
UCLA
UCLA Electronic Theses and Dissertations

Title
Essays in Microeconometrics and Industrial Organization

Permalink
https://escholarship.org/uc/item/0vq2k880

Author
Zincenko, Federico

Publication Date
2013
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0vq2k880
https://escholarship.org
http://www.cdlib.org/


University of California

Los Angeles

Essays in Microeconometrics and Industrial

Organization

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Economics

by

Federico Zincenko

2013



© Copyright by

Federico Zincenko

2013



Abstract of the Dissertation

Essays in Microeconometrics and Industrial

Organization

by

Federico Zincenko

Doctor of Philosophy in Economics

University of California, Los Angeles, 2013

Professor Rosa L. Matzkin, Chair

This dissertation is divided into three chapters. In Chapter 1, I propose a non-

parametric estimator for the bidders’ utility function and the density of private

values in a first-price sealed-bid auction model. Specifically, I study a setting

with risk-averse bidders within the independent private value paradigm. I adopt

a fully nonparametric approach by not placing any restrictions on the shape of the

bidders’ utility function beyond strict monotonicity, concavity, and differentiabil-

ity. In contrast to previous literature, I characterize such utility function and the

density of private values by a minimizer of a certain functional. I estimate this

minimizer, which is a smooth real-valued function, in two steps by the method of

sieves. Then, the estimators for the bidders’ utility function and the density of

private values are smooth functionals of the estimator for the minimizer. The esti-

mator for the utility function is uniformly consistent and shape-preserving, while

the estimator for the density is uniformly consistent and asymptotically normal.

Chapter 2, which is a joint paper with I. Obara, studies a model of repeated

Bertrand competition among asymmetric firms that produce a homogeneous prod-

uct. The discounting rates and marginal costs may vary across firms. We identify

the critical level of discount factor such that a collusive outcome can be sustained

if and only if the average discount factor within the lowest cost firms is above the

ii



critical level. We also characterize the set of all efficient collusive equilibria when

firms differ only in their discounting rates. Due to differential discounting, impa-

tient firms gain a larger share of the market at an earlier stage of the game and

patient firms gain a larger share at a later stage in efficient equilibrium. Although

there are many efficient collusive equilibria, our model provides a unique predic-

tion in the long run in the sense that every efficient collusive equilibrium converges

to the unique efficient stationary collusive equilibrium within finite time.

Chapter 3 develops a weighted average derivative estimator for β in the context

E(y∣xc, xd) = G(xc′β,xd), where xc and xd are continuous and discrete random vec-

tors, respectively, and G is an unknown function. A distinguishing feature of the

proposed estimator is the use of kernel smoothing for the discrete covariates. Un-

der standard regularity conditions, such an estimator is root-N -consistent, asymp-

totically normal, and non-iterative.
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CHAPTER 1

Nonparametric Sieve Estimation in First-Price

Auctions with Risk-Averse Bidders

1.1 Introduction

Risk aversion is essential to understanding economic decisions under uncertainty.

In first-price sealed-bid auctions, risk aversion plays a fundamental role in ex-

plaining bidders’ behavior. Although several families of utility functions have

been employed to describe different attitudes toward risk, in practice, we do not

know which one accurately explains bidders’ behavior.

In this paper, I develop an estimator for the utility function of risk-averse bid-

ders, which in contrast to previous work, is nonparametric. I consider a first-price

sealed-bid auction with risk-averse bidders within the paradigm of independent

private values. In this setting, each potential buyer has his own private value for

the item being sold and makes a sealed bid. The buyer who makes the highest

bid wins the item and pays the seller the amount of that bid. This model is

completely characterized by two objects. The first is the bidders’ utility function,

which describes bidders’ risk preferences. The second is the density of private

values, which describes the distribution of valuations for the auctioned item. Es-

timation of these two objects has proceeded by assuming that the econometrician

observes all the bids and that the common utility function of the bidders is known

up to a finite-dimensional parameter.

This paper develops an estimator that imposes no parametric specification on
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the common utility function of the bidders. Only strict monotonicity, concavity,

and differentiability of this utility function is assumed. These assumptions are

satisfied by linear, constant relative risk aversion (CRRA), and constant absolute

risk aversion (CARA) utility functions, as well as, many others. In this sense, my

paper generalizes the empirical analysis of first-price auctions by nesting many

existing estimators within a fully nonparametric framework.

This paper has two objectives. The first is to nonparametrically estimate the

bidders’ utility function. Despite its relevance, only a few papers have proposed

an estimator for such a function. [CGP11], for instance, adopts a semi-parametric

approach and propose an estimator for the bidders’ risk aversion parameter. Their

approach requires that the researcher imposes a parametric specification –such

as CRRA or CARA– on the bidders’ utility function before estimating the risk

aversion parameter and the density of private values. In real-world applications,

the choice of the parametric specification may be arbitrary and not always realistic.

In addition, there is no general agreement on which specification is the right one;

when the choice is incorrect, the resulting estimator is invalid.

The second objective of my paper is to estimate the latent density of private

values following a fully nonparametric perspective. To that end, I propose an

estimator for the density of private values that does not rely on any parametric

specification of the bidders’ utility function. The main advantage of this approach

is that the resulting estimator is robust to misspecification of such utility function.

A common practice when estimating first-price auctions is to first assume a specific

family of risk aversion for the bidders’ utility, and then, estimate the density

of private values. This procedure has been justified so far because of its low

implementation costs and the possibility of attaining the optimal global rate of

convergence ([GPV00] and [CGP11]). However, it can be criticized because an

incorrect choice of the family of risk aversion invalidates the estimator for the

density of private values.
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Several papers have developed nonparametric estimators for the density of pri-

vate values under the assumption that bidders are risk-neutral. The pioneering

work [GPV00] constructed the first estimator to attain the optimal global rate

of convergence. Recently, [MS12] has proposed an alternative estimator that is

asymptotically normal and also attains the optimal rate. [BS12] has used inte-

grated simulated moments to propose an estimator and construct a test for the

validity of the first-price auction model. Here, I build on previous work by allowing

bidders to be risk-averse.

My estimator for the density of private values is asymptotically normal and

uniformly consistent. I derive these asymptotic properties by extending the ap-

proach of [MS12] to accommodate risk aversion from a nonparametric perspective.

This has two advantages over existing work. First, empirical and experimental

evidence indicates that risk aversion is a fundamental component of bidders’ be-

havior (see [GPV09], Section 1, as well as the references cited therein); therefore,

invoking risk neutrality is likely to generate erroneous conclusions. Second, there

is no evidence telling us which concept of risk aversion is the most appropriate

to describe bidders’ risk preferences; therefore, it is essential to adopt a nonpara-

metric approach.1

To my knowledge, only two papers have analyzed the identification of the

bidders’ utility function from a nonparametric perspective. [LP08] identified and

estimated such a function by exploiting two auction designs, namely, ascending

and first-price sealed-bid auctions. [GPV09] improved on [LP08] and identified

the bidders’ utility function by using the latter design only. They showed that

the bidders’ utility function is nonparametrically identified under some exclusion

restrictions. Their primary exclusion restriction was exogenous bidders’ partici-

pation. This exclusion restriction means that the distribution of valuations, or

1Regarding the experimental evidence, I highlight [Del08], whose “findings are not inconsis-
tent with a role for risk aversion in the tendency to bid too high.”
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equivalently, the density of private values, is independent of the number of bid-

ders. Exploiting this restriction, [GPV09] developed their constructive identifi-

cation strategy. However, such a strategy is recursive and based on an infinite

series of differences in quantiles, so it does not lead to a natural estimator for the

bidders’ utility function. Here, my contribution is to develop a valid estimator.

Assuming that bidders’ participation is exogenous, I develop a convenient iden-

tification procedure that allows us to estimate the objects of interest: the bidders’

utility function and the density of private values. Specifically, I characterize these

objects by an argument that minimizes a certain functional over a space of smooth

functions; in other words, the bidders’ utility function and the density of private

values are characterized by a minimizer of a certain functional. Such a minimizer

is a smooth real-valued function and becomes the (infinite-dimensional) parame-

ter of interest. I nonparametrically estimate this infinite-dimensional parameter in

two steps by the method of sieve extremum estimation. This method optimizes an

empirical criterion function over a sequence of finite-dimensional approximation

spaces (sieve spaces); see [Che07]. The validity of the resulting estimator for the

parameter of interest relies on the assumption of exogenous bidders’ participation.

The estimators for the bidders’ utility function and the density of private

values are smooth nonlinear functionals of the sieve estimator for the parameter of

interest. In particular, the estimator for the utility function is uniformly consistent

and preserves the basic properties of the utility function (strict monotonicity,

concavity, and differentiability). This shape-preserving feature arises as I use the

Bernstein polynomials to estimate the parameter of interest. As noted by [Mat94],

shape-preserving estimators have many advantages, among others, they decrease

the variance and improve the quality of an extrapolation beyond the support of

the data.

This paper is related to a vast literature on empirical industrial organization.

First, it relates to the literature on structural econometrics of auction data. This
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literature is extensive and has expanded at an extraordinary rate; for example, see

the surveys [HP95], [Laf97], [PV99], [AH07], and [HP07], as well as the textbook

[PHH06]. I remark that nonparametric approaches have become very popular as

auction data has become more available. Second, this paper is also related to the

literature on recovering risk preferences from observed behavior. Within this line

of research, I highlight [Lu04] and [AHS11]. The former proposes a semiparametric

method to estimate the risk aversion parameter, as well as the risk premium, in

the context of a first-price sealed-bid auction with stochastic private values. The

latter considers a buy price auction framework and nonparametrically identifies

both time and risk preferences of the bidders. Furthermore, it is worthwhile to

mention [CE07] that estimate risk preferences from data on deductible choices in

auto insurance contracts.

The results obtained in my paper are relevant for public policy recommenda-

tions. First-price sealed-bid auctions are used in many socio-economic contexts

such as timber sales ([ALS11]), outer continental shelf wildcat auctions ([LPV03]),

as well as competitive sales of municipal bonds ([Tan11]). In particular, using data

from U.S. timber auctions, [ALS11] showed that first-price sealed-bid auctions gen-

erate higher revenue than open ascending auctions. In order to establish adequate

auction rules that maximize the auctioneer’s revenue, we need robust information

about bidders’ risk preferences. For instance, when bidders are risk-neutral, the

auctioneer’s expected revenue is the same under a first-price and second-price

sealed-bid auction. However, when bidders are risk-averse, the first-price auction

design generates more expected revenue than the latter ([HMZ10]). Moreover, the

optimal reserve price depends on both the risk preferences and the distribution of

valuations.

The rest of this paper is organized as follows. The remaining part of this section

presents an sketch of my methodology at a technical level. Section 1.2 describes the

auction model and establishes the key identification assumption, that is, exogenous
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bidders’ participation. Section 1.3 introduces the (infinite-dimensional) parameter

of interest within a general framework and presents the main mathematical results.

Section 1.4 defines the two-step nonparametric sieve estimator for the parameter

of interest and establishes its uniform consistency. Section 1.5 provides estimators

for the auction model’s objects, the bidders’ utility function and the density of

private values, and establishes their asymptotic properties. Section 1.6 reports the

results of a limited Monte Carlo study, and also, presents an empirical illustration.

Section 1.7 concludes with a discussion of possible extensions. Proofs of all results

are given in the Appendix.

Sketch of Methodology: Let λ−1
0 (⋅) be a smooth real-valued function, which

characterizes both the bidders’ utility function and the density of private values

(Section 1.2). The function λ−1
0 (⋅) is the parameter of interest (subsection 1.3.1),

so the main objective of this paper is to nonparametrically estimate λ−1
0 (⋅). The

idea behind my approach is summarized as follows.

In subsection 1.3.2, I construct two population criterion functions Q1 ∶ A →

R≥0 and Q2 ∶ A ×HR → R≥0, where A is a set of sequences of functions and HR is a

space of smooth functions that contains λ−1
0 (⋅), that is, λ−1

0 (⋅) ∈ HR. In particular,

Q1(⋅) and Q2(⋅, ⋅) satisfy the following identification property: ∥φ(⋅) − λ−1
0 (⋅)∥c∞ ≤

Q1[(αt)t] +Q2[(αt)t, φ] for all [(αt)t, φ] ∈ A ×HR, where ∥ ⋅ ∥∞ denotes the sup-

norm and c is a finite constant greater than one that depends on the smoothness of

λ−1
0 (⋅). From this identification property, λ−1

0 (⋅) can be characterized as the unique

minimizer of the functional Q2[(α̃t)t, ⋅] ∶ HR → R≥0, where (α̃t)t is a sequence of

functions that satisfies Q1[(α̃t)t] = 0.

In subsection 1.3.3, I construct the sieve: an increasing sequence {A (n) ×

H (n) ⊆ A × HR ∶ n ∈ N} of finite-dimensional approximation spaces. The

sieve spaces A (n) and H (n) are built on wavelet and Bernstein polynomial

spaces, respectively, and satisfy the following approximation property: there ex-
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ists a sequence [(A(n)
t )t, P (n)] ∈ A (n) × H (n) such that Q1[(A(n)

t )t] → 0 and

Q2[(A(n)
t )t, P (n)] → 0 as n grows to infinity. Basically, (A(n)

t )t approximates the

sequence of functions (α̃t)t, which satisfies Q1[(α̃t)t] = 0, while P (n)(⋅) approxi-

mates to λ−1
0 (⋅) because ∥P (n)(⋅) − λ−1

0 (⋅)∥c∞ ≤ Q1[(A(n)
t )t] +Q2[(A(n)

t )t, P (n)] → 0.

In Section 4, I define the estimator for λ−1
0 (⋅) using observed bids, which are

obtained from a sample of N independent auctions. The shapes of the population

criterion functions Q1(⋅) and Q2(⋅, ⋅) naturally lead to their empirical counter-

parts Q̂1(⋅) and Q̂2(⋅, ⋅), respectively. Both Q̂1(⋅) and Q̂2(⋅, ⋅) are computed from

observed bids and converge uniformly in probability to Q1(⋅) and Q2(⋅, ⋅), respec-

tively, as the sample size N grows to infinity. The estimator λ̂−1(⋅) of λ−1
0 (⋅)

is computed in two steps. In the first one, we define (Â(N)
t )t as the argument

that minimizes Q̂1(⋅) over A (N); basically, (Â(N)
t )t is the empirical counterpart

of (A(N)
t )t. In the second step, λ̂−1(⋅) is defined as the argument that minimizes

Q̂2[(Â(N)
t )t, ⋅] over H (N); basically, λ̂−1(⋅) is the empirical counterpart of P (N)(⋅).

The uniform consistency of λ̂−1(⋅) relies on the idea that P (N)(⋅) converges uni-

formly to λ−1
0 (⋅) as N → +∞. Then, in Section 1.5, the estimators for the bidders’

utility function and the density of private values are constructed as nonlinear

smooth functionals of λ̂−1(⋅).

1.2 First-Price Auction Model

In this section, I present the model and establish the key identification assumption.

Subsection 1.2.1 describes the model, which is standard in the auction literature: a

first-price sealed-bid auction with risk-averse bidders, independent private values,

and a non-binding reserve price. Within this framework, I set my objective: esti-

mating the bidders’ utility function and the density of private values. Subsection

1.2.2 discusses existing identification results and establishes the key identification

assumption, that is, exogenous bidders’ participation.
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1.2.1 Model

A single indivisible object is sold through a first-price sealed-bid auction with non-

binding reserve price. In other words, the object is sold to the highest bidder who

pays his bid to the seller and each bidder does not know others’ bids when forming

his bid. Within the independent private value (IPV) paradigm, each bidder knows

his own private value υ, but not other bidders’ private values. There are I ≥ 2

bidders and private values are drawn independently from a common cumulative

distribution function (c.d.f.) F (⋅∣I). Such a distribution is twice continuously

differentiable with density f(⋅∣I) and a compact support [υ(I), ῡ(I)] ⊆ R≥0. Both

I and F (⋅∣I) are common knowledge.

All bidders are identical ex ante and the game is symmetric. Each bidder has

the same univariate utility function U(⋅) that is independent of I. If a bidder with

value υ wins and pays b ≥ 0, his utility is U(υ − b), and if he loses, his utility is

U(0); see [MR84], Section 1, Case 1. Since any bidder’s payment must be smaller

or equal than his own valuation, the domain of U(⋅) is restricted to R≥0. Bidder

i with valuation υi maximizes his expected utility

E(Πi) = U(υi − bi)Pr(bi ≥ bj, j ≠ i),

with respect to his bid bi, where bj is the jth-player’s bid. It is also assumed that

U(⋅) is twice continuously differentiable, U(0) = 0, U ′(⋅) > 0, and U ′′(⋅) ≤ 0.

Only symmetric Bayesian Nash equilibria are considered. As a consequence,

there exists a unique symmetric equilibrium bidding function s(⋅; I); see [HMZ10],

Section 2, and the references cited therein. Such a function is strictly increasing,

continuous on [υ(I), ῡ(I)], and continuously differentiable on (υ(I), ῡ(I)]. More-

over, it satisfies the differential equation

s′(υ; I) = (I − 1) f(υ∣I)
F (υ∣I)λ0(v − b) (1.1)

with boundary condition s[υ(I); I] = υ(I), where b = s(υ; I) is the opti-

mal bid, s′(υ; I) denotes the first derivative of s(υ; I) with respect to υ, and

8



λ0(⋅) ≡ U(⋅)/U ′(⋅). From equation (1.1), the equilibrium bidding function can also

be written as

s(υ; I) = υ − λ−1
0 {s

′(υ; I)F (υ∣I)
(I − 1)f(υ∣I) } ,

where λ−1
0 (⋅) denotes the inverse of λ0(⋅). Note that the negative difference between

a bid and its corresponding valuation depends crucially on both the bidders’ risk

preferences, which are represented by λ−1
0 (⋅), and the distribution of valuations.

Given the above framework, the model can be characterized by the objects U(⋅)

and F (⋅∣I). It is assumed that U(⋅) and F (⋅∣I) satisfy the regularity conditions of

[GPV09]. Specifically, [U(⋅), F (⋅∣I)] ∈ UR×FR where R ∈ N and the corresponding

sets are defined as follows.

Definition 1. Let UR be the set of utility functions U ∶ R≥0 → R≥0 that satisfy the

next conditions: U(0) = 0 and U(ȳ) = 1 for some ȳ > 0; U(⋅) is continuous on

R≥0 and admits R + 1 continuous derivatives on R>0 with U ′(⋅) > 0 and U ′′(⋅) ≤ 0;

limx↓0∇rλ0(x) is finite for r = 1,2, . . . ,R + 1, where ∇rλ0 stands for the r-th

derivative of λ0.

Definition 2. Let FR be the set of distribution functions F (⋅∣I) that satisfy the

next conditions: F (⋅∣I) is a c.d.f. with support [υ(I), ῡ(I)] and 0 ≤ υ(I) < ῡ(I) <

+∞; F (⋅∣I) admits R + 1 continuous derivatives on [υ(I), ῡ(I)]; and f(⋅∣I) is

bounded away from zero on [υ(I), ῡ(I)].

The main objective of this paper is to estimate the utility function U(⋅) and

the density of private values f(⋅∣I). Before doing so, the next subsection discusses

existing identification results and establishes the key identification assumption.

1.2.2 Identification Assumption: Exogenous Participation

Suppose that the number of bidders I is observed and the distribution G(⋅∣I)

of an equilibrium bid is known. Let υ(α∣I) and b(α∣I) denote the α-quantile of
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F (⋅∣I) and G(⋅∣I), respectively.2 Since s(⋅; I) is strictly increasing, we have that

b(α∣I) = s[υ(α∣I); I] for any α ∈ [0,1]. From [GPV09], we can reformulate the

differential equation (1.1) as

1 = (I − 1) g(b∣I)
G(b∣I)λ0(υ − b),

where b ∈ (υ(I), b̄(I)], b̄(I) = s[ῡ(I); I], υ = s−1(b; I), and g(⋅∣I) = G′(⋅∣I). After

elementary algebra and since λ0(⋅) is strictly increasing, it follows that

υ(α∣I) = b(α∣I) + λ−1
0 { α

(I − 1)g[b(α∣I)∣I]} (1.2)

for any α ∈ [0,1].

Expression (1.2) is useful to derive the smoothness conditions of the equilib-

rium bid distribution G(⋅∣I). To characterize such conditions, the following set of

univariate distributions is defined.

Definition 3. Let GR be the set of distributions G(⋅∣I) that satisfy the next con-

ditions: G(⋅∣I) is a c.d.f. with support [b(I), b̄(I)] and 0 ≤ b(I) < b̄(I) < +∞;

G(⋅∣I) admits R + 1 derivatives on [b(I), b̄(I)]; g(⋅∣I) admits R + 1 continu-

ous derivatives on (b(I), b̄(I)] and is bounded away from zero on its support;

limb↓b(I) dr[G(b∣I)/g(b∣I)]/dbr exists and is finite for r = 1,2, . . . ,R + 1.

A distribution G(⋅∣I) is said to be rationalized by an auction model if there

exists a structure [U(⋅), F (⋅∣I)] whose equilibrium bid distribution is G(⋅∣I). From

[GPV09], Proposition 1, any bid distribution G(⋅∣I) ∈ GR can be rationalized

by [U(⋅), F (⋅∣I)] if and only if [U(⋅), F (⋅∣I)] ∈ UR × FR. Furthermore, [CGP11]

improved on this result and showed that any G(⋅∣I) ∈ GR can be rationalized by

some [U(⋅), F (⋅∣I)] ∈ UR×FR even when U(⋅) is restricted to belong to parametric

families of risk aversion such as CRRA and CARA.

2In this paper, the α-quantile of any c.d.f. F (⋅) is defined by q(α) ≡ inf{b ∈ R ∶ F (b) ≥ α} for
α ∈ (0,1], whereas q(0) ≡ sup{b ∈ R ∶ F (b) ≤ 0}. Note q(0) and q(1) become the infimum and
supremum, respectively, of the support of the density f(⋅).
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A structure [U(⋅), F (⋅∣I)] ∈ UR × FR is said to be nonidentified if there is a

another different structure [Ũ(⋅), F̃ (⋅∣I)] ∈ UR × FR that leads to the same equi-

librium bid distribution. If no such a structure exists, the model is said to be

identified. [GPV09] has shown that any element of UR × FR is nonidentified from

the knowledge of G(⋅∣I). However, they have also shown that model is identified

under some exclusion restrictions. Their main exclusion restriction is exogenous

bidders’ participation: F (⋅∣I) does not depend on the number of bidders I, or

more specifically, F () ≡ F (⋅∣I1) = F (⋅∣I2) for at least two number of bidders I1

and I2 with 2 ≤ I1 < I2. Under this restriction, [GPV09] proved that [U(⋅), F (⋅)]

is identified from the knowledge of the conditional bid distributions G(⋅∣I1) and

G(⋅∣I2).

In the rest of the paper, it is assumed that that bidders’ participation is exoge-

nous, or equivalently, f(⋅) ≡ f(⋅∣I1) = f(⋅∣I2) for at least two numbers of bidders

2 ≤ I1 < I2. As noted earlier, the main objective of this paper is to estimate

the utility function U(⋅) and the density of private values f(⋅). By definition of

λ0(⋅) and expression (1.2), both U(⋅) and f(⋅) can be characterized by λ−1
0 (⋅) from

the knowledge of G(⋅∣I1) and G(⋅∣I2), where 2 ≤ I1 < I2. As a consequence, λ−1
0 (⋅)

becomes the (infinite-dimensional) parameter of interest for the next two sections.

1.3 Approximation via Sieve Spaces

This section presents the main mathematical results. In preparation, subsection

1.3.1 formally introduces the parameter of interest, λ−1
0 (⋅), within a general frame-

work. Subsection 1.3.2 establishes the nonparametric identification result, which

allows us to uniquely characterize λ−1
0 (⋅) within a space of smooth functions. The

identification result is achieved using two population criterion functions. Subsec-

tion 1.3.3 constructs sieve spaces to approximate the zeros of those functions.

Before proceeding, I lay out the notation for the remaining discussion. The set
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of nonnegative integers N∪{0} is denoted by N0. The usual conventions 0! ≡ 1 and

00 ≡ 1 are adopted. For x ∈ R, the ceiling function is denoted by ⌈x⌉ ≡ min{n ∈ Z ∶

x ≤ n}. For a real-valued function f and a set Z, the range of f over Z is denoted

by f(Z), and I use standard notation for Lq-norms: ∥f∥q,Z = [∫Z ∣f(z)∣qdz]1/q if

1 ≤ q < +∞, whereas ∥f∥∞,Z = supz∈Z ∣f(z)∣. The indicator function is denoted by

1{⋅}, ∇rf stands for the r-th derivative of f , and ∇0f ≡ f .

1.3.1 Parameter of Interest

Given i1 and i2 integers that satisfy 2 ≤ i1 < i2, consider two univariate distri-

butions G1(⋅) ≡ G(⋅∣i1) and G2(⋅) ≡ G(⋅∣i2) that belong to GR (see Definition 3).

The pair [G1,G2] ∈ G2
R is the underlying data distribution, and given the previous

auction model, it is associated to a pair of bids (b1, b2) where the integers (i1, i2)

represent the numbers of participants in each auction. In other words, b1 and b2

can be regarded as random variables generated by two different auctions with i1

and i2 bidders, respectively.

The distribution of an equilibrium bid Gj(⋅), j = 1,2, varies with the number of

bidders ij because the equilibrium bidding strategy varies with ij. In addition, the

exclusion restriction F (⋅) ≡ F (⋅∣i1) = F (⋅∣i2), together with equation (1.1), imposes

additional constraints on the pair [G1,G2]. To formalize these constraints, I

introduce the set of pairs of distributions G∗R.

Let R ∈ N and H̄ ∈ R>0 be fixed constants, and also, let bj(α) denote the

α-quantile of Gj(⋅).

Definition 4. Let G∗R be the collection of pairs of univariate distributions

[G1,G2] ∈ G2
R that satisfy the following conditions:

1. b1(0) = b2(0) and b1(α) < b2(α) for α ∈ (0,1].

2. There exists a function λ0 ∶ R≥0 → R≥0 with R + 1 continuous derivatives,

λ0(0) = 0, λ′0(⋅) ≥ 1, and ∥∇R+1λ−1
0 ∥∞,R≥0 ≤ H̄. Such function satisfies:
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(a) For α ∈ [0,1], the compatibility condition

∆b(α) = λ−1
0 [R1(α)] − λ−1

0 [R2(α)],

where ∆b(α) ≡ b2(α) − b1(α) and Rj(α) ≡ αb′j(α)/(ij − 1).

(b) For j ∈ {1,2} and b ∈ [b, b̄j], ξ′j(b) > 0, where ξj(b) ≡ b+λ−1
0 {Gj(b)/[(ij−

1)gj(b)]} and gj(⋅) stands for the density of Gj(⋅).

For the remaining discussion, I assume that [G1,G2] ∈ G∗R, and the (infinite-

dimensional) parameter of interest is the function λ−1
0 (⋅). To save notation, I write

b ≡ b1(0) = b2(0) and b̄j ≡ bj(1). Basically, Definition 4 captures the restrictions on

the distributions of bids derived from the auction model of subsection 1.2.1. The

first condition means that participants bid more aggressively as the number of

bidders increases. The second statement establishes a compatibility condition be-

tween two auctions with different numbers of bidders. More specifically, λ0(0) = 0

is simply a normalizing restriction, λ′0(⋅) ≥ 1 indicates that bidders are risk-averse,

and ∥∇R+1λ−1
0 ∥∞,R≥0H̄ < +∞ is a regularity condition about the degree of smooth-

ness of λ−1
0 (⋅). Condition 2.(a) formalizes the assumption that the distribution of

valuations, as well as the bidders’ utility function, does not depend on the number

of bidders i1 and i2. Condition 2.(b) establishes the existence of an inverse bidding

function that is consistent with expression (1.2).

From [GPV09], any element of G∗R can be rationalized by the auction model

of subsection 1.2.1 with the exclusion restriction F (⋅) ≡ F (⋅∣i1) = F (⋅∣i2), that is,

exogenous participation. In other words, we already know that, for any [G1,G2] ∈

G∗R, there exists a (unique) structure [U(⋅), F (⋅)] ∈ UR ×FR that is independent of

the number of bidders and whose equilibrium bid distribution is Gj(⋅), when the

number of bidders is ij. Specifically, [U(⋅), F (⋅)] can be obtained as follows. The

utility function U(⋅) is the solution of the differential equation λ0(⋅)U ′(⋅)−U(⋅) = 0

with an additional normalizing restriction such as U(ȳ) = 1 for some ȳ > 0. The α-

quantile of the private value distribution F (⋅), which is independent of the number
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of bidders, becomes υ(α) = ξ1[b1(α)] = ξ2[b2(α)]. Note that υ(⋅) is well-defined

due to the compatibility condition 2.(a), so the distribution of private values is

given by F (⋅) = υ−1(⋅).

As an illustration, consider the pair of uniform distributions [G1,G2] given by

Gj(b) = ∫
b

−∞
( ij
ij − 1

)1{0 ≤ v ≤ ij − 1

ij
}dv, (1.3)

where j = 1,2 and b ∈ R. In this particular case, each distribution Gj(⋅) is gen-

erated by an auction model with ij participants, risk-neutral bidders (U(y) = y),

and independent private values distributed as uniform [0,1] (f(v) = 1{0 ≤ v ≤ 1}).

This illustration is useful to show that G∗R is nonempty for any 2 ≤ i1 < i2, R ∈ N,

and H̄ > 0; specifically, the pair [G1,G2] defined by (1.3) belongs to G∗R regard-

less of the values of 2 ≤ i1 < i2, R ∈ N, and H̄ > 0. Conditions 1-2 of Definition

4 can be easily checked. The first is satisfied as the α-quantiles of G1(⋅) and

G2(⋅) are b1(α) = (i1 − 1)α/i1 and b2(α) = (i2 − 1)α/i2, respectively. The second

condition is also satisfied because ∆b(α) = (α/i1) − (α/i2) and Rj(α) = α/ij, so

the functions λ0(⋅) and ξj(⋅) become λ0(u) = u and ξj(b) = ijb/(ij − 1). Finally,

note that both functions satisfy all the requirements of condition 2; in particular,

∥∇R+1λ−1
0 ∥∞,R≥0 = 0 ≤ H̄.

1.3.2 Population Criterion Functions

In this subsection, I introduce the first methodological innovation of the paper:

constructing appropriate population criterion functions that allow us to identify

the parameter of interest, λ−1
0 (⋅), within a space of smooth functions. Recall that

our auction model can be completely characterized by λ−1
0 (⋅), so after identifying

this function, we can recover both the bidders’ utility function and the density of

private values.

Before proceeding to the nonparametric case, consider the polynomial case

λ−1
0 (u) = β1u+β2u2+⋅ ⋅ ⋅+βLuL as an illustration, where L ∈ N and (β1, β2, . . . , βL) ∈
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RL
>0 are unknown coefficients. Since the compatibility condition ∆b(α) =

λ−1
0 [R1(α)] − λ−1

0 [R2(α)] holds for every α ∈ [0,1], it follows that

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∆b(α0)

∆b(α1)

⋮

∆b(αK)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R1(α0) −R2(α0) . . . R1(α0)L −R2(α0)L

R1(α1) −R2(α1) . . . R1(α1)L −R2(α1)L

⋮ . . . ⋮

R1(αK) −R2(αK) . . . R1(αK)L −R2(αK)L

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β1

β2

⋮

βL

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

for any K ∈ N and (α0, α1, . . . , αK) ∈ [0,1]K+1. Observe that there are K + 1

linear equations and L unknowns, (β1, β2, . . . , βL). To recover these coefficients,

we need (at least) L independent equations, so the choice of K and the argu-

ments (α0, α1, . . . , αK) becomes crucial. The problem is that an arbitrary choice

of (α0, α1, . . . , αK) does not necessarily lead to a system of K independent equa-

tions because Definition 4 imposes mild restrictions on R1(⋅) and R2(⋅).

In what follows, I solve this problem by constructing two criterion functions.

Basically, the first one will provide the proper arguments (α0, α1, . . . , αK) to plug-

in the compatibility condition and obtain at least L independent equations. The

second criterion function will recover (β1, β2, . . . , βL) using the compatibility con-

dition evaluated at the arguments provided by the first criterion function. Basi-

cally, a nonparametric specification of λ−1
0 (⋅) can be approximated by letting L

grow to infinity, so for identification purposes, K must grow to infinity as well.

The problem arises as some arguments αt ∈ [0,1], t = 0,1, . . . ,K, will be close to

each other, and so the rows of the above system of linear equations.

Turning to the nonparametric case where λ−1
0 (⋅) is a smooth function, let [0, r̄]

denote the range of R1(⋅) over [0,1] with r̄ ≡ max{R1(α) ∶ α ∈ [0,1]}. From

[GPV09], we already know that λ−1
0 (⋅) is nonparametrically identified on [0, r̄],

or in other words, λ−1
0 (⋅) is uniquely defined on [0, r̄]. It can also be shown that

λ−1
0 (u) cannot be identified when u > r̄, so the identification region [0, r̄] cannot
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be improved. To be specific, [GPV09] has established that

λ−1
0 (u0) = ∑

t∈N0

∆b(α̃t), (1.4)

where u0 ∈ (0, r̄] and (α̃t)t∈N0 ⊆ (0,1) is a strictly decreasing sequence that satisfies

the nonlinear recursive relation R1(α̃t) = R2(α̃t−1) with initial condition R1(α̃0) =

u0. SinceR1(⋅) is not necessarily increasing, the sequence (α̃t)t∈N0 is not necessarily

unique.

At this point, it is not known whether expression (1.4) can lead to a valid

estimator of λ−1
0 (⋅). As noted by [GPV09], Section 5, an estimation strategy based

on (1.4) would have several problems. First, expression (1.4) does not provide the

rate of at which λ−1
0 (u0) can be estimated because the characterization of λ−1

0 (u0)

is recursive and based on an infinity series of differences in quantiles. Second,

since Definition 4 does not guarantee the existence of a “Polynomial Minorant”

for R1(⋅), it is impossible to establish the rate at which λ−1
0 (u0) can be estimated.

The reason is that λ−1
0 (u0) depends crucially on α̃0, which is implicitly defined

by the equation R1(α̃0) = u0, and the rate of convergence of any estimator for α̃0

would depend on the “Polynomial Minorant” of R1(⋅); see [CHT07], Condition

C.2 and Theorem 3.1.

In the rest of this subsection, I develop a convenient identification approach

based on two population criterion functions, which will allow us to build a valid

estimator for λ−1
0 (⋅). As a starting point, I define the domains of these functions:

a set of sequence of functions A and a space of smooth functions HR. Let

ū ∈ [r̄,+∞) be a fixed real number.

Definition 5. Let A be the set of sequences of functions (αt)t∈N0 ∶ [0, ū] → [0,1]∞

that satisfy the next conditions: for each t ∈ N0, αt ∶ [0, ū] → [0,1] is a Lebesgue

measurable function, and there is T ∈ N such that αt(⋅) = 0 for all t ≥ T .

Let HR be the space of functions φ ∶ [0, ū] → R≥0 that satisfy the next condi-

tions: φ(0) = 0, φ(⋅) admits R + 1 continuous derivatives on [0, ū], 0 ≤ φ′(⋅) ≤ 1,
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and ∥∇R+1φ∥∞,[0,ū] ≤ H̄.

Several remarks are noteworthy. First, T is not uniformly bounded across

A , or in other words, each sequence of functions (αt)t ∈ A possesses its own

finite T . Second, R + 1 indicates the degree of smoothness of HR due to the

restriction ∥∇R+1φ∥∞,[0,ū] ≤ H̄. Third, by the second condition of Definition 4,

λ−1
0 ∶ [0, ū] → R≥0 belongs to HR because λ′0(⋅) ≥ 1 and ∥∇R+1λ−1

0 ∥∞,R≥0 ≤ H̄. As a

result, HR becomes the (infinite-dimensional) parameter space.

Given Definition 5, I construct two population criterion functionsQ1 ∶ A → R≥0

and Q2 ∶ ΘR → R≥0, where the domain of the latter is given by ΘR ≡ A ×HR. To

be specific, such functions are defined as follows:

Q1[(αt)t] = ∫
r̄

0
∣R1[α0(u)] − u∣du +

+∞
∑
t=1
∫

r̄

0
∣R1[αt(u)] −R2[αt−1(u)]∣du,

Q2[(αt)t, φ] =
+∞
∑
t=0
∫

r̄

0
∣∆b[αt(u)] + φ{R2[αt(u)]} − φ{R1[αt(u)]}∣du, (1.5)

and also, we set Q[(αt)t, φ] ≡ Q1[(αt)t] + Q2[(αt)t, φ]. Observe that Q1(⋅) and

Q2(⋅, ⋅) are well-defined. In particular, we have that Q1(⋅),Q2(⋅, ⋅) < +∞ because,

by construction of A , the series of expression (1.5) always involve a finite number

of terms. Recall that for each (αt)t ∈ A , there is T ∈ N such that αt(⋅) = 0 for all

t ≥ T , as well as, R1(0) = R2(0) and ∆b(0) = 0.

The idea behind the construction of these criterion functions and the choice

of their functional forms can be described as follows. Observe first that

Q2[(αt)t, λ−1
0 ] = 0 for any (αt)t ∈ A because of condition 2.(a) in Definition 4.

However, Q2[(αt)t, φ] = 0 does not necessarily imply φ(⋅) = λ−1
0 (⋅); for instance, if

0A denotes the sequence of zero functions, then Q2[0A , φ] = 0 for any φ ∈ HR. In

view of identification and estimation purposes, it is useful to establish a uniqueness

result in the sense that Q2[(αt)t, φ] = 0 implies φ(⋅) = λ−1
0 (⋅). A criterion function

based exclusively on the compatibility condition ∆b(⋅)−λ−1
0 [R1(⋅)]−λ−1

0 [R2(⋅)] = 0

will fail to achieve this uniqueness result, so we need to introduce Q1(⋅), which
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can be interpreted as a “first-step” criterion function. The role of Q1(⋅) is to

identify a sequence of functions (α̃t)t so that Q2[(α̃t)t, φ] = 0 implies φ(⋅) = λ−1
0 (⋅),

and therefore, λ−1
0 (⋅) becomes the unique minimizer of the functional Q2[(α̃t)t, ⋅].

Roughly speaking, such a sequence of functions will be characterized as the zero

of Q1(⋅), that is Q1[(α̃t)t] = 0.

The next proposition formalizes the above arguments by establishing a conve-

nient identification result. Let define c(r) = (R + 2)/(R + 1 − r) for r = 0,1, . . . ,R.

Proposition 1.3.1. If [G1,G2] ∈ G∗R, there exists a constant K > 0 such that

K∥∇rφ −∇rλ−1
0 ∥c(r)∞,[0,r̄] ≤ Q[(αt)t, φ] for all [(αt)t, φ] ∈ ΘR and r ∈ {0,1, . . . ,R}.

The proof of this proposition is detailed in Appendix 1.A.1.1 and can be di-

vided into two parts. The first determines an upper bound for ∥∇rφ−∇rλ−1
0 ∥∞,[0,r̄]

in terms of R, H̄, r, and ∥φ−λ−1
0 ∥1,[0,r̄]. Specifically, using Theorem 1 of [Gab67],

it can be shown that there is K > 0 such that K∥∇rf −∇rg∥c(r)∞,[0,r̄] ≤ ∥f −g∥1,[0,r̄] for

all f, g ∈ HR; this approach is similar to that of [CS98], Appendix B. I remark that

the inequality between the sup-norm and the L1-norm depends crucially on the

existence of a finite constant H̄ such that ∥∇R+1φ∥∞,[0,ū] ≤ H̄. Moreover, Theorem

2 of [Gab67] proves that the exponent c(r) cannot be essentially improved. The

second part of the proof exploits the shape of the criterion functions, and then,

employs repeated triangular inequalities to show that ∥φ−λ−1
0 ∥1,[0,r̄] ≤ 2Q[(αt)t, φ]

for any [(αt)t, φ] ∈ ΘR. In order to obtain this result, the function Q1(⋅) plays a

fundamental role as the inequality ∥φ − λ−1
0 ∥1,[0,r̄] ≤ K̄Q2[(αt)t, φ] does not neces-

sarily holds for an arbitrary (α̃t)t ∈ A and a fixed constant K̄ < +∞. In addition,

we also require that λ−1
0 (0) = φ(0) = 0.

The distinguishing feature of Proposition 1.3.1, in comparison with the existing

identification result, is that the (Sobolev) distance between λ−1
0 (⋅) and any function

of HR is bounded above by a known criterion function. This feature is essential to

develop an estimator for λ−1
0 (⋅) and obtain its rate of convergence. In this sense,
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Proposition 1.3.1 plays the role of Identification Condition 3.1 in [Che07].

An implication of Proposition 1.3.1 is the following: if there exists a sequence

of functions (α̃t)t that satisfies Q1[(α̃t)t] = 0, then λ−1
0 (⋅) can be characterized

as the minimizer of the functional Q2[(α̃t)t, ⋅] ∶ HR → R≥0. The main problem

with this approach is that Q1[(αt)t] > 0 for any (αt)t ∈ A by construction of A

and Q1(⋅). Nevertheless, the next implication is still valid: if there is a sequence

{[(α(n)
t )t, φ(n)] ∈ ΘR ∶ n ∈ N} such that Q[(α(n)

t )t, φ(n)] → 0 as n grows to infinity,

then ∇rφ(n) → ∇rλ−1
0 uniformly on [0, r̄] for any r = 0,1, . . . ,R. In addition, the

rate of approximation of ∇rφ(n) toward ∇rλ−1
0 can be bounded by the rate at which

Q[(α(n)
t )t, φ(n)] converges to zero, The next subsection will prove not only that

the sequence [(α(n)
t )t, φ(n)] exists, but also that it belongs to finite-dimensional

approximation spaces (sieve spaces).

1.3.3 Sieve Spaces: Definition and Approximation Result

The innovation here is to build sieve spaces that approximate the zeros of the

population criterion functions Q1(⋅) and Q2(⋅, ⋅). These sieves will be employed

later, in subsection 1.4.3, to define the estimator for λ−1
0 (⋅).

Roughly speaking, the elements of A and HR have different degree of smooth-

ness. The components of a sequence (αt)t ∈ A are bounded Lebesgue measurable

functions, whereas any element of HR is just a nondecreasing function with degree

of smoothness R + 1. Due to this difference, A and HR must be approximated

using different sieve spaces. On the one hand, A will be approximated by wavelets

with basis function κ(x) ≡ (1− ∣x∣)1{∣x∣ < 1} where x ∈ R. On the other hand, HR

will be approximated by Bernstein polynomials. The notation for the Bernstein

polynomials basis is

pJ,j(u) ≡ (J
j
)(u

ū
)
j

(1 − u
ū
)
J−j

,

where u ∈ [0, ū], j, J ∈ N0, j ≤ J , and pj,−1(u) = pj−1,j(u) = 0.
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To explain the dimensions of the sieve spaces, let consider two increasing diver-

gent sequences of positive integers: (Kn)n∈N and (Ln)n∈N. Then, the sieve spaces

A (n) ⊆ A and H (n) ⊆ HR can be defined as follows, while the sequences (Kn)n
and (Ln)n are employed to explain their dimensions.

Definition 6. Let A (n) be the space of sequence of functions (At)t∈N0 ∶ [0, ū] →

[0,1]∞ of the form

At(u) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∑⌈2Jt ⌉
j=0 at,jκ[2Jt(u/ū) − j] if 0 ≤ t ≤Kn − 1,

0 otherwise,
(1.6)

where 1 ≤ Jt < +∞ and 0 ≤ at,j ≤ 1 for any t = 0,1, . . . ,Kn−1 and j = 0,1, . . . , ⌈2Jt⌉.

Let H (n) be the space of Bernstein polynomials P ∶ [0, ū] → R≥0 with degree

Ln of the form

P (u) =
Ln

∑
j=0

bjpLn,j(u),

where the coefficients {bj ∶ j = 0,1, . . . , Ln} satisfy the following conditions:

1. b0 = 0,

2. ūL−2
n ≤ bj+1 − bj ≤ ūL−1

n for 0 ≤ j ≤ Ln − 1,

3. and

∣
R+1

∑
i=0

(−1)R+1−i(R + 1

i
)bj+i∣ ≤ ( ū

Ln
)
R+1

H̄ for 0 ≤ j ≤ Ln − (R + 1).

Several remarks are noteworthy. First, A (n) and H (n) are finite-dimensional

spaces spanned by κ(⋅) and pJ,j(⋅), respectively. Note that κ(⋅) and pJ,j(⋅) are

weighting functions that satisfy ∑j∈Z κ(x − j) = 1 and ∑Jj=0 pJ,j(u) = 1 for any

x ∈ R and u ∈ [0, ū]. Second, A (n) is well-defined and A (n) ⊆ A (n+1) ⊆ A for all

n ∈ N. In particular, the range of any function At(⋅) given by (1.6) is a subset of

[0,1] due to the restriction 0 ≤ at,j ≤ 1. Third, the dimension of A (n) is given by

dim[A (n)] = ∑Kn−1
t=0 ⌈2Jt + 1⌉, and as can be noted, is extremely large because A
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is a set of sequence of functions whose components are not necessarily continuous

functions. Fourth, due to the conditions 1-3, any polynomial P ∈ H (n) satisfies

the restrictions P (0) = 0, 0 ≤ P ′(⋅) ≤ 1, and ∥∇R+1P ∥∞,[0,ū] ≤ H̄. Basically, the

equality P (0) = 0 follows immediately from b0 = 0. The inequality 0 ≤ P ′(⋅) ≤ 1 is

obtained from the formulas

P ′(u) = Ln
ū

Ln

∑
j=0

bj[pLn−1,j−1(u) − pLn−1,j(u)] =
Ln
ū

Ln−1

∑
j=0

(bj+1 − bj)pLn−1,j(u)

and ∑Ln−1
j=0 pLn−1,j(u) = 1; see [DL93], Chapter 10. Proceeding in a similar manner

and exploiting the third condition, it can also be shown that ∥∇R+1P ∥∞,[0,ū] ≤ H̄.

Finally, the dimension of H (n) is dim[H (n)] = Ln because b0 = 0, and trivially,

dim[Θ(n)] = dim[A (n)] + dim[H (n)].

The main result of this section is that the proposed sieve spaces satisfy the

following approximation property.

Proposition 1.3.2. Let γJ > 0 be a finite constant. If [G1,G2] ∈ G∗R, the following

results hold:

1. If Jt is of the form Jt = γJ(t+ 5) log2(⌈K
1/2
n ⌉), t = 0,1, . . . ,Kn − 1, then there

exists a sequence {(A(n)
t )t∈N0 ∈ A (n) ∶ n ∈ N} such that Q1[(A(n)

t )t] = O(K−1
n )

as n→ +∞.

2. There exists a sequence of polynomials {P (n) ∈ H (n) ∶ n ∈ N} such that

∥Q2[⋅, P (n)]∥∞,A (n) = O(Kn/Ln) as n→ +∞.

The proof of this proposition is constructive, in the sense that it provides

explicit expressions for (A(n)
t )t and P (n) in terms of R1(⋅), R2(⋅), and λ−1

0 (⋅). All

details are given in Appendix 1.A.1.2. The proof of the first item is very involved,

but the main idea can be summarized as follows. For a fixed u ∈ [0, r̄], recall

from expression (1.4) that λ−1
0 (u) = ∑t∈N0

∆b(α̃t), where R1(α̃0) = u and R1(α̃t) =

R2(α̃t−1) when t ≥ 1. Instead of considering a fixed u ∈ [0, r̄], I regard (α̃t)t as a
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sequence of functions {α̃t(⋅) ∶ t ∈ N0} defined on [0, r̄]. More specifically, I consider

(α̃t)t as a sequence of functions {α̃t(⋅) ∶ t ∈ N0} with domain [0, r̄] that satisfies

the following recursive relation: R1[α̃0(u)] = u and R1[α̃t(u)] = R2[α̃t−1(u)] for

all t ≥ 1 and u ∈ [0, r̄]. By construction, it follows that Q1[(α̃t)t] = 0, so now the

objective is to approximate (α̃t)t using elements of A (n).

Such an approximation has two major difficulties. The first is that (α̃t)t is not

uniquely defined because R1(⋅) is not necessarily strictly increasing. The second

is that (α̃t)t does not belong to A because α̃t(u) > 0 for all (t, u) ∈ N0 × (0, r̄];

note that R1(α) = R2(α) = 0 if and only if α = 0. To address both difficulties, for

each t = 0,1, . . . ,Kn − 1, I propose a function A
(n)
t (⋅) that converges uniformly to

a well-defined α̃t(⋅), while for each t ≥ Kn, I simply set A
(n)
t (⋅) = 0. To complete

the proof, I show that the resulting sequence, {A(n)
t (⋅) ∶ t ∈ N0}, belongs to A (n)

and approaches α̃t(⋅) so that Q1[(A(n)
t )t] = O(K−1

n ).

Turning to the second item of Proposition 1.3.2, note that ∥Q2[⋅, λ−1
0 ]∥∞,A (n) =

0, so the idea is to approximate λ−1
0 (⋅) by Bernstein polynomials. The natural

candidate is the Bernstein operator of degree Ln, namely,

P (n)(u) =
Ln

∑
j=0

b
(n)
j pLn,j(u), (1.7)

where b
(n)
j = λ−1

0 (jū/Ln) for j = 0,1, . . . , Ln. Although the function λ−1
0 (⋅) cannot

be identified on its entire domain R≥0, the second condition of Definition 4 ensures

that λ−1
0 (⋅) exists outside [0, r̄], so the coefficients {b(n)j ∶ j = 0,1, . . . , Ln} are

well-defined. Regarding the approximation rate of (1.7), it is well-known that

∥P (n) − λ−1
0 ∥∞,[0,r̄] = O(L−1

n ); see [DL93], Chapter 10, Theorem 3.1. To complete

the proof, I show that P (n) ∈ H (n) when n is sufficiently large, and also, that

Q2(⋅, ⋅) can be bounded above as follows:

Q2[(At)t, P (n)] ≤ C̄Kn∥P (n) − λ−1
0 ∥∞,[0,r̄]

for all (At)t ∈ A (n), where C̄ > 0 is a finite constant independent of (At)t and n.

Finally, the desired result emerges from ∥P (n) − λ−1
0 ∥∞,[0,r̄] = O(L−1

n ).
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1.4 Estimation Method: Uniform Consistency

The objective of this paper is to estimate the bidders’ utility function and the

density of private values. A valid estimator for λ−1
0 (⋅) is sufficient for estimating

these functions. To that end, in this section, I construct a valid estimator for

λ−1
0 (⋅) from observed bids. Roughly speaking, such an estimator is the empirical

counterpart of (1.7).

This section is divided into four subsections. Subsection 1.4.1 presents the

assumption regarding the data generating process. Subsections 1.4.2 and 1.4.3

build the estimator of λ−1
0 (⋅), which is denoted by λ̂−1(⋅). Exploiting the math-

ematical results of the previous section, subsection 1.4.4 derives the main result

of the paper: the weak uniform consistency of λ̂−1(⋅) together with its rate of

convergence.

1.4.1 Data Generating Process

In practice, the auctioned object can be heterogeneous, so I introduce an addi-

tional random vector X to account for heterogeneity in the auctioned object. The

set of numbers of potential bidders I may contain more than two elements, so I

also consider this case. The econometrician observes a collection of random vec-

tors {(Bpl, Il,Xl) ∶ p = 1, . . . , Il; l = 1, . . . ,N}, where Bpl is the bid placed by the pth

individual in the lth auction, Il is the number of bidders in the lth auction, and

Xl is a vector of continuous auction-specific covariates. The following assumption

is satisfied.

Assumption 1. There exists a collection of independent random vectors

{(B1,l, . . . ,BIl,l, Il,Xl) ∶ l = 1,2, . . . ,N} defined on a probability space (Σ,F ,P)

and the following conditions hold:

1. {(Il,Xl) ∶ l = 1,2, . . . ,N} are identically distributed.
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2. The marginal p.d.f. ϕ(⋅) of Xl has compact support X ⊆ Rd, is bounded

away from zero on X , admits R + 1 continuous derivatives on int(X), and

2R + 1 ≥ d.

3. For each x ∈ X , the conditional p.d.f. π(⋅∣x) of Il given Xl = x has finite

support I = {i1, i2, . . . , iM} ⊆ N≥2 with M ≥ 2. For all i ∈ I, π(i∣⋅) is strictly

positive and admits R + 1 continuous derivatives on int(X).

4. For each (i, x) ∈ I × X , {(B1,l, . . . ,BIl,l) ∶ l = 1,2, . . . ,N} are identically

distributed conditional on {(Il,Xl) = (i, x) ∶ l = 1,2, . . . ,N} with joint c.d.f.

G(⋅∣i, x). For all (i1, i2, x) ∈ I2 × X with i1 < i2, G(b∣ij, x) = ∏ij
h=1G(bh∣ij, x)

where j = 1,2, b ∈ Rij , and [G(⋅∣i1, x),G(⋅∣i2, x)] ∈ G∗R.

This assumption formalizes the idea that the observations have been generated

by the auction model of subsection 1.2.1. It also imposes standard regularity

conditions that will be used later to establish the asymptotic results; among others,

I highlight that the auctions must be independent.

In the rest of the paper, the asymptotic properties of the estimators are detailed

as the sample size N grows to infinity, whereas M (the cardinality of I) is fixed.

In other words, all limits are taken as N → +∞ keeping M constant. In addition, I

consider the case in which Xl = x, where x is fixed and belongs to int(X). If there

is no ambiguity, the dependence of x is omitted from the notation; for example,

the α-quantile of G(⋅∣ij, x) is simply denoted by bj(α), where j = 1, . . . ,M . The

abbreviation“w.p.a.1” stands for “with P-probability approaching one.”

1.4.2 Preliminary Kernel Estimators

This subsection constructs nonparametric estimators for ∆b(⋅) and Rj(⋅). These

estimators will be used later, in subsection 1.4.3, to compute the empirical crite-

rion functions associated with (1.5). Following recent literature on the subject, we
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employ a kernel approach to estimate the components of ∆b(⋅) and Rj(⋅), namely,

bj(⋅) and b′j(⋅). For this purpose, let k(⋅) and kb(⋅) be univariate kernels, and also,

let hG, hg, h∂, and hb be bandwidths. The following assumptions are satisfied.

Assumption 2. The kernels k(⋅) and kb(⋅) are symmetric, have support [−1,1],

have R + 1 continuous derivatives on R, and satisfy ∫ k(v)dv = ∫ kb(v)dv = 1, as

well as, kb(⋅) ≥ 0. The order of k(⋅) is R + 1, that is, moments of order strictly

smaller than the given order vanish. For x ∈ Rd, denote the product kernel by

K(x) = ∏d
j=1 k(xj).

Assumption 3. Let γG, γg, and γ∂ be positive constants. The bandwidths are of

the form:

hG = γG[log(N)/N]1/(2R+d+2), hg = γg[log(N)/N]1/(2R+d+3),

and h∂ = γ∂(1/N)1/(d+1) if d > 0. Moreover, hb satisfies hb → 0 and hb/hg → +∞

as N → +∞.

The estimators of ϕ(x), π(i∣x), G(b∣i, x), and the density g(b∣i, x) are obtained

directly from eqs. (8)-(9) in [MS12]. For any (b, i, x) ∈ R+ × I × int(X), I define

ϕ̂(x) = 1

NhdG

N

∑
l=1

K (x −Xl

hG
) ,

π̂(i∣x) = 1

ϕ̂(x)NhdG

N

∑
l=1

1{Il = i}K (x −Xl

hG
) ,

Ĝ(b∣i, x) = 1

π̂(i∣x)ϕ̂(x)NhdGi
N

∑
l=1

Il

∑
p=1

1{Blp ≤ b, Il = i}K (x −Xl

hG
) , and

ĝ(b∣i, x) = 1

π̂(i∣x)ϕ̂(x)Nhd+1
g i

N

∑
l=1

Il

∑
p=1

1{Il = i}k (b −Bpl

hg
)K (x −Xl

hg
) .

To estimate the boundaries of the support of g(⋅∣ij, x), where j = 1, . . . ,M , I

define the following hypercube containing x = (x1, . . . , xd):

π(x) = [x1 − h∂, x1 + h∂] × ⋯ × [xd − h∂, xd + h∂].

25



Then, the boundaries of the support of g(⋅∣ij, x), b and b̄j, are estimated by

b̂ = min{Bpl ∶ p = 1, . . . , il; l = 1, . . . ,N ;Xl ∈ π(x)} and

ˆ̄bj = max{Bpl ∶ p = 1, . . . , il; l = 1, . . . ,N ; Il = ij;Xl ∈ π(x)},

respectively. Recall that b is independent of ij by Assumption 1.4, thus there is

no need to restrict bids such that Il = ij.

The conditional quantile function bj(⋅), as well as its derivative b′j(⋅), is esti-

mated as in [MS12]. However, I give special attention to boundary issues, so the

estimator of bj(⋅) is defined by

b̂j(α) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

b̂ if 0 ≤ α < hb,

inf{b ∈ R≥0 ∶ Ĝ(b∣ij, x) ≥ α} if hb ≤ α ≤ 1 − hb,
ˆ̄bj otherwise.

Due to the boundary correction on [0, hb) ∪ (1− hb,1] and since hb/hg → +∞ (As-

sumption 3), Lemma 1.A.9 (Appendix 1.A.2) shows that ĝ[b̂j(⋅)∣ij, x] is bounded

away from zero on [hb,1−hb] w.p.a.1. Hence, the estimator of b′j(⋅) can be defined

by

b̂′j(α) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1/ĝ
j

if 0 ≤ α < hb,

1/ĝ[b̂j(α)∣ij, x] if hb ≤ α ≤ 1 − hb,

1/ˆ̄gj otherwise,

where ĝ
j

and ˆ̄gj are consistent estimators of g(b∣ij, x) and g(b̄j ∣ij, x), respectively:

ĝ
j

= 1

π̂(ij ∣x)ϕ̂(x)Nhd+1
g ij

N

∑
l=1

Il

∑
p=1

1{Il = ij}k̃b (
b̂ −Bpl

hg
)K (x −Xl

hg
) and

ˆ̄gj = 1

π̂(ij ∣x)ϕ̂(x)Nhd+1
g ij

N

∑
l=1

Il

∑
p=1

1{Il = ij}k̃b
⎛
⎝
Bpl − ˆ̄bj
hg

⎞
⎠
K (x −Xl

hg
) ,

where k̃b(⋅) is a one-sided version of kb(⋅), namely, k̃b(v) = 2kb(v)1(v ≤ 0). I remark

that below results do not change if ĝ
j

and ˆ̄gj are replaced by other estimators whose

rates of convergence are equal or faster than hb.3

3For a recent discussion about estimation of conditional quantile functions, see [GS12] and
the references cited therein.
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For the rest of this paper, I consider a fixed pair (i1, i2) ∈ I2 with i1 < i2.

Definition 4 imposes sign and smoothness conditions on the difference ∆b(α) =

b2(α) − b1(α). In order to preserve those properties, ∆b(α) is estimated by the

following convolution operation:

∆b̂(α) = 1

hbk̄b(α) ∫
1

0
max{0, b̂2(v) − b̂1(v)}kb (

α − v
hb

)dv, (1.8)

where α ∈ [0,1] and k̄b(α) = ∫
(1−α)/hb
−1 kb(v)dv. Similarly, R1(α) is estimated by

R̂1(α) =
1

hbk̄b(α) ∫
1

0

vb̂′1(v)
(i1 − 1)kb (

α − v
hb

)dv, (1.9)

and then, the estimator of r̄ becomes r̂ = max{R̂1(α) ∶ α ∈ [0,1]}. In order to

preserve the inequality R2(⋅) ≤ R1(⋅), the estimator of R2(α) is given by

R̂2(α) =
1

hbk̄b(α) ∫
1

0
min{ vb̂

′
1(v)

(i1 − 1) ,
vb̂′2(v)
(i2 − 1)}kb (

α − v
hb

)dv. (1.10)

Observe that I have not imposed a boundary correction on [0, hb) because ∆b(α)

and Rj(α) converge zero as α → 0+. In addition, such implementation would not

improve the uniform rate of convergence of ∆b̂(⋅) and R̂j(⋅). Note also that these

convolution operators maintain the degree of smoothness of ∆b(⋅) and Rj(⋅), in

particular, the continuity of ∆b̂(⋅) and R̂j(⋅) guarantees the existence of solutions

for the minimization problems discussed in the next subsection.

Finally, the uniform rates of convergence of ∆b̂(⋅) and R̂j(⋅) are established

by the next lemma. The asymptotic properties of the components of ∆b̂(⋅) and

R̂j(⋅) are detailed in Appendix 1.A.2, Lemma 1.A.9.

Lemma 1.4.1. Under Assumptions 1-3, ∥∆b̂(⋅) − ∆b(⋅)∥∞,[0,1] = OP (hb) and

∥R̂j(⋅) −Rj(⋅)∥∞,[0,1] = OP (hb) for j = 1,2. As a consequence, ∣r̂ − r̄∣ = OP (hb).

1.4.3 Two-Step Nonparametric Sieve Estimator

In this subsection, I formally define the estimator of λ−1
0 (⋅) and describe how to

implement it. As a starting point, I construct the empirical criterion functions
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Q̂1(⋅) and Q̂2(⋅, ⋅) associated with Q1(⋅) and Q2(⋅, ⋅), respectively. Recall that

(Kn)n and (Ln)n are increasing divergent sequences of positive integers, which

are related to the dimensions of the sieve spaces, and that N denotes the number

of auctions in the data set.

A natural way to proceed is to combine expression (1.5) with the estimators

(1.8)-(1.10). Then, the empirical criterion function Q̂1 ∶ A (N) → R≥0 is defined by

Q̂1[(At)t] = ∫
r̂

0
∣R̂1[A0(u)] − u∣du +

KN−1

∑
t=1
∫

r̂

0
∣R̂1[At(u)] − R̂2[At−1(u)]∣du

+∫
r̂

0
∣R̂2[AKN−1(u)]∣du,

while Q̂2 ∶ Θ(N) → R≥0 becomes

Q̂2[(At)t, P ] =
KN−1

∑
t=0
∫

r̂

0
∣∆b̂[At(u)] + P{R̂2[At(u)]} − P{R̂1[At(u)]}∣du.

Note that the dimension of the sieve spaces depends on the sample size N . To

facilitate technical details, ū is taken to be large enough so that ū > r̄, which

implies ū > r̂ w.p.a.1.

The estimator of λ−1
0 (⋅) is computed in two steps. In the first, we set (Ât)t∈N0

as the argument that minimizes Q̂1(⋅) over A (N), formally,

(Ât)t = arg min{Q̂1[(At)t] ∶ (At)t ∈ A (N)} .

By definition of A (N) and since the integrals of Q̂1(⋅) are supported on [0, r̂], the

solution of this minimization problem is characterized by a sequence of functions

(Ât)t∈N0 ∶ [0, r̂] → [0,1]∞ of the form

Ât(u) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∑Stj=0 ât,jκ[2Jt(u/ū) − j] if 0 ≤ t ≤KN − 1,

0 otherwise,
(1.11)

where St = ⌈r̂2Jt/ū⌉. Note that κ[2Jt(u/ū)− j] = 0 when u ∈ [0, r̂] and j > ⌈r̂2Jt/ū⌉;

for this reason, {0,1, . . . , St} has become the support of j in the sum of ex-

pression (1.11) when 0 ≤ t ≤ KN − 1. The coefficients associated with (Ât)t,
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(â0,0, â0,1, . . . , â0,S0 , â1,0, . . . , âKN−1,SKN−1), are the argument that minimizes the ex-

pression

∫
r̂

0
∣R̂1 (

S0

∑
j=0

a0,jκ[2J0(u/ū) − j]) − u∣du

+
KN−1

∑
t=1
∫

r̂

0
∣R̂1 (

St

∑
j=0

at,jκ[2Jt(u/ū) − j]) − R̂2 (
St−1

∑
j=0

at−1,jκ[2Jt−1(u/ū) − j])∣du

+∫
r̂

0

RRRRRRRRRRR
R̂2

⎛
⎝

SKN−1

∑
j=0

at,jκ[2JKN−1(u/ū) − j]
⎞
⎠

RRRRRRRRRRR
du

with respect to (a0,0, . . . , a0,S0 , a1,0, . . . , aKN−1,SKN−1) ∈ [0,1]dim[A (N)]. To conclude

the first step, I remark that the above minimization problem has a well-defined

solution because both ∆b̂(⋅) and R̂j(⋅) are uniformly continuous.

In the second step, we define the estimator of λ−1
0 (⋅) as the argument that

minimizes Q̂2[(Ât)t, ⋅] over H (N), formally,

λ̂−1(⋅) = arg min{Q̂2[(Ât)t, P ] ∶ P ∈ H (N)} .

The solution of this minimization problem is a Bernstein polynomial with degree

LN of the form

λ̂−1(u) =
LN

∑
j=1

b̂jpLN ,j(u),

where (b̂1, b̂2, . . . , b̂LN ) is the argument that minimizes the expression

KN−1

∑
t=0
∫

r̂

0
∣∆b̂[Ât(u)] +

LN

∑
j=1

bj [pLN ,j{R̂2[Ât(u)]} − pLN ,j{R̂1[Ât(u)]}]∣du

with respect to (b1, b2, . . . , bLN ) and subject to conditions 1-3 of Definition 6.

Clearly, this minimization problem has a well-defined solution as the objective

function is continuous in (b1, b2, . . . , bLN ).

1.4.4 Uniform Consistency

In this subsection, I establish the main result of the paper: the weak uniform

consistency of λ̂−1(⋅) with its rate of convergence. In order to achieve the fastest
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rate, I make the assumption that KN diverges at the rate of h
−1/2
b . In addition, I

set the dimensions of the sieve spaces as an increasing function of the sample size

N . More specifically, the assumption is as follows.

Assumption 4. Let γK, γJ , and γL be positive constants. The sequences KN

and LN , as well as Jt (t = 0,1, . . . ,KN − 1), are of the form: KN = ⌈γKh−1/2
b ⌉,

LN = ⌈γLK2
N⌉, and Jt = γJ(t + 5) log2(⌈K

1/2
N ⌉).

Recall that hb is a bandwidth that satisfies Assumption 3, KN indicates to the

support of the sums of the empirical criterion functions Q̂1(⋅) and Q̂2(⋅, ⋅), while

LN indicates the degree of the Bernstein polynomial associated with λ̂−1(⋅). Since

KN and LN must be positive integers, Assumption 4 uses the ceiling function ⌈⋅⌉

in the construction of these sequences.

The next lemma states the uniform rate of convergence in probability of Q̂1(⋅)

and Q̂2(⋅, ⋅) over the corresponding sieve spaces.

Lemma 1.4.2. Under Assumptions 1-4 and when N → +∞, ∥Q̂1(⋅) −

Q1(⋅)∥∞,A (N) = OP (h1/2
b ) and ∥Q̂2(⋅, ⋅) −Q2(⋅, ⋅)∥∞,Θ(N) = OP (h1/2

b ).

The proof of this lemma is simple, basically, it is an immediate consequence of

Lemma 1.4.1 and Assumption 4; see Appendix 1.A.2.2. The next theorem presents

the main finding of this paper: the uniform rate of convergence in probability of

λ̂−1(⋅) (and its derivatives) over the identification region [0, r̄].

Theorem 1.4.1. Under Assumptions 1-4 and for r = 0,1, . . . ,R,

∥∇rλ̂−1(⋅) − ∇rλ−1
0 (⋅)∥∞,[0,r̄] = OP (h1/[2c(r)]

b ) ,

where c(r) and hb have been defined in subsections 1.3.2 and 1.4.2, respectively.

Given Propositions 1.3.1-1.3.2 and Lemma 1.4.2, the proof of this Theorem

relies on simple arguments. Here, we present a sketch for the case r = 0 and all

30



the details are relegated to Appendix 1.A.2.3. From Proposition 1.3.1 and Lemma

1.4.2, it follows that K∥λ̂−1 −λ−1
0 ∥c(0)∞,[0,r̄] ≤ Q1[(Ât)t] +Q2[(Ât)t, λ̂−1] ≈ Q̂1[(Ât)t] +

Q̂2[(Ât)t, λ̂−1]. By construction of [(Ât)t, λ̂−1], Q̂1[(Ât)t] + Q̂2[(Ât)t, λ̂−1] is

bounded above by Q̂1[(A(N)
t )t] + Q̂2[(Ât)t, P (N)] ≈ Q1[(A(N)

t )t] +Q2[(Ât)t, P (N)].

By definition of sup-norm ∥ ⋅ ∥∞,A (N) and since (Ât)t ∈ A (N), the right-hand

side can be bounded above by Q1[(A(N)
t )t] + ∥Q2[⋅, P (N)]∥∞,A (N) , so we obtain

K∥λ̂−1 − λ−1
0 ∥c(0)∞,[0,r̄] ≤ Q1[(A(N)

t )t] + ∥Q2[⋅, P (N)]∥∞,A (N) . Then, the desired result

emerges from Proposition 1.3.2 and Assumption 4, which implies K−1
N ≤ γ−1

K h
1/2
b . I

remark that the validity of the two-step procedure, described in subsection 1.4.3,

relies on the uniform convergence of Q2[⋅, P (N)] over A (N).

An immediate corollary of Theorem 1.4.1 is that λ̂−1(⋅) converges uniformly

to λ−1
0 (⋅) at the rate of [log(N)/N]

ν(R+2)
2(R+1)(2R+d+3) for any fixed value of ν ∈ (0,1).

Not surprisingly, this rate is slower than the optimal semiparametric rate,

N−(R+1)/(2R+3), obtained by [CGP11].

1.5 Estimating the First-Price Auction Model

The previous section developed an estimator for λ−1
0 (⋅); this section applies it

to the auction model of subsection 1.2.1. Exploiting the asymptotic property

of λ̂−1(⋅), subsection 1.5.1 proposes an estimator for the bidders’ utility function

U(⋅), while subsection 1.5.2 suggests a simple procedure to recover the density of

private values f(⋅). The distinguishing feature of the proposed estimators is that

they do not place a parametric restriction on the shape of U(⋅).

1.5.1 Bidders’ Utility Function: Uniform Consistency

In this subsection, I propose an estimator for the bidders’ utility function U(⋅);

then, I show that it is uniformly consistent and provide its rate of convergence.

As far as I know, this is the first nonparametric estimator for the bidders’ utility
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function in the context of a first-price sealed-bid auction model.

As λ−1
0 (⋅) is identified on [0, r̄], it follows immediately that λ0(⋅) is identified on

[0, λ−1
0 (r̄)]. To facilitate the subsequent analysis, and since the scale of an utility

function is irrelevant, it is assumed that U[λ−1
0 (r̄)] = 1. From this normalization,

U(⋅) can be identified on [0, λ−1
0 (r̄)] as the solution of the differential equation

λ0(⋅)U ′(⋅) − U(⋅) = 0; more specifically, U(y) = exp{−∫
λ−10 (r̄)
y [1/λ(t)]dt} where

y ∈ [0, λ−1
0 (r̄)]. It can also be shown that λ−1

0 (r̄) = max{v − s(v; I1) ∶ v ∈ [υ, ῡ]},

where v − s(v; I1) represents the monetary gain. Then, the identification region

[0, λ−1
0 (r̄)] cannot be improved because bidders cannot obtain a monetary gain

greater than λ−1
0 (r̄).

In order to recover U(⋅) from the data, I propose to use the natural estimator:

Û(y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 if y = 0,

exp{−∫
λ̂−1(r̂)
y [1/λ̂(t)]dt} if 0 < y < λ̂−1(r̂),

1 otherwise;

(1.12)

where λ̂(⋅) is an estimator of λ0(⋅) defined as the inverse of λ̂−1 ∶ [0, r̂] → [0, λ̂−1(r̂)],

namely,

λ̂(y) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(λ̂−1)−1(y) if 0 ≤ y < λ̂−1(r̂),

r̂ otherwise.

I remark that λ̂(⋅) is well-defined and λ̂′(⋅) ≥ 1 because L−1
N ≤ ∇1λ̂−1(⋅) ≤ 1.

Since λ̂−1(⋅) is infinitely differentiable on [0, r̂] and preserves the shape of λ−1
0 (⋅),

Û(⋅) also preserves the shape and smoothness properties of U(⋅). In partic-

ular, Û(⋅) is continuous on R≥0 because λ̂(⋅) is continuous, λ̂(0) = 0, and

∫
λ̂−1(r̂)
y [1/λ̂(t)]dt→ +∞ as y → 0+. Besides, Û(⋅) is strictly increasing and concave

on [0, r̂] regardless of the sample size. The computation of λ̂(⋅) is not involved:

since λ̂−1(⋅) has a polynomial representation, λ̂(y) is equal to the root of λ̂−1(⋅)−y

that belongs to [0, r̂]. Such a root is unique because λ̂−1(⋅) is strictly increasing

on [0, r̂].
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To conclude this subsection, the next proposition states that both λ̂(⋅) and Û(⋅)

inherit the uniform rate of convergence in probability of λ̂−1(⋅). In addition, it

establishes the rate of convergence of the estimators for ∇rU(⋅) with r = 1, . . . ,R+

1. This information is useful because, for instance, ∇2U(⋅) and ∇2U(⋅)/∇1U(⋅)

describe the bidders’ risk preferences.

Proposition 1.5.1. Under Assumptions 1-4,

∥λ̂(⋅) − λ0(⋅)∥∞,[0,λ−10 (r̄)] = OP (h1/[2c(0)]
b ) and

∥Û(⋅) −U(⋅)∥∞,[0,λ−10 (r̄)] = OP (h1/[2c(0)]
b ) .

Moreover, ∥∇rÛ(⋅) − ∇rU(⋅)∥∞,[0,λ−10 (r̄)] = OP (h1/[2c(r−1)]
b ) for r = 1, . . . ,R + 1.

1.5.2 Density of Private Values: Asymptotic Normality

Following [MS12], I propose an estimator for the density of private values f(⋅).

Then, I show that it is uniformly consistent and asymptotically normal with an

appropriate choice of the bandwidth. The asymptotic normality is useful to facil-

itate inference and testing procedures.

Combining expression (1.2) with the equality 1/f(v) = υ′[F (v)], it follows that

1

f(v) = b′[F (v)∣I] +

∇1λ−1
0 {F (v)b′[F (v)∣I]

I − 1
} 1

(I − 1) {b′[F (v)∣I] − F (v)g′{b[F (v)∣I]∣I}
[g{b[F (v)∣I]∣I}]3

} ,

where v ∈ [υ, ῡ] and [υ, ῡ] denotes the support of f(⋅). Note that f(⋅) is over-

identified on [υ, ῡ] because M ≥ 2; see Assumption 1. In particular, if we replace

λ−1
0 (⋅) by the identity function, then ∇1λ−1

0 (⋅) = 1, and we easily obtain equation

(3) of [MS12].

To estimate f(⋅), first, I define a preliminary estimator for the α-quantile of

F (⋅), υ(α), by υ̃j(α) = b̂j(α) + λ̂−1[R̂j(α)] where j = 1, . . . ,M and α ∈ [0,1]. If

j = 1, R̂j(⋅) is obtained from formula (1.9), and if j ≥ 1, we can use either formula
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(1.9) or (1.10). Second, since υ̃j(⋅) is not necessarily increasing on [0,1], I define

a monotone version of υ̃j(⋅) as follows:

υ̂j(α) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

inf{υ̃j(t) ∶ t ∈ [α,1/2]} if 0 ≤ α < 1/2,

sup{υ̃j(t) ∶ t ∈ [1/2, α]} if 1/2 ≤ α ≤ 1.

Third, the estimator for the distribution of private values F (⋅) becomes F̂j(v) =

sup{α ∈ [0,1] ∶ υ̂j(α) ≤ v}. Lastly, the density of private values f(⋅) is estimated

by

f̂j(v) = [b̂′j[F̂j(v)] +
∇1λ̂−1{R̂j[F̂j(v)]}

ij − 1
{b̂′j[F̂j(v)] −

F̂j(v)g̃′{b̂j[F̂j(v)]∣ij, x}
[ĝ{b̂j[F̂j(v)]∣ij, x}]3

}]
−1

,

(1.13)

where g̃′(⋅∣ij, x) is simply the derivative of the kernel estimator ĝ(⋅∣ij, x), namely,

g̃′(b∣ij, x) =
1

π̂(ij ∣x)ϕ̂(x)Nhd+2
f ij

N

∑
l=1

Il

∑
p=1

1{Il = ij}k′ (
b −Bpl

hf
)K (x −Xl

hf
) .

In the above expression, when estimating g̃′(⋅∣ij, x), the bandwidth hg of

ĝ(⋅∣ij, x) has been replaced with another bandwidth hf . The reason is that

g̃′(⋅∣ij, x) is the main term in the asymptotically expansion of f̂j(v). As dis-

cussed in Proposition 1.5.2.3 below, to obtain the asymptotic normality result,

we require
√
Nhd+3

f h
1/[2c(1)]
b → 0, whereas hg satisfies

√
Nhd+3

g h
1/[2c(1)]
b → +∞ by

Assumption 3. To avoid any confusion, I remark that hg is always employed to

compute ĝ(⋅∣ij, x).

The main results of this subsection are summarized in the next proposition.

In order to obtain this result, the uniform consistency of λ̂−1(⋅) over the entire set

[0, r̄] is crucial.

Proposition 1.5.2. Under Assumptions 1-4, the following statements hold for

j = 1, . . . ,M :

1. ∥υ̂j(⋅) − υ(⋅)∥∞,[0,1] = OP (h1/[2c(0)]
b ) and ∥F̂j(⋅) − F (⋅)∥∞,R = OP (h1/[2c(0)]

b ).
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2. Let C be a fixed closed inner subset of (υ, ῡ). If the bandwidth hf satisfies

hf → 0 and Nhd+3
f / log(N) → +∞, then ∥f̂j(⋅) − f(⋅)∥∞,C = OP (h1/[2c(1)]

b ).

3. If Nhd+3
f h

1/c(1)
b → 0 and Nhd+1

f → +∞, for any fixed v ∈ (υ, ῡ) we have that

√
Nhd+3

f [f̂j(v) − f(v)]
dÐ→ N[0, Vf(v, ij)],

where

Vf(v, ij) =

[∇1λ−1
0 {Rj[F (v)]}]2 {∫ [k(u)]2du}d {∫ [k′(u)]2du} [F (v)]2[f(v)]4

ij(ij − 1)2π(ij ∣x)ϕ(x)[g{bj[F (v)]∣ij, x}]5
.

This asymptotic variance can be estimated by the plug-in estimator, that is,

V̂f(v, ij) =

[∇1λ̂−1{R̂j[F̂j(v)]}]
2 {∫ [k(u)]2du}d {∫ [k′(u)]2du} [F̂j(v)]2[f̂j(v)]4

ij(ij − 1)2π̂(ij ∣x)ϕ̂(x)[ĝ{b̂j[F̂j(v)]∣ij, x}]5
.

This estimator satisfies ∣V̂f(v, ij) − Vf(v, ij)∣ = OP (h1/[2c(1)]
b ).

This proposition extends [MS12]’s results to accommodate risk aversion from

a nonparametric perspective. However, we do not attain the optimal global rate

due to the presence of ∇1λ̂−1(⋅). In the first item, υ̂j(⋅) and F̂j(⋅) inherit the rate of

λ̂−1(⋅). In the second item, the conditions on hf has been chosen so that the deriva-

tive of the bid density, g̃′(⋅∣ij, x), is uniformly consistent; then, the uniform consis-

tency of f̂j(⋅) follows by standard arguments. Note that g̃′(⋅∣ij, x) attains the opti-

mal global rate, for example, when hf is of the form hf = γf [log(N)/N]R/(2R+d+3)

for some fixed γf > 0.

The third item of Proposition 1.5.2 establishes the asymptotic normality of

f̂j(v) for v ∈ (υ, ῡ). Since the bandwidth hf satisfies Nhd+3
f h

1/c(1)
b → 0, which

implies over-smoothing, the normality result is driven by the fact that ∇1λ̂−1(⋅)

converges faster than g̃′(⋅∣ij, x). Therefore, the latter drives the asymptotic nor-

mality as in [MS12]. Obtaining such an asymptotic distribution is important
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because several policy recommendations –such as the optimal reserve price– de-

pend on the density of private values. As a consequence, the distribution of an

estimator related to certain policy recommendation will be driven by f̂j(⋅), which

is the slowest convergent term.

1.6 Monte Carlo Experiments and Empirical Illustration

This section investigates the finite sample performance of the proposed estima-

tors. To that end, subsection 1.6.1 presents a limited Monte Carlo study, while

subsection 1.6.2 gives an empirical illustration based on timber auction data.

1.6.1 Monte Carlo Experiments

In this subsection, I run few numerical experiments to study the finite sample

performance of the estimators (1.12) and (1.13). The evaluation criteria are the

bias and the variance, and for comparison purposes, I consider the estimator for

the density of private values developed by [MS12].

The design of the experiment is as follows. It is assumed that there are no

covariates (d = 0). The distribution of valuations is uniform over the interval

[0,1], that is, f(v) = 1{0 ≤ v ≤ 1}. For the utility function U(⋅), three functional

forms are considered:

A) Risk-averse bidders with CARA utility : U(y) = 1 − exp(−5y)

B) Risk-averse bidders with CRRA utility : U(y) = y1/2

C) Risk-neutral bidders : U(y) = y

Such choices of f(⋅) and U(⋅) are convenient because the corresponding bidding

functions have closed-form expressions. For each design, we run 100 replications

of N = 3,500 auctions: N1 = 2,500 auctions with i1 = 2 bidders and N2 = 1,000
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auctions with i2 = 5 bidders, giving a total of 10,000 bids in each replication. The

low number of replications is due to the high computational costs of the proposed

estimators, particularly, the computation of (1.11) involves a heavy nonlinear

optimization problem. The large value for N is due to the fully nonparametric

nature of the estimators. Such a large sample can be found, for example, in

first-price auctions of municipal bonds.

In each Monte Carlo replication, first, we generate randomly 10,000 indepen-

dent valuations {υm ∶ m = 1,2, . . . ,10,000} from a uniform [0,1] distribution.

Second, using these valuations, we compute the corresponding bids according to

the equilibrium bidding function (1.1). The closed-form expression for such a

function is obtained from [HMZ10], eq. (2), and depends on the design of the

utility function. Third, using the generated bids, we estimate U(⋅) and f(⋅) em-

ploying (1.12) and (1.13), respectively; when estimating f(⋅), we only consider the

case j = 1, that is, f̂1(⋅).

Similarly to previous literature, I let R = 1 and use the tri-weight kernel func-

tion for k(⋅) and kb(⋅). Moreover, I employ the following bandwidths: hb = 0.01,

hf = 1.06σ̂j(ijNj)−1/7, and hg = 1.06σ̂j(ijNj)−1/5, where j = 1,2 and σ̂j is the

estimated standard deviation of the bids from auctions with ij participants. Re-

garding the construction of the sieves, I set ū = 1.25, KN = 3, LN = 4, and Jt is

chosen so that 2Jt/ū = 3 for all t = 0,1,2. Neither the preceding sections nor the

previous literature indicates how to choose the bandwidth hb and establish the

dimensions of the sieve spaces. In the absence of theoretical guidance, such values

have been chosen to facilitate the implementation of the simulations.

Figure 1.1 shows the behavior of the estimator for the bidders’ utility function,

Û(⋅), under design A). The dashed line represents the simulated mean of Û(⋅),

over the replications, while the dotted lines represent the 5th and 95th percentiles.

The solid line depicts the true utility function U(⋅), which has been normalized

to satisfy U[λ−1
0 (r̄)] = 1. Analogously, Figures 1.2 and 1.3 do the same exercise
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Figure 1.1: True and Estimated Utility Function - Design A)

Figure 1.2: True and Estimated Utility Function - Design B)

Figure 1.3: True and Estimated Utility Function - Design C)
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Table 1.1: Density of Private Values - Simulated Bias and Variance

Bias Variance

Design υ Eq. (1.13) MS Eq. (1.13) MS

A) 0.1 -0.195 -0.081 0.006 0.003

0.3 0.042 -0.240 0.011 0.006

0.5 -0.008 -0.347 0.023 0.010

0.7 -0.041 -0.380 0.046 0.018

B) 0.1 -0.226 -0.240 0.005 0.002

0.3 0.030 -0.253 0.012 0.006

0.5 0.094 -0.262 0.037 0.016

0.7 0.088 -0.288 0.043 0.051

C) 0.1 -0.087 -0.004 0.068 0.005

0.3 0.249 -0.028 0.057 0.019

0.5 0.367 -0.021 0.165 0.034

0.7 0.180 -0.142 0.971 0.058

for designs B) and C). The proposed estimator works well under designs A) and

B), but it has a poor performance under design C). Note that, under the latter

design, the corresponding λ−1
0 (⋅) lies at the boundary of the parameter space.

Each replication also gives us the estimated density function f̂1(⋅). Table 1.1

reports the simulated bias and variance of f̂1(⋅) evaluated at υ = 0.1,0.3,0.5,0.7,

and for comparison purposes, [MS12]’s estimator (denoted by MS in the table)

has been included. Under designs A) and B), f̂1(⋅) has smaller simulated bias

than its competitor. However, the latter has always a smaller simulated variance.

Not surprisingly, under design C), [MS12]’s estimator performs better than f̂1(⋅)

in terms of bias and variance.4

4The programs were kindly provided by Vadim Marmer and Artyom Shneyrov. Simulations
have been performed using MATLAB.
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1.6.2 Empirical Illustration: US Forest Service Timber Auction

In this subsection, I present an empirical example that illustrates the usefulness

of the proposed estimators. This empirical illustration is based on USFS timber

auctions, which have been widely used in previous literature.

For comparison purposes, I use the same data set as in [LP08] and [CGP11].

The former nonparametrically estimates the bidders’ utility function, as well as

the density of private values, by exploiting two auction designs: ascending and

first-price sealed-bid auctions. The latter adopts a semi-parametric approach by

specifying risk aversion as CRRA and CARA. Then, it estimates the risk aversion

parameter, as well as the density of private values, using data from first-price

sealed-bid auctions only. Here, I employ the estimators (1.12) and (1.13) to non-

parametrically estimate the bidders’ utility function and the density of private

values, respectively, using data from first-price sealed-bid auctions only.

I focus on the first-price sealed-bid auctions in 1979 for the Western half of

the U.S.A. (Regions 1-6). Given the small number of auctions with more than

three bidders, I only consider auctions with two and three bidders. The data

provide 215 auctions: 107 auctions with two bidders and 108 auctions with three

bidders, giving a total of 508 bids. For each auction, the data contain two variables

characterizing each timber tract: the estimated volume in thousand board feet

(mbf) and the appraisal value in dollars per mbf. The data also provide the

sealed bids in dollars per mbf. As in previous literature, we consider a general

specification of the utility function, so we are interested in the total bid for every

tract, that is, the bid in dollars per mbf multiplied by the estimated volume in

mbf. Table 1.2 reports summary statistics.5

Following [CGP11], I use the tract appraisal value, denoted by Xl hereafter,

to explain the variability in the auctioned tracts. Specifically, Xl is computed

5For a detailed description of the data, see [LP08], Section 3. The data is publicly available
at http://qed.econ.queensu.ca/jae/datasets/lu001.
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Figure 1.4: Estimated Utility Function

Figure 1.5: Estimated Density of Private Values
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Table 1.2: Summary Statistics

I = 2 I = 3

Mean Std Dev Mean Std Dev

Bids ($) 77,417.70 191,996.45 96,747.53 159,255.81

Winning Bid ($) 83,625.14 201,094.98 119,356.93 188,753.48

Volume (mbf) 878.17 1,609.39 1,220.18 1,689.75

Appraisal Value ($ per mbf) 65.97 47.66 53.26 41.43

by multiplying the estimated volume in mbf and the appraisal value in dollars

per mbf. To compute the preliminary kernel estimators (subsection 1.4.2), I use

the same kernel and bandwidths as in the previous subsection. Regarding the

construction of the sieves, I set ū = 510,000, KN = 2, LN = 3, and Jt is chosen so

that 2Jt/ū = 3 for all t = 0,1,2.

Figure 1.4 displays the estimated bidders’ utility function at the sample mean

of Xl, which equals X̄ = 49,574. Specifically, the continuous line depicts such an

estimated function using the estimator defined in (1.12). For comparison purposes,

Figure 1.4 also includes an utility function corresponding to a CRRA (CARA)

specification with parameter 0.6 (0.00004). These values have been obtained by

[CGP11], Section 7, as well as [LP08]. As can be noted, the estimated utility

function exhibits a significant concavity for values of y (monetary gain) close to

zero. However, when y becomes large, the estimated function seems to be linear.6

In addition to estimating the bidders’ utility function, I recover the density

of private values using the estimator (1.13) with j = 1. Figure 1.5 displays the

estimation results at the sample mean of Xl. The solid line depicts the estimated

density of private values, while the dotted lines represent the 95% confidence

6To perform sensitivity analyses, the cases LN = 2 and LN = 4 have also been considered.
Basically, we can reach similar conclusions. Additional results and figures are available upon
request. I remark that [BCK07], which estimated Engel curves by the method of sieves, employed
third order B-splines as sieve basis functions. Their sample size is 1,655 observations, while the
dimension of the sieve space is 9.
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intervals constructed with the estimated variance V̂ (⋅,2) of Proposition 1.5.2.3.

I highlight that, in contrast to previous literature, the estimated density is not

single-peaked.

1.7 Concluding Remarks

This paper has studied a first-price sealed-bid auction with risk-averse bidders,

independent private values, and a non-binding reserve price. In this context, I

have proposed nonparametric estimators for the bidders’ utility function and the

density of private values. The key idea has been to characterize both functions

by an argument that minimizes a functional over a space of smooth functions.

Then, I have estimated such a minimizer in two steps by the method of sieves.

The estimators for the bidders’ utility function and the density of private values

have been constructed as smooth nonlinear functionals of the estimator for the

minimizer.

The estimator for the utility function is uniformly consistent and shape-

preserving, while the estimator for the density is uniformly consistent and asymp-

totically normal. A limited Monte Carlo study suggests that the proposed estima-

tors have good finite sample properties, particularly, in terms of bias reduction.

To highlight the usefulness of such estimators, an application to the US Forest

Service timber auctions has been provided.

The method proposed in this paper allows us to estimate bidders’ risk pref-

erences without placing any parametric restrictions –such as CARA or CRRA–

on the utility function. In this way, this paper extends the literature on struc-

tural econometrics of first-price auctions by developing the first estimator for the

bidders’ utility function that can incorporate any type of risk preference. This

extension is important as evidence strongly suggests that risk aversion is an essen-

tial component of bidders’ behavior, but there is no consensus on which concept
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of risk aversion is the most appropriate to describe such behavior.

In comparison with existing literature, the proposed estimators have some

limitations as they do not place parametric restrictions on the bidders’ utility

function. First, as expected, the rates of convergence of the proposed estimators

are slower than the optimal global rates attained in [GPV00], [CGP11], as well as,

[MS12]. Second, the validity of my results relies on the assumption that bidders’

participation is exogenous, that is, the density of private values is independent of

the number of bidders. Third, the proposed estimators involve a heavy nonlinear

optimization problem, so the computational burden is high.

There are many interesting extensions for further research. First, it would

be useful to establish the optimal rate for the estimator of the bidders’ utility

function, that is, the fastest rate at which the bidders’ utility function can be

estimated nonparametrically; see [Sto82]. Second, the asymptotic distribution of

the utility function estimator needs to be determined, or alternatively, we could

build conservative confidence intervals. Third, since the density of private values is

over-identified, it is possible to construct a test to verify whether or not bidders’

participation is exogenous. Recall that the validity of the proposed estimators

depends on this exclusion restriction. Fourth, the results of this paper might be

extended to more general cases such as a binding reserve price, affiliated private

values, and asymmetric bidders ([GPV09], Section 4). In addition, we might

consider relaxing the assumption of exogenous participation.

In view of future empirical applications, the proposed estimators can be em-

ployed to recover the set of optimal reserve prices, that is, the set of reserve prices

that maximizes the expected auctioneer’s revenue. This set depends on the bid-

ders’ risk-aversion and the distribution of valuations. So far, the optimal reserve

price has been obtained only under the assumption that bidders are risk-neutral.

For instance, [LPV03] has considered a first-price auction with affiliated private

values, but assuming that bidders are risk-neutral. Their approach may be ex-
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tended by allowing bidders to be risk-averse. In such a case, an estimate of the set

of optimal reserve prices can be obtained by combining the obtained results with

[CHT07]’s insight; the auctioneer’s expected revenue may be used as the criterion

function.

1.A Appendix

This appendix contains detailed proofs of the previous results. Subsection 1.A.1

provides the proofs of the mathematical results (Propositions 1.3.1-1.3.2), while

subsection 1.A.2 presents the proofs of the statistical results (Lemmas 1.4.1-1.4.2

and Theorem 1.4.1). Proofs of all auxiliary lemmas are given in subsection 1.A.3.

1.A.1 Proof of Mathematical Results

In this subsection, I provide detailed proofs of Propositions 1.3.1 and 1.3.2.

1.A.1.1 Proof of Proposition 1.3.1

Before starting with the proof, the next auxiliary lemma is stated.

Lemma 1.A.1. There exists K > 0 such that K∥∇rf − ∇rg∥c(r)∞,[0,r̄] ≤ ∥f − g∥1,[0,r̄]

for all f, g ∈ HR and r ∈ {0,1, . . . ,R}.

Proof of proposition: From the previous lemma, it suffices to show that the

inequality ∥φ−λ−1
0 ∥1,[0,r̄] ≤ 2Q[(αt)t, φ] holds for any [(αt)t, φ] ∈ ΘR. To that end,

pick an arbitrary [(αt)t, φ] ∈ ΘR. By definition of A , there is a finite T such that

αt(⋅) = 0 for all t > T . By a standard triangular inequality, the term ∥φ−λ−1
0 ∥1,[0,r̄]

can be bounded above by

∫
r̄

0
∣[λ−1

0 (u) − φ(u)] − [λ−1
0 {R2[αT (u)]} − φ{R2[αT (u)]}]∣du

+2∫
r̄

0
∣R2[αT (u)]∣du.
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Note that ∣λ−1
0 (u2) − λ−1

0 (u1)∣ ≤ ∣u2 − u1∣ and ∣φ(u2) − φ(u1)∣ ≤ ∣u2 − u1∣

for any (u1, u2) ∈ [0, r̄]2, then the condition λ−1
0 (0) = φ(0) = 0 implies

∣λ−1
0 {R2[αT (u)]∣, ∣φ{R2[αT (u)]∣ ≤ ∣R2[αT (u)]∣. After repeated triangular inequal-

ities, the first term can be bounded above by

∫
r̄

0
∣[λ−1

0 (u) − φ(u)] − [λ−1
0 {R1[α1(u)]} − φ{R1[α1(u)]}]∣ +

T−1

∑
t=1

∣[λ−1
0 {R1[αt(u)]} − φ{R1[αt(u)]}] − [λ−1

0 {R1[αt+1(u)]} − φ{R1[αt+1(u)]}]∣ +

∣[λ−1
0 {R1[αT (u)]} − φ{R1[αT (u)]}] − [λ−1

0 {R2[αT (u)]} − φ{R2[αT (u)]}]∣du

≡ Q̄1 + Q̄2 + Q̄3,

which immediately implies

∥φ − λ−1
0 ∥1,[0,r̄] ≤ Q̄1 + Q̄2 + Q̄3 + 2∫

r̄

0
∣R2[αT (u)]∣du. (1.14)

Next, I find proper upper bounds for Q̄1, Q̄2, and Q̄3. First, by Definition 4,

condition 2, and ∆b[α0(u)] = λ−1
0 {R1[α0(u)]} − λ−1

0 {R2[α0(u)]}, we have

Q̄1 ≤ 2∫
r̄

0
∣R1[α0(u)] − u∣du +

∫
r̄

0
∣∆b[α0(u)] + φ{R2[α0(u)]} − φ{R1[α0(u)]}∣du

+2∫
r̄

0
∣R1[α1(u)] −R2[α0(u)]∣du. (1.15)

Turning to the second term Q̄2, after applying a triangular inequality on each

summand; more specifically, after adding and subtracting λ−1
0 {R2[αt(u)]} −

φ{R2[αt(u)]}), it follows that Q̄2 is bounded above by

Q̄2 ≤
T−1

∑
t=1
∫

r̄

0
∣∆b[αt(u)] + φ{R2[αt(u)]} − φ{R1[αt(u)]}∣du

+
T−1

∑
t=1
∫

r̄

0
∣λ−1

0 {R1[αt+1(u)]} − λ−1
0 {R2[αt(u)]}∣du

+
T−1

∑
t=1
∫

r̄

0
∣φ{R1[αt+1(u)]} − φ{R2[αt(u)]}∣du,
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and as a result,

Q̄2 ≤
T−1

∑
t=1
∫

r̄

0
∣∆b[αt(u)] + φ{R2[αt(u)]} − φ{R1[αt(u)]}∣du

+2
T−1

∑
t=1
∫

r̄

0
∣R1[αt+1(u)] −R2[αt(u)]∣du. (1.16)

because ∣λ−1
0 (u2)−λ−1

0 (u1)∣ ≤ ∣u2−u1∣ and ∣φ(u2)−φ(u1)∣ ≤ ∣u2−u1∣ for any (u1, u2) ∈

[0, r̄]2. Regarding the third term Q̄3, by previous arguments we have

Q̄3 = ∫
r̄

0
∣∆b[αT (u)] + φ{R2[αT (u)]} − φ{R1[αT (u)]}∣du. (1.17)

In order to complete the proof, observe that Q[(αt)t, φ] can be written as

Q[(αt)t, φ] = ∫
r̄

0
∣R1[α0(u)] − u∣du +

T−1

∑
t=1
∫

r̄

0
∣R1[αt(u)] −R2[αt−1(u)]∣du

+∫
r̄

0
∣R2[αT (u)]∣du +

T

∑
t=0
∫

r̄

0
∣∆b[αt(u)] + φ{R2[αt(u)]} − φ{R1[αt(u)}]∣du.

After combining together (1.14)-(1.17), the last expression yields

∥φ − λ−1
0 ∥q,[0,r̄] ≤ (Q̄1 + Q̄2 + Q̄3) + 2∫

r̄

0
∣R2[αT (u)]∣du ≤ 2Q[(αt)t, φ].

Finally, the desired result follows immediately from Lemma 1.A.1.

1.A.1.2 Proof of Proposition 1.3.2

This proof is based on series of seven lemmas. The first one, Lemma 1.A.2,

describes useful properties of the quantile function bj(⋅), j = 1,2, which can be

extended to Rj(⋅) as Rj(α) = αb′j(α)/(ij − 1). In addition, Lemma 1.A.2 shows

that b′1(0)/(i1 − 1) > b′2(0)/(i2 − 1), which is a key result for the rest of this proof

(in particular, for Lemma 1.A.8 below).

Lemma 1.A.2. For j = 1,2, bj(⋅) has R + 1 continuous derivatives on [0,1],

∇R+2bj(⋅) is continuous on (0,1], and b′j(⋅) is bounded away from zero. Moreover,

b′1(0)/(i1 − 1) > b′2(0)/(i2 − 1).
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For the remaining discussion, I set γJ = 1 to simplify technical details. Consider

the partition {a(n)k ≡ k/⌈K1/2
n ⌉ ∶ k ∈ N0, k ≤ ⌈K1/2

n ⌉} of [0,1] whose size is ⌈K1/2
n ⌉.

Specifically, (0,1] can be written as a disjoint union of the intervals (a(n)k , a
(n)
k+1],

1 ≤ k ≤ ⌈K1/2
n ⌉:

(0,1] =
⌈K1/2

n ⌉−1

⊍
k=0

(a(n)k , a
(n)
k+1],

and the length of each interval (a(n)k , a
(n)
k+1] is ⌈K1/2

n ⌉−1. Now for α ∈ [0,1], define

the (left-continuous) functions R
(n)
j (⋅), j = 1,2, as follows:

R
(n)
1 (α) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

R1(a(n)k ) + 2L̄K
−1/2
n (α − a(n)k )

if α ∈ (a(n)k , a
(n)
k+1] & inf(a(n)

k
,a
(n)
k+1]

∣R′
1(⋅)∣ ≤ L̄K

−1/2
n ,

R1(α) otherwise,

and

R
(n)
2 (α) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

R2(a(n)k ) − 2L̄K
−1/2
n (α − a(n)k )

if α ∈ (a(n)k , a
(n)
k+1] & inf(a(n)

k
,a
(n)
k+1]

∣R′
2(⋅)∣ ≤ L̄K

−1/2
n ,

R2(α) otherwise,

where

L̄ ≡ max{1, ∥R′′
1(⋅)∥∞,[ᾱ/5,1], ∥R′′

2(⋅)∥∞,[ᾱ/5,1], ∥R′
1(⋅)∥∞,[0,1], ∥R′

2(⋅)∥∞,[0,1]} < +∞,

and ᾱ ∈ (0,1) is a small constant such that min{R′
1(α),R′

2(α)} > b′1(0)/[2(i1 − 1)]

whenever α ∈ [0, ᾱ]. Note that such ᾱ exists because R′
j(α) = [b′j(α)+αb′′j (α)]/(ij−

1), b′j(⋅) is continuous, and b′′j (⋅) is bounded (Lemma 1.A.2).

Several remarks are noteworthy. First and foremost, both R
(n)
1 (⋅) and R

(n)
2 (⋅)

are strictly monotone on (a(n)k−1, a
(n)
k ] for all 1 ≤ k ≤ ⌈K1/2

n ⌉. Second, they are also

continuously differentiable on any open interval (a(n)k−1, a
(n)
k ). Third, if R

(n)
1 (⋅) is

differentiable at α ∈ (0,1), then it must be ∣R(n)′
1 (α)∣ ≥ L̄K−1/2

n . Fourth, if R1(α) ≥

0, then R
(n)
1 (⋅) is strictly increasing on (a(n)k−1, a

(n)
k ] ∋ α. Fifth, if R

(n)
1 (⋅) is strictly

decreasing on (a(n)k−1, a
(n)
k ], by construction R

(n)
1 (⋅) = R1(⋅), and consequently, R1(⋅)

must be strictly decreasing on (a(n)k−1, a
(n)
k ] as well.
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The next lemma describes in detail the relationship between Rj(⋅) and R
(n)
j (⋅).

In particular, the second part studies the uniform rate of convergence of R
(n)
j (⋅)

toward Rj(⋅).

Lemma 1.A.3. There is Ñ ∈ N such that R
(n)
j (α) = Rj(α) for all j ∈ {1,2},

n ≥ Ñ , and α ∈ [0, ᾱ/2]. Moreover, ∥R(n)
j (⋅) −Rj(⋅)∥∞,[0,1] = O(K−1

n ).

Hereafter, we only consider n ≥ Ñ . Furthermore, Ñ is taken large enough so

that K
−1/2
n < ᾱ/4 and R

(n)
2 (⋅) > 0 on (0,1] for any n ≥ Ñ ; the second requirement

is possible due to Lemma 1.A.3 and the fact that R2(⋅) > 0 on (0,1]. Given these

considerations, the next lemma states useful properties about R
(n)
1 (⋅) and R

(n)
2 (⋅).

Lemma 1.A.4. Let n ≥ Ñ , α ∈ (0,1] and 1 ≤ k ≤ ⌈K1/2
n ⌉. The following statements

hold:

1. R
(n)
1 (α) ≥ R1(α) > R2(α) ≥ R(n)

2 (α) > 0, and obviously, R
(n)
1 (0) = R(n)

2 (0) =

0.

2. The set {1 ≤ j ≤ ⌈K1/2
n ⌉ ∶ R(n)

1 (a(n)j ) ≥ r̄} is nonempty.

3. Let u ∈ (0, r̄] and define l = min{1 ≤ j ≤ ⌈K1/2
n ⌉ ∶ R(n)

1 (a(n)j ) ≥ u}. Then,

R
(n)
1 (a(n)l−1) < R

(n)
1 (a(n)l ) and u ∈ (R(n)

1 (a(n)l−1),R
(n)
1 (a(n)l )].

4. If R
(n)
1 (a(n)k−1) < R

(n)
1 (a(n)k ) and u ∈ (R(n)

1 (a(n)k−1),R
(n)
1 (a(n)k )], there exists α̃ ∈

(a(n)k−1, a
(n)
k ] such that R

(n)
1 (α̃) = u. Moreover, R

(n)
1 (⋅) is strictly increasing

on (a(n)k−1, a
(n)
k ].

5. If R
(n)
1 (α) ≤ r̄, for any u ∈ (0,R(n)

1 (α)] there is α̃ ∈ (0, α] such that R
(n)
1 (α̃) =

u.

The third and fourth statements imply that the set {a ∈ [0,1] ∶ R(n)
1 (a) = u}

is nonempty for any u ∈ [0, r̄]. Furthermore, it can be easily seen that #{a ∈
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[0,1] ∶ R(n)
1 (a) = u} ≤ ⌈K1/2

n ⌉ because R
(n)
1 (⋅) is strictly monotone on each inter-

val (a(n)k−1, a
(n)
k ]. For each integer n ≥ Ñ , I well-define the sequence of functions

(α(n)
t )t∈N0 ∶ [0, r̄] → [0,1]∞ as follows: α

(n)
0 (u) = min{a ∈ [0,1] ∶ R(n)

1 (a) = u}, and

when t ≥ 1,

α
(n)
t (u) = min{a ∈ [0,1] ∶ R(n)

1 (a) = R(n)
2 [α(n)

t−1(u)]}.

For future convenience, I highlight the subsequent properties of {α(n)
t (⋅) ∶ t ∈

N0}.

Lemma 1.A.5. For each integer n ≥ Ñ , α
(n)
0 (⋅) is strictly increasing on [0, r̄] and

0 < α(n)
t+1(u) < α

(n)
t (u) ≤ 1 for all (t, u) ∈ N0 × (0, r̄].

Next, I describe useful properties of {α(n)
t (⋅) ∶ t ∈ N0} on the open interval

(0, r̄). As a starting point, for 1 ≤ l0 ≤ ⌈K1/2
n ⌉ define the set

V(l0) = {u ∈ (0, r̄) ∶ max
j=0,...,l0−1

R
(n)
1 (a(n)j ) < u < R(n)

1 (a(n)l0
)} , (1.18)

which of course may be empty. For t ∈ N0, let (l0, l1, . . . , lt) ∈ Nt+1 be a (t + 1)-

tuple whose components satisfy 1 ≤ lj ≤ ⌈K1/2
n ⌉ being 0 ≤ j ≤ t. Using a recursive

argument on t ∈ N, define further the set V(l0,...,lt−1,lt) by

V(l0,...,lt−1,lt) = {u ∈ V(l0,...,lt−1) ∶ max
j=0,1,...,lt−1

R
(n)
1 (a(n)j ) < R(n)

2 [α(n)
t−1(u)] < R

(n)
1 (a(n)lt

)} ,

and observe that V(l0,...,lt−1,lt) ∩ V(l0,...,lt−1,l′t) = ∅ whenever l′t ≠ lt.

Using an inductive argument, the next lemma proves that α
(n)
t (⋅) is continu-

ously differentiable and strictly monotone on each V(l0,l1,...,lt−1,lt). Let ∣Z ∣ denote

the Lebesgue measure of a measurable set Z ⊆ Rm being m ∈ N.

Lemma 1.A.6. Let n ≥ Ñ . For t ∈ N0, let (l0, l1, . . . , lt) ∈ Nt+1 be a (t + 1)-tuple

whose components satisfy 1 ≤ lj ≤ ⌈K1/2
n ⌉ being 0 ≤ j ≤ t. Then, the following

statements hold for every t ∈ N0:
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1. V(l0,...,lt−1,lt) is an open interval, and if u ∈ V(l0,...,lt−1,lt), then α
(n)
t (u) ∈

(a(n)lt−1, a
(n)
lt

).

2. Both functions α
(n)
t (⋅) and R

(n)
2 [α(n)

t (⋅)] are continuously differentiable and

strictly monotone on V(l0,...,lt−1,lt). Besides, ∣α(n)′
t (u)∣ ≤ K(t+1)/2

n for any u ∈

V(l0,...,lt−1,lt).

3. ∑∣V(l0,...,lt−1,lt)∣ = r̄ where the sum runs over all the (t + 1)-tuples

(l0, l1, . . . , lt) ∈ Nt+1 that satisfy 1 ≤ lj ≤ ⌈K1/2
n ⌉ being 0 ≤ j ≤ t. The car-

dinality of the support of the sum is ⌈K1/2
n ⌉t+1.

Now I introduce a basic error estimation tool in approximation theory: the

(first) 1-modulus of smoothness; see [DP97], pp. 190. Specifically, for a real

function f ∶ R→ R and a positive real number ε > 0, this concept is defined by

ω[f(⋅), ε] = sup
0<∣h∣≤ε

∥f(⋅ + h) − f(⋅)∥1,R = sup
0<∣h∣≤ε

∫
R
∣f(u + h) − f(u)∣du.

To apply this concept to the functions α
(n)
t (⋅), t ∈ N0, I extend the domain of

{α(n)
t (⋅) ∶ t ∈ N0} from [0, r̄] to R in the straightforward way: α

(n)
t (α) = 0 whenever

α ∉ [0, r̄].

The next lemma determines upper bounds on the 1-moduli of smoothness of

{α(n)
t (⋅) ∶ t ∈ N0}.

Lemma 1.A.7. Let c > 0 be a fixed constant. For any t ∈ N0, we have

ω [α(n)
t (⋅), c⌈K1/2

n ⌉−(t+5)] ≤ c(24 + r̄)K−2
n .

Now we establish a crucial result about the uniform rate of convergence of

{α(n)
t (⋅) ∶ t ∈ N0}.
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Lemma 1.A.8. Let (Tm)m∈N be an increasing divergent sequence of nonnegative

integers. There exist constants K̄, N̄ < +∞ such that Tm∥α(n)
Tm

(⋅)∥∞,[0,r̄] ≤ K̄ for all

m,n ≥ N̄ . As a consequence,

1. there is N∗ ∈ N such that Km∥α(n)
Km−1(⋅)∥∞,[0,r̄] ≤ 2K̄ for all m,n ≥ N∗, and

2. there is T ∈ N such that ∥α(n)
t (⋅)∥∞,[0,r̄] ≤ ᾱ/2 for all t, n ≥ T .

Finally, we are ready to state the desired proof, which follows a constructive

approach in the sense that it provides formulas for (A(n)
t )t∈N0 ∈ A (n) and P (n) ∈

H (n).

Proof of proposition: To simplify the remaining discussion, just consider n ∈ N

sufficiently large so that min{n,Kn} is strictly greater than max{Ñ ,N∗, T}; see

Lemmas 1.A.3 and 1.A.8 above. This proof is divided into three steps. In the

first one, for each n ∈ N, I propose a sequence of functions (A(n)
t )t∈N0 ∈ A (n) to

approximate (α(n)
t )t∈N0 , and then, I describe its approximation error as n grows

to infinity. The second step shows that Q1[(A(n)
t )t] = O(K−1

n ) as n → +∞. The

third one proves that the Bernstein polynomial P (n)(⋅), which has been defined

in (1.7), belongs to H (n) and satisfies the second part of the proposition, that is,

∥Q2[⋅, P (n)]∥∞,A (n) = O(K−1
n ).

Step 1: When 0 ≤ t ≤ Kn − 1, each function α
(n)
t (⋅) can be approximated by

the wavelet operator at the Jt-th resolution level ([DP97], eq. 2.1.1):

A
(n)
t (u) = ∑

j∈Z
ã
(n)
t,j κ[2Jt(u/ū) − j],

where u ∈ [0, ū] and the coefficients ãt,j are defined by

ã
(n)
t,j = 2Jt

ū ∫
r̄

0
α

(n)
t (v)κ[2Jt(v/ū) − j]dv = ∫

1

−1
α

(n)
t [ ū(w + j)

2Jt
]κ(w)dw.

When t ≥ Kn, A
(n)
t (⋅) simply becomes the zero function: A

(n)
t (u) = 0 for any

t ≥Kn and u ∈ [0, ū].
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It can be shown that (A(n)
t )t∈N0 ∈ A (n). First, as the support of κ(⋅) is [−1,1]

and ū ≥ r̄, it follows that ã
(n)
t,j = 0 when either j < 0 or j > ⌈2Jt⌉. Second, since

κ(⋅) integrates one and 0 ≤ α(n)
t (⋅) ≤ 1, then 0 ≤ ã(n)t,j ≤ 1. For future convenience, I

remark that ã
(n)
t,j ≤ ᾱ/2 for any t ≥ T and j ∈ Z (Lemma 1.A.8.2), and consequently,

A
(n)
t (⋅) ≤ ᾱ/2.

From [DP97], Theorem 2.2.1 and Corollary 2.1.1, we obtain that

∥A(n)
t (⋅)−α(n)

t (⋅)∥1,[0,r̄] ≤ 2c2ω [α(n)
t (⋅),21−Jt] = 2c2ω [α(n)

t (⋅),2⌈K1/2
n ⌉−(t+5)] ≤ C2K

−2
n ,

where c2 and C2 are finite constants (independent of t and n) given by [DP97]

and Lemma 1.A.7 in Appendix 1.A.3.

Step 2: As a starting point, we can write Q1[(A(n)
t )t] ≡ Q̄1 + Q̄2 + Q̄3, where

Q̄1 = ∫
r̄

0
∣R1[A(n)

0 (u)] − u∣du,

Q̄2 =
T

∑
t=1
∫

r̄

0
∣R1[A(n)

t (u)] −R2[A(n)
t−1(u)]∣du,

Q̄3 =
Kn−1

∑
t=T+1

∫
r̄

0
∣R1[A(n)

t (u)] −R2[A(n)
t−1(u)]∣du + ∫

r̄

0
∣R2[A(n)

Kn−1(u)]∣du,

and T is given by Lemma 1.A.8.2. To simplify the remaining discussion, the

dependence of Q̄1, Q̄2, and Q̄3 on n has been omitted from the notation. The

next step is to find proper upper bounds for Q̄1, Q̄2, and Q̄3. First, after applying

the usual triangular inequalities and since u = R(n)
1 [α(n)

0 (u)], we have that

Q̄1 ≤ ∫
r̄

0
∣R1[A(n)

0 (u)] −R(n)
1 [A(n)

0 (u)]∣du

+∫
r̄

0
∣R(n)

1 [A(n)
0 (u)] −R(n)

1 [α(n)
0 (u)]∣du

≤ r̄∥R(n)
1 (⋅) −R1(⋅)∥∞,[0,1] + ∫

r̄

0
∣R(n)

1 [A(n)
0 (u)] −R(n)

1 [α(n)
0 (u)]∣du

≤ 3r̄∥R(n)
1 (⋅) −R1(⋅)∥∞,[0,1] + L̄∥A(n)

0 (⋅) − α(n)
0 (⋅)∥1,[0,r̄].

Hence, Q̄1 = O(K−1
n ) by Lemma 1.A.3 and Step 1. Second, proceeding in a similar
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manner for 1 ≤ t ≤ T , it follows that

∫
r̄

0
∣R1[A(n)

t (u)] −R2[A(n)
t−1(u)]∣du

≤ ∫
r̄

0
∣R1[A(n)

t (u)] −R(n)
1 [α(n)

t (u)∣du

+∫
r̄

0
∣R(n)

2 [α(n)
t−1(u)] −R2[A(n)

t−1(u)]∣du

≤ 3r̄ [∥R(n)
1 (⋅) −R1(⋅)∥∞,[0,1] + ∥R(n)

2 (⋅) −R2(⋅)∥∞,[0,1]]

+L̄ [∥A(n)
t (⋅) − α(n)

t (⋅)∥1,[0,r̄] + ∥A(n)
t−1(⋅) − α

(n)
t−1(⋅)∥1,[0,r̄]] .

Since T is finite and independent of n (Lemma 1.A.8), the term Q̄2 also becomes

O(K−1
n ). Third, when t ≥ T + 1, it follows that 0 ≤ α(n)

t (⋅),A(n)
t (⋅) ≤ ᾱ/2 (Lemma

1.A.8.2 and Step 1 ), and therefore

R1[α(n)
t (⋅)] = R(n)

1 [α(n)
t (⋅)] = R(n)

2 [α(n)
t−1(⋅)] = R2[α(n)

t−1(⋅)]

because of n ≥ Ñ and Lemma 1.A.3. Then, each summand of Q̄3 can be bounded

above as follows:

∫
r̄

0
∣R1[A(n)

t (u)] −R2[A(n)
t−1(u)]∣du

≤ ∫
r̄

0
∣R1[A(n)

t (u)] −R1[α(n)
t (u)]∣du + ∫

r̄

0
∣R2[α(n)

t−1(u)] −R2[A(n)
t−1(u)]∣du

≤ L̄ [∥A(n)
t (⋅) − α(n)

t (⋅)∥1,[0,r̄] + ∥A(n)
t−1(⋅) − α

(n)
t−1(⋅)∥1,[0,r̄]] ,

and also,

∫
r̄

0
∣R2[A(n)

Kn−1(u)]∣du ≤ ∫
r̄

0
∣R2[A(n)

Kn−1(u)] −R2[α(n)
Kn−1(u)]∣du

+∫
r̄

0
∣R2[α(n)

Kn−1(u)]∣du

≤ L̄ [∥A(n)
Kn−1(⋅) − α

(n)
Kn−1(⋅)∥1,[0,r̄] + ∥α(n)

Kn−1(⋅)∥∞,[0,r̄]]

= O(K−1
n ),

where the last equality follows from Step 1 and Lemma 1.A.8.1. As a result,

Q̄3 = O(K−1
n ).

Step 3: First, we prove that P (n) ∈ H (n) when n is sufficiently large, which

implies that P (n) preserves the shape and smoothness of λ−1
0 (⋅) because H (n) ⊆
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HR. Observe that the coefficients {b(n)j ∶ j = 0,1, . . . , Ln} satisfy the conditions

1-3 of Definition 6. First, b
(n)
0 = λ−1

0 (0) = 0. Second,

ū

L2
n

≤ ( ū

Ln
) inf
u∈[0,ū]

∇1λ−1
0 (u) ≤ b(n)j+1 − b

(n)
j ≤ ( ū

Ln
) sup
u∈[0,ū]

∇1λ−1
0 (u) ≤ ū

Ln
,

where 0 ≤ j ≤ Ln − 1. For the first inequality, note that n is large enough

and infu∈[0,ū]∇1λ−1
0 (u) > 0 because λ′0(⋅) is strictly positive and bounded above

on [0, ū]. For the last inequality, note that supu∈[0,ū]∇1λ−1
0 (u) ≤ 1 because

λ′0(⋅) ≥ 1. Third, proceeding in a similar manner, the last condition follows from

∥∇R+1λ−1
0 ∥∞,R≥0 ≤ H̄.

Second, observe that

Q2[(At)t, P (n)] =
Kn−1

∑
t=0
∫

r̄

0
∣∆b[At(u)] + P (n){R2[At(u)]} − P (n){R1[At(u)]}∣du

≤ 2Knr̄∥P (n) − λ−1
0 ∥∞,[0,r̄],

any arbitrary (At)t ∈ A (n), because ∆b(⋅) = λ−1
0 [R1(⋅)] − λ−1

0 [R2(⋅)] on [0,1] and

0 ≤ R1(⋅),R2(⋅) ≤ r̄. To complete the proof, recall from the discussion of Section

1.3.3 that ∥P (n) − λ−1
0 ∥∞,[0,r̄] = O(L−1

n ).

1.A.2 Proofs of Statistical Results

This subsection presents the proof of Lemmas 1.4.1-1.4.2 and Theorem 1.4.1. To

simplify technicals details, I set γJ = γL = 1.

1.A.2.1 Proof of Lemma 1.4.1

Before starting with the proof, an auxiliary lemma is stated, which obtains the

uniform rates of convergence in probability for ϕ̂(x), π̂(⋅∣x), Ĝ(⋅∣⋅, x), ĝ(⋅∣⋅, x), b̂j(⋅),

and b̂′j(⋅).

Lemma 1.A.9. Under Assumptions 1-2, the following statements hold for j = 1,2:
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1. ∣ϕ̂(x) − ϕ(x)∣ = OP ([log(N)/(NhdG)]1/2 + hR+1
G ),

2. ∣π̂(ij ∣x) − π(ij ∣x)∣ = OP ([log(N)/(NhdG)]1/2 + hR+1
G ),

3. ∥Ĝ(⋅∣ij, x) −G(⋅∣ij, x)∥∞,[b,b̄j] = OP ([log(N)/(NhdG)]1/2 + hR+1
G ), and

4. ∥ĝ(⋅∣ij, x) − g(⋅∣ij, x)∥∞,(b+hg ,b̄j−hg) = OP ([log(N)/(Nhd+1
g )]1/2 + hRg ).

Under Assumptions 1-3,

5. ∣̂b − b∣ = OP (h∂) and ∣̂̄bj − b̄j ∣ = OP (h∂),

6. ∥b̂j(⋅)−bj(⋅)∥∞,[hb,1−hb] = OP (hR+1
G ) and ∥b̂j(⋅)−bj(⋅)∥∞,[0,hb)∪(1−hb,1] = OP (hb),

7. b + hg < b̂j(hb) ≤ b̂j(1 − hb) < b̄j − hg w.p.a.1,

8. ĝ[b̂j(⋅)∣ij, x] is bounded away from zero on [hb,1 − hb] w.p.a.1,

9. ∣ĝ
j
− g(b∣ij, x)∣ = OP (hg) and ∣ˆ̄gj − g(b̄j ∣ij, x)∣ = OP (hg), and

10. ∥b̂′j(⋅) − b′j(⋅)∥∞,[hb,1−hb] = OP (hRg ) as well as ∥b̂′j(⋅) − b′j(⋅)∥∞,[0,hb)∪(1−hb,1] =

OP (hb).

Proof of lemma: Before proceeding, define approximating functions of bj(⋅)

and Rj(⋅) as follows:

b̃j(α) = 1

hbk̄b(α) ∫
1

0
bj(v)kb (

α − v
hb

)dv,

R̃j(α) = 1

hbk̄b(α) ∫
1

0

vb′j(v)
ij − 1

kb (
α − v
hb

)dv,

and ∆b̃(α) ≡ b̃2(α) − b̃1(α) ≥ 0. Using these definitions, this proof is divided into

two steps. The first one studies the approximation errors ∥∆b̃(⋅)−∆b(⋅)∥∞,[0,1] and

∥R̃j(⋅) −Rj(⋅)∥∞,[0,1]. The second step establishes uniform rates of convergence in

probability for ∥∆b̂(⋅) −∆b̃(⋅)∥∞,[0,1], as well as, ∥R̂j(⋅) − R̃j(⋅)∥∞,[0,1].

Step 1: First, when α ∈ [hb,1 − hb], it can be easily seen that ∣̃bj(α) − bj(α)∣ ≤

hb∥b′j(⋅)∥∞,[0,1], and similarly, ∣R̃j(α) −Rj(α)∣ ≤ hb∥R′
j(⋅)∥∞,[0,1]. Just recall from
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Lemma 1.A.2 that bj(⋅) is twice continuously differentiable on [0,1]. Second,

consider the case α ∈ [0, hb). Since b1(0) = b2(0) = b, we have that

∣∆b̃(α) −∆b(α)∣ = ∣∫
1

−α/hb
[b2(α + hbv) − b1(α + hbv)]kb(v)dv − [b2(α) − b1(α)]∣

≤ ∫
1

−α/hb
∣b2(α + hbv) − b1(α + hbv)∣kb(v)dv + ∣b2(α) − b1(α)∣

≤ (2hb∫
1

−1
∣v∣kb(v)dv + 4hb)max{∥b′1(⋅)∥∞,[0,1], ∥b′2(⋅)∥∞,[0,1]},

which implies ∥∆b̃(⋅) −∆b(⋅)∥∞,[0,hb] = O(hb). Similarly,

∣R̃j(α) −Rj(α)∣ = 1

ij − 1
∣∫

1

−α/hb
(α + hbv)b′j(α + hbv)kb(v)dv − αb′j(α)∣

≤ 1

ij − 1 ∫
1

−α/hb
∣(α + hbv)b′j(α + hbv)∣kb(v)dv + ∣αb′j(α)∣

≤ 1

ij − 1
(hb∫

1

−1
∣v∣kb(v)dv + 2hb) ∥b′j(⋅)∥∞,[0,1].

Third, when α ∈ (1 − hb,1], the desired result follows from the properties of

boundary corrected kernels. As a result, ∥∆b̃(⋅) − ∆b(⋅)∥∞,[0,1] = O(hb) and

∥R̃j(⋅) −Rj(⋅)∥∞,[0,1] = O(hb)

Step 2: To prove that ∥∆b̂(⋅) −∆b̃(⋅)∥∞,[0,1] = OP (hb), it suffices to show

∥max{b̂2(⋅) − b̂1(⋅),0} − [b2(⋅) − b1(⋅)]∥∞,[0,1] = OP (hb).

For this purpose, just recall that b2(α) ≥ b1(α), so for any α ∈ [0,1] we have

∣max{b̂2(α)− b̂1(α),0}−[b2(α)−b1(α)]∣ ≤ ∣[b̂2(α)− b̂1(α)]−[b2(α)−b1(α)]∣. (1.19)

After combining Lemma 1.A.9.6 with above expression, the desired result emerges.

For the second part, observe that

R̂1(α) − R̃1(α) =
1

i1 − 1 ∫
1

−α/hb
(α + hbv)[b̂′1(α + hbv) − b′1(α + hbv)]kb(v)dv

for any α ∈ [0,1− hb], and a similar result holds for α ∈ (1− hb,1]. Then, ∥R̂1(⋅) −

R̃1(⋅)∥∞,[0,1] = OP (hb) because both b′j(⋅) and b̂′j(⋅) = 1/ĝ[b̂j(⋅)∣ij, x] are uniformly

bounded above w.p.a.1. Using arguments similar to the ones in (1.19), it can be

shown that ∥R̂2(⋅) − R̃2(⋅)∥∞,[0,1] = OP (hb).
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1.A.2.2 Proof of Lemma 1.4.2

This proof is essentially based on Lemma 1.4.1, as well as, on the inequalities

∥f∥1,[0,r̄] ≤ r̄∥f∥∞,[0,r̄] and ∣∥f∥1,[0,r̄] − ∥g∥1,[0,r̄]∣ ≤ ∥f − g∥1,[0,r̄] where f and g are

integrable functions. Pick any arbitrary [(At)t, P ] ∈ Θ(N). Since 0 ≤ A0(⋅) ≤ 1, it

can be easily seen that

∣∫
r̂

0
∣R̂1[A0(u)] − u∣du − ∫

r̄

0
∣R1[A0(u)] − u∣du∣

≤ 2r̄(∥R̂1(⋅) −R1(⋅)∥∞,[0,1] + ∣r̂ − r̄∣)

w.p.a.1 because ∥R̂1(⋅)∥∞,[0,r̄] ≤ 2r̄ w.p.a.1. Similarly, for each t ≥ 1, we have

∣∫
r̂

0
∣R̂1[At(u)] − R̂2[At−1(u)]∣du − ∫

r̄

0
∣R1[At(u)] −R2[At−1(u)]∣du∣

≤ 2r̄(∥R̂1(⋅) −R1(⋅)∥∞,[0,1] + ∥R̂2(⋅) −R2(⋅)∥∞,[0,1] + ∣r̂ − r̄∣).

w.p.a.1. Hence, ∣Q̂1[(At)t] −Q1[(At)t]∣is bounded above by

∣∫
r̂

0
∣R̂1[A0(u)] − u∣du − ∫

r̄

0
∣R1[A0(u)] − u∣du∣

+
KN−1

∑
t=1

∣∫
r̂

0
∣R̂1[At(u)] − R̂2[At−1(u)]∣du − ∫

r̄

0
∣R1[At(u)] −R2[At−1(u)]∣du∣

≤ 2KN r̄(∥R̂1(⋅) −R1(⋅)∥∞,[0,1] + ∥R̂2(⋅) −R2(⋅)∥∞,[0,1] + ∣r̂ − r̄∣).

As hb ≤ (2γK/KN)2 when N is sufficiently large (Assumption 4), the first desired

result emerges from Lemma 1.4.1.

1.A.2.3 Proof of Theorem 1.4.1

Note first that h
1/2
b /γK ≥ 1/KN due to Assumption 4. Given K > 0 obtained in

Proposition 1.3.1, by a standard triangular inequality and for any K̄ > 0, we have

P [∥∇rλ̂−1 −∇rλ−1
0 ∥∞,[0,r̄] ≥ [4K̄2hb/(KγK)2]1/[2c(r)]]

≤ P [∥∇rλ̂−1 −∇rλ−1
0 ∥c(r)∞,[0,r̄] ≥ 2K̄/(KKN)]

≤ P [Q[(Ât)t, λ̂−1] ≥ 2K̄/KN]

≤ P [Q1[(Ât)t] ≥ K̄/KN] + P [Q2[(Ât)t, λ̂−1] ≥ K̄/KN] .
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On the one hand, as (Ât)t minimizes Q̂1(⋅), it follows

P [Q1[(Ât)t] ≥ K̄/KN] ≤ P [∣Q1[(Ât)t] − Q̂1[(Ât)t]∣ + Q̂1[(Ât)t] ≥ K̄/KN]

≤ P [∥Q̂1 −Q1∥∞,A (N) + Q̂1[(A(N)
t )t] ≥ K̄/KN]

≤ P [2∥Q̂1 −Q1∥∞,A (N) +Q1[(A(N)
t )t] ≥ K̄/KN] .

On the other hand, by the same arguments

P [Q2[(Ât)t, λ̂−1] ≥ K̄/KN] ≤ P [∥Q̂2 −Q2∥∞,Θ(N) + Q̂2[(Ât)t, P (N)] ≥ K̄/KN]

≤ P [2∥Q̂2 −Q2∥∞,Θ(N) +Q2[(Ât)t, P (N)] ≥ K̄/KN] .

To complete the proof, in view of Proposition 1.3.2 and Lemma 1.4.2, just pick K̄

large enough.

1.A.2.4 Proof of Proposition 1.5.1

The approach of this proof is similar to that of [Mat03], proof of Theorem 1. Pick

any y ∈ [0, λ−1
0 (r̄)]. For the first part, on the one hand, if 0 ≤ y ≤ λ̂−1(r̂), then

∣λ̂(y) − λ0(y)∣ = 1

∇1λ−1
0 (λ∗) ∣λ

−1
0 [λ̂(y)] − λ−1

0 [λ0(y)]∣

= 1

∇1λ−1
0 (λ∗) ∣λ

−1
0 [λ̂(y)] − λ̂−1[λ̂(y)]∣

≤ 1

∇1λ−1
0 (λ∗) [∥λ̂−1(⋅) − λ−1

0 (⋅)∥∞,[0,r̄] + ∥λ̂−1(⋅) − λ−1
0 (⋅)∥∞,[r̄,r̂]] ,

where λ∗ lies between λ̂(y) and λ0(y), while the notation here is ∥ ⋅ ∥∞,[r̄,r̂] ≡ 0 if

r̄ > r̂. As a consequence, ∥λ̂(⋅) − λ0(⋅)∥∞,[0,λ̂−1(r̂)] is bounded above by

1

∇1λ−1
0 (λ∗∗) [∥λ̂−1(⋅) − λ−1

0 (⋅)∥∞,[0,r̄] + ∥λ̂−1(⋅) − λ−1
0 (⋅)∥∞,[r̄,r̂]] ,

where λ∗∗ ∈ [0,max{r̂, r̄}]; therefore, 0 ≤ λ∗∗ ≤ 2r̄ w.p.a.1. Recall that 0 ≤

∇1λ̂−1(⋅) ≤ 1 on [0, ū], and also, that ū has been chosen so that ū > r̂ w.p.a.1.

As a result, it follows that ∥λ̂(⋅) − λ0(⋅)∥∞,[0,λ̂−1(r̂)] = OP (h1/[2c(0)]
b ). On the other
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hand, if λ̂−1(r̂) < y ≤ λ−1
0 (r̄), then λ0[λ̂−1(r̂)] < λ0(y) ≤ λ0[λ−1

0 (r̄)] = r̄ and λ̂(y) = r̂.

As a result,

∣λ̂(y) − λ0(y)∣ ≤ ∣r̂ − r̄∣ + r̄ − λ0(y)

≤ ∣r̂ − r̄∣ + λ0[λ−1
0 (r̄)] − λ0[λ̂−1(r̄)]

≤ ∣r̂ − r̄∣ +
⎡⎢⎢⎢⎢⎣

sup
y∈[0,λ−10 (r̄)]

λ′0(y)
⎤⎥⎥⎥⎥⎦
∥λ̂−1(⋅) − λ−1

0 (⋅)∥∞,[0,r̄].

The second part of the proposition follows by similar arguments. On the one

hand, it can be shown that, there is a fixed constant 0 < K̄ < +∞ such that

∥Û(⋅) − U(⋅)∥∞,[0,λ̂−1(r̂)] ≤ K̄∥λ̂(⋅) − λ0(⋅)∥∞,[0,λ̂−1(r̂)] w.p.a.1. On the other hand, if

λ̂−1(r̂) < y ≤ λ−1
0 (r̄), then

∣Û(y) −U(y)∣ = 1 −U(y)

≤ U[λ−1
0 (r̄)] −U[λ̂−1(r̄)]

≤
⎡⎢⎢⎢⎢⎣

sup
y∈[0,λ−10 (r̄)]

U ′(y)
⎤⎥⎥⎥⎥⎦
∥λ̂−1(⋅) − λ−1

0 (⋅)∥∞,[0,r̄].

Proceeding in a similar manner, these result can be extended to the derivatives

of Û(⋅).

1.A.2.5 Proof of Proposition 1.5.2

1. After combining Lemma 1.4.1 with Theorem 1.4.1, we easily obtain

∥υ̃j(⋅) − υ(⋅)∥∞,[0,1] = OP (h1/[2c(0)]
b ) .

For the rest of the proof, the approach is similar to that of [MS12]; specifically,

see the proof of Lemma 1.(g)-(h) on pages 355-356.

2. From Lemma 1.(f) of [MS12], we have that

∥g̃′(⋅∣ij, x) − g′(⋅∣ij, x)∥∞,B = OP

⎛
⎝
[ log(N)
Nhd+3

f

]
1/2

+ hRf
⎞
⎠
.
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where B is the range of the bidding function s(⋅; ij) over C, namely, B = s(C; ij).

In order to complete the proof, observe that each component of f̂j(⋅) converges

uniformly at a rate of h
1/[2c(1)]
b , or faster.

3. Let b = s(v; ij) denote the optimal bid for the valuation v ∈ (υ, ῡ), or equiv-

alently, b = bj[F (v)]. From Lemma 2 of [MS12], the rest of the proof follows by

standard arguments.

1.A.3 Proofs of Auxiliary Lemmas

Here, I provide detailed proofs of the auxiliary lemmas employed in subsections

1.A.1-1.A.2.

1.A.3.1 Proof of Lemma 1.A.1

Let q ∈ [1,+∞). From Theorem 1 of [Gab67],

∥∇rf −∇rg∥∞,[0,r̄] ≤K1 (δ−r−(1/q)∥f − g∥q,[0,r̄] + δR+1−r2H̄)

for any f, g ∈ HR, r ∈ {0,1, . . . ,R}, and δ ∈ (0, r̄); where K1 < +∞ is independent of

δ, r̄, f , and g. Since both ∥∇R+1f∥∞,[0,r̄], ∥∇R+1g∥∞,[0,r̄] < H̄ and [0, r̄] is bounded,

there is a positive finite constant K2 (which is independent of δ, f , and g) such

that ∥f − g∥q,[0,r̄] < K2 for all f, g ∈ HR. Then, the desired result emerges after

choosing δ = r̄(∥f − g∥q,[0,r̄]/K2)1/[R+1+(1/q)] < r̄ and q = 1.

1.A.3.2 Proof of Lemma 1.A.2

First, recall from Definition 3 that gj(⋅) hasR continuous derivatives on its support

[b, b̄j], therefore bj(⋅) has R + 1 continuous derivatives on [0,1]. Second, since

∇R+1gj(⋅) is continuous on (b, b̄j], ∇R+2bj(⋅) is also continuous on (0,1]. Third, as
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gj(⋅) is continuous and bounded away from zero, we have that

b′j(α) =
1

gj[bj(α)]
≥ 1

inf{gj(b) ∶ b ∈ [b, b̄j]}
> 0

for any α ∈ [0,1].

The second statement is essentially derived from Definition 4, condition 2. Ex-

ploiting the compatibility conditions (a)-(b), define υ(α) ≡ ξ1[b1(α)] = ξ2[b2(α)]

for α ∈ [0,1]. Observe that υ(0) = b, as well as, υ′(0) > 0 because b′j(⋅)

is bounded away from zero and ξ′j(b) = 1 + 1/[λ′0(0)(ij − 1)] > 0. Since

ξj(⋅) is strictly increasing, it follows that bj(α) = ξ−1
j [υ(α)], and therefore,

b′j(0) = (ξ−1
j )′(b)υ′(0). At the same time, we also have that (ξ−1

j )′(b) equals

1/ξ′j(b) = λ′0(0)(ij − 1)/[λ′0(0)(ij − 1) + 1], which immediately implies

b′1(0)
i1 − 1

= λ′0(0)υ′(0)
λ′0(0)(i1 − 1) + 1

> λ′0(0)υ′(0)
λ′0(0)(i2 − 1) + 1

= b
′
2(0)
i2 − 1

.

The strict inequality is due to λ′0(0) > 0 and υ′(0) > 0.

1.A.3.3 Proof of Lemma 1.A.3

For the first part, considering the construction of ā, choose Ñ sufficiently large so

that L̄K
−1/2
Ñ

is smaller than min{b′2(0)/[2(i2−1)], ᾱ/4}, and consequently, smaller

than b′1(0)/[2(i1 − 1)] (see Lemma 1.A.2). Now choose any n ≥ Ñ and (j, α) ∈

{1,2}×(0, ā/2], and then, consider k so that α ∈ (a(n)k , a
(n)
k+1], where 0 ≤ k ≤ ⌈K−1/2

n ⌉.

Since a
(n)
k < ā/2 and ⌈K1/2

n ⌉−1 ≤ K−1/2
Ñ

< ᾱ/4, it follows that a
(n)
k+1 < ᾱ due to the

length of (a(n)k , a
(n)
k+1]. By construction of ᾱ and Ñ , inf{∣R′

j(a)∣ ∶ a ∈ (a(n)k , a
(n)
k+1]} ≥

b′j(0)/[2(ij − 1)] > L̄K−1/2
Ñ

≥ L̄K−1/2
n , hence R

(n)
j (α) = Rj(α).

For the second part, consider the case j = 1. Pick any n ≥ Ñ and α ∈ [0,1]

such that α ∈ (a(n)k , a
(n)
k+1] with a

(n)
k+1 > ᾱ/2; otherwise, a

(n)
k+1 ≤ ᾱ/2, then R

(n)
1 (α) =

R1(α) due to the previous discussion. Suppose further that inf{∣R′
1(a)∣ ∶ a ∈

(a(n)k , a
(n)
k+1]} ≤ L̄K

−1/2
n ; otherwise, R

(n)
1 (α) = R1(α) by construction of R

(n)
1 (⋅).
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Following standard arguments, we have that

∣R(n)
1 (α) −R1(α)∣ = ∣R1(a(n)k ) + 2L̄K

−1/2
n (α − a(n)k ) −R1(α)∣

≤ R′
1(a)∣α − a

(n)
k ∣ + 2L̄K

−1/2
n ∣α − a(n)k ∣ ≤ 4L̄K−1

n ,

for some a ∈ (a(n)k , a
(n)
k+1], which satisfies R′

1(a) ≤ 2L̄K
−1/2
n because a

(n)
k > ᾱ/5 and

R′
1(⋅) is Lipschitz continuous on [ᾱ/5,1] with constant L̄. The first equality follows

by definition of R
(n)
1 (α). The second inequality follows by a standard triangular

inequality and the fact that R1(⋅) is continuously differentiable on [0,1], and

particularly, on [a(n)k , a
(n)
k+1]. The last inequality follows because R′

1(a) ≤ 2L̄K
−1/2
n

and ∣α − a(n)k ∣ ≤K−1/2
n . Symmetrically, we can show the same result for j = 2.

1.A.3.4 Proof of Lemma 1.A.4

1. We only prove that R
(n)
1 (α) ≥ R1(α), symmetrically, it follows that R2(α) ≥

R
(n)
2 (α). Consider again any α ∈ (a(n)k , a

(n)
k+1] and assume a

(n)
k+1 > ᾱ/2 as well as

inf{∣R′
1(a)∣ ∶ a ∈ (a(n)k , a

(n)
k+1]} ≤ L̄K−1/2

n ; otherwise, R
(n)
1 (α) = R1(α) by construc-

tion of R
(n)
1 (⋅). After applying the mean value theorem on R1(⋅), we obtain that

R1(α) = R1(a(n)k ) + R′
1(ā)(α − a

(n)
k ) for some ā ∈ (a(n)k , a

(n)
k+1]. Then, it must be

∣R′
1(ā)∣ ≤ 2L̄K

−1/2
n because a

(n)
k > ᾱ/5 and R′

1(⋅) is Lipschitz continuous on [α/5,1]

with constant L̄. Therefore, it follows R1(α) ≤ R(n)
1 (α) by definition of R

(n)
1 (α).

2. There exists a ∈ [0,1] that satisfies R1(a) = r̄ and R′
1(a) ≥ 0.7 As a conse-

quence, r̄ = R1(a) ≤ R(n)
1 (a) ≤ R(n)

1 (a(n)k ) where k is taken to be (a(n)k−1, a
(n)
k ] ∋ a.

Note that the last inequality follows because R′
1(a) ≥ 0, and as a result, R

(n)
1 (⋅)

must be (strictly) increasing on (a(n)k−1, a
(n)
k ].

3. We immediately rule out R
(n)
1 (a(n)l−1) ≥ R

(n)
1 (a(n)l ) because l is a minimum. By

definition, we have u ≤ R(n)
1 (a(n)l ), and again since l is a minimum, it must be the

case R
(n)
1 (a(n)l−1) < u.

7If a = 1, we simply define R′1(a) = limh↑0[R1(a + h) −R1(a)]/h.

63



4. Since both R1(⋅) and R
(n)
1 (⋅) are continuous on (a(n)k−1, a

(n)
k ], observe that

lim
α↓a(n)

k−1

R
(n)
1 (α) = R1(a(n)k−1) ≤ R

(n)
1 (a(n)k−1) < u ≤ R

(n)
1 (a(n)k ),

where the first inequality follows by item 1. At the same time, there exists α̃ ∈

(ak−1, ak] such that R
(n)
1 (α̃) = u. Moreover, since R

(n)
1 (⋅) is strictly monotone on

(ak−1, ak] and R
(n)
1 (α̃) = u ≤ R

(n)
1 (a(n)k ), R(n)

1 (⋅) must be strictly increasing on

(ak−1, ak].

5. By definition of l (third item), u ∈ (R(n)
1 (a(n)l−1),R

(n)
1 (a(n)l )]. By the fourth

item, there is α̃ ∈ (a(n)l−1 , a
(n)
l ] such that R

(n)
1 (a(n)l−1) < u = R(n)

1 (α̃) ≤ R(n)
1 (α). We

next show that α̃ ≤ α, by contradiction, assume α̃ > α. In such case, we must have

α ≤ a(n)l−1 ; otherwise, if a
(n)
l ≥ α̃ > α > a(n)l−1 , then R

(n)
1 (α) < R(n)

1 (α̃) because R
(n)
1 (⋅)

is strictly increasing on (a(n)l−1 , a
(n)
l ]. To complete the proof, consider the interval

that contains α, that is (a(n)j−1, a
(n)
j ] ∋ α being 1 ≤ j ≤ l − 1. On the one hand, if

R
(n)
1 (⋅) is strictly increasing on (a(n)j−1, a

(n)
j ], it follows u ≤ R(n)

1 (α) ≤ R(n)
1 (a(n)j ).

On the other hand, if R
(n)
1 (⋅) is strictly decreasing on (a(n)j−1, a

(n)
j ], then R1(⋅) must

be necessarily decreasing on [a(n)j−1, a
(n)
j ], and as a result,

u ≤ R(n)
1 (α) = R1(α) ≤ R1(a(n)j−1) ≤ R

(n)
1 (a(n)j−1).

Both cases contradict the definition of l (third item) because j ≤ l − 1.

1.A.3.5 Proof of Lemma 1.A.5

For the first part, pick any (u,u′) such that 0 ≤ u < u′ ≤ r̄. Since R
(n)
1 [α(n)

0 (u)] = u

and R
(n)
1 [α(n)

0 (u′)] = u′, we immediately rule out α
(n)
0 (u) = α(n)

0 (u′). By contra-

diction, now suppose α
(n)
0 (u′) < α(n)

0 (u). Then, u ∈ (0,R(n)
1 [α(n)

0 (u)]], and as a

result of u < u′, u ∈ (0,R(n)
1 [α(n)

0 (u′)]]. By Lemma 1.A.4.5, there is α̃ such that

0 < α̃ ≤ α
(n)
0 (u′) < α

(n)
0 (u) and R

(n)
1 (α̃) = u; this contradicts the definition of

α
(n)
0 (u).
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For the second part, from Lemma 1.A.4.1, R
(n)
2 [α(n)

t (u)] < R
(n)
1 [α(n)

t (u)].

Then, by construction of α
(n)
t+1(u) and again Lemma 1.A.4.5, it follows α

(n)
t+1(u) <

α
(n)
t (u).

1.A.3.6 Proof of Lemma 1.A.6

This proof employs an inductive argument on t ∈ N0. We only consider cases

in which V(l0) or V(l0,...,lt−1,lt) are nonempty, otherwise, the desired results follow

trivially.

Case t =0

1. Since (0, r̄) is an open interval, V(l0) is also an open interval. Now pick any u ∈

V(l0). Since R
(n)
1 (a(n)l0−1) < R

(n)
1 (a(n)lo

) and u ∈ (R(n)
1 (a(n)l0−1),R

(n)
1 (a(n)l0

)), by Lemma

1.A.4.4, there is α̃ ∈ (a(n)l0−1, a
(n)
lo

] such that R
(n)
1 (α̃) = u. As α

(n)
0 (u) is a minimum,

we automatically rule out the case α
(n)
0 (u) > a(n)l0

, and as u = R(n)
1 [α(n)

0 (u)], it is

obvious that α
(n)
0 (u) ≠ a(n)l0

. By contradiction, suppose α
(n)
0 (u) ∈ (a(n)j−1, a

(n)
j ] for

some 1 ≤ j ≤ l0 − 1 and recall that R
(n)
1 (⋅) is strictly monotone on (a(n)j−1, a

(n)
j ]. On

the one hand, if R
(n)
1 (⋅) is strictly increasing on (a(n)j−1, a

(n)
j ], it follows

u = R(n)
1 [α(n)

0 (u)] ≤ R(n)
1 (a(n)j ) ≤ max

j=0,...,l0−1
R

(n)
1 (a(n)j ).

On the other hand, if R
(n)
1 (⋅) is strictly decreasing on (a(n)j−1, a

(n)
j ], then R

(n)
1 (⋅) =

R1(⋅) and therefore R1(⋅) is decreasing on [a(n)j−1, a
(n)
j ] as well; as a result,

u = R(n)
1 [α(n)

0 (u)] = R1[α(n)
0 (u)] ≤ R1(a(n)j−1) ≤ R

(n)
1 (a(n)j−1) ≤ max

j=0,...,l0−1
R

(n)
1 (a(n)j ).

Both cases clearly contradict the definition of V(l0).

2. For the first part, consider the function f(⋅, ⋅) ≡ R
(n)
1 (⋅) − ⋅ defined over

the open rectangle (a(n)l0−1, a
(n)
l0

) × V(l0) and given by f(α,u) = R(n)
1 (α) − u where
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(α,u) ∈ (a(n)l0−1, a
(n)
l0

) × V(l0). From above result, α
(n)
0 (⋅) can be implicitly defined

on V(l0) as follows: f[α(n)
0 (⋅), ⋅] = 0. Since f(⋅, ⋅) is continuously differentiable on

its domain (a(n)l0−1, a
(n)
l0

) ×V(l0), by the Implicit Function Theorem it follows imme-

diately that α
(n)
0 (⋅) is continuously differentiable on V(l0). Trivially, R

(n)
2 [α(n)

0 (⋅)]

is also continuously differentiable on V(l0) because R
(n)
2 (⋅) is continuously differ-

entiable on (a(n)l0−1, a
(n)
l0

). Finally, the inequality α
(n)′
0 (u) = 1/R(n)′

1 [α(n)
0 (u)] ≤ K1/2

n

follows by construction of R
(n)
1 (⋅) and because L̄ ≥ 1.

3. By Lemma 1.A.4.2, there is j such that R
(n)
1 (a(n)j ) > r̄, so

(0, r̄) = (∪
1≤l≤⌈K1/2

n ⌉Vl)⊍(∪
0≤l≤⌈K1/2

n ⌉{u ∈ (0, r̄) ∶ u = R(n)
1 (a(n)l )}) .

To complete the proof, note that the first union ∪
1≤l≤⌈K1/2

n ⌉Vl is disjoint, while

the second one ∪
0≤l≤⌈K1/2

n ⌉{u ∈ (0, r̄) ∶ u = R(n)
1 (a(n)l )} is in fact a finite set, so its

Lebesgue measure equals zero.

Suppose that the statement holds for t − 1, being t ∈ N

1. Using an inductive argument, V(l0,...,lt) is an open interval because V(l0,...,lt−1)

is an open interval and R
(n)
2 [α(n)

t−1(⋅)] is strictly monotone and continuous on

V(l0,...,lt−1). For the rest of the proof, just follow the same steps as in the case

t = 0.

2. For the first part, now consider the function R
(n)
1 (⋅)−R(n)

2 [α(n)
t−1(⋅)] defined over

the open rectangle (a(n)lt−1, a
(n)
lt

)×V(l0,...,lt). For the second part, when u ∈ V(l0,...,lt−1,lt),

just note

α
(n)′
t (u) = R

(n)′
2 [α(n)

t−1(u)]α
(n)′
t−1 (u)

R
(n)′
1 [α(n)

t (u)]
≤K(t/2)+(1/2)

n

because V(l0,...,lt−1,lt) ⊆ V(l0,...,lt−1) and ∣α(n)′
t−1 (u)∣ ≤Kt/2

n (inductive argument).
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3. Observe that

∑
(l0,l1,...,lt)

∣V(l0,...,lt−1,lt)∣ = ∑
(l0,l1,...,lt−1)

⌈K1/2
n ⌉
∑
lt=1

∣V(l0,...,lt−1,lt)∣,

where the support of the sum on the left-hand side runs over {(l0, l1, . . . , lt) ∈ Nt+1 ∶

lj ≤ ⌈K1/2
n ⌉, j = 0, . . . , t}, while the support of the first sum on right-hand side runs

over {(l0, l1, . . . , lt−1) ∈ Nt ∶ lj ≤ ⌈K1/2
n ⌉, j = 0, . . . , t − 1}. It can be easily seen that

⌈K1/2
n ⌉
∑
lt=1

∣V(l0,...,lt−1,lt)∣ = ∣V(l0,...,lt−1)∣,

then the desired result follows from the inductive argument

∑(l0,l1,...,lt−1) ∣V(l0,...,lt−1)∣ = r̄.

1.A.3.7 Proof of Lemma 1.A.7

Consider any t ∈ N0 and h ∈ R such that 0 < ∣h∣ ≤ c⌈K1/2
n ⌉−(t+5). From Lemma

1.A.6.3, and since α
(n)
t (⋅) is bounded above by one, we have

∫
R
∣α(n)
t (u + h) − α(n)

t (u)∣du ≤ ∫
r̄+∣h∣

−∣h∣
∣α(n)
t (u + h) − α(n)

t (u)∣du

≤ 4∣h∣ + ∫
r̄

0
∣α(n)
t (u + h) − α(n)

t (u)∣du

≤ 4∣h∣ + ∑
(l0,l1,...,lt)

∫
V(l0,...,lt)

∣α(n)
t (u + h) − α(n)

t (u)∣du,

where the support of the sum runs over {(l0, l1, . . . , lt) ∈ Nt+1 ∶ lj ≤ ⌈K1/2
n ⌉, j =

0,1, . . . , t}. Then, for each summand, it can be easily shown that

∫
V(l0,...,lt)

∣α(n)
t (u + h) − α(n)

t (u)∣du ≤

∫
v(l0,l1,...,lt)+∣h∣

v(l0,l1,...,lt)

∣α(n)
t (u + h) − α(n)

t (u)∣du

+∫
v̄(l0,l1,...,lt)−∣h∣

v(l0,l1,...,lt)+∣h∣
∣α(n)
t (u + h) − α(n)

t (u)∣du

+∫
v̄(l0,l1,...,lt)

v̄(l0,l1,...,lt)−∣h∣
∣α(n)
t (u + h) − α(n)

t (u)∣du,

where v(l0,l1,...,lt) and v̄(l0,l1,...,lt) denote the infimum and supremum of the open in-

terval V(l0,l1,...,lt), respectively; here, the notation for the second integral is ∫
b

a ⋅ = 0
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whenever a ≥ b. Since α
(n)
t (⋅) is bounded above by one and continuously differen-

tiable on V(l0,l1,...,lt), by the second part of Lemma 1.A.6, we have that

∫
V(l0,...,lt)

∣α(n)
t (u + h) − α(n)

t (u)∣du ≤ 4∣h∣ + ∣V(l0,...,lt)∣∣h∣K
(t+1)/2
n ,

and then from Lemma 1.A.6.3, it follows

∫
R
∣α(n)
t (u + h) − α(n)

t (u)∣du ≤ 8∣h∣ + ⌈K1/2
n ⌉t+14∣h∣ + r̄∣h∣K(t+1)/2

n

≤ 8∣h∣ + (c4 + cr̄)K−2
n

≤ c(24 + r̄)K−2
n .

1.A.3.8 Proof of Lemma 1.A.8

For n > Ñ and α ∈ [0,1], define the functions δ(n)(α) ≡ R(n)
1 (α) − R(n)

2 (α) and

δ(α) = R1(α) −R2(α) ≥ 0. Notice that δ(n)(α) ≥ δ(α) for all α ∈ [0,1], as well as,

δ(n)(α) = δ(α) = 0 if and only if α = 0; see Lemma 1.A.4. When α ∈ [0, ᾱ/2], by

Lemma 1.A.3 we have that

δ(n)(α) = δ(α) = R1(α) −R2(α) = [b
′
1(α)
i1 − 1

− b
′
2(α)
i2 − 1

]α ≡ δ̃(α)α, (1.20)

thus, δ′(α) = δ̃′(α)α+ δ̃(α). From Lemma 1.A.2 and as δ̃′(⋅) is bounded, pick first

ã ∈ (0, ᾱ/2) sufficiently small so that min{δ̃(⋅), δ′(⋅)} > 0 on [0, ã]; obviously, δ(⋅)

becomes strictly increasing on [0, ã]. Second, note that minα∈[ã,1] δ(α) is strictly

greater than zero and then choose a∗ ∈ (0, ã] such that δ(a∗) < minα∈[ã,1] δ(α).

Third, considering that (Tm)m is divergent and also minα∈[a∗,1] δ(α) > 0, pick

N∗ > Ñ such that TN∗ minα∈[a∗,1] δ(α) > r̄.

Before proceeding, we remark that both ã and a∗ are independent of n because

R
(n)
j (⋅) = Rj(⋅) on [0, ᾱ/2]. Note also that minα∈[0,a∗] δ̃(α) > 0 is independent

of n because a∗ < ã < ᾱ/2. Next we show that Tm∥α(n)
0,Tm

(⋅)∥∞,[0,r̄] ≤ K̄ for all

m,n ≥ N∗, where K̄ equals r̄/minα∈[0,a∗] δ̃(α). In order to do so, choose any

arbitrary m,n ≥ N∗ and u ∈ [0, r̄].
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Observe first that α
(n)
0,TN∗(u) < α∗. Suppose not, that is, α

(n)
0,TN∗(u) ≥ a∗. On

the one hand, α
(n)
t (u) ≥ α∗ for all t ≤ TN∗ because α

(n)
t (u) is decreasing in t when

both n and u are fixed; see Lemma 1.A.5. On the other hand,

r̄ ≥ R̃
(n)
1 [α(n)

0 (u)] − R̃(n)
2 [α(n)

TN∗(u)]

= {R̃(n)
1 [α(n)

0 (u)] − R̃(n)
2 [α(n)

0 (u)]} +
TN∗

∑
t=1

{R̃(n)
1 [α(n)

t (u)] − R̃(n)
2 [α(n)

t (u)]}

≥
TN∗

∑
t=0

{R1[α(n)
t (u)] −R2[α(n)

t (u)]} ≥ (TN∗ + 1) min
α∈[a∗,1]

δ(n)(α)

≥ TN∗ min
α∈[a∗,1]

δ(α),

which contradicts the construction of N∗. As R
(n)
1 [α(n)

0 (u)] = u ≤ r̄ and R̃
(n)
2 (⋅) ≥ 0

(Lemma 1.A.3), the first inequality is trivial. The second equality is the key step

and follows inductively from R
(n)
1 [α(n)

t (u)] −R(n)
2 [α(n)

t−1(u)] = 0 for all t ∈ N. The

third inequality is due to Lemma 1.A.4.1, while the fourth one can be derived

from α
(n)
t (u) ≥ a∗ for all t ≤ TN∗ .

Before proceeding, note that α
(n)
t (u) ≤ α(n)

TN∗(u) < a∗ for all t ≥ TN∗ . Since

(Tm)m is increasing and divergent, when m ≥ N∗, we have that

r̄ ≥ R
(n)
1 [α(n)

0 (u)] −R(n)
2 [α(n)

Tm
(u)]

=
Tm

∑
t=0

δ(n)[α(n)
t (u)]

≥ Tmδ[α(n)
Tm

(u)]

= Tmδ̃[α(n)
Tm

(u)]α(n)
Tm

(u) ≥ [ min
α∈[0,a∗]

δ̃(α)]Tmα(n)
Tm

(u).

The second equality follows by definition of δ(n)(⋅) and previous arguments, that

is, R
(n)
1 [α(n)

t (u)] = R(n)
2 [α(n)

t−1(u)]. In order to establish the third inequality, we

next consider two possible cases: α
(n)
t (u) ≥ ã and α

(n)
t (u) < ã. On the one hand,

if α
(n)
t (u) ≥ ã, then

δ(n)[α(n)
t (u)] ≥ min

α∈[ã,1]
δ(n)(α) ≥ min

α∈[ã,1]
δ(α) > δ(a∗) ≥ δ[α(n)

TN∗(u)] ≥ δ[α
(n)
Tm

(u)]

because δ(⋅) is strictly increasing on [0, ã], and at the same time, ã > a∗ >

α
(n)
TN∗(u) ≥ α

(n)
Tm

(u); on the other hand, if α
(n)
t (u) < ã < ᾱ/2, it follows easily that
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δ(n)[α(n)
Tm

(u)] = δ[α(n)
Tm

(u)] ≤ δ[α(n)
t (u)] due to the support of the sum 0 ≤ t ≤ Tm.

The fourth equality follows simply by the definition in (1.20). The last inequality

is a consequence of αTm(u) ≤ αTN∗(u) < a∗, and to complete the proof, recall that

minα∈[0,a∗] δ̃(α) is strictly positive and independent of n.

1.A.3.9 Proof of Lemma 1.A.9

Items 1-4 are well-known results, hence their proofs are omitted; see [GPV00],

as well as, [MS12]. The fifth item is simply a particular case of Proposition 2 in

[GPV00], so in what follows, we focus only on 6-8. Before proceeding, note that

under Assumptions 1-3, in items 1-3 the rate of convergence inside OP (⋅) becomes

hR+1
G , whereas in item 4 the corresponding rate is hRg .

6. The first part is based on the proof of Lemma 1.(d) in [MS12]. Under As-

sumption 3, we have ∥Ĝ(⋅∣ij, x) −G(⋅∣ij, x)∥∞,[b,b̄j] = OP (hR+1
G ), and as a result,

P[b̂j(hb) ≤ b] = P [ inf
b∈R≥0

{Ĝ(b∣ij, x) ≥ hb} ≤ b] = P[Ĝ(b∣ij, x) ≥ hb] = o(1);

the last equality follows from item 3 and the fact hb/hR+1
G → +∞ as N → +∞.

Symmetrically, P[b̂j(1−hb) ≥ b̄j] = o(1), and as a result, b < b̂j(hb) ≤ b̂j(1−hb) < b̄j
w.p.a.1. The rest of the proof follows exactly by the same arguments of eqs. (40)-

(48) in [MS12]. The second part follows immediately from item 5 because bj(⋅) is

Lipschitz continuous on [0,1], and h∂ < hb when N is large enough.

7. I first show that b + hg < b̂j(hb) w.p.a.1. On the one hand, for N sufficiently

large

P[∣̂bj(hb) − bj(hb)∣ ≤ hg] = P[∣b + hbb′j(h̃) − b̂j(hb)∣ ≤ hg]

≤ P [b + hb ( inf
α∈[0,1]

b′j(α)) − hg ≤ b̂j(hb)]

≤ P[b + hg < b̂j(hb)],
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where h̃ ∈ [0, hb] and the last inequality follows from hb/hg → +∞ as N → +∞

(Assumption 3). On the other hand, we already know from the previous item that

the left hand side converges to one, hence P[b + hg < b̂j(hb)] → 1. Symmetrically,

it can be shown that P[b̂j(1 − hb) < b̄j − hg] → 1, and as a result, b + hg < b̂j(hb) ≤

b̂j(1 − hb) < b̄j − hg w.p.a.1.

8. Recall that g(⋅∣ij, x) is bounded away from zero, so from items 4 and 7, it

follows immediately that g[b̂j(⋅)∣ij, x] is bounded away from zero on [hb,1 − hb]

w.p.a.1.

9. By standard arguments; see [CGP11].

10. From items 4, 7, and 9 above.
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CHAPTER 2

On Tacit Collusion among Asymmetric Firms in

Bertrand Competition

2.1 Introduction

The model of repeated Bertrand competition explains how firms may be able to

collude and sustain a high price even when they produce identical goods. Thus it

resolves so called “Bertrand paradox,” which would arise in one-shot interaction,

that firms lose any monopoly power and make no profit as soon as two firms are

present in the market; see for example, [Tir88]. Since it is a simple and very

convenient model, it has been used in numerous applied works.1

However, we still do not fully understand when and how collusion can be

sustained except for the very special case where firms are symmetric. This as-

sumption of symmetric firms is of course very strong and unrealistic; firms in

general differ in various dimensions. What we think is particularly strong is the

assumption of equal discounting. There are at least two reason to believe that

future profit is discounted differently by different firms. First, some firms may

be subject to a less favorable interest rate than others due to some kind of credit

market imperfection. Second, even if the time preference is the same across firms,

the time preferences of the managers who run those firms can be different. Some

manager may discount future heavily if she expects to retire or be fired soon.

1There are many other ways to resolve “Bertrand paradox” such as introducing capacity
constraints or differentiated demands.
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Some manager’s preference may be more in line with the preference of the firm if

she may own more stocks (and stock options) of the firm.

The goal of this paper is to understand the nature of collusion in the repeated

Bertrand competition model when firms are asymmetric, especially when different

firms discount future profits in different way.2

We have two main results. First we identify the critical level of discount factor

such that a collusive outcome can be sustained if and only if the average discount

factor within the lowest cost firms is above the critical level. More generally, we

show that the necessary and sufficient condition for sustaining a collusion at a

certain price (or more) is that the average discount factor of all the firms whose

marginal cost is below the price must be larger than (n′ − 1)/n′, where n′ is the

number of such firms. A more patient firm is willing to give up more market

shares to more impatient firms, whose incentive constraints are then relaxed. So

the distribution of discounting rates matters in general. In our simple setting

with homogeneous good, the mean of discounting rates among colluding firms

determines the possibility of collusion.

Our second result is a characterization of all efficient (profit-maximizing) col-

lusive equilibria when firms differ only in their discounting rates. In efficient equi-

lbria, more impatient firms gain a larger share of the market at an earlier stage

and more patient firms gain a larger share at a later stage. Such an intertem-

poral substitution of the market share is subjective to the incentive constraint:

we cannot assign 0% share forever even to the most impatient firm. Hence the

equilibrium outcome is not the first best.

Our characterization provides a totally new picture of collusion, which is radi-

cally different from the one among symmetric firms. First, the equilibrium market

2We assume that heterogeneous discounting rates are given exogenously. Of course, it would
be interesting to think about a model in which they are endogenously determined for a variety
of reasons. We think that our model with fixed heterogeneous discounting rates would open a
possibility of building such a model.
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share in any efficient collusive equilibrium changes over time. More specifically,

the market share dynamics of each firm can be described by three phases. In

the first phase, a firm has no share of the market, leaving the market to more

impatient firms. In the second phase, the firm enters the market and gains all the

rest after leaving more impatient firms the minimum amount of stationary market

share, which correspond to the worst stationary collusive equilibrium market share

for them. The final phase starts when a more patient firm enters the market. In

the final phase, the firm’s marker share drops to the level that corresponds to its

worst stationary collusive equilibrium market share and stays there forever.

Secondly, our results deliver the unique prediction in the long run. As de-

scribed above, the equilibrium market share for each firm, except for the most pa-

tient firm, converges to its worst stationary collusive equilibrium market share in

any efficient collusive equilibrium. More precisely, every efficient collusive equilib-

rium converges to the unique stationary collusive equilibrium within finite time.3

We know that, with symmetric firms, there are many efficient stationary equi-

libria with different market shares because how to share the market is irrelevant

for efficiency. With asymmetric discounting, however, efficiency imposes a sharp

restriction on how the market should be allocated intertemporally. As a conse-

quence, even though there are many efficient equilibria, the long run market share

must be the same across all efficient equilibria.

From a more theoretical perspective, our results deliver new insights into the

theory of repeated games with differential discounting. As reviewed briefly next,

the major results for repeated games with differential discounting are restricted

to asymptotic results (i.e. firms are infinitely patient) and the two-player case. In

our setting, we characterize all the efficient equilibria with n players for a fixed

discount factor, possibly due to some special structure of Bertrand competition

3The time to reach the efficient stationary collusive equilibrium is bounded across all efficient
collusive equilibria for a given profile of discounting rates.
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game.

2.1.1 Related Literature

It is not without reason that previous works have focused on the symmetric model.

First, there is the issue of equilibrium selection as mentioned. There are always

many equilibria - hence there is always the issue of equilibrium selection - in re-

peated games. The model of dynamic Bertrand competition is no exception. For

symmetric models, it might make sense to focus on the symmetric (and efficient)

equilibrium, possibly as a focal point. However, it is not clear which equilibrium

would be a focal point when firms are asymmetric. Secondly, the theory of re-

peated games with differential discounting is still at its development stage. For

these reasons, there are not many works that study collusion among heteroge-

neous firms. In our view, this fact limits the scope of applications of the repeated

Bertrand competition model.

One notable exception is [Har89]. It shows that a stationary collusive equi-

librium can be sustained with differential discounting if and only if the average

discount factor exceeds some critical level. Our first result builds and improves on

this result. We provide a more complete characterization regarding the possibility

of collusion by considering all equilibria including nonstationary ones.4 Clearly

it is important to consider nonstationary equilibria because almost all stationary

equilibria are not efficient with differential discounting as our second result shows.

Another difference between our paper and [Har89] is that we obtain the unique

equilibrium in the long run. To cope with the issue of multiple stationary equi-

libria, [Har89] uses a bargaining solution to select one equilibrium. On the other

hand, we show that the long run equilibrium behavior is the same across all effi-

4Since a collusive outcome can be sustained by a stationary equilibrium when the average
discount factor exceeds the critical level, the crucial step for our result is to show that no
nonstationary collusive equilibrium exists when the average discount factor is below the same
critical level.
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cient equilibria. Thus we do not need to rely on any equilibrium selection criterion

other than efficiency as long as we are concerned with the long-run outcome.

The seminal contribution in the theory of repeated game with differential dis-

counting is [LP99]. It studies a general two-player repeated game with differential

discounting and shows that the set of feasible payoffs is larger than the convex

hull of the underlying stage game payoffs because players can mutually benefit

from trading payoffs across time. They also characterize the limit equilibrium

payoff set as discount factors go to 1 keeping their ratio fixed. In particular, they

show that there is some individually rational and feasible payoff that cannot be

sustained in equilibrium no matter how patient the players are.

There are some recent contributions in the theory of repeated games with

differential discounting. [Che08] and [GLT11] study stage games with one dimen-

sional payoffs. [Sug13] proves a folk theorem for repeated games with imperfect

monitoring and with differential discounting. [FS09] studies repeated prisoner’s

dilemma games with differential discounting and with side payments. This paper

seems to be particularly related to our paper because we use market share as a

way to transfer utility.

This paper is organized as follows. We describe the model in detail in the

next section. In section 2.3, we prove our first result regarding the critical average

discount factor. In section 2.4, we characterize efficient equilibria. We conclude

and discuss potential extensions of our results in the last section. Most of the

proofs are relegated to the appendix.

2.2 Model of Repeated Bertrand Competition with Dif-

ferential Discounting

This section describes the basic structure of our model, an infinitely repeated

Bertrand game. In what follows, we first define the stage game, then construct
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the infinitely repeated game.

The main features of the stage game are the followings. The players are n ≥ 2

firms represented by the numbers I = {1,2, ..., n}. They offer a homogeneous

product whose market demand is characterized by continuous function D ∶ R+ →

R+. Each firm has a linear cost function Ci ∶ R+ → R+ given by Ci(qi) = ciqi,

where i ∈ I, ci ≥ 0 is the marginal cost, and qi indicates the quantity produced by

firm i. We suppose that c1 ≤ c2 ≤ .... ≤ cn without loss of generality and denote

I∗ = {i ∈ I ∶ ci = c1} and n∗ = #(I∗). We assume that n∗ ≥ 2. Hence, in one-shot

Bertrand competition, the market price would be c1 and no firm would make any

profit. It is assumed that the demand function satisfies the following regularity

conditions: D is decreasing on (0,∞); there exists the monopoly price for each

firm: pmi > c for firm i that maximizes p (D(p) − ci). We assume that the marginal

costs are not very different: even the highest cost cn is less than pm1 . This implies

that pmi > cj for any i, j ∈ I.5

At the beginning of a stage game, firms make price decisions and suggest how

to allocate output quotas in case of a draw in prices. If a firm charges a price that

is higher than a price charged by another firm, then the firm’s market share is

0. The firm that charges the lowest price must produce enough output to satisfy

the market demand. In case there are more than one firm that charges the lowest

price, the market is allocated among those firms according to their suggestions.

Formally, firm i’s pure action is given by a 2-tuple ai = (pi, ri) ∈ Ai, where pi is

the price choice, ri reflects firm i’s request of market share in case of tie. Hence

Ai = R+ × [0,1] is the set of pure actions available for player i. The set of pure

action profiles is A = ∏i∈I Ai. Firm i’s profit function πi ∶ A → R can be written

5If the marginal of some firm is too high, it is likely that the presence of such a firm is
irrelevant for our analysis.
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as

πi[a] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D(pi)(pi − ci) if pi < p∗−i,
ri
R∗D(pi)(pi − ci) if pi = p∗−i and R∗ ≠ 0,

1
∣Î∣D(pi)(pi − ci) if pi = p∗−i and R∗ = 0,

0 if pi > p∗−i,

where p∗−i = minj≠i pj, Î = {i ∈ I ∶ pi = minj∈I pj}, and R∗ = ∑j∈Î rj.

Given the stage game described above, we now define the infinitely repeated

game. Basically, we adopt a discrete time model in which the previous stage game

is played in each of the periods t ∈ N. The distinguishing feature of our dynamic

Bertrand competition model is that the players have different discount factors

given by δi ∈ (0,1), i ∈ I.

The set of possible histories in period t is given byH t = At−1, whereA0 indicates

the empty set, and At denotes the t-fold product of A. A period t-history is thus a

list of t−1 action profiles. We suppose perfect monitoring throughout, i.e., at the

end of each period, all players observe the action profile chosen in all the previous

periods. Setting H = ∪t∈NH t, a pure strategy for firm i is defined as a mapping

σi ∶H → Ai, and consequently, a strategy profile is given by σ = (σi)i∈I .

Each strategy profile σ induces an infinite sequence of action profiles a(σ) =

(at(σ))t∈N ∈ A∞, where at(σ) ∈ A denotes the action profile induced by σ in period

t. We call the sequence a(σ) outcome path (or more simply, outcome) generated

by a strategy profile σ. Finally, for a given strategy profile σ, and its corresponding

outcome path a(σ) = (at(σ))t∈N, the time-average repeated game payoff for firm i

at time t is

Ui,t[a(σ)] = (1 − δi)
∞
∑
τ=t
δτ−ti πi[aτ(σ)].

In the following sections, we will just focus on subgame perfect equilibrium solu-

tions, and we will limit our attention to pure strategy equilibria.
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2.3 Critical Average Discount Factor for Collusion

In this section, we derive a necessary and sufficient condition to sustain a collusive

equilibrium outcome. We say that the firms are colluding when there is at least

one period in which the equilibrium outcome is not a competitive one, i.e. when

there is at least one firm that makes positive profit in some period. We formalize

this as follows.

Definition 7. An outcome a = (at)t∈N is considered a collusive outcome if

and only if there exists t′ ∈ N such that πi(at′) > 0 for some i ∈ I. A collusive

equilibrium is a subgame perfect equilibrium that generates a collusive outcome.

Then we can obtain the following sharp characterization, which says that a

collusive outcome can be sustained if and only if the average discount factor

among the lowest cost firms is above some threshold.

Theorem 2.3.1. There exists a collusive equilibrium if and only if

∑i∈I∗ δi
n∗

≥ n∗ − 1

n∗
.

Proof. See the appendix.

When the firms are symmetric, there exists a collusive equilibrium if and only

if δ ≥ n−1
n . Thus our result is a substantial generalization of this well-known result

to the case with heterogeneous discounting and costs.

It follows from the result in [Har89] that n∗−1
n∗

is the critical threshold to support

a collusive outcome by a stationary collusive equilibrium, i.e. an equilibrium in

which each firm keeps a certain level of market share every period and the price is

always the same. Take any price p strictly between the minimum cost c∗ = mini∈I ci
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and the next smallest cost. There exists a stationary collusive equilibrium by the

lowest cost firms in which the market price is always p and firm i(∈ I∗) gains

share αi ∈ [0,1] of the joint profit π in every period if the following inequalities

are satisfied for all i ∈ I∗.

(1 − δi)π ≤ αiπ

By dividing both sides by π and summing up these inequalities across the firms,

it can be shown that such αi, i ∈ I∗ exists if and only if the average discount factor

among the lowest cost firms is larger than or equal to n∗−1
n∗ .

A more difficult part of the proof is to show that collusion is impossible when

the average discount factor is less than n∗−1
n∗ , even if nonstationary equilibria are

considered. In nonstationary equilibrium, it is possible to transfer market shares

over time to generate larger continuation profits in the future, which may enable

the firms to sustain collusion. It turns out that such transfer does not work. To

improve efficiency, it is necessary to let less patient firms to gain more market

shares first and let more patient firms to gain more shares later. Intuitively, such

an arrangement is in conflict with less patient firms’ incentive constraints in later

periods.

Here is a sketch of our formal proof. We assume that the marginal cost is the

same across all firms to simplify our exposition. Firm i’s incentive constraint in

period t is given by the equality

Ui,t = (1 − δi)πi (at) + δiUi,t+1 = (1 − δi)π∗ (at) + ηi,t

where at is the action profile in period t, π∗ (at) = ∑i πi (at) is the joint profit in

period t, Ui,t+1 is firm i’s continuation profit from period t + 1 on, and ηi,t ≥ 0 is

a slack variable (firm i’s incentive constraint is binding in period t if and only

if ηi,t = 0). Note that each firm gains the same equilibrium join profit by price-

cutting because the cost is assumed to be the same. Since this equality holds in

every period, we can replace Ui,t+1 with (1 − δi)π∗ (at+1) + ηi,t+1 and divide both

80



sides by 1 − δi to obtain

πi (at) + δiπ∗ (at+1) = π∗ (at) + ηi,t − δiηi,t+1

1 − δi
.

Summing up these equalities across the firms, we have the following equation

regarding π∗ (at) ∶

π∗ (at+1) = n − 1

∑i∈I δi
π∗ (at) + 1

∑i∈I δi
∑
i∈I
ui,t,

where ui,t = ηi,t−δiηi,t+1
1−δi .

The coefficient of π∗ (at) is larger than 1 if and only if the average discount

factor is less than n−1
n . In fact, we can show that, when the joint profit is strictly

positive in some period, the sequence π∗ (at) , t = 1,2, .. must diverge to infinity,

which is a contradiction. To prove this formally, however, we need to examine

carefully the behavior of ∑i∈I ui,t, t = 1,2,3, .....

A collusive equilibrium we construct uses a price between the lowest cost and

the second lowest cost, so it is not very profitable when this difference between

them is small. In such a case, the lowest cost firms would prefer to include the

second lowest cost firm(s) in their coalition to raise the equilibrium price. Our

result can be easily generalized to accommodate such possibility. Let p be any

price. Let I(p) be the set of firms such that ci ≤ p if and only if i ∈ I(p) and

∣I(p)∣ = n∗(p). Call a subgame perfect equilibrium p-collusive equilibrium if the

equilibrium price is always at least as large as p. We can prove the following

generalization of the above result.

Theorem 2.3.2. For any 0 < p ≤ pm, there exists a p-collusive equilibrium if and

only if
∑i∈I(p)∗ δi
n∗(p)

≥ n∗(p) − 1

n∗(p)
.

The proof is almost the same, hence omitted. We remark that when I∗ = 1, i.e.

there is the unique lowest cost firm, Theorem 2 still holds. But we need to rely on
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a less natural punishment. The assumption I∗ ≥ 2 guarantees that any deviation

from a collusive outcome is punished by Nash reversion with 0 profit forever. If

I∗ = 1, the 0 profit equilibrium requires that there are at least two firms charging

c1, but firm 1 serves the whole market (r1 = 1, ri = 0 for all i ≠ 1).

2.4 Characterization of Efficient Collusive Equilibria

In this section, we characterize efficient collusive equilibria with differential dis-

counting rates. We assume that the marginal cost is the same across firms and

normalize it to 0. Then the monopoly price can be determined without any am-

biguity. Let pm be the monopoly price and πm be the monopoly profit. We also

assume that 0 < δ1 < δ2 < .... < δn−1 < δn < 1 for the sake of simplicity. The result

can be easily extended to the case where the discounting factors of some firms are

the same.

Let πi,t, i = 1, ..., n, t ∈ N be a sequence of profits associated with any collu-

sive equilibrium. By definition, they satisfy the following incentive compatibility

condition in every period:

(1 − δi)πt ≤ Ui,t

where Ui,t is firm i’s equilibrium continuation profit in the beginning of period t

and πt = ∑i πi,t. On the other hand, it is clear that any sequence of profit profiles

that satisfy those conditions are generated by a collusive equilibrium. Hence we

use such a sequence of profit profiles to describe any collusive equilibrium.

A collusive equilibrium is efficient if there is no subgame perfect equilibrium

that makes every firm better off weakly and some strictly. Observe that πt is

always in (0, πm] for any efficient collusive equilibrium. πt cannot exceed the

monopoly profit by definition. If πt < 0, then we can construct a more efficient

equilibrium by just dropping period t.

We know that there exists a stationary collusive equilibrium with monopoly

82



price if and only if ∑
n
i=1 δi
n ≥ n−1

n . When the average discount factor is strictly larger

than n−1
n , there is a range of market shares that can be supported by stationary

collusive equilibrium. Let π̂i be firm i’s per period profit in the worst stationary

collusive equilibrium profit for firm i. Note that π̂i = (1 − δi)πm by the incentive

compatibility condition. We assume ∑
n
i=1 δi
n > n−1

n for the rest of this section.

We first prove that, in any efficient collusive equilibrium, the joint profit must

be strictly increasing until it reaches the monopoly profit and stays there forever.

We start with the following lemma.

Lemma 2.4.1. Consider any efficient collusive equilibrium where, for some t ≥ 1,

πt+1 < πm and there is a firm i′ such that Ui′,t+1 > (1− δi′)πt+1 and πi′,t+1 > 0. Then

πt+1 ≥ πt
δn

.

Proof. Define Ĩt+1 = {i ∈ I ∶ Ui,t+1 = (1 − δi)πt+1}, which is not empty (otherwise

the joint profit can be increased to improve efficiency). Suppose that πt+1 < πt
δn

.

Then πi,t ≥ πt − δiπt+1 ≥ πt − δnπt+1 > 0 for all i ∈ Ĩt+1. Consequently, the profits

can be perturbed as follows: π′i,t = πi,t − δiε and π′i,t+1 = πi,t+1 + ε, for i ∈ Ĩt+1;

whereas π′i′,t = πi′,t+∑i∈Ĩt+1 δiε and π′i′,t+1 = πi′,t+1−(∣Ĩt+1∣−1)ε. Since πt+1 < πm and

πi′,t+1 > 0, this new allocation is feasible and incentive compatible for ε > 0 small

enough. Moreover, as ∑i∈Ĩt+1 δi > ∣Ĩt+1∣−1, it also Pareto-dominates the initial one.

This is a contradiction.

The next theorem proves a strong monotonicity property for efficient collusive

equilibria.

Theorem 2.4.1. For any efficient collusive equilibrium, there exists T such that

πt < πt+1 for t = 1, ..., T − 1 and πt = πm for any t ≥ T . Furthermore, this T is

bounded across all efficient collusive equilibria.

Proof. Take any efficient collusive equilibrium. Let πt ∈ (0, πm] be a joint profit

in any period t. We assume that πt > δnπt+1 and πt+1 < πm, and derive a

83



contradiction. If those two conditions are satisfied, then it must be the case

that πt+1 = ∑i∈Ĩt+1 πi,t+1 by Lemma 2.4.1. Therefore, there is j ∈ Ĩt+1 such that

πj,t+1 > (1 − δj)πt+1, otherwise,

πt+1 = ∑
i∈Ĩt+1

πi,t+1 ≤ πt+1 ∑
i∈Ĩt+1

(1 − δi) = πt+1(∣Ĩt+1∣ − ∑
i∈Ĩt+1

δi),

but ∑i∈Ĩt+1 δi > ∣Ĩt+1∣ − 1.

As a result, (1 − δj)πt+2 ≤ Uj,t+2 < (1 − δj)πt+1. The first inequality is derived

from the incentive constraint in period t+2, whereas the second one from the fact

that πj,t+1 > (1−δj)πt+1 and Uj,t+1 = (1−δj)πt+1. Then, πt+1 > πt+2. We can proceed

in a similar manner to obtain πt+k > πt+k+1 for every k ≥ 1, which contradicts the

efficiency assumption. Hence it must be the case that either πt ≤ δnπt+1 or and

πt+1 = πm. Clearly this implies that there is T such that πt < πt+1 for t = 1, ..., T −1

and πt = πm for any t ≥ T .

Finally we prove that this T is bounded across all efficient equilibria. For any

given T , each firm’s profit per period is at most δT
′−1

n πm for the first T −T ′ periods

for any T ′ ≤ T . If T is large, then firm i’s payoff is less than π̂. Such payoff profile

is Pareto-dominated by any stationary collusive equilibrium.

Next we provide an (almost) complete characterization of efficient collusive

equilibria. Consider any efficient collusive equilibrium where firm i’s equilibrium

profit exceeds π̂i. Then every firm’s incentive constraint is not binding in the

first period, hence the equilibrium joint profit must be πm in the first period.

Given our monotonicity result, this implies that the equilibrium price is always

pm for this class of efficient collusive equilibria. We call such collusive equilibrium

pm-efficient collusive equilibrium.

The next theorem characterizes the structure of pm-efficient collusive equilib-

rium. Observe that this characterization is a complete characterization of the

asymptotic behavior of all efficient collusive equilibria, because every efficient col-
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lusive equilibrium converges to some pm-efficient collusive equilibrium eventually

within finite time by our previous result.

In pm-efficient collusive equilibrium, more patient firms “lend” the market

share initially to more impatient firms. However, the ability of impatient firms to

“pay back” the market share is limited by the requirement that each firm’s profit

cannot be lower than its worst stationary equilibrium profit π̂i.

Theorem 2.4.2. Every pm-efficient collusive equilibrium has the following struc-

ture: there exists t1 ≤ t2 ≤ ...,≤ tn−1 such that, for every i,

1. πi,t = 0 for every t < ti−1

2. πi,t ∈ [0, πm −
i−1

∑
h=1

π̂h] for t = ti−1

3. πi,t = πm −
i−1

∑
h=1

π̂h for t = ti−1 + 1, ...., ti − 1

4. πi,t ∈ [π̂i, πm −
i−1

∑
h=1

π̂h] for t = ti

5. πi,t = π̂i for t > ti

6. Incentive Constraints in the first period

δti−1−1
i [(1 − δi)πi,ti−1 + (δi − δti−ti−1i ){πm −

i−1

∑
h=1

π̂h}]

+δti−1−1
i [(1 − δi) δti−ti−1i π̂i,ti + δti−ti−1+1

i π̂i]

≥ (1 − δi)πm

Furthermore, if there exist (t1, t2, ..., tn−1) and a sequence of profit profiles πi,t that

satisfy the above conditions, then there exists a corresponding pm-efficient collusive

equilibrium that generates them.

Proof. See the appendix.

In words, every pm-efficient collusive equilibrium has the following properties:
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● From period 1 to period t1 − 1, firm 1 gets the whole share.

● In period t1, firm 1 and 2 shares the market where πi,t1 ≥ π̂1. After this

period, firm 1’s share is going to be always π̂1.

● From period t1 + 1 to period t2 − 1, firm 2 gets πm − π̂1.

● In period t2, firm 2 and 3 shares the market where πi,t2 ≥ π̂2. After this

period, firm 2’s share is going to be always π̂2.

● From period t2 + 1 to period t3 − 1, firm 3 gets πm − π̂1 − π̂2.

● ...

● After period tn−1, firm n gets πm −
n−1

∑
h=1

π̂h and firm h < n gets π̂h forever.

There are two critical periods for firm i: ti−1 and ti. Up to ti−1, firm i’s market

share is 0. The periods between ti−1 and ti is the pay back time when firm i gets

all the market share subject to the constraint that each less patient firm h < i

gains π̂h. After ti, firm i’s profit is reduced to π̂i and stay there forever. It may

be the case that there is some overlap: tk = tk+1 =, ...,= tm = t′ for some m > k.

Note that πi,t′ ≥ π̂i for i = tk, tk+1, ..., tm−1 in such a case.

Several comments are noteworthy. First, one implication of our theorem is

that there exists the unique efficient stationary collusive equilibrium, to which

every efficient collusive equilibrium converges. This is the stationary collusive

equilibrium where the price is pm, firm i’s market share is π̂i for i = 1, ..., n−1 and

firm n’s market share is πm − ∑i=1,...,n−1 π̂i in every period, which corresponds to

the worst stationary collusive equilibrium for firm i = 1, ..., n−1 (and the best one

for firm n). All the other efficient collusive equilibria must be nonstationary.

Second, our result delivers the unique prediction in the long run without any

equilibrium selection. This is not the case if we focus on stationary collusive

equilibria. Third, when δi = δi+1 for some i, their market share is characterized by

86



similar conditions: their market share is 0 before ti−1, πi,t = πi−1,t = πi(= πi+1) after

ti, and can be somewhat arbitrary between ti and ti−1 (but we can assume that

their market shares are constant within these periods without loss of generality).

2.5 Conclusion and Discussion

In the context of Bertrand price competition in an infinitely repeated game, this

paper studies collusive behavior among n firms with asymmetric discount factors

and asymmetric marginal costs.

We find that it is possible to sustain a collusion if and only if the average

discount factor of the lowest cost firm is at least as large as (n∗ − 1)/n∗, where n∗

is the number of the lowest cost firms.

This paper also studies efficient collusive equilibria among n firms with differ-

ential discounting when the marginal cost is the same across firms. We succeed

in characterizing the structure of efficient collusive equilibria. More specifically,

we show the followings results:

● In any efficient collusive equilibrium, the joint profit must be strictly in-

creasing over time until it reaches the monopoly profit level within finite

time and stay there forever.

● Every efficient collusive equilibrium where no firm’s payoff is not too low

must be a collusive equilibrium with the monopoly price in every period

(“pm-efficient collusive equilibrium”). In every pm-efficient collusive equilib-

rium, a firm’s market share is 0 initially, reaches a peak, then converges to

the market share that corresponds to the worst stationary collusive equilib-

rium with the monopoly price (except for the most patient firm).

● Every efficient collusive equilibrium converges to the unique efficient sta-

tionary collusive equilibrium in the long run, where the equilibrium price is
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pm, firm i’s profit per period is π̂i for i = 1, ..., n − 1 and 1 −∑i=1,...,n−1 π̂i for

i = n in every period.

2.A Appendix

2.A.1 Proof of Theorem 2.3.1

We already discussed that there exists a collusive stationary subgame perfect

equilibrium when the inequality is satisfied. Thus we just need to show that there

is no collusive subgame perfect equilibrium when
∑i∈I∗ δi
n∗

< n∗−1
n∗

.

By contradiction, begin by assuming that ã = (ãt)t∈N is a collusive equilibrium

outcome, and without loss of generality, assume that π∗(ã1) = ∑i∈I π(ã1) > 0.

Note first that for each i ∈ I∗, there exists a bounded nonnegative sequence

{η(t)i ∶ t ∈ N} defined by η
(t)
i = Ui,t(ã) − (1 − δi)π∗(ãt). Moreover, since Ui,t(ã) =

(1 − δi)πi(ãt) + δiUi,t(ã), we have that

(1 − δi)πi(ãt) + δiUi,t(ã) = (1 − δi)π∗(ãt) + η(t)i ,

and therefore

(1 − δi)πi(ãt) + δi[(1 − δi)π∗(ãt+1) + η(t+1)
i ] = (1 − δi)π∗(ãt) + η(t)i ,

or equivalently,

πi(ãt) =
⎡⎢⎢⎢⎢⎣
π∗(ãt) +

η
(t)
i

(1 − δi)

⎤⎥⎥⎥⎥⎦
− δi

⎡⎢⎢⎢⎢⎣
π∗(ãt+1) + η

(t+1)
i

(1 − δi)

⎤⎥⎥⎥⎥⎦
.

Adding up this inequality across i ∈ I∗ and denoting s∗ = ∑i∈I∗ δi, we obtain

π∗(ãt) = n∗π∗(ãt) − s∗π∗(ãt+1) + ∑
i∈I∗

η
(t)
i − δiη(t+1)

i

(1 − δi)
,

or more shortly,

π∗(ãt+1) = γπ∗(ãt) +
1

s∗
∑
i∈I∗

ui,t,
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where γ = (n∗ − 1)/s∗ and ui,t = (η(t)i − δiη(t+1)
i )/(1 − δi).

Before proceeding, it is useful to note that γ > 1 and therefore

π∗(ãt+1) ≥ π∗(ãt) +
1

s∗
∑
i∈I∗

ui,t

≥ π∗(ã1) + 1

s∗
∑
i∈I∗

t

∑
j=1

ui,j,

for every t ∈ N.

Now consider the series ∑tj=1 ui,j for i ∈ I∗, and observe that it maybe written

as

t

∑
j=1

ui,j =
η
(1)
i

(1 − δi)
+

t

∑
j=2

η
(j)
i − δiη

(t+1)
i

(1 − δi)
.

Since the equilibrium profit is bounded above for each firm by assumption, the

equilibrium profit is bounded below as well for each firm; otherwise the average

discounted profit is negative. This implies that there exists M∗ such that 0 ≤ η(j)i ≤

M∗ for all j ∈ N and i ∈ I∗. Observe that this implies that the series ∑tj=2 η
(j)
i must

be either unbounded above or converging to a finite (nonnegative) real number.

Suppose first that ∑∞
j=2 η

(j)
i is unbounded above for some i ∈ I∗. On the one

hand, we know that ∑i∈I∗(∑
t
j=1 ui,t) is unbounded above, too. On the other hand,

we have that π∗(ãt+1) ≥ π∗(ã1) + (1/s∗)∑i∈I∗∑
t
j=1 ui,t, which is a contradiction

because the sequence {π∗(ãt) ∶ i ∈ N} is bounded above.

Suppose now that ∑∞
j=2 η

(j)
i is finite for all i ∈ I∗. Then we have that η

(t)
i as

well as ui,t converge to zero for all i ∈ I∗. If η
(j)
i = 0 for all i ∈ I∗ and j ∈ N, it

follows immediately that ∑i∈I∗(∑
t
j=1 ui,t) ≥ 0. On the other hand, if η

(ti)
i = ci > 0

for some i ∈ I∗ and ti ∈ N, there exists Ti > ti such that ∣η(t)i ∣ < ci(1 − δi)/(2δi) for

all t ≥ Ti. As a result, we have that

t

∑
j=1

ui,j ≥
η
(1)
i

(1 − δi)
+ ci −

ci
2
,

when t > Ti. As I∗ is a finite set, there is T ∈ N (independent of i) such that
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∑i∈I∗(∑
t
j=1 ui,t) ≥ 0 for all t ≥ T , and consequently, π∗(ãt) ≥ π∗(ã1) as long as

t ≥ T .

Before proceeding, observe first that there is t̃ ∈ N such that γ t̃π∗(a1) > 2M .

Secondly, since I∗ is a finite set and ui,t converge to zero for each i ∈ I∗, there

exists T̃ ∈ N (independent of i) such that T̃ > T and ∣ui,t∣ < (s∗M∗)/(n∗t̃γ t̃) for all

i ∈ I∗ and t ≥ T̃ .

The following inequality is a straightforward implication:

π∗(ãT̃+t) = γπ∗(ãT̃+t−1) + 1

s∗
∑
i∈I∗

ui,T̃+t−1

≥ γπ∗(ãT̃+t−1) − M

t̃γ t̃
,

and by induction, we can prove that

π∗(ãT̃+t) ≥ γtπ∗(ãT̃ ) −
t−1

∑
j=0

M∗

t̃γ t̃−j
,

for every t ∈ N. Finally, after replacing t = t̃ in the previous inequality, we obtain

the desired result:

π∗(ãT̃+t̃) ≥ γ t̃π∗(ãT̃ ) −
t̃−1

∑
j=0

M∗

t̃γ t̃−j

> γ t̃π∗(ã1) −
t̃−1

∑
j=0

M∗

t̃

> 2M∗ −M∗.

The second inequality follows by π∗(ãT̃ ) ≥ π∗(ã1) and γ > 1, whereas the last one

by γ t̃π∗(ã1) > 2M∗. And obviously, this is a contradiction because π∗(ãT̃+t̃) ≤M∗.

2.A.2 Proof of Theorem 2.4.2

We prove the theorem through a series of lemmata.

Lemma 2.A.1. For any efficient subgame perfect equilibrium, if firm i’s incentive

constraint is not binding in period t > 1, then πj,t−1 = 0 for every j > i.
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Proof. Suppose not, i.e. there exists some monopoly-price efficient SPE where firm

i’s incentive constraint is not binding in period t > 1 and πj,t−1 > 0 for some j > i.

Then there is a period t′ > t such that firm i’s incentive constraint is not binding

for t, t + 1, ..., t′ and πi,t′ > 0. We can find such t′, otherwise πi,t+1 = πi,t+2 = .... = 0

(if πi,t+1 = 0, then Ui,t+2 > π̂i hence i’s incentive constraint in period t + 2 is not

binding. If πi,t+2 = 0, then Ui,t+2...). Such a path is not sustainable.

Now perturb the profit of firm i and j as follows.

π′i,t = πi,t + ε,

π′j,t = πj,t − ε,

π′i,t′ = πi,t′ − ε′,

π′j,t′ = πj,t′ + ε′,

We are basically exchanging firm j’s market share in period t with firm i’s market

share in period t′,keeping every other firm’s profit at the same level. Since δi < δj,

πj,t > 0 and πi,t′ > 0, we can pick ε, ε′ > 0 so that firm j’s continuation payoff in

every period from t to t′ increases and firm i’s continuation payoff in period t

increases. So this allocation Pareto-dominates the original SPE allocation. Firm

j’s incentive constraints are not affected at all. Firm i’s incentive constraints in

period t is satisfied by construction. Finally, we can take ε, ε′ > 0 small enough so

that firm i’s incentive constraint from period t+ 1 to t′ is still not binding. So we

can construct a more efficient SPE in this case, a contradiction.

Lemma 2.A.2. For any monopoly-price efficient subgame perfect equilibrium, if

πi,t < π̂i, then πj,t = 0 for every j > i.

Proof. If πi,t < π̂i, then Ui,t+1 > π̂i. Hence firm i’s incentive constraint is not binding

in period t + 1. Then πj,t = 0 for every j > i by Lemma 1.

Lemma 2.A.3. For any efficient subgame perfect equilibrium with π > π̂, (1)π1,t ≥
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π̂1 for every t ≥ 1 and (2) π1,t′+k = π̂1 for any k = 0,1, ... if firm 1’s incentive

constraint is binding in period t′.

Proof. If π1,t < π̂1 for any t, then πj,t = 0 for every j = 2,3, ..., n by Lemma 2. This

contradicts to ∑
i
πi,t = πm.

Firm 1’s incentive constraint is binding in period t′ if and only if U1,t′ = π̂1.

Clearly this holds if and only if π1,t′+k = π̂1 for k = 0,1,2.....

By induction, a similar property holds for every firm.

Lemma 2.A.4. For any efficient subgame perfect equilibrium with π > π̂, suppose

that πh,t+k = π̂h for every k = 0,1,2, ... and every h = 1,2, ..., i for some t and some

i ∈ I. Then (1) πi+1,t+k ≥ π̂i+1 for every k = 0,1,2, .... and (2) πi+1,t′+k = π̂i+1 for

every k = 0,1,2... if firm i + 1’s incentive constraint is binding in period t′ ≥ t.

Proof. Suppose that πi+1,t+k < π̂i+1 for any k. Then Ui+1,t+k+1 > π̂i+1. Hence firm

i + 1’s incentive constraint is not binding in period t + k + 1. Then πj,t+k+1 = 0 for

every j > i + 1 by Lemma 1. However, ∑
h
πh,t+k+1 =

i+1

∑
h=1

πh,t+k+1 =
i

∑
h=1

π̂h + πi+1,t+k+1 <
i+1

∑
h=1

π̂h ≤ π∗, which is a contradiction. This proves (1).

As for (2), firm i + 1’s incentive constraint is binding in period t′ ≥ t if and

only if Ui,t′ = π̂i. By Lemma 4, this holds if and only if πi+1,t′+k = π̂i+1 for every

k = 0,1,2...

Now we can prove Theorem 2.4.2.

Proof. In period 1, we have π1 such that (1)
n

∑
h=1

πh,1 = πm and (2) πh,1 ≥ π̂h for

h = 1,2, ..., h1 − 1, πh1,1 ∈ [0, πm −
h1−1

∑
h=1

π̂h] , and πh,1 = 0 for h > h1 for some h1 ≥ 1

by.Lemma 2.
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By Lemma 1, the incentive constraint must be binding for h = 1,2, ..., h1 − 1 in

period 2. By Lemma 3 and Lemma 4, πh,1+k = π̂h for h = 1,2, ..., h1 − 1 for the rest

of the game (k = 1,2, ...).

In period 2, we have π2 such that (1)
n

∑
h=1

πh,2 = πm, (2) πh,2 = π̂h for h =

1,2, ..., h1 − 1 (by the previous step), (3) πh,2 ≥ π̂h for h = h1, h1 + 1, ..., h2 − 1,

πh2,2 ∈ [0, πm −
h2−1

∑
h=1

π̂h] , and πh,2 = 0 for h > h2 for h2 for some h2 ≥ h1 by.Lemma

4.

By Lemma 1, the incentive constraint must be binding for h = h1, ..., h2 − 1

in period 3. By Lemma 3 and Lemma 4, πh,2+k = π̂h for h = h1, ..., h2 − 1 for the

rest of the game (k = 1,2, ...) and so on... This proves 1-6 in the statement of the

theorem.

On the other hand, suppose that there exist (t1, t2, ..., tn−1) and a sequence

of profit profiles πi,t that satisfy 1-6. It is clear that this corresponds to some

monopoly-price SPE. So we just show that it is an efficient equilibrium. Suppose

not. Then there exists a Pareto-superior monopoly-price efficient SPE, which of

course satisfies 1-6. Let (t̃1, t̃2, ..., t̃n−1) be the corresponding critical periods and

π̃i,t be the associated sequence of profit profiles. Since this equilibrium is more

efficient than the former one, it must be the case that either (1) t1 < t̃1 or (2)

t1 = t̃1 and π1,t1 ≤ π̃1,t1 . In either case, it must be the case that, for firm 2, either

(1) t2 < t̃2 or (2) t2 = t̃2 and π1,t2 ≤ π̃1,t2 . By induction, either (1) or (2) holds

up to firm n − 1. Then firm n’s average profit given πn,t is higher than firm n’s

average profit given π̃n,t. This is a contradiction to the assumption that the latter

equilibrium is more efficient.
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CHAPTER 3

Semiparametric Estimation of Regression

Functions with Continuous and Discrete

Covarites

3.1 Introduction

A well-known model in semiparametric econometrics is the single index model.

This model can be characterized as follows: E(y∣x) = G(x′β), where y is a scalar

dependent variable, x is a vector of explanatory variables, β is a vector of coeffi-

cients, and G is a real function. The distinguishing feature of this model is that

the conditional expectation E(y∣x) depends on x only through x′β.

A standard econometric problem is to estimate β when G(⋅) is unknown. [IL91]

and [Ich93] have proposed different estimators for β without imposing a parametric

restriction on G(⋅). These estimators may be difficult to compute because it is

required to solve nonlinear optimization problems whose objective function may

have many local minima. Nevertheless, when x is a continuous random vector, one

can avoid this problem by employing average derivative methods such as [PSS89].

In this case, the computation is simple and do not rely on iterative procedures.

Following a fully nonparametric approach, the econometric literature has fo-

cused on estimating E(y∣x) when x contains discrete regressors. [RL04]has pro-

posed a kernel smoothing method for nonparametric regression which admits con-

tinuous and categorical data; the distinguishing feature of their approach is the use
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of kernel smoothing for both the continuous and the discrete covariates. [LRW08]

uses kernel smoothing in discrete and continuous covariates to estimate treatment

effects for Swan-Ganz catherization (right heart catheterization) for critically ill

patients admitted to the intensive care unit. [LRW09] proposes an estimator to

recover the average treatment effects in the presence of mixed categorical and con-

tinuous covariates. [OLR09] considers the problem of estimating a nonparametric

regression containing discrete regressors only.

Following a semiparametric approach, [HH96] proposed an alternative non-

iterative estimator for (α,β) in the context E(y∣xc, xd) = G(xc′β +xd′α), where xc

and xd are continuous and discrete random vectors, respectively. Unfortunately,

the identification of (α,β) depends on non-trivial monotonicity conditions and

the proposed estimator also depends on them. Furthermore, this estimator does

not allow for interaction among discrete and continuous regressors, and therefore,

the scope of such estimator may be limited to a small number of applications.

This paper develops a non-iterative weighted average derivative estimator for

β in the model E(y∣xc, xd) = G(xc′β,xd). More specifically, I develop an estimator

for

δ = E [f(xc, xd)∂g(x
c, xd)

∂xc
] , (3.1)

where f(⋅, ⋅) is the joint density of (xc, xd) and g(⋅, ⋅) denotes the conditional expec-

tation of y given (xc, xd), i.e., E(y∣xc, xd) = g(xc, xd). Under standard regularity

conditions, it can be shown that

δ = −2E [y∂f(x
c, xd)

∂xc
] , (3.2)

where ∂f(xc, xd)/∂xc denotes the derivative of f(⋅, ⋅) with respect to xc. Then,

if we suppose that g(xc, xd) = G(xc′β,xd), it follows immediately that δ =

βE[f(xc, xd)G1(xc′β,xd)] where G1(⋅, ⋅) denotes the partial derivative of G(⋅, ⋅)

with respect to its first argument. Thus, it is straightforward to estimate β using

the proposed estimator for δ, and therefore, this paper focus on estimating δ.

95



In order to do so, I combine two approaches. First, I employ kernel techniques

for mixed data to estimate f(⋅, ⋅), as well as, its partial derivative ∂f(xc, xd)/∂xc.

Second, I use a standard sample analogues to estimate the expectation term

E{y[∂f(xc, xd)/∂xc]}. Combining both approaches, then I propose an estima-

tor for δ that is non-iterative,
√
N -consistent, and asymptotically normal, where

N denotes the sample size.

The paper is organized as follows. In the next section, I introduce the basic

framework. In section 3.3, I propose the estimator. In section 3.4, I study its

asymptotic properties. In section 3.5, I report Monte Carlo experiment results.

In the last section, I present the conclusions and suggest further topics for future

research.

3.2 Assumptions and Technical Background

3.2.1 The Basic Framework

We consider a model in which Y denotes a dependent variable whereas X is a

vector of independent variables. The main feature of this model is that some

components of the random vector X are discrete. Formally, we suppose that X

takes values on the set Rkc ×D, where D ⊆ Rkd is a finite set, and kc, kd ∈ N. Since

we will work with a single equation model, we assume that Y takes values on R.

In what follows, in order to distinguish between the continuous and the discrete

components of X, we use the notation X = (Xc,Xd), where Xc takes values on

Rkc and Xd on D. Moreover, (Y,X) will denote a (k + 1) × 1 random vector, with

k = kc + kd.

Before proceeding, we establish (Rkc+1 × D,M, ν) as the underlying measure

space of (Y,X). We assume that ν is a (σ-finite) product measure which can be

written as ν = νy × νc × νd, where νy a σ-finite measure over R, νc is the Lebesgue
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measure on Rkc , and νd is the counting measure over D.

The previous structure may be summarized in the following assumption.

Assumption 5. The (k + 1) × 1 random vector (Y,X) is a measurable function

defined over some probability space (Γ,G,P) and it takes values on the measure

space (Rkc+1 × D,M, ν). The distribution of (Y,X) is absolutely continuous with

respect to ν with Radon-Nikodyn derivative denoted by F .

In addition to this structural assumption, we also impose the subsequent reg-

ularity conditions on the density function and on the conditional expectation of

Y given X:

Assumption 6. Let Ωd ⊆ D be the support of Xd, let f ∶ Rkc × D → R be the

marginal density of X and f(⋅∣xd) the conditional density of Xc given Xd = xd.

For each xd ∈ Ωd, the support Ω(xd) of f(⋅∣xd) is a convex subset of Rkc, f(⋅∣xd)

is continuous on Rkc, and it is also continuously differentiable on the interior of

Ω(xd) (denoted by Ω○(xd)).

Assumption 7. Let g ∶ Rkc ×D → R be the conditional expectation of Y given X,

i.e., g(x) = E(Y ∣X = x). For any xd ∈ Ωd, g(⋅, xd) is continuously differentiable

on the closure of Ω(xd) (denoted by Ω̄(xd)). Moreover, Ω̄(xd) differs from Ω○(xd)

by a set of measure of zero w.r.t. νc.

Assumption 8. For every xd ∈ Ωd, each component of the random vector ∂g/∂xc

and the random matrix [∂f(xc∣xd)/∂xc][(y, xc′, xd′)] has finite second moment

with respect to the density f(⋅∣xd). Furthermore, for each xd ∈ Ωd, ∂f(⋅∣xd)/∂xc

and ∂[g(⋅, xd)f(⋅∣xd)]/∂xc satisfy the following Lipschitz conditions: for some

function mxd such that E{[(1 + ∣y∣ + ∥xc∥)mxd(xc)]2∣xd} < +∞,

∥∂f(x
c + v∣xd)
∂xc

− ∂f(x
c∣xd)

∂xc
∥ <mxd(xc) ∥v∥ , and

∥∂g(x
c + v, xd)f(xc∣xd)

∂xc
− ∂g(x

c, xd)f(xc∣xd)
∂xc

∥ <mxd(xc) ∥v∥ .

Finally, it is also established that v(xc, xd) = E(y2∣xc, xd) is continuous in xc.
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After establishing the previous assumptions, we can state the following lemma:

Lemma 3.2.1. Given Assumptions 5-8, for every xd ∈ Ωd,

∫
∂g(xc, xd)

∂xc
f(xc∣xd)2dxc = −2∫ g(xc, xd)∂f(x

c∣xd)
∂xc

f(xc∣xd)dxc,

or equivalently,

E [f(xc∣xd)∂g(x
c, xd)

∂xc
∣xd] = −2E [y∂f(x

c∣xd)
∂xc

∣xd] .

Exploiting this result, in the next sections, we will propose an estimator for

the following parameter

δ = E [f(xc, xd)∂g(x
c, xd)

∂xc
] = −2E [y∂f(x

c, xd)
∂xc

] , (3.3)

where the second equality follows immediately from the law of iterated expecta-

tions applied to Lemma 3.2.1.

Given this representation for δ, we will combine two approaches to estimate it.

First, we will employ kernel techniques for mixed data to estimate f , and its cor-

responding partial derivative ∂f(xc, xd)/∂xc. Second, we will employ a standard

sample analogue approach to estimate the expectation term E{y[∂f(xc, xd)/∂xc]}.

3.2.2 Kernel Estimators

To construct an estimator for δ, we consider {(yi, xi) ∶ i = 1,2, ...,N} as a sample of

(k+1)×1 random vectors. We suppose that they are independent and identically

distributed as (Y,X).

Firstly, a standard kernel estimator of the mixed density f is given by

f̂(xc, xd) = 1

N

N

∑
i=1

(1

h
)
kc

Lλ(xd − xdi )K (x
c − xci
h

) , (3.4)

where the bandwidth h is a smoothing scalar parameter that depends on N ,

whereas K and Lλ are kernel functions that satisfy the following requirements:
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Assumption 9. The kernel function K ∶ Rkc → R satisfy the following conditions.

Its support ΩK ⊆ Rkc is convex and contains the origin as an interior point. Be-

sides, K is a bounded symmetric differentiable function such that ∫ K(u)du = 1,

∫ uK(u)du = 0, and K(u) = 0 for all u ∈ ∂ΩK, where ∂ΩK denotes the boundary

of ΩK.

Assumption 10. Let λs be s-th component of the vector λ ∈ Rkd
+ , and also let

Ωd,s ⊆ R denote the support of Xd
s , s-th component of Xd. The kernel Lλ ∶ Rkd → R

can be written as Lλ(u) = Πkd
s=1[λs/(cs−1)]1−1(us)[1−λs]1(us), where cs = #(Ωd,s) > 2

, λs ∈ [0, (cs − 1)/cs], and 1(us) is an indicator function that equals one when

us = 0, and zero otherwise.

Under the above conditions, a kernel estimator for ∂f(xc, xd)/∂xc may then

be obtained by differentiating (3.4) with respect to xc as follows

f̂(xc, xd)
∂xc

= 1

N

N

∑
i=1

(1

h
)
kc+1

Lλ(xd − xdi )K ′ (x
c − xci
h

) . (3.5)

3.3 The Estimator

Following closely[PSS89], this section proposes an estimator for δ. Exploiting

expression (3.3), we set δ̂ as the sample analog estimator of δ. Specifically, we

define

δ̂ = − 2

N

N

∑
i=1

∂f̂i(xci , xdi )
∂xc

yi, (3.6)

where f̂x,i(xci , xdi ) is the kernel density estimator

f̂i(xc, xd) =
1

N − 1
∑
j≠i

(1

h
)
kc

Lλ(xd − xdj)K (
xc − xcj
h

) , (3.7)

and f̂x,i(xci , xdi )/∂xc denotes its partial derivative with respect to xc, that is

∂f̂i(xc, xd)
∂xc

= 1

N − 1
∑
j≠i

(1

h
)
kc+1

Lλ(xd − xdj)K ′ (
xc − xcj
h

) . (3.8)
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After replacing (3.7) in (3.6), δ̂N may now be written as

δ̂ = −2

N(N − 1)
N

∑
i=1

∑
j≠i

(1

h
)
kc+1

Lλ(xdi − xdj)K ′ (
xci − xcj
h

) yi. (3.9)

Furthermore, after defining zi = (yi, xci , xdi ) and using standard U-statistic no-

tation, an alternative representation of δ̂ is

δ̂ = (N
2
)
−1 N−1

∑
i=1

N

∑
j=i+1

pN(zi, zj), (3.10)

with pN(zi, zj) defined as

pN(zi, zj) = −(1

h
)
kc+1

Lλ(xdi − xdj)K ′ (
xci − xcj
h

)(yi − yj). (3.11)

3.4 Asymptotic Properties

In this section, we first show that the asymptotic bias of δ̂ vanishes at rate
√
N .

Second, we prove that
√
N[δ̂ −E(δ)] has a limiting normal distribution with zero

mean. Exploiting these results, we conclude that δ̂ is a consistent estimator for δ,

and also, we provide an explicit formula for its asymptotic covariance matrix.

3.4.1 Asymptotic Bias

To prove that the asymptotic bias of δ̂ vanishes at rate
√
N , we need to impose

further restrictions on the kernel K as well as on the rate of convergence of the

bandwidths.

Before proceeding, it is useful to express E(δ̂N) as a function of h, that is

E(δ̂) = −2 ∑
xd1,x

d
2

Lλ(xd1 − xd2)∫ ∫ K(u)g(xc, xd1)f(xc, xd1)
∂f(xc + hu,xd2)

∂xc
dxcdu,(3.12)

where the support of the sum is (xd1, xd2) ∈ Ω2.

As in [PSS89], in order to derive a Taylor expansion for the previous formula,

it is sufficient to impose the following restrictions on f and K:
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Assumption 11. Let P = (kc + 4)/2 if kc is even and P = (kc + 3)/2 if kc is odd.

For every xd ∈ Ωd, all partial derivatives of f(⋅, xd) of order P + 1 exist, and the

expectation E{y[∂f(xc, xd)/∂xcl1 ...∂x
c
lρ
]} exists for all ρ < P + 1. All moments of

K of order P also exist.

The expectation E(δ̂N) can now be expanded as a Taylor series in h, around

h = 0:

E(δ̂) = b0 + b1h + b2h
2 + ... + bP−1h

P−1 +O(hP ), (3.13)

with b0 and the lth component of bp (p = 1, ..., P − 1) defined as

b0 = −2 ∑
xd1,x

d
2

Lλ(xd1 − xd2)∫ g(xc, xd1)f(xc, xd1)
∂f(xc, xd2)

∂xc
dxc, (3.14)

bp,l =
−2

p!
∑
xd1,x

d
2

Lλ(xd1 − xd2)b̃p,l(xd1, xd2), and

b̃p,l(xd1, xd2) =
kc

∑
l1,...,lp=1

∫ ∫ ul1 ...ulpK(u)g(xc, xd1)f(xc, xd1)
∂p+1f(xc, xd2)
∂xcl1 ...∂x

c
lp
∂xcl

dxcdu.

After subtracting δ from both sides and multiplying them by
√
N , we obtain

√
N[E(δ̂) − δ] =

√
N[b0 − δ] + b1

√
Nh + ... + bP−1

√
NhP−1 +O(

√
NhP ). (3.15)

Hence, with the aim of proving that
√
N[E(δ̂) − δ] converges to zero, we impose

the additional restrictions on the kernel K, and on the rate of convergence of the

bandwidths h and λ.

Assumption 12. The kernel function K obeys

∫ K(u)du = 1, and

∫ ul11 ...u
lp
kc
K(u)du = 0 for l1 + ... + lp < P.

Assumption 13. Nh2P → 0 and Nλ2
s → 0 for s ∈ {1, ..., kd}, as N →∞.
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Given these assumptions, first,
√
N[b0 − δ] goes to zero due to the fact λs =

o(
√
N). Second, the terms b1, ..., bP−1 vanish because K is a higher order kernel,

and finally, since hP = o(
√
N), the last term O(

√
NhP ) goes to zero as well.

Formally, we summarize the above discussion in the following theorem:

Theorem 3.4.1. Under Assumptions 5-13,
√
N[E(δ̂) − δ] converges to zero.

3.4.2 Asymptotic Normality

In order to characterize the asymptotic distribution of
√
N(δ̂ − δ), we first show

that
√
N[δ̂ − E(δ̂)] has a limiting normal distribution. Then, we use Theorem

3.4.1 to conclude that
√
N(δ̂ − δ) and

√
N[δ̂ −E(δ̂)] share the same asymptotic

distribution, and as a result, δ̂ is a consistent estimator for δ.

To characterize the asymptotic distribution of δ̂N , we define

r(zi) = f(xci , xdi )
∂g(xci , xdi )

∂xc
− [yi − g(xci , xdi )]

∂f(xci , xdi )
∂xc

, and (3.16)

rN(zi) = E[pN(zi, zj)∣zi].

Then, we begin by setting an additional assumption and stating a useful lemma:

Assumption 14. Nhkc+2 →∞ as N →∞.

Lemma 3.4.1. Given Assumptions 5-14, it follows that N−1E[∥pN(zi, zj)∥2] con-

verges to zero.

Before proving the asymptotic normality of δ̂N , it is useful to state a result re-

garding the asymptotic equivalence between two general second order U-statistics.

We establish this result in the subsequent lemma:

Lemma 3.4.2. Suppose that N−1E[∥pN(zi, zj)∥2] converges to zero, and define

Û = E[rN(zi)] +
2

N

N

∑
i=1

{rN(zi) −E[rN(zi)]}.

Then,
√
N(δ̂ − Û) converges in probability to zero.
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Due to this lemma and since E(δ̂N) = E[rN(zi)], it is equivalent to characterize

the asymptotic distribution of
√
N[δ̂N−E(δ̂N)] or (2/

√
N)∑i{rN(zi)−E[rN(zi)]}.

Lemma 3.4.3. Under Assumptions 5-14, it follows that

2√
N

N

∑
i=1

{rN(zi) −E[rN(zi)]}
dÐ→ N(0,Σ),

where Σ = 4E[r(zi)r(zi)′ − δδ′].

Combining together previous lemmas, we can state the next concluding theo-

rem:

Theorem 3.4.2. Given Assumptions 5-14,
√
N(δ̂−δ) has a limiting normal distri-

bution with mean zero and covariance matrix Σ, and consequently, δ̂ is a consistent

estimator for δ.

3.4.3 Estimation of the Asymptotic Covariance Matrix

In addition to establishing asymptotic normality, Theorem 3.4.2 suggest a natural

estimator for the asymptotic covariance matrix Σ. In particular, using its sample

analogue, this matrix can be consistently estimated as follows

Σ̂ = 4

N

N

∑
i=1

[r̂(zi)r̂(zi)′ − δ̂δ̂′], (3.17)

where r̂(zi) = −1
N−1 ∑j≠i pN(zi, zj).

Essentially, the consistency of Σ̂ is established in the lemma stated below:

Lemma 3.4.4. Under Assumptions 5-14, Σ̂ converges in probability to Σ.

Hypothesis tests can now be performed with standard Wald statistics using δ̂

and Σ̂. Basically, if R is a k1×k full rank matrix with k1 ≤ k, and Rδ = δ○ represents

the coefficient restrictions involved in the null, then the limiting distribution of

N(Rδ̂ − δ○)′(RΣ̂R′)−1(Rδ̂ − δ○) is χ2 with k1 degrees of freedom.
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Table 3.1: Monte Carlo Experiments

True Values Mean (Std. Deviation)

β2 α E0 E1 β̂2 Ê0 Ê1

0.00 0.00 2.718 2.718 0.802 7.441 7.202

(1.168) (3.199) (2.856)

0.00 0.50 2.718 4.482 -1.766 13.411 23.875

(56.405) (113.759) (113.794)

0.00 1.00 2.718 7.389 0.682 26.109 151.562

(1.451) (287.831) (1961.234)

0.50 0.00 4.482 4.482 0.039 11.211 11.015

(13.869) (17.101) (16.130)

0.50 0.50 4.482 9.488 0.996 12.655 33.448

(2.573) (11.605) (60.490)

0.50 1.00 4.482 20.086 0.913 21.551 111.536

(0.889) (64.401) (468.691)

3.5 Monte Carlo Experiments

In order to evaluate the finite sample behavior of the estimator presented herein,

this section reports the results of Monte Carlo investigations.

In the simulations, kc = 2, kd = 1, and N = 250. The dependent variable yi is

generated from a nonlinear specification as

yi = exp[(β1x
c
1,i + β2x

c
2,i)(1 + γxdi )] + εi, (3.18)

where {(xc1,i, xc2,i, xdi , εi) ∶ i = 1, ...,N} is a sample of independent and identically

distributed pseudo-random vectors. The components of (xc1,i, xc2,i, xdi , εi) are inde-

pendent of each other. Each component of (xc1,i, xc2,i) is distributed as N(1,2), xdi
equals zero or one with probability 1/2, whereas the error term εi is distributed
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as N(0,1). The first coefficient β1 is equal to one by scale normalization and

it is held constant across designs. We assume that εi is not observed, thus, the

estimator is based only on the sample {(yi, xc1,i, xc2,i, xdi ) ∶ i = 1, ...,N}. Given this

framework, we investigate the finite sample performance of our estimator, and

also, we study its effect on the estimation of E(y∣xc1, xc2, xd), i.e., the conditional

expectation of y given (xc1, xc2, xd).

Using first δ̂ from expression (3.9), we have estimated δ = βE{f(xc1, xc2, xd)(1+

γxdi ) exp[(β1xc1,i +β2xc2,i)(1+γxdi )]} where β = (β1, β2)′. Following closely [HH96],

we used the fourth-order kernel K(u1, u2) = k(u1)k(u2) with k(u) = (105/64)(1 −

5u2 + 7u4 − 3u6)1(∣u∣ ≤ 1). In the absence of a theoretical guidance, we employed

a simple selection bandwidth procedure that satisfies Assumptions 13 and 14,

specifically, h = 2n−1/(kc+3.5) and λ = n−2. Once obtained δ̂, we have then estimated

β2 by setting β̂2 = δ̂2/δ̂1.

Second, noting that E(y∣xc1, xc2, xd) depends on (xc1, xc2) only through (xc1 +

β2xc2), we estimated E(y∣xc1, xc2, xd) for (xc1, xc2, xd) = (1,1,0) and (1,1,1) as follows

Êxd
def= Ê(y∣1,1, xd) =

∑Ni=1 yike{[(1 + β̂2) − (xc1,i + β̂2xc2,i)]/he}λ
[1−1(xd−xdi )]
e

∑Ni=1{ke[(1 + β̂2) − (xc1,i + β̂2xc2,i)]/he}λ
[1−1(xd−xdi )]
e

, (3.19)

where ke denotes the standard normal kernel, and 1(u) is an indicator function

which equals one when u = 0, and zero otherwise. The bandwidths were he =
√

2n−1/5 and λe = n−2/5. For further references about kernel estimation with mixed

data, see [LR07].

There were 500 replications in each experiment. Table 3.1 shows the empirical

means and standard deviations of β̂2, Ê0 and Ê1. First, regarding the estimation

of β2, the estimator β̂2 has performed quite well in the contexts studied herein.

Except for the cases (β2, α) = (0.00,0.50) and (0.50,0.00), we observe a small

positive bias and standard deviations are not too large. Second, the proposed es-

timator for the conditional expectation, derived in (3.19), has had a poor perform.

In particular, results have shown a very large positive bias.
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3.6 Concluding Remarks

In order to estimate β in the model E(y∣xc, xd) = G(xc′β,xd), I have constructed

an estimator for δ = E[f(xc, xd)∂g(xc′β,xd)/∂xc] where g(xc, xd) = E(y∣xc, xd).

Under standard regularity conditions, the resulting estimator is
√
N -consistent

and asymptotically normal. Moreover, it can be computed directly from the data

and it does not require to solve difficult nonlinear optimization problems.

The proposed estimator can be useful for estimating binary response models,

which include discrete regressors, and for recovering the average treatment effect

using a semiparametric approach. Monte Carlo experiments have shown that the

estimator may perform well in small samples. A shortcoming of this paper is

the absence of theory regarding the bandwidth choice, so as a topic for further

research, I suggest addressing future investigations in that direction.
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