
UC Santa Barbara
UC Santa Barbara Previously Published Works

Title

Unit Time Modelling of Asynchronous and Pulse-Gate Circuits

Permalink

https://escholarship.org/uc/item/0vk494v0

Authors

Brewer, Forrest
McCarthy, David

Publication Date

2021-07-19

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License,
available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0vk494v0
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

Unit Time Modelling of Asynchronous and
Pulse-Gate Circuits

David Mc Carthy∗, Forrest Brewer †
∗ ECE Department, University of California, Santa Barbara davidmc@ece.ucsb.edu
† ECE Department, University of California, Santa Barbara forrest@ece.ucsb.edu

Abstract—Pulse gates have shown promise as a structured
manual methodology for the design of high performance systems.
In this paper we present a “unit time” model, identifying the
behaviour the circuit from its topology. This model is applicable
to asynchronous circuits in general but particularly suitable to
pulse gate circuits where it agrees well circuit designer assump-
tions about high performance circuits. We show that for small-
to-medium circuits that have a topological “coherence” property,
timing constraints can be produced from the unit time model to
ensure behavioural correctness of the circuit. To allow complete
systems to be verified, we divide the circuit into regions each of
which can be modelled by unit time model. We introduce a notion
of communication by ”phrases” of events between region that
allow coherent communication between separate regions. In this
paper, we present a proof that the timing constraints provided
by the unit time model are sufficient to ensure behavioural
correctness of the circuit in a general bi-bounded sense. Lastly
also present a tool that applies this model to pulse gate circuits.

I. INTRODUCTION

Pulse gates[1] have signal propagation times that are 30-
50% slower than conventional CMOS gates. Nonetheless,
pulse gates represent a methodology to create circuits that
operate at much higher rates than conventional CMOS logic in
practice. This is due to execution with localized timing that is
electrically co-incident with the data signal. Due to relatively
high power density, high performance pulse circuits are not ap-
propriate for generic logic functions, but are admirably suited
for smaller, critical logic such as SERDES, link subcircuits,
FIFO/cache control and arbitration logic and selective clock
technologies such as elastic pipelines. We choose to create
a construction paradigm that allows exploitation of the high
performance, but limits the timing complexity to predictable
local timing arcs at the gate level, and consensus at larger
scales. Thus, pulses can be gated or indeed subsumed by
earlier pulses, but, pulse arrival arbitration is handled by a
separate circuit out of the timing model. These constraints
act to limit the complexity of timing verification, avoiding
factorial complexity growth of more general asynchronous
circuits.

The unit time model of pulse gate circuits was originally
presented in [2]. In this paper we refine that model generally,
and improve it in two specific ways.

• We introduce “phrases” as communication semantics be-
tween different regions each modelled by the unit time
model independently.

• We prove that timing constraints and properties derived
from the unit time model are sufficient to ensure the
timing soundness of the system.

In addition to these we present an updated computer tool
which implements unit time analysis with phrases, performing
timing verification by generating timing path constraints.

A. Related work

The notion of self-resetting gates can be traced to work by
Sites and others at the dawn of NMOS technology. The first
systematic work was that of Martin and Nyström[3]. In this
work, pulse gates were used as part of Quasi-Delay Insensitive
design paradigm, so were used in circuits designed not to
exhibit external timing dependencies by structure and thus the
problem of static timing analysis or verification did not arise.
Further several of the notations used in those paper are based
on those of Martin and Nystrom.

Greenstreet[4] created Pulse gate based micropipelines.
These circuits exhibited the relatively high performance po-
tential of pulse-gate designs, but beyond the pipeline stage
setup and hold issues, timing models were not developed.

SRCMOS is another pulse gate style aimed at data-path
computation. Computation is performed with overlapping wide
pulses, implying many timing constraints to ensure pulse
overlap[5]. However, such circuits treated these gates as dy-
namic gates, locked in a governing synchronous paradigm.
This use enabled high stage performance of clocked designs,
notably Intel P4 arithmetic pipelines[6] (Intel used the term
self-resetting domino for this work). Again, the governing
synchronous clock (at 1/2 the state rate for Intel) cast the
timing problem back into the synchronous model.

Proteus[7] is a logic synthesis methodology for dynamic
domino pipelines, which intentionally sizes the domino gates
to have a unit delay. This allows for timing optimisation
at a few-gate level but larger timing synchronisation is still
achieved in a Quasi-delay-insensitive manner

Relative timing[8] is a method of identifying timing inequal-
ities in extended burst-mode circuits, to allow the optimisation
of slower hazard free structures into faster ones with hazards
that can be checked. The overall approach is somewhat similar
to this paper, in that intended behaviour can be read from
circuit structure. The local composition rules used in that work
imply that each signal is only used once per analysis scope,
while in our pulse gate circuits, designers frequently include
looping behaviour even on a local level.

100

Critical Node

in out

Fig. 1. Pulse gate implementation

A

A

F

F
B

A
F

A

F

B

A

A
F

F

D

D

S

R

QA F

A

F

Fig. 2. Pulse gate logic elements

A different pulse gate timing algorithm for design style
discussed in this paper appeared in [1]. This algorithm requires
identification of frames where each gate only fires once, this
technique did allow for looping behaviour (i.e. self-circuit re-
triggering), however, the manual placement of timing frames
allowed for potentially missing possible behaviors. Further, the
model is incapable of modeling pulse absorption, a behavior
used in stabilizing high performance clock phase generators.

II. BACKGROUND

A. Pulse gate Circuits

1) Pulse Gates: A pulse gate circuit consists of two types
of gates, the pulse gates themselves and pulse-actuated SR
latches. A pulse gate is a self resetting CMOS gate, as shown
in 1. An arriving pulse pulls down the critical node. The output
then starts rising. After the propagation delay of the reset loop,
the critical node is pulled back up by the reset transistor, and
the output goes low to end the pulse. The gate is sized so as
the pulse is “round topped”, ensuring that rising and falling
times are independent of input excitation[9]. Thus the pulse
shape is largely dependent only on actuation arrival time, and
not slope or amplitude.

In addition to the basic pulse buffer shown, logic in pulse
gates can be obtained in two basic ways. One is by ANDing a
pulses with a static level from a SR latch, or a more involved
guard combining multiple latch values, producing an output
pulse only if the latches have a required value when at the
time the input pulses arrive. The other is by ORing two
different arriving pulses together, producing an output pulse
when either input pulse arrives. Both of these are achieved in
the NMOS pull down network. Latches are typically CVSL-
style SR latches sized to be correctly actuated by a pulse. Earle
latches with logic in the latch pull down network can also be
built. Figure 2 shows the basic pulse gate logical elements.

S

R

Q

a1
a2 a3in

out

b1
d

Fig. 3. Example fragment of a pulse-gate circuit

Several more involved pulse gate behaviours can be con-
structed for synchronisation. “Coalescence” is where an pulse-
OR gate is activated by two incoming pulses nearby in
time and produces one output pulse instead of two. A pulse
consensus gate has two input pulses, and it only produces
an output pulse after both inputs have been activated. A
pulse conjunction gate only produces an output pulse when
it receives two simultaneous input pulses.

2) Pulse gate circuit construction: Pulse gate circuits are
strictly typed so that timing information is strictly derived from
pulse gates, and not from latch outputs which are only used
for guards.

Pulse gates have low variance, both in terms of the spread
of different possible nominal delays of different pulse gates,
and also the possible PVT variation of gates in implementation
compared to that nominal. Thus pulse gate circuits can be de-
signed with timing arcs that are assumed to remain in the order
they occur in the nominal case, and further that this nominal-
case order is that the would be suggested topologically, i.e.
the event that has more gates leading to it occurs later.

Consider the circuit fragment shown in figure 3. It is
reasonable to assume that because the topological path to a3
is longer than that to d, the new value of the latch output d
will be setup in time for the new value to be considered when
pulse a3 arrives at the gate producing out.

This contrasts with, for example, burst-mode design where
the output depending on the order of evaluation of the gates
would be disallowed, or QDI design where a handshake join
would be added to ensure both d and a3 are computed before
out is.

3) Timing Constraints: To ensure that the assumed be-
haviour in the nominal case is what actually occurs, we must
impose timing constraints on the above circuit. For the above
example setup constraint we might have:

t(d) + tsetup < t(a3) at out

For recurrent networks, it is useful however to express this
as a path constraint. This can be achieved by tracing back
causality of these events to a common ancestor.

t(in→ b1→ d) + tsetup < t(in→ a1→ a2→ a3) at out

4) Timing Hazards: There are two possible ways in which a
pulse-gate circuit can escape its intended function. The first is
that an electrical error in the pulse gates can occur, where the
assumptions about its input types are violated and cause the
pulse output to malfunction, e.g. by producing runt or overly
wide pulses, or two output pulses for one input. Logical errors

101

Actual

Hold Setup

Separtaion

Designed

S

R

Q

SR Order

Conjunction
Coalescence /

Fig. 4. Pulse gate Hazards

occur when pulse gates function electrically correctly but the
system behaviour is different from what was designed. Both
these types of failures are produced from the same hazards.
Whether the failure is electrical or logical depends on the
degree to which the assumption is violated. There are 6 types
of pulse gate hazards, shown in figure 4

• A Hold hazard exists when a pulse is ANDed with a
data signal, and the pulse arrives and is expected to be
combined with the old value of the data signal before
the data signal changes. If the pulse arrives later than
nominal, or the data changes earlier, a hold violation
occurs.

• A Setup hazard exists when a pulse is meant to be
ANDed with the new value of a data signal, after that
data signal changes.

• A Retrigger hazard exists when a pulse gate fires for the
second time too soon after the first, such that the pulse
loop is still resetting.

• A Set-Reset Order hazard exists when a SR latch is
meant to receive a set and reset activation in a certain
order, but that order changes so the latch ends up having
the wrong value.

• A Coalesce hazard exists when two pulses are meant to
arrive at the same time at a gate and coalesce.

• A Conjunction hazards is similar to a Coalesence hazard,
except for gates where the arrival of both pulses is
required to produce the output.

B. Unit time Model

Taking the low-variance topological assumption further,
designers working with the circuits assume that if they have a
set of nearly simultaneous pulses in the system at one time in
a local region of the circuit, then one nominal gate delay they
will have the resultant pulses and those will also be almost
simultaneous. More specifically, the designer assumes that
while the circuit will actually have some timing dispersion,
that local behaviour will be the same as if the gates were
moving in lockstep.

Formalising this, the unit time model of a pulse gate circuit
(or a region of a pulse gate circuit) is a model defined by
simulating gate-level abstract timing behavior on the circuit
connections. The behaviour of a circuit is described as se-
quences of discrete “states”. A state is defined as the set of
pulses present simultaneously in the circuit, as well as the

value of the data signals at that time. States are separated by
the local sequencing of individual gates. The successors of
a state are defined as the sets pulses present in the circuit
simultaneously one nominal gate delay later, with latches
updated if they have accepted pulses.

C. Coherence Depth

The coherence depth of a circuit, or a region of a circuit is,
from any given state in the unit time model, how many steps
forward before all the resultant events in the new state have a
common ancestor event in the first step, or have timings as if
they did.

If we inject a timing dispersion into the pulses in the same
unit time state, then after the coherence depth states later
the circuit will have absorbed that dispersion and the relative
timing between the pulses in that later state will be the same
as if no dispersion had been injected.

For small coherence depth only limited variance buildup
is possible. For larger coherence depth more timing spread
between events considered in the same state is possible, but
still bounded.

If the a circuit is such that the behaviour can fork into
separate regions which do not communicate with each other
for a long time, then the timing dispersion between these two
regions will be large, much larger than the timing dispersion
within either region. It is possibly unbounded if the regions
do not communicate for an indefinite amount of time.

Note that this definition of coherence depth is consistently
1 smaller than the defintion in [2] since we no longer count
the starting state.

D. Production Rules

One gate level description Asynchronous circuits, including
our pulse gate circuits, is as the production rules of the gates.
These are a set of pairs of input preconditions and the output
event they cause. For level-based asynchronous circuits the
output events are rising and falling transitions, but for pulse
circuits the production of an atomic pulse is also a possible
result of a production rule. Similarly the guard for level-based
circuits is a boolean function of input signals, where for pulse
circuits the guard may also include pulse signals.

When a production rule becomes satisfied and produces an
event, let the event that caused the production rule to become
satisfied be called the “causal event”. The design rules for our
pulse circuits can be defined as that each gate produces either
a pulse event but no static state (and thus its event can be
causal), or a data output (static state) with transition events
that are never casual.

For multiple events arriving near-simultaneously at a gate,
causality can be determined by applying them one-by-one and
seeing which one results in the output event being produced.
The result of this procedure should result in the same output
regardless of the order. Simultaneous arrival of events that
would result in different outputs depending on order should
be avoided (e.g. data change arriving at the same time as a
pulse in a pulse AND gate).

102

III. PHRASES

The applicability of the unit time model is dependant on the
coherence depth being small. Trying to build a unit time model
of a large system will have an excessively large coherence and
it would instead be better to build unit time models of different
regions of the circuit and then model the communicating
between those regions. Thus it is necessary to extend our unit
time model to include communication. To describe our circuits
of interest adequately, it is necessary that coherence also be
available across communication.

A “phrase” is a unit timed series of pulses and data-changes
that represents one communication interaction between two
regions of a circuit. A phrase is a regular language whose
alphabet is the sets of signals, which shows the patterns of
unit timed signal events that consisting the communication
being described.

Phrase languages can be expressed using a variation of the
Martin’s Handshaking Expansion[10] syntax, where the “;”
then operator means exactly one unit time step later, and ∅
describes a unit time step with no events crossing the region
boundary.

Each phrase also has a coherence depth. This is the largest
distance back between common ancestors of any pair of
nominally simultaneous signals in the phrase, or between a
current event and the unseen progenitor of a future event. This
is at most the coherence depth of the region generating the
phrase, or it may be smaller depending on the structure of the
region.

For example a simple serial link system (serialiser and
deserialiser) can be described with 3 phrases. The first is the
“go” phrase to start the serialiser. This has a language of just
go;. The coherence depth of this is 0, since the single event
has no dispersion relative to itself. The “done” phrase of the
deserialiser is similar. In practice the “go” and “done” phrase
may also include the setup of the input and output data latches
respectively. They would remain one state long but that would
have additional signals.

The more interesting phrase is the one describing a word
on the pulse-based serial link. We here consider a 4-bit word
with 4 unit gate delays between each symbol. This described
by the language:

(ser0|ser1);∅;∅;∅; (ser0|ser1);∅;∅;∅;

(ser0|ser1);∅;∅;∅; (ser0|ser1);

A. Regions by cut

Given a set of phrases for a system we can identify the
regions associated with each phrase automatically. We start
with the signals of that phrase and flood fill up to the
boundaries defined by the signals of other phrases. Thus we
obtain a region that obtains receives that phrase, computes on
it, and emits zero or more output phrases (of the one or more
topologically possible output phrases found by flood fill). This
flood fill is shown for a SerDes system in figure 5

In general leads to overlapping regions, where two distinct
phrases fan out into the same gates. Further this overlap may
mean that multiple technically distinct regions may produce

Phrase

Go Pharse Serial Word Done Phrase

Serialiser Deserialiser

Fig. 5. Phrases dividing up a SerDes circuit and regions derived from them

Iterative

Circuit

A

Iterative

Circuit

B

C

donego

go1

go2 done2

done1

Fig. 6. System with non-trivial control flow

the same output phrase or phrases. Thus at any time we
assume that while a particular phrase is being processed in a
region, that the behaviour sponsored by that phrase is the only
activity in that region. All phrase activity from other phrases
whose fanout region overlaps must occur definitely before or
definitely after the phrase under consideration. System-level
constructions for enforcing this are beyond the scope of this
paper.

B. Completeness

To see that a phrase-based model can reasonably model
general systems, we assert the following:

• Control forks can be achieved with a region that has one
input phrase and two output phrases.

• Control joins can be achieved with two single-pulse
phrases whose regions overall and start with a consensus
gate. The first pulse to arrive arms that leg of the
consensus gate, while not propagating to the rest of
the region and thus producing no output phrase. The
second then fires the consensus gate and produces further
action and an output phrase. Figure 6 illustrates these two
possibilities.

• Data can be passed in several ways. 1-hot encoding of
data is useful for long physical distance communication.
Pipeline like data passing can be achieved by having
the data as part of the phrase cut. Also phrases can
read “global” data from registers assuming that it can
be guaranteed that no other phrase that changes that data
is co-executed.

C. Timing Constraints across regions

In tracing back the paths of timing constraints in one region,
we may find that the paths trace back to a pair of distinct pulses
in the phrase. If this occurs, we can rearrange the inequality
into the form of t2 − t1 > Then we can in all possible
source regions of that phrase trace all paths and enforce that
requirement on t2− t1.

103

D. Unit time model of production rule systems

The unit time model of a gate circuit specified by produc-
tions rules is a finite automata model based on the topology
of the circuit. A state in the unit time model is the product of
the following factors:

• For all signals, whether an event is occurring on that
signal for that state.

• For signals that have a level, the value of that level (after
the transitions have been taken into account).

• Long term internal state of any gates that have such (e.g.
pulse consensus gates).

• The generating machine of the input.
• The recognising machines of the output phrases.
The next state of the unit time model is defined by evaluat-

ing the productions rules of each gate over the current state of
the system to determine which events should occur, and then
apply the transitions to determine the new value of levels.

E. Unit time model of phrases

In the unit time model, a phrase is represented as Moore
machine whose outputs are the events and levels of those sig-
nals. For the generating machine, the machine is deterministic
but is a generator (so can transitions non-deterministically).
The initial state is (arbitrarily one of) the first state of the
language. The final state is a trap state which loops forever
producing no events.

The output recognising machine or machines are non-
deterministic recognisers. They can start in either a waiting
state to wait for output, or in the first state of the language for
cases where the output begins immediately. An accepting state
which loops as long as no unexpected trailing output events
are produced is appended.

IV. SOME DEFINITIONS

A. Bi-bounded delay model

For considering the actual rather than unit time behaviour of
a region of a circuit, we use a bi-bounded delay model. In this
model each gate g, upon its production rule becoming satisfied
by an event at time tin it produces its output event (pulse or
data change) at time tout such that tin+tmin,g < tout < tin+
tmax,g . Let Tmin = ming tmin,g and Tmax = maxg tmax,g

When consider the bi-bounded model in conjunction with
the unit time mode, for an event on signal g at timestep k in
the unit model, let t(k, g) be the time that the corresponding
event occurs in the real time model.

For gates with multiple near-simultaneous input events, the
output timing is based on the one which is causal by the above
definition. For a pulse OR gates performing subsumption with
multiple input events tin,1, tin,2, . . ., the gate is activated by
the first event. Thus tin,eff = min(tin,1, tin,2). We refer
to this as a delay-minimising gate. For gates performing
conjunction, the gate is activated by the second pulse. Thus
tin,eff = max(tin,1, tin,2). We refer to this as a delay-
maximising gate.

For the events in the input phrase, the phrase is generated
by a timed extension of the usual generating automata. It takes

each state transition internally for some time in between Tmin

and Tmax. Let this state time represent the earliest time of
the events in the generating machine, noting this event may
not be visible at the region boundary. For a input phrase being
generated with coherence depth DIN then the visible events of
the phrase are generated in the bi-bounded model with times
tstate < tevent < tstate +Din ∗ (Tmax − Tmin). We will see
later where this bound comes from. The input timing model
may provide additional timing guarantees between specific
pairs of signals, either measured by another instance of this
theory or specified by another means.

B. Coherence Depth Definition

To formally define coherence depth, we will work from the
injected perturbation view of coherence discussed above. We
define coherence depth this way since it can be measured from
the circuit. Later, theorems 4 and 3 will then show that the
“common ancestor” definition is equivalent to this.

The ranked-order labeling is an augmentation of the unit
time model to carry information about how variance propa-
gates. A state in this rank-order labeled model consists of a
unit time state plus a rank label lr(g) added to those signals
that have an event occurring in that timestep. Rank labels are
small positive integers, with lower values representing variance
earlier in time and larger values later. Labels are not applied
to signals where events are not occurring in a given time step.

The ranked-order labeling is added to trace under the unit
time model, starting from some state index k0 in that trace. For
the first state of the ranked-order, unique labels are added to
each event that occurs in that state. When considering models
with an input phrase, the input events that occurs in the start-
of-labelling state and the next DIN − 1 states are assigned
unique labels, and one label is assigned to all events thereafter.
Here DIN is the coherence depth of the input phrase.

If the unit time trace is being considered together with a
real-time trace then lr(k0, g1) < lr(k0, g2) iff t(k0, g1) <
t(k0, g2). If a unit time trace is being considered in isolation,
all possible orderings are considered.

For the next state of the rank order labeling, the unit time
state component is determined as for the regular time model.
If gate gn produces an event:

• For a single causal event g1 activating the gate,
lr(k, gn) = lr(k − 1, g1)

• For a delay-minimising gate g activated by two po-
tentially causal input events g1 and g2, lr(k, gn) =
min(lr(k − 1, g1), lr(k − 1, g2))

• For a delay-maximising gate with input g1 and g2,
lr(k, gn) = max(lr(k − 1, g1), lr(k − 1, g2))

Definition 1. Suppose k0 is a time index into a trace TU of
the unit time model of a circuit region C. Suppose TU,k0 be a
trace with a ranked order labeling LR applied starting from
step k0. If there exists a kd such that all the labels labels are
equal to each other in TU,k0[k] for all k >= kd, then d =
kd − k0, otherwise let d→∞.

The coherence depth is defined as
D = maxTu maxT maxk0 maxLR

d

104

C. Single-ancestor timing

For a given region of the circuit we say that it satisfies single
ancestor timing if for each gate in the circuit, whenever that
gate fires, the fanout of that gate does not create timing issues
in and of itself. One way in which this might be enforced is
by a set of path constraints as described in section II. We will
show later (theorem 3) that we need only consider those paths
where the shorter length is at most the coherence depth D of
the circuit. This also bounds the length of the longer leg to be
considered until the inequality is trivially true.

When considering input signals into a region, the ‘single
ancestor’ may be a pair of signals possibly even on different
timesteps. These have an unknown common ancestor in the
previous region. The definition of the input timings into the
bi-bounded model is generalised to allow for this possible
common ancestor.

V. TIMING CONTAINMENT

In this section, we prove that the unit time model accurately
models the behaviour of a circuit or region of a circuit
assuming that the circuit has a well-defined coherence depth
and an appropriate set of single ancestor timing constraints.
We do this by establishing correspondence between any given
real time trace and a unit time trace.

Definition 2. A real-time trace TB and unit time trace TU are
in correspondence if:

1) A one-to-one mapping can be made between the events
that happen in the bi-bounded trace and the events that
happen in unit time trace.

2) For two events t1 and t2 from the unit time model that
are in correspondence with the same time-step of the
unit time model, |t2− t1| < D ∗ (Tmax − Tmin).

A pair of traces can be said to be in correspondence for all
time, or up to a given time-step n.

Theorem 1. Given a circuit C with finite coherence depth D
that satisfies single-ancestor timing constraints, any pair of
unit time trace TU and bi-bounded trace TB from the same
initial conditions are in correspondence for all time.

This will be established by induction. First, we will build
our base case. Then, we will build our inductive step in three
parts. We will show that if we know that the traces correspond
up to n − 1 and the one-to-one mapping exists for step n,
then step n also satisfies the timing bound and thus is also in
correspondence. We then show a tighter timing bound. Finally
we show that given these results the one-to-one mapping exists
for step n+ 1.

Theorem 2. For a circuit C, any pair of TB and TU are in
correspondence for n = 0 and corresponding events exist for
timestep n = 1.

Proof. The circuit can have no internal events at n = 0, and
thus the first part of the statement follows directly from the
definition of the how inputs are applied to the bi-bounded
model. The second part of the statement follows from the
single ancestor timing model applied to these input pulses.

Theorem 3. Sps. that we know that TB and TU have coher-
ence depth D, corresponding events for timesteps k = 0..n
and the delay bound from theorem 1 applies for timesteps
k = 0..n− 1.

Then for two events t1 and t2 in timestep n, |t2 − t1| <
D ∗ (Tmax − Tmin).

Proof. Let k0 = n−D. Let TR be a rank-order trace derived
from TU with the rank orders applied at timestep k0 in
conformity with TB . We will show by induction for k >= k0
that if lr(k, g) = r and tr = t(k0, g2) such that lr(k, g2) = r
then

tr + Tmin ∗ (k − k0) <= t(k, g) <= tr + Tmax ∗ (k − k0)

For k = k0, all signals have distinct labels and this statement
collapses to t(k, g) <= t(k, g) <= t(k, g) which is trivially
true.

Assuming the bound is true for all gates up to timestep
k − 1, consider a gate gn in timestep k, we have 3 cases:

Case 1: If gn has a single causal event g1 sponsoring its
behavior, then lr(k, gn) = lr(k − 1, g1) and t(k − 1, g1) +
Tmin <= t(k, gn) <= t(k − 1, g1) + Tmax. Thus

tr + Tmin ∗ (k − k0 − 1) + Tmin <=

t(k, gn) <= tr + Tmax ∗ (k − k0 − 1) + Tmax

Case 2: If gn is a delay-minimising element for two input
causal events g1 and g2. Let t(k− 1, g1) < t(k− 1, g2). Thus
t(k− 1, g1) + Tmin <= t(k, gn) <= t(k− 1, g1) + Tmax and
thus:

tr1 + Tmin ∗ (k− k0) <= t(k, gn) <= tr1 + Tmax ∗ (k− k0)

If lr(k − 1, g1) <= lr(k − 1, g2) then lr(k, gn) = lr(k −
1, g1) and this is directly what is required. If instead lr(k −
1, g2) < lr(k− 1, g1) then lr(k, gn) = lr(k− 1, g2). The case
assumption implies tr2 <= tr1. Thus tr2+Tmin∗(k−k0) <=
tr1 + Tmin ∗ (k − k0) <= t(k, gn)

For the other side of the inequality, consider (k − 1, g1) <
t(k−1, g2)) <= tr2+Tmax ∗ (k−k0−1) and thus (k, gn) <
t(r2)+Tmax∗(k−k0−1)+Tmax giving the desired inequality
in the second case.

Case 3:If gn is operating as a delay-maximiser of two
input events g1 and g2 then a similar argument applies in the
opposite direction.

By the definition of coherence depth, we know that all
lr(k, g) are equal for k >= k0 + D = n then for k = n
we have that

∃tr∀g
(
tr + Tmin ∗D <= t(k, g) <= tr + Tmax ∗D

)
Thus any two events in the state n have real times that are

at most D ∗ (Tmax − Tmin).

Theorem 4. Assuming TU and TB are in correspondence up
to time step n, we have that for two events g1 and g2 in
timestep n at times t1 and t2, over all possible ancestors g3
in timestep k0 then:

t2− t1 <= maxg3

(
tmax(g3...g2)− tmin(g3...g1)

)
105

Remark. From theorem 3 we have established the weaker
result that t2 − t1 <= D ∗ (Tmax − Tmin).

Proof. From the definition of coherence depth, g1 and g2 have
a common labelling ancestor g3 in timestep k0. Let g4 be
another event in the starting timestep. Supposing the label of
g4 is later than that of g3. The fact that the label of g4 is
eliminated means one of:

• There exists two delay minimising elements on the paths
from g4 to g1 and g2 that chose the label of g3 over that
of g3,

• g4 does not have a path to influence the labelling of either
g1 or g2.

• A mixture of delay minimising and maximising elements
exist that always choose the label of g3 over that of g4

For the delay minimising case, let g5 and g6 be the delay
minimising elements on the paths to g1 and g2 respectively,
from both g3 and g4. If for the times in the bi-bounded trace
g5 and g6 both choose g3 then we have our result with g3 as
the chosen ancestor gate. If t4 decreasing causes g6 to choose
g4 as its ancestor instead, the inequality remains true since t2
is reduced. If t4 decreasing causes both g5 and g6 to choose it
instead of t3 the inequality still holds but now with g4 as the
ancestor gate. If t4 decreasing causes g5 to choose t4 but g6
to choose t3 then again we have our inequality still holding
with g4 at the common ancestor and t2 for that case reduced
by the fact that t3 pulled g6 earlier.

In the case where the label of g4 does not affect the labels
of g1 and g2, the same lack of path prevents the actual timing
from affecting t1 and t2, so we have our result directly. For
the mix of minimising and maximising cases, if these elements
are arranged to always choose the label of g3 then they will
also always choose its timing.

For cases when the label of g4 is earlier than g3 a similar
argument holds with delay maximising elements instead of
delay minimising elements.

Theorem 5. Assuming traces TB and TU are in correspon-
dence up to timestep n, then a one-to-one mapping exists for
events in timestep n+ 1

Proof. For each gate gn in timestep n + 1, the unit time
model makes a prediction that that gate is about to fire in the
next step, and any current step causal events that could cause
the next gate to fire (under some non-causal preconditions).
For each of those causal, for each data precondition g2 in
those guards, to ensure the bi-bounded model to have the
same behaviour we require tg1,n >= tg2,n + tsu,gn and
g1, n <= tg2,next + thold,gn

For the setup constraint, we know from our assumed single
ancestor timing model that the constraint can be met if t1− t2
is constrained to the maximum of its single ancestor value.
From theorem 4 this is the case.

For the hold constraint, there are two possibilities. One is
that the next event to change g2 is the same next event as
predicted by the unit time model through a path predicted by
the unit time model. Thus, like the setup case, this is covered
by timing constraints. The other is the hypothetical creation

of an unexpected earlier event on g2 but this requires a timing
failure at the inputs of g2 which would be covered by timing
constraints.

Thus for each g1 and g2 driving gate gn the single ancestor
timing model is sufficient to ensure that the gate performs the
same in the bi-bounded model as predicted by the unit time
model.

Now we can prove Theorem 1.

Proof. By induction. Theorem 2 gives us conformance for
n = 0. Applying theorems 5 and 3 in turn gives us that if
conformance exists for timestep n then it exists for timestep
n+ 1

A. Output phrase conformance

For each output phrase the region produces, the region may
have a coherence depth Dout that is smaller than that of the
whole region, for example if the region includes extra latches
to buffer its outputs. This can be determined by a similar
labelling process to the whole region but looking only at the
output phrase’s signals. Then a similar argument to theorem
1 will give that the events have the necessary timing variance
since the agreement of labels gives a common ancestor.

VI. TOOL IMPLEMENTATION

A tool leveraging this analysis was developed. The algo-
rithms implemented by this tool are largely similarly to those
in the previous version of the tool [2], so we will only describe
the differences. Firstly phrases are implemented, so given a
description of the phrases in a system the circuit will be
divided up into regions and each analysed separately.

A. Fast-Slow labelling

The fast-slow labeling is an augmentation of the unit time
model, similar like the ranked order label discussed above.
Only two labels are used of Fast or Slow, representing rel-
ative timing deviation. The fast-slow labelling is used instead
of the ranked order labelling for computational efficiency. The
application and update rules are similar to those for the ranked
order model.

Multiple passes of the fast-slow labeling can be applied
to model a rank-order labeling Lr. Let Lf , i be a fast-slow
labeling where lf , i(k0, g) = Fast iff lr(k0, g) <= i. Then
for k > k0 we can determine the ranked order label. If
lf , i(k, g) = Slow and lf , i+1(k, g) = Fast then lr(k, g) = i.

B. Coherence depth measurement

Coherence depth measurement is done by trial of different
coherence depths, and applying a BDD-based CTL model
check to see if all labels are the same. This is performed using
the NuSMV tool. Use of bounded model checking was also
investigated but found to be less efficient. The input coherence
depth of each region is initially assumed to be 1, or can be user
specified to be higher. Output coherence depths are measured
similarly. If those output coherence depths feed into a region,
and tell us the coherence depth of that phrase is higher than

106

Circuit Setup Hold SR Ord. Retrig Thru
3-bit counter 2 8 2 8 0
4-bit Serialiser (tree) 3 0 0 16 24
4-bit Serialiser (linear) 3 0 0 20 24
4-bit Deserialiser 80 89 40 48 0
4-bit Ripple Carry Adder 240 0 0 0 0

TABLE I
DETAILS OF THE CONSTRAINTS FOUND IN SOME REGIONS OF THE TEST

CIRCUITS

previously known we must retest that region to see if the
increased input coherence depth increases the region or its
outputs coherence depths. This is iterated until upper fixed
point.

C. Hazard tracing

The single ancestor timing constraints are found as in
previous work[2] by identifying possible pairs of signals that
might be a hazard from the circuit topology, and searching
backwards in unit time for possible path pairs that lead to
them. BDDs are used to ensure that states exist that lead to
this trace. This uses internal BDD structures not NuSMV.

Having identified possible backward paths, they are further
checked by a forward search that includes speed labelling to
see if the path is made redundant by synchronisation. This test
here is applied with CTL in NuSMV.

D. Hazards between regions

Where a hazard in a region is traced back to the input bound-
ary, this timing constraint on the inputs is back propagated into
the region that produced that phrased and traced there as a new
hazard. These are called ’through’ hazards. That the correct
signals occur is tested in the backtrace, that the output state
agrees with the input state in the next is checked during the
CTL recheck of the path.

E. Tool Results

A tool implementing the analysis discussed here was imple-
mented, and a set of test examples constructed. A 3-bit counter
is a very basic example. Two different varieties of 4-bit pulse
ser-des system were designed, one with a linear serliasiser
and one with a tree serialiser. Both use tree deserialisers.
These are from [11]. A 4 bit ripple carry adder is also tested,
implemented using a one-hot design style. A version of the
the circuit from figure 6 above was also tested, with the
iterative circuits being 3-bit counters looped on themselves
until they overflow to achieve a delay of approximately 40
cycles. Table I shows the number of hazards for some key
regions of interest in these circuits. Runtimes ranged from 3
sec for the binary counter to 32 sec for the SerDes system
with the linear serialiser.

VII. CONCLUSIONS

To the established unit time model of pulse gate circuits we
have presented two extension.

First we have introduced “phrases” as a mean of specifying
the communication between different unit timed parts of the

circuit without enforcing the unit time throughout. These
allow much larger circuits to be analysed where it would be
inappropriate to analyse the whole thing as a pulse gate circuit.

Secondly, we have proved that a simply-generated set of
timing constraints (those arising obviously from a single an-
cestor gate) and the coherence property of pulse gates circuits,
together are enough to ensure the entire system is sound from
a timing perspective and performs as predicted by the unit
time model.

A proof of concept tool has also been shown, using a path
tracing approach to perform timing verification inside and
across region boundaries.

While the analysis here was dedicated to pulse gates, the
unit time model and proof have been stated in sufficiently
general terms that they could be applied to other asynchronous
systems readily.

A. Future Work

The local analysis presented in this paper assumes that at a
system level overlapping phrases do not co-execute The most
immediate future work will be applying some other analysis
at the high level to prove the required system level behaviour.

The theoretical framework developed in this paper applies
to any “single-ancestor” timing verification. Other such veri-
fication will be investigated to see if they can address larger
circuits than possible with the path tracing verification.

REFERENCES

[1] M. Miller, C. Segal, D. Mc Carthy, A. Dalakoti, P. Mukim, and
F. Brewer, “Impolite high speed interfaces with asynchronous pulse
logic,” in Proceedings of the 2018 on Great Lakes Symposium on VLSI,
ser. GLSVLSI ’18. New York, NY, USA: ACM, 2018, pp. 99–104.
[Online]. Available: http://doi.acm.org/10.1145/3194554.3194592

[2] D. McCarthy, M. Miller, and F. Brewer, “Automated Timing Constraint
Generation for Pulse Gate Circuits,” IWLS Workshop, Lausanne, Switzer-
land, 2019.

[3] M. Nyström, Asynchronous pulse logic. Boston: Kluwer Academic
Publishers, 2002.

[4] M. R. G. and, “Surfing interconnect,” in 12th IEEE International
Symposium on Asynchronous Circuits and Systems (ASYNC’06), March
2006, pp. 9 pp.–106.

[5] V. Narayanan, B. A. Chappell, and B. M. Fleischer, “Static timing
analysis for self resetting circuits,” in Proceedings of International
Conference on Computer Aided Design, Nov 1996, pp. 119–126.

[6] G. Hinton, M. Upton, D. J. Sager, D. Boggs, D. M. Carmean, P. Roussel,
T. I. Chappell, T. D. Fletcher, M. S. Milshtein, M. Sprague, S. Samaan,
and R. Murray, “A 0.18-/spl mu/m cmos ia-32 processor with a 4-ghz
integer execution unit,” IEEE Journal of Solid-State Circuits, vol. 36,
no. 11, pp. 1617–1627, Nov 2001.

[7] P. A. Beerel, G. D. Dimou, and A. M. Lines, “Proteus: An asic flow for
ghz asynchronous designs,” IEEE Design Test of Computers, vol. 28,
no. 5, pp. 36–51, 2011.

[8] K. S. Stevens, R. Ginosar, and S. Rotem, “Relative timing [asynchronous
design],” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 11, no. 1, pp. 129–140, Feb 2003.

[9] M. Miller, G. Hoover, and F. Brewer, “Pulse-mode link for robust,
high speed communications,” in 2008 IEEE International Symposium
on Circuits and Systems, May 2008, pp. 3073–3077.

[10] A. J. Martin and M. Nystrom, “Asynchronous techniques for system-on-
chip design,” Proceedings of the IEEE, vol. 94, no. 6, pp. 1089–1120,
2006.

[11] M. Miller, “Realization and formal analysis of asynchronous pulse
communication circuits,” Ph.D. dissertation, Dept. Elec. and Computer
Engineering, Univ. California Santa Barbara, 2015.

107

