schema. When we try to
explain the actions of another person, for example, we invariably invoke abstract notions of
mental states, social attitudes, beliefs, goals, plans, and intentions. Medical knowledge, like-
wise, is organized into causal hierarchies of invading organisms, physical disorders, complica-
tions, clinical states, and only finally, the visible symptoms. Computationally speaking, we can
interpret these mental constructs as names given to memory locations that encode a summary
of the interaction between the visible variables and, once calculated, permit us to treat the visi-
ble variables as if they were mutually independent. Thus, the restructuring of Bayes networks
into trees by introducing auxiliary variables shares many computational features with the
development of causal models in people. It is suggestive, therefore, to identify the auxiliary
variables with the mental constructs of "hidden causes”, and to conjecture that humans’ relent~
less search for causal models is motivated by their desire to achieve computational features
similar to those offered by tree-structured Bayesian networks.
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