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Local and Global Comparison of Continuous Functions
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Figure 1: We consider the simulation of a combustion process, measure two physical quantities, and compare them. The comparison measure, K, is mapped to the
height of a terrain and the first quantity is mapped to color. From left to right: ignition phase, burning phase, and end of combustion. The front of the flames are
tracked by a strip of high k values represented by the peaks that enclose the burnt region.

ABSTRACT

We introduce local and global comparison measures for a collection
of k < d real-valued smooth functions on a common d-dimensional
Riemannian manifold. For k = d = 2 we relate the measures to the
set of critical points of one function restricted to the level sets of the
other. The definition of the measures extends to piecewise linear
functions for which they are easy to compute. The computation of
the measures forms the centerpiece of a software tool which we use
to study scientific datasets.

CR Categories:
Techniques.
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1 INTRODUCTION

The topic of this paper is a new comparison measure for functions
defined on a common Riemannian manifold. After explaining why
this is an interesting topic, we state our results and compare them
to prior work on the subject.

Motivation. A scientific dataset aimed at studying a physical phe-
nomenon typically consists of a large number of measurements
taken within a domain of interest. In recent years, such datasets
have reached sizes that not only warrant but demand we think of
them as continuous functions. Rather than one we usually have
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a number of functions, such as for example temperature, volume,
pressure, and others that can be used to make predictions about the
flow behavior of a fluid. Some of these functions may be redun-
dant, which motivates the development of comparative measures
that may be used to construct bases of functions sufficient to study
the phenomenon.

Another application of such a measure is the study of time-
varying functions. Interesting events in the evolution may be char-
acterized by sudden changes in some of the functions or perhaps by
the sudden change in the relationship between two or more of the
functions. It seems natural to plot some summary measurement for
individual functions but also for pairs and larger groups to search
for such events. In computational simulations, knowledge about
such events can be used to adjust the time-step and/or mesh size
used to resolve the phenomenon.

Yet another application of comparison measures for functions are
simulations of the same phenomenon performed by different pieces
of software or by the same software over periods of time during
which the hardware and/or software undergoes possibly non-trivial
changes. The comparison measure can be used to decide whether
or not these evolutionary changes have any influence on the results
of the simulation.

Results. The main new concept in this paper is a comparison
measure defined for k < d functions defined on a common d-
dimensional Riemannian manifold M. Its global version is the inte-
gral of the absolute value of the wedge product of the k derivatives
divided by the d-dimensional volume of the manifold. Formally,

Kr(F) = /XEMdelAdfz/\...Adka/voI(M),

where F = (fq, fo,..., fx) is the vector of functions. There is also
a local version obtained by restricting the computation to a domain
D C M and letting D shrink toward a point x € M, yielding kx(F) in
the limit. This gives a function k : Ml — R defined by Kk (x) = kx(F),
and we get the global measure as the average of the local measure.
While both the local and global comparison measures are new, we
believe that the local measure is a more significant development
as it provides significantly more detailed information about how
the functions relate to each other. For the particular case of two
functions on a common 2-dimensional Riemannian manifold we



have formulas that express a relationship between k(F) = ky(F)
and the Jacobi set recently introduced in [5].

We have developed a visualization tool for comparing scien-
tific datasets, including options geared towards time-varying func-
tions. We illustrate the local and global versions of our comparison
measure by applying this tool to a suite of synthetic and scientific
datasets.

Prior work. We compare our measure to two concepts: the correla-
tion coefficient from statistics and the Earth mover’s distance from
computer vision. The correlation coefficient of two sets of values
xi and y; is formally defined as
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where "X :% S xiand 'y :% S yi are the mean values of the two sets
[9, Chapter 8]. If applied to functions, we would sample the do-
main at a set of points and use the function values at these points to
compute p. The correlation coefficient is commonly used to check
whether the two sets are independent (o = 0) or whether one is an
affine function of the other (o = +1). It is fairly straightforward
to extend the definition to three or more sets of values or functions.
One major difference between our comparison measure and the cor-
relation coefficient is that the former is sensitive to connectivity in-
formation among the sample points (vertices of the triangulation)
and the latter is not. This is the reason why p is exclusively used
as a global measure without meaningful local analog. The corre-
lation coefficient can determine whether the sets or functions co-
vary positively or negatively, which is not possible with our com-
parison measure. As a consequence, we may get p = 0 even if
there is strong co-variation, namely strongly positive in one half
and strongly negative in the other half of the domain. In contrast,
K (F) is more sensitive to the local alignment of features of the func-
tions, in particular the critical points and the gradient flow between
them. It is oblivious to the orientation of the flow and measures the
similarity between two functions f and g the same as between — f
and g.

To describe the Earth mover’s distance we consider two smooth
functions and the corresponding sets of critical points. Each criti-
cal point has a weight, which may be its function value. We think
of one set of critical points as a supply of dirt and the other as a
collection of holes. The goal is to determine the least amount of
work necessary to move the dirt around to fill the holes. Formally,
the Earth mover’s distance is the weight of the minimum weight
matching between the two sets of points. Other than the weights
of the points, we also need a notion of edge length to compute
the cost for the transportation of the dirt, and this notion depends
on the application at hand. Originally introduced for comparing
color patterns by Rubner, Tomasi and Guibas [12], this measure
has since been adapted to solve a variety of problems, including
contour matching, object tracking, polyhedral shape matching, and
vector function comparison. Similar to the correlation coefficient,
the Earth mover’s distance is a global measure without any mean-
ingful local analog. Furthermore, nearness does not require similar
features within the same region of the domain. It therefore does not
capture local similarity the way our comparison measure does.

Outline. Section 2 introduces the comparison measure. Section
3 offers interpretations based on the Jacobi set of the functions.
Section 4 illustrates the measure using results from computational
experiments performed on synthetic and scientific datasets. Section
5 mentions open questions and concludes the paper.

2 THE MEASURE

In this section, we introduce the comparison measure for smooth
functions on a common manifold. After defining the local and
global versions of the measure, we study some of its properties and
explain how to compute it for piecewise linear functions. A central
concept is the k-form of a collection of k smooth functions and we
refer to Darling [3] and Weintraub [13] for background on the topic.

The definition. Let M be a smooth compact manifold with a
Riemannian metric. When M C RY, the manifold inherits a nat-
ural metric by identifying the tangent space of M at a point x
with a subspace of RY endowed with the Euclidean metric. Let
F =(f1,fo,..., fx) : M — R be a vector of k < d smooth functions.
For each fj, the (differential) 1-form of f; is written

Lﬁdxﬁr a—fidxz+~-~+ a—fidxd,

dfi - (9X1 (9X2 (9Xd

where x; to Xq is a local coordinate system. Using the wedge

product, we combine the 1-forms of the f; to make the k-form

dfy Adfo A... Adfe. We may think of it as a vector in a (ﬂ)

dimensional vector space. For a domain D C M we define the com-
parison measure over D as the normalized integral of the value of
the k-form,

ko(F) = /XEDdel/\dfz/\.../\dka/voI(D),

where the metric on M is used to define the norm of the wedge
product as well as the volume. We obtain the global comparison
measure as K (F) = ky(F) and note that 0 < k(F) < . We may
also shrink D toward a point x € M and obtain the value ky(F) in
the limit. This furnishes the local comparison measure, which is
the function k : Ml — R defined by k(x) = kx(F). Note that the
global measure is the average local measure:

K(F) = /xeMK(x)dx/vol(M).

Using this relationship we can deduce properties of the global from
properties of the local measure.

Evaluation. A k-form can be written in canonical form as an ele-
ment of the d)-dimensional vector space spanned by the k-forms
dxj, Adxi, AL .. Adx;, with 1 <ip <ip <...<ig <d. Specifically,

dfy AL Adfy = W, (dXig AL A ),
1<ip<--<ix<d

where x; to xq form a local coordinate chart,

oty ot of
0% 0% 0%
9% 9% 0%
w,, i = det 2 2 2
ok df . df
ﬁmk dnk dmk

If we choose the coordinates X1,X»,...,Xq to be orthonormal at x
(but we may not be able to do this uniformly throughout D) then
the local measure at x is

1<ip<<ig<d

For example, if we have k = 2 functions on a 2-manifold embedded
in R® with the standard Euclidean metric, then k(x) is the length



of the cross-product of the two gradients at x. More generally, K (x)
is the k-dimensional volume of the parallelepiped spanned by the k
gradients [8, Chapter V].

Properties. The comparison measure enjoys a number of useful
algebraic properties, but the triangle inequality is not one of them.
To see this consider k = 2 and let g be a constant function on M.
Then k(f1,9) = k(g, f2) = 0 but k(fq, f2) may take any arbitrary
positive value. The first three properties follow immediately from
the definition:

Symretry: k(... fi,....fj,...)=k(..., fj,...
pair of indices i # j.

, fi,...) for every

Degener acy: k(F)=0if there is a subset of linearly dependent
1-forms.

Scal i ng: k(afy +B,fa,..., f) = |a| - k(f1, f2,..., fi), with
a,B eR.

The next property follows from simple vector algebra. Call the (k —
1)-dimensional parallelepiped spanned by the gradients of f, to fy
the base of the k-dimensional parallelepiped spanned by the same
gradients together with the gradient of f; +gi1. The property says
that the volume of this parallelepiped is at most the volume of the
two parallelepipeds obtained by expanding the same base with the
gradients of f; and of g;.

Sub-addi tivity: k(fy +01,f2,...,f) < k(f1, fo,..., fk) +
K(gl,fg,...,fk).

The last property is easier to state for the local measure. It says
that the k-dimensional volume of the parallelepiped spanned by k
vectors is at most the i-dimensional volume of the parallelepiped
spanned by 1 < i < k of the vectors times the (k — i)-dimensional
volume of the parallelepiped spanned by the remaining k — i vectors.
We have equality iff the i and k — i vectors span orthogonal linear
subspaces of dimension i and k —i.

Sub-nmul tiplicativity: kx(fy,..., fi, fiz1,..., k) <
Kx(f1,..., fi) - Kx(fit1,..., fx), for every point x € M and
each index i.

The corresponding inequality of the global measure is

K(flw'wfk) < K(flv"'vfi)’K(fH»lv"'vfk)'VOI(M)'

Computation. We are interested in computing the local and global
comparison measures for functions obtained by piecewise linear in-
terpolation from measurements at a finite set of points. We let these
points be the vertices of a triangulation K of the manifold M. All
k functions are linear on a d-simplex of K and their gradients are
therefore constant. We may evaluate k (x) at a point x in the interior
of the d-simplex as described above. This gives the local version of
the measure. To get the global measure, we compute

K(F) = ZK(X)~VO|(0)/VO|(K)7

where o ranges over all d-simplices in K and x is a point in the
interior of 0.

3 JACOBI SET INTERPRETATION

In this section, we develop an alternate interpretation of the compar-
ison measure in terms of critical points. We have a result only for
the case of two functions on a 2-manifold. We begin by introducing
Morse functions [10, 11] and Jacobi sets [5].

Morse functions and Jacobi sets. Let M be a smooth 2-manifold
embedded in R3 with its inherited Riemannian metric and let f :
M — R be a smooth function. Given local coordinates in a neigh-
borhood of a point x € M, we define the gradient, Of(x), as the
vector of partial derivatives. The point x is critical if the gradient is
the zero-vector. Non-critical points are regular. The Hessian of the
point x is the matrix of second-order partial derivatives. The critical
point x is non-degenerate if the Hessian at x is invertible. Finally, f
is a Morse function if

I. every critical point is non-degenerate;
Il. every two critical points have different function values.

Intuitively, Morse functions are generic smooth functions. Their
critical points are isolated and if M is compact then there are only
finitely many such points.

Suppose now f,g: M — R are two Morse functions. We are in-
terested in how the two functions interact and define the Jacobi set
as the set of points at which the Jacobian matrix of partial deriva-
tives does not have full rank,

J(f,g) = {xeM]rankJ(x) < 2}.

This is the set of points where the gradients of f and g are linearly
dependent. Equivalently, it is the set of points x with kx(f,g) =
0. Yet another characterization is obtained by taking level sets of
one function and collecting the critical points of the other function
restricted to these level sets; see Figure 2. Generically, the Jacobi
set of two functions is a 1-manifold smoothly embedded in M.

Figure 2: The function f increases from bottom to top and has horizontal level lines
that are not shown. The function g has two maxima and one saddle and is indicated by
its solid level lines. The boldface Jacobi set is an S-shaped curve that passes through the
three critical points. The two shaded strips illustrate the argument used to reinterpret K
in terms of critical points of f restricted to level sets of g.

Reformulation of comparison measure. For two functions f and
g on a 2-manifold embedded in R3, the limit of the comparison
measure at a point x € M is the length of the cross-product of the
two gradients, kx(f,g) = ||Of(x) x Og(x)||. Writing area(M) for
the area of the manifold we therefore have
k(f,g) = / [IOf (x) x Og(x)|| dx / area(M).

JxeM
The length of the cross-product remains the same if we replace
Of(x) be its orthogonal projection to the plane normal to Og(x).
This projection is the gradient of f restricted to the level set
g~ 1(g(x)) that passes through x. Writing t = g(x) and f; for the re-
striction of f to g~1(t), the length of the cross-product further sim-
plifies to the product of lengths of gradients, ||[TOf;(X)|| - [|Dg(X)]|.

We now rewrite kK (f,g) as an integral over the Jacobi set of f
and g. Recall that a point v € J = J(f,Qg) is a critical point of f re-
stricted to g~1(g(x)). Let u and w be the preceding and succeeding



critical points along the same level set. LetV be a short interval
along J that contains v and let U and W be the corresponding inter-
vals containing u and w, as illustrated in Figure 2. Integrating the
comparison measure over the strip D of paths connecting points in
U with points in W we get

/XeD [IOf(x) x Og(x)| dx / area(D)

Jew (/W ”th<X>\|dX) dg / area(D),

where uw is the path on g~1(g(x)) that connects u to w and passes
through v and dg is the derivative of g restricted to V times dv. The
crucial step from the first to the second line in the above expression
for kp(f,q) is the observation that [ ||0g(y)||dy along an integral
line of g crossing the strip D is the same everywhere, namely equal
to the difference in g-value along the two sides of the strip. Itis also
equal to [, dg. The restriction of f is monotonic from u to v and
from v to w. The inner integral is therefore | f(v) — f(u)| +|f(v) —
f(w)], giving Ko (f,9) = fyey 12f(v) — f(u) — f(w)|dg / area(D).
Integrating over all strips of this form is the same as integrating over
M twice. Hence

k(f,g) = /VEJ\Zf(v)ff(u)ff(w)\dg/Zarea(M). 1)

According to Equation (1), the comparison measure can be inter-
preted as an average difference between functions values at neigh-
boring critical points of f restricted to level sets of g. A pointx € J
that is a maximum of f restricted to g~1(g(x)) contributes four
times its function value to the above integral: 2f(x) when x =,
f(x) when x =u and f(x) when x = w. Similarly, x contributes mi-
nus four times its function value if it is a minimum of f restricted
to g~ 1(g(x)). Hence

k(f,g) = Z/VEJsgn(v)f(v) dg / area(M), 2)

KD(f7g)

where sgn(v) = 1 if v is a maximum and —1 if v is @ minimum. In
case the Jacobi curve is given, Equation (2) gives a fast algorithm
for computing the global comparison measure between f and g.

Algorithm using persistence. We may think of Equations (1) and
(2) as alternative algorithms that compute «(f,g) by integrating
contributions of the points in the Jacobi set. We further develop the
integral in Equation (1) to find a formulation in which the contribu-
tions express more directly the role of the points in the restriction
of f to the level sets of g.

Each generic level set g~1(t) is a collection of topological cir-
cles and f restricted to this level set has equally many minima
and maxima. Letting k be this common number, we form a pair-
ing {(u;,vi) | 1 <i <k} between the minima u; and the maxima v;
such that f(vj) — f(u;) > 0 for all i. Writing pers(u;) = pers(v;) =
f(vi) — f(ui), we get

k(f,g) = /\;Ejpers(v) dg / area(M). (3)

Indeed, Equation (1) is a special case in which the integration is
done over two pairings of the points in the Jacobi set. A more mean-
ingful (single) pairing is obtained using the concept of extended
persistent homology [1, 7]. It is easy to explain for a Morse func-
tion f; : S* — R, which has equally many minima and maxima.
Sweeping the circle in the direction of increasing function value,
we get a new component whenever we pass a minimum and we
merge two components whenever we pass a maximum, except that
we complete the circle when we pass the last maximum. Each com-
ponent is represented by its oldest minimum (the one with smallest
function value).

Rul e 1. If a maximum merges two components we pair it with
the younger of the two minima representing the two compo-
nents. The older minimum stays on to represent the merged
component.

Rul e 2. The last maximum is paired with the first minimum.

The persistence is a notion of importance of a critical point that has
found use in a number of applications involving smooth functions,
see for example [1, 2, 6]. It is fairly straightforward to implement
Equation (3) for piecewise linear functions f and g on a triangula-
tion K of M. First, we use the algorithm of [5] to identify the Jacobi
set as a collection of edges that form closed cycles in K. Second, we
sweep K in the direction of increasing value of g, maintaining the
level set, g~1(t), as another collection of closed cycles. We then use
the persistence algorithm to compute pers(v) for all critical points
v of g~1(t), which are the intersection points between the level set
and the Jacobi set. We get a local picture of the computation by col-
oring each edge of the Jacobi set with the persistence of its points,
as in Figure 3.

4 COMPUTATIONAL EXPERIMENTS

We illustrate the new comparison measure with results from several
preliminary computational experiments. We begin by comparing a
suite of simple synthetic functions and proceed to studying a se-
ries of two-dimensional datasets describing a combustion process
and several three-dimensional electrostatic potentials describing a
protein complex.

Synthetic functions. We use a suite of five simple synthetic func-
tions to get a first feel for the local and global versions of our com-
parison measure. All five functions are defined on the torus mod-
eled by the square [—27, 271 x [—27T,277] with opposite sides iden-
tified:

cup(x,y) =x>+y?% sin(x,y) =sinx+siny;
sad(x,y) =x2 —y%; cos(X,y) = COSX+ COSY;
abs(x,y) = [x].

We triangulate the torus, evaluate each function at the vertices, and
approximate each function by piecewise linear interpolation. We
have k(cup) = k(sad) = 9.61, k(si n) = k(cos) = 0.96, and
K(abs) = 1.0. Table 1 shows the global comparison measure,
k(f,g), for every pair of the five functions. We note that k is not
scale invariant and can therefore not be used to decide whether a
given pair of functions is more or less similar to another pair. We

| [ cup | sad [ sin [ cos | abs |
cup K 0.00 | 78.96 5.76 5.24 6.28
1% 0.00 0.28 0.03 0.07 0.07
5% 0.00 8.31 0.98 111 2.36
sad K 78.96 0.00 5.76 6.28 6.28
1% 0.28 0.00 0.01 0.02 0.07
5% 8.31 0.00 0.34 0.35 1.85
sin K 5.76 5.76 0.00 0.63 0.64
1% 0.03 0.01 0.00 0.00 0.00
5% 0.98 0.34 0.00 0.02 0.11
cos K 5.24 6.28 0.63 0.00 0.63
1% 0.07 0.02 0.00 0.00 0.01
5% 111 0.35 0.02 0.00 0.01
abs K 6.28 6.28 0.64 0.63 0.00
1% 0.07 0.07 0.00 0.01 0.00
5% 2.36 1.85 0.11 0.12 0.00

Table 1: Compare K (top rows) with the error introduced when 1% (middle rows) and
5% random noise (bottom rows) is added to the synthetic functions.



use the same five synthetic functions to get a feeling for how sensi-
tive the comparison measure is to small changes in function values.
Specifically, we select a percentage R and for each vertex u we pick
a random number r € [-R,R] and change the function value at u
by adding 1{)—0 times the range of the function. The results of this
experiment are shown in Table 1.

To visualize the local comparison measure, we have developed a
tool for functions on a 2-dimensional domain. It displays individ-
ual functions as terrains, with color, or through level curves. The
first two options are combined to get the pictures in Figure 1. The
last two options are used to display the si n and cos functions as
well as their comparison in Figure 3. We note that « is small in

0.5

0.375

0.25

0.125

0

Figure 3: Upper left: level sets extracted from the si n (gray) and the cos (black)
datasets. Upper right: visualization of k : [—271, 71]? — R using color. Lower left: the
Jacobi set of si n and cos with color indicating the contribution of individual points
to the global comparison measure. Lower right: color key used in the upper right and
lower left pictures.

regions where the level curves of si n and cos are nearly parallel
and it is large where the level curves are nearly orthogonal. The two
functions are periodic as is obvious from the visualization.

Time series data. We illustrate the use of our tool in visualizing
time-varying data obtained by simulating the process inside a com-
bustion engine. The simulation keeps track of various quantities
in an attempt to understand the influence of turbulence on ignition,
flame propagation, and burnout [4]. Upon compression, the inho-
mogeneity in the air-fuel mixture causes ignition at multiple spots.
Depending on the air-fuel ratio, the flame propagates from these
spots outwards or it burns out. We look at two quantities,

e progress, ameasure of completion of the combustion;
e Hyor hydrogen, the fuel in the process.

These quantities are known at the vertices of a 600-by-600 grid and
at 67 time steps. As usual, we represent the domain by a trian-
gulation and the functions by piecewise linear maps obtained by
interpolating the values at the vertices. To get a rough picture of
how pr ogr ess and Hy relate during the process, we compute the
global comparison measure, K (progress,Hy), at each time step
and display the result as a function over time; see Figure 4. Initially,
both pr ogr ess and Hjare turbulent but have low concentrations
throughout the domain resulting in values of k close to zero. Some-
thing interesting happens around time step 28 after which k takes on

0.2

-0.2

-0.4

-0.6 -

-0.8

time

Figure 4: The comparison measure K (scale on right vertical axis) and the correlation
coefficient (scale on left vertical axis), both as functions of time as pr ogr ess and
H, from the combustion dataset change. The vertical markers indicate the time steps
at which the pictures in Figure 1 are extracted. The plot of the correlation coeffi-
cient shows that pr ogr ess and Hpare negatively correlated, indicating the obvious,
namely that progress depletes fuel.

progressively larger values. The function is not informative enough
to detect the phases of the combustion process, but we get additional
insights by visualizing the two quantities using the local compari-
son measure at the time steps indicated by the three vertical dot-
ted bars which roughly correspond to ignition, burning, and end of
combustion; see Figure 1. Note that the flame front is tracked by a
strip of large contributions to k. In passing through this strip both
functions undergo sharp changes although at vastly different rates.

Electrostatic potentials. We consider a problem in structural bi-
ology to study our local and global comparison measures for func-
tions defined on a three-dimensional domain. A protein complex
consists of two or more proteins docked in a stable conformation.
For example, the barnase-barstar complex (1BRS) consists of two

L [N 5
[« JJ 401 322

1BRS [ NS NIBRS S,1BRS [ N,SIBRS |
722 [ 230 6.83 517 [ 1866 |

Table 2: The global measure k computed for all combinations of the three electrostatic
datasets.

proteins. The electrostatic potential defined by barnase (N) and
barstar (S) individually in their docked conformation and the poten-
tial defined by the complex are available to us as functions sampled
over the space. We triangulate the space and linearly interpolate to

Figure 5: The regions with high value of k(fy, fs) are shaded between the two pro-
teins, which are shown as alpha-carbon traces, with barnase in magenta and barstar in
yellow.

obtain three piecewise-linear functions, fy, fs and figrs. Table 2



lists the values of our global comparison measure for the individ-
ual functions, the three pairs, and the triplet. Initial observations
show that regions where our local comparison measure between
fn and fs is high correspond to salt bridges or strong hydrogen
bonds. Figures 5 and 6 visualize the local comparison measure of
the electrostatic potentials fy and fg defined by barnase and barstar
in the complex 1BRS. The colored dots indicate higher values of
K, namely those in the range [0.002,0.0207] and are mapped from
blue to red. Dots with values lower than 0.002 are not displayed.
The gold lines indicate the hydrogen bonds corresponding to the
regions with high k value.

rg 83
2 &\ @
L -

\o/
Arg 87
| ®

b
é ~ 14102
Figure 6: A close-up view of a region with high value of k ( fy, fs) and the correspond-
ing hydrogen bond cluster. Asp 39 of barstar forms hydrogen bonds with Arg 87,
Arg 83,and Hi s 102 of barnase. All four residues are important in the interaction
between barnase and barstar.

5 DISCUssION

Various questions related to the extension of our comparison mea-
sures remain open. We mention three:

e Our definition restricts the number of functions to at most the
dimension of the manifold. It would be interesting to extend
it to the case k > d.

e For the particular case k = d = 2, we give alternative interpre-
tations of k using Jacobi sets. These interpretations generalize
to the case k =d > 2, but what about k < d?

e What is the sensitivity of our measure to the triangulation of
the manifold? A detailed understanding of this question is
useful in situations where functions are given on different tri-
angulations of the same manifold.
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