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A B S T R A C T

The incidence of breast cancer increases with age until menopause, and breast cancer is more aggressive in
younger women. The existence of epidemiological links between breast cancer and aging indicates that both
processes share some common mechanisms of development. Oxidative stress is associated with both cancer
susceptibility and aging. Here we observed that ERBB2-positive breast cancer, which developed in genetically
heterogeneous ERBB2-positive transgenic mice generated by a backcross, is more aggressive in chronologically
younger than in older mice (differentiated by the median survival of the cohort that was 79 weeks), similar to
what occurs in humans. In this cohort, we estimated the oxidative biological age using a mathematical model
that integrated several subphenotypes directly or indirectly related to oxidative stress. The model selected the
serum levels of HDL-cholesterol and magnesium and total AKT1 and glutathione concentrations in the liver. The
grade of aging was calculated as the difference between the predicted biological age and the chronological age.
This comparison permitted the identification of biologically younger and older mice compared with their
chronological age. Interestingly, biologically older mice developed more aggressive breast cancer than the
biologically younger mice. Genomic regions on chromosomes 2 and 15 linked to the grade of oxidative aging
were identified. The levels of expression of Zbp1 located on chromosome 2, a gene related to necroptosis and
inflammation, positively correlated with the grade of aging and tumour aggressiveness. Moreover, the pattern of
gene expression of genes linked to the inflammation and the response to infection pathways was enriched in the
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livers of biologically old mice. This study shows part of the complex interactions between breast cancer and
aging.

1. Introduction

Breast cancer is a complex disease that results from the interaction
of environmental factors with many genes with weak effects, which
helps to explain the differences in cancer susceptibility and the evolu-
tion among individuals [1]. Although many factors contribute to an
increased risk of breast cancer, the epidemiological factor most con-
sistently associated with breast cancer susceptibility, and with most
epithelial tumours, is aging. The incidence of breast cancer increases
with age and doubles about every ten years until women reach meno-
pause. After this occurs, the incidence rate dramatically decreases and
may even be suppressed after the age of 80 [2,3]. Also, numerous
epidemiologic studies have shown that younger women with breast
tumours have a worse prognosis than older women, which is often re-
lated to more aggressive tumour biology. Therefore, early-onset tu-
mours are more likely to be oestrogen receptor-negative, higher grade,
and have increased lymphovascular invasion and molecular markers of
aggressiveness [4]. Also, young age alone is per se an independent
negative predictor of cancer-specific survival [5,6]. The reasons why
the incidence of breast cancer increases with age and why younger
women develop more aggressive tumours than older women are not
known.

Cancer and aging are both multifactorial processes influenced by
environmental and endogenous factors. Among them, some factors
regulate intracellular functions such as proliferation, apoptosis and
senescence. Other factors control extracellular components, such as the
stroma, the immune system, and the endocrine system, all of which
contribute to controlling processes such as angiogenesis, tissue growth,
and tissue repair in normal tissues and also in tumours [7]. Thus, both
cancer and aging susceptibility are genetically influenced by multiple
genetic determinants, mostly low penetrance genes that control the
behaviour of various intermediate phenotypes. Consequently, the dif-
ferent predisposition to both cancer and aging among individuals could
be explained, at least in part, by polygenic inheritance [8,9]. Both the
epidemiological and pathogenic relationships between epithelial
cancer, including breast cancer, and aging suggest that they may share
intermediate phenotypes and molecular and genetic determinants. One
of the intermediate phenotypes associated with cancer and aging is
oxidative stress [3,10,11]. Indeed, oxidative stress is associated with
breast cancer susceptibility and aggressiveness [3] and also to the de-
gree of aging [12]. Biological age estimates the functional status of an
individual by comparing the functional status of other people of the
same chronological age [12,13]. In 1969, Alex Comfort proposed that
the biological changes related to age could be measured [14]. These
changes were considered as aging biomarkers that could be integrated
using mathematical models. Hence, investigators interpret the age
predicted by these models as biological age [15,16]. Biological age is a
complex term that must reflect the functional status of the individual
and their physiological reserve [12–15]. It is very difficult to find the
precise biomarkers that define the global biological age, but it is pos-
sible to identify a “partial biological age," which defines the functional
status of a specific organ or specific physiological processes. Evidently,
a "partial biological age" would better reflect the overall aging when
studying the organs or systems that are more central in the overall
aging of the organism, like the cardiovascular system. In relation to
this, the physician Thomas Sydenham (1624–1689) previously pro-
posed that "a man is as old as his arteries" [17]. In this study, we focused
on oxidative stress to generate a “partial biological age” because of its
importance, as shown in the literature, in the pathogenesis of the global
aging of the organism, as well as in tumour susceptibility

[3,10,11,18,19]. Thus, in a heterogeneous cohort of mice generated by
a backcross, we observed that biologically young mice in terms of
oxidative stress outnumbered the chronologically old mice that devel-
oped, or not, a less aggressive breast tumour.

2. Material and methods

2.1. Mice

In this study, a cohort of mice with different ERBB2-induced breast
cancer susceptibility and evolution (N=147) was generated. A back-
cross strategy was carried out between a mouse strain resistant to breast
cancer (C57BL/6 genetic background) and a sensitive strain (FVB ge-
netic background) overexpressing the cNeu/ErbB2 proto-oncogene
under the control of the Mouse Mammary Gland Tumour Virus (MMTV)
promoter, FVB/N-Tg(MMTVneu)202Mul/J. The transgene was inserted
on chromosome 3 (see Fig. 1A in Data in Brief [20]), and the mice
developed a luminal-type breast tumour within a median of 7 months in
the FVB genetic background [21]. The transgene-positive F1 mice were
mated with FVB non-transgenic mice to generate the first generation of
backcross mice [22]. Regarding the resultant genetic backgrounds,
since the 147 mice were generated by a backcross, each had a variable
mixture of the genetic backgrounds of B6 and FVB. The genotype of all
the mice in the backcross population of the 244 SNPs that differed
between the B6 and FVB strains is shown (see Fig. 1B in Data in Brief
[20]). The mice were housed in the Animal Research Facility of the
University of Salamanca and all practices carried out were previously
approved by the Institutional Animal Care and Bioethics Committee.
FVB/N-Tg(MMTVneu)202Mul/J mice were obtained from the Jackson
laboratories and wild-type FVB/N and C57BL/6 mice were purchased
from Charles River. All mice were maintained in ventilated filter cages
under specific pathogen-free conditions and with free access to food
and water. Body weight was determined when the mice were three, six
and twelve months old, respectively; and the final weight was de-
termined at the necropsy after subtracting the tumour weight. The
number of mice available for determining each pathophenotype and
intermediate phenotype is shown in (see Table 1 in Data in Brief [20]).

2.2. Quantification of the liver signalling pathways associated with pro-
oxidant activity

Some of the specific signalling molecules from pathways related to
metabolism were measured in liver tissue [22] (see material and
methods in Data in Brief [20]).

2.3. Quantification of serum metabolites and biochemical parameters
determined at disease-free stage

Serum samples were collected when the mice were 3–4months old,
at a disease-free stage, and metabolic and biochemical parameters were
determined with the purpose of identifying putative biomarkers. To do
this, we quantified biochemical parameters routinely determined in
clinical practice such as alpha1-antitrypsin, albumin, alkaline phos-
phatase, C3-complement, C4-complement, creatinine, ferritin, urea,
IgG, total proteins, glucose, total cholesterol, cholinesterase, HDL, AST,
ALT, LDH, Ca, Mg, P, Fe, and uric acid. All of these compounds were
determined using a modular clinical chemistry analyser in the
Department of Clinical Biochemistry at the University Hospital of
Salamanca. Also, 139 metabolites were quantified by mass spectro-
metry [22].
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2.4. Quantification of molecules of the antioxidant defence system and
biomarkers of oxidative stress

The different components of the antioxidant defence system in the
liver were quantified, including catalase activity, using Catalase
fluorometric detection (ADI-907-027, Enzo Life Sciences) and total
glutathione levels using the enzymatic recycling method [23]. To eval-
uate lipid damage, the level of 4-hydroxynonenal (4-HNE) in liver was
determined using the OxiSelect™ HNE Adduct ELISA (STA-338, Cell
Biolabs) kit. Protein oxidation was determined by measuring the levels of
carbonyl groups in liver using the Protein Carbonyl ELISA kit (#ALX-
850-312-KI01, Enzo, LifeScience). To quantify DNA damage by oxidative

stress, the 8-hydroxy-2-deoxy Guanosine (8-OH-dG) levels in liver were
determined using a specific EIA kit (StressMarq, SKT-120).

3. Data and expression analysis

Multivariate models were generated using the oxidative stress phe-
notypes and the genetic information to predict breast cancer suscept-
ibility and evolution. Regarding the model of prediction of tumour la-
tency, the Cox proportional hazards model was used to identify
independent prognostic factors in our cohort of mice. A prognostic
index was constructed with the variables that predict tumour latency.
To generate the coefficients of the prognostic index, B coefficients

Fig. 1. The behaviour of breast cancer in the population of backcross mice. A) Tumour incidence in mice increased with age as in human populations. The values of this figure are
presented in the Supplementary Table 3A in Data in Brief. B) The behaviour of breast cancer was more aggressive in the group of chronologically younger mice than in chronologically
older mice, similar to what occurs in humans. C) The RNA levels of ErbB2/Neu determined by QPCR decreased with age, but did not correlate with total and phosphorylated ERBB2/NEU
protein levels quantified by a fluorescent western blot. The values of panel C are presented in Table 3B in Data in Brief [20].
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derived from the Cox model were used. Mice were ranked according to
their risk score and divided into two groups using the median risk score
as the cut-off [24]. Regarding the model of prediction of the incidence of
metastasis, the Support Vector Machine (SVM) method and the leave-one-
out cross-validation method were used to determine the incidence of
metastasis. We used ROC and Precision-Recall curves to select the best
model.

To design the linear regression model of biological age, we used the lm
function implemented in R. Training and predictions were done using
the leave-one-out cross-validation method. Previous studies have used the
difference between the predicted/biological age and the chronological
age as the grade of aging [12,25]. When the predicted age was older
than chronological age, the mouse was considered biologically older.

Conversely, when the predicted age was younger than the chronological
age, the mouse was classified as biologically younger [12]. We gener-
ated biplots associated with the principal component analysis [26]. In
particular, the HJ-biplot, an exploratory method for data analysis [27],
was used, and then the linear least square regression method was ap-
plied. We used the Ward's method for performing the cluster analysis.

3.1. Expression array analysis

Normalization of microarray signal data across chips was performed
with the Robust Multichip Analysis (RMA) algorithm in the Affymetrix
Expression Console v. 1.4.1. Spearman correlation between probesets
was calculated with the function cor implemented in the Stats package

Fig. 2. Statistically significant associations between pathophenotypes and different subtypes related to oxidative stress. Only statistically significant associations were included
(P < 0.05). The red colour indicates a positive correlation and the blue colour indicates a negative correlation. The values of this figure are presented in Table 4 in Data in Brief [20]. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

M.d.M. Sáez-Freire et al. Free Radical Biology and Medicine 120 (2018) 133–146

136



(caption on next page)

M.d.M. Sáez-Freire et al. Free Radical Biology and Medicine 120 (2018) 133–146

137



of R (version 3.2.3) [28]. Gene expression data for mouse livers are
available through Gene Expression Omnibus GSE 99962.

Linkage analysis was carried out using the Interval mapping with the
expectation maximization (EM) algorithm and the R/QTL software. The
criteria for significant and suggestive linkages for single markers was
chosen from Lander and Kruglyak [29] (see material and methods in
Data in Brief [20]). To develop multiple Quantitative Trait Loci (QTL)
models, the fitQTL function with Haley-Knott regression in R/QTL was
used to fit and compare the models based on the LOD score, and the
percentage of variance explained [30]. All the genetic markers used in
the linkage analysis are shown (see Table 2 in Data in Brief [20]).
Genotypes were classified as FVB/FVB (FF) or FVB/C57BL/6 (FB).

Gene set enrichment analysis (GSEA) [31] was used to evaluate the
enrichment of pathways identified in the differential expression ana-
lysis. The pathways used as gene sets were downloaded from the NCBI
Biosystem database, which contains the records of several pathway
databases (download date 07/07/2015). All probesets were ranked
according to the Delta value obtained with the SAM test application
between the two biological age groups. GSEA computed an Enrichment
Score (ES) for each pathway and the significance was determined by
permuting the data and correcting multiple testing using the family
wise error rate (FEWER).

4. Results

4.1. Breast cancer is more aggressive in chronologically younger mice than
in older mice

The manner in which the behaviour of breast cancer varied with
respect to chronological age in a mouse backcross population exhibiting
different susceptibility and evolution of ERBB2-induced breast cancer
was addressed [22] (Fig. 1 and see Fig. 2 in Data in Brief [20]). To do
so, a backcross was generated by crossing a breast cancer resistant
mouse strain (C57BL/6) with a sensitive strain (FVB/J) overexpressing
the cNeu/ErbB2 proto-oncogene under the control of the Mouse Mam-
mary Gland Tumour Virus (MMTV) promoter [21]. It was observed that
tumour incidence increased with age, peaked at around the interval of
44–51 weeks of age, and then remained lower but relatively high until
the interval of 72–75 weeks of age. After this interval, the incidence fell
drastically. The resulting curve showed a bimodal behaviour which
distinguished two populations of mice in terms of incidence and age
(Fig. 1A and see Table 3A in Data in Brief [20]).

In addition, the cohort could be separated by the median age of
survival (78.86 weeks) which was used to distinguish between young
(N=74) and old mice (N=73) from the chronological point of view.
The group of chronologically older mice included those that developed
breast cancer with a long latency, plus the mice that did not develop
tumours two years after the experiment was carried out. Additionally, it
was observed that younger mice exhibited a more aggressive form of
breast cancer and developed heavier and larger tumours, which gen-
erated more metastases than in older mice (Fig. 1B, additionally, see
Fig. 2A and Table 3B both in Data in Brief [20]). Although tumours
from younger mice expressed higher levels of ErbB2/Neu RNA, these
levels did not correlate with total and phosphorylated ERBB2/NEU
proteins (Fig. 1C and also see Fig. 2B in Data in Brief [20]). Moreover,
total and phosphorylated ERBB2 protein levels did not correlate with

the aggressiveness of the disease (see Fig. 2C in Data in Brief [20]). In
sum, although younger mice showed a more aggressive disease, which
is similar to what occurs in humans [4–6], the more aggressive beha-
viour of the disease in young mice was not due to a higher expression of
the oncogenic driver in the breast tumour.

4.2. Subphenotypes related to oxidative stress were associated with
heterogeneous breast cancer susceptibility and evolution

One of the pathogenic mechanisms common to cancer and aging
broadly described in the literature is oxidative stress [10,11,19]. Thus
we evaluated 120 intermediate phenotypes directly or indirectly related
to oxidative stress (see Table 1 in Data in Brief [20]).

The overall scenario of the associations identified is presented in
Fig. 2 (also see Table 4 in Data in Brief [20]). We observed that the
levels of lipid peroxidation, determined by the quantification of 4-hy-
droxynonenal (4-HNE) in the liver, were associated with breast cancer
with the worst prognosis. Furthermore, it was found that mice with
higher levels of 4-HNE presented shorter tumour latencies, a greater
number of tumours, and shorter lifespans than mice with lower levels of
4-HNE. With respect to the antioxidant defence system, mice with
higher levels of catalase activity in the liver showed a shorter disease
duration and tended to develop fewer metastases (P=0.055). Para-
doxically, higher levels of oxidative DNA damage in the liver were as-
sociated with slower tumour growth rate. Regarding telomere length,
shorter tumour latencies were associated with longer final telomere
length, measured in a pool of normal tissues from the tails of mice that
had been sacrificed. Thus, several subphenotypes related to oxidative
stress were associated with variable breast cancer pathophenotypes
within this mouse cohort (Fig. 2, additionally, see Table 4 in Data in
Brief [20]).

4.3. Integration of subphenotypes related to oxidative stress and genetic
markers in multivariate models to predict tumour latency and metastasis

Several genetic variants have been implicated in oxidative stress
[32]. Previously, we identified some Quantitative Trait Loci (QTLs)
associated with ERK and AKT/mTOR signalling in the liver and the
serum metabolites included within this study [22]. In addition, some
QTLs associated with the variability of other subphenotypes of oxida-
tive stress were also identified. These new QTLs were combined to-
gether with those QTLs previously identified, and presented in an
overall picture (see Fig. 3 and Tables 5 and 6, all of them in Data in
Brief [20].

Here it was observed that some of these QTLs identified were si-
multaneously associated with tumour pathophenotypes of breast cancer
and other subphenotypes related to oxidative stress (see Fig. 3 and
Table 7, both of them in Data in Brief [20]).

Later, using multivariate models, the subphenotypes related to
oxidative stress and genetic markers were integrated to predict tumour
latency and the incidence of metastases (Fig. 3). The Cox regression
model and the corresponding prognostic index were implemented for
predicting tumour latency. To do this, only the variables collected be-
fore the development of breast cancer were taken into account, which
included the genetic markers and subphenotypes related to oxidative
stress measured at a disease-free stage. The variables that best predicted

Fig. 3. Prediction of the behaviour of breast cancer by genetic markers and subphenotypes related to oxidative stress collected at a disease-free stage. A) Cox regression model
to predict tumour latency. In this multivariate context, variables in green indicate a positive correlation between their values and tumour latency. Thus, high levels of 2-monopalmitin,
uracil and the first weight measurement were associated with longer latencies and vice versa. Variables in red indicate a negative correlation between their values and tumour latency.
Therefore, high levels of lactic acid, N-acetyl-D- mannosamine and long initial telomere length were associated with shorter tumour latencies and vice versa. The genetic marker in green
indicates that heterozygosity of this marker is associated with longer tumour latency. The genetic marker in red indicates that heterozygosity of this marker is associated with a shorter
latency. B) Multivariate model using the Support Vector Machine method to predict the incidence of metastases. The comparison of the levels of the metabolites included in the model in
mice with and without metastasis is shown. The relative and absolute (numbers in bars) frequency of metastases for genetic variables included in the model is also shown. RS-: indicates a
reference SNP ID number, or “rs” ID, is an identification tag assigned by NCBI. Gnf- indicates that the marker originated at the Genomics Institute of the Novartis Research Foundation.
Cel- refers to SNP from Celera database. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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tumour latency were: the weight of the mice before the onset of the
disease, the initial telomere length measured in tail tissue at three
months of age, and the serum levels of 2-monopalmitin, uracil, lactic

acid, and N-acetyl-D-mannosamine. There were also two SNPs,
rs6193859 and rs4231934, located on chromosomes 2 and 18, respec-
tively. In this multivariate context, the higher serum levels of 2-

(caption on next page)
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monopalmitin, uracil and the higher body weights of mice, before the
onset of the disease, were associated with longer tumour latencies. By
contrast, the higher serum levels of lactic acid, N-acetyl-D-mannosa-
mine and longer initial telomere length were associated with shorter
tumour latencies. Also, mice heterozygous for the rs6193859 SNP on
chromosome 2 (one allele from C57BL/6J and the other one from FVB,
or F/B) showed higher tumour latencies than mice with both alleles
from the FVB (F/F) background. In addition, the rs4231934 SNP on
chromosome 18, heterozygous mice (F/B), showed shorter tumour la-
tencies. The measurement of these variables allowed a prognostic index
to be calculated, which divided the population of mice into two groups
of good and poor risk according to their tumour latency (Fig. 3A).

To predict the incidence of metastases, the Support Vector Machine
method was applied using the variables obtained before the onset of
breast cancer (Fig. 3B). The oxidative stress variables that best pre-
dicted the incidence of metastases were serum linoleic acid, glycerol,
and citric acid levels. Mice without metastases showed higher levels of
all of these compounds in serum at a disease-free stage. Among the
genetic markers included within the model, all were located near the
peaks of tQTLs (tumour QTLs) associated with the metastases patho-
phenotypes that were identified in a previous study [22] (see Table 5 in
Data in Brief [20]). Moreover, gnf01.037.906 located on chromosome 1
overlapped with tQTL14, and the rest of the markers located on chro-
mosome 5 overlapped with tQTL12. Mice with a C57BL/6 J (F/B) allele
in all of the SNPs included in the model showed a higher incidence of
metastases incidence and/or absolute number (Fig. 3B).

4.4. Subphenotypes related to oxidative stress are associated with
chronological age and allow biological age to be defined

Oxidative stress has been linked to aging susceptibility [11,19].
Therefore, a search was carried out to look for associations between the
subphenotypes related to oxidative stress and the chronological age of
the mice in our cohort (Fig. 4A). It was observed that chronologically
older mice showed higher levels of total and phospho-AKT and ERK in
the liver, higher serum levels of 2-monopalmitin, glucose, magnesium
and total proteins, and lower serum levels of cytidine, lactic acid, N-
acetyl-D-mannosamine, and amylase at a disease-free stage. Regarding
the specific markers of oxidative damage, a negative correlation was
found between the chronological age and the levels of 4-HNE. As ex-
pected, somatic telomere length, again quantified using a pool of tail
tissues, showed telomere shortening with age (see Fig. 4A–E in Data in
Brief [20]). All this data show an association between several sub-
phenotypes related to oxidative stress and the chronological age of
mice.

Following on, the possibility of estimating a partial biological age
based on a global status of oxidative stress was investigated. To do so,
first a mathematical model was used to identify which of the sub-
phenotypes related to oxidative stress best predicted chronological age
(Fig. 4B). As expected, the age computed by the model did not perfectly
match with the real chronological age, but instead reflected the

estimated partial biological age associated with oxidative stress sub-
phenotypes. Certainly, mathematical models have previously been used
to predict biological age based on different aging biomarkers, con-
trasting biological to real chronological age [15,16,33]. Here, linear
regression was used to establish a predictor of biological age, using
chronological age as a dependent variable in training and performing
recursive feature elimination on the independent variables. Training
and predictions were carried out on all samples using leave-one-out
cross-validation. The predictions were considered to be the biological
age of the mice. Overall, the variables selected by the model to predict
biological age were the serum levels of magnesium and HDL-cholesterol
measured at a disease-free stage, and whole AKT1 protein levels and
total glutathione levels in the liver at the time of necropsy. Higher le-
vels of magnesium, HDL-cholesterol, and total AKT1 protein were as-
sociated with the prediction of higher values of biological age, while
higher levels of total glutathione were associated with the prediction of
lower values of biological age (Fig. 4B).

Second, we calculated the grade of aging, which aims to identify
whether each mouse was biologically younger or older with respect
their chronological age. To do so, the biological age of each mouse was
compared to its real chronological age. Therefore, the grade of aging
was determined by calculating the difference between the estimated
biological age and the chronological age. Thus, when biological age was
greater than the chronological age, the mouse was biologically older.
On the contrary, when the biological age was lower than the chron-
ological age, the mouse was biologically younger (Fig. 4C).

As previously indicated, the mice were divided into chronologically
young and old based on the median of the chronological age of the
cohort, which was 78.86 weeks (see Fig. 4F in Data in Brief [20]). Based
on the grade of aging, we observed that mice that were biologically
older were those that predominately developed breast cancer and died
at a relatively young chronological age as a result of the disease. In
contrast, mice that were biologically younger were among those that
frequently developed the disease at a relatively old chronological age.
Interestingly, nearly all of the mice that did not develop breast cancer,
except for two, were among those that were biologically younger (red
points in Fig. 4C).

Interestingly, when the disease among the chronologically younger
mice was compared and mice that were biologically younger and bio-
logically older were distinguished, it was observed that biologically
older mice developed the disease earlier and had a shorter lifespan than
their biologically younger counterparts (Fig. 4D). Similarly, when the
disease among chronologically old mice was compared, it was again
observed that biologically younger mice developed the disease later,
had less aggressive tumours and a longer lifespan than their biologically
older counterparts (Fig. 4E).

The groups of mice exhibiting similar breast cancer behaviour, re-
garding tumour pathophenotypes, were then classified using a principal
component analysis. The result of this analysis showed how biologically
younger and older mice were distributed within different clusters.
Temporal phenotypes of the disease, such as latency and lifespan, were

Fig. 4. Biological age and behaviour of breast cancer in backcross mice based on grade of aging. A) Subphenotypes related to oxidative stress associated with the chronological age
in a statistically significant manner. The bivariate correlations are shown in Fig. 4A–E in Data in Brief [20]. Red colour indicates negative associations. Green colour indicates a positive
association. The intensity of the colour is proportional to the correlation coefficient. B) Multivariate model to define the biological or estimated age as a function of the sub-phenotypes
related to oxidative stress selected by the model. C) A representation of the chronological age and biological age in weeks is shown. Each point represents the value of both ages for each
mouse. The distance from the diagonal indicates the grade of aging. The points on the left, above the diagonal, show animals with a positive grade of aging, indicating they are
biologically older than the chronological age. Points on the right, below the diagonal, show mice with a negative grade of aging, indicating they are biologically younger than the
chronological age. The red dots represent the mice that did not develop breast cancer. The red line on the x-axis indicates the median of the chronological age (78.86 weeks). RMSE, root
mean square error. D) Mice chronologically young at the time of death (those mice younger than the median of 78.86 weeks), and defined as being biologically young by the model (those
mice whose biological age was smaller than their chronological age), presented less aggressive breast cancer than those defined as biologically old (those mice whose biological age was
bigger than their chronological age). E) Similarly, within chronologically old mice at the time of death (those mice older than the median of 78.86 weeks), the ones described by the
model as being biologically younger (those mice whose biological age was smaller than their chronological age) also developed a less aggressive disease than those defined as biologically
old (those mice whose biological age was bigger than their chronological age). F) Clusters of mice with similar evolution of breast cancer after excluding latency and lifespan as variables
(HJ-biplot analysis). G) Distribution of the number of biologically young and old mice in each cluster. The percentage of biologically young mice increases from left to right in the groups
with the best prognosis, where the non-tumour developing mice in cluster 5 have the highest percentage. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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excluded to remove the effect of their strong correlation with both
chronological and biological age. After doing so, four clusters asso-
ciated with the evolution of breast cancer (Fig. 4F) were identified. It is
worth noting that even though the variables of latency and lifespan
were eliminated from the analysis, the mice were still classified from a
chronological perspective, reflecting the strong correlation between
chronological age and some pathophenotypes of the disease (see Fig. 5
in Data in Brief [20]). Interestingly, biologically older mice were mainly
grouped in the clusters (1 and 2) associated with the worst evolution of
the breast cancer, while biologically younger mice were grouped in the

clusters (3 and 4) associated with the best prognosis. Additionally, the
group of mice that did not develop tumours was the one that was
comprised of more biologically younger mice (Fig. 4G). In conclusion,
these findings indicate that biologically older mice develop more ag-
gressive breast cancer regardless of their chronological age.

4.5. Identification of QTLs associated with biological age through genetic
markers linked to the subphenotypes

The next step was to search for QTLs related to biological age

Fig. 5. Genetic markers linked to biological age. A) Kaplan-Meier analysis showing how the homozygous (F/F) and heterozygous (F/B) mice for baQTL1 on chromosome 18 have
different biological age in a statistically significant manner. B) Scheme showing the oxidative stress subphenotypes that define the biological age and the QTLs linked to them. baQTL,
biological aging QTL; LsQTL, liver signalling QTL; osQTL, oxidative stress QTL. The number after QTL is the identification number as shown in Table 5 of Data in Brief. C) Table showing
the LOD score reached and the different proportion of phenotypic variability of the biological age explained by baQTL1 alone and in combination with two or three QTLs linked to the
subphenotypes associated with biological age. D) Kaplan-Meier analysis showing how the addition of other QTLs to baQTL-1 improves discrimination between biologically older and
younger mice. The effect of one QTL is represented on the left and the effect of two QTLs is represented on the right.
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Fig. 6. The grade of aging. A) The grade of aging in the backcross mice depending on their genotype for gaQTL1 and gaQTL2. B) The combination of both gaQTLs allowed for better
discrimination between biologically younger and older mice. C) The heatmap shows transcripts from gaQTL1 whose levels correlated with the grade of aging and other phenotypes. The
scale is based on the correlation coefficient. Yellow colour means positive correlation and blue colour indicates negative correlations. Spearman test. D) Correlation between the levels of
Zbp1 expression in the liver and the grade of aging in backcross mice. E) Biological older mice had higher levels of Zbp1 expression in the liver than biological younger mice. F) The
network shows the enriched pathways in biologically old mice (red nodes) and in biologically young mice (blue nodes). The colour intensity of each node is proportional to the mean of
the running enrichment score (ES) of the genes of that pathway, reflecting the degree to which the expression of these genes is overrepresented in the liver samples. The thickness of the
connections is proportional to the number of enriched genes common among the pathways. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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(baQTLs) (see Table 5 in Data in Brief [20]). From this search, a QTL
located on chromosome 18 (baQTL1) was identified with a peak at
31.59 cM. Mice homozygous for the FVB allele on this QTL peak had
significantly higher biological age than heterozygous FVB/B6 mice
(Fig. 5A). This QTL could be related to the tQTL4, previously identified
by our group, which is associated with tumour latency [22] (see Fig. 3
in Data in Brief [20] and Tables 5 and 7 also in Data in Brief [20]).

Additionally, QTLs associated with the subphenotypes that defined
biological age were identified: serum levels of HDL-cholesterol and
magnesium, and AKT1 and glutathione levels in the liver (Fig. 5B).
Surprisingly, none of these QTLs were directly associated with the
biological age (see Tables 6 and 7 in Data in Brief [20]). The lack of
association of a complex trait with the genetic determinants linked to
the subphenotypes of that complex trait has been related to the missing
heritability [8]. Thus, we hypothesized that a genetic model which
includes QTLs related to some of the subphenotypes associated with
oxidative stress together with baQTL1 should explain more phenotypic
variability than baQTL1 alone (Fig. 5B). Indeed this was the case, as
generating a model with two QTLs which included baQTL1 and LsQTL3
(associated with the levels of total AKT1 in the liver) increased the LOD
score from 2.34 to 3.52. The model also explained 18.79% of the
variability of the phenotype versus 12.90% with the baQTL1 alone.
Similarly, a model with three QTLs, the two previously mentioned plus
osQTL9 which is associated with glutathione levels in the liver, was
able to increase the LOD score to 4.59 and explained 23.74% of the
variability (Fig. 5C). These QTL combinations also resulted in a clear
separation of the mouse subpopulations in the Kaplan-Meier analyses
(Fig. 5D). In conclusion, these results show that it is possible to increase
the explained phenotypic variability of a complex trait through QTLs
linked to subphenotypes, which in turn are associated with the complex
trait. The application of this strategy on a larger scale with regards to
the specific complex trait could identify part of the missing heritability
[8].

4.6. The pattern of gene expression in the liver of biologically old mice was
enriched in inflammation and response to infection pathways

Later on, a search for QTLs related to the grade of aging, that is,
genetic regions linked to being either biologically older or younger with
respect to chronological age (see Table 5 in Data in Brief [20]), was
carried out. Consequently, two QTLs associated with the grade of aging
were identified and were called gaQTL1 (grade of aging QTL1) located
on chromosome 2 (LOD score = 3.07), and gaQTL2 located on chro-
mosome 15 (LOD score = 2.69). The marker peak for gaQTL1 was
rs13476913. Mice homozygous for the FVB allele for this marker tended
to be biologically older, whereas heterozygous FVB/B6 mice tended to
be biologically younger (Fig. 6A and, additionally, see Table 5 in Data
in Brief [20]). In addition, heterozygous FVB/B6 mice for gaQTL2
tended to be biologically older than homozygous FVB mice, which
tended to be biologically younger (Fig. 6A, and also see Table 5 in Data
in Brief [20]). When the two gaQTLs were considered together, the
mice were better distinguished with respect to the grade of aging
(Fig. 6B).

The linkage association of gaQTL1 was relatively high (LOD score =
3.1), and the confidence interval was not very large (88.09–102.57 cM)
(see Table 5 in Data in Brief [20]). Hence, we then searched for the
liver expression of genes located on this genomic region by expression
arrays to identify possible candidate genes associated with the grade of
aging and breast cancer pathophenotypes (see Table 8 in Data in Brief
[20]). Twenty-seven transcripts in this gaQTL1 associated with the
grade of aging and breast cancer pathophenotypes were identified, and
24 of them were uncharacterized genes. Seven out of these 24 un-
characterized genes had a predicted structure that encoded for a
Krüppel associated box (KRAB) domain. Also, there were only 4 tran-
scripts that originated from known genes: Atp5e, Zbp1, Psma7 and Ctcf l
(Fig. 6C). An attempt was made to validate all four genes by QPCR, but

only Zbp1, a gene related to necroptosis and inflammation [34], was
confirmed to be associated with the grade of aging (P=0.0038,
r= 0.363) (Fig. 6D and also see Table 8 in Data in Brief [20]). Also,
biologically younger mice had lower levels of Zbp1 expression in the
liver than biologically older mice (P=0.013) (Fig. 6E). The association
of Zbp1 with increased inflammation [34,35] supports the hypothesis
that Zbp1 might be one of the genes responsible for connecting oxida-
tive stress and grade of aging.

Since the expression of Zbp1 was found to be elevated in the liver of
biologically old mice and Zbp1 was identified as a key gene in the in-
flammatory response against infections [34,35], the extent to which the
pattern of gene expression in the liver of biologically old mice was
enriched in pathways related to these functions was analysed. Inter-
estingly, 131 pathways were identified as being significantly enriched
in their gene expression patterns in the livers of biologically old mice
(FWER p-value lower than 0.05). Among 20 of the more significant
pathways identified, there were 7 pathways related to inflammation
and the response to infections (see Table 9A in Data in Brief [20]).
Moreover, an abundance of signalling pathways related to these func-
tions was observed. This finding suggests that there are common genes
that are differentially enriched and likely to be involved in various
functionally related signalling pathways. To check this, a search was
carried out to identify genes common to some of the pathways asso-
ciated with inflammation and response to infections, such as some in-
terleukins, Toll-like receptor, and response to viral infections such as
influenza A, Epstein-Barr virus or measles, and non-viral infections like
leishmaniosis or Chagas disease (Fig. 6F, and also see Fig. 6B in Data in
Brief [20]).

On the contrary, in biologically young mice, only 21 pathways
significantly enriched in the gene expression pattern in the liver (FWER
p-value lower than 0.05) were identified. Interestingly, among the first
20 most significant pathways, up to 15 pathways were related to mi-
tochondrial function (see Table 9B in Data in Brief [20]). In addition,
genes common to these mitochondrial pathways and differentially en-
riched (Fig. 6F and also see Fig. 6A in Data in Brief [20]) were also
found. This data indicate that expression patterns in the liver show a
connection between oxidative stress and the grade of aging.

5. Discussion

The incidence of breast cancer increases with age until a particular
time point that coincides with menopause [1,3]. This type of tumour
tends to be more aggressive in young patients; actually, early age is an
independent factor of poor prognosis in the evolution of breast cancer
[5,6]. Age is, in fact, the strongest demographic risk factor for most
human malignancies [36,37]. The reason for the epidemiological as-
sociation between age and the incidence and aggressiveness of breast
cancer is unknown. In this study it was observed that the behaviour of
breast cancer, developed in a genetically heterogeneous population of
mice generated by a backcross, was similar to the behaviour of breast
cancer in humans with respect to aggressiveness. Furthermore, breast
cancer in younger mice was seen to present greater tumour aggres-
siveness (Fig. 1A and B, and also see Fig. 2A in Data in Brief [20]).
Hence, it was thought that these mice would provide a suitable model
for studying the pathogenic reasons for the epidemiological association
between breast cancer behaviour and age. However, the different be-
haviour of the disease with age was not due to ERBB2 protein levels
(Fig. 1C and also see Fig. 2C in Data in Brief [20]). Therefore, although
ERBB2 is the driver of the disease, it does not appear to be responsible
for most of the different levels of phenotypic expression of the disease
among mice. The absence of the participation of ERBB2 in the varia-
bility of tumour aggressiveness indicates that this is due to other genetic
determinants and intermediate phenotypes. In this sense, it is known
that the quantitative inheritance not only contributes to the hetero-
geneity of complex traits but also contributes, to a greater or lesser
extent, to the phenotypic heterogeneity of traits with Mendelian
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inheritance [38]. This fact is in agreement with the number of QTL
regions associated with the aggressiveness of different pathophenotypes
found (see Fig. 3 in Data in Brief [20]).

The epidemiological link between breast cancer and aging indicate
the existence of common pathogenic processes and intermediate phe-
notypes. One of the intermediate phenotypes common to breast cancer
and aging, abundantly supported by the literature, is oxidative stress.
Thus, the higher the degree of oxidative stress, the greater the sus-
ceptibility to aging in different organisms [3,5,10,11,19]. Also, oxida-
tive stress has been associated with tumour incidence and aggressive-
ness [3]. In this work, we studied the association of oxidative stress
with both the chronological age and the susceptibility and evolution of
breast cancer. Also, it was took into account that oxidative stress is a
complex trait whose global phenotypic manifestations could be influ-
enced by multiple intermediate phenotypes [8].

Using multivariate models, the extent to which a combination of
several subphenotypes related to oxidative stress would be associated
with the different susceptibility and evolution to breast cancer and
aging was evaluated. We think that multivariate models help to better
define the variability of complex traits than individual subphenotypes.
For example, if we consider telomere length alone, shorter tumour la-
tencies were associated with longer final telomere length, measured in a
pool of normal tissues from the tails of mice that had been sacrificed.
This result was expected since mice with short tumour latencies were
chronologically younger by definition and would have a longer final
telomere length. But it could be surprising that a longer initial telomere
length was selected by the Cox regression model to define poor prog-
nosis in terms of latency (Fig. 3A). Although this may seem counter-
intuitive, first, we must consider that the variability of the initial tel-
omere length between mice does not reflect the chronological age, since
all of them were 3 months old at the time of telomere quantification.
Thus, the variability of telomere length between mice at that age would
be more related to other aspects, such as genetic background [39].
Second, we must also consider that the initial telomere length con-
tributed to explain tumour latency in a multivariate context, although
not by itself, since it was not associated with tumour latency in the
univariate analysis (Fig. 2).

Denham Hartman previously proposed the hypothesis that oxidative
stress was a cause of aging [40]. Here, it was observed that some of the
subphenotypes related to oxidative stress were independently asso-
ciated with the chronological age of mice (Fig. 4A and also see
Fig. 4A–E in Data in Brief [20]). The possibility of establishing a global
measure of oxidative stress was investigated, by generating a variable
that encompassed the values of the oxidative stress subphenotypes as-
sociated with age. To do this, several variables of oxidative stress were
integrated in a multivariate mathematical model (Fig. 4B). When ap-
plying this mathematical model on the data collected from each mouse,
a predicted age was obtained and considered as the biological age re-
garding oxidative stress. Different mathematical models have been
described in the literature to predict the biological age of an individual
[12–16]. Biological age is a complex concept which, fundamentally,
refers to the physiological capacity and the physiological reserve of the
organs and systems in an individual. This physiological capacity de-
creases with age, but the degree of decline varies within individuals and
may be greater or lower than the chronological age. Hence, the in-
dividual would be considered as being biologically older or younger,
depending on the grade of aging, in comparison to their actual chron-
ological age. It is difficult to identify molecular markers that can en-
compass, in a general sense, something as complex as the functional
capacity of different organs and systems of an organism. Given the
importance of oxidative stress in aging [3,10,11,19], some sub-
phenotypes related to oxidative stress were used to define biological
age. The purpose of this study was not to determine the overall func-
tional status of the mice, but to assess to which extent the degree of
oxidative stress was reflected in the different subphenotypes simulta-
neously, which was also associated with greater or less tumour

susceptibility. However, the objective of obtaining a global biological
age that would indicate the total physiological state of an individual
might be difficult or even impossible. We propose the utility of defining
what we could call "partial biological ages" obtained by integrating
several physiological features and biomarkers in multivariate models.
The integrated value would be compared with the chronological age to
ascertain whether the individual was biologically older or younger than
their actual chronological age concerning the physiological phenotype
under analysis. Interestingly, our model permitted us to integrate breast
cancer behaviour, aging, and oxidative stress. In this study, it was ob-
served that most of the relative chronologically young mice that had
more aggressive breast cancer were also biologically older in terms of
oxidative stress. On the contrary, most part of those mice that devel-
oped breast cancer at more advanced chronological ages, were younger
based on oxidative stress (Fig. 4D–G). These is in agreement with the
fact that oxidative stress has been associated with aging and tumour
incidence and aggressiveness [3].

Finally, we identified two QTLs associated with the grade of aging.
Among the genes studied in gaQTL1, Zbp1 correlated with the grade of
aging. ZBP1 is a cytosolic sensor of pathogen-associated DNA that ac-
tivates the downstream interferon regulatory factor (IRF) and NF-kappa
B transcription factors, leading to type-I interferon production. ZBP1
has been related to inflammation and necroptosis of virus-infected cells
[34,35]. Moreover, ZBP1 has recently been identified as a critical
mediator of inflammation, a function beyond its already known role in
antiviral defence [34,35]. Due to the well-known role of inflammation
in cancer and aging pathogenesis [7,41,42], it is easy to speculate that
elevated basal levels of ZBP1 together with other genes could con-
tribute to increased basal inflammation and increased oxidative stress,
increasing susceptibility to cancer and aging but perhaps with more
efficient protection against viruses. In agreement with this fact, a large
number of signalling pathways related to inflammation and response to
viral and other infections were observed to be enriched in the liver of
biologically old mice (Fig. 6F, additionally, see also Fig. 6B and
Table 9A, both in Data in Brief [20]). Within these pathways and genes,
ZBP1 could be one of the most important genes because it was detected
at a genetic level as a putative candidate responsible for the effect of
gaQTL1 (more studies are needed to demonstrate this point). Certainly,
infections have been one of the factors that have had the greatest se-
lection pressure on human populations [43]. A better response to in-
fectious agents through a more potent inflammatory response and ne-
croptosis may favour the higher probability of survival in the early and
middle stages of life. However, this may be counterproductive later on,
favouring the onset of cancer and other chronic inflammatory or au-
toimmune components [44]. Lastly, biologically young mice showed
enriched pathways related to mitochondrial function in the liver
(Fig. 6F, additionally, see Fig. 6A and Table 9B, both in Data in Brief
[20]). Certainly, mitochondria are one of the key regulators of long-
evity. It has been proposed that respiratory chain-deficient cells are
more predisposed to suffer apoptosis and an increased cell loss is
probable central in the age-associated mitochondrial dysfunction [45].

6. Conclusion

Breast cancer is more aggressive in young patients than in old ones.
This behaviour is reproduced in a mouse cohort generated by a back-
cross. In this work, we observed that mice with more aggressive breast
cancer are older regarding oxidative stress, according to the mathe-
matical model of biological age generated. The use of strategies similar
to those employed in this study may help to further understand the
relationship between mechanisms of inflammation, oxidative stress,
and susceptibility to cancer and aging.
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