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Abstract

Theoretical and Computational Tools for Analyzing the Large-Scale Structure of the
Universe

by

Nicholas A Hand

Doctor of Philosophy in Astrophysics

University of California, Berkeley

Professor Uroš Seljak, Chair

The analysis of the large-scale structure (LSS) of the Universe can yield insights into some of
the most important questions in contemporary cosmology, and in recent years, has become
a data-driven endeavor. With ever-growing data sets, optimal analysis techniques have be-
come essential, not only to extract statistics from data, but also to effectively use computing
resources to produce accurate theoretical predictions for those statistics. Future LSS exper-
iments will help answer fundamental questions about our Universe, including the physical
nature of dark energy, the mass scale of neutrinos, and the physics of inflation. To do so,
improvements must be made to theoretical models as well as the computational tools used
to perform such analyses.

This thesis examines multiple aspects of LSS data analysis, presenting novel modeling
techniques as well as a software toolkit suitable for analyzing data from the next generation of
LSS surveys. First, we present nbodykit, an open-source, massively parallel Python toolkit
for analyzing LSS data. nbodykit is both an interactive and scalable piece of scientific
software, providing parallel implementations of many commonly used algorithms in LSS. Its
modular design allows researchers to integrate nbodykit with their own software to build
complex applications to solve specific problems in LSS. Next, we derive an optimal means of
using fast Fourier transforms to estimate the multipoles of the line-of-sight dependent power
spectrum, eliminating redundancy present in previous estimators in the literature. We also
discuss potential advantages of our estimator for future data sets. We then present a novel
theoretical model for the redshift-space galaxy power spectrum and demonstrate its accuracy
in describing the clustering of galaxies down to scales of k = 0.4 hMpc−1. Finally, we analyze
the large-scale clustering of quasars from the extended Baryon Oscillation Spectroscopic
Survey to constrain the deviation from Gaussian random field initial conditions in the early
Universe, known as primordial non-Gaussianity.
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Chapter 1

Introduction

The past several decades have brought immense change to the field of cosmology, and in
particular, the study of the large-scale structure (LSS) of the Universe. From the earliest
realizations that galaxies could be used to trace the matter density field,1 the size of data sets
mapping the three-dimensional Universe has grown from the thousands to the millions, with
a factor of ten or more increase expected in the future. Driven by technological advances, the
rise of automatic, wide-field galaxy surveys has transformed LSS research into a data-driven
science. The aim of the work in this thesis is to improve the tools we use to analyze such
data sets and infer properties of the Universe. We focus not only on theoretical techniques,
but also numerical and statistical methods, with special consideration of the requirements
demanded by future LSS data sets.

To start, we provide a short introduction of the standard cosmological model and how it
developed into the consensus paradigm, with a myriad of observations providing evidence.
We also provide some context regarding the history of LSS data analysis and outline some of
the important theoretical concepts upon which this thesis relies. Individual chapters provide
more in-depth formalism when necessary. The primary four chapters of this thesis present
related work from several published papers. Chapter 2 presents a massively parallel software
toolkit that implements some of the most commonly used algorithms in LSS data analysis.
Chapter 3 derives an optimal estimator for the multipoles of the anisotropic power spectrum
of a density field and discusses some potential advantages of such an estimator for future data
sets. Chapter 4 develops a new theoretical model for the anisotropic galaxy power spectrum
and performs stringent tests of the level of theoretical systematics using simulations. Finally,
Chapter 5 combines many of the analysis tools described in this thesis to constrain the level
of primordial non-Gaussianity in the early Universe using the power spectrum of quasars, as
observed by the extended Baryon Oscillation Spectroscopic Survey.

The background material presented in this introduction is collected from a number of
sources, including Dodelson (2003), Peacock (1999), Peebles (1980), and Coil (2013). We
provide more specific references throughout this chapter when needed.

1see the series of papers starting in the 1970s with, e.g., Peebles (1973), Tonry & Davis (1979)
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1.1 The standard cosmological model
A variety of observations over the past several decades, including measurements of the

cosmic microwave background (CMB), Type Ia supernovae (SNe), and large-scale structure,
have provided evidence for a consensus theory for the evolution of the Universe. This theory
predicts that approximately 13.8 billion years ago (Planck 2015; Planck Collaboration et al.
2016a) the Universe existed in a very hot and dense early state. From this so-called “Big
Bang” state, the Universe continued to expand, with the late-time expansion accelerating
due to an energy component, referred to as dark energy, whose physical origin is not yet
understood. Dark energy comprises roughly 70% of the Universe’s present energy budget; the
remaining amount includes a small relativistic radiation component (photons and neutrinos)
and a larger non-relativistic matter component. The latter is dominated by an effectively
collisionless component known as cold dark matter (CDM), comprising roughly 25%. The
more familiar baryonic matter, which interacts electromagnetically, makes up the remaining
portion (roughly 5%). These various components evolve differently with time (see §1.3.1),
and as the Universe has expanded and become less dense, the principal energy component
has changed. Thus, the Universe, which began dominated by radiation, has had successive
periods of matter and dark energy domination.

The prevailing theory for the initial conditions of the Universe is known as inflation (Guth
1981; Linde 1982; Albrecht & Steinhardt 1982). During this epoch, the Universe expanded
exponentially, growing its scale by at least a factor of ∼1027. This rapid expansion stretched
quantum fluctuations to a macroscopic level, producing the perturbations that seeded the
structure that we observe today. An important consequence of inflation is that it predicts
a near homogeneous, isotropic, and spatially flat Universe. These properties have all been
observationally confirmed with a high degree of precision, but as of yet, there is no direct,
conclusive observational evidence for the inflationary model (see §1.3.2).

Following inflation, the Universe cooled, with the competition between the expansion
rate and interaction rates between particles defining the thermal evolution. Eventually,
the process of Big Bang nucleosynthesis resulted in the creation of charged atomic nuclei,
with roughly 75% of the baryonic mass in the form of hydrogen ions (1H), 25% in the
form of helium (4He), and small amounts of deuterium and lithium. Along with these
nuclei, electrons, photons, and neutrinos were also present. The charged baryonic matter
(protons + electrons) was tightly coupled by their electromagnetic attraction. The free
electrons were also tightly coupled to the photons via Thomson scattering. The result was
the so-called photon-baryon fluid. The pressure of this fluid prevented fluctuations from
gravitationally collapsing, instead leading to the production of acoustic waves. These sound
waves, known as baryon acoustic oscillations (BAO; see, e.g., Bassett & Hlozek (2010) for
a review), propagated until the photons and baryons decoupled. This occurred around the
time of “recombination”, when the Universe had cooled enough for neutral hydrogen to form,
roughly 400,000 years after the Big Bang. Since this time, photons have free streamed
from the so-called “surface of last scattering” through the Universe nearly unhindered. It is
these photons that we observe today as part of the nearly isotropic 2.7 K cosmic microwave
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parameter value

Present-day baryon density Ωbh
2 0.02230± 0.00014

Present-day cold dark matter density Ωch
2 0.1188± 0.0010

Angular size of the sound horizon [radians] θ? 104.093± 0.030
Optical depth due to reionization τ 0.066± 0.012
Scalar power spectrum index ns 0.9667± 0.0040

Amplitude of primordial curvature perturbations ln 1010As 3.064± 0.023

Table 1.1 : The cosmological parameters in the standard, spatially flat ΛCDM model, as measured
by Planck Collaboration et al. (2016a) (from Table 4, column 6).

background radiation.
Around 50,000 years after the Big Bang, the Universe’s energy density became dominated

by matter, and the initial CDM (and after recombination, baryonic) density fluctuations,
began to experience substantial growth due to gravitational instability. The fluctuations
collapsed under gravity to form the cosmic web: intersecting, nonlinear structures of halos,
voids, and filaments that are dominated by CDM. Within dark matter halos, baryonic ma-
terial cools and collapses to form stars and galaxies. Galaxies can be found in the centers
of halos, or in the most massive halos, as satellite galaxies in orbit around the center. The
process of structure growth is hierarchical, with smaller objects forming first and merging
together to form larger structures. On large scales (∼150 Mpc), the evolution of structure
growth is well described by a linear description of the perturbations, but on smaller scales,
the nonlinear nature of the fluctuations presents significant theoretical challenges.

The concordance model described here came into focus following one of the most signif-
icant physics breakthroughs in recent memory: the discovery of the accelerating expansion
rate of the Universe (Riess et al. 1998; Perlmutter et al. 1999). This provided the first direct
evidence for the presence of dark energy. Despite its physical origins remaining a mystery,
dark energy can be described by a cosmological constant Λ, whose energy density is assumed
to be constant in time. Hence, the paradigm described in this section has come to be known
as the ΛCDM model. In its standard form, the model assumes the Universe to be spatially
flat, with its evolution described by six parameters. The current best constraints on these
six parameters are given in Table 1.1, as measured by Planck Collaboration et al. (2016a).

The ΛCDM model is well supported by a number of different observational probes.2
Most importantly, observations of the anisotropies of the CMB by the WMAP (Bennett
et al. 2013) and Planck (Planck Collaboration et al. 2016a) satellites and the ground-based
Atacama Cosmology Telescope (Das et al. 2014) and South Pole Telescope (George et al.
2015) have provided strong constraints on the matter and radiation densities, the angular
diameter distance to the surface of last scattering, and the shape and amplitude of the
primordial matter power spectrum. Supplementing these constraints, galaxy redshift surveys

2For a comprehensive review of the observational probes of dark energy and cosmic acceleration within
the context of the ΛCDM model, see Weinberg et al. (2013).
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have successively measured the BAO feature on scales of ∼150 Mpc, which is imprinted on
the clustering of density field tracers by sound waves in the baryon-photon fluid in the early
Universe. These measurements have yielded constraints on the expansion rate across a wide
redshift range, spanning z ≈ 0.1− 0.8 and z ≈ 2.5 (Sánchez et al. 2006; Beutler et al. 2011;
Kazin et al. 2014; Oka et al. 2014; Ross et al. 2015; Alam et al. 2017). Studies of Type Ia
SNe not only provided the first evidence for dark energy in Riess et al. (1998); Perlmutter
et al. (1999), but have also yielded complementary constraints on the expansion rate and
present-day Hubble parameter H0 (Freedman et al. 2012; Riess et al. 2016; Suzuki et al.
2012; Betoule et al. 2014). The growth of structure can be further constrained by weak
gravitational lensing measurements, e.g., Heymans et al. (2013); Troxel et al. (2017), and
redshift-space distortion analyses of anisotropic galaxy clustering measurements, e.g., Beutler
et al. (2017b); Grieb et al. (2017). When considered together, this diverse set of observations
provides compelling evidence for the standard, spatially flat six-parameter ΛCDM model.

1.2 Large-scale structure

1.2.1 Cosmological constraints from LSS data

Measurements of the clustering of luminous objects that trace the underlying matter
density field contain a wealth of information about our Universe. Here, we briefly outline
some of the analysis methods that have been used successfully to constrain the ΛCDM model
in recent years.

Linear redshift-space distortion measurements

Peculiar velocities distort the measured clustering signal in redshift space, boosting the
clustering in the direction parallel to the line-of-sight (LOS). The anisotropy is known as
redshift space distortions (RSD). On large, linear scales, this distortion can be parametrized
by the RSD parameter β = f/b, where f is the logarithmic growth rate and b is bias of the
tracer relative to the matter field (see §1.3.3). Early measurements of β using LOS-dependent
clustering include Hamilton (1993); Cole et al. (1995); Tadros et al. (1999); Peacock et al.
(2001); Hawkins et al. (2003); These studies provided additional evidence for the ΛCDM
model in support of CMB and SNe measurements. Constraints on β can also be used to
test general relativity and models of modified gravity, which predict measurable differences
in the growth rate f (e.g., Guzzo et al. (2008)).

BAO measurements

Acoustic waves in the baryon-photon fluid in the early Universe imprint a distinctive BAO
feature on the clustering of luminous objects in the late-time Universe. Manifesting as a peak
in the correlation function and oscillations in the power spectrum, the BAO feature can be
used as a “standard ruler” to constrain the expansion rate and properties of dark energy
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Figure 1.1 : A summary of present-day BAO and growth of structure constraints from
LSS surveys. Top: Distance constraints as function of redshift for a variety of published
BAO studies, with Planck 2015 predictions shown as the solid lines. Bottom: Constraints
on the growth rate of structure, parametrized by f(z)σ8(z), from several LSS surveys,
with the Planck 2015 + general relativity prediction shown as the solid line. Figure
credit : Alam et al. (2017).
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(Eisenstein et al. 1998; Seo & Eisenstein 2003; Blake & Glazebrook 2003). LOS-dependent
measurements of the BAO offer the possibility to improve constraints further through the
geometric distortion generated when assuming an inaccurate fiducial cosmology, known as
the Alcock-Paczynski (AP) effect. The isotropic BAO feature was first detected in Eisenstein
et al. (2005) and Cole et al. (2005), and since, both isotropic and anisotropic measurements
have been used to constrain the expansion rate over the redshift range z ≈ 0.1 − 0.8 and
z ≈ 2.5. The results from the completed Baryon Oscillation Spectroscopic Survey (BOSS)
(Alam et al. 2017) represent the tightest constraints via BAO to date, with percent-level
constraints on the distance scale to z ∼ 0.6. A summary of the current BAO distance
measurements as a function of redshift is presented in the top panel of Figure 1.1, which shows
excellent agreement between the prediction of the Planck 2015 parameters and measured
results.

Full-shape clustering measurements

Modeling the broadband clustering signal adds further constraining power, albeit at
the cost of additional theoretical complexity. The previously described methods generally
marginalize over the broadband shape to avoid such complexities. Difficulties include the
modeling of nonlinear velocity effects, the nonlinear evolution of the dark matter density, and
the scale-dependent biasing between the observed tracers and the matter field (Scoccimarro
2004; Okumura & Jing 2011; Jennings 2012; Kwan et al. 2012). However, full-shape analyses
offer the chance to measure the growth rate of structure and further constrain the expansion
rate through the AP effect (Shoji et al. 2009). Early examples of full-shape analyses include
Percival et al. (2001); Tegmark et al. (2004), with more recent results from BOSS (e.g.,
Beutler et al. 2017b; Grieb et al. 2017), WiggleZ (Blake et al. 2012; Contreras et al. 2013),
and VIPERS (de la Torre et al. 2013). Growth of structure measurements are not currently
as sensitive as BAO constraints, with the tightest constraint of order ∼5%. We show a
summary of the present-day measurements of the growth rate as a function of redshift in the
bottom panel of Figure 1.1. The results agree remarkably well with the ΛCDM prediction
using the Planck 2015 parameters.

Beyond the growth rate and expansion history, broadband clustering also encodes in-
formation about other important physics. Neutrinos with non-zero mass induce a scale-
dependent suppression of the clustering amplitude, as massive neutrinos affect the expan-
sion rate, but free stream out of matter perturbations while still relativistic. While neutrino
oscillation experiments are sensitive to the mass differences between states, full-shape clus-
tering measurements constrain the sum of the neutrino masses, e.g., Lesgourgues & Pastor
(2006); Beutler et al. (2014a). In addition, the broadband clustering on large scales con-
tains signatures of primordial non-Gaussianity, the deviation from Gaussian random field
initial conditions in the early Universe. Primordial non-Gaussianity of the local type can be
detected through the scale-dependent bias it introduces on large scales (Dalal et al. 2008;
Slosar et al. 2008; Desjacques & Seljak 2010).

Several chapters in this thesis focus on the broadband clustering signal. Chapter 3



1.2. LARGE-SCALE STRUCTURE 7

presents an optimal estimator for measuring the anisotropic power spectrum from survey data
using fast Fourier transforms. In Chapter 4, we describe a new model for the galaxy power
spectrum in redshift space and test its constraining power when modeling the broadband
clustering signal using simulations. Finally, in Chapter 5, we constrain local primordial
non-Gaussianity by modeling the large-scale power spectrum of quasars from the extended
Baryon Oscillation Spectroscopic Survey (eBOSS; Dawson et al. 2016).

1.2.2 A brief history

The roots of the study of large-scale structure today lie in the realization that observa-
tions of “spiral nebulae” in the early 20th century were actually observations of extragalactic
galaxies which were not distributed uniformly in space (Hubble 1926, 1934). Following this
groundbreaking work by Hubble, technological progress would hinder further advances until
the publications of the larger galaxy catalogs of Shane & Wirtanen (1967) and Zwicky et al.
(1961). Subsequent analyses focused on measurements of the angular correlation function
(due to a lack of accurate distances), including a series of important papers beginning with
Peebles (1973). Advances in theoretical modeling coupled with the realization that galaxies
could be used as tracers of the matter density field led to the first robust cosmological in-
ferences from LSS data (Zel’dovich 1970; Davis et al. 1977; Davis & Peebles 1977; Peebles
1980; Davis & Peebles 1983; Maddox et al. 1990; Baumgart & Fry 1991; Park et al. 1992).
We show examples of two such early analyses in Figure 1.2. The left panel shows the early
angular correlation function measurements from Davis et al. (1977) for the Shane & Wirta-
nen (1967) and Zwicky et al. (1961) catalogs, while the right panel plots the correlation
function perpendicular and parallel to the line-of-sight using 2,400 galaxies from the first
CfA redshift survey (Huchra et al. 1983). This latter measurement represents one of the
earliest measurements of three-dimensional clustering using galaxy redshift information and
provided evidence for the anisotropy introduced by peculiar velocities.

As the sizes of available galaxy data sets increased, the interpretation of the cluster-
ing results spurred further theoretical advances. In particular, a number of works studied
the relationship between the galaxy and matter density fields, known as “galaxy bias”, to
help resolve discrepancies between observations and theoretical predictions (Kaiser 1984;
Davis et al. 1985; Rees 1985; Cole & Kaiser 1989). The impact of peculiar velocities on
observed clustering motivated several milestone theoretical studies on redshift-space distor-
tions (Kaiser 1987; Davis & Peebles 1983; Hamilton 1992), with numerous applications to
early redshift surveys (Cole et al. 1995; Loveday et al. 1996; Tadros et al. 1999). Further-
more, early LSS clustering analyses demonstrated that the prevailing theory of the time (a
flat, matter-dominated Universe) could not explain the observed data, providing some of the
earliest evidence for the ΛCDM model (Efstathiou et al. 1990; Vogeley et al. 1992; Krauss
& Turner 1995; Ostriker & Steinhardt 1995).

The rise of multi-fiber spectrograph technology enabled galaxy surveys to measure red-
shifts for hundreds of thousands of objects, pioneered by the Two-degree Field Galaxy Red-
shift Survey (2dFGRS; Colless et al. 2001) and the Sloan Digital Sky Survey (SDSS; York
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Figure 1.2 : Left: an early measurement of the angular correlation function w(θ), using the Shane-
Wirtanen and Zwicky galaxy catalogs (as presented in Davis et al. 1977). Right: a 2D correlation
function measurement ξ(rp, π) using data (contours) from the first CfA redshift survey of 2,400
galaxies (as presented in Davis & Peebles 1983). Evidence for anisotropy due to the effects of
galaxy peculiar velocities can be seen.

et al. 2000). These surveys further cemented the ΛCDM paradigm with the measurement
of the 2dFGRS galaxy power spectrum (Percival et al. 2001) and the first detections of the
BAO from two-point clustering using the SDSS (Eisenstein et al. 2005) and 2dFGRS (Cole
et al. 2005) data sets.

1.2.3 Present-day and future redshift surveys

Several redshift surveys currently underway (or recently completed) were designed to
optimize constraints of the expansion rate and properties of dark energy using measurements
of the BAO in galaxy clustering. In particular, the recently completed Baryon Oscillation
Spectroscopic Survey (BOSS; Dawson et al. 2013) represents the current state of the art data
set in LSS and has measured redshifts for more than 1.5 million galaxies across the redshift
range 0.2 < z < 0.75. In recent results, Alam et al. (2017) uses measurements of the BAO
feature to constrain the expansion rate at the percent level at redshifts of z = 0.38, 0.51, and
0.61. Figure 1.3 shows the exquisite precision of the BOSS measurements at z = 0.51 for
the correlation function and power spectrum, where redshift-space distortions and the BAO
can both be clearly seen. BOSS has also measured the BAO at z ≈ 2.5 using the Lyman-α
forest to trace the matter density field (Font-Ribera et al. 2014; Delubac et al. 2015). The
BAO constraints from the BOSS galaxy sample are complemented by similar constraints at
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Figure 1.3 : The 2D galaxy correlation function (left) and power spectrum (right) in the directions
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of ∼100 h−1Mpc in the left panel. To better distinguish oscillations in the power spectrum due
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lower redshift by the 6dF Redshift Survey (Beutler et al. 2011) and at higher redshift by the
WiggleZ survey (Blake et al. 2011a,b).

There are a number of ongoing and upcoming experiments that aim to shed light on
some of the remaining open questions in cosmology and large-scale structure. The primary
goal driving the design of these surveys is the the origin of cosmic acceleration. Is the
cosmological constant model for dark energy, as is assumed in the ΛCDM model, correct, or
does its energy density vary in time and space? Or, does the accelerated expansion arise from
a breakdown of general relativity on cosmological scales? Other goals include the detection
of neutrino mass and the neutrino hierarchy of states and the physics of inflation and the
early Universe, including the detection of primordial non-Gaussianity. Ongoing (so-called
Stage III) surveys attempting to answer these questions include eBOSS (Dawson et al. 2016),
the Dark Energy Survey (DES; Diehl et al. 2014), and the Hobby Eberly Telescope Dark
Energy Experiment (HETDEX; Hill et al. 2008). Future surveys (Stage IV) include the
Dark Energy Spectroscopic Instrument (DESI; Levi et al. 2013), the Subaru Prime Focus
Spectrograph (PFS; Takada et al. 2014), 4MOST (de Jong et al. 2014), and the space-based
Euclid satellite (Laureijs et al. 2011) and Wide Field Infrared Survey Telescope (WFIRST;
Spergel et al. 2015).
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1.3 Theory
In this section, we present the theoretical framework for the analysis of LSS data. We

discuss the smooth background Universe in §1.3.1 and the creation, evolution, and measure-
ment of density fluctuations in §1.3.2. In §1.3.3, we describe some of the key elements of
modeling full-shape broadband clustering, including galaxy bias, redshift-space distortions,
and nonlinear gravitational evolution.

1.3.1 The smooth background

In general relativity (GR), a homogeneous and isotropic expanding Universe can be de-
scribed via the Friedmann-Lemaítre-Robertson-Walker (FLRW) metric, where the spacetime
line element is given by3

ds2 = gµνdx
µdxν = −dt2 + a2(t)

[
dr2

1−Kr2
+ r2(dθ2 + sin2 θdφ)

]
, (1.1)

where t is the time coordinate, r, θ, and φ are the spatial coordinates in a spherical coordinate
system, and a(t) is the dimensionless scale factor which describes the expansion of the
Universe. The curvature constant K defines the spatial geometry, with K = 0, K > 0,
and K < 0 corresponding to a flat, closed, and open Universe, respectively.

The scale factor a(t) relates the comoving coordinate system, which is fixed with respect
to the background expansion, to the corresponding physical coordinates. We can relate
comoving separations x to physical distances r as

r = a(t) x, and v = ṙ = ȧ(t) x+ vpec, (1.2)

where v is the physical velocity field, which is composed of a contribution from the back-
ground expansion and a residual peculiar velocity vpec. The normalization of the scale factor
is chosen to be unity today, a(t0) ≡ 1, where t0 refers to the present day. Both the time
coordinate t and the scale factor are monotonically increasing quantities and can be used to
refer to specific points in the Universe’s past or future. Another common related quantity
is the cosmological redshift z, which is defined as the amount that the wavelength of an
emitted photon stretches due to the background expansion. It is given by

1 + z =
λobs

λemit

=
1

a
, (1.3)

where λemit is the wavelength that the light was emitted at, and λobs is the wavelength it
was observed at (at aobs = 1). For cosmological observations, redshift is used as the radial
coordinate. Light that is observed with a redshift z was emitted in the past when the
Universe’s scale factor was a = (1 + z)−1.

3Note that we assume a unit system using c = 1.
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It is also convenient to define a radial coordinate χ such that

dχ =
dr√

1−Kr2
. (1.4)

This allows the metric of equation 1.1 to be written as

ds2 = dt2 + a2(t)
[
dχ2 + S2

K(χ)(dθ2 + sin2 θdφ)
]
, (1.5)

where SK is defined to be

SK(χ) =


K−1/2 sin(

√
Kχ) if K > 0,

χ if K = 0,

|K|−1/2 sinh(
√
|K|χ) if K < 0.

(1.6)

Under the assumptions of isotropy and homogeneity, the smooth background Universe can
be described as a perfect fluid with density ρ and pressure p. Using the Einstein equations,
the evolution of the scale factor, the so-called Friedmann equations, are given by

(
ȧ

a

)2

≡ H2(a) =
8πG

3
ρ− K

a2
, (1.7)

ä

a
= −4πG

3
(ρ+ 3p), (1.8)

where the Hubble parameter, H(a) ≡ ȧ/a, is a measure of the expansion rate of the Universe.
The present-day Hubble parameter is denoted as H0 and is often expressed in terms of the
dimensionless Hubble parameter h as H0 = 100h km s−1 Mpc−1.

We can model each component of the density as a fluid with equation of state, p = wρ,
where w is constant. Using energy-momentum conservation, the density evolution with scale
factor is

ρ ∝ a−3(1+w), (1.9)

where the equation-of-state parameter w depends on the particle species. The relevant
values are w = 0 for non-relativistic, collisionless matter, w = 1/3 for radiation, w = −1 for
a cosmological constant, and w < −1/3 for more general forms of dark energy. Equation 1.8
shows that accelerated expansion occurs when w < −1/3. Each component of the total
density evolves differently with time, leading to periods of time where different components
dominate the total density.

It is useful to consider the value of the total density in equation 1.7 for a flat geometry
(K = 0), which is known as the critical density,

ρcrit(z) ≡ 3H(z)

8πG
. (1.10)
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We can normalize the density of each component of the density by this critical density to
yield the density parameters,

Ωi(z) ≡ ρi(z)

ρcrit(z)
, (1.11)

and define the total density parameter as Ωtot = Ωm + Ωr + Ωde. We can define a similar
quantity for the curvature,

Ωk(z) ≡ − K

H2(z)
(1 + z)2, (1.12)

such that equation 1.7 now reads
∑

i Ωi + Ωk = Ωtot + Ωk = 1. It is useful to express this
equation in terms of present-day quantities,

H2(z) = H2
0

[
Ωm,0(1 + z)3 + Ωr,0(1 + z)4 + Ωde,0(1 + z)3(1+w) + Ωk,0(1 + z)2

]
. (1.13)

In a flat ΛCDM model with wde = wΛ = −1 and K = 0, this equation simplifies to

H2(z) = H2
0

[
Ωm,0(1 + z)3 + Ωr,0(1 + z)4 + ΩΛ

]
. (1.14)

More general forms of dark energy allow its equation-of-state parameter to vary with time.
A common, phenomenological parametrization for wde(z) is (Chevallier & Polarski 2001;
Linder 2003)

wde(z) = w0 + wa(1− a) = w0 + wa
z

1 + z
. (1.15)

Equation 1.14 plays an important role in determining distances in cosmology. The line-
of-sight comoving distance to an object can be calculated by noting that photons travel on
null geodesics (ds2 = 0), such that the comoving distance is given by

χ(z) =

∫ t

0

dt′

a(t′)
=

∫ z

0

dz′

H(z′)
, (1.16)

where we have used the fact that H = (da/dt)/a and da = −a2dz.
Another important distance quantity in LSS, and in particular, the analysis of the BAO as

a standard ruler, is the angular diameter distance. It gives the ratio of an object’s physical
size to its observed angular size. From equation 1.5, we can see that an object with an
angular size of δφ has a corresponding physical size given by

δl = a(z)SK(χ(z))δφ. (1.17)

By comparison with the analogous relation in flat Euclidean space, we see that the angular
diameter distance must correspond to the pre-factor in this equation, given by

DA(z) ≡ a(z)SK(χ(z)) = (1 + z)−1SK(χ(z)). (1.18)
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In a flat geometry, the angular diameter distance is simply related to the comoving distance
as DA(z) = χ/(1 + z).

1.3.2 Density perturbations

This section introduces the methods by which we statistically describe density fluctua-
tions in the Universe (§1.3.2) and provides additional background about the creation and
evolution of these fluctuations throughout the Universe’s history (§1.3.2).

Two-point clustering

We start by defining the overdensity field in configuration space, δ(x), as

δ(x) ≡ n(x)− n̄
n̄

, (1.19)

where n(x) is the spatial number density of the objects of interest and n̄ is the mean density.
We can Fourier transform this field to express it as a function of wavenumber k using the
following Fourier convention

δ(k) =

∫
d3x δ(x)e−ik·x, (1.20)

δ(x) =

∫
d3k

(2π)3
δ(k)eik·x. (1.21)

We can measure the statistical properties of δ(x) via N -point correlators, 〈δ1δ2 . . . δN〉. Here,
〈. . .〉 denotes an ensemble average but as we only have a single realization of the Universe,
this is replaced observationally with a spatial average. The statistical properties of a Gaus-
sian field are fully specified by its two-point statistics, either the correlation function in
configuration space or the power spectrum in Fourier space. The latter is defined as the
covariance of the overdensity field in Fourier space,

〈δ(k)δ?(k′)〉 = (2π)3δD(k − k′)P (k), (1.22)

where δD is the 3D Dirac delta function and δ?(k) denotes the complex conjugate of the
Fourier modes of the overdensity field. The correlation function is the Fourier transform of
the power spectrum,

ξ(r) ≡ 〈δ(x)δ(x+ r)〉 =

∫
d3k

(2π3)
P (k)eik·r. (1.23)

Under assumptions of isotropy and homogeneity, these two-point statistics become a function
of amplitude only, P (k) = P (k) and ξ(r) = ξ(r). In this case, the correlation function can



1.3. THEORY 14

be calculated as

ξ(r) =
1

2π2

∫
dk k2P (k)j0(kr), (1.24)

where j0 is the spherical Bessel function of order zero. As the power spectrum has units of
volume, it is convenient to define a dimensionless quantity,

∆2(k) =
k3

2π2
P (k). (1.25)

Intuitively, the power spectrum can be viewed as measuring the variance of the density
fluctuations on a given scale, while the correlation function can be understood as the number
of pairs of objects at a given separation in excess of a random distribution.

A Gaussian density field is fully described by its two-point statistics, and the initial
density fluctuations in the early Universe are expected be very close to Gaussian. Initially,
the density fluctuations were small (|δ| � 1) and can be described via linear approximations
to the gravitational evolution equations. The density fluctuations in Fourier space also
remain independent, as evidenced by the Dirac delta function in equation 1.22. However,
this approximation only holds on large scales when considering the evolved density field of the
late-time Universe. In this case, different scales become correlated via nonlinear gravitational
evolution. This mode coupling generates non-zero higher order correlators, most importantly
the three-point (bispectrum) and four-point functions (trispectrum).

Initial conditions and the transfer function

Inflation (Guth 1981; Linde 1982; Albrecht & Steinhardt 1982) is widely accepted as the
most likely scenario for the generation of density fluctuations in the early Universe. While
we are yet to find conclusive observational evidence, inflation does make several predictions
that can been observationally tested. These predictions can be summarized as:

• The initial density fluctuations were Gaussian, possibly with a small level of primordial
non-Gaussianity (PNG), and can be described by the primordial power spectrum. The
Planck 2015 results placed strong constraints on PNG; they constrained local type
PNG to be fNL = 0.8 ± 5.0. We explore PNG in more detail in Chapter 5 using the
quasar power spectrum to constrain local type PNG.

• The initial perturbations are expected to be adiabatic, with only a single degree of
freedom, and can be described entirely by the density power spectrum. The Planck
2015 results constrain the alternative, isocurvature modes, to be extremely small.

• The (scalar) primordial power spectrum is nearly scale-invariant and described as a
power law, as given by

∆2
s (k) = As

(
k

k0

)ns−1

, (1.26)
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where ∆2
s is the dimensionless primordial power spectrum (defined in equation 1.25),

As is the freely varying amplitude, k0 is an arbitrary pivot scale, and ns is the spectral
index. The spectral index is defined as

ns(k)− 1 =
d ln ∆2

s (k)

d ln k
. (1.27)

Here, “scale-invariant” refers to the primordial fluctuations in potential and translates
to ns ≈ 1 for the density perturbations. The Planck 2015 results constrain the spectral
index with unprecedented precision, finding ns = 0.968± 0.006.

• Inflation produces tensor perturbations in addition to scalar fluctuations. The ten-
sor fluctuations correspond to gravitational waves, which can be detected through a
measurement of the B-mode polarization of the CMB. No such detection has yet been
measured, but if found, would provide strong evidence for the accuracy of the infla-
tionary paradigm.

The evolution of the initial density fluctuations is a complicated process that requires
using the linearized Einstein equations and a perturbed FLRW spacetime metric.4 Here, we
qualitatively describe the main aspects of linear evolution. We ignore the added complexi-
ties of nonlinear evolution, which must require the use of perturbative approaches, numerical
simulations, or fitting formulae to model accurately (see §1.3.3 for a discussion of nonlinear-
ities).

Following inflation, the comoving horizon increased with time as the Universe expanded,
and fluctuations of increasing scale entered the horizon. Modes within the horizon were
causally connected and able to evolve with time. However, this evolution depended on the
dominant component of the total energy density. In the early Universe when radiation domi-
nated, the pressure of the radiation impeded growth of fluctuations, but once non-relativistic
matter became the major component, fluctuations were able to grow more substantially, with
growth proportional to the scale factor. Once dark energy began to dominates at late times,
the growth slowed once again. The critical scale for understanding the evolution of per-
turbations is the horizon scale at the transition from radiation to matter domination, keq.
Fluctuations smaller than this scale entered the horizon during radiation domination and had
their growth impeded, while larger modes entered during matter domination and experienced
immediate growth. This leads to a turnover in the power spectrum where k = keq.

The transfer function encodes this complicated evolution, relating the power spectrum of
the evolved perturbations to the primordial power spectrum,

P (k, a) ∝ σ2
8D

2(a)T 2(k)kns , (1.28)

where kns is the primordial power spectrum, T (k) is the transfer function (independent of
redshift), and the redshift evolution is encoded in the growth function D(a). The power

4We refer to the reader to the review of Bardeen (1980) and the textbook treatment of Dodelson (2003)
for more details.
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spectrum normalization is parametrized by the value of σ2
8, which expresses the variance of

the density fluctuations at z = 0 smoothed on a comoving scale of R = 8 h−1Mpc.
While analytic approximations for the transfer function do exist, (Bardeen et al. 1986;

Eisenstein et al. 1998), it is now typical to use software to numerically solve the full set of
Einstein and Boltzmann equations, e.g., CAMB (Lewis et al. 2000) or CLASS (Lesgourgues
2011), in order to achieve a high degree of accuracy. Nevertheless, it is informative to consider
the asymptotic behavior of T (k) for scales much larger and smaller than keq,

T (k) ∝
{

1 if k � keq,

k−2 ln k if k � keq,
(1.29)

From these limits we see that the scale dependence of evolved fluctuations on large scales
mirrors that of the primordial power spectrum.

The growth function D(a) specifies the redshift evolution of the amplitude of the power
spectrum. In the matter-dominated epoch, the growth is simply given byD(a) ∝ a. However,
the growth is more complicated when considering the late-time evolution when dark energy
is the dominant component. In general, the growth function is given by (Dodelson 2003)

D(a) =
5Ωm,0

2

H(a)

H0

∫ a

0

da′

(a′)3

H3
0

H3(a′)
, (1.30)

where we have assumed that radiation is negligible, and the normalization is such that
D(a) = a in the matter-dominated era (z ≈ 10). For a ΛCDM model, growth at late times
is hampered by dark energy, and D(a) increases slower than in the case of Ωm,0 = 1.

1.3.3 Full-shape clustering models

In this section, we describe the key elements of a full-shape clustering analysis from a
modeling perspective, including the treatment of biasing (§1.3.3), redshift-space distortions
(§1.3.3), and nonlinearities (§1.3.3).

Bias

The luminous objects that we observe in the late-time Universe, e.g., galaxies or quasars,
are “biased” tracers of the underlying matter density field. In this context, bias refers to the
relationship between the spatial distribution of the tracer and that of the underlying matter
field. In principle, this relationship can be extremely complicated, with stochastic and non-
local contributions. For a comprehensive review we refer the reader to Fry & Gaztanaga
(1993) and Desjacques et al. (2016).

In its most general form, bias can be viewed as a functional of the underlying matter
field, such that

δg(x) = F [δ(x′)], (1.31)
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where δg is the overdensity field of the tracer, and δ is the matter overdensity. The rela-
tionship can be non-local, where δg at position x depends on the value of δ at x′. However,
a usual approach is to perturbatively Taylor expand the tracer overdensity as a function of
the local matter density as (Fry & Gaztanaga 1993)

δg(x) ≈
∞∑
i=0

bi
i!

(δi(x)−
〈
δi
〉
), (1.32)

where bi represent the bias parameters. Another common simplifying assumption is that the
bias relationship is linear on sufficiently large scales: δg = b1δ. In this case, the two-point
clustering statistics are boosted by a constant offset,

Pg(k) = b2
1P (k), and ξg(r) = b2

1ξ(r). (1.33)

In Chapter 4, we extend the modeling of the broadband power spectrum of galaxies to
small scales, where the simple linear bias relationship is no longer accurate. We rely on
the more recent theoretical work of McDonald & Roy (2009); Baldauf et al. (2012); Saito
et al. (2014) to include both nonlocal and nonlinear contributions to the bias, which have
been demonstrated to improve the accuracy of theoretical models. Furthermore, discrete
tracers are also stochastic tracers of the matter field. This stochasticity is typically modeled
as the Poisson shot noise of the sample (n̄−1, where n̄ is the number density), but there
can be significant deviations that lead to additional complicated scale-dependence in the
relationship between the tracer and matter density fields (e.g., Baldauf et al. 2013). Modeling
these deviations plays an important role in our work presented in Chapter 4.

Redshift-space distortions

The three-dimensional distribution of luminous objects, as measured by redshift surveys,
are distorted in the radial direction. These so-called redshift-space distortions result from the
fact that the measured redshift of objects is also sensitive to its peculiar velocity through the
Doppler effect, and in turn, the measured redshift is used to infer the line-of-sight distance
to the object. Because the peculiar velocity field is sourced by the large-scale gravitational
potential, the clustering of objects in redshift space includes an anisotropic signal containing
information about the rate of structure growth in the Universe.

On large scales, objects have moderate infall velocities, leading to a compression of the
clustering signal along the line-of-sight. In a seminal paper, Kaiser (1987) derived the linear-
order prediction for this effect. The isotropic clustering in real space becomes anisotropic
with a boost in clustering along the line-of-sight,

δS(k, µ) = (1 + fµ2)δ(k), (1.34)

where δS and δ are the overdensity fields in redshift and real space, respectively, f =
d lnD/d ln a is the logarithmic growth rate, and µ = k̂ · n̂ is the cosine of the angle between
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the Fourier wavevector and the line-of-sight. For a biased tracer, the linear redshift-space
power spectrum becomes

P S
g (k, µ) =

[
1 + βµ2

]2
b2

1P (k), (1.35)

where P S
g is the redshift-space power spectrum of the tracer, P (k) is the matter power

spectrum in real space, and we have defined the linear RSD parameter β ≡ f/b1, where b1

is the linear bias of the tracer. The anisotropic form of equation 1.35 suggests expanding
P S(k, µ) into a basis of Legendre polynomials L`(µ) as

P S(k, µ) =
∑
`=0,2,4

P`(k)L`(µ) = P0(k)L0(µ) + P2(k)L2(µ) + P4L4(µ), (1.36)

where we have introduced the power spectrum multipoles P`(k), and P0, P2, and P4 are known
as the monopole, quadrupole, and hexadecapole, respectively. From equation 1.36 we can
see that linear RSD can be fully described by the ` = 0, 2, and 4 multipoles. Measurements
of β and RSD modeling in general constrain the growth of structure through their sensitivity
to the growth rate f . These measurements can test for deviations from the ΛCDM model
and general relativity by comparing to the general relativity prediction of f ' [Ωm(z)]0.55.

On small scales, additional distortions are generated by the large, nonlinear virial motions
of objects within their dark matter halos, which is known as the Finger-of-God (FoG) effect
(Jackson 1972). The FoG effect elongates structures along the line-of-sight, damping the
clustering on small scales. It is typically modeled by multiplying the power spectrum of
equation 1.35 with a Gaussian or Lorentzian damping factor, motivated by the shape of the
pairwise velocity distribution function (Peacock & Dodds 1994; Park et al. 1994; Ballinger
et al. 1996).

For a precise full-shape analysis, the RSD description must go beyond the linear-order
predictions of Kaiser (1987), which is known to break down on relatively large scales, e.g.,
Okumura & Jing (2011); Jennings (2012); Kwan et al. (2012). In Chapter 4, our description
of the redshift-space power spectrum uses the distribution function approach of Seljak & Mc-
Donald (2011) to model the nonlinear mapping from real to redshift space. Our approach is
complementary to other models in the literature that account for the nonlinear coupling be-
tween the density and velocity fields in redshift space, e.g., Scoccimarro (2004); Taruya et al.
(2010). We focus on large scales in Chapter 5 when modeling the quasar power spectrum,
and thus, we are able to use the simple Kaiser power spectrum model of equation 1.35.

Nonlinear evolution

Linear clustering models break down on relatively large scales, with a number of nonlinear
processes becoming important on small scales where density perturbations become large
(δ � 1). For the power spectrum, this break down occurs on scales even as large as k ∼
0.1 hMpc−1. Using a wider range of scales when modeling a clustering measurement is
generally beneficial, as the statistical precision of the measurements is typically higher on
smaller scales. Thus, there is strong motivation to model small scales, despite the added
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challenges due to nonlinearities. This motivation is the driving force behind the modeling
presented in Chapter 4, which presents a power spectrum model accurate well into the
nonlinear regime, k ∼ 0.4 hMpc−1.

In general, there are three common approaches to modeling the effects of nonlinearities
on clustering measurements, which can be summarized as:

• Simulation-based methods: N -body simulations directly solve the nonlinear evolution
of the density field via numerical methods (see, e.g., Springel 2005). They represent the
most accurate method for theoretical predictions but are computationally expensive.
This computational cost prevents their use in parameter inference from clustering mea-
surements. In recent years, a class of quasi-N -body schemes, known as particle mesh
solvers, has been developed to reduce the computational cost of simulations (Merz
et al. 2005; Tassev et al. 2013; White et al. 2014; Feng et al. 2016). These methods
allow the fast generation of catalogs of biased tracers from approximate dark matter
density fields.

• Perturbation theory: Nonlinear gravitational dynamics can be modeled with pertur-
bative approaches that expand the nonlinear density field in terms of powers of linear
quantities. Known as cosmological perturbation theory, the topic is well-studied with a
wide variety of complementary approaches (see Bernardeau et al. (2002) for a review).
Some of the more popular approaches in recent work include renormalized pertur-
bation theory (Crocce & Scoccimarro 2006a,b; Taruya et al. 2012) and Convolution
Lagrangian Perturbation Theory (Carlson et al. 2013).

• Fitting functions: The use of fitting formulae, which are often calibrated on N -body
simulations or use a physically motivated ansatz, is a quick and practical method to
include the effects of nonlinear evolution on clustering statistics. Prominent examples
include the Halofit (Smith et al. 2003) and Halo-Zel’dovich Perturbation Theory (Seljak
& Vlah 2015) prescriptions for the nonlinear matter power spectrum.

Each of these methods has its own advantages and disadvantages, and we rely on a combi-
nation of all three approaches in Chapter 4 to accurately model the redshift-space galaxy
power spectrum down to scales of k ∼ 0.4 hMpc−1.
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Chapter 2

nbodykit: an open-source, massively
parallel toolkit for large-scale structure

In this chapter, we present nbodykit, an open-source, massively parallel Python toolkit
for analyzing large-scale structure (LSS) data. Using Python bindings of the Message Pass-
ing Interface (MPI), we provide parallel implementations of many commonly used algorithms
in LSS. nbodykit is both an interactive and scalable piece of scientific software, performing
well in a supercomputing environment while still taking advantage of the interactive tools
provided by the Python ecosystem. Existing functionality includes estimators of the power
spectrum, 2 and 3-point correlation functions, a Friends-of-Friends grouping algorithm, mock
catalog creation via the halo occupation distribution technique, and approximate N -body
simulations via the FastPM scheme. The package also provides a set of distributed data con-
tainers, insulated from the algorithms themselves, that enable nbodykit to provide a unified
treatment of both simulation and observational data sets. nbodykit can be easily deployed
in a high performance computing environment, overcoming some of the traditional difficul-
ties of using Python on supercomputers. We provide performance benchmarks illustrating
the scalability of the software. The modular, component-based approach of nbodykit allows
researchers to easily build complex applications using its tools. The package is extensively
documented at http://nbodykit.readthedocs.io, which also includes an interactive set
of example recipes for new users to explore. As open-source software, we hope nbodykit
provides a common framework for the community to use and develop in confronting the
analysis challenges of future LSS surveys.

2.1 Introduction
The analysis of LSS data sets has played a pivotal role in establishing the current concor-

dance paradigm in modern cosmology, the ΛCDM model. From the earliest galaxy surveys
(Davis et al. 1985; Maddox et al. 1990), comparisons between the theoretical predictions for
the distribution of matter in the Universe and observations have proven to be a valuable

http://nbodykit.readthedocs.io
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tool. Indeed, LSS observations, in combination with cosmic microwave background (CMB)
measurements, provided some of the earliest evidence for the ΛCDM model, e.g., Efstathiou
et al. (1990); Krauss & Turner (1995); Ostriker & Steinhardt (1995). Interest in LSS sur-
veys increased immensely following the first direct evidence for cosmic acceleration (Riess
et al. 1998; Perlmutter et al. 1999), as it was realized that the baryon acoustic oscillation
(BAO) feature imprinted on large-scale clustering provided a “standard ruler” to map the
expansion history (Eisenstein et al. 1998; Blake & Glazebrook 2003; Seo & Eisenstein 2003).
From its first measurements (Cole et al. 2005; Eisenstein et al. 2005) to more recent studies
(Font-Ribera et al. 2014; Delubac et al. 2015; Alam et al. 2017; Slepian et al. 2017), the
BAO has proved to be a valuable probe of cosmic acceleration, enabling the most precise
measurements of the expansion history of the Universe over a wide redshift range. Analy-
ses of these data sets have also pushed us closer to answering other important questions in
contemporary cosmology, including deviations from General Relativity (Mueller et al. 2016),
the neutrino mass scale (Lesgourgues & Pastor 2006; Beutler et al. 2014a), and the existence
of primordial non-Gaussianity (Slosar et al. 2008; Desjacques & Seljak 2010).

The foundations of the numerical methods used in LSS data analysis today go back
several decades. Hockney & Eastwood (1981) discussed several important computer sim-
ulation methods, including but not limited to mass assignment interpolation windows and
the interlacing technique for reducing aliasing. The Friends-of-Friends (FOF) algorithm for
identifying halos from a numerical simulation was first utilized in Davis et al. (1985). The
most commonly used clustering estimators for the two-point correlation function (2PCF) and
power spectrum were first developed in Landy & Szalay (1993) and Feldman et al. (1994),
respectively, and techniques to measure anisotropic clustering via a multipole basis were
first used around the same time, e.g., Cole et al. (1995). Other modern, well-established nu-
merical techniques include N -body simulation methods, e.g., Springel et al. (2001); Springel
(2005), and the use of KD-trees in correlation function estimators (Moore et al. 2001).

Recent years have brought important updates to these analysis techniques. Advances
in LSS observations, with increased sample sizes and statistical precision, have driven the
development of new statistical estimators, while also increasing modeling complexities and
creating a need to reduce wall-clock times. Recently, we have seen faster power spectrum
and 2PCF multipole estimators (Yamamoto et al. 2006; Scoccimarro 2015; Bianchi et al.
2015; Slepian & Eisenstein 2015b, 2016; Hand et al. 2017b) and improved FOF algorithms
(Springel 2005; Behroozi et al. 2013; Feng & Modi 2017). Highly optimized software, e.g.,
Corrfunc (Sinha & Garrison 2017), is also becoming increasingly common. New statistical
estimators, e.g., Slepian & Eisenstein (2015a, 2017); Castorina & White (2017), are being
developed to extract as much information as possible from LSS surveys. The rise of particle
mesh simulation methods (Merz et al. 2005; Tassev et al. 2013; White et al. 2014; Feng et al.
2016) has offered a computationally cheaper alternative to running full N -body simulations.
Finally, tools have emerged to help deal with the growing complexities of modeling the
connection between halos and galaxies (Hearin et al. 2017). These examples represent just
a sampling of the recent updates to LSS data analysis and modeling techniques.

The well-established foundation of LSS numerical methods suggests the community could
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benefit from a standard software package providing implementations of these methods. Such
a package would also serve as a common framework for users as they incorporate future
extensions and advancements. Given the already rising wall-clock times of current analyses
and the expected volume of data from next-generation LSS surveys, scaling performance
should also be a key priority.

Several computing trends in the past few years have emerged to help make such a software
package possible. First, the Python programming language1 has emerged as the most popular
language in the field of astronomy (Momcheva & Tollerud 2015; NSF 2017), and the astropy2

package (Astropy Collaboration et al. 2013) has led the development of an astronomy-focused
Python ecosystem. Python’s elegant syntax and dynamic nature make the language easy
to learn and work with. Combined with its object-oriented focus and the larger ecosystem
containing SciPy3 (Jones et al. 2001–2017), NumPy4 (van der Walt et al. 2011), IPython5

(Perez & Granger 2007), and Jupyter6 (Thomas et al. 2016), Python is well-suited for both
rapid application development and use in scientific research. Second, the availability and
performance of large-scale computing resources continues to grow, and initiatives, e.g., The
Exascale Computing Project,7 have been established to ensure the sustainability of this
trend. At the same time, solutions to the traditional barriers to using Python on massively
parallel, high-performance computing (HPC) machines have been developed. The mpi4py
package (Dalcín et al. 2008; Dalcin et al. 2011) has facilitated the development of parallel
Python applications by providing bindings of the Message Passing Interface (MPI) standard.
Furthermore, tools have been developed, e.g., Feng & Hand (2016), to alleviate the start-up
bottleneck encountered when launching Python applications on HPC systems.

Motivated by these recent developments, we present the first public release of nbodykit
(v0.3.0), an open-source, parallel toolkit written in Python for use in the analysis of LSS
data. Designed for use on HPC machines, nbodykit includes fully parallel implementations
of a canonical set of LSS algorithms. It also includes a set of distributed and extensible data
containers, which can support a wide variety of data formats and large volumes of data.
These data containers are insulated from the algorithms themselves, allowing nbodykit to
be used for either simulation or observational data sets. We have balanced the scalable
nature of nbodykit with an object-oriented, component-based design that also facilitates
interactive use. This allows researchers to take advantage of interactive Python tools, e.g.,
the Jupyter notebook, as well as integrate nbodykit components with their own software
to build larger applications that solve specific problems in LSS.

nbodykit has been developed, tested, and deployed on the Edison and Cori Cray su-
percomputers at the National Energy Research Scientific Computing Center (NERSC) and

1http://python.org
2http://www.astropy.org
3https://www.scipy.org
4http://www.numpy.org
5https://ipython.org
6http://jupyter.org
7https://www.exascaleproject.org

http://python.org
http://www.astropy.org
https://www.scipy.org
http://www.numpy.org
https://ipython.org
http://jupyter.org
https://www.exascaleproject.org
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has been utilized in several published research studies (Hand et al. 2017b,c; Ding et al.
2017; Pinol et al. 2017; Schmittfull et al. 2017; Modi et al. 2017; Feng et al. 2016; Waters
et al. 2016). Since its start, it has been developed on GitHub as open-source software at
https://github.com/bccp/nbodykit.

The objective of this chapter is to provide an overview of the nbodykit software and
familiarize the community with some of its capabilities. We hope that researchers find
nbodykit to be a useful tool in their scientific work and in the spirit of open science, that it
continues to grow via community contributions. Extensive documentation and tutorials are
available at http://nbodykit.readthedocs.io, and we do not aim to provide such detailed
documentation in this work. The documentation also includes instructions for launching an
interactive environment containing a set of example recipes. This allows new users to explore
nbodykit without setting up their own nbodykit installation.

This chapter is organized as follows. We provide a broad overview of nbodykit in Sec-
tion 2.2 and discuss a more detailed list of its capabilities in Section 2.3. We describe
our development process and deployment strategy for nbodykit in Section 2.4. Section 2.5
presents an illustrative example use case, and Section 2.6 outlines performance benchmarks
for various algorithms. Finally, we conclude and summarize in Section 2.7.

2.2 Overview

2.2.1 Initializing nbodykit

A core design goal of nbodykit is maintaining an interactive user experience, allowing
the user to quickly experiment and to prototype new analysis pipelines while still lever-
aging the power of parallel processing when necessary. We adopt a “lab” framework for
nbodykit, where all of the necessary data containers and algorithms can be imported from
the nbodykit.lab module. Furthermore, we utilize Python’s logging module to print mes-
sages at runtime, which allows users to track the progress of the application in real time.
Typically, applications using nbodykit begin with the following statements:

from nbodykit.lab import *

from nbodykit import setup_logging

setup_logging()

2.2.2 The nbodykit Ecosystem

nbodykit is explicitly maintained as a pure Python package. However, it depends on
several compiled extension packages that each focus on more specialized tasks. This ap-
proach enables nbodykit to describe higher-level abstractions in Python and retains the

https://github.com/bccp/nbodykit
http://nbodykit.readthedocs.io
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readability, syntax, and user interface benefits of the Python language. For computationally
expensive sections of the code base, we use the compiled extension packages for speed. With
the emergence of Python package managers such as Anaconda,8 the availability of binary
versions of these compiled packages for different operating systems has sufficiently eased
most installation issues in our experience (see Section 2.4.3).

Below, we describe some of the more important dependencies of nbodykit, each of which
is focused on solving a particular problem:

• pfft-python: a Python binding of the PFFT software (Pippig 2013), which computes
parallel fast Fourier transforms (FFTs) (Feng 2017d).

• pmesh: particle mesh calculations, including density field interpolation and discrete
parallel FFTs via pfft-python (Feng 2017e).

• bigfile: a reproducible, massively parallel input/output (IO) library for large, hier-
archical data sets (Feng 2017a).

• kdcount: spatial indexing operations via KD-trees (Feng 2017c).

• classylss: a Python binding of the CLASS Boltzmann solver (Hand & Feng 2017).

• fastpm-python: a Python implementation of the FastPM scheme for quasi N -body
simulations (Feng 2017b; Feng et al. 2016).

• Corrfunc: a set of high-performance routines for computing pair counting statistics
(Sinha & Garrison 2017).

• Halotools: a package to build and test models of the galaxy-halo connection (Hearin
et al. 2017).

2.2.3 A Component-Based Approach

The design of nbodykit focuses on a modular, component-based approach. The com-
ponents are exposed to the user as a set of Python classes and functions, and users can
combine these components to build their specific applications. This design differs from the
more commonly used alternative in cosmology software, which is a monolithic application
controlled by a single configuration file, e.g., as in CAMB (Lewis et al. 2000), CLASS (Blas
et al. 2011), and Gadget (Springel et al. 2001). We note that modular, object-oriented
designs are becoming more popular recently, e.g., astropy, the yt project (Turk et al.
2011), and Halotools (Hearin et al. 2017). During the development process, we have found
that a component-based approach offers greater freedom and flexibility to build complex
applications with nbodykit.

8https://anaconda.com

https://anaconda.com
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Mesh
Density field on a uniform mesh

Catalog
Object positions and attributes

Paint Interface
Produces distributed parallel n-d array

Algorithm
Computing statistics from a Catalog or Mesh;

the result can be consistent or distributed
across MPI communicator

Serializable Interface
Storing and loading the object from files

Random-Read Interface
Random access of on-line

and off-line data 

to_mesh()

Implements an interface Consumes objects of Abstract Interfaces Python ObjectsProduces objects of

Figure 2.1 : The components and interfaces of nbodykit. The main Python classes are Catalog,
Mesh, and Algorithm objects, which are described in more detail in §2.2.3. Algorithm results can be
consistent, where all processes hold the same data, or distributed, where data is spread out evenly
across parallel processes.

We present some of the main classes and interfaces and how data flows through them in
Figure 2.1. In the subsections to follow, we provide an overview of some of the components
outlined in this figure.

Catalog

A Catalog is a Python object derived from a CatalogSource class that holds information
about discrete objects9 in a columnar format. Catalogs implement a random-read interface,
which allows users to access arbitrary slices of the data while also taking advantage of the high
throughput of a parallel file system. Often, users will initialize Catalog objects by reading
data from a file on disk, using a NumPy array already stored in memory, or by generating
simulated particles at runtime using one of nbodykit’s built-in classes.

Mesh

A Mesh is a Python object that computes a discrete representation of a continuous
quantity on a uniform mesh. It is derived from a MeshSource class and provides a paintable
interface, which refers to the process of “painting” the density field values onto the discrete
mesh cells. When the user calls the paint() function, the mesh data is returned as a three-
dimensional array. Mesh objects can be created directly from a Catalog via the to_mesh()
function or by generating simulated fields directly on the mesh.

9Here, “object” can represent galaxies, simulation particles, mass elements, etc.
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Algorithms

Algorithms are implemented as Python classes and interact with data by consuming
Catalog and Mesh objects as input. The algorithm is executed when the user initializes the
class, and the returned instance stores the results as attributes.

Serialization and Reproducibility

Most objects in nbodykit are serializable10 via a save() function. Algorithm classes not
only save the result of the algorithm but also save input parameters and meta-data. They
typically implement both a save() and load() function, such that the algorithm result can
be de-serialized into an object of the same type. The two main data containers, catalogs and
meshes, can be serialized using nbodykit’s intrinsic format which relies on the massively
parallel IO library bigfile (Feng 2017a). nbodykit includes support for reading these
serialized results from disk back into Catalog or Mesh objects.

2.2.4 Parallelism

Data-based

nbodykit is fully parallelized using the Python bindings of the MPI standard available
through mpi4py. The MPI standard allows processes running in parallel, each with their
own memory, to exchange messages. This mechanism enables independent results to be
computed by individual processes and then combined into a single result.

Both the Catalog and Mesh objects are distributed data containers, meaning that the data
is spread out evenly across the available processes within an MPI communicator.11 Nearly
all algorithm calculations are performed on this distributed data, with final results computed
via a reduce operation across all processes in the communicator. Rarely throughout the code
base, data is instead gathered to a single root process, and operations are performed on this
data before re-distributing the results to all processes. This only occurs when wall-clock
time will not be a concern for most use cases and the additional complexity of a massively
parallel implementation is not merited.

The distributed nature of the Catalog object is implemented by using the random-read
interface to access different slices of the tabular data for different processes. The values of a
Mesh object are stored internally on a three-dimensional NumPy array, which is distributed
evenly across all processes. The domain of the 3D mesh is decomposed across parallel pro-
cesses using the particle mesh library pmesh, which also provides an interface for computing
parallel FFTs of the mesh data using pfft-python. The pfft-python software exhibits ex-
cellent scaling with the number of available processes, enabling high-resolution (large number

10Serialization (and its reverse, de-serialization) refers to the process of storing a Python object on disk in
a format such that it can be reconstructed at a later time.

11The MPI communicator is responsible for managing the communication between a set of parallel
processes.
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of cells) mesh calculations.

Task-based

The analysis of LSS data often involves hundreds to thousands of repetitions of a single,
less computationally expensive task. Examples include estimating the covariance matrix of
a clustering statistic from a set of simulations and best-fit parameter estimation for a model.
nbodykit implements a TaskManager utility to allow users to easily iterate over multiple
tasks while executing in parallel. Users can specify the desired number of processes assigned
to each task, and the TaskManager will iterate through the tasks, ensuring that all processes
are being utilized.

2.3 Capabilities
In this section, we provide a more detailed overview of some of the main components

of nbodykit. In particular, we describe how cosmology calculations are performed (§2.3.1),
outline the available Catalog (§2.3.2) and Mesh (§2.3.3) classes, and provide details and
references for the various algorithms currently implemented (§2.3.4).

2.3.1 Cosmology

The nbodykit.cosmology module includes functionality for representing cosmological
parameter sets and computing various common theoretical quantities in LSS that depend
on the background cosmological model. The underlying engine for these calculations is the
CLASS Boltzmann solver (Blas et al. 2011; Lesgourgues 2011). We use the Python bindings
of the CLASS C library provided by the classylss package. Comparing to the binding
provided by the CLASS source code, classylss is a direct mapping of the CLASS object
model to Python and integrates with the NumPy array protocol natively.

The main object in the module is the Cosmology class, which users can initialize by
specifying a unique set of cosmological parameters (using the syntax of CLASS). This class
represents the background cosmological model and contains methods to compute quantities
that depend on the model. Most of the CLASS functionality is available through methods
of the Cosmology object. Examples include distance as a function of redshift z, the Hubble
parameter H(z), the linear power spectrum, the nonlinear power spectrum, and the density
and velocity transfer functions. Several Cosmology objects are provided for well-known
parameter sets, including the WMAP 5, 7, and 9-year results (Komatsu et al. 2009, 2011;
Hinshaw et al. 2013) and the Planck 2013 and 2015 results (Planck Collaboration et al. 2014,
2016a).

The nbodykit.cosmology module also includes classes to represent theoretical power
spectra and correlation functions. The LinearPower class can compute the linear power
spectrum as a function of redshift and wavenumber, using either the transfer function as
computed by CLASS or the analytic approximations of Eisenstein & Hu (1999). The latter
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includes the so-called “no-wiggle” transfer function, which includes no BAO but the correct
broadband features and is useful for quantifying the significance of potential BAO features.
Similarly, we provide the NonlinearPower object to compute nonlinear power spectra, using
the Halofit implementation in CLASS (Smith et al. 2003), which includes corrections from
Takahashi et al. (2012). The ZeldovichPower class uses the linear power spectrum object
to compute the power spectrum in the Zel’dovich approximation (tree-level Lagrangian per-
turbation theory). The implementation closely follows the appendices of Vlah et al. (2015)
and relies on a Python implementation and generalization of the FFTLog algorithm12 (Hamil-
ton 2000). Finally, we also provide a CorrelationFunction object to compute theoretical
correlation functions from any of the available power classes (using FFTLog to compute the
Fourier transform).

We choose to use the CLASS software for the cosmological engine in nbodykit rather
than the most likely alternative, the astropy.cosmology module. This allows nbodykit to
leverage the full power of a Boltzmann solver for LSS calculations. We provide syntax com-
patibility between the Cosmology class and astropy when appropriate and provide functions
to transform between the cosmology classes used by the two packages. However, we note
that there are important differences between the two implementations. In particular, the
treatment of massive neutrinos differs, with astropy using the approximations of Komatsu
et al. (2011) rather than the direct calculations, as in CLASS.

2.3.2 Catalogs

In this section, we describe the two main ways that catalogs are created in nbodykit, as
well as tools for cleaning and manipulating data stored in Catalog objects.

Reading Data from Disk

We provide support for loading data from disk into Catalog objects for several of the
most common data storage formats in LSS data analysis. These formats include plaintext
comma-separated value (CSV) data (via pandas, McKinney 2010), binary data stored in
a columnar format, HDF5 data (via h5py, Collette & contributors 2017), FITS data (via
fitsio, Sheldon 2017), and the bigfile data format. We also provide more specialized
readers for particle data from the Tree-PM simulations of White (2002) and the legacy
binary format of the GADGET simulations (Springel 2005). These Catalog objects use the
nbodykit.io module, which includes several “file-like” classes for reading data from disk.
These file-like objects implement a read() function that provides the random-read interface
which returns a slice of the data for the requested columns. Users can easily support custom
file formats by implementing their own subclass and read() interface.

Formats storing data on disk in a columnar format yield the best performance results,
as the entirety of the data does not need to be parsed to yield the desired slice of the data
on a given process. This is not true for the CSV storage format. We mitigate performance

12https://github.com/eelregit/mcfit

https://github.com/eelregit/mcfit
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issues by implementing an enhanced version of the CSV parser in pandas that supports
faster parallel random access. Our preferred IO format, bigfile, is massively parallel and
stores data via a columnar format.

Finally, the Catalog object supports loading data from multiple files at once, providing
a continuous view of the entirety of the data. This becomes particularly powerful when
combined with the random-read interface, as arbitrary slices of the combined data can be
accessed. For example, a single Catalog object can provide access to arbitrary slices of
the output binary snapshots from an N -body simulation (stored over multiple files), often
totaling 10-100 GB in size.

Generating Catalogs at Runtime

nbodykit includes several Catalog classes that generate simulated data at runtime. The
simplest of these allows generating random columns of data in parallel using the numpy.random
module. We also provide a UniformCatalog class that generates uniformly distributed par-
ticles in a box. These classes are useful for testing purposes, as well as for use as unclustered,
synthetic data in clustering estimators.

nbodykit also includes functionality for generating more realistic approximations of large-
scale structure. LogNormalCatalog generates a set of objects by Poisson sampling a log-
normal density field and applies the ZelâĂŹdovich approximation to model nonlinear evolu-
tion (Coles & Jones 1991; Agrawal et al. 2017). The user can specify the input linear power
spectrum and the desired output redshift of the catalog.

Catalog objects can also be created using the mock generation techniques of the Halotools
software (Hearin et al. 2017) for populating halos with objects. Halotools includes func-
tionality for populating halos via a wide range of techniques, including the halo occupation
distribution (HOD), conditional luminosity function, and abundance matching methods. We
refer the reader to Hearin et al. (2017) for further details. nbodykit supports using a generic
Halotools model to populate a halo catalog. We also include built-in, specialized support
for the HOD models of Zheng et al. (2007), Leauthaud et al. (2011), and Hearin et al. (2016).

Finally, the fastpm-python package implements an nbodykit Catalog object that gener-
ates particles via the FastPM approximateN -body simulation scheme (Feng et al. 2016). The
FastPM library is massively parallel and exhibits excellent strong scaling with the number
of available processes (see §2.6).

On-demand Data Cleaning

nbodykit uses the dask library (Team 2016) to represent the data columns of a Catalog
object as dask array objects instead of using the more familiar NumPy array. The dask
array has two key features that help users work interactively with data, and, in particular,
large data sets. The first feature is delayed evaluation. When manipulating a dask array,
operations are not evaluated immediately but instead stored in a task graph. Users can
explicitly evaluate the dask array (returning a NumPy array) via a call to a compute()
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function. Second, dask arrays are chunked. The array object is internally divided into many
smaller arrays, and calculations are performed on these smaller “chunks.”

The delayed evaluation of dask arrays is particularly useful during the process of data
cleaning, when users manipulate input data before feeding it into the analysis pipeline.
Common examples of data cleaning include changing the coordinate system from galactic
to Euclidean, converting between unit conventions, and applying masks. When using large
data sets, the time to load the full data set into memory can be significant. This delay
hinders data exploration and limits the interactive benefits of the Python language. dask
arrays allow users to design data-cleaning pipelines on the fly. If the data format on disk
supports random-read access, users can easily select and peek at a small subset of data
without reading the full data set. This becomes especially useful when prototyping scientific
models in an interactive environment, such as a Jupyter notebook.

The chunked nature of the dask array allows array computations to be performed on
large data sets that do not fit into memory because the chunk size defines the amount of
data loaded into memory at any given time. It effectively extends the maximum size of
useable data sets from the size of memory to the size of the disk storage. This feature also
simplifies the process of dealing with large data sets in interactive environments.

2.3.3 Meshes

Painting a Mesh

The Mesh object implements a paint() function, which is responsible for generating the
field values on the mesh and returning an array-like object to the user. Meshes provide
an equal treatment of configuration and Fourier space, and users can specify whether the
painted array is defined in configuration or Fourier space. In the former case, a RealField
is returned and in the latter, a ComplexField. These objects are implemented by the pmesh
package and are subclasses of the NumPy ndarray class. They are related via a real-to-
complex parallel FFT operation, implemented using pfft-python via the r2c() and c2r()
functions.

The paint() function paints mass-weighted (or equivalently, number-weighted) quanti-
ties to the mesh. The field that is painted is

F (x) = [1 + δ′(x)]V (x), (2.1)

where V (x) represents the field value painted to the mesh and δ′(x) = n′(x)/n̄′ − 1 is
the weighted overdensity field. It is related to the unweighted number density as n′(x) =
W (x)n(x), where W (x) are the weights.

In nbodykit, users can control the behavior of both V (x) and W (x). In the default
case, both quantities are unity, and the field painted to the mesh is 1 + δ. As an illustration,
V (x) can be specified as a velocity component to paint the momentum field (mass-weighted
velocity). We also provide a mechanism by which users can further transform the painted
field on the mesh. The apply() function can be used to apply a function to the mesh, either
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in configuration or Fourier space. Multiple functions can be applied to the mesh, and the
operations are performed when paint() is called.

From Catalog to Mesh

All Catalog objects include a to_mesh() function which creates a Mesh object using the
specified number of cells per mesh side. This function allows users to configure exactly how
the catalog is interpolated onto the mesh. Users can choose from several different mass as-
signment windows, including the Cloud-In-Cell (CIC), Triangular Shaped Cloud (TSC), and
Piecewise Cubic Spline (PCS) schemes (Hockney & Eastwood 1981). The Daubechies wavelet
(Daubechies 1992) and its symmetric counterpart (“Symlets”, see, e.g., PyWavelets13) are
also available. By default, the CIC window is used. The interlacing technique (Hockney &
Eastwood 1981; Sefusatti et al. 2016) can reduce the effects of aliasing in Fourier space. In
this scheme, the Catalog object is interpolated onto two separate meshes separated by half
of a cell size. When the fields are combined in Fourier space, the leading-order contribution
to aliasing is eliminated.

Users can also configure whether or not the window is compensated, which divides the
density field in Fourier space by (Hockney & Eastwood 1981)

W (k) = Πi [sinc (πki/2kN)]p , (2.2)

where i ∈ {x, y, z}, p = 2, 3, 4 for CIC, TSC, and PCS, respectively, and sinc(x) ≡ sin(x)/x.
The Nyquist frequency of the mesh is given by kN = πN/L, where L is the box size, and N
is the number of cells per box side.

We provide comparisons of the various interpolation windows and correction methods in
this section. First, Figure 2.2 illustrates the effects of interlacing when using the CIC, TSC,
and PCS schemes. This comparison is similar to the detailed analysis presented in Sefusatti
et al. (2016). Second, we show the effectiveness of the wavelet windows at reducing aliasing
in Figure 2.3. For both figures, we paint a LogNormalCatalog of 5×107 objects to a mesh of
5123 cells in a box of side length 2500 h−1Mpc. We compare the measured power spectrum
to a “reference” power spectrum, computed using a mesh of 10243 cells and the PCS window.
When using the CIC, TSC, and PCS windows, we de-convolve the interpolation window
using equation 2.2, while we apply no such corrections when using wavelet-based windows.

Figure 2.2 confirms the results of Sefusatti et al. (2016)—the interlacing technique per-
forms very well at reducing the effects of aliasing on the measured power spectrum. We
achieve sub-percent accuracy up to the Nyquist frequency when combining interlacing with
the CIC, TSC, and PCS windows. In general, higher-order windows perform better, with
the PCS scheme achieving a precision of at least ∼10−5 up to the Nyquist frequency.

Figure 2.3 compares the performance of the Daubechies and Symlet wavelets to the CIC,
TSC, and PCS windows. As in Figure 2.2, we plot the ratio of the power spectrum computed
using meshes of size 5123 and 10243 cells. We apply equation 2.2 for the CIC, TSC, and

13https://pywavelets.readthedocs.io

https://pywavelets.readthedocs.io
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Figure 2.2 : A comparison of the effects of interlacing when using the CIC, TSC, and PCS windows.
We show the ratio of the power spectrum computed for a log-normal density field using a mesh with
5123 cells to a reference power spectrum P ref , computed using a mesh with 10243 cells. The ratio is
shown as a function of wavenumber in units of the Nyquist frequency of the lower-resolution mesh.
In all cases, the appropriate window compensation is performed using equation 2.2.

PCS windows but do not apply any corrections when using the wavelet windows. For this
comparison, we do not use interlacing. We are able to confirm the results of Cui et al. (2008)
and Yang et al. (2009), which claim 2% accuracy on the power spectrum up to k ≈ 0.7kN

when using the DB6 window without any additional corrections. However, the wavelet
windows fail to match the precision achieved when using interlacing, even when using the
largest wavelet size tested here (a = 20). Furthermore, the Daubechies windows introduce
scale-dependence on large scales due to symmetry breaking (see the inset of Figure 2.3). The
symmetric Symlet wavelets do not suffer from this issue but also cannot match the accuracy
achieved when using interlacing.

Figure 2.3 also displays the relative speeds of each of the windows discussed in this section
(bottom panel). These timing tests were performed using 64 processes on the NERSC Cori
Phase I system. The wavelet windows are all significantly slower than the CIC, TSC, and
PCS windows. The TSC and PCS methods are only marginally slower than the default CIC
scheme, with slowdowns of ∼10% and ∼40%, respectively. The CIC, TSC, and PCS windows
rely on optimized implementations in pmesh, while the wavelet windows use a slower lookup
table implementation. Due to the precision of the interlacing technique and the relative
speed of the TSC and PCS windows, we recommend using these options in most instances.
However, it is generally best to determine the optimal set of parameters for a particular
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application by running convergence tests with different parameter configurations.

An Illustrative Example

We demonstrate the use of Mesh objects by example in Figure 2.4, which gives a short
code snippet that creates a Mesh object from an existing Catalog, saves the configuration
space density field to disk, and then reloads the data into memory. The snippet also demon-
strates the preview() function, which can create a lower resolution projection of the full
mesh field. This can be useful to quickly inspect mesh fields interactively, which would oth-
erwise be difficult due to memory limitations. We show the preview of the density field from
a log-normal catalog in the bottom panel of Figure 2.4, where the large-scale structure is
clearly evident, even in the low-resolution projection.

2.3.4 Algorithms

The nbodykit.algorithms module includes parallel implementations of some of the
most commonly used large-scale structure analysis algorithms. We take care to provide
support for data sets from both observational surveys and N -body simulations. In this
section, we provide an overview of the available functionality. The set of algorithms currently
implemented is not meant to be exhaustive, but instead a solid foundation for LSS data
analysis.

Power Spectra

For simulation boxes with periodic boundary conditions, the FFTPower algorithm mea-
sures the power directly from the square of the Fourier modes of the overdensity field. The
1D or 2D power spectrum, P (k) or P (k, µ), can be computed, as well as the power spectrum
multipoles P`(k). Here, µ represents the angle cosine between the pair separation vector and
the line-of-sight. For observational data, in the form of right ascension (RA), declination
(Dec), and redshift, the power spectrum multipoles of the density field can be computed us-
ing the ConvolvedFFTPower algorithm. The implementation uses the FFT-based estimator
described in Hand et al. (2017b), which requires 2`+ 1 FFTs to compute a given multipole
of order `. This estimator improves the FFT-based estimator presented by Bianchi et al.
(2015) and Scoccimarro (2015), building on the ideas of previous power spectrum estima-
tors (Feldman et al. 1994; Yamamoto et al. 2006), and in particular, the treatment of the
anisotropic 2PCF using spherical harmonics of Slepian & Eisenstein (2015a). We also pro-
vide the ProjectedFFTPower for computing the power spectrum of a field in a simulation
box, projected along the specified axes. Such an observable is useful for e.g., Lyman-α or
weak lensing data analysis. The correctness of these algorithms has been verified using inde-
pendent implementations from within the Baryon Oscillation Spectroscopic Survey (BOSS)
collaboration.
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Figure 2.3 : The performance of the Daubechies and Symlet wavelets in comparison to the CIC,
TSC, and PCS windows. Wavelet windows of sizes a = 6, 12, and 20 are shown. Top: the ratio of
the measured power to the reference power spectrum, as in Figure 2.2. Here, we apply no corrections
when using the wavelet windows and apply equation 2.2 for the CIC, TSC, and PCS windows. No
interlacing is used for this test. Bottom: the speed of each interpolation window, relative to the
CIC window. Speeds were recorded when computing the power spectra in the top panel.
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from nbodykit.lab import *

import matplotlib.pyplot as plt

# Initialize linear power spectrum with Planck 2015 cosmology

cosmo = cosmology.Planck15

Plin = cosmology.LinearPower(cosmo, redshift=0)

# Create a Catalog by sampling a log-normal density field

cat = LogNormalCatalog(Plin, nbar=3e-3, BoxSize=1380, Nmesh=256)

# Convert to a Mesh and use TSC painting

mesh = cat.to_mesh(Nmesh=256, window="tsc")

# Save the configuration-space Mesh

mesh.save("lognormal-mesh.bigfile", mode="real", dataset="Field")

# Preview a low-resolution projection of the density field

density = mesh.preview(Nmesh=64, axes=(0,1))

plt.imshow(density)

...

# Reload the Mesh from disk

mesh = BigFileMesh("lognormal-mesh.bigfile", dataset="Field")
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Figure 2.4 : Top: an analysis pipeline illustrating the creation of a Mesh object from a Catalog,
as well as how to serialize the painted mesh to disk and preview a low-resolution projection of the
density field for inspection. Bottom: the two-dimensional, low-resolution preview of the painted
density field N/〈N〉 = 1 + δ.
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2-Point Correlation Functions

nbodykit includes functionality for counting pairs of objects and computing their corre-
lation function in configuration space. We leverage the blazing speed of the publicly available
Corrfunc chaining mesh code for these calculations (Sinha & Garrison 2017). We adapt its
highly optimized pair counting routines to perform calculations using MPI. We perform a
domain decomposition on the input data such that the objects on a particular MPI rank
are spatially confined to include all pairs within the maximum separation. For non-uniform
density fields, the domain decomposition results in a particle load that is balanced across
MPI ranks.14 The relevant pair counting algorithms are SimulationBoxPairCount and
SurveyDataPairCount. These classes can count pairs of objects as a function of the 3D
separation r, the separation r and angle to the line-of-sight µ, the angular separation θ, and
the projected distances perpendicular rp and parallel π to the line-of-sight.

Users can compute the correlation function of a Catalog using the SimulationBox2PCF
and SurveyData2PCF classes, which internally rely on the previously described pair counting
classes. For data with periodic boundary conditions, we use analytic randoms to estimate
the correlation function using the so-called “natural” estimator: DD/RR − 1. A Catalog
object holding synthetic randoms can be supplied, in which case the Landy-Szalay estimator
(Landy & Szalay 1993) is employed: (DD−2DR+RR)/RR. The variations of the correlation
function that can be computed by these two classes are as follows:

• as a function of three-dimensional separation, ξ(r)

• accounting for the angle to the line-of-sight, ξ(r, µ) and ξ(rp, π)

• as a function of angular separation, w(θ)

• projected over the line-of-sight separations, wp(rp)

The correctness of the pair counting and correlation function algorithms described here was
independently verified using the kdcount and Halotools software.

3-Point Correlation Function

The SimulationBox3PCF and SurveyData3PCF classes compute the multipoles of the
isotropic 3-point correlation function (3PCF) in configuration space. The algorithm follows
the implementation described in Slepian & Eisenstein (2015a), which scales as (N2), where
N is the number of objects. Their improved estimator relies on a spherical harmonic decom-
position to achieve a similar scaling with N as two-point clustering estimators. We note that
the FFT-based implementation of this algorithm (presented in Slepian & Eisenstein 2016)
and the anisotropic version described in Slepian & Eisenstein (2017) have not yet been im-
plemented, although there are plans to do so in the future. We have verified the accuracy of
the isotropic 3PCF classes against the implementation used in Slepian & Eisenstein (2015a).

14We thank Biwei Dai for the implementation of the load balancer.
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An implementation of this algorithm including anisotropy written in C++ and optimized
for HPC machines was recently presented in Friesen et al. (2017).

Grouping Methods

The FOF class implements the well-known Friends-of-Friends algorithm, which identifies
clusters of points that are spatially less distant than a threshold linking length. It uses a
parallel implementation of the algorithm described in Feng & Modi (2017), which utilizes
KD-trees and the kdcount software. FOF groups can be identified as a function of three-
dimensional or angular separation. We also provide functions for transforming the output
of the FOF algorithm to a Catalog of halo objects (a HaloCatalog) in a manner compatible
with the Halotools software.

nbodykit can also identify clusters of objects using a cylindrical rather than spherical
geometry. We implement a parallel version of the algorithm described in Okumura et al.
(2017) in the CylindricalGroups class. Our implementation relies on the neighbor querying
capability of kdcount and the group-by methods of pandas.

Finally, the FiberCollisions class simulates the process of assigning spectroscopic fibers
to objects in a fiber-fed redshift survey such as BOSS or eBOSS (Dawson et al. 2013, 2016).
This procedure results in so-called “fiber collisions” when two objects are separated by an
angular width on the sky that is smaller than the fiber size. We follow the procedure outlined
in Guo et al. (2012) to assign fibers to an input catalog of objects. We identify angular FOF
groups using a linking length equal to the fiber collision scale and assign fibers to the objects
in such a manner as to minimize the number of objects that do not receive a fiber.

Miscellaneous

nbodykit also includes algorithms that generally serve a supporting role in other algo-
rithms. The KDDensity class estimates a proxy density quantity for an input set of objects us-
ing the inverse cube of the distance to an object’s nearest neighbor. The RedshiftHistogram
class computes the mean number density as a function of redshift, n(z), from an input catalog
of objects. We plan to generalize this algorithm to be a more universal histogram calculator
that could, for example, compute mass or luminosity functions.

2.4 Development Workflow

2.4.1 Version Control

nbodykit is developed using the version control features of git,15 and the code is hosted
in a public repository on GitHub.16 Major changes to the code base are performed using a
pull request workflow, which provides a mechanism for developers to review changes before

15http://git-scm.com
16http://github.com/bccp/nbodykit

http://git-scm.com
http://github.com/bccp/nbodykit
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they are merged into the main source code. Users can contribute to nbodykit by first
forking the main repository, making changes in this fork and submitting the changes to the
main repository via a pull request. This workflow helps assure the overall quality of the
code base and ensures that new changes are properly documented and tested. Bugs and
new feature requests can be submitted as GitHub issues. Alternatively, users can send an
email to nbodykit-issues@fire.fundersclub.com, which will automatically open an issue
on GitHub. As nbodykit is intended as a community-based resource, we encourage user
contributions and ideas for new functionality. We adopt a “mentoring” approach for new
features and will gladly offer advice and guidance to new users who wish to contribute to
nbodykit for the first time.

2.4.2 Automated Testing with MPI Support

nbodykit is extensively tested via hundreds of unit tests using the runtests17 package
(Feng & Hand 2017). As mpi4py does not provide a reusable framework for testing parallel
applications, we have developed runtests to fill this gap in the development process. It
extends the py.test18 testing framework, adding several features. First, the test driver
incrementally rebuilds and installs the Python package before running the test suite. Second,
it adds MPI support by allowing users to specify the number of processes with which each
test function should be executed. It also supports computing the testing coverage for parallel
applications, where test coverage is defined as the percentage of the software covered by the
test suite.

We execute the nbodykit test suite via the continuous integration (CI) service Travis,19

using runtests to test both serial and parallel execution of the code. The test suite is
currently executed on both Linux and Mac OS X operating systems and for Python versions
2.7, 3.5, and 3.6. Whenever a pull request is opened, the test suite is executed and the new
changes will not be merged if the test suite fails. We also compute the testing coverage of the
code base. Currently, nbodykit maintains a value of 95%. We use the Coveralls20 service to
ensure that new changes cannot be merged into the main repository if the testing coverage
decreases.

2.4.3 Use on Personal and HPC Machines

nbodykit is compatible with both Python versions 2.7 and 3.x. For personal computing
systems (Mac OS X and Linux), we provide binaries of nbodykit and its dependencies on the
Berkeley Center for Cosmological Physics (BCCP) Anaconda channel.21 nbodykit (and all
of its dependencies) can be installed into an Anaconda environment using a simple command:

17https://github.com/rainwoodman/runtests
18http://pytest.org
19https://travis-ci.org
20https://coveralls.io
21https://anaconda.org/bccp

nbodykit-issues@fire.fundersclub.com
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https://anaconda.org/bccp
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conda install -c bccp nbodykit. We ensure all packages on the BCCP channel are up-
to-date using a nightly cron job hosted on the Travis CI service.

Supercomputing systems often require recompiling the dependencies of nbodykit using
the machine-specific compilers and MPI configuration. For example, we use the “conda build”
functionality of the Anaconda package to compile and update nbodykit and its dependencies
nightly on the NERSC Cray supercomputers. The infrastructure for building nbodykit
and its dependencies is publicly available on GitHub,22 which users can re-use to setup
nbodykit on HPC machines other than NERSC. However, we recommend that users first
test if the default binaries on the BCCP channel are compatible with their supercomputing
environment.

The remaining barrier to using nbodykit on HPC systems is the incompatibility of the
Python launch system and the shared file systems of HPC machines. When launching an
MPI application using Python, the file system will stall when all of the Python instances
(can be thousands or more) query the file system for modules on the search path. This issue
effectively prevents the use of Python applications on HPC machines.

nbodykit utilizes an open-source solution, denoted “python-mpi-bcast”, to facilitate de-
ploying Python applications on HPC machines (Feng & Hand 2016). This tool bundles and
delivers runtime dependencies to the HPC computing nodes via an MPI broadcast oper-
ation, bypassing the file system bottleneck and allowing Python applications to launch at
near-native speed. Users can modify their job scripts in a non-invasive manner to deploy our
tool. Additional details and setup instructions can be found in Feng & Hand (2016). The
tool is publicly available on GitHub.23

2.4.4 Documentation

Documentation for nbodykit is available on Read the Docs.24 The documentation is
generated using Sphinx25 and includes comprehensive documentation of the nbodykit API.
It also includes detailed walk-throughs of each of the main components of nbodykit.

We provide a set of recipes detailing a broad selection of the functionality available in
nbodykit in the “Cookbook” section of the documentation. Ranging from simple tasks
to more complex work flows, we hope that these recipes help users become acclimated to
nbodykit as well as illustrate the power of nbodykit for LSS data analysis. The recipes
are in the form of Jupyter notebooks. An interactive environment containing the recipe
notebooks is available to users via the Binder service.26 This allows new users to explore
nbodykit without installing nbodykit on their own machine.

22https://github.com/bccp/conda-channel-bccp
23https://github.com/rainwoodman/python-mpi-bcast
24http://nbodykit.readthedocs.io
25http://www.sphinx-doc.org
26https://mybinder.org
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from nbodykit.lab import *

from nbodykit import setup_logging

from fastpm.nbkit import FastPMCatalogSource

setup_logging()

# Setup initial conditions

cosmo = cosmology.Planck15

power = cosmology.LinearPower(cosmo, 0)

linear = LinearMesh(power, BoxSize=512, Nmesh=512)

# P(k) of initial field

r = FFTPower(linear, mode="1d")

r.save("linear-power.json")

# Run the FastPM particle mesh simulation

matter = FastPMCatalogSource(linear, Nsteps=10)

# Compute and save matter P(k,z=0)

r = FFTPower(matter, mode="1d", Nmesh=512)

r.save("matter-power.json")

# Run FOF to identify halo groups

fof = FOF(matter, linking_length=0.2, nmin=20)

halos = fof.to_halos(1e12, cosmo, 0.)

# Compute and save halo power P(k,z=0)

r = FFTPower(halos, mode="1d", Nmesh=512)

r.save("halo-power.json")

# Populate halos with galaxies

hod = halos.populate(Zheng07Model)

# Compute and save galaxy P(k,z=0)

r = FFTPower(hod, mode="1d", Nmesh=512)

r.save("galaxy-power.json")
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Figure 2.5 : A galaxy clustering emulator, implemented with nbodykit. Left : the source code for the
application, which evolves an initial Gaussian field to z = 0 using the FastPM simulation scheme,
identifies FOF halos, populates those halos with galaxies, and records the power spectrum of each
step. Right, top: the flow of data through the various components. Right, bottom: the resulting
P (k) measured for each step in the emulator. Performance benchmarks for this application are
given in Figure 2.7.
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2.5 In Action
In this section, we describe a realistic LSS application using nbodykit: a galaxy clus-

tering emulator. The goal of the emulator is to produce the galaxy power spectrum from
first principles, given a background cosmological model. The application combines several
components of nbodykit to achieve this goal. The steps include:

• Initial conditions: the LinearMesh class creates a Gaussian realization of a density
field in Fourier space from an input power spectrum.

• N -body simulation: the initial conditions are evolved forward to z = 0 using the
FastPM quasi-N -body particle mesh scheme of Feng et al. (2016).

• Halo Identification: halos are identified from the matter field using the FOF grouping
algorithm.

• Halo Population: halos are populated with galaxies using the HOD from Zheng et al.
(2007) and the Halotools package.

• Clustering Estimation: P (k) is computed for each of the above steps using the FFTPower
algorithm.

We diagram the flow of data and parameters for these steps in the top right panel of
Figure 2.5. We also show the source code for the application using nbodykit, which can be
implemented using only ∼30 lines of code. We emphasize that with the component-based
approach of nbodykit, the user is free to output and serialize any intermediate data products
during the execution of the larger application, as we have done in this example for the power
spectra of the initial, matter, and halo density fields. Finally, note that the source code in
Figure 2.5 can be executed with an arbitrary number of MPI ranks. We discuss performance
benchmarks for this application as a function of the number of MPI processes in the next
section.

2.6 Performance Benchmarks
In this section, we present performance benchmarks for several nbodykit algorithms,

as well as the emulator application discussed in Section 2.5. Tests are run on the NERSC
Cori Phase I Haswell nodes, with 32 MPI cores per node. In Figure 2.6, we show the
strong scaling results for the FFTPower, ConvolvedFFTPower, SimulationBoxPairCount,
and SimulationBox3PCF algorithms. The benchmarks are performed for two different data
configurations, meant to simulate the data sets of current and future surveys, denoted as
“small” and “large”, respectively. The “small” sample is modeled after the completed BOSS
galaxy sample (Reid et al. 2016) and includes 106 galaxies in a cubic box of side length
L = 2500 h−1Mpc. The “large” sample includes a factor of 10 more objects in a box of side
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Figure 2.6 : Performance benchmarks for four nbodykit algorithms for our “small” data set (106

objects) and our “large” data set (107 objects). The algorithms in the top row use FFT-based
estimators to compute power spectra, while those in the bottom row of panels count pairs of objects
in configuration space. The FFT-based algorithms take near-identical time for the large and small
data sets due to the use of a 10243 mesh in both cases. The benchmarks were performed on the
NERSC Cori Phase I Haswell nodes using 32 MPI ranks per node. See the text of Section 2.6 for
further details on the test configurations.
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Figure 2.7 : The wall-clock time as a function of the number of MPI ranks used for each step in the
galaxy clustering emulator detailed in Figure 2.5. Overall, the application shows excellent scaling
behavior, with deviations from the ideal scaling caused by the halo population step. This step does
not currently have a massively parallel implementation and takes a roughly constant amount of
time as more cores are used. The benchmarks were performed on the NERSC Cori Phase I Haswell
nodes using 32 MPI ranks per node.
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length L = 5000 h−1Mpc and is meant to represent data from future surveys such as DESI
(DESI Collaboration et al. 2016a). We run four sets of benchmarking tests:

• FFTPower: compute P (k, µ) for 10 µ bins, using a mesh size of Nmesh = 1024. This
requires a single FFT operation.

• ConvolvedFFTPower: compute multipoles P`(k) for ` = 0, 2, and 4 for survey data
(RA, Dec, z), using a mesh size of Nmesh = 1024. The algorithm requires 2` + 1 FFT
operations per multipole, and 15 in total for this test.

• SimulationBoxPairCount: count the number of pairs as a function of separation for
10 separation bins ranging from r = 10 h−1Mpc to r = 150 h−1Mpc and 100 µ bins.

• SimulationBox3PCF: compute the isotropic 3PCF multipoles for ` = 0, 1, ..., 10 and 10
separation bins ranging from r = 10 h−1Mpc to r = 150 h−1Mpc.

In general, these four algorithms show excellent strong scaling with the number of MPI
ranks. For the power spectrum algorithms (top row of Figure 2.6), the dominant calculation
is the FFT operation, which has good scaling behavior. Because the FFT is the dominant
time cost, we find nearly identical performances for the “small” and “large” samples. The
wall-clock time for the ConvolvedFFTPower algorithm is roughly fifteen times that of the
FFTPower algorithm, which is driven by the total number of FFTs that each algorithm
computes. The pair-counting-based algorithms both take O(N2) time to compute their
results. However, the SimulationBoxPairCount algorithm relies on the highly optimized
Corrfunc software, which is significantly faster than SimulationBox3PCF, which relies on
kdcount. When using SimulationBoxPairCount on the “small” data set, we find that MPI
communication costs are non-negligible due to the relatively small sample size, which hinders
the scaling performance of the code.

We also present performance benchmarks for the emulator application described in Sec-
tion 2.5. For this test, we run a FastPM particle mesh simulation with 5123 total particles.
The halo finder identifies roughly 225,000 dark matter halos that are then used to build
a mock galaxy catalog. The wall-clock times for each step in the emulator are shown in
Figure 2.7. We see that the dominant fraction of the wall-clock time is spent in the FastPM
step, which shows excellent strong scaling behavior up to the number of cores we have tested.
The implementation of the halo population step using Halotools is not massively parallel,
and therefore, the time to solution for this step remains relatively constant as the number
of cores increases. The wall-clock time for this step only becomes significant as the number
of cores approaches ∼1024, and it would be worth investigating improving this step’s scal-
ing if users wish to run often at this scale. However, in our experience, we have not found
that the time cost of this step justifies further efforts converting it to a massively parallel
implementation.

We emphasize that for all benchmarks presented in this section, the number of MPI
ranks can always be increased such that the time to solution is on the order of seconds.
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This becomes important for realistic data analyses in LSS, which often require repeating an
algorithm’s calculation hundreds to thousands of times, e.g., while sampling a parameter
space using Markov Chain Monte Carlo or optimization techniques. Due to the availability
of large-scale computing resources and the scaling behavior of nbodykit demonstrated here,
we believe that nbodykit will be able to meet the computational demands of future LSS
data analyses.

2.7 Conclusions
We have presented the first public release of nbodykit (v0.3.0), a massively parallel

Python toolkit for the analysis of large-scale structure data. Relying on the mpi4py binding
of MPI, the package includes parallel implementations of a set of canonical algorithms in
the field of large-scale structure, including two and three-point clustering estimators, halo
identification and population tools, and quasi-N -body simulation schemes. The toolkit also
includes a set of distributed data containers that support a variety of data formats common
in astronomy, including CSV, FITS, HDF5, binary, and bigfile data. With these tools, we
hope nbodykit can serve as a foundation for the community to build upon as we strive to
meet the demands of future LSS data sets.

In designing nbodykit, we have attempted to balance the requirements of both a scalable
and interactive piece of software. Our ultimate goal was to produce a piece of software that
is as usable in a Jupyter notebook environment as on an HPC machine. We have adopted a
modular, component-based approach that should enable researchers to integrate nbodykit
with their own software to build complicated applications. As an illustration of its power,
we have discussed an implementation of a galaxy clustering emulator using nbodykit, which
provides a complete forward model for the galaxy power spectrum, starting from an initial,
Gaussian density field. We have also demonstrated that the toolkit shows excellent scaling
behavior, presenting a set of performance benchmarks for the emulator as well as some of
the more commonly used algorithms in nbodykit.

We have outlined our development workflow for producing a piece of reusable scientific
software. nbodykit is open-source—we strongly believe in the idea of open science and
have placed an emphasis on reproducibility when designing nbodykit. Designed for the LSS
community, we hope that new users will find nbodykit useful in their own research and
that the software can continue to grow and mature in new ways from community feedback
and contributions. We are also strong believers in the necessity of unit testing and adequate
documentation for open-source tools. We have attempted to meet these goals using the Travis
automated testing service and the Read the Docs documentation hosting tools. Finally, we
have aimed to make nbodykit widely available and easily installable. The package supports
both Python versions 2 and 3, and binary distributions of nbodykit and its dependencies
can be installed onto Mac OS X and Linux machines using the Anaconda package manager.

In the future, we hope to incorporate the expertise of new developers, from both the
LSS and Python HPC communities. We expect the knowledge of both communities to be
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necessary in the data analysis of future surveys. The set of features currently implemented
in nbodykit is not meant to be all-inclusive but rather a sampling of the more commonly
used tools in the field. Most importantly, we hope that nbodykit provides a solid basis for
the community to build upon. We warmly welcome feedback and contributions of all forms
from the community. As open-source software, nbodykit was designed as a tool to help the
LSS community, and we hope that community contributions can help maximize its benefits
for its users.
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Chapter 3

An optimal FFT-based anisotropic
power spectrum estimator

Measurements of line-of-sight dependent clustering via the galaxy power spectrum’s mul-
tipole moments constitute a powerful tool for testing theoretical models in large-scale struc-
ture. Recent work shows that this measurement, including a moving line-of-sight, can be
accelerated using fast Fourier transforms (FFTs) by decomposing the Legendre polynomials
into products of Cartesian vectors. In this chapter, we present a faster, optimal means of
using FFTs for this measurement. We avoid redundancy present in the Cartesian decompo-
sition by using a spherical harmonic decomposition of the Legendre polynomials. With this
method, a given multipole of order ` requires only 2`+1 FFTs rather than the (`+1)(`+2)/2
FFTs of the Cartesian approach. For the hexadecapole (` = 4), this translates to 40% fewer
FFTs, with increased savings for higher `. The reduction in wall-clock time enables the cal-
culation of finely-binned wedges in P (k, µ), obtained by computing multipoles up to a large
`max and combining them. This transformation has a number of advantages. We demon-
strate that by using non-uniform bins in µ, we can isolate plane-of-sky (angular) systematics
to a narrow bin at µ ' 0 while eliminating the contamination from all other bins. We also
show that the covariance matrix of clustering wedges binned uniformly in µ becomes ill-
conditioned when combining multipoles up to large values of `max, but that the problem can
be avoided with non-uniform binning. As an example, we present results using `max = 16, for
which our procedure requires a factor of 3.4 fewer FFTs than the Cartesian method, while
removing the first µ bin leads only to a 7% increase in statistical error on fσ8, as compared
to a 54% increase with `max = 4.

3.1 Introduction
The clustering of galaxies on the largest scales contains a significant amount of cosmolog-

ical information. The baryon acoustic oscillation (BAO) feature on scales of ∼100 h−1Mpc
can be used as a standard ruler to gauge the Universe’s expansion history and infer prop-
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erties of dark energy (e.g., Wagner et al. 2008; Shoji et al. 2009). First detected in the
2-point correlation function (2PCF) by Eisenstein et al. (2005); Cole et al. (2005) and more
recently in the 3-point function (3PCF) by Slepian et al. (2017), the BAO signal has provided
percent-level measurements of the Hubble parameter H(z) and angular diameter distance
DA(z) (Alam et al. 2017). These analyses have measured both the characteristic BAO peak
in configuration space (Ross et al. 2017; Vargas-Magaña et al. 2017) and the analogous
wiggles in Fourier space (Beutler et al. 2017c; Gil-Marín et al. 2016a). Beyond the BAO,
and on even larger scales, these clustering statistics also contain signatures of primordial
non-Gaussianity, the deviation from Gaussian random field initial conditions in the early
Universe (Creminelli et al. 2006; Desjacques & Seljak 2010).

Additional information can be extracted from these statistics by measuring the broad-
band clustering as a function of the angle to the line-of-sight (LOS). Although the underlying
distribution of galaxies is assumed to be homogeneous and isotropic, observational effects
such as the Alcock-Paczynski (AP; Alcock & Paczynski 1979) effect and redshift-space distor-
tions (RSD; Kaiser 1987) introduce anisotropy into the measured clustering when a fiducial
distance-redshift relation is used to translate redshifts into comoving coordinates. In partic-
ular, anisotropy around the line-of-sight is introduced by RSD because an object’s redshift,
used to infer the LOS coordinate, is sensitive to its peculiar velocity. Because this velocity is
sourced by the large-scale gravity field, RSD measurements allow constraints on the growth
rate of structure and can provide tests of general relativity (e.g., Guzzo et al. 2008). For
galaxy pairs, RSD depends on the angle cosine µ between the pair separation s and the
line-of-sight n̂. The clustering is typically measured as multipole moments of the 2-point
correlation function, which gives the excess of pairs above random, or of the power spectrum,
its Fourier-space analog. The Legendre polynomials form a complete basis and are equivalent
to expanding in powers of µ. Parity demands that only even multipoles are non-zero. In
linear theory, RSD generates only ` = 0, 2, and 4 moments of the anisotropic power spectrum
(Kaiser 1987) or correlation function (Hamilton 1992).

For wide-field galaxy surveys, only angle-averaged clustering, i.e., the monopole, can be
measured accurately under the assumption of a single LOS to the entire survey. Under this
assumption, it is straightforward to measure the clustering using a fast Fourier transform
(FFT). What is more challenging is to define a clustering estimator for the higher-order
multipoles that uses a line-of-sight that rotates to follow each galaxy pair’s spatial or Fourier-
space separation. Including the observer as a third vertex, the galaxy pair maps to a triangle,
and more accurate line-of-sight choices are the angle bisector of this triangle or the vector
from the observer to the separation midpoint. Less accurate but still better than a single
LOS is taking the LOS to be the vector from observer to a single pair member, as first used
in Yamamoto et al. (2006); Blake et al. (2011b). This latter method, often referred to as
the local plane-parallel approximation, differs from angle bisector and midpoint methods at
O(θ2), where θ is the angle the pair subtends; bisector and midpoint methods also differ from
each other at O(θ2) (Slepian & Eisenstein 2015b). For the current generation of surveys,
these wide-angle effects are not a significant source of error (Samushia et al. 2015; Yoo &
Seljak 2015) but could become important for future surveys, especially for studies which
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focus primarily on large scales, i.e., primordial non-Gaussianity analyses. To address this,
slight generalizations of the local plane parallel estimates for the multipoles can be combined
to form the midpoint and bisector-based estimates (Slepian & Eisenstein 2015b).

Recently, Bianchi et al. (2015) and Scoccimarro (2015) showed that by using products of
Cartesian coordinates as building blocks for the Legendre polynomials, one could evaluate the
local plane-parallel method of Yamamoto et al. (2006) using FFTs, providing an enormous
speed-up over the summation-based estimator. Around the same time, Slepian & Eisenstein
(2016) demonstrated that FFTs could also be used for the anisotropic 2PCF by exploiting the
spherical harmonic addition theorem to decompose the Legendre polynomials into spherical
harmonics. In this chapter, we show that this spherical harmonic approach can also be used
for the power spectrum multipoles. Importantly, the spherical harmonics are orthogonal
to each other, whereas the Cartesian vectors used by Bianchi et al. (2015); Scoccimarro
(2015) are not. Thus, the Bianchi et al. (2015); Scoccimarro (2015) implementation involves
redundancy, requiring (`+ 1)(`+ 2)/2 = O(`2) FFTs per multipole rather than the 2`+ 1 =
O(`) FFTs needed by our method. We emphasize that our algorithm scales linearly with `
whereas these previous works scaled with its square.

The additional speed-up provided by our implementation is not only useful for computing
higher-order multipoles more quickly but also for the processing of a large number of mock
catalogs for estimating covariance matrices. For example, the covariance matrix estimation
of Alam et al. (2017) required evaluating clustering statistics for 3 separate redshift bins and
1000 mock catalogs. Furthermore, the calculation of higher-order multipoles is also useful for
analyzing the clustering in wedges of µ (Kazin et al. 2012; Grieb et al. 2016). While there
is little measurable signal in multipoles above the ` = 4 hexadecapole, we show that the
measurement of multipoles up to a large `max allows the use of narrow µ bins. It also reduces
the correlations between separate µ bins, allowing for easier theoretical modeling of the
covariance of the clustering estimator. The use of narrow µ wedges becomes advantageous
when measuring clustering contaminated by systematics in the plane of the sky, as is often
the case for galaxy surveys, i.e., Pinol et al. (2017). Such a transverse systematic will
contaminate all multipoles, but we demonstrate that the contamination can be effectively
isolated to a narrow bin around µ ' 0 when using wedges, with the width of the µ ' 0 bin
scaling as (`max/2 + 1)−1. Non-uniform binning in µ can be chosen such that any artifacts
of the systematic are eliminated for all bins beyond the first µ ' 0 bin.

The chapter is laid out as follows. In §3.2.1, we first present the improved estimator
of the power spectrum multipoles using a spherical harmonic expansion and demonstrate
that it significantly outperforms the Cartesian decomposition method. This enables us to
efficiently measure higher-order multipoles and then transform them into power spectrum
wedges as shown in §3.2.2. We then discuss our implementation of the estimators in the
publicly available large-scale structure analysis software nbodykit in §3.2.3. In §3.3, we
develop a simple model for a systematic signal in the transverse (µ = 0) direction and
present a simple method to mitigate the contamination with a non-uniform binning scheme.
We discuss the impact of survey window function on this method in §3.3.3. We show in §3.4.1
that the higher multipoles de-correlate the wedges even though they do not add additional
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signal. This means that one can reduce the information loss due to removal of the localized
contamination by measuring more multipoles (§3.4.2). Finally, we conclude in §3.5.

3.2 Estimators

3.2.1 Multipoles

We begin by defining the weighted galaxy density field (Feldman et al. 1994),

F (r) =
w(r)

I1/2
[n(r)− αns(r)] , (3.1)

where n and ns are the observed number density field for the galaxy catalog and synthetic
catalog of random objects, respectively. The random catalog defines the expected mean
density of the survey and also accounts for the angular mask and radial selection function.
It contains no cosmological clustering signal. We allow for a general weighting scheme w(r).
The factor α normalizes the synthetic catalog to the number density of the galaxies. The
field F (r) is normalized by the factor of I, defined as I ≡

∫
dr w2n̄2(r). The estimator

for the multipole moments of the power spectrum is (Feldman et al. 1994; Yamamoto et al.
2006)

P̂`(k) =
2`+ 1

I

∫
dΩk

4π

[∫
dr1

∫
dr2 F (r1)F (r2)eik·(r1−r2)L`(k̂ · r̂h)− P noise

` (k)

]
, (3.2)

where Ωk represents the solid angle in Fourier space, rh ≡ (r1 + r2)/2 is the line-of-sight to
the mid-point of the pair of objects, and L` is the Legendre polynomial of order `. The shot
noise P noise

` is

P noise
` (k) = (1 + α)

∫
dr n̄(r)w2(r)L`(k̂ · r̂), (3.3)

and we assume that P noise
` = 0 for ` > 0, as it is negligible relative to P̂`. We then approximate

the line-of-sight to the pair of objects with the line-of-sight to a single pair member, as
L`(k̂ · r̂h) ' L`(k̂ · r̂2). This approximation renders the integrals in equation 3.2 separable,
yielding the so-called “Yamamoto estimator” (Yamamoto et al. 2006; Beutler et al. 2014b)

P̂ yama
` =

2`+ 1

I

∫
dΩk

4π

[∫
dr1 F (r1)eik·r1

∫
dr2 F (r2)e−ik·r2L`(k̂ · r̂2)− P noise

` (k)

]
.

(3.4)
This approximate line-of-sight remains reasonably accurate over the typical range of scales
considered in wide-field galaxy surveys, although it will eventually break down on very large
scales (Yoo & Seljak 2015; Samushia et al. 2015; Slepian & Eisenstein 2016).
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Recently, Bianchi et al. (2015) and Scoccimarro (2015) presented similar algorithms to
accelerate the evaluation of equation 3.4 for the monopole, quadrupole, and hexadecapole
(` = 0, 2, 4) using FFTs. By decomposing the dot product k̂·r̂ into its Cartesian components,
they show that equation 3.4 for a given ` can be expressed as a sum over the Fourier
transforms of the density field F (r) weighted by products of Cartesian vectors. The N logN
scaling of the FFT algorithm allows speed-ups of several orders of magnitude as compared
to the naive summation implementation of equation 3.4. The implementation of Bianchi
et al. (2015); Scoccimarro (2015) requires (`+1)(`+2)/2 FFTs to evaluate each P̂`, meaning
1+6+15 = 22 FFTs for ` = 0, 2, and 4. We note that Scoccimarro (2015) also defines a second
estimator for ` > 2 multipoles that requires fewer FFTs due to different choices regarding the
line-of-sight and factorization of L`(µ). However, they note that this alternative estimator
has larger cosmic variance than the estimator in equation 3.4 and as such, recommend against
its use, despite the fewer required FFTs.

Rather than using a Cartesian decomposition, we use the spherical harmonic addition
theorem (e.g., Arfken & Weber 2012, equation 16.57) to factor the Legendre polynomial into
a product of spherical harmonics each depending on only a single unit vector:

L`(r̂1 · r̂2) =
4π

2`+ 1

∑̀
m=−`

Y`m(r̂1)Y ?
`m(r̂2). (3.5)

This approach has recently been used by Slepian & Eisenstein (2016) to accelerate measuring
the anisotropic 2PCF with the single-pair-member LOS estimator, as well as to accelerate the
measurement of the 3PCF both with direct evaluations of the spherical harmonics (Slepian &
Eisenstein 2015a) and using FFTs (Slepian & Eisenstein 2016). Slepian & Eisenstein (2017)
further explores the use of spherical harmonics for the anisotropic 3PCF.

Using equation 3.5, the multipole estimator becomes

P̂`(k) =
2`+ 1

I

∫
dΩk

4π
F0(k)F`(−k), (3.6)

with

F`(k) ≡
∫

dr F (r)eik·rL`(k̂ · r̂),

=
4π

2`+ 1

∑̀
m=−`

Y`m(k̂)

∫
dr F (r)Y ∗`m(r̂)eik·r. (3.7)

The sum over m in equation 3.7 contains 2`+ 1 terms, each of which can be computed using
a FFT. Similar to Bianchi et al. (2015) and Scoccimarro (2015), we find that the multipole
moments can be expressed as a sum of Fourier transforms of the weighted density field. The
critical difference, however, is that by expanding the Legendre polynomial in terms of the
orthonormal spherical harmonic basis we avoid redundant terms entering the summation for
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each multipole. For the purposes of memory efficiency, we evaluate equation 3.7 using a
real-to-complex FFT and use the real form of the spherical harmonics, given by

Y`m(θ, φ) ≡



√
2`+ 1

2π

(`−m)!

(`+m)!
Lm` (cos θ) cosmφ m > 0√

2`+ 1

4π
Lm` (cos θ) m = 0√

2`+ 1

2π

(`− |m|)!
(`+ |m|)!L

|m|
` (cos θ) sin |m|φ m < 0,

(3.8)

where Lm` is the associated Legendre polynomial. The spherical harmonics can be expressed
in terms of Cartesian vectors using equation 3.8 and the usual relations to transform from
spherical to Cartesian coordinates. Thus, equations 3.6 and 3.7, combined with the spherical
harmonic expressions in equation 3.8, enable computation of the multipole moments of the
density field for arbitrary `.

To compute each multipole, our implementation requires only 2`+1 FFTs, as compared to
(`+1)(`+2)/2 when using the Cartesian decomposition of Bianchi et al. (2015); Scoccimarro
(2015). Often, we are concerned with computing all even-` multipoles up to a given `max.
For this case, our implementation requires a total of (`max + 2)(`max + 1)/2 ∼ O(`2

max)
FFTs, as compared to the total of (`max + 2)(`max + 4)(2`max + 3)/24 ∼ O(`3

max) for the
Cartesian expansion. For example, for 9 multipoles (`max = 16), our approach offers a factor
of 525/153 ' 3.4 improvement.

3.2.2 Wedges

The power spectrum can be expressed in terms of the multipole basis used in Section 3.2.1
as

P (k, µ) =
∞∑
`=0

P`(k)L`(µ), (3.9)

where the power spectrum is parametrized by the amplitude k and the cosine of the angle to
the line-of-sight µ. In linear theory (Kaiser 1987), only the ` = 0, 2, 4 multipoles contribute
to the sum in equation 3.9, but nonlinear evolution generates nonzero moments for multipoles
with ` > 4, albeit with diminishing importance as ` increases. In practice, we must truncate
the sum in equation 3.9 at some `max. Thus, we define our estimator for clustering wedges,
averaged over discrete k and µ bins, as

P̂ (ki, µm) ≡
`max∑
`=0

P̂`(k)L̄`(µm, µm+1), (3.10)
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where the multipole estimator P̂` can be evaluated using the implementation described in
the previous section, and we have defined the mean Legendre polynomial across a wedge
ranging from µm to µm+1 as

L̄`(µm, µm+1) =
1

µm+1 − µm

∫ µm+1

µm

dµ L`(µ). (3.11)

Here and throughout this chapter, hat denotes an estimator and subscripted k and µ indicate
binned quantities. We assume uniform wavenumber bins and use ki to denote the center of
the ith bin. We allow for non-uniform bins in µ, labeling the mth wedge with µm to denote
a bin ranging from [µm, µm+1].

3.2.3 Implementation

We implement the multipole and wedge estimators as presented in sections 3.2.1 and 3.2.2
as part of the publicly available software toolkit nbodykit (Hand et al. 2017a).1 As described
in Chapter 2, our implementation is fully parallelized with Message Passing Interface (MPI)
and uses a Python binding (Feng 2017d) of the PFFT software by Pippig (2013) to compute
FFTs in parallel. We use the symbolic manipulation functionality available in the SymPy
Python package (SymPy 2017) to compute the spherical harmonic expressions in equation 3.8
in terms of Cartesian vectors. This allows the user to specify the desired multipoles at
runtime, enabling the code to be used to compute multipoles of arbitrary `. Testing and
development of the code was performed on the Cray XC-40 system Cori at the National
Energy Research Supercomputing Center (NERSC), and the code exhibits strong scaling,
with a roughly linear reduction in wall-clock time as the number of available processors
increases. When computing all even multipoles up to `max = 16 (requiring in total 153
FFTs), our implementation takes roughly 90 seconds using 64 processors on Cori.

For the results presented in this chapter, we place the galaxies and random objects on
a Cartesian grid using the Triangular Shaped Cloud (TSC) prescription to compute the
density field F (r) of equation 3.1. We use the interlaced grid technique of Sefusatti et al.
(2016) to limit the effects of aliasing, and we correct for any artifacts of the TSC gridding
using the correction factor of Jing (2005). The interlacing scheme allows computation of
the FFTs on a 5123 grid with accuracy comparable to the results when using a 10243 grid,
but with a wall-clock time that is ∼8 times smaller. When using interlacing, the catalog of
galaxies is interpolated on to two meshes separated by half of the size of a grid cell. We sum
these two density fields in Fourier space and inverse Fourier Transform back to configuration
space. We then apply the spherical harmonic weightings of equation 3.8 to this combined
density field and proceed with computing the terms in equation 3.7. The speed-up provided
by interlacing is particularly powerful when computing large ` multipoles. When combined
with TSC interpolation, we are able to measure power spectra up to the Nyquist frequency
at k ' 0.4 hMpc−1 with fractional errors at the level of 10−3 (Sefusatti et al. 2016).

1https://github.com/bccp/nbodykit

https://github.com/bccp/nbodykit
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3.3 Isolating transverse µ = 0 systematics
As discussed above, cosmological information in the linear regime is limited to `max = 4,

so one may question the value of algorithms that go to `max > 4. One reason is that in the
nonlinear regime higher-order multipoles are generated, and their information can be used
to constrain nonlinear RSD models. Another motivation is measurement contamination
from systematics that are predominantly localized to some part of a clustering wedge. In
this section, we present a method to isolate and potentially remove systematics from our
clustering estimators, assuming that the systematic signal is dominant in the plane of the
sky (i.e., angular), which is a common issue for galaxy surveys. The contamination in this
case is confined to predominantly transverse µ = 0 modes. We consider a toy model for the
process of fiber assignment, a common issue for galaxy surveys where the physical process
of assigning galaxy targets to spectrograph fibers leads to incomplete target selection and
creates a systematic signal that must be accounted for. Our discussion is particularly relevant
for the Dark Energy Spectrograph Instrument (DESI; Levi et al. 2013), as the process of fiber
assignment has recently been shown in Pinol et al. (2017) to introduce a largely transverse
systematic signal.

3.3.1 A toy model for fiber assignment

We model the effect of a plane-of-the-sky systematic by suppressing the observed power
spectrum by a Dirac delta function at µ = 0, as

P obs(k, µ) = P (k, µ)− Pc(k)δD(µ), (3.12)

where δD denotes a one-dimensional Dirac delta function, and Pc(k) is the power spectrum
of the contamination signal and describes the amplitude of the clustering suppression. Here,
P (k, µ) is the true anisotropic power spectrum in the absence of systematics. In purely linear
theory, P (k, µ) would be fully described by its ` = 0, 2, and 4 multipoles (Kaiser 1987).

The contamination signal is localized in µ but affects all observed multipoles, evident
from the Legendre expansion of the Dirac delta function,

δ` =
2`+ 1

2

∫ 1

−1

dµ L`(µ)δD(µ) =
2`+ 1

2
L`(0). (3.13)

In practice, we use only a finite number of multipoles, up to a desired `max, to reconstruct
the two-dimensional power spectrum P (k, µ). We can define an estimator for the true power
spectrum in the presence of a transverse systematic as
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P̂ (k, µ) = P̂ obs(k, µ) + Pc(k)
`max∑
`=0

2`+ 1

2
L`(0)L`(µ),

=
`max∑
`=0

P̂`(k)L`(µ) + Pc(k)
`max + 1

2
L`max+1(0)

L`max+1(µ)

µ
, (3.14)

where our estimator for the observed power P̂ obs uses the measured multipoles P̂` up to
`max, and we have used the Christoffel summation formula (Gradshteyn et al. 2007, equa-
tion 8.915.1),

`max∑
`=0

(2`+ 1)L`(x)L`(y) =
`max + 1

y − x [L`max(x)L`max+1(y)− L`max(y)L`max+1(x)] , (3.15)

with x = 0 and y = µ. Equation 3.14 demonstrates that the µ = 0 contamination leaks into
µ > 0 modes because of the finite number of multipoles used to reconstruct P (k, µ) and that
the angular dependence of this leakage is characterized by L`max+1(µ)/µ. We can describe
the response of this leakage to the systematic signal as

R(µ) ≡ P̂ obs(k, µ)− P̂ (k, µ)

Pc(k)
= −`max + 1

2µ
L`max(0)L`max+1(µ). (3.16)

We show this response for various `max values in Figure 3.1. While there is minimal signal
in large ` multipoles, we can see from this figure that the utility of measuring higher-order
multipoles is that it enables sharper reconstruction of the angular dependence of the con-
taminating signal. By increasing `max we are able to increasingly localize the contamination
around µ = 0, with a width scaling as `−1

max.
The oscillatory structure of the response in Figure 3.1 suggests that we can employ a

non-uniform binning in µ for our wedge estimator of Section 3.2.2 in order to localize the
effect of the systematic to the first bin and cancel out the contamination in each of the other
bins. If we desire to have as many wedge bins as number of observed multipoles (measuring
even multipoles up to `max), then there will be `max/2 non-contaminated bins. The edges of
these bins can be computed from the response in equation 3.16 as∫ µi+1

µi

dµ
L`max+1(µ)

µ
≡ 0, i = 1, 2, . . . , `max/2, (3.17)

where µi specifies the left edge of the ith bin, and we have assumed a total of Nµ = `max/2+1
bins. By construction, we have µ0 = 0 and µ`max/2+1 = 1. In this notation, the only
contaminated bin is the first, ranging from µ0 < µ < µ1. We show the non-uniform binning
for `max = 4 and `max = 16 as the shaded regions in the left panel of Figure 3.2. Generically,
the µ wedges first become wider and then significantly narrower ranging from µ = 0 to µ = 1.
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Figure 3.1 : The leakage of a transverse µ = 0 systematic into µ > 0 power as a function of the
maximum multipole used to reconstruct the observed power P (k, µ). We plot the response of this
error, as given in equation 3.16. As multipoles are measured to larger `max, the contamination is
better isolated around the origin, µ = 0.

We also show the width of the first, contaminated bin, µ1−µ0, in the right panel. The edge
of the first bin closely follows the result in the uniform case, µ1−µ0 = (`max/2+1)−1. Larger
`max values clearly enable better isolation of the systematic signal in a narrow first bin, and
in turn, create a larger µ range absent of any systematics.

3.3.2 Verification with simulations

We verify the utility of the non-uniform binning scheme discussed in §3.3.1 using simu-
lated density fields. We generate uniformly clustered catalogs of discrete objects and simulate
an example systematic signal by modulating the amplitude of the density field in the plane
of the sky. We use a sinusoidal function for this modulation, which creates a large contam-
inating spike in Fourier space at a specific wavenumber, k = kc. We perform this test for
both periodic boxes and for mock catalogs where the geometry of the DR12 BOSS CMASS
sample has been imposed (Alam et al. 2017; Reid et al. 2016). We denote these latter mocks
as cutsky mocks. For the cubic boxes, we simply choose the z axis of the box to be the
line-of-sight and modulate the amplitude of the density field in the (x,y) plane. For the
cutsky mocks, which provide the angular and redshift coordinates of objects, we apply the
sinusoidal variation as a function of right ascension and declination. We perform these tests
for 50 cubic boxes of side length Lbox = 2600 h−1Mpc and for 84 cutsky catalogs and compute
the average results to reduce noise.

We now compare our simulated results with the theoretical expectations from Section 3.3.1.
Because the catalogs are uniformly clustered, the true signal is a constant shot noise that
we can subtract from the results. We measure the clustering wedges in both uniform and
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Figure 3.2 : Left : the leakage of a transverse µ = 0 systematic into µ > 0 power (black) for
`max = 4 (top) and `max = 16 (bottom). We show the appropriate non-uniform binning (shaded)
that cancels the systematic in all but the first bin (red, shaded). Right : the width of the first µ ' 0

bin, given by µ1 − µ0, for the cases of non-uniform (red) and uniform (black, dashed) bins.
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Figure 3.3 : The amplitude of a contaminating spike in 9 P (k, µ) wedges relative to its amplitude in
the first µ bin for cubic simulation boxes (left) and for cutsky mock catalogs with the BOSS DR12
selection function imposed (right). Wedges are computed from even multipoles up to `max = 16. The
mock catalogs contain uniformly clustered objects with a density field modulated via a sinusoidal
function in the plane of the sky, causing a large systematic spike in Fourier space at k = kc. We
show results for both uniform µ binning (dotted) and the non-uniform (solid) scheme discussed in
§3.3.1.
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non-uniform bins and compare the amplitude of the contaminating spike at k = kc for each
wedge relative to its amplitude in the first µ bin. The wedges are computed using even
multipoles up to `max = 16, which results in 9 µ wedges. The left panel of Figure 3.3 shows
the results for the cubic boxes. We obtain near-perfect cancellation of the systematic when
using non-uniform bins, isolating the contamination to only the first bin at µ ' 0. On the
other hand, all wedges remain contaminated when using a uniform binning scheme. These
results for uniform binning also agree well with our theoretical expectation (shown as black
points), given the response in equation 3.16.

The removal of the systematic contamination using the cutsky catalogs, shown in the
right panel of Figure 3.3, is not as prominent as in the cubic case. However, the non-
uniform binning does reduce the amplitude of the systematic for all wedges, as compared
to the uniform scheme, and this reduction is as large as an order of magnitude for most
bins. We perform two separate tests for the cutsky mocks, introducing systematic spikes at
kc = 0.1 hMpc−1 and at kc = 0.2 hMpc−1. We find varying levels of success in eliminating
the systematic for these two cases, suggesting some unaccounted for k-dependence in the
optimal binning scheme. It is likely that the survey geometry, which is not present in the
cubic case, complicates the simple model discussed in Section 3.3.1. In the cutsky case, the
estimator measures the power spectrum convolved with the window function. In particular,
the systematic signal is also convolved with the window function, which mixes k and µ
modes and invalidates our simple modeling assumptions in equation 3.14. We expect the
window function to be isotropic and have less influence on small scales (large k); this is the
trend we find in our results, as we find better cancellation of the systematic in the case of
kc = 0.2 hMpc−1. We explore the effects of the window function on our non-uniform binning
scheme in more detail in the next section.

3.3.3 A toy model for window function effects

Here, we outline a toy model to provide a qualitative understanding of the window
function’s impact on systematic removal. We show that the window function couples to
the transverse systematic, effectively re-normalizing all of its coefficients in the Legendre
basis and thus implying a different choice of non-uniform bin boundaries relative to the
window-free case for systematic elimination.

We model the window function as a spherical top-hat in configuration space with radius
R, so that

w(k;R) =
3j1(kR)

kR
, (3.18)

where j1 is the spherical Bessel function of order one. The observed systematic is then
convolved with the square of the window function as

Pwin
c (k, µ) =

{
w2(k′) ? Pc(k

′)δD(µ)
}

(k), (3.19)
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where star denotes convolution. We note that Pwin
c (k, µ) remains a function only of |k| and

µ if the window function is isotropic, as in our toy model. We may evaluate this convolution
using the Convolution Theorem, which gives

{
w2(k′) ? Pc(k

′)δD(µ)
}

(k, µ) =

FT
{

FT−1{w2(k′)}(r) FT−1{Pc(k′)δD(µ)}(r)
}

(k, µ). (3.20)

We first evaluate the inverse Fourier transform (FT) of w2(k). Applying the Convolution
Theorem, the desired inverse FT is the convolution of two spherical top-hats, each of radius
R with centers separated by r. The overlap integral is given by the volume Vlens(r;R) of the
spherical lens enclosed by both spheres when they are separated by r (Weisstein 2017),

Vlens(r;R) =
π

12
(4R + r)(2R− r)2. (3.21)

This result gives the first term inside the outer curly brackets in equation 3.20. We now
seek the second term, the inverse FT of the systematic. Writing the Delta function using
its Legendre expansion (equation 3.13) and then expanding the Legendre polynomials into
spherical harmonics using the spherical harmonic addition theorem, we find

Pc(k
′)δD(µ) = Pc(k

′)
∞∑
`=0

δ`
4π

2`+ 1

∑̀
m=−`

Y`m(k̂
′
)Y ∗`m(n̂), (3.22)

where δ` is defined in equation 3.13. The inverse FT can then be obtained by expanding the
relevant exponential via the plane wave expansion into spherical Bessel functions and spher-
ical harmonics (e.g., Arfken & Weber (2012), equation 16.52) and invoking orthogonality,
leading to

FT−1 {Pc(k′)δD(µ)} (r) =
∞∑
`=0

S`(r)L`(µ), (3.23)

where µ = r̂ · n̂ and

S`(r) =

∫
k′2dk′

2π2
j`(k

′r)Pc(k
′). (3.24)

We now have both terms in the outer curly brackets of equation 3.20 and simply require their
product’s Fourier transform to obtain Pwin

c (k, µ), the systematic observed in the presence of
the window function.



3.3. ISOLATING TRANSVERSE µ = 0 SYSTEMATICS 60

0.0 0.2 0.4 0.6 0.8 1.0

µ

10−6

10−5

10−4

10−3

10−2

10−1

100

|P
(k

=
k

c
,

µ
i)
/P

(k
=

k
c
,

µ
0
)|

uniform, no window corr

non-uniform, no window corr

non-uniform, with window corr

Figure 3.4 : The amplitude of a systematic spike in 9 P (k, µ) wedges for a uniform clustering field
with a toy-model selection function imposed as described in §3.3.3. When using a non-uniform
binning scheme and accounting for window function effects, we can increase the success of the
systematic removal by roughly an order of magnitude.

Expanding the Legendre polynomials of equation 3.23 into spherical harmonics using
the addition theorem, again expanding the exponential via the plane wave expansion, and
invoking orthogonality, we find

Pwin
c (k, µ) =

∞∑
`=0

L`(µ)δ`

∫
r2dr Vlens(r;R)S`(r)j`(kr). (3.25)

We pause to examine the limit where R→∞ and hence Vlens(r;R) is independent of r and
can be taken outside the integral; this corresponds to a boundary-free survey. In this limit,
the integral over r can be performed by substituting equation 3.24 and invoking the orthog-
onality relation for spherical Bessel functions and we recover that Pwin

c (k, µ)→ Pc(k)δD(µ).
We see that in general, in the presence of an isotropic window function, the coefficients

of the Legendre expansion of Pc(k, µ) change and are no longer given by the simple relation
δ` = (2` + 1)/2 L`(0). Importantly, they now have k-dependence, as the window function
mixes the purely isotropic systematic amplitude Pc(k) with the µ-dependent Delta function.
The non-uniform wedge boundaries of the previous section were set by the condition that for
a given wedge, the sum of averaged Legendre polynomials weighted by the Delta function’s
coefficients would vanish. Here, we see that changing these coefficients simply means this
criterion is satisfied for a different non-uniform binning scheme.

We use simulations to examine the effectiveness of our non-uniform binning scheme in the
presence of this toy model window function. We apply a spherical top-hat window function
of radius R = 780 h−1Mpc to a uniformly clustered density field in a cubic box of side length
Lbox = 2600 h−1Mpc. As in previous sections, we model the systematic with a sinusoidal
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modulation of the density field in the (x, y) plane, assuming the z axis represents the line-
of-sight. This modulation generates a spike in Fourier space at k = kc, corresponding to
the wavelength of the modulation. We once again use the measured multipoles to estimate
wedges in non-uniform bins, and compare the results with and without accounting for the
window function corrections in equation 3.25. We present this comparison in Figure 3.4,
which shows that by accounting for the window function, an additional order of magnitude
reduction in the systematic signal can be achieved in all but the first µ wedge. As in previous
sections, we find that a uniform µ binning scheme performs worse than our non-uniform
scheme, even when ignoring window function effects.

3.4 Statistical properties
In this section, we explore the covariance properties of the wedge estimator as a function

of `max and use a Fisher matrix formalism to describe the effect on the derived parameter
constraints when using our non-uniform binning approach to mitigate systematics.

3.4.1 Covariance

Under the assumption of purely Gaussian statistics, the covariance of the power spectrum
P (k, µ) averaged in bins of k and µ is (Grieb et al. 2016)

Cov
[
P (ki, µm), P (kj, µn)

]
= δijδmn

2

Nki∆µm

∫
4πk2dk

Vki

dµ

∆µm

[
P (k, µ) + n̄−1

]2
, (3.26)

where the number density of the sample considered is n̄, the volume of the shell in k-space
is Vki = 4π[(ki + ∆k/2)3 − (ki − ∆k/2)3]/3, and the number of modes in the ith k bin
is Nki = 4πk2

i ∆kVs/(2π)3, where Vs is the volume of the sample considered. Under the
assumption of Gaussian statistics, different clustering wedges are not correlated, as reflected
by the Kronecker delta factor δmn in equation 3.26.

The computationally-efficient estimator presented in this chapter does not directly mea-
sure the quantity P (ki, µm) that enters into equation 3.26. Rather, we reconstruct power
spectrum wedges from a finite set of measured multipoles, up to a specified `max. Thus, the
relevant quantity is the covariance of the multipoles averaged in k bins, which is given by

Cov
[
P̂`(ki), P̂`′(kj)

]
= δij(2`+ 1)(2`′ + 1)

2

Nki

∫
dµ

2πk2dk

Vki
L`(µ)L`′(µ)

[
P (k, µ) + n̄−1

]2
,

(3.27)
where we see multipoles of different ` are correlated. From this covariance we can compute
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the covariance of the wedge estimator in equation 3.10 as

Cov
[
P̂ (ki, µm), P̂ (kj, µn)

]
=

`max∑
`=0

`max∑
`′=0

L̄`(µm)L̄`′(µn) Cov
[
P̂`(ki), P̂`′(kj)

]
, (3.28)

where the mean Legendre polynomial across a wedge is given by equation 3.11.
The wedge covariance in equation 3.28 is difficult to further simplify analytically, but

before comparing to simulations, we can make further progress using the simplifying as-
sumption of linear theory. In this case, we can use the Kaiser model (Kaiser 1987)

P (k, µ) = (1 + βµ2)2b2
1Pr(k), (3.29)

where β = f/b1 is the usual redshift-space distortion parameter, b1 is the linear bias param-
eter, Pr(k) is the linear theory real-space power spectrum, and f is the logarithmic growth
rate (Kaiser 1987). Now, we can separate the scale and angular dependence in equation 3.28.
We leave the scale dependence implicit in our notation to focus on the angular subspace in
order to improve clarity. With these assumptions, the wedge covariance becomes

Ĉmn ≡ Cov
[
P̂ (µm), P̂ (µn)

]
=

2γmn
Nki

P 2
r , (3.30)

where

P 2
r ≡

∫
4πk2dk

Vki
P 2

r (k), (3.31)

and

γmn ≡
`max∑
`=0

`max∑
`′0

(2`+ 1)(2`′ + 1)L̄`(µm)L̄`′(µn)

∫
dµ

2
L`(µ)L`′(µ)(1 + βµ2)4. (3.32)

From these equations, we see that in the simple Kaiser model, the correlation coefficient
between between wedges µm and µn, defined as ρmn = Ĉmn/(ĈmmĈnn)1/2 is independent of
scale with the amplitude proportional to the quantity γmn.

We first compare our simple theoretical modeling to the wedge covariance measured from
990 independent Quick Particle Mesh (QPM) periodic simulations (White et al. 2014) at a
redshift of z = 0.55 and with a box size of Lbox = 2560 h−1Mpc. These simulations were
designed to mimic the clustering of the BOSS CMASS sample, with a linear bias of b1 ∼ 2 at
z ∼ 0.5. We estimate the clustering wedges using the measured multipoles up to a specified
`max and use the 990 realizations to estimate the covariance of the wedges. We show the
resulting correlation matrix between separate µ wedges in Figure 3.5 and compare to the
linear Kaiser result from equation 3.32. We perform this comparison using both non-uniform
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Figure 3.5 : The correlation matrix between µ wedges measured from cubic box simulations (upper
triangle) as compared to linear theory (lower triangle), when using uniform (top row) and non-
uniform (bottom row) µ bins. For 9 µ wedges, we show results using `max = 4 (left column) and
`max = 16 to estimate the wedges from the corresponding multipoles. We find excellent agreement
between linear theory and the results measured from simulations.

(bottom row) and uniform (top row) binning schemes, as well as for `max = 4 (left column)
and `max = 16 (right column). In all cases, the number of wedges is fixed to Nµ = 9. We find
excellent agreement between a simple Kaiser model with β = 0.35 and the simulation results.
As expected, we find the wedges to be significantly more correlated when using only three
multipoles to reconstruct nine µ wedges, as is the case for `max = 4, than when using nine
measured multipoles, as for `max = 16. Furthermore, in the case of `max = 16, we find that
our non-uniform binning scheme achieves a significantly more diagonal covariance matrix
between wedges, as seen in the right column of Figure 3.5. As the matrix becomes more
diagonal, the covariance is better approximated by the Gaussian case, where the clustering
wedges are fully independent.

We also compare our Kaiser modeling to a set of cutsky mock catalogs that include selec-
tion function effects, although we do not expect the simulation results to be well-described
by this theoretical model in this case. We use a set of 84 mock catalogs which mimic the
radial and angular selection functions of the BOSS DR12 CMASS sample (Reid et al. 2016;
Alam et al. 2017). They model the true geometry, volume, and redshift distribution of the
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Figure 3.6 : The correlation matrix between µ wedges measured from realistic cutsky mock catalogs
(upper triangle) as compared to linear theory (lower triangle), when using uniform (top row) and
non-uniform (bottom row) µ bins. For 9 µ wedges, we show results using `max = 4 (left column) and
`max = 16 to estimate the wedges from the corresponding multipoles. While there are discrepancies
introduced by the window function in comparison to the linear theory expectation, the general
trends remain consistent with the periodic box results.

CMASS sample and were constructed from a set of seven independent, periodic box N -body
simulations with the same cosmology and a side length of Lbox = 2600 h−1Mpc. Each of the
84 mock catalogs is an independent realization, and the clustering of these cutsky catalogs is
very similar overall to the BOSS CMASS sample at z ∼ 0.5. As was done for the cubic box
simulations, we compare simulation and theory for the correlation matrix for nine µ wedges
using `max = 4 and `max = 16. These results are presented in Figure 3.6. As expected, the
cutsky simulation results are not as well-described by the Kaiser model as in the cubic case
due to window function effects. However, the general trends in the covariance are similar for
the cutsky case as for the cubic case. Importantly, we once again find that using a higher
`max at fixed Nµ de-correlates the wedges and that the covariance is more diagonal when
using our non-uniform binning scheme.

An additional disadvantage of using bins uniform in µ is that the wedge covariance matrix
quickly becomes ill-conditioned for high `max. This can be seen in Figure 3.7, where the left
panel shows the condition number of the γmn matrix as a function of `max for both uniform
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Figure 3.7 : Left : the condition number of the covariance matrix γmn, assuming a linear Kaiser
model with β = 0.35, as compared to the result computed from the 990 QPM simulations (black).
The simulation results have been re-normalized to match the theoretical condition number at `max =

4. Right : the condition number of the matrix specifying the mean Legendre polynomial across each
µ wedge L̄`µ, as given by equation 3.11. We see that the wedge covariance matrix becomes ill-
conditioned for large `max values when using a uniform binning scheme, driven by the fact that the
transformation matrix L̄µ` also becomes ill-conditioned.

and non-uniform bins. Here, the condition number of a matrix M is defined as the ratio of
its smallest to largest singular values, computed using Singular Value Decomposition (SVD)
(e.g., Press et al. 1992). The SVD of a matrix is defined as M = UΣV T , where Σ is a
diagonal matrix with the singular values along the diagonal. We find similar trends for the
condition number of the covariance matrix for our theoretical results assuming a linear Kaiser
model with β = 0.35 and for results computed from the 990 QPM boxes. Both uniform and
non-uniform binning result in a reasonable condition number for `max = 4, but the matrix
in the uniform case becomes increasingly singular as `max increases. In such a case, the
inversion of the covariance, which is a necessary step of any likelihood analysis, becomes
numerically unstable. This behavior at large `max is largely driven by the L̄`µ matrix, which
defines the contribution of a multipole of order ` to a given µ wedge. The condition number
of this matrix is shown in the right panel of Figure 3.7, and its behavior mirrors that of the
full covariance matrix.

The functional form of L`(µ) can provide some insight into the large condition number
of the covariance matrix when using uniformly spaced bins. The Legendre polynomial of
order ` oscillates around zero, and the frequency of the oscillation increases with increasing
µ. For large `max, there exist bins at µ ∼ 1 where the Legendre polynomial exhibits a
positive/negative symmetry across the bin, and thus, the average value cancels very nearly to
zero. This presents problems in equation 3.10, where our measured multipoles are weighted
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by the mean Legendre polynomial. These issues are mitigated by our non-uniform bins,
which were constructed such that the width of the bins decreases as a function of µ, just as
the Legendre polynomials oscillate more quickly. Thus, the bin cancellation is mostly avoided
when non-uniform bins are used and the condition number of the resulting covariance matrix
remains stable, even at large `max. Such a binning scheme becomes appealing for clustering
analyses, even if systematic mitigation is not the primary goal.

3.4.2 Fisher information

We can evaluate the information content of our wedge estimator as a function of `max

using the Fisher matrix formalism. As in Section 3.4.1, we assume a simple linear Kaiser
model (equation 3.29), where the parameter vector of interest is p = (b1σ8, fσ8). For clarity,
we also suppress the k indexing here, as the µ and k dependence of the covariance is fully
separable for the Kaiser model. Assuming a Gaussian likelihood function for the clustering
wedge observables, we can express the Fisher matrix as

Fij =

Nµ−1∑
m=0

Nµ−1∑
n=0

∂P (µm)

∂pi
Ĉ−1
mn

∂P (µn)

∂pj
, (3.33)

where Nµ is the number of (non-uniform) µ bins, P (µn) is the theoretical Kaiser model
averaged over the µn wedge, and the covariance between the measured wedges Ĉmn is given
by equation 3.30. We can also use this formalism to quantify the cost of removing the first
µ bin when using our non-uniform binning scheme. In this case, the Fisher matrix is given
by

F µ 6'0
ij =

Nµ−1∑
m=1

Nµ−1∑
n=1

∂P (µm)

∂pi
Ĉ−1
mn

∂P (µn)

∂pj
, (3.34)

where we have explicitly removed the contribution from the µ0 wedge to the double sum in
this equation.

We show the Fisher information for the auto-correlations of b1σ8 and fσ8, as well as their
cross correlation, as a function of `max in Figure 3.8. Results are computed for the non-
uniform µ binning scheme presented in Section 3.3.1, assuming a value of β = f/b1 = 0.35
for the Kaiser model. The left panel shows the information content when using all µ bins,
and as expected, the information content saturates at `max = 4 because only the ` = 0, 2,
and 4 multipoles are non-zero in the Kaiser model. In the right panel of this figure, we show
the Fisher information when we exclude the first µ bin from the analysis. In this case, the
information on b1σ8 is partially lost, approximately proportional to the width of the missing
wedge. However, the information on fσ8 remains relatively unaffected by the missing wedge.
The first wedge at µ ' 0 is a prominent source of information on the amplitude of the power
spectrum, as parametrized by b1σ8, but contains little information on the µ dependence of
the clustering.



3.5. CONCLUSIONS 67

2 6 10 14 18 22 26 30
ℓmax

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

F
is

h
er

in
fo

rm
at

io
n

all µ bins

F [b1σ8, b1σ8]

F [b1σ8, fσ8]

F [fσ8, fσ8]

2 6 10 14 18 22 26 30
ℓmax

µ ≃ 0 bin removed

Figure 3.8 : The Fisher information for the parameter vector p = (b1σ8, fσ8) for our wedge
estimator using non-uniform µ bins, in the case of the linear theory Kaiser model. We show results
as a function of the maximum multipole used to reconstruct the clustering wedges, as well as the
case when using all µ bins (left) and when excluding the first µ bin (right). A linear Kaiser model
with β = 0.35 has been assumed.

The inverse of the Fisher matrix provides an estimate of the marginalized error on a
given parameter, such that the error on the parameter A is given by σA = (F−1)

1/2
AA. Thus,

we can use the Fisher formalism to evaluate the change in the parameter uncertainties when
excluding the first µ ' 0 wedge in the presence of a transverse systematic. We show this
fractional change for b1σ8 and fσ8 as a function of `max in Figure 3.9, and we find the loss
of constraining power drops rapidly with `max. For `max = 16, we find ∼ 7% and ∼ 13%
increases in the uncertainties on fσ8 and b1σ8, respectively, as compared to∼ 54% and∼ 92%
for `max = 4. With a reasonably large choice for `max, we can exclude the contaminated µ ' 0
bin with only marginal losses for the parameter constraints of interest.

3.5 Conclusions
In this chapter, we have presented an optimal estimator for the anisotropic power spec-

trum multipoles that is valid in the local plane-parallel approximation. Our implementation
eliminates redundancy present in previous algorithms (Bianchi et al. 2015; Scoccimarro 2015).
These works rely on a Cartesian decomposition of the Legendre basis to write the power spec-
trum estimator of Yamamoto et al. (2006) using fast Fourier transforms. We improve upon
them by using a spherical harmonic decomposition of the Legendre polynomials, motivated
by the approach of Slepian & Eisenstein (2016) for the anisotropic 2PCF. The method pre-
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Figure 3.9 : The fractional change in the uncertainties in b1σ8 and fσ8 when using non-uniform
µ wedges and excluding the first µ ' 0 wedge from the analysis, as determined from the Fisher
matrix. A linear Kaiser model with β = 0.35 has been assumed.

sented here is substantially faster than previous anisotropic power spectrum algorithms and
renders calculation of multipoles to high `max computationally feasible. For a given multipole
of order `, our method requires only 2` + 1 FFTs rather than the (` + 1)(` + 2)/2 FFTs of
the Cartesian approach. For the highest `max used in this work, `max = 16, our approach is
∼3.4 times faster than previous works, using 153 FFTs as opposed to 525.

Our estimator’s significant reduction in wall-clock time allows construction of finely-
binned wedges in P (k, µ) by combining multipoles up to high `max. We show that narrow µ
bins are particularly advantageous for mitigating the effects of systematic contamination in
the plane of the sky, as is often the case for galaxy surveys (Pinol et al. 2017, e.g.,). In the
presence of such an angular systematic signal, we show that a non-uniform binning scheme in
µ can effectively isolate the contamination to the first µ ' 0 wedge and that the systematic
contributions to all other bins can be eliminated. We have verified the effectiveness of our
non-uniform bins on both periodic simulations and realistic mock catalogs that have a survey
selection function. We have demonstrated with a toy model that a survey selection function
mixes the k and µ dependence of the systematic signal, introducing k-dependence into the
optimal non-uniform wedge boundaries. However, the systematic signal can still be reduced
even when ignoring these effects. When analyzing galaxy survey data, knowledge of the
window function and realistic simulations can be used to choose the optimal binning to
reduce transverse systematics.

We have also explored the statistical properties of the wedge estimator as a function of
the maximum measured multipole `max. We show using linear theory that the covariance
of the wedge estimator quickly becomes ill-conditioned for large `max when using uniform
bins, and we verify this finding with simulations. Consequently, when using uniform bins the
covariance inversion is numerically unstable, creating a significant barrier for any likelihood
analysis. On the other hand, the non-uniform binning scheme described in this chapter
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remains well-conditioned for all `max values, enabling its inversion and use in model fitting.
We also show that at a fixed number of µ wedges, using larger values of `max de-correlates
separate wedges, and that the covariance matrix of wedges using non-uniform bins is more
diagonal than in the uniform case. With a Fisher analysis assuming linear theory, we have
demonstrated that the uncertainty on fσ8 inflates by ∼ 7% with `max = 16 when excluding
the first µ wedge, assuming it is fully contaminated by systematics, as compared to a 54%
increase with `max. Even larger choices for `max can further reduce this increase and should
be explored in more detail for future RSD analyses in the presence of transverse (angular)
systematics.

We note that similar techniques as those presented in this chapter can be applied to clus-
tering wedges in configuration space. However, the choice of optimal non-uniform bins to
remove systematics is further complicated for a correlation function analysis, as the system-
atic signal is no longer localized to µ = 0. Importantly, the optimal binning choice becomes
a function of both the separation perpendicular and parallel to the line-of-sight, r⊥ and r‖,
which introduces additional modeling complexity. Similar techniques in configuration space
should be further explored to assess their effectiveness at minimizing the effects of angular
systematics.

Finally, we also point out that, as shown in Slepian & Eisenstein (2015b) for the anisotropic
2PCF, slight generalizations of the local plane parallel multipole estimates can be combined
to yield the separation midpoint or angle bisector method-based multipoles. This point
is important because it enables midpoint and bisector-based multipoles to be obtained by
FFTs. As the relevant geometry for anisotropic clustering is the same in Fourier space and
configuration space, combining Slepian & Eisenstein (2015b) with the results of this work
will enable estimation of midpoint or bisector-based multipoles to very high `max with FFTs,
relevant for properly handling wide-angle effects in next-generation surveys.

The improvements to the power spectrum estimator presented in this chapter will prove
valuable for next generation redshift surveys such as DESI (Levi et al. 2013; DESI Collabora-
tion et al. 2016a,b) and Euclid (Laureijs et al. 2011) both for the data measurement and for
the covariance estimation, which requires analyzing a large number of mock catalogs. Given
these surveys’ large volumes and consequent high statistical precision, an unprecedented
level of systematics control is required. The non-uniform clustering wedges described in this
chapter will be important in this regard for DESI (recently described in Pinol et al. 2017).
In the future, these methods should be developed and further tested on realistic end-to-end
simulations of upcoming surveys.
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Chapter 4

Extending the modeling of the
anisotropic galaxy power spectrum to
k = 0.4 hMpc−1

In this chapter, we present a model for the redshift-space power spectrum of galaxies and
demonstrate its accuracy in describing the monopole, quadrupole, and hexadecapole of the
galaxy density field down to scales of k = 0.4 hMpc−1. The model describes the clustering of
galaxies in the context of a halo model and the clustering of the underlying halos in redshift
space using a combination of Eulerian perturbation theory and N -body simulations. The
modeling of redshift-space distortions is done using the so-called distribution function ap-
proach. The final model has 13 free parameters, and each parameter is physically motivated
rather than a nuisance parameter, which allows the use of well-motivated priors. We account
for the Finger-of-God effect from centrals and both isolated and non-isolated satellites rather
than using a single velocity dispersion to describe the combined effect. We test and validate
the accuracy of the model on several sets of high-fidelity N -body simulations, as well as
realistic mock catalogs designed to simulate the BOSS DR12 CMASS data set. The suite of
simulations covers a range of cosmologies and galaxy bias models, providing a rigorous test
of the level of theoretical systematics present in the model. The level of bias in the recovered
values of fσ8 is found to be small. When including scales to k = 0.4 hMpc−1, we find 15-30%
gains in the statistical precision of fσ8 relative to k = 0.2 hMpc−1 and a roughly 10-15%
improvement for the perpendicular Alcock-Paczynski parameter α⊥. Using the BOSS DR12
CMASS mocks as a benchmark for comparison, we estimate an uncertainty on fσ8 that
is ∼10-20% larger than other similar Fourier-space RSD models in the literature that use
k ≤ 0.2 hMpc−1, suggesting that these models likely have a too-limited parametrization.
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4.1 Introduction
Galaxy redshift surveys measure the three-dimensional clustering of galaxies in the Uni-

verse, and over the past few decades, they have provided a wealth of cosmological information
(Davis & Peebles 1983; Maddox et al. 1990; Tegmark et al. 2004; Cole et al. 2005; Eisenstein
et al. 2005; Anderson et al. 2012, 2014a,b; Alam et al. 2017). In combination with other
cosmological probes, such as observations of the cosmic microwave background, type-Ia su-
pernova samples, and weak-lensing surveys, analyses of the large-scale structure (LSS) of
the Universe have proven invaluable in establishing the current cosmological paradigm, the
ΛCDM model, as well as measuring its parameters with ever-increasing precision.

Crucial to the success of galaxy surveys has been the ability to precisely and accurately
measure the feature imprinted on the clustering of galaxies by baryon acoustic oscillations
(BAO; see e.g., Bassett & Hlozek (2010) for a review) in the early Universe. The BAO
signal can be used to provide constraints on the expansion history of the Universe and infer
properties of dark energy (e.g., Wagner et al. (2008); Shoji et al. (2009)). The isotropic
effect was first detected in the 2-point clustering in the SDSS (Eisenstein et al. 2005) and
the 2dFGRS (Cole et al. 2005) and in the 3-point clustering in Slepian et al. (2017). Recent
measurements of the anisotropic BAO signal, combined with the Alcock-Paczynski (AP;
Alcock & Paczynski 1979) effect, have provided percent-level measurements of the Hubble
parameter H(z) and angular diameter distance DA(z) (Alam et al. 2017). Perhaps most
encouragingly, the BAO signal is well-understood theoretically, with systematic effects on
the distance scale expected to be sub-dominant for future generations of surveys (Eisenstein
& White 2004; Seo & Eisenstein 2005; Angulo et al. 2008; Padmanabhan & White 2009;
Mehta et al. 2011; Yoo et al. 2011; Slepian & Eisenstein 2015c).

Beyond the BAO signal, additional information is present in the clustering of galaxies
through what are known as redshift-space distortions (RSD). The peculiar velocities of galax-
ies affect their measured redshifts through the Doppler effect, and in turn, these measured
redshifts are used to infer the line-of-sight (LOS) position of those galaxies. The peculiar
velocity field is sourced by the gravitational potential, and thus, an anisotropic signal con-
taining information about the rate of structure growth in the Universe is imprinted on the
clustering. Extracting information from RSD is inherently more difficult than with BAO, as
it requires modeling of the full broadband shape of the clustering statistic and precise under-
standing of the anisotropy induced by RSD. The theoretical task is complicated by the fact
that the well-understood, linear Kaiser model (Kaiser 1987) breaks down on relatively large
scales, with various kinds of nonlinear effects complicating the theoretical modeling (e.g.,
Scoccimarro 2004; Okumura & Jing 2011; Jennings 2012; Kwan et al. 2012). Of particular
importance is the large, nonlinear virial motions of satellite galaxies within halos, known as
the Finger-of-God (FoG) effect (Jackson 1972). Since the statistical precision of clustering
measurements is generally higher on smaller scales, where the effects of nonlinearities are
worse, a direct limit on the amount of useable cosmological information is imposed due to
theoretical uncertainties.

Despite these modeling challenges, RSD analyses have developed into one of the most
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popular and powerful cosmological probes today (Peacock et al. 2001; Hawkins et al. 2003;
Tegmark et al. 2006; Guzzo et al. 2008; Yamamoto et al. 2008; Blake et al. 2011b; Beutler
et al. 2012; Reid et al. 2012; Samushia et al. 2013; Chuang et al. 2013; Beutler et al. 2014a;
Reid et al. 2014). Constraints on the growth rate of structure through measurements of
the parameter combination f(z)σ8(z) can provide tests of General Relativity (e.g., Guzzo
et al. 2008), as well as information about the properties of neutrinos (Lesgourgues & Pastor
2006; Beutler et al. 2014a) and tighter constraints on the expansion history through the AP
effect (e.g., Shoji et al. 2009). Recent results from Data Release 12 (DR12) of the Baryon
Oscillation Spectroscopic Survey (BOSS) (Sánchez et al. 2017; Beutler et al. 2017b; Grieb
et al. 2017; Satpathy et al. 2017) have provided the tightest constraints to date on the growth
rate of structure, with roughly 10% constraints on fσ8(zeff) in 3 redshift bins centered at
zeff = 0.38, 0.51, and 0.61.

To date, RSD analyses have generally either relied directly on the results of N -body
simulations or on perturbative approaches to model the clustering of galaxies in the quasi-
linear and nonlinear regimes. Both approaches have their pros and cons. For simulation-
based analyses, e.g., Tinker et al. (2006); Hikage (2014); Reid et al. (2014); Guo et al.
(2015b), the simulations represent the best possible description of nonlinearities, although
individual simulations are expensive to run and, often, the relevant parameter space cannot
be as sufficiently explored as one would like. On the other hand, modeling techniques relying
on perturbation theory (PT), e.g., Beutler et al. (2017b); Grieb et al. (2016); Satpathy et al.
(2017); Sánchez et al. (2017), are relatively fast to compute but will always break down
on small enough scales and fail to fully capture non-perturbative features, such as the FoG
effect from satellites. In either case, simulations play a crucial role in estimating the range
of scales where a model remains accurate enough to recover cosmological parameters in an
unbiased fashion.

In this chapter, we extend the work of Okumura et al. (2015), presenting a more accurate
model for the redshift-space power spectrum of galaxies and extensively stress-testing this
model on a suite of N -body simulations. We describe the galaxy clustering in the context of a
halo model (Seljak 2000; Ma & Fry 2000; Peacock & Smith 2000; Cooray & Sheth 2002) and
rely on a combination of Eulerian PT and N -body simulations to model the power spectrum
of dark matter halos in redshift space. We use several sets of N -body simulations to validate
our model, and we perform cosmological parameter analyses on realistic BOSS-like mock
catalogs to verify both the accuracy and constraining power of the model. The model relies
on the distribution function approach (Seljak & McDonald 2011; Okumura et al. 2012a,b;
Vlah et al. 2012, 2013; Blazek et al. 2014) to map real-space statistics to redshift space.
This formalism is different but complementary from other commonly used approaches in
RSD analyses, such as the TNS model (Taruya et al. 2010) or the Gaussian streaming model
(Reid & White 2011). We build upon the results presented in Okumura et al. (2015), which
showed that the characterization of the redshift-space power spectrum of galaxies in terms of
1-halo and 2-halo correlations is accurate when compared against N -body simulations. We
extend that work by improving the accuracy of the underlying model for the halo redshift-
space power spectrum. The model is based on the PT results presented in Vlah et al. (2013),



4.2. SIMULATIONS 73

Name Lbox [ h−1Mpc] zbox Ωm Ωbh
2 h ns σ8

RunPB 1380 0.55 0.292 0.022 0.69 0.965 0.82

N-series; Challenge D,E 2600 0.562 0.286 0.02303 0.7 0.96 0.82

Challenge A,B,F,G 2500 0.5 0.30711 0.022045 0.6777 0.96 0.82

Challenge C 2500 0.441 0.27 0.02303 0.7 0.96 0.82

Table 4.1 : The cosmological and simulation parameters for the various N -body simulations used
in this chapter.

but uses simulation-based modeling for key terms. In particular, we develop and extend the
Halo-Zel’dovich Perturbation Theory (HZPT) of Seljak & Vlah (2015), which relies on a
combination of linear Lagrangian PT and simulation-based calibration. A Python software
package pyRSD that implements the model described in this chapter is publicly available1.

This chapter is organized as follows. Section 4.2 describes the set of simulations that we
use to calibrate our model, as well as the test suite that we use for independent validation.
We describe the power spectrum estimator, covariance matrix, and likelihood analysis used
to perform parameter estimation in Section 4.3. In Section 4.4, we detail the power spectrum
model, first reviewing the halo model formalism presented in Okumura et al. (2015) and then
discussing several new modeling approaches for the redshift-space halo power spectrum. We
assess the accuracy and performance of the model based on an independent test suite of
simulations in Section 4.5. Finally, we discuss our results and future prospects in Section 4.6
and conclude in Section 4.7.

4.2 Simulations
We use several sets of N -body simulations for both calibrating and testing the model

presented in this paper. The first set of simulations, described in Section 4.2.1, is used heavily
in verifying individual components of the clustering model. Sections 4.2.2 and 4.2.3 describe
an independent suite of high-fidelity simulations that we use to independently verify the
accuracy and precision of the model. The relevant cosmological and simulation parameters
for the mocks discussed in this section are summarized in Table 4.1.

4.2.1 RunPB

The main set of simulations used for calibration and testing purposes is the RunPB N -
body simulation produced by Martin White with the TreePM N -body code of White (2002).
These simulations have been used recently in a number of analyses (White 2014; Reid et al.
2014; Schmittfull et al. 2015a,b). The simulation set has 10 realizations of 20483 dark matter

1https://github.com/nickhand/pyRSD

https://github.com/nickhand/pyRSD
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particles in a cubic box of length L = 1380 h−1Mpc. The cosmology is a flat ΛCDM model
with Ωbh

2 = 0.022, Ωm = 0.292, ns = 0.965, h = 0.69, and σ8 = 0.82.
For testing and calibration of the modeling of halo clustering, we use halo catalogs gen-

erated using a friends-of-friends (FOF) algorithm with a linking length of 0.168 times the
mean particle separation to identify halos (Davis et al. 1985). We consider 8 halo mass bins
(as a function ofMFOF) across 10 redshift outputs, ranging from z = 0 to z = 1. The redshift
outputs considered are: z ∈ {0, 0.1, 0.25, 0.4, 0.5, 0.55, 0.65, 0.75, 1}. The (overlapping) halo
mass bins range from log10MFOF = 12.6 to log10MFOF = 14.4 and are described in Table 4.2.
For reference, Table 4.2 also gives the linear bias values at z = 0.55 and z = 0. The linear
biases for each halo mass bin are determined from the ratio of the large-scale halo-matter
cross power spectrum to the matter power spectrum at each redshift output.

We also rely heavily on a set of galaxy catalogs produced using halo occupation dis-
tribution (HOD) modeling from halo catalogs generated from the z = 0.55 RunPB re-
alizations. The halo catalog production and the HOD modeling is the same as in Reid
et al. (2014): halos are identified using a spherical overdensity (SO) algorithm and the
HOD parameterization follows Zheng et al. (2005). In Reid et al. (2014), the RunPB
simulations are denoted as the MedRes simulations. The HOD parameters used to gener-
ate the galaxy catalog used in this work are {log10Mmin, σlog10M , log10M1, α, log10Mcut} =
{12.99, 0.308, 14.08, 0.824, 13.20}. These HOD parameters were chosen to reproduce the clus-
tering of the BOSS CMASS sample (White et al. 2011), i.e., a large-scale linear bias of b1 ∼ 2
at z ∼ 0.5.

4.2.2 N-series

The N-series cubic boxes are a set of realizations from a large-volume, high-resolution
N -body simulation, used as part of a “mock challenge” testing procedure by the BOSS
collaboration in preparation for publishing results as part of DR12 in Alam et al. (2017).
Details of this mock challenge can be found in Tinker (2016). Briefly, the N-series suite
consists of seven independent, periodic box realizations with the same cosmology, and a

bin 1 2 3 4 5 6 7 8

log10M
min
FOF 12.6 12.8 13.0 13.2 13.4 13.6 13.8 14.0

log10M
max
FOF 13.0 13.2 13.4 13.6 13.8 14.0 14.2 14.4

b1(z = 0.55) 1.40 1.56 1.78 2.04 2.36 2.77 3.28 3.93

b1(z = 0) 1.00 1.07 1.19 1.33 1.51 1.74 2.03 2.41

Table 4.2 : The halo mass bins used when comparing results from the RunPB simulations to
theoretical modeling of halo clustering. For each of the 10 redshift outputs ranging from z = 0 to
z = 1, we consider 8 fixed halo mass bins. We give the corresponding large-scale, linear bias for
each bin for two redshifts, z = 0.55 and z = 0.
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side length of Lbox = 2600 h−1Mpc at a redshift zbox = 0.5. The cosmology is given by:
Ωm = 0.286, ΩΛ = 0.714, σ8 = 0.82, ns = 0.96, and h = 0.7. The N -body simulation was
run using the GADGET2 code (Springel 2005), with sufficient mass and spatial resolution
to resolve the halos that typical BOSS galaxies occupy. A single galaxy bias model was
assumed, and HOD modeling was used to populate halos from the seven realizations with
galaxies. The parameters of the HOD were chosen to reproduce the clustering of the BOSS
CMASS sample (i.e., linear bias b1 ∼ 2 at z ∼ 0.5).

An additional set of 84 mock catalogs were generated from the three orthogonal pro-
jections of each of the seven N-series cubic boxes using the make_survey software2 (White
et al. 2014). Denoted as the “cutsky” mocks, these mocks have the same angular and radial
selection function as the NGC DR12 CMASS sample (Reid et al. 2016; Alam et al. 2017).
They model the true geometry, volume, and redshift distribution of the CMASS NGC sample
and provide a realistic simulation of the true BOSS data set. Each catalog is an independent
realization, and these mocks were also used as part of the DR12 mock challenge.

4.2.3 Lettered Challenge Boxes

A second part of the BOSS DR12 mock challenge was performed on a suite of HOD galaxy
samples constructed from a heterogeneous set of high-resolution N -body simulations. There
are seven different HOD galaxy catalogs, constructed from large-volume periodic simulation
boxes with varying cosmologies. The seven catalogs are labeled A through G. Several of
the boxes are based on the Big MultiDark simulation (Riebe et al. 2013). The catalogs are
constructed out of simulation boxes with a range of 3 underlying cosmologies. HOD models
with varying parameters are applied to boxes with the same cosmology, changing the overall
galaxy bias values by ±5%. The redshifts of the boxes range from z = 0.441 to z = 0.562.

These cases were designed to quantify the sensitivity of RSD models to the specifics
of the galaxy bias model over a reasonable range of cosmologies, testing for any possible
theoretical systematics. The cosmology and relevant simulation parameters for each of these
boxes is given in Table 4.1. A comparison of the results from the mock challenge in context
of the BOSS DR12 results is presented in Alam et al. (2017), and individual Fourier-space
clustering results from the challenge are discussed in Beutler et al. (2017b); Grieb et al.
(2017).

4.3 Analysis methods
In this work, we measure the 2-point clustering of galaxies as characterized by the power

spectrum multipoles, defined in terms of the 2D anisotropic power spectrum as

P`(k) =
2`+ 1

2

∫ 1

−1

dµP (k, µ)L`(µ), (4.1)

2https://github.com/mockFactory/make_survey

https://github.com/mockFactory/make_survey
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where L` is the Legendre polynomial of order `. We estimate the multipoles from catalogs of
discrete galaxies in periodic box N -body simulations and from more realistic, cutsky mock
catalogs, which mimic real survey data. We estimate the continuous galaxy overdensity field
using a Triangular Shaped Cloud interpolation scheme (see, e.g., Hockney & Eastwood 1981)
to assign the galaxy positions to a 3D Cartesian grid.

For both periodic boxes and cutsky mocks, we employ Fast Fourier Transform (FFT)
based estimators to compute the multipoles. In the case of simulation boxes with periodic
boundary conditions, the line-of-sight is assigned to a specific box axis and the power spec-
trum P (k, µ) can be computed as the square of the Fourier modes of the overdensity field.
The desired multipoles are then found by computing equation 4.1 as a discrete sum over
P (k, µ). In the case of the cutsky mocks, we employ the FFT-based estimator described in
Hand et al. (2017b), which modifies the FFT estimator presented by Bianchi et al. (2015) and
Scoccimarro (2015). Building on the ideas of previous power spectrum estimators (Feldman
et al. 1994; Yamamoto et al. 2006), this estimator uses a spherical harmonic decomposition
to allow the use of FFTs to compute the higher-order multipoles, with 5 and 9 FFTs re-
quired to compute the quadrupole and hexadecapole, respectively. When computing FFTs,
we ensure that the grid configuration is such that our desired maximum wavenumber is
not greater than one-half of the Nyquist frequency of the grid, which should eliminate any
aliasing effects on our measured power spectra (i.e., Sefusatti et al. 2016). The measured
power spectra are estimated on a discrete k-grid which makes the angular distribution of
Fourier modes irregular. This discreteness effect is especially important at low k and can be
accounted for by modifying equation 4.1 as

P`(k) =
2`+ 1

2

∫ 1

−1

dµP (k, µ)
Nmodes(k, µ)

Nbin(k)
L`(µ), (4.2)

where N(k, µ) gives the total number of modes on the k-space grid, and the normalization
is

Nbin(k) =

∫ 1

−1

dµNmodes(k, µ). (4.3)

We account for this discreteness effect when comparing theoretical multipoles to simulation
results by applying equation 4.2 to our model predictions. This procedure has been shown to
sufficiently correct for this effect (Beutler et al. 2017b). For all power spectrum calculations,
we use the publicly available software package nbodykit3 (Hand et al. 2017a), which uses
massively parallel implementations of these estimators for fast calculations optimized to run
on high-performance computing machines. nbodykit is described in detail in Chapter 2.

We use the Markov chain Monte Carlo (MCMC) technique to derive the likelihood distri-
butions of the model parameters described in detail in Section 4.4.4. We employ a modified
version of the Python code emcee4 (Foreman-Mackey et al. 2013) to explore the relevant

3https://github.com/bccp/nbodykit
4https://github.com/dfm/emcee

https://github.com/bccp/nbodykit
https://github.com/dfm/emcee
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model parameter space. The data vector used in these fits is the concatenation of the
monopole, quadrupole, and hexadecapole,

D = [P0(k), P2(k), P4(k)] , (4.4)

where we have measured the multipoles from simulations as previously described. The
inclusion of the hexadecapole P4(k) has been shown to offer significant improvements on
RSD constraints, i.e., Beutler et al. (2017b); Grieb et al. (2017). In all fits, we use a bin
spacing in wavenumber of ∆k = 0.005 hMpc−1, and the maximum wavenumber included in
the fits ranges from kmax = 0.2 hMpc−1 to kmax = 0.4 hMpc−1. The likelihood fits require
an estimate of the covariance matrix, and we use the theoretical Gaussian covariance for the
multipoles in Fourier space (i.e., Grieb et al. 2016). In the case of the cutsky mocks, we
properly account for the redshift distribution and survey volume of the mock catalogs when
computing the expected covariance, using e.g., Yamamoto et al. (2006).

Our choice for covariance matrix ignores non-Gaussian contributions produced by e.g.,
nonlinear structure growth, and in the case of the cutsky mocks, correlations induced by
the window function due to the survey geometry. We have tested the impact of our choice
for covariance matrix by comparing the parameter fits obtained when using a covariance
matrix derived from a set of 1000 mock catalogs from the Quick Particle Mesh (QPM;
White et al. 2014) simulations. Because the covariance derived from the QPM mocks uses
a fixed cosmology, we focus our tests on the simulations described in Section 4.2 that have
similar power spectra to that of the QPM mocks. This choice helps to minimize the impact
of the cosmology dependence of the covariance matrix, allowing us to better gauge the effect
of the non-Gaussian features of the covariance. While we do find variations in the best-fit
parameters recovered when using the simulation-based covariance, the shifts are consistent
with the derived errors, and we do not believe the use of analytic covariance matrices affects
the conclusions of this chapter.

4.4 The power spectrum model
In this section, we present the model for the anisotropic clustering of galaxies in Fourier

space, as characterized by the broadband, two-dimensional power spectrum. First, we con-
nect the clustering of galaxies to the clustering of halos, reviewing the halo model formalism
presented in Okumura et al. (2015) in §4.4.1. We describe our model for the redshift-space
halo power spectrum and the various modeling improvements from past work in §4.4.2. In
§4.4.3, we discuss how we account for various observational effects when modeling real galaxy
survey data. Finally, we summarize the complete set of model parameters in §4.4.4.

4.4.1 Halo model formalism for galaxies

Our treatment of the clustering of galaxies is based upon the model presented in Okumura
et al. (2015). The clustering of a given galaxy sample is considered within the context of
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a halo model (Seljak 2000; Peacock & Smith 2000; Ma & Fry 2000; Scoccimarro et al.
2001; Cooray & Sheth 2002), which allows one to separately consider contributions to the
clustering arising from galaxies within the same halo and those from separate halos, known
as the 1-halo and 2-halo terms, respectively. This formalism is ideal when accounting for the
effects of satellite galaxies on the anisotropic power spectrum, where the radial distribution
of satellites induces both 1-halo and 2-halo effects. We describe the relevant model details
from Okumura et al. (2015), used in this work, below.

Galaxy sample decomposition

In redshift space, we can decompose contributions to the galaxy overdensity field δSg into
contributions from central and satellite galaxies as

δSg (k) = (1− fs)δSc (k) + fsδ
S
s (k), (4.5)

where fs = Ns/Ng = 1 − Nc/Ng is the satellite fraction, Nc and Ns are the numbers of
central and satellite galaxies, respectively, and Ng = Nc+Ns is the total number of galaxies.
It follows then that the power spectrum of the galaxy density field (2π)3P S

gg(k)δ(k + k′) ≡〈
δSg (k)δSg (k′)

〉
can be expressed as

P S
gg(k) = (1− fs)2P S

cc(k) + 2fs(1− fs)P S
cs(k) + f 2

sP
S
ss(k), (4.6)

where P S
cc, P S

cs, and P S
ss are the central auto power spectrum, the central-satellite cross power

spectrum, and the satellite auto power spectrum in redshift space, respectively.
To fully separate 1-halo and 2-halo contributions to the power spectrum, we further

decompose the central and satellite galaxy samples. We decompose the central galaxy density
field into those centrals that do and do not have a satellite galaxy in the same halo, denoted as
types “A” and “B” centrals, respectively. For the latter type, a 1-halo contribution will exist
due to the central-satellite correlations inside the same halo. We use a similar decomposition
for satellite galaxies, where we consider satellites that only have a single satellite in a halo
(type “A”) and those satellites that live in halos with more than one satellite (type “B”). The
latter type will contribute a 1-halo term to the power spectrum, due to correlations between
multiple satellites in the same halo.

With these galaxy sample definitions, we can express the central-satellite and satellite-
satellite power spectra in terms of 1-halo and 2-halo correlations. Note that by construction,
a halo can only have a single central galaxy, and thus, the centrals auto spectrum is a purely
2-halo contribution. The central-satellite cross power spectrum can be expressed as

P S
cs(k) = (1− fcB)P S

cAs
(k) + fcBP

S
cBs

(k),

= (1− fcB)
[
(1− fsB)P S

cAsA
+ fsBP

S
cAsB

]
+ fcB

[
(1− fsB)P S

cBsA
+ fsBP

S
cBsB

]
, (4.7)

where fcB = NcB/Nc is the fraction of centrals that have a satellite in the same halo, and
fsB = NsB/Ns is the fraction of satellites that live in halos with more than one satellite.
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Because the sample cB consists of central galaxies that have satellite galaxies inside the
same halo, the term P S

cBs
(and similarly, P S

cBsA
and P S

cBsB
) contains a 1-halo contribution, so

we write it as P S
cBs

= P S,1h
cBs

+P S,2h
cBs

. All other power spectra terms in equation 4.7 are purely
2-halo contributions.

Similarly, we can express the satellite auto power spectrum as

P S
ss(k) = (1− fsB)2P S

sAsA
(k) + 2fsB(1− fsB)P S

sAsB
(k) + f 2

sB
P S
sBsB

(k). (4.8)

As in the case of P S
cBs

, the term P S
sBsB

includes both 1-halo and 2-halo contributions, which
we can express as P S

sBsB
= P S,1h

sBsB
+P S,2h

sBsB
. All other terms in equation 4.8 include only 2-halo

contributions.
Combining the terms in equations 4.7 and 4.8, the galaxy power spectrum in redshift

space is

P S
gg(k) = P S,1h

gg (k) + P S,2h
gg (k), (4.9)

where the 2-halo contributions are given by

P S,2h
gg (k) = (1− fs)2P S

cc

+ 2fs(1− fs)
{

(1− fcB)
[
(1− fsB)P S

cAsA
+ fsBP

S
cAsB

]}
+ 2fs(1− fs)

{
fcB
[
(1− fsB)P S,2h

cBsA
+ fsBP

S,2h
cBsB

]}
+ f 2

s

[
(1− fsB)2P S

sAsA
+ 2fsB(1− fsB)P S

sAsB
+ f 2

sB
P S,2h
sBsB

]
, (4.10)

and the 1-halo contributions are

P S,1h
gg (k) = 2fs(1− fs)

{
fcB
[
(1− fsB)P S,1h

cBsA
+ fsBP

S,1h
cBsB

]}
+ f 2

s f
2
sB
P S,2h
sBsB

. (4.11)

Note that our halo model formalism is this section assumes that halos hosting satellite
galaxies also host centrals. There is some observational evidence that this expectation may
be violated in realistic data, e.g., Skibba et al. (2011). We can easily generalize the formalism
presented in this section to include such effects, at the cost of introducing additional model
parameters. However, past halo model studies (Guo et al. 2015b; Reid et al. 2014) have
explored such generalizations and found the results insensitive to such model extensions.
For this reason, we do not explicitly explore these generalizations in this work.

Modeling 1-halo and 2-halo terms in redshift space

In this subsection, we discuss how we model the 1-halo and 2-halo terms in redshift
space that enter into equations 4.10 and 4.11. Our modeling of these terms in redshift space
largely follows the work presented in Okumura et al. (2015); for completeness, we reproduce
the relevant results from that work below.
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Modeling complications arise due to the effects of the radial distribution of satellite
galaxies inside halos on the galaxy power spectrum. In real space, correlations between
galaxies on small scales give rise to the 1-halo term. In Fourier space, the 1-halo term
manifests as a white noise-like term at low k, with departures from white noise at larger k
due to the radial profile of satellites inside halos. As shown in Okumura et al. (2015), the
deviations from white noise are small on the scales of interest for cosmological parameter
inference (k . 0.4 hMpc−1). Thus, we treat all 1-halo terms in real space as independent
of wavenumber. As discussed in Section 4.4.1, there are two sources of 1-halo terms: 1)
the correlation between the cB sample of centrals and satellites and 2) the auto-correlation
between the sB sample of satellites. We denote the real-space amplitude of these terms as
NcBs and NsBsB , respectively.

In redshift space, satellite galaxies are spread out in the radial direction by their large
virial velocities inside halos, an effect known as Fingers-of-God (Jackson 1972). Affecting
both 1-halo and 2-halo correlations, the FoG effect is a fully nonlinear process, and it is
not possible to accurately model it using perturbation theory. Quasi-linear perturbative
approaches have been developed which use damping functions, i.e., a Gaussian or Lorentzian,
to model the effect (Scoccimarro 2004; Taruya et al. 2010; Peacock & Dodds 1994; Park et al.
1994; Percival & White 2009). In previous studies, the effect is typically modeled with a
single damping factor G(kµ;σv), with σv corresponding to the velocity dispersion of the full
galaxy sample. In such a model, the redshift-space power spectrum of galaxies is modeled
as P S

gg(k, µ) = G2(kµ;σv)P
S
hh(k, µ), where P S

hh is the redshift-space halo power spectrum.
We separately model the FoG effect from each of the galaxy subsamples defined in Sec-

tion 4.4.1. As demonstrated in Okumura et al. (2015), the FoG effect on the 1-halo and
2-halo terms from satellite galaxies can be accurately described using a damping function
and the typical virial velocity associated with the halos hosting the satellites. The functional
form of the damping function used in this work is

G(kµ;σv) =
(
1 + k2µ2σ2

v/2
)−2

, (4.12)

which has a form slightly modified from the commonly used forms in the literature. As shown
in Okumura et al. (2015), this damping function can accurately model the FoG effect from
satellites over a wide range of scales, extending down to k ∼ 0.4 hMpc−1. The dominant
FoG effect arises from satellites, and we include velocity dispersion parameters for each of
the satellite subsamples, σv,sA and σv,sB . Recent clustering analyses, e.g., Reid et al. (2014);
Guo et al. (2015a), have also found evidence that central galaxies are not at rest with respect
to the halo center, giving rise to an additional FoG effect (albeit smaller than the effect from
satellites). To properly account for this possibility, we also include a velocity dispersion
parameter associated with central galaxies, σv,c. We assume a single velocity dispersion for
both the cA and cB galaxy samples.

There are five power spectra in equation 4.10 that include only 2-halo terms. Using the
above FoG modeling, these terms become
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P s
cc(k, µ) = G(kµ;σv,c)

2P S
cc,h(k, µ) + Σ2

cc, (4.13)

P S
cAsA

(k, µ) = G(kµ;σv,c)G(kµ;σv,sA)P S
cAsA,h

(k, µ), (4.14)

P S
cAsB

(k, µ) = G(kµ;σv,c)G(kµ;σv,sB)P S
cAsB ,h

(k, µ), (4.15)

P S
sAsA

(k, µ) = G(kµ;σv,sA)2P S
sAsA,h

(k, µ) + Σ2
sAsA

, (4.16)

P S
sAsB

(k, µ) = G(kµ;σv,sA)G(kµ;σv,sB)P S
sAsB ,h

(k, µ), (4.17)

where P S
XX,h represents the auto power spectrum of halos in which the galaxies of type X

reside, Σ2
XX is the shot noise contribution to the auto power from self pairs, and P S

XY,h is the
cross spectrum of halos in which galaxies of types X and Y reside. Under the assumption
of linear perturbation theory, P S

XY,h converges to the linear redshift-space power spectrum
originally proposed by Kaiser (1987), P S

XY,h(k, µ) = (b1,X +fµ2)(b1,Y +fµ2)PL(k)+δKXY Σ2
XY ,

where PL(k) is the linear matter power spectrum, δKXY is the Kronecker delta, Σ2
XX is the

shot noise contribution, which is non-zero only for auto spectra, and b1 is the linear bias
factor of the specified galaxy sample.

The three power spectra that include both 1-halo and 2-halo terms can be expressed as

P S
cBsA

(k, µ) = G(kµ;σv,c)G(kµ;σv,sA)
[
P S
cBsA,h

(k, µ) +NcBs

]
, (4.18)

P S
cBsB

(k, µ) = G(kµ;σv,c)G(kµ;σv,sB)
[
P S
cBsB ,h

(k, µ) +NcBs

]
, (4.19)

P S
sBsB

(k, µ) = G(kµ;σv,sB)2
[
P S
sBsB ,h

(k, µ) +NsBsB

]
+ Σ2

sBsB
, (4.20)

where NcBs is the 1-halo amplitude due to correlations between centrals and satellites in the
same halo, and NsBsB is the 1-halo amplitude for satellites inside the same halo.

4.4.2 Halo clustering in redshift space

The remaining modeling unknown needed in equations 4.13–4.17 and 4.18–4.20 is the
prescription for the redshift-space halo power spectrum, P S

XY,h(k, µ). In this section, we de-
scribe our model for the halo power spectrum, which relies on a combination of perturbation
theory and simulations. The model is based on the formalism presented in Vlah et al. (2013),
with important differences and improvements discussed below.

Distribution function model for redshift-space distortions

Our model for the power spectrum of halos in redshift space relies on expressing the
redshift-space halo density field in terms of moments of the distribution function (DF); the
approach has been developed and tested in a previous series of papers (Seljak & McDonald
2011; Okumura et al. 2012a,b; Vlah et al. 2012, 2013; Blazek et al. 2014). If we consider
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halo samples X and Y , with linear biases b1,X and b1,Y , the redshift-space power spectrum
in the DF model can be expressed as a sum over mass-weighted velocity correlators

P S
XY,h(k, µ) =

∞∑
L=0

∞∑
L′=0

(−1)L
′

L!L′!

(
ikµ

H

)L+L′

PXY,h
LL′ (k, µ), (4.21)

where H = aH is the conformal Hubble parameter, and PXY,h
LL′ is the power spectrum of the

moments L and L′ of the radial halo velocity field, weighted by the halo density field. These
spectra are defined as

(2π)3PXY,h
LL′ (k)δD(k + k′) =

〈
TX,L‖ (k)T Y,L

′

‖ (k′)
〉
, (4.22)

where TX,L‖ (k) is the Fourier transform of the corresponding halo velocity moment weighted
by halo density,

TX,L‖ (x) =
[
1 + δhX(x)

] (
vh‖,X

)L
, (4.23)

where δhX and vh‖,X are the halo density and radial velocity fields for sample X, respectively.
The velocity correlators defined in equation 4.22 have well-defined physical interpretations;
for example, PXX,h

00 represents the halo density auto power spectrum of sample X, whereas
PXX,h

01 is the cross-correlation of density and radial momentum for halo sample X. The DF
approach naturally produces an expansion of P S

XY,h(k, µ) in even powers of µ, with a finite
number of correlators contributing at a given power of µ. For this work, we consider terms
up to and including the µ4 order in the expansion of equation 4.21.

To evaluate the halo velocity correlators in equation 4.21, we largely follow the results
outlined in Vlah et al. (2012, 2013), where the correlators are evaluated using Eulerian
perturbation theory. However, in order to increase the overall accuracy of the power spectrum
model, our work differs from the results presented in Vlah et al. (2013) in several crucial
areas. These differences will be discussed in the subsequent subsections of this section.

The modeling of halo bias

The spectra PXY,h
LL′ (k, µ) in equation 4.21 are defined with respect to the halo field, and

a biasing model is needed to relate them to the correlators of the underlying dark matter
density field. Following the results of Vlah et al. (2013), we use a nonlocal and nonlinear
Eulerian biasing model, such that

δh(x) = b1δ(x) +
b2

2
(δ2(x)− 〈δ2〉) +

bs
2

(s2(x)− 〈s2〉) +
b3

6
δ3(x), (4.24)

where δh and δ are the halo and dark matter overdensity fields, respectively, bi are the
various bias parameters, and s2 is the contracted tidal tensor contribution (see e.g., Baldauf
et al. (2013) for the definition). We employ a modified version of equation 4.24 that uses
four parameters: {b1, b

00
2 , b

01
2 , bs}. As discussed in Vlah et al. (2013), the spectra PXX,h

00 and
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Figure 4.1 : The dependence of the second-order nonlinear effective biases, b00
2 (blue, solid) and

b01
2 (red, dashed), on the linear bias b1 that is used in this work, as determined from the RunPB
simulations. For comparison, the best-fit bias parameters from Vlah et al. (2013) are shown as
circles.

PXX,h
01 have distinct values for the quadratic, local bias b2, resulting in the parameters b00

2 and
b01

2 . This difference can be understood through the effects of the third-order, nonlocal bias
bNL

3 , which appears to be equally important to b2 (McDonald & Roy 2009; Saito et al. 2014)
(see further discussion in Vlah et al. (2013)). We would have obtained similar results using
a biasing scheme with parameters: {b1, b2, bs, b

NL
3 }. Note that the nonlinear and nonlocal

biasing contributions have been demonstrated to improve the accuracy of theoretical models,
e.g., Baldauf et al. (2013); Saito et al. (2014).

In summary, our biasing scheme has four bias parameters for each halo sample: the
linear bias b1, the two effective second-order biases, b00

2 and b01
2 , and the nonlocal tidal bias

bs. However, we treat the higher-order biases as functions of b1, and thus, the only free bias
parameter for each halo sample is the linear bias. In the case of the local Lagrangian bias
model, we can predict the amplitude of the nonlocal tidal bias in terms of the linear bias
(Chan et al. 2012; Baldauf et al. 2012)

bs = −2

7
(b1 − 1). (4.25)

As shown in Vlah et al. (2013), the tidal bias does not play a prominent role in the biasing
model, but nonetheless, we include these terms in our model. The effective biases b00

2 and
b01

2 have a roughly quadratic dependence on the linear bias b1. Rather than freely varying
these bias parameters, we treat them as a function of b1, independent of redshift, and use
simulations to determine the exact functional form of this dependence. We use the set of
halo mass bins from the RunPB simulations described in Section 4.2.1 and use Gaussian
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Figure 4.2 : The accuracy of the dark matter HZPT modeling results used in this work, in com-
parison to the results from the RunPB simulation. We compare the dark matter power spectrum
P00 (top), density – radial momentum cross power P01 (middle), and the small-scale correlation
function ξ00 (bottom). We give results for three redshift outputs: z = 1 (left), z = 0.55 (center),
and z = 0 (right). The updated HZPT model parameters are presented in Appendix B.1.

Process regression (see, e.g., Rasmussen & Williams 2006) to predict the functional form of
b00

2 (b1) and b01
2 (b1). For this purpose, we use the public Gaussian Process package george5

(Ambikasaran et al. 2015). The predictions for b00
2 and b01

2 used in this work, as determined
from the RunPB simulations, are shown in Figure 4.1. We also show the best-fit bias
parameters used in Vlah et al. (2013) for several redshifts, which are consistent with the
results obtained from the RunPB simulations.

Improved modeling of dark matter correlators

We use the Halo-Zel’dovich Perturbation Theory (HZPT) approach of Seljak & Vlah
(2015) to model the real-space dark matter density power spectrum P00(k) and the real-space
cross-correlation of dark matter density and radial momentum P01(k). This differs from the

5https://github.com/dfm/george
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results presented in Vlah et al. (2013), which uses standard perturbation theory (SPT) to
evaluate these terms (which is known to break down at relatively large scales). Note that
the density-momentum cross-correlation can be related to P00 through P01(k) = µ2dP00/dlna
(Vlah et al. 2012), so only an accurate model for P00 is required. The dark matter correlator
P01(k) plays a crucial role in the modeling of the µ2 angular dependence of the redshift-space
power spectrum of halos.

The HZPT model connects the Zel’dovich approximation (Zel’dovich 1970; White 2014)
with a Padé expansion for a 1-halo-like term that is determined from simulations using simple,
physically motivated parameter scalings. The model for the dark matter power spectrum
has been demonstrated to be accurate to 1% to k ∼ 1 hMpc−1 (Seljak & Vlah 2015), and the
Zel’dovich approximation performs sufficiently well when modeling BAO, relative to other
modeling techniques (White 2014; Vlah et al. 2015).

We provide an update to the HZPT results presented in Seljak & Vlah (2015), using
the dark matter RunPB simulations detailed in Section 4.2.1. We extend the analysis of
Seljak & Vlah (2015) to include measurements of P01(k), as well as the small-scale matter
correlation function. We also extend the redshift fitting range, using a set of 10 redshift
outputs from the RunPB simulations, ranging from z = 0 to z = 1. We perform a global fit
of the amplitude and redshift-dependence of the 5 parameters in the HZPT model using the
P00(k) and P01(k) statistics over the range k = 0.005−0.5 hMpc−1, as well as the small-scale
correlation function over the range r = 0.3 − 25 Mpc/h. Qualitatively, the results remain
similar to those presented in Seljak & Vlah (2015), but the use of additional statistics
(in particular, the small-scale correlation function) in the fit does allow some parameter
degeneracies to be broken.

We review the HZPT model for P00 and P01 in Appendix B.1, and provide the updated
best-fit model parameters. We also detail the necessary calculation of P01 in the Zel’dovich
approximation in Appendix A. We show the accuracy of the HZPT model for the three
statistics considered in Figure 4.2 for three redshift snapshots, z = 0, 0.55, and 1. It
is evident that the 5-parameter HZPT model can provide a consistent picture of the power
spectra to an accuracy of 1-2% over the range of scales considered in this work. Furthermore,
keeping in mind that the inclusion of baryonic effects can effect the parameters R1, R1h, R2h

at the 5-10% level (van Daalen et al. 2011; Mohammed & Seljak 2014), the model used in this
work performs reasonably well at modeling the notoriously difficult 1-halo to 2-halo regime
of the correlation function.

We also extend the HZPT approach to model the dark matter radial momentum auto
power spectrum, P11(k), which is important for modeling the µ4 angular dependence of
P S
XY,h(k, µ). Specifically, we model the scalar component of P11[µ4] with the sum of a

Zel’dovich term and Padé expression and model the vector contribution using 1-loop SPT
(as was done in Vlah et al. 2012). The full model is given by the sum of the scalar and vector
contributions
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Figure 4.3 : The accuracy of the HZPT model for the auto power spectrum of the dark matter
radial momentum P11[µ4] in comparison to the results from the RunPB simulation. We give results
for three redshift outputs: z = 1 (left), z = 0.55 (center), and z = 0 (right). The best-fit HZPT
model parameters are presented in Appendix B.2.

P11[µ4](k) = P S
11,s[µ

4](k) + P S
11,v[µ

4](k),

= P zel
11,s(k) + PBB

11 (k)− f 2I31(k), (4.26)

where the vector contribution I31(k) is defined in Vlah et al. (2012), and we discuss the
Zel’dovich term P zel

11,s in detail in Appendix A. We define the Padé term PBB
11 and give the

best-fit parameters (fit using the RunPB simulations) in Appendix B.2. Figure 4.3 compares
the accuracy of the model in equation 4.26 with the results from the RunPB simulations for
three redshift snapshots. The figure shows the model to be accurate to 1-2% over the range
of scales of interest.

Finally, we improve the modeling of the the dark matter density – velocity divergence
cross power spectrum Pδθ(k) and the velocity divergence auto power spectrum Pθθ(k) in
comparison to Vlah et al. (2013). An accurate model for Pδθ is needed to describe the µ2

dependence of the halo density – momentum cross spectrum P hh
01 (k), and the model for Pθθ

enters into our model for the µ4 dependence of the halo momentum auto spectrum P hh
11 (k).

Rather than using the 1-loop SPT expressions for these terms (as was done in Vlah et al.
2013), we use the fitting formula from Jennings (2012). While the 1-loop SPT expressions
for Pδθ and Pθθ diverge from the truth at relatively large scales (k ∼ 0.1 hMpc−1), the model
of Jennings (2012) achieves the necessary accuracy over the range of scales considered in this
work.

Halo stochasticity

The µ0 component of the redshift-space halo spectrum, P S
XY,h(k, µ), in the DF model is

the isotropic, real-space auto spectrum of the halo density field, P hh
00 (k). For a complete
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description of this term, we must accurately model the contribution from the stochasticity
of halos (Hamaus et al. 2010), defined for two separate halo mass bins (h and h̄) as

Λ(k) = P hh̄
00 (k)− b̄1(k)P hm

00 (k)− b1(k)P h̄m
00 (k) + b1(k)b̄1(k)P00(k), (4.27)

where P hm
00 and P h̄m

00 are the halo–matter cross power spectra for the halo mass bins h and
h̄, respectively, and P00 is the matter power spectrum (modeled using HZPT, as described
in §4.4.2). The scale-dependent linear bias factors are defined as

b1(k) ≡ P hm
00 (k)

P00(k)
, b̄1(k) ≡ P h̄m

00 (k)

P00(k)
. (4.28)

In the Poisson model, the leading-order term of the stochasticity is given by the Poisson
shot noise, n̄−1, where n̄ is the halo number density. However, there are significant deviations
from this prediction that have complicated scale dependence. These corrections originate
from two competing effects: first, the halo exclusion effects due to the finite size of halos and
second, the nonlinear clustering of halos relative to dark matter (Baldauf et al. 2013; Vlah
et al. 2013; Baldauf et al. 2016; Ginzburg et al. 2017). In the k → 0 limit, the stochasticity
behaves close to white noise, where halo exclusion lowers the stochasticity relative to the
Poisson value and nonlinear clustering leads to a positive contribution. However, in the high-
k limit, the stochasticity must approach the Poisson value, and these deviations vanish; thus,
there exists a complicated scale dependence that is not yet well-understood theoretically.

We use the RunPB simulations at several redshift outputs and the halo mass bins defined
in Table 4.2 to investigate the functional form of the halo stochasticity Λ(k) as a function of
mass and redshift. In Figure 4.4, we show the deviations of the halo stochasticity from the
Poisson shot noise when considering the same halo mass bin and different halo mass bins.
The trends are consistent with our theoretical understanding: as the average halo mass
increases, the stochasticity becomes sub-Poissonian, sourced by halo exclusion effects, while
positive contributions from nonlinear biasing become important for lower halo masses. As
halos grow in time, the exclusion effects become more pronounced at lower redshifts (Baldauf
et al. 2013; Vlah et al. 2013; Baldauf et al. 2016). However, the scale dependence and redshift
scaling remains non-trivial, and there are significant differences in the scale dependence and
amplitude when considering the cases of auto and cross mass bins. The stochasticity Λ
eventually approaches the Poisson value, but only on very small scales (k ∼ 10 hMpc−1),
which are not shown in Figure 4.4.

The halo stochasticity was studied in simulations in the context of the DF model in Vlah
et al. (2013), and the results presented here agree with those findings. Vlah et al. (2013)
employs a simple model with log scale dependence to model the auto stochasticity for sev-
eral mass bins across three redshifts. We extend those results with finer resolution in both
redshift and halo mass. In an attempt to capture as much complexity as possible, we treat
the halo stochasticity results from the RunPB simulations as a training set and use Gaus-
sian Process regression to predict the auto stochasticity Λ(b1, σ8(z)) and cross stochasticity
Λ(b1, b̄1, σ8(z)), where we have parameterized the redshift dependence of the stochasticity
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Figure 4.4 : The deviation of the halo stochasticity Λ(k), as defined in equation 4.27, from the
Poisson shot noise, for the case of (a) the same halo mass bin and (b) different halo mass bins.
Results are measured from the RunPB simulations for three separate combinations of bins. The
average halo mass increases from left to right; see Table 4.2 for halo mass bin details. For each
subplot, we show the results for 10 redshifts, ranging from z = 1 (dark) to z = 0 (light). Even when
the mean halo mass is similar, the scale dependence and amplitude in the cases of auto and cross
halo stochasticity can differ significantly.
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Figure 4.5 : The accuracy of the HZPT model used in this work for the halo-matter cross-
correlation, in comparison to the results from the RunPB simulation. We compare the cross power
spectrum Phm (top) and the correlation function ξhm (bottom) for 5 halo mass bins at z = 0.55

(see Table 4.2 for bin details). We show the measurement uncertainties as error bars for P hm and
as the grey shaded region for ξhm. The HZPT parameters have been fit using only P hm(k) from
0.005 hMpc−1 < k < 0.5 hMpc−1. The model is a good description of P hm on these scales, as well
as ξhm down to r ∼ 5 Mpc/h, but fails once entering the 1-halo regime on small scales.

using the value of σ8 at each redshift. The stochasticity of biased tracers is an active area
of theoretical work, and we hope to incorporate analytic prescriptions for halo stochasticity
based on existing work, i.e., Baldauf et al. (2013, 2016); Ginzburg et al. (2017), in to our
model in the near future.

HZPT modeling for the halo-matter cross-correlation

The real-space halo-matter cross correlation P hm(k) plays a crucial role in accurately
modeling the halo auto spectrum using equation 4.27. We develop a new model for the
halo-matter power spectrum using HZPT and calibrate the model using the suite of halo
mass bins from the RunPB simulations detailed in Table 4.2. To model the Zel’dovich term
of the model, we employ a simple, linear bias model, such that the full HZPT model is given
by

P hm(k) = b1P
zel
00 (k) + PBB

00 (k,A0, R,R1, R1h, R2h), (4.29)

where b1 is the large-scale, linear bias of the halo field, P zel
00 is the matter density auto

spectrum in the Zel’dovich approximation, and PBB
00 is a broadband Padé term, as given by

equation B.1. To account for the biased nature of the halo field, we treat the HZPT model
parameters, {A0, R,R1, R1h, R2h}, as a function of not only σ8(z) but also the linear bias b1.
We choose a simple power law functional form for the b1 dependence, which performs well
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at modeling the bias dependence of P hm over the range of scales of interest in this work. We
perform a global fit across the 8 halo mass bins and 10 redshifts of the RunPB simulations
to determine the best-fit HZPT model parameters. In our parameter fit, we have included
the cross power spectrum P hm on scales ranging from k = 0.005 hMpc−1 to k = 0.5 hMpc−1.
The best-fit parameters are presented in Appendix B.3.

We show the accuracy of the halo-matter HZPT model in Figure 4.5 for several halo
mass bins at z = 0.55. The trends evident at this redshift are consistent with the results
from the full range of redshifts explored (z = 0 − 1). The model reproduces the cross
power spectrum P hm at the ∼2% level, as well as the cross-correlation ξhm on scales r & 5
Mpc/h. However, we see from the correlation function results on small scales that the model
is unable to reproduce the clustering on scales within the 1-halo regime, where halo profile
details become important. The model breakdown on these scales is due to our choice to use
a power law dependence on b1 for the HZPT parameters that are related to the halo profile.
To better describe halo profiles and capture the effects of nonlinear and nonlocal bias terms,
i.e., Saito et al. (2014), a more complicated functional form for the linear bias dependence
is required. However, because Fourier-space statistics are the main concern of this work
and the simplified model performs well when modeling the power spectrum on the scales of
interest, we leave the investigation of improved small-scale modeling to future work.

4.4.3 Modeling observational effects

In this section we discuss several details that arise when modeling data from real galaxy
surveys. In Section 4.4.3, we describe how we account for the geometric distortions of the
clustering signal that arise when an inaccurate fiducial cosmology is assumed. Section 4.4.3
discusses how we treat the survey geometry and window function when modeling “cutsky”
mocks, which have a realistic survey geometry imposed.

The Alcock-Paczynski effect

When analyzing data from galaxy surveys, we must transform observed angular posi-
tions and redshifts into physical coordinates, using a fiducial cosmological model to specify
the relation between the redshift and the LOS distance (i.e., the Hubble parameter) and
between the angular separation and the distance perpendicular to the LOS (i.e., the angular
diameter distance). If the fiducial cosmology differs from the true cosmology, an anisotropic,
geometric warping of the clustering signal is introduced. This distortion, known as the
Alcock-Paczynski (AP) effect, (Alcock & Paczynski 1979) is distinct from RSD and can be
used to measure cosmological parameters. The presence of the BAO feature at a fixed scale
in the power spectrum helps distinguish the geometric AP effect and the dynamical RSD
anisotropy, thus increasing the constraining power of full-shape modeling (Shoji et al. 2009;
Ballinger et al. 1996).

The difference between the assumed and true cosmological models results in a rescaling
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of the wavenumbers transverse k⊥ and parallel k‖ to the LOS direction, such that

k′⊥ = q⊥k⊥ and k′‖ = q‖k‖, (4.30)

where the primes denote quantities that are observed assuming the fiducial (and possibly
incorrect) cosmology. The two distortion parameters q⊥ and q‖ are given by

q⊥ =
DA(zeff)

D′A(zeff)
and q‖ =

H ′(zeff)

H(zeff)
, (4.31)

which are the ratios of the Hubble parameter and angular diameter distance in the fiducial
and true cosmologies at the effective redshift of the survey. With these definitions, the
theoretical prediction for the multipole power spectrum when including the AP effect can
be expressed as

P`(k
′) =

2`+ 1

2q⊥q2
‖

∫ 1

−1

dµ P S
gg [k(k′, µ′), µ(µ′)]L`(µ), (4.32)

where L` is the Legendre polynomial of order `, and we use the model prediction of equa-
tion 4.9 for P S

gg[k(k′, µ′), µ(µ′)]. The true (k, µ) can be related to the observed (k′, µ′) via

k(k′, µ′) =
k′

q⊥

[
1 + (µ′)2

(
1

F 2
− 1

)]1/2

, (4.33)

µ(µ′) =
µ′

F

[
1 + (µ′)2

(
1

F 2
− 1

)
,

]−1/2

(4.34)

where F = q‖/q⊥. The normalization scaling of the power spectrum with q−1
⊥ q−2

‖ is due to
the volume distortion between the two different cosmologies.

For comparison with BAO distance analyses, a second set of AP parameters is usually
defined, given by

α⊥ ≡
DA(zeff)

D′A(zeff)

r′d
rd

= q⊥
r′d
rd
, (4.35)

α‖ ≡
H ′(zeff)

H(zeff)

r′d
rd

= q‖
r′d
rd
, (4.36)

where we have defined rd ≡ rs(zd) as the sound horizon scale at the drag redshift zd. BAO
measurements are sensitive to the Hubble parameter and angular diameter distance relative
to the sound horizon scale of a fixed “template” cosmology, and this second set of parame-
ter definitions facilitates comparison of measurements using different template cosmological
models.
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Figure 4.6 : The window function multipoles in configuration space (left) and the effects of the
window function on linear Kaiser power spectrum multipoles (right) for the DR12 CMASS NGC
survey geometry. In the right panel, the solid grey lines show the original multipoles, while the
colored lines correspond to the model after convolution with the window function, P̂`(k). The
convolution procedure has large effects at small k, and we choose to use kmin = 0.02 hMpc−1 in our
data analysis to minimize these effects.

The survey geometry

When analyzing cutsky mock catalogs, we must account for the effects of the survey
geometry when comparing our theoretical model to the measured power spectrum. We
do this by convolving our theoretical model with the survey window function, rather than
trying to remove the effect of the survey geometry from the data itself. Our window function
treatment follows the method first presented in Wilson et al. (2017) and used in the analysis
of BOSS DR12 data in Beutler et al. (2017b); Zhao et al. (2017).

Following Wilson et al. (2017), we compute the window function multipoles in configura-
tion space using a pair counting algorithm and the catalog of random objects describing the
survey geometry. We use the Corrfunc correlation function code (Sinha 2016) to compute
the pair counts of the random catalog via

Q`(s) ∝
∫ 1

−1

dµRR(s, µ)L`(µ) '
∑
i

RR(si, µi)L`(µi), (4.37)

where the normalization is such that Q0(s)→ 1 for s� 1. The resulting multipoles Q` for
the BOSS CMASS NGC sample are shown in the left panel of Figure 4.6. The Q` vanish for
scales & 3000 h−1Mpc, as these are the largest scales in the volume of the NGC. Note that
on small scales, the clustering becomes isotropic, with the multipoles vanishing. In general,
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the contribution of the higher-order multipoles decreases as ` increases, which guarantees the
convolution converges when including only the first few Q`. Here, we include multipoles up
to and including Q8, and have verified that the inclusion of Q10 does not affect our results.

With the measured Q`, we compute the convolved theoretical correlation function mul-
tipoles in configuration space as

ξ̂0(s) = ξ0Q0 +
1

5
ξ2Q2 +

1

9
ξ4Q4 + ...

ξ̂2(s) = ξ0Q2 + ξ2

[
Q0 +

2

7
Q2 +

2

7
Q4

]
+ ξ4

[
2

7
Q2

100

693
Q4 +

25

143
Q6

]
+ ...

ξ̂4(s) = ξ0Q4 + ξ2

[
18

35
Q2 +

20

77
Q4 +

45

143
Q6

]
+ ξ4

[
Q0 +

20

77
Q2 +

162

1001
Q4 +

20

143
Q6 +

490

2431
Q8

]
+ ...., (4.38)

where ξ` are the theoretical correlation function mutipoles, computed from the power spec-
trum multipoles via a 1D Hankel transform, evaluated using the FFTLog software (Hamilton
2000). We also perform the transformation from ξ̂`(s) to P̂`(k) using FFTLog.

The effects of the window function convolution can be seen in the right panel of Figure 4.6,
where we illustrate the effects using linear Kaiser multipoles. The effects are most important
on scales of order the survey size; for the NGC CMASS sample, the window function effects
are only important on scales k . 0.05 hMpc−1. The impact of the survey geometry increases
for the higher-order multipoles, with the anisotropy of the window function leading to non-
trivial effects on our convolved model. In this work, we use a minimum wavenumber of
kmin = 0.02 hMpc−1 when comparing data and theory and have tested that the window
function convolution has minimal impact on our parameter fitting analyses. However, as
measurement errors decrease for future surveys, the window convolution will need to be
carefully tested, given both the constraining power of the ` = 2 and ` = 4 multipoles and
the larger convolution effects.

4.4.4 Model parametrization

Table 4.3 gives a summary of the parameters of the model described in this work. We
give both the free parameters as well as the constrained parameters and the corresponding
constraint expressions. There are 13 free parameters detailed in Table 4.3, and these param-
eters correspond to the parameter space used in our RSD analyses. The table also lists the
assumed prior distribution for each parameter used during parameter estimation, which is
either a flat (uniform) or Gaussian prior. We use physically motivated priors when possible
and assume wide, flat priors on all cosmological parameters of interest. We describe the
model parametrization in detail below.
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Free Parameters
Name [Unit] Prior

α⊥ U(0.8, 1.2)
α‖ U(0.8, 1.2)
f U(0.6, 1.0)

σ8(zeff) U(0.3, 0.9)
b1,cA U(1.2, 2.5)
fs U(0, 0.25)
fsB U(0, 1)
〈N>1,s〉 N (2.4, 0.1)

σc [ h−1Mpc] U(0, 3)
σsA [ h−1Mpc] U(2, 6)

γsA N (1.45, 0.3)
γsB N (2.05, 0.3)
f 1h
sBsB

N (4, 1)

Constrained Parameters
Name [Unit] Constraint Expression

b1,cB equation C.7
b1,sA γsAb1,cA

b1,sB γsBb1,cA

fcB equation C.2
σsB [h−1 Mpc] σsA

[
σmodel
v (b1,sB)/σmodel

v (b1,sA)
]

NcBs [h−3 Mpc3] equation C.12
NsBsB [h−3 Mpc3] equation C.16

Table 4.3 : The parameter space of our full-shape RSD fits using the model described in this
chapter. There are 13 free parameters (left) that are varied during the fitting process, with several
additional parameters subject to constraint expressions (right). For all free parameters, we provide
the prior used when fitting, either a normal prior N (µ, σ) with mean µ and standard deviation σ,
or a uniform prior U(a, b) with lower bound a and upper bound b. For a detailed description of the
model parameters, see Section 4.4.4.

Cosmology parameters

The free parameters specifying the cosmology in our model are the AP distortion pa-
rameters, α‖ and α⊥, the growth rate f , and the amplitude of matter fluctuations σ8, where
both f and σ8 are evaluated at the effective redshift of the sample, zeff . During our fitting
procedure, we vary f and σ8 independently, although we only report results for the product
fσ8, which is the parameter combination most well-constrained by RSD analyses. The model
requires a linear power spectrum in order to evaluate several perturbation theory integrals.
These integrals are computationally costly (although see recent advances, Schmittfull & Vlah
2016; Schmittfull et al. 2016; McEwen et al. 2016), and for this reason, we do not vary any
cosmological parameters affecting the shape of the linear power spectrum during parameter
estimation. We evaluate the linear power spectrum using the fiducial cosmology and keep the
shape fixed, allowing only the amplitude to vary through changes in σ8. This choice assumes
that the Planck (Planck Collaboration et al. 2016a) uncertainty for most of the parameters
which define the shape of the power spectrum is much smaller than the uncertainty of our
measurement and can be neglected. This has been shown to be a reasonable assumption for
current data sets, i.e., Beutler et al. (2014b); Gil-Marín et al. (2016b).



4.4. THE POWER SPECTRUM MODEL 95

Linear bias parameters

In the most general version of the model discussed in Section 4.4.1, we must specify
linear bias parameters for each of the four galaxy subsamples: b1,cA , b1,cB , b1,sA , and b1,sB . As
discussed in Section 4.4.2, the linear bias fully predicts the higher-order biasing parameters
for a given sample. When varying the linear bias parameters of the sA and sB satellite
samples, we enforce the expected ordering of the parameters: b1,cA < b1,sA < b1,sB . We use
the relations b1,sA = γsAb1,cA and b1,sB = γsBb1,cA and choose to vary the parameters γsA
and γsB instead. We use relatively wide Gaussian priors for these parameters centered on
their expected fiducial values for a CMASS-like galaxy sample, γsA ∼ 1.45 and γsB ∼ 2.05
(see, e.g., Okumura et al. 2015, Table 1). For the linear bias of the cB sample, we use the
expected scaling of the bias with the biases of the satellite samples as given by equation C.7
and described in Appendix C.2.

Sample fractions, velocity dispersions, and 1-halo amplitudes

There are three sample fraction parameters: 1) fs specifies the fraction of all galaxies
that are satellites, 2) fcB gives the fraction of centrals that live in halos with a satellite,
and 3) fsB defines the fraction of satellites that live in halos with multiple satellites. We
must also specify the 1-halo amplitudes (assumed to be independent of k) that enter into
equations 4.18–4.20. We denote the 1-halo amplitude due to correlations between centrals
and satellites in the same halo as NcBs and between satellites inside the same halo as NsBsB .
And, finally, we must specify the velocity dispersion parameters for each galaxy subsample
in order to account for the FoG effect. We include a single velocity dispersion for centrals, σc,
and parameters for each of the satellite subsamples, σsA and σsB . Thus, in the most general
case, there are an additional 12 model parameters needed to fully evaluate our model, in
addition to the 4 cosmological parameters.

We use dependencies between these parameters to shrink our fitting parameter space
from the most general case (16 parameters) to its final size (13 parameters). In particular,
we use the constraints outlined in Appendix C for the relative fraction of the cB sample,
fcB , (equation C.2) and for the 1-halo amplitudes, NcBs and NsBsB , (equations C.12 and
C.16). In the former case, the constraint allows us to vary the parameter 〈N>1,s〉, which is
defined as the mean number of satellite galaxies in halos with more than one satellite. This
parameter is typically centered on 〈N>1,s〉 ∼ 2.4 for CMASS-like galaxy samples, with little
variation around this center value. For the 1-halo amplitude NsBsB , we vary a normalization
parameter f 1h

sBsB
to account for uncertainty in the expected value, which should have a value

of order unity. Finally, we do not vary the velocity dispersion of the sB sample, σsB , but
rather use the physically motivated scaling with halo mass, σ2

v ∝ M2/3, and the halo bias
– mass relation from Tinker et al. (2010). We do not use this model function σmodel

v (b1) to
predict the absolute amplitude of σsB , but only the functional form. We always rescale the
predicted value by the current value of σsA (see Table 4.3 for details).
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Figure 4.7 : The best-fit monopole, quadrupole, and hexadecapole models (lines) as compared to
the measurements (points) from the mean of 10 RunPB HOD galaxy realizations at z = 0.55, fit
over the wavenumber range k = 0.02− 0.4 hMpc−1. The lower panels show the model residuals for
each multipole separately. The reduced chi-squared of the fit to all three multipoles is χ2

red = 1.12.
Note that the large variation from bin to bin in the hexadecapole is due to discrete binning effects.

4.5 Performance of the model

4.5.1 RunPB results

As a first test of the RSD model described in Section 4.4, we use a set of HOD galaxy
catalogs constructed from 10 realizations of the z = 0.55 snapshot of the RunPB simulation,
described previously in Section 4.2.1. The galaxy catalogs are made by populating halo
catalogs according to a halo occupation distribution with parameters comparable to the
BOSS CMASS sample. The halo catalogs are constructed in the manner described in detail
in Reid et al. (2014). Briefly, the halo finder uses the spherical overdensity implementation
of Tinker et al. (2008), using an overdensity of ∆m = 200 relative to the mean matter density
ρm to define the halo virial radius. Central galaxies are not at rest with respect to the halo
center-of-mass; they are assigned a velocity computed from the halo particles in the densest
region of each halo (see Reid et al. (2014) for details). Note that the halo catalogs used
here are not the same as the FOF halo catalogs described in Section 4.2.1, which we use to
calibrate certain components of the RSD model. Differences in the halo finder algorithms
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lead to important differences in the clustering of the resulting galaxy catalogs. While we
do not expect RSD fits to these galaxy catalogs to be a fully independent validation of the
model, they do still provide a useful test of the accuracy of our model.

Using the model parameterization discussed in Section 4.4.4, we fit the mean of the
measured monopole, quadrupole, and hexadecapole from 10 realizations at z = 0.55 as a
function of the maximum wavenumber included in the fits, kmax = [0.2, 0.3, 0.4] hMpc−1.
The resulting best-fit model and residuals between measurements and theory are shown in
Figure 4.7 for kmax = 0.4 hMpc−1. We are able to achieve excellent agreement between
the model and simulation multipoles to scales of k = 0.4 hMpc−1, well into the nonlinear
clustering regime.

As a function of kmax, we report the mean and 1σ error for a subset of the model pa-
rameters in Table 4.4, as determined from the posterior distributions obtained via MCMC
sampling. We also show the 2D posterior distributions for fσ8, α‖, and α⊥ for each kmax value
in Figure 4.8 (produced using Foreman-Mackey 2016). As expected, we obtain significant
decreases in parameter uncertainties when including small-scale information in the fits. For
the three cosmology parameters, fσ8, α‖, and α⊥, we find decreases of 19%, 18%, and 18%,
respectively, for kmax = 0.3 hMpc−1 and 38%, 24%, and 29% for kmax = 0.4 hMpc−1, relative
to the fit using kmax = 0.2 hMpc−1. These decreases are roughly consistent with the expected
scaling in the nonlinear regime, σ ∝ k

−1/2
max (e.g., Blazek et al. 2014). For the AP parameters,

we find more modest decreases in the uncertainty when ranging from kmax = 0.2 hMpc−1 to
kmax = 0.4 hMpc−1. In particular, extending from kmax = 0.3 hMpc−1 to kmax = 0.4 hMpc−1

offers little improvement in the error on α‖. The constraining power for the AP parameters
results from a combination of the BAO signal and information from the geometric distortion
of the full broadband signal. As nearly all of the information from the BAO signal is present
below k = 0.2 hMpc−1, our more modest decreases in uncertainty for the AP parameters are
consistent with our expectations.

We have central/satellite information for each galaxy in the RunPB catalogs and can
assess the accuracy of the halo model decomposition described in Section 4.4.1. As seen
in Table 4.4, we find a non-zero velocity dispersion for centrals with an amplitude σc ∼
1 h−1Mpc, which is consistent with the expected amplitude present in the underlying halo
catalogs. The main discrepancy is that our recovered satellite fraction is significantly higher
than the expected value. This difference is likely due to the fact that we rely on FOF
halo catalogs for calibration of the halo clustering in the model, while we are fitting galaxy
catalogs created from SO halo catalogs. The choice of halo finder alters the clustering on
scales around the virial radius. A FOF halo finder tends to over-merge halos on these scales
into a single halo, whereas a SO finder tends to preserve the multiple smaller halos. This
well-known difference in halo finders would manifest itself as an increase in the satellite
fraction and is consistent with our fitting results. While differences in halo finder algorithms
are notoriously complex, we emphasize that we are able to absorb any discrepancies related
to these simulation differences in our model and obtain unbiased results for our cosmological
parameters.

We analyze the correlations between the posterior distributions to better understand the
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Figure 4.8 : The 2D posterior distributions for the cosmology parameters fσ8, α⊥, and α‖ obtained
from fitting the mean of 10 RunPB HOD galaxy realizations at z = 0.55. We show results when
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The expected parameter values are marked with solid blue lines.
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kmax = 0.2 h/Mpc kmax = 0.3 h/Mpc kmax = 0.4 h/Mpc truth

fσ8 0.455 +0.015
−0.015 0.467 +0.012

−0.013 0.469 +0.010
−0.009 0.472

fσ8 [fixed AP] 0.457 +0.010
−0.010 0.466 +0.009

−0.008 0.468 +0.007
−0.007 0.472

α⊥ 1.003 +0.005
−0.006 1.004 +0.005

−0.005 1.005 +0.004
−0.004 1.000

α‖ 1.009 +0.010
−0.009 1.006 +0.008

−0.007 1.009 +0.007
−0.008 1.000

b1σ8 1.266 +0.009
−0.009 1.265 +0.008

−0.008 1.268 +0.008
−0.008 1.272

fs 0.122 +0.019
−0.018 0.143 +0.013

−0.013 0.143 +0.008
−0.008 0.104

fcB 0.104 +0.033
−0.030 0.124 +0.022

−0.023 0.122 +0.013
−0.015 0.089

fsB 0.438 +0.203
−0.197 0.438 +0.136

−0.123 0.466 +0.081
−0.079 0.399

σc 1.134 +0.214
−0.238 0.906 +0.088

−0.111 0.930 +0.062
−0.065 –

σsA 4.239 +0.476
−0.413 3.737 +0.372

−0.464 3.443 +0.278
−0.270 –

χ2/d.o.f. 113/(108− 13) = 1.19 159/(168− 13) = 1.03 241/(228− 13) = 1.12

Table 4.4 : Parameter constraints obtained when fitting the 13-parameter RSD model to [P0, P2, P4],
as measured from the mean of the 10 RunPB galaxy catalogs at z = 0.55. We show results
determined as a function of the maximum wavenumber included in the fits. Parameter posteriors
are determined from MCMC sampling of the likelihood, assuming Gaussian covariance between
multipoles.

constraining power of our 13-parameter model. We show these parameter correlations for
each fitting range in Figure 4.9. As expected, we find that the main parameter combination
measuring the strength of RSD, fσ8, is most correlated with the AP parameters α‖ and α⊥,
which measure geometric distortions of the clustering signal. For each of the kmax fitting
ranges, the correlation matrix for (fσ8, α⊥, α‖) is:

R0.2[fσ8, α⊥, α‖] =

 1.000 0.536 −0.583
0.536 1.000 −0.094
−0.583 −0.094 1.000

 , (4.39)

R0.3[fσ8, α⊥, α‖] =

 1.000 0.605 −0.361
0.605 1.000 0.133
−0.361 0.133 1.000

 , (4.40)

R0.4[fσ8, α⊥, α‖] =

 1.000 0.377 −0.418
0.377 1.000 0.292
−0.418 0.292 1.000

 . (4.41)

As we extend the maximum wavenumber included in our fits, small-scale information
does help break degeneracies between fσ8 and the AP parameters, reducing the correlation
between fσ8 and (α⊥, α‖). For comparison, Beutler et al. (2017b) reports a correlation
between fσ8 and α⊥ of 0.503 and fσ8 and α‖ of 0.547 for the middle redshift bin for the
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Figure 4.9 : Parameter correlations as measured from the posterior distributions when fitting the
mean of the 10 RunPB galaxy catalogs. We show the correlations as a function of the maximum
wavenumber included in the fit, illustrating the changes in parameter dependencies when fitting to
smaller scales.

combined DR12 BOSS sample, where they have fit [P0, P2] to kmax = 0.15 hMpc−1 and
P4 to kmax = 0.1 hMpc−1. This level of correlation is similar to our values obtained when
fitting to kmax = 0.2 hMpc−1, but we find a significant reduction in correlation fitting to
kmax = 0.4 hMpc−1. We can assess the freedom of our RSD modeling using the Fisher
formalism, which predicts a correlation coefficient of unity between α‖ and α⊥ in the case
where we perfectly understand RSD (Seo & Eisenstein 2003, 2007; Shoji et al. 2009). In
the opposite limit, Fisher matrix calculations predict r ∼ −0.4 (Seo & Eisenstein 2003,
2007; Beutler et al. 2017c) when only BAO information is used and RSD information is
fully marginalized over. Thus, the correlation between α‖ and α⊥ provides a measure of
the constraining power of our RSD parametrization, with the correlation decreasing from
unity as additional freedom is introduced into the RSD model. Our results are consistent
with this expectation, as we find the correlation increase for large kmax. To model results
only to kmax = 0.2 hMpc−1, our model contains too much freedom, in comparison to the
requirements of modeling to kmax = 0.4 hMpc−1. Again for comparison, Beutler et al.
(2017b) finds a correlation of r = 0.257 between α‖ and α⊥. Thus, our value of r = 0.292
indicates that we are able to recover a similar amount of information using our RSD model
parametrization to kmax = 0.4 hMpc−1.
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Figure 4.10 : The mean of the best-fit monopole, quadrupole, and hexadecapole models (colored)
as compared to the individual measurements (gray) from the 21 N-series cubic boxes at z = 0.5,
fit over the wavenumber range k = 0.02 − 0.4 hMpc−1. The lower panels show the scatter in the
recovered values for the 3 cosmology parameters, fσ8, α⊥, and α‖, across the 21 boxes. The error
bar shows the standard deviation of these results (not the error on the mean).

4.5.2 Independent tests on high resolution mocks

To fully assess the accuracy and precision of our RSD model, we perform independent
tests using two sets of mocks based on high-fidelity, periodic N -body simulations. The first,
described in §4.5.2, is a homogeneous set of 21 galaxy catalogs derived from 7 realizations of
an N -body simulation with fixed cosmology and bias model. The second, described in §4.5.2,
is a set of 7 heterogenous HOD galaxy catalogs where both the bias model and underlying
cosmology varies from box to box. For details on the cosmology and simulation parameters
for these mocks, see Table 4.1.

Cubic N-series results

Our first independent tests utilize the cubic N-series simulation, the large-volume (Lbox =
2600 h−1Mpc) periodic box simulations described in Section 4.2.2. We perform fits to the
monopole, quadrupole, and hexadecapole from 21 HOD galaxy catalogs, constructed from
7 realizations at z = 0.5 and 3 orthogonal line-of-sight projections per box. The cosmology
of these boxes is given in Table 4.1. As in Section 4.5.1, we perform fits to the data vector
[P0, P2, P4] over a range of kmax values. The best-fitting parameters for each of the 21 catalogs
are obtained by maximum a posterior (MAP) estimation using the LBFGS algorithm.
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kmax ∆〈α‖〉 Sα‖ ∆〈α⊥〉 Sα⊥ ∆〈fσ8〉 Sfσ8 ∆〈fσ8〉 Sfσ8
[ hMpc−1] fixed AP

0.2 0.005 0.011 −0.002 0.005 −0.016 0.014 −0.010 0.013
0.3 0.007 0.011 −0.003 0.004 −0.009 0.013 −0.000 0.011
0.4 0.011 0.012 −0.003 0.004 −0.008 0.010 0.003 0.010

Table 4.5 : The mean (with expected value subtracted) and standard deviation S of the best-fitting
values for fσ8, α⊥, and α‖ found when fitting [P0, P2, P4] from the 21 cubic N-series catalogs. Results
are reported as a function of the maximum wavenumber included in the fit. We also give results for
fσ8 when holding the AP parameters fixed to their true values.

Figure 4.10 shows the measured ` = 0, 2, and 4 multipoles from the individual N-series
catalogs, and we have over-plotted the mean of the best-fitting model from each fit using
kmax = 0.4 hMpc−1. We report the mean (with the expected value subtracted) and standard
deviation for the best-fitting fσ8, α⊥, and α‖ values from the 21 fits as a function of fitting
range in Table 4.5. We also include the results for fσ8 when holding the AP parameters
fixed to their true values.

We find similar trends in our recovered cosmological parameters for the N-series boxes as
for the RunPB results in §4.5.1. We obtain good fits to the measured ` = 0, 2, 4 multipoles
using our RSD model up to kmax = 0.4 hMpc−1. However, we do find some evidence for
small systematic biases present in our RSD model, although it is difficult to properly assess
the level of statistical significance with only seven fully independent realizations (clustering
from boxes that vary only the line-of-sight projection are correlated). When using kmax =
0.4 hMpc−1, we find that are fσ8 value is biased low by ∆fσ8 = 0.008 and α‖ is biased high
by ∆α‖ = 0.011. These correspond to ∼0.8σ and ∼0.9σ shifts, respectively, relative to the
box-to-box dispersion, as determined by the standard deviation of the 21 fits. Although it
is important to note that, again, with only 7 independent realizations and 21 total fits, the
standard deviation across the fits remains noisy. When fixing the AP parameters to their
true values, we see a relatively large upwards shift in the mean fσ8 value across the fits.
As our model prefers a slightly larger α‖ value than expected, when its value is fixed to its
correct value, the recovered value for fσ8 shifts upwards, due to the anti-correlation between
the parameters.

Lettered challenge box results

We perform additional tests of our model using a heterogeneous set of seven HOD galaxy
catalogs, labeled A through G, which were constructed from high-fidelity cubic N -body sim-
ulations. These catalogs are described in detail in Section 4.2.3, and the cosmology and sim-
ulation parameters are reported in Table 4.1. The box size for these mocks is ∼2.5 h−1Gpc;
a single box has roughly 4 times the volume of the DR12 BOSS CMASS sample and 60%
of the volume of the mean of the 10 RunPB realizations. They were designed to provide
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stringent stress-tests of full-shape RSD modeling analyses, and as such, they cover a range
of redshifts (z = [0.441, 0.5, 0.562]), fσ8 values, and galaxy bias models. As was done in
previous sections, we compute fits to the monopole, quadrupole, and hexadecapole for each
of the seven lettered challenge boxes, as a function of the maximum wavenumber included
in the fits. We obtain full posterior distributions for each of our 13 model parameters using
MCMC sampling. We report the recovered values for the cosmological parameters (with
the expected value subtracted) and the 1σ parameter uncertainties for all seven boxes in
Table 4.6. Figure 4.11 illustrates the fractional deviation of our recovered cosmology values
from their reference values for each kmax value.

The recovered values show similar trends as a function of kmax as the results from the
RunPB and cubic N-series results. We generally find ∼20− 30% improvements in the error
on fσ8 when extending the fit from kmax = 0.2 hMpc−1 to kmax = 0.4 hMpc−1. We find more
modest decreases in the error for the AP parameters, with little improvement extending
from kmax = 0.3 hMpc−1 to kmax = 0.4 hMpc−1. Within the expected 1σ uncertainty of
each mock, we recover fσ8 and α⊥ values consistent with the truth for all seven boxes, and
the best-fitting values generally remain stable as a function of kmax. However, the recovered
values for α‖ show a systematic positive bias for all boxes, relative to the truth, which can
be most easily seen in Figure 4.11. This bias is present for each value of kmax used. It is
difficult to assess the statistical significance of this potential bias, as several of the seven
mocks are built on the same underlying N -body simulation, which correlates the derived
parameters. Weighting each derived α‖ by the inverse uncertainty, we find a mean positive
bias of ∆α‖ = 0.02, independent of kmax. This bias is slightly larger than was found for
either the RunPB or cubic N-series mocks, where both results show a ∼0.01 positive bias in
α‖.

We also include in Figure 4.11 and Table 4.6 the results for fσ8 when fixing the AP
parameters to their true values. As expected, we see substantial (∼20-30%) error decreases
since the correlation between fσ8 and the AP parameters degrades constraints when α‖ and
α⊥ are allowed to vary. Similar to previous results, we also find a systematic positive shift in
the recovered fσ8 values when holding α‖ and α⊥ fixed to their true values. This is expected
due to the correlation between fσ8 and α‖ and the systematic positive shift found for α‖.

4.5.3 Tests on realistic DR12 BOSS CMASS mocks

Finally, we test our RSD model using BOSS DR12 CMASS mock catalogs, using the 84
independent, N-series cutsky catalogs described in §4.2.2. This set of catalogs offers a chance
to test the performance of our model in a realistic setting with a large enough number of
catalogs to identify systematic biases up to the level of

√
84 = 9.16 times smaller than the

measurement uncertainty from a single mock. The 84 N-cutsky catalogs accurately model
the geometry, volume, and redshift distribution of the DR12 CMASS NGC sample (Reid
et al. 2016). We use the window function convolution procedure outlined in Section 4.4.3 to
properly account for the effects of the selection function on the measured power spectrum
multipoles. We measure the monopole, quadrupole, and hexadecapole for each of the 84
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box kmax ∆α‖ ∆α⊥ ∆fσ8 ∆fσ8

[ hMpc−1] fixed AP

A
0.2 0.031 +0.012

−0.012 −0.001 +0.006
−0.007 −0.026 +0.018

−0.016 −0.003 +0.011
−0.012

0.3 0.029 +0.011
−0.011 0.001 +0.007

−0.008 −0.015 +0.015
−0.014 −0.001 +0.011

−0.010

0.4 0.031 +0.010
−0.013 0.004 +0.006

−0.006 −0.009 +0.013
−0.014 0.005 +0.008

−0.007

B
0.2 0.029 +0.012

−0.013 −0.004 +0.007
−0.007 −0.010 +0.018

−0.018 0.009 +0.014
−0.013

0.3 0.032 +0.013
−0.012 −0.003 +0.008

−0.007 −0.009 +0.016
−0.018 0.014 +0.010

−0.009

0.4 0.032 +0.012
−0.011 −0.001 +0.007

−0.007 −0.004 +0.015
−0.014 0.019 +0.010

−0.011

C
0.2 0.045 +0.014

−0.014 −0.002 +0.007
−0.007 −0.035 +0.020

−0.020 −0.005 +0.012
−0.014

0.3 0.048 +0.011
−0.012 −0.002 +0.006

−0.007 −0.030 +0.016
−0.017 0.002 +0.011

−0.013

0.4 0.045 +0.013
−0.013 −0.000 +0.006

−0.006 −0.012 +0.016
−0.014 0.021 +0.010

−0.010

D
0.2 0.002 +0.012

−0.011 0.003 +0.007
−0.006 0.011 +0.016

−0.018 0.006 +0.012
−0.012

0.3 0.002 +0.010
−0.010 0.002 +0.005

−0.006 0.011 +0.017
−0.015 0.012 +0.010

−0.009

0.4 0.009 +0.009
−0.008 −0.001 +0.005

−0.005 0.013 +0.011
−0.012 0.017 +0.009

−0.009

E
0.2 0.000 +0.013

−0.012 0.006 +0.006
−0.007 0.015 +0.018

−0.020 0.007 +0.010
−0.009

0.3 −0.001 +0.010
−0.010 0.002 +0.006

−0.005 0.008 +0.016
−0.017 0.005 +0.009

−0.009

0.4 0.009 +0.011
−0.011 0.002 +0.006

−0.006 0.012 +0.017
−0.015 0.016 +0.010

−0.009

F
0.2 0.032 +0.013

−0.012 −0.002 +0.007
−0.007 −0.025 +0.020

−0.019 0.005 +0.011
−0.012

0.3 0.034 +0.011
−0.011 0.003 +0.006

−0.006 −0.012 +0.015
−0.017 0.015 +0.006

−0.006

0.4 0.015 +0.010
−0.009 0.008 +0.006

−0.006 0.006 +0.014
−0.013 0.009 +0.005

−0.004

G
0.2 0.014 +0.010

−0.010 −0.000 +0.007
−0.007 −0.022 +0.017

−0.017 −0.014 +0.012
−0.012

0.3 0.012 +0.009
−0.011 0.001 +0.005

−0.005 −0.015 +0.015
−0.017 −0.004 +0.010

−0.011

0.4 0.020 +0.011
−0.011 0.007 +0.006

−0.006 0.006 +0.010
−0.010 0.007 +0.008

−0.007

Table 4.6 : The best-fitting values for fσ8, α⊥, and α‖ obtained when fitting our RSD model to
the measured monopole, quadrupole, and hexadecapole from the 7 lettered challenge boxes. We
report results as a function of the maximum wavenumber included in the fits. The 1σ uncertainties
obtained via MCMC sampling are also shown.
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Figure 4.11 : The fractional deviation of the best-fitting fσ8, α⊥, and α‖ values from their true
values for each of the seven lettered challenge boxes. We also show the deviations for fσ8 obtained
when the AP parameters are fixed to their true values. For each box, we show results obtained
using (from left to right) kmax = 0.2 (blue), 0.3 (green), and 0.4 (orange) hMpc−1. Error bars show
the 1σ uncertainty as obtained via MCMC sampling.
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catalogs and estimate the best-fitting model parameters using MAP optimization via the
LBFGS algorithm. The power spectra have been measured using FKP weights with a value
of P0 = 104 h−3Mpc3. Similar to previous fits, we report parameter constraints as a function
of the maximum wavenumber included in the fits. The minimum wavenumber included in
the fits is kmin = 0.02 hMpc−1, chosen to minimize any large-scale effects of the window
function on our parameter fits.

We plot the best-fitting ` = 0, 2, 4, and 6 theoretical models and the measured multipoles
from a single catalog of the full 84 N-series cutsky test suite in Figure 4.12. Here, the best-fit
model has been estimated using the data vector [P0, P2, P4] with kmax = 0.4 hMpc−1. We also
show the tetra-hexadecapole (` = 6) to illustrate that the model can accurately predict this
higher-order multipole and that it contains little measurable signal. For this single mock,
we find good agreement between theory and data, with a reduced chi-squared of χ2

red = 1.01.
The average value across all 84 mocks is 〈χ2

red〉 = 1.08.
We give the mean (with the expected value subtracted) and standard deviation of the

best-fitting cosmological parameters from fits to each of the 84 cutsky mocks in Table 4.7.
We also show the 1D histograms and 2D correlations of fσ8, α⊥, and α‖ for the individual
fits in Figure 4.13, illustrating the constraining power of our model for these parameters as
well as the correlations between the parameters. When fitting the monopole, quadrupole,
and hexadecapole, we find good agreement between the mean of the recovered values for fσ8,
α⊥, and α‖. When including scales up to kmax = 0.4 hMpc−1, we find modest mean biases of
∆〈fσ8〉 = 0.005, ∆〈α⊥〉 = −0.004, and ∆〈α‖〉 = 0.004, which represent 14%, 28%, and 17%
of the expected mock-to-mock dispersion of each parameter, respectively. The statistical
precision of the mean values due to the finite number of catalogs is 84−1/2 ' 0.1 times the
mock-to-mock dispersion. Thus, the results show evidence for a small bias in the derived α⊥
value and marginal evidence for small biases in α‖ and fσ8. We also show results in Table 4.7
when fitting only the monopole and quadrupole in order to help quantify the impact of the
hexadecapole on our final constraints. The mean best-fitting parameters remain consistent
with the results obtained when fitting [P0, P2, P4], and we find the standard deviation of our
best-fitting fσ8 values inflates by roughly 30%, consistent with the findings of Beutler et al.
(2017b). When fixing the AP parameters to their true values, we find that the hexadecapole
adds negligible further information to our parameter constraints.

4.5.4 Comparison to published models

The set of 84 N-series mocks described in the previous section were utilized as part of the
BOSS collaboration’s internal RSD modeling tests in preparation for the DR12 parameter
constraint analyses. This enables us to perform a direct comparison of our model with the
main Fourier space RSD models used in the DR12 consensus results, which are described
in the companion papers in Beutler et al. (2017b) and Grieb et al. (2017) and the main
DR12 consensus paper in Alam et al. (2017). The model used in Grieb et al. (2017) was
also applied to BOSS DR12 data in configuration space, with results presented in Sánchez
et al. (2017). These analyses differ in a number of ways from ours. In particular, these
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Figure 4.12 : The best-fitting ` = 0, 2, 4, and 6 theory (grey lines) and measurements (points
with errors) from a single catalog of the N-series cutsky test suite, which accurately simulates
the BOSS DR12 CMASS data set. The best-fit model has been estimated using the data vector
[P0, P2, P4] while fitting over the wavenumber range k = 0.02 − 0.4 hMpc−1. We also show the
tetra-hexadecapole (` = 6) to illustrate that the model can accurately predict this higher-order
multipole and that it contains little measurable signal. The reduced chi-squared of the fit for this
mock catalog is χ2

red = 1.01. The average value across all 84 mocks is 〈χ2
red〉 = 1.08.

models have significantly fewer parameters (7-8 instead of 13) and use a smaller kmax value
in their fits. We limit our fitting range to the same as those used in these works and
directly compare the derived parameter constraints for the N-cutsky mocks in Table 4.8. For
comparison, this table also includes results from fits using our model that include scales to
kmax = 0.3 hMpc−1 and kmax = 0.4 hMpc−1, which goes beyond the scales used in Beutler
et al. (2017b) and Grieb et al. (2017). When using comparable fitting ranges, we find that
our model yields a standard deviation for fσ8 that is larger by ∼10% and ∼20% as compared
to the results recovered when using the models of Beutler et al. (2017b) and Grieb et al.
(2017), respectively. We find comparable constraints on fσ8 when extending our model to
kmax = 0.3 hMpc−1 and a modest 5-10% improvement when using kmax = 0.4 hMpc−1.

For the AP parameters, we find a comparable constraint on α⊥ and a slighter worse
constraint on α‖ as compared to the model of Beutler et al. (2017b). We find modest 5%
and 10% reductions in the error on α‖ and α⊥ as compared to the model of Grieb et al.
(2017). Extending the fits with our model to kmax = 0.4 hMpc−1 does not provide much
gain for the uncertainty of α‖, but we do find a roughly 20% reduction in the uncertainty
of α⊥ as compared to the models of Beutler et al. (2017b) and Grieb et al. (2017). As
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Figure 4.13 : The best-fitting fσ8, α⊥, and α‖ parameters from fitting our RSD model to the
measured [P0, P2, P4] multipoles from the 84 N-series cutsky mocks. We include wavenumbers in the
range 0.02 hMpc−1 ≤ k ≤ 0.4 hMpc−1. The diagonal panels show the histogram of the recovered
parameters, with the mean best-fitting parameters indicated as black dashed lines and the true
values as gray dotted lines. The panels below the diagonal show 2D plots with the 84 individual
best-fitting parameters as blue dots and the mean as a filled circle. We also show a Gaussian fit to
the marginalized parameter distributions in all panels.
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statistics kmax ∆〈α‖〉 Sα‖ ∆〈α⊥〉 Sα⊥ ∆〈fσ8〉 Sfσ8 ∆〈fσ8〉 Sfσ8

[ hMpc−1] fixed AP

[P0, P2, P4]
0.2 0.007 0.024 −0.004 0.016 −0.020 0.041 −0.008 0.034

0.3 0.007 0.025 −0.005 0.015 −0.008 0.039 0.005 0.030

0.4 0.004 0.023 −0.004 0.014 0.005 0.036 0.013 0.027

[P0, P2]
0.2 −0.004 0.039 −0.001 0.019 −0.014 0.052 −0.013 0.035

0.3 0.005 0.041 −0.004 0.019 −0.005 0.053 0.005 0.030

0.4 0.012 0.036 −0.008 0.016 −0.010 0.040 0.007 0.025

Table 4.7 : The mean and standard deviation of the best-fitting values for fσ8, α⊥, and α‖ from fits
to the 84 N-series cutsky catalogs. Results are reported as a function of the maximum wavenumber
included in the fit. We show results obtained when including or excluding the hexadecapole from
our fits in order to quantify the influence of the hexadecapole on our derived constraints.

kmax for [P0, P2, P4] ∆〈α‖〉 Sα‖ ∆〈α⊥〉 Sα⊥ ∆〈fσ8〉 Sfσ8

Beutler et al. (2017b) [0.15, 0.15, 0.1] 0.0049 0.0338 −0.0014 0.0180 −0.0049 0.0375

Grieb et al. (2017) [0.2, 0.2, 0.2] 0.0089 0.0253 −0.0030 0.0175 0.0001 0.0383

This work

[0.15, 0.15, 0.1] 0.0003 0.0403 0.0011 0.0183 0.0043 0.0447

[0.2, 0.2, 0.2] 0.0065 0.0239 −0.0041 0.0157 −0.0198 0.0409

[0.3, 0.3, 0.3] 0.0074 0.0254 −0.0050 0.0152 −0.0077 0.0385

[0.4, 0.4, 0.4] 0.0041 0.0231 −0.0043 0.0143 0.0050 0.0356

Table 4.8 : The mean (with expected value subtracted) and standard deviation of the best-fitting
cosmology parameters for the 84 N-cutsky mocks using the model in this work as well as the Fourier
space models described in Beutler et al. (2017b) and Grieb et al. (2017). Results in all cases were
computed using FKP weights with P0 = 104 h−3Mpc3.

seen in the results of Alam et al. (2017), the most powerful method for constraining the AP
parameters, and thus DA(z) and H(z), remains a BAO-only analysis that takes advantage
of the additional statistical precision gained by the process of density field reconstruction.
However, some additional constraining power can be gained from full-shape RSD analyses
due the AP effect on sub-BAO scales. Here, the extra information provided by extending
the modeling to kmax = 0.4 hMpc−1 aids the constraints on DA(z) and H(z) and helps to
de-correlate these parameters.

It is also instructive to compare our results for the N-cutsky mocks to the results published
in Gil-Marín et al. (2016b), which fits the power spectrum monopole and quadrupole of the
DR12 CMASS sample with kmax = 0.24 hMpc−1. The comparison yields similar conclusions
as previously. In particular, Gil-Marín et al. (2016b) finds errors of σfσ8 = 0.038 and
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σfσ8 = 0.022 when varying and fixing the AP parameters, respectively. These errors are both
smaller than the uncertainties derived from our model by ∼30% when fitting the monopole
and quadrupole over similar wavenumber ranges. The constraints for the AP parameters in
Gil-Marín et al. (2016b) are similarly smaller than those from our model by a comparable
amount.

And, finally, it is worth noting that the fσ8 constraints using the model in this chapter
are not competitive with the 2.5% constraint on fσ8 published in Reid et al. (2014), which
remains the tightest measurement of fσ8 in the literature to date. With fixed AP parameters,
the work used a simulation-based analysis to model the small-scale correlation function of
the DR10 CMASS sample well into the nonlinear regime, down to scales of ∼0.8 h−1Mpc
(smaller than the R ∼ k−1

max ∼ 2.5 h−1Mpc considered here). This work relied on simulations
to accurately model the galaxy-halo connection whereas we use the analytic, halo model
decomposition described in Section 4.4.2. Given the tight constraint on fσ8 found by Reid
et al. (2014), one might hope that Fourier space models could be similarly extended into the
nonlinear regime and yield comparable increases in precision. However, while acknowledging
the number of differences in the two analyses, we note that we do not find such large increases
in precision in our measurement of fσ8 when including small-scale information down to
k = 0.4 hMpc−1.

4.6 Discussion
The results presented in Section 4.5 provide tests of the RSD model presented in this work

for a suite of simulations that span a wide range in both cosmology and galaxy bias models.
Given the measurement uncertainties and the degrees of freedom in our model, we are able
to achieve excellent agreement between the ` = 0, 2, 4 multipoles measured from simulations
and our best-fitting theory down to scales of k = 0.4 hMpc−1. To quantify the impact
of small-scale physics on our model, we perform fits for kmax = 0.2, 0.3, and 0.4 hMpc−1.
The results across the different sets of simulations indicate a positive systematic shift in the
parallel AP parameter α‖ at the level of 0.01 − 0.02 that is independent of the kmax value
used. For fits using kmax = 0.4 hMpc−1, we find small biases at the level of ∼0.005 for
fσ8 and α⊥. These deviations are small and can be effectively calibrated with simulations.
The amplitude of the shifts is similar to the level of theoretical systematics present when
using other RSD models in the literature, i.e., Alam et al. (2017). The positive bias in α‖
propagates into a small bias in fσ8 when fixing the AP parameters to their expected values,
due to the anti-correlation between fσ8 and α‖. The exact amplitude of the bias in α‖ can
be robustly estimated from a larger set of simulations than is considered in this work and the
best-fitting α‖ value modified accordingly, while accounting for the systematic uncertainty
in the error budget.

A primary goal of this work is to ensure that any model parameters that we introduce
have physically meaningful values and are not just nuisance parameters. We attempt to
capture the complex effects of satellite galaxies on the clustering signal in redshift space
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by considering separately the clustering of isolated satellites and those that live in halos
with at least two satellites. This parametrization leads to a total of 13 model parameters,
significantly more than other Fourier space RSD models in the literature, i.e., Beutler et al.
(2017b); Grieb et al. (2017), which typically only have 7-8 parameters. In addition to differ-
ences in the treatment of RSD and perturbation theory choices, perhaps the most significant
difference is the use of a single parameter to model the nonlinear FoG effect of the full galaxy
sample, instead of separately modeling the effects for central and satellite subsamples, as is
done in this work. They also typically float a constant, shot noise parameter, which is de-
signed to absorb any potential deficiencies in the model. In some sense, these models are a
limit of the more general parametrization considered in this work and are only valid over a
certain range of scales and galaxy bias values.

As demonstrated in the analysis of Alam et al. (2017), the level of theoretical errors in fσ8

measurements from full-shape RSD analyses ranges from ∼25-50% of the statistical precision
for the three redshift bins considered for the completed BOSS DR12 sample. Another recent
analysis (Beutler et al. 2017a) provides evidence for the possible shortcomings of the RSD
model of Beutler et al. (2017b). The work extends the modeling to include the relative
velocity effect of baryons and cold dark matter at decoupling but fails several null tests.
The systematics situation is perhaps even more dire when considering the fact that the
background cosmology model is essentially fixed by the Planck results (see Alam et al. 2017,
Figure 11), indicating that a more relevant test of systematics should be done with the
AP parameters fixed, often resulting in a ∼20-30% smaller error on fσ8. This suggests that
RSD analyses from full-shape modeling are already systematics dominated and will certainly
be so for future galaxy surveys, without subsequent modeling improvements. While the
model presented in this work has its own shortcomings, one such avenue for improvement is
exploring more physically motivated model descriptions.

As discussed in Section 4.5.4, our parametrization leads to a derived uncertainty of fσ8

that is roughly 10-20% larger than the constraint from the models of Beutler et al. (2017b);
Grieb et al. (2017), which use fewer parameters. Each of our parameters has a physical
motivation, and we apply reasonable priors based on these motivations when appropriate.
Thus, we find no clear path to reduce the number of parameters in our model and do not
believe that additional constraining power can be gained through the use of stronger priors.
As such, RSD models in the literature are likely too-limited in their parametrization, with
the uncertainty of fσ8 underestimated by ∼10-20%. For a galaxy sample such as the BOSS
CMASS sample with a satellite fraction fs ∼ 0.1, the clustering is dominated by the 2-halo
correlations of centrals. However, we find the inclusion of parameters to properly treat the
1% effects of satellite-satellite correlations to be crucial to modeling the clustering down to
scales of k ∼ 0.4 hMpc−1. Using a Fisher analysis, we find similar errors on fσ8 as found
by the models of Beutler et al. (2017b); Grieb et al. (2017) for the N-cutsky mocks (see
Table 4.8) when fixing the relative fraction of non-isolated satellites fsB and the central
galaxy velocity dispersion σc. In this case, we only vary a single FoG velocity dispersion,
as is the case for the models of Beutler et al. (2017b); Grieb et al. (2017), and fix the ∼1%
contribution to the overall power spectrum from satellites living in halos containing multiple
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satellites.
Fully perturbative modeling approaches cannot accurately capture the effects of nonlin-

earities, i.e., the FoG effect from satellites, on small scales, and at some point, the modeling
must become sensitive to the poorly understood physics of galaxy evolution. Presently, it is
unclear how sensitive cosmological growth of structure measurements are to such small-scale
physics. In particular, assembly bias remains a worrying potential systematic for galaxy
clustering analyses (Zentner et al. 2014, 2016). The most promising avenue for including
small-scale information in growth of structure analyses appears to be simulation-based mod-
eling efforts. The most competitive constraint to date for fσ8 published in Reid et al.
(2014) uses a simulation-based model to describe the correlation function down to scales of
r ∼ 0.8 h−1Mpc. In order to achieve the desired accuracy for the RSD model presented in this
work, we also find it necessary to include calibrations from simulations for key components
of the model. The combination of perturbation theory with simulation-based calibration
in our model likely limits the applicability of the model in comparison to a fully general,
simulation-based approach. An emulator-based approach for the nonlinear clustering of
galaxies in redshift space using the FastPM simulation method (Feng et al. 2016) is under
active development.

An alternative approach for maximizing the constraining power of RSD analyses relies on
limiting the effects of satellites on the modeling. These so-called halo reconstruction methods
attempt to modify the measurement procedure to preferentially exclude satellites galaxies,
thus measuring the clustering of the underlying halo density field, rather than the galaxy
density field (Tegmark et al. 2006; Reid & Spergel 2009; Okumura et al. 2017). However,
these methods often struggle to achieve a transformation accurate enough such that the
added modeling complications from the transformation itself do not outweigh the benefits
gained by removing satellites. The advantages include limiting the effects of nonlinearities,
which simplifies the modeling and could allow use of models closer to purely linear theory.
Reducing FoG effects raises the overall amplitude of the quadrupole and boosts the signal-
to-noise of the measurement, although removing satellite galaxies does lower the overall bias,
which reduces the constraining power of a given measurement.

As an illustration, we present our RSD constraints when fitting our 13 parameter model to
the clustering of centrals and type A centrals (isolated centrals that have no satellites) from
the RunPB simulations. We show the best-fit multipoles for these cases in comparison to
the spectra of the full galaxy sample in Figure 4.14. As expected, the small-scale quadrupole
shows a significant reduction in the effects of RSD, and we find a reduction in the linear bias
due to the removal of the highly biased satellites. Corresponding parameter constraints for
fσ8, α⊥, and α‖ are presented in Table 4.9. We find the largest decreases in uncertainty when
considering centrals only – the error on fσ8 decreases by 31%, 19%, and 15% when fitting to
kmax = 0.2, 0.3, and 0.4 hMpc−1, respectively. Similarly, we find decreases of 16%, 7%, and
25% for α‖ and 19%, 10%, and 0% for α⊥. While we find diminishing benefits to extending
the fitting range from kmax = 0.2 hMpc−1 to kmax = 0.4 hMpc−1, the constraints using
only centrals are in all cases better than when using all galaxies. Furthermore, fitting the
clustering of only centrals to kmax = 0.2 hMpc−1 is roughly as competitive in constraining fσ8
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as fitting the clustering of all galaxies to kmax = 0.4 hMpc−1, and the latter is significantly
more challenging to model than the former. While we recognize that this is certainly an
idealized demonstration, we view halo reconstruction methods as an important area of future
research for both their constraining power and simplified theoretical modeling.

Another avenue forward suggested in the literature relies on the use of nonlinear trans-
formations of the density field, which can extend the range of scales that can be easily
modeled, e.g., Neyrinck (2011); Wolk et al. (2015); Repp & Szapudi (2017). These methods
have mostly been applied to dark matter to date, and since we observe galaxies, challenges
exist in applying these methods to observational data sets. In addition, any nonlinear trans-
form of the density field creates a velocity bias, even on large, linear scales, (e.g., Seljak
2012), which makes the linear RSD interpretation more difficult, further complicating the
modeling procedure.

Recent RSD analyses of measurements of the void-galaxy cross-correlation (Hamaus et al.
2016, 2017; Hawken et al. 2017; Cai et al. 2016; Achitouv et al. 2017) similarly aim to simplify
theoretical modeling by arguing that RSDs around voids can be described by linear theory.
Initial studies have produced encouraging results, with constraints on the growth of structure
competitive with those from state-of-the-art galaxy clustering studies. This approach to RSD
includes its own set of modeling assumptions and challenges, including sensitivities to void
profiles and sizes, and complicated velocity flows around and within voids. These methods
are relatively new, and the understanding of these theoretical systematics have not yet been
fully explored. Nevertheless, the method appears promising for measuring RSD in a manner
complementary to galaxy clustering analyses.

4.7 Conclusion
We present a new model for the redshift-space power spectrum of galaxies and demon-

strate its accuracy in modeling the monopole, quadrupole, and hexadecapole of the galaxy
density field down to k = 0.4 hMpc−1 through a series of tests on high-fidelity N -body
simulations. The model describes the clustering of galaxies in the context of a halo model,
building upon the formalism presented in Okumura et al. (2015). We decompose galaxies
into four subsamples: centrals with and without satellites and satellites with one or more
neighboring satellite. We then model the clustering of the underlying halos in redshift space
using a combination of Eulerian perturbation theory and N -body simulations. The mod-
eling of RSD via the mapping from real space to redshift space is done using the so-called
distribution function approach. In order to achieve sufficient accuracy in the modeling down
to k = 0.4 hMpc−1, we utilize a set of simulations to calibrate the most important terms
of the model. To this end, we extend the Halo-Zel’dovich Perturbation Theory of Seljak
& Vlah (2015), which combines Lagrangian perturbation theory with physically motivated
corrections calibrated from simulations. We improve the accuracy of this model for the dark
matter density power spectrum and develop models for the dark matter velocity correlators
P01 and P11. Our final model has 13 free parameters, each of which is physically moti-
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Figure 4.14 : The best-fitting model and measured simulation points for the monopole (darkest
shade), quadrupole, and hexadecapole (lightest shade) from the mean of 10 RunPB galaxy catalogs
at z = 0.55 for all galaxies P gg` (blue), all centrals P cc` (green), and isolated centrals with no satellites
in the same halo P cAcA` (orange). Linear biases for each sample are b1,g = 2.05, b1,c = 1.93, and
b1,cA = 1.84.
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kmax all galaxies centrals only type A centrals only

kmax = 0.2 hMpc−1

∆α‖ 0.0090 +0.0095
−0.0086 0.0096 +0.0076

−0.0076 0.0101 +0.0081
−0.0081

∆α⊥ 0.0029 +0.0054
−0.0063 0.0023 +0.0048

−0.0046 0.0023 +0.0047
−0.0047

∆fσ8 −0.0174 +0.0149
−0.0154 −0.0042 +0.0108

−0.0100 −0.0089 +0.0116
−0.0108

kmax = 0.3 hMpc−1

∆α‖ 0.0065 +0.0078
−0.0074 0.0049 +0.0072

−0.0070 0.0038 +0.0069
−0.0067

∆α⊥ 0.0042 +0.0049
−0.0046 0.0044 +0.0043

−0.0043 0.0046 +0.0045
−0.0046

∆fσ8 −0.0048 +0.0122
−0.0128 0.0066 +0.0100

−0.0104 0.0031 +0.0093
−0.0093

kmax = 0.4 hMpc−1

∆α‖ 0.0089 +0.0068
−0.0077 0.0030 +0.0055

−0.0054 0.0012 +0.0061
−0.0068

∆α⊥ 0.0050 +0.0042
−0.0040 0.0029 +0.0044

−0.0039 0.0012 +0.0044
−0.0041

∆fσ8 −0.0031 +0.0097
−0.0091 0.0031 +0.0085

−0.0076 0.0059 +0.0083
−0.0081

Table 4.9 : The best-fit fσ8, α⊥, and α‖ values and 1σ uncertainties obtained when fitting the
monopole, quadrupole, and hexadecapole from the mean of 10 RunPB galaxy catalogs at z = 0.55

when including all galaxies, centrals only, and type A centrals only, which are isolated with no
satellites in the same halo.

vated, as described in Table 4.3. The model accounts for the FoG effect from each of our
galaxy subsamples, rather than using a single velocity dispersion to describe the combined
effect. We account for the linear bias of each of the subsamples and describe the shot noise
contributions to the power spectrum via the amplitude of the 1-halo galaxy correlations.

We fit our 13 parameter model to the monopole, quadrupole, and hexadecapole measured
from several sets of simulations to test the accuracy and precision of the recovered parameters.
These mock catalogs cover a range of cosmologies and galaxy bias models, providing stringent
tests of our model. The test suite also includes realistic mock catalogs of the BOSS DR12
CMASS sample, which properly model the volume and selection effects of this data set. We
perform fits as a function of the maximum wavenumber included in the fit, using kmax =
0.2, 0.3, and 0.4 hMpc−1. The results of these tests can be summarized as follows:

(i) Given the measurement covariance and degrees of freedom in the model, we find excel-
lent agreement between our model and the measured ` = 0, 2, and 4 multipoles from
simulations down to scales of k = 0.4 hMpc−1.

(ii) A systematic shift in the best-fitting value of α‖ is identified at the level of 0.01 −
0.02, independent of the kmax value used when fitting. Such a systematic shift can be
calibrated from a large set of simulations and a correction applied to the best-fitting
value.

(iii) The level of systematic bias in the parameters fσ8 and α⊥ is found to be small, at
the level of ∼0.005, which is similar to other published RSD models in the literature,
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i.e., Alam et al. (2017). However, considering that the Planck results essentially fix
the background cosmology model, comparisons between this level of systematics and
the error on fσ8 for fixed AP parameters indicate that RSD analyses are nearly sys-
tematics dominated today. This will certainly be the case for the next generation of
galaxy surveys, unless analyses are limited to the largest scales or substantial modeling
improvements are made.

(iv) Using a set of BOSS DR12 CMASS mock catalogs as a benchmark for comparison, we
estimate an uncertainty on fσ8 that is ∼10-20% larger than when using the models of
Beutler et al. (2017b); Grieb et al. (2017), when fitting over similar wavenumber ranges.
With 5-6 fewer parameters, these models likely have a too-limited parametrization and
are underestimating the resulting uncertainty of fσ8.

(v) Extending the fitting range to kmax = 0.4 hMpc−1 provides 15-30% gains in the sta-
tistical precision of the fσ8 constraint relative to kmax = 0.2 hMpc−1. The gains are
more modest when our model is compared to published models, which use a more lim-
ited parametrization; the error on fσ8 is roughly 5-10% smaller with our model using
kmax = 0.4 hMpc−1 than constraints found when using the models of Beutler et al.
(2017b); Grieb et al. (2017) (with kmax ' 0.2 hMpc−1) for the BOSS DR12 CMASS
sample.

(vi) We find a ∼10-15% improvement in the constraint on α⊥ and only marginal gains for
α‖ when extending from kmax = 0.2 hMpc−1 to kmax = 0.4 hMpc−1. The constraint
on α⊥ represents a 20% improvement relative to the results found when the published
models of Beutler et al. (2017b); Grieb et al. (2017). This improvement will further
help constrain and de-correlate the parameters DA(z) and H(z) when combined with
post-reconstruction BAO-only analyses.

Extending full-shape RSD modeling of galaxy clustering to smaller scales in both an
accurate and precise manner remains a complicated endeavor. As we push into the nonlinear
regime, there is no way to avoid the additional modeling complexity. As the number of
free parameters necessarily becomes larger, simulations offer a good opportunity to place
reasonable priors on model parameters. The question remains whether continuing to push to
even smaller scales yields diminishing returns given the increased theoretical complexities.
The results of this work suggest that further gains could be unlikely. We find relatively
modest benefits when extending from kmax = 0.2 hMpc−1 to kmax = 0.4 hMpc−1, of order
30%, while the parameter errors increase by 10-20% when going from ∼7 parameters to 13
when using kmax < 0.2 hMpc−1. Moreover, the parametrization of our model may not be
sufficient to fully capture effects such as assembly bias, velocity bias, or other unknowns
regarding the small-scale galaxy - halo connection that may become more important for
future surveys. These findings suggest we may have exhausted the information content that
can be reasonably extracted from RSD in the broadband power spectrum already. However,
claims exist in the literature (e.g., Reid et al. 2014) that additional gains can be attained,
and it is worth exploring the issue further.
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There are several intriguing modeling approaches that can go beyond our analytic model-
ing approach and potentially improve the constraints further. Simulation-based approaches
can leverage advances in high-performance computing to accurately model nonlinear cluster-
ing on small scales. Complementary approaches such as halo reconstruction or void-galaxy
cross-correlation statistics can simplify modeling and reduce the need to include small-scale
information by mitigating the complicated effects of nonlinear effects on the modeling proce-
dure. It remains to be seen if these further advances will improve cosmological constraints,
or whether with our model we have reached the limit due to the effects of nonlinear evolution
and poorly known small-scale physics.

Applying models such as the one presented here will be necessary at the minimum to
fully capitalize on the cosmological information contained in future galaxy surveys, such as
the Hobby Eberly Telescope Dark Energy Experiment (Hill et al. 2008), the Dark Energy
Spectroscopic Instrument (DESI) (Levi et al. 2013), the Subaru Prime Focus Spectrograph
(Takada et al. 2014), and the ESA space mission Euclid (Laureijs et al. 2011). For example,
we expect our model to perform well on the DESI emission line galaxy sample, which has a
lower bias and higher satellite fraction as compared to the BOSS CMASS sample. Conversely,
the gains when applying our model to next generation quasar samples would likely be more
modest due to the high shot noise and the lower impact of one-halo correlations.
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Chapter 5

Constraints on primordial
non-Gaussianity from the clustering of
eBOSS quasars

This chapter presents constraints on local primordial non-Gaussianity as parameterized
by fNL using the quasar sample from Data Release 14 (DR14) of the extended Baryon
Oscillation Spectroscopic Survey (eBOSS). The DR14 data set contains 148,659 quasars
covering more than 2000 square degrees of the sky. We measure and analyze the anisotropic
clustering of the quasars in Fourier space, testing for the scale-dependent bias introduced
by primordial non-Gaussianity on large scales. We derive a power spectrum estimator using
optimal weights to account for the redshift evolution of fNL. As a baseline measurement, we
analyze the eBOSS data set over the redshift range 0.8 ≤ z ≤ 2.2 using a single redshift bin
with an effective redshift of zeff = 1.53. We have verified and tested this analysis pipeline
using a set of realistic mock catalogs that accurately model the angular selection function
and redshift evolution of the DR14 sample. From this analysis, we find fNL = 14+52

−73 and
fNL = 14+55

−48 when fitting the measured monopole and quadrupole from the NGC and SGC
data sets, respectively. A joint fit to the entirety of the DR14 sample leads to a constraint
of fNL = −9+43

−46. We expect the optimal, redshift-weighted estimator derived in this work to
improve upon this baseline constraint and plan to analyze the DR14 data using such weights
in the near future.

5.1 Introduction
Measurements of the statistical properties of the late-time large-scale structure (LSS)

of the Universe can provide insight into the physics that generated primordial density fluc-
tuations. In particular, they offer the possibility to distinguish between different models
of cosmic inflation using the fact these these models predict different levels of primordial
non-Gaussianity (PNG), the deviation from Gaussian random field initial conditions. In
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this work, we focus on the local type of PNG, parameterized through the parameter fNL.
Standard, single-field inflationary models predict an amplitude of fNL that is unmeasurably
small, and a detection of |fNL| & 1 would robustly rule out this class of models (Maldacena
2003; Creminelli & Zaldarriaga 2004).

The current state-of-the-art constraint on PNG comes not from LSS data but from mea-
surements of the bispectrum of the cosmic microwave background (CMB) by the Planck
satellite, which has reported fNL = 0.8 ± 5.0 (Planck Collaboration et al. 2016b). Unfor-
tunately, the improvement in precision from CMB measurements is not expected to reach
the level required to distinguish between inflationary models (σ(fNL) ∼ 1) due to cosmic
variance limitations (Baumann et al. 2009; Abazajian et al. 2016). However, forecasts for
future LSS surveys, e.g., Doré et al. (2014); Yamauchi et al. (2014); Ferramacho et al. (2014);
Ferraro & Smith (2015); Raccanelli et al. (2015); Camera et al. (2015); Alonso & Ferreira
(2015); Tucci et al. (2016); de Putter & Doré (2017), indicate a strong potential for PNG
constraints. Further gains can be made by surveys that observe multiple tracers, which are
able to effectively remove noise from sample variance in their measurements (McDonald &
Seljak 2009; Seljak 2009; Hamaus et al. 2011). The sensitivity to PNG originates from the
distinctive scale-dependent signature that is imprinted on the clustering of biased tracers
(e.g., galaxies or quasars) by local primordial non-Gaussianity (Dalal et al. 2008; Matarrese
& Verde 2008; Slosar et al. 2008; Desjacques & Seljak 2010; Alvarez et al. 2014). The effect
is proportional to the bias of the tracers themselves and scales as fNLk

−2; thus, it is most
prominent on the largest scales probed by a survey.

The current best constraints from the analysis of large-scale structure data are comparable
to those found by the WMAP CMB experiment, σ(fNL) ' 20 (Slosar et al. 2008; Ross et al.
2013; Giannantonio et al. 2014; Leistedt et al. 2014; Ho et al. 2015; Karagiannis et al. 2014;
Bennett et al. 2013). The first such analysis by Slosar et al. (2008) combined a number of
tracers from early SDSS releases to find fNL = 28+23

−24. This analysis also demonstrated the
constraining power of quasar data sets, finding fNL = 8+26

−37 using only the SDSS photometric
quasar sample. As quasars are highly biased and probe large volumes, they are ideal for
measuring the PNG signal on large scales. More recent PNG studies have not achieved
significant improvement on the constraint of Slosar et al. (2008), with contamination from
systematics often hindering results (Pullen & Hirata 2013; Leistedt et al. 2013; Leistedt
& Peiris 2014; Ho et al. 2015). Systematics control has spurred work on the use of cross-
correlations in LSS PNG analyses, e.g., Giannantonio & Percival (2014); Schmittfull & Seljak
(2017).

Data sets that probe large volumes offer the best chance to detect non-Gaussian biasing
features on large scales, but they also complicate data analysis. For samples that span a wide
redshift range, traditional analysis methods, such as using multiple, smaller redshift bins,
become non-optimal. A proper treatment of the redshift evolution of the tracer bias and
PNG signal is necessary to fully exploit the constraining power of a data set. Recent work
has focused on using redshift weights to optimize LSS surveys for baryon acoustic oscillation
(BAO) and redshift-space distortion (RSD) analyses (Zhu et al. 2015, 2016; Ruggeri et al.
2017). This weighting scheme was extended in Mueller et al. (2017) in order to optimize for
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PNG constraints. In this work, we derive a redshift-weighted optimal quadratic estimator for
the two-point clustering in Fourier space that yields optimal constraints for fNL. The weights
are similar to those derived by Mueller et al. (2017), but here, the clustering is estimated via
a cross-correlation of two optimally weighted density fields. This differs from the method
presented in Mueller et al. (2017), which advocates computing the auto-correlation of a single
density field with tracer objects weighted by the square root of the total desired weight.

In this work, we use the Sloan Digital Sky Survey (SDSS) IV extended Baryon Oscillation
Spectroscopic Survey (eBOSS; Dawson et al. 2016) Data Release 14 quasar sample (DR14Q)
to derive constraints on local primordial non-Gaussianity. This data set includes 148,659
quasars and spans a redshift range of 0.8 ≤ z ≤ 2.2. This work represents an initial study of
the DR14Q data set for constraining primordial non-Gaussianity and makes use of a novel
technique for optimizing such measurements for data sets spanning wide redshift ranges. We
expect many complementary analyses and approaches using this data set to improve upon
the analysis methods presented here.

This chapter is organized as follows. In §5.2 we describe the eBOSS quasar sample de-
scribed in this work. We present our new optimal estimator, which accounts for redshift
evolution of fNL, in §5.3. §5.4 outlines our analysis methods, including how we estimate the
power spectrum multipoles of the data and the theoretical model used to estimate parame-
ters. We present our constraints on fNL in §5.5 and discuss and conclude in §5.6.

5.2 Data
In this section, we describe the eBOSS DR14Q sample and the synthetic mock catalogs

used in our analysis.

5.2.1 eBOSS DR14Q sample

The extended Baryon Oscillation Spectroscopic Survey (Dawson et al. 2016) is part of
the SDSS-IV experiment (Blanton et al. 2017). The eBOSS cosmology program relies on the
same optical spectrographs (Smee et al. 2013) as the SDSS-III BOSS survey, installed on the
2.5 meter Sloan Foundation Telescope (Gunn et al. 2006) at the Apache Point Observatory
in New Mexico. In addition to observing luminous red galaxies and emission line galaxies,
eBOSS will observe and measure redshifts for ∼500,000 quasars across a volume of the
Universe unexamined by previous spectroscopic surveys. First eBOSS cosmology results for
the DR14Q sample were recently presented in Ata et al. (2018), which reported the first
BAO distance measurement in the range 1 < z < 2. The clustering properties of the eBOSS
quasars have also been previously examined in Laurent et al. (2017); Rodríguez-Torres et al.
(2017), although these works do not make use of the full DR14Q sample.

The imaging data, target selection, and catalog construction methods for the DR14Q
sample used in this work are discussed in detail in Pâris et al. (2017). Targets are selected
from the catalogs of the SDSS I/II surveys (York et al. 2000), released as part of SDSS DR7
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Figure 5.1 : The mean density of quasars in the DR14Q sample as a function of redshift for the
NGC (blue) and SGC (green) regions of the sky. The differences between the two regions are due
to known discrepancies with the targeting efficiency.

Abazajian et al. (2009), and the SDSS-III survey (Eisenstein et al. 2011), released as part of
SDSS DR8 (Aihara et al. 2011). eBOSS also makes use of several bands of the Wide Field
Infrared Survey Explorer (WISE; Wright et al. 2010), as described in Myers et al. (2015).
The target selection criteria for the DR14Q sample is presented in detail in Myers et al.
(2007). Objects that satisfy this criteria and do not have a previously measured redshift are
assigned a fiber as part of the eBOSS observations. Accurate redshift estimation is crucial
for achieving the cosmology goals of eBOSS, which is particularly challenging for quasar
spectra (Shen et al. 2016). As described in Pâris et al. (2017), the DR14Q sample contains
three automated redshift estimates per object. In this work, we use the so-called “fiducial”
redshift zfid, which can be any of the three redshift estimates, depending on which one yields
the lowest catastrophic failure rate (see Pâris et al. (2017) for further details).

The DR14Q sample contains 148,659 objects with spectroscopic redshifts in the range
0.8 ≤ z ≤ 2.2. The observed objects are distributed in two separate angular regions in the
North Galactic Cap (NGC) and South Galactic Cap (SGC). The effective areas of these
regions are 1214.6 deg2 and 899.3 deg2, respectively. We show the observed number density
as a function of redshift for the NGC and SGC regions in Figure 5.1. There are slight
discrepancies in n(z) between the two regions due to differences in targeting efficiency.

5.2.2 Completeness weights

Objects in the DR14Q sample are assigned weights to account for the incompleteness
of the target selection process and other systematic effects that could potentially bias our
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clustering measurements. There are two main types of weights that we will discuss in this
section: spectroscopic completion weights wspec and systematic imaging-based weights wsys.
The former accounts for the fact that a small percentage of targets do not receive a redshift
while the latter set of weights corrects for systematics arising from photometric inhomo-
geneities in the targeting selection. When combining these two sets of weights, we take the
total completeness weight as

wc = wsys · wspec. (5.1)

Spectroscopic weights

The first main cause of spectroscopic incompleteness in the DR14Q sample is fiber colli-
sions. Fiber collisions result when a pair of quasars are separated by less than the 62′′angular
size of the SDSS spectrograph fiber, which prevents one of the objects from being observed.
Missed observations are partially alleviated by the eBOSS tiling pattern, which naturally has
overlapping tiles in regions with a higher density of targets on the sky, and thus, allows red-
shifts to be measured for objects separated by less than the 62′′collision scale. Ultimately,
4% and 3% of the eBOSS quasar targets are fiber-collided objects that do not receive a
spectroscopic observation in the NGC and SGC regions, respectively.

We account for the missing objects due to fiber collisions by up-weighting the nearest
neighbor with a valid redshift and spectroscopic class. This procedure follows previous
clustering analyses, e.g., as in BOSS (Anderson et al. 2014a; Reid et al. 2014). In practice,
this is not a perfect correction, as a fraction of fiber collision pairs are projections and are
not associated with the same dark matter halo. However, the nearest neighbor weighting
scheme does preserve the large-scale bias of the clustering sample. As we are concerned only
with the PNG signal on large scales, we leave exploration of more advanced fiber collision
correction schemes, e.g., Hahn et al. (2017), for future work. We denote the weight used to
correct for fiber collisions as a close pair weight, wcp. By default, its value is unity for all
objects that are not involved in a fiber collision, and for the case of fiber collisions, it is equal
to an integer with value greater than unity.

The second main cause of spectroscopic incompleteness is redshift failures, which refers
to the subset of quasars that do not receive a valid automated redshift and are not visually
inspected. The distribution of these objects is not uniform within the focal plane due to
variations in detector efficiency. In past BOSS releases (Reid et al. 2016), redshift failures
were an almost negligible fraction of the total number of objects, less than 1%. However,
redshift determination for a quasar at z ∼ 1.5 is more difficult than for an LRG at z ∼ 0.5,
and the DR14Q sample has a redshift failure rate of 3.4% and 3.6% in the NGC and SGC,
respectively. With this increased rate, a more complex scheme than was used in previous
BOSS analyses is required to adequately correct for the effect. This more complicated
correction procedure was not used in the first eBOSS BAO analysis of Ata et al. (2018), but
was implemented for the RSD analyses (Gil-Marín et al. in prep.). Here, we use a focal plane
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weight wfoc defined as

wfoc = [1− Prf(xfoc, yfoc)]
−1 , (5.2)

where Prf defines the probability of obtaining a redshift failure as a function of position in
the focal plane. With this weight, quasars with measured redshifts that are observed in
positions on the focal plane where Prf is greater than zero will be up-weighted to account
for the fact that, on average, targeted quasars are missing from the sample due to redshift
failures. We refer the reader to Gil-Marín et al. (in prep.) for further details on the redshift
failure weights. Finally, we assign the total spectroscopic completeness weight as the product
of the fiber collision and redshift failure weights, wspec = wcp · wfoc.

Imaging weights

Each quasar in the DR14Q sample is also assigned a weight to mitigate photometric
systematics, using the prescription studied in Laurent et al. (2017). The weights, denoted
here as wsys, account for inhomogeneities in the quasar targeting selection related to the
Galactic extinction and depth of the targeting image data. The weights used in this work
have been utilized in previous eBOSS cosmology analyses (Ata et al. 2018; Gil-Marín et al.
in prep.). They are described in detail in Section 3.4 of Ata et al. (2018), and we refer the
reader to that work for further details.

5.2.3 Synthetic DR14Q catalogs

We make use of a set of mock catalogs designed to mimic the observational features of
the DR14Q data set. The mocks are based on the Extended Zel’dovich (EZ) approximate
N -body simulation scheme (Chuang et al. 2015). Throughout this work, we refer to this
set of simulations as EZ mocks. In total, we utilize 1,000 independent realizations for each
Galactic cap region. This large set of mocks enables us to estimate the covariance matrix of
our clustering estimator. We also use the mocks to verify and test our analysis and parameter
estimation pipelines.

The set of EZ mocks is generated following the methodology outlined in Chuang et al.
(2015), matching both the angular footprint and redshift selection function of the DR14Q
sample. Briefly, the EZ mock scheme relies on the Zel’dovich approximation to generate
a density field, and implements nonlinear and halo biasing effects through the use of free
parameters. These free parameters can be tuned to reproduce the two-point and three-point
clustering of a desired data set. The method allows for the fast generation of a large number
of mock catalogs without the computational cost of full N -body simulations, and it has been
used extensively in previous BOSS cosmology analyses, e.g., Kitaura et al. (2016); Alam
et al. (2017).

The EZ mock catalogs account for the redshift evolution of the eBOSS quasars by con-
structing a light-cone out of 7 redshift shells, generated from periodic boxes of side length
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Figure 5.2 : The measured power spectrum multipoles for the DR14Q sample, as compared to
those measured from the mean of the 1,000 EZ mock catalogs. We show the comparison separately
for the NGC (top) and SGC (bottom) data sets. Errors on the data measurements are computed
from the variance of the 1,000 EZ mock measurements. We do not show error bars on the mean of
the EZ mock multipoles (grey), as they are small compared to that of the data.

L = 5000 h−1Mpc at different redshifts. The free parameters of each box are calibrated in-
dependently, and the boxes are combined using the make_survey software (Carlson & White
2010). The background density field of the light cone mocks is continuous, as each of the
boxes shares the same initial Gaussian density field. The NGC and SGC data sets are treated
independently when deriving the best-fit internal EZ mock parameters. The cosmology of
the EZ mocks is a flat, ΛCDM model with Ωm = 0.307115, Ωb = 0.048206, h = 0.6777,
σ8 = 0.8255, and ns = 0.9611. The mock catalogs also include the effects of fiber collisions
and redshift failures (as discussed in Section 5.2.2). Each object in an EZ mock catalog has
associated values for wfoc and wcp. Fiber collisions are implemented by applying the tiling
pattern to the mock data and removing pairs that fall within the collision scale that are
not in overlapping tiles. Redshift failures are applied by statistically removing objects based
on the position of the object in the focal plane, using the probability of a redshift failure
Prf(xfoc, yfoc). We compare the power spectrum multipoles of the EZ mock catalogs and the
DR14Q data set in Figure 5.2.
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5.3 Theory

5.3.1 Local primordial non-Gaussianity

In this chapter, we focus on the local type of primordial non-Gaussianity, where the
primordial potential is the sum of a random Gaussian field and its square,

Φ = φ+ fNL

(
φ2 −

〈
φ2
〉)
, (5.3)

where Φ is the primordial potential, φ is a Gaussian random field, and fNL parametrizes the
level of PNG present. The relation between Φ and the matter overdensity δm is easiest to
express in Fourier space, where it is given by δm(k) = α(k)Φ(k), with

α(k) =
2c2k2T (k)D(z)

3Ωm,0H2
0

(5.4)

where T (k) is the transfer function, c is the speed of light, D(z) is the linear growth factor
normalized to (1 + z)−1 in the matter-dominated era, Ωm,0 is the present-day matter density
parameter, and H0 is the present-day Hubble parameter. We also define a related quantity
α̃, which will be useful in the discussion to follow:

α̃(k) ≡ 2δc

α(k)
=

3Ωm,0H
2
0δc

c2k2T (k)D(z)
, (5.5)

where δc = 1.686 is the critical density in the spherical collapse model.
As shown in Dalal et al. (2008); Slosar et al. (2008); Desjacques & Seljak (2010), local

PNG as parameterized by fNL introduces a scale-dependent halo bias, ∆b(k), given by

∆b(k) = 2(b− p)fNL
δc

α(k)
= (b− p)fNLα̃(k), (5.6)

where b is the bias of the sample, and p is a parameter that takes a value of 1 for a halo-
mass-selected sample and 1.6 for a sample dominated by recent mergers (Slosar et al. 2008).
It is argued in Slosar et al. (2008) that p = 1.6 is the more appropriate choice when studying
quasars but we will keep our description in terms of a general p for now. At the linear
order, and after adding redshift-space distortions (e.g., Kaiser 1987), the quasar overdensity
is related to the matter overdensity in the presence of PNG as

δQSO = (b+ fµ2 + ∆b) δm ≡ (̃b+ ∆b) δm (5.7)

where f = d lnD/d ln a is the logarithmic growth rate, and we have defined the convenient
quantity b̃ ≡ b+ fµ2, which accounts for both linear biasing and redshift-space distortions.
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5.3.2 Optimal estimators in LSS

Our goal is to derive an estimator for the two-point clustering of a data set that yields
the tightest constraint on fNL. We begin by describing the data, quasar positions, in terms
of the pixelized overdensity δQSO(ri), where ri gives the pixel position. We will also need
the mean density at a given pixel position, denoted as n̄(ri). An optimal analysis invariably
requires inverse noise weighting of the data. For example, if n̄(ri) = 0 then no data has been
observed at that pixel and it should not be used for data analysis, suggesting that the noise
should be infinite. An additional source of uncertainty is sample variance, which is caused
by the finite number of measurable modes and is present even in the absence of noise.

When considering Gaussian statistics, the optimal inverse noise weighting of a data set
has a well-defined solution, known as the optimal quadratic estimator (Tegmark 1997a; Bond
et al. 2000), which weights the data inversely by the covariance matrix. If we collect our
overdensity pixels into a vector x, with xi = δQSO(ri), then its signal covariance matrix is
Sij, and the total covariance matrix is

Cij = 〈xixj〉 = [V n̄(ri)]
−1δKij + Sij, (5.8)

where δKij is the Kronecker delta, V is the pixel volume, and we have assumed Poisson
statistics for the noise term.

The optimal quadratic estimator for a parameter α is (Tegmark 1997b; Tegmark et al.
1997, 1998; Abramo et al. 2016)

q̂α =
1

2
xtC−1C,αC

−1x−∆qα, (5.9)

where C,α denotes the derivative of C with respect to α, and ∆qα subtracts the bias of the
estimator.

The most difficult task is to compute C−1x. We shall simplify the calculation and use
a diagonal form for the covariance matrix C. Suppose we want to determine the power
spectrum at some k, where we expect the power to be approximated by a fiducial power
spectrum Pfid. If we assume that the power spectrum is locally flat (white noise) then its
Fourier transfer would be a zero-lag correlation function determined by the amplitude of the
power spectrum. This gives rise to a diagonal covariance matrix in configuration space:

Cij = (Pfid + n̄−1)V −1δKij , (5.10)

The fiducial power spectrum should in principle be varied with k, but this is usually not
implemented. Here, we are concerned with the power on the largest scales, and the fiducial
value will be of order Pfid ∼ 3× 104 h−3Mpc3.

We also need to evaluate the derivative C,α, where α is the parameter we wish to deter-
mine. Suppose we focus first on a single mode k with a volume dk = (2π)3/V . The Fourier
transform of the power spectrum is the correlation function, which for this single mode gives
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Cij = V −1P (k) exp[ik · (ri − rj)]. Its derivative with respect to P (k) gives

dCij
dP (k)

= V −1eik·(ri−rj), (5.11)

and the estimator of equation 5.9 for the power spectrum becomes

P̂ (k) = A

∣∣∣∣∣∑
i

eik·riwFKP

∣∣∣∣∣
2

, (5.12)

where we have replaced the sum over pixels with a sum over discrete objects, such that
δQSOn̄V = NQSO, where NQSO is the number of objects in the pixel (if the pixels are small
enough, this can be viewed just as a sum over object positions ri). The weights wFKP take
the well-known form as first derived in Feldman et al. (1994), wFKP = (1 + n̄Pfid)−1. We see
that the operation in equation 5.12 is a Fourier transform, which can be computed rapidly
using a fast Fourier transform (FFT) operation. The normalization A can be determined
from performing the same operation on an unclustered catalog of synthetic objects, including
FKP weights, and normalized to the total number of observed objects (Feldman et al. 1994;
Yamamoto et al. 2006; Bianchi et al. 2015; Scoccimarro 2015; Hand et al. 2017b).

5.3.3 An optimal estimator for fNL

Next, we consider instead the weighting scheme that yields an optimal constraint on fNL.
We explicitly account for redshift evolution by considering overdensity pixels as a function
of time, r = r(t). We begin by computing the signal covariance in the presence of PNG
from equation 5.7,

S12 = 〈δQSO(r1(t1))δQSO(r2(t2))〉 (5.13)

=
〈[

(̃b1 + ∆b1)δm(r1)
] [

(̃b2 + ∆b2)δm(r2)
]〉
, (5.14)

where we have defined the quantities b̃1 = b̃(t1), r1 = r(t1), ∆b1 = ∆b(t1), and similar
quantities at t = t2. Evaluating the derivative of this expression at fNL = 0 yields

dS12

dfNL

∣∣∣∣∣
fNL=0

= b̃1(b2 − p)α̃2 〈δm(r1)δm(r2)〉+ 1↔ 2, (5.15)

where the second term is symmetric and can be computed via an exchange of indices. We
can use the definition of the the power spectrum to express this equation as

dS12

dfNL

∣∣∣∣∣
fNL=0

= (b1 − p)b2

∫
dk

2π3
α̃1(k)(1 + β2µ

2
r2

)Pm(k, t1, t2)eik·(r1−r2) + 1↔ 2, (5.16)
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where Pm(k) the matter power spectrum, β = f/b is the standard RSD parameter, and µr2
is the line-of-sight angle associated with position r2.

It is useful to parametrize some of the time dependencies in equation 5.16, using

Pm(k, t1, t2) = Pm,0(k)D(t1)D(t2), (5.17)

α̃(k, t) =
α̃0(k)

D(t)
, (5.18)

where we have defined Pm,0 ≡ Pm(k, t0) and α̃0 ≡ α̃(k, t0). With these definitions, we can
express the optimal estimator of equation 5.9 as a function of r1 and r2 as

q̂fNL
(r1, r2) =

1

2
C−1xt

dS12

dfNL

∣∣∣∣∣
fNL=0

C−1x−∆qfNL

=
1

2

δQSO(r1)

C

[∫
dk

2π3
eik·(r1−r2)Pm,0(k)α̃0(k)D(t2)(1 + β2µ

2
r2

)(b1 − p)b2

+ 1↔ 2

]
δQSO(r2)

C
−∆qfNL

. (5.19)

And now, summing over r1 and r2, we obtain the estimator

q̂fNL
=

1

2

∫
dk

2π3
Pm,0(k)α̃0(k){[∫

dr1 e
ik·r1

δQSO(r1)

C
(b1 − p)

] [∫
dr2 e

−ik·r2
δQSO(r2)

C
b2D(t2)(1 + β2µ

2
r2

))

]

+ 1↔ 2

}
−∆qfNL

. (5.20)

Note that in these equations the inverse noise weight factors of C−1 are identical to those
discussed in Section 5.3.2, with the FKP weight being the near-optimal scheme. Thus,
equation 5.20 suggests a power spectrum estimator of the following form to be near optimal:

q̂fNL
=
∑
k

[
δ̃bQSO(k)δ̃b−pQSO(−k)

]
Pm,0(k)α̃0(k)−∆qfNL

, (5.21)

where we have introduced two weighted fields, δb−pQSO = (b(z)−p)δQSO and δbQSO = D(z)b(z)δQSO,
and their FKP-weighted Fourier transforms as
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δ̃b−p(k) =
∑
i

[bi(zi)− p] eik·riwFKP(zi), (5.22)

δ̃b(k) =
∑
i

D(zi)b(zi)e
ik·riwFKP(zi), (5.23)

where we have explicitly included the redshift dependency of the density field weights, and
we sum over discrete objects labeled by index i. Note that in equation 5.23 we have taken a
real-space limit, ignoring a factor of (1+βµ2), which represents a sub-dominant contribution
to the overall weighting scheme.

The last term in equation 5.21 provides signal weighting of the power spectrum, which
increases towards low k due to the k−2 inside α̃(k); it also contains the standard P (k) weight
term appropriate if we want to determine the overall amplitude of the power spectrum.
Equation 5.21 also shows that an optimal analysis should weight one density field with bias
D(z)b(z), the second field with b(z) − p, and compute the cross-correlation. Finally, the
estimator of equation 5.21 needs to be made unbiased by subtracting out the signal in the
absence of any fNL via the ∆qfNL

term.
In summary, an optimal analysis for constraining fNL should apply a total weight to

each quasar object that includes the standard FKP minimum variance weight as well as the
redshift weight derived in this section. We shall define wXtot such that wXtot ∈ [wbtot, w

b−p
tot ], and

for a quasar with redshift zi, we have

wXtot(zi) = wXz (zi)wFKP(zi)

=

{
[b(zi)− p] wFKP(zi) when X = b− p
D(zi)b(zi) wFKP(zi) when X = b,

(5.24)

and p ∈ {1, 1.6}.

5.4 Analysis Methods

5.4.1 Fiducial cosmology

Throughout our analysis, we assume the flat ΛCDM cosmology from Planck Collaboration
et al. (2016a) as our fiducial background cosmology. The parameter set we use is h =
0.6774, Ωbh

2 = 0.0223, Ωch
2 = 0.1188, ns = 0.9667, and σ8 = 0.8159. We use this fiducial

cosmology to convert observed quasar coordinates (right ascension, declination, and redshift)
to Cartesian coordinates during the estimation of the power spectrum of the sample (see
§5.4.2). The fiducial cosmology also determines the shape of the real-space matter power
spectrum, which is used in our theoretical modeling (see §5.4.3).
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5.4.2 Power spectrum estimation

We begin by defining the weighted quasar density field (Feldman et al. 1994)

FX(r) =
wXtot(r)

A1/2

[
n′QSO(r)− α′sns(r)

]
, (5.25)

where n′QSO and ns are the number densities of the quasar sample and a synthetic catalog
of random objects, respectively. The total weight wXtot, with X ∈ {b, b − p}, is given in
equation 5.24 and is applied to both the quasar and synthetic samples. The synthetic catalog
contains unclustered objects—it is used to define the expected mean density of the survey,
accounting for the radial and angular selection functions. The factor α′s gives the ratio of
quasars to synthetic objects and properly normalizes the number density of the synthetic
catalog. The field FX(r) is normalized by the factor of A, defined as

A =

∫
dr
[
wtot(r)n′QSO(r)

]2
. (5.26)

In our notation, quantities marked with a prime (′) include the completeness weights, wc,
specified in Section 5.2.2. The synthetic catalog defines our expected number density, and
as such, does not require completeness weights. The synthetic sample has a number density
1/α′s times more dense than the true sample. We assume that, on average, the relation〈
n′QSO(r)

〉
= α′s 〈ns(r)〉 holds true. We define α′s as α′s = N ′QSO/Ns, where N ′QSO =

∑
QSOwc,

and Ns is the total number of objects in the synthetic catalog.
Now, the multipoles of the cross-correlation between the weighted density fields F b(r)

and F b−p(r) can be estimated following Yamamoto et al. (2006), as

P̂` =
2`+ 1

A

∫
dΩk

4π

[∫
dr1 F

b(r1)eik·r1

∫
dr2 F

b−p(r2)e−ik·r2L`(k̂ · r̂2)

]
− S`, (5.27)

where we have introduced the shot noise contribution S`, defined as

S` = A−1

∫
dr n′QSO(r)(wc(r) + α′s)w

2
tot(r)L`(k̂ · r̂), (5.28)

which is only non-negligible relative to P̂` for the monopole ` = 0. We assume S` = 0 for
` > 0.

We compute the normalization (equation 5.26) and shot noise (equation 5.28) as discrete
sums over the quasar and synthetic catalogs. To do so, we make use of the following relation:∫

dr n′QSO(r) . . . −→
NQSO∑
i

wc(ri) . . . −→ α′s

Ns∑
i

. . . , (5.29)

where the integral can be expressed equivalently as a sum over the quasar or synthetic
catalogs. Thus, the normalization A can be computed as
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A =

NQSO∑
i

n′QSO(ri)wc(ri)w
2
tot(ri) (5.30)

= α′s

Ns∑
i

n′QSO(ri)w
2
tot(ri). (5.31)

Note that while equations 5.30 and 5.31 are equivalent on average, in practice, we use the
latter equation to estimate A due to the higher number density of the synthetic catalog.
Similarly, we can express the shot noise contribution to the monopole (equation 5.28) as

S0 = A−1

NQSO∑
i

w2
c(ri)w

2
tot(ri) + α′2s

Ns∑
i

w2
tot(ri)

 , (5.32)

where the two terms compute the contributions to the shot noise from the quasar and
synthetic catalogs, respectively. There is some uncertainty surrounding the impact of fiber
collisions and completeness weights on the Poisson shot noise calculation of equation 5.32
(Beutler et al. 2014b, 2017b; Grieb et al. 2017). We choose to use the standard Poisson
expression and vary a shot noise parameter while performing parameter estimation to account
for any discrepancies (see Section 5.4.3).

Our implementation of equation 5.27 uses the FFT-based estimator of Hand et al.
(2017b), which is described in detail in Chapter 3. This estimator builds upon similar
estimators presented in Bianchi et al. (2015); Scoccimarro (2015), but reduces the number
of FFTs required per multipole using a spherical harmonic decomposition. We calculate the
power spectrum multipoles as

P̂`(k) =
2`+ 1

A

∫
dΩk

4π
F b

0 (k)F b−p
` (−k), (5.33)

with

FX
` (k) ≡

∫
dr FX(r)eik·rL`(k̂ · r̂),

=
4π

2`+ 1

∑̀
m=−`

Y`m(k̂)

∫
dr FX(r)Y ∗`m(r̂)eik·r, (5.34)

where Y`m are spherical harmonics. Note that equation 5.34 requires the calculation of 2`+1
FFTs for a multipole of order `.

To compute the FFTs required by our estimator, we estimate the overdensity field on a
mesh of 10243 cells for the quasar and synthetic catalogs using a Triangular Shaped Cloud
(TSC) interpolation scheme (see, e.g., Hockney & Eastwood 1981). When interpolating to
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the mesh, each quasar contributes a weight of wcw
X
tot and each synthetic object a weight of

wXtot. When computing FKP weights as part of wtot, we use a fiducial power spectrum value
of P0 = 3× 104 h−3Mpc3, roughly equal to the expected power on the scales where PNG is
prominent, k ' 0.03 hMpc−1. We use the interlaced grid technique of Sefusatti et al. (2016);
Hockney & Eastwood (1981) to limit the effects of aliasing, and we correct for any artifacts of
the TSC scheme by de-convolving the window in Fourier space. With the combination of TSC
interpolation and interlacing, we are able to measure the power spectrum multipoles up to
k = 0.4 hMpc−1 with fractional errors at the level of 10−3 (Sefusatti et al. 2016). To perform
these operations, as well as estimate the power spectrum multipoles via equation 5.33, we
utilize the massively parallel implementations available as part of the open-source Python
toolkit nbodykit (Hand et al. 2017a) (see Chapter 2).

5.4.3 Modeling

The power spectrum model

We use linear theory to predict the quasar power spectrum in redshift space (Kaiser 1987)

PQSO(k, µ) = G(k, µ;σv)
2
[
btot(k) + fµ2

]2
Pm(k) +Nshot, (5.35)

where Pm is the real-space matter power spectrum, Nshot is a free parameter accounting for
residual shot noise, and btot is the total quasar bias, including PNG, given by

btot(k) = bQSO + ∆b = bQSO + fNL(bQSO − p)α̃(k), (5.36)

where bQSO is the linear bias of the quasar sample, and α̃ is defined in equation 5.5. To ac-
count for damping of the power spectrum in redshift space, we include a Lorentzian damping
function,

G(k, µ;σv) = [1 + (kµσv)/2]−1 , (5.37)

with a single free parameter σv, which represents the typical damping velocity dispersion.
The physical motivation for the inclusion of G(k, µ) is the Finger-of-God effect in redshift
space due to the virial motions of a quasar within its host dark matter halo (Jackson 1972).
However, the damping term also accounts for errors in the spectroscopic redshift determina-
tion of the quasars (Dawson et al. 2016). The effect can be estimated for the DR14Q sample
as σz = 300 km s−1 for z < 1.5 and σz = [400(z − 1.5) + 300] km s−1 for z > 1.5.

The multipoles of the power spectrum are then computed as

PQSO,`(k) =
2`+ 1

2

∫ 1

−1

dµPQSO(k, µ)L`(µ), (5.38)

We evaluate the linear, real-space matter power spectrum Pm(k) and the transfer function
T (k) using the classylss software (Hand & Feng 2017), which provides Python bindings
of the CLASS CMB Boltzmann solver (Blas et al. 2011). We evaluate the linear power



5.4. ANALYSIS METHODS 133

10−1 100 101 102 103 104

s [h−1 Mpc]

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Q
`

Q0

Q2

Q4

Q6

Q8

Q10

10−2 10−1 100

k [h Mpc−1]

102

103

104

105

P
`

[h
−

3
M

p
c3

]

P̂0

P̂2

Figure 5.3 : The window function multipoles in configuration space (left) and the effects of the
window function on linear Kaiser power spectrum multipoles (right) for the eBOSS DR14Q NGC
survey geometry. In the right panel, the solid grey lines show the original multipoles, while the
colored lines correspond to the model after convolution with the window function, P̂`(k). The
dominant consequence of the survey geometry is a reduction in power on large scales.

spectrum using the fiducial cosmology (§5.4.1) and keep the shape fixed during parameter
estimation. This choice assumes that the uncertainty as determined by Planck Collaboration
et al. (2016a) for most of the parameters which define the shape of the power spectrum is
much smaller than the uncertainty of our measurement and can be neglected. This is a
reasonable assumption given the expected constraining power of the DR14Q sample.

In summary, our power spectrum model includes four free parameters: the linear bias
bQSO, the damping velocity dispersion σv, the residual shot noise Nshot, and the PNG am-
plitude as parameterized by fNL. We perform separate fits of the multipoles measured from
the NGC and SGC sky regions, where we vary these four parameters. We also perform a
joint fit to the combined data vector containing the monopole and quadrupole from both
the NGC and SGC. In this case, we fit a single fNL value while using separate bQSO, σv, and
Nshot values for each individual sky region.

The survey geometry

When comparing our theoretical model to the measurements from data, we must account
for the effects of the DR14Q survey geometry on our measured multipoles. We do this by
convolving our theoretical model with the survey window function, following the prescription
first presented in Wilson et al. (2017) and used in a number of analyses since (Beutler et al.
2017b; Zhao et al. 2017; Hand et al. 2017c).
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Following Wilson et al. (2017), we compute the pair counts of the synthetic catalog in
configuration space using the nbodykit software and estimate the multipoles as

Q`(s) ∝
∫ 1

−1

dµRR(s, µ)L`(µ) '
∑
i

RR(si, µi)L`(µi), (5.39)

where RR(s, µ) is the 2D pair counts, and the normalization of Q` is such that Q0(s) → 1
for s � 1. We show the multipoles Q` for the DR14Q NGC sample in the left panel of
Figure 5.3. It is evident from this figure that anisotropic features of the survey geometry are
sub-dominant.

Using the measured Q`, the convolved theoretical correlation function multipoles are
calculated as

ξ̂0(s) = ξ0Q0 +
1

5
ξ2Q2 +

1

9
ξ4Q4 + . . .

ξ̂2(s) = ξ0Q2 + ξ2

[
Q0 +

2

7
Q2 +

2

7
Q4

]
+ ξ4

[
2

7
Q2

100

693
Q4 +

25

143
Q6

]
+ . . . (5.40)

where ξ` are the theoretical correlation function multipoles, computed from the power spec-
trum multipoles (equation 5.38) via a 1D Hankel transform, evaluated using the FFTLog
software (Hamilton 2000). We show the effects of the window function convolution on linear
Kaiser multipoles in the right panel of Figure 5.3. The dominant consequence of the window
convolution is a reduction in power on large scales (small k) that becomes more prominent
for larger values of `.

5.4.4 Parameter estimation

We estimate the best-fit parameters of the model described in Section 5.4.3 using a
likelihood analysis. We assume that the probability that our data vector D corresponds to
a realization of our model T (θ) is given by a multi-variate Gaussian of the form,

L(D|θ,Φ) ∝ exp

[
−1

2
χ2(D,θ,Φ)

]
, (5.41)

where θ is our vector of model parameters, and χ2 takes the quadratic form,

χ2(θ) =
∑
ij

(Di − Ti(θ))Φij(Dj − Tj(θ)), (5.42)

and Φ is the inverse of the covariance matrix C, often referred to as the precision matrix.
When performing our likelihood analysis, our data vectorD consists of the monopole and

quadrupole, measured using the procedure outlined in Section 5.4.2. We use linearly spaced
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NGC SGC Laurent et al. (2017)
zmin zmax zeff NQSO bQSO NQSO bQSO bQSO

0.9 1.2 1.06 17191 1.63± 0.04 11013 1.71± 0.06 1.75± 0.08
1.2 1.5 1.35 21947 2.18± 0.04 14609 2.02± 0.05 2.06± 0.08
1.5 1.8 1.65 22127 2.36± 0.04 14793 2.52± 0.06 2.57± 0.09
1.8 2.2 1.99 23893 3.01± 0.05 16325 2.95± 0.07 3.03± 0.11

0.9 2.2 1.55 85158 2.33± 0.02 56740 2.33± 0.03 2.43± 0.05

Table 5.1 : The best-fit linear bias parameters and 1σ errors obtained from fitting the power
spectrum model of Section 5.4.3 to the monopole and quadrupole of the NGC and SGC DR14Q
samples. We compare our results to those of Laurent et al. (2017), which reported bias values for
the first year of eBOSS data (roughly half the size of the DR14Q sample).

bins of width ∆k = 0.005 hMpc−1. With the first bin separation at k ∼ 0.005 hMpc−1

and extending to kmax = 0.3 hMpc−1, we have a total of 120 data points in D (60 bins per
multipole).

We estimate the covariance matrix of our data measurement using the 1,000 EZ mock
realizations, described previously in Section 5.2.3. As the covariance is computed from a
finite number of mock realizations, its inverse Φ provides a biased estimate of the true
precision matrix due to the skewed nature of the inverse Wishart distribution (Hartlap et al.
2007). To correct for this bias, we re-scale the precision matrix as

Φ′ =
Nmock − nb − 2

Nmock − 1
Φ. (5.43)

When performing our likelihood analysis following equation 5.41, we use the rescaled pre-
cision matrix Φ′. In our analysis, we use Nmocks = 1000 and nb = 120, yielding a Hartlap
factor of ∼0.88.

We find the best-fit model parameters using the LBFGS nonlinear minimization algorithm
(Byrd et al. 1995). We verify that the minimization procedure converges by starting the
algorithm from a number of different initialization states. We compute the full posterior
distributions of the parameters of interest using the emcee software (Foreman-Mackey et al.
2013) to perform Markov Chain Monte Carlo (MCMC) sampling. We assume broad, uniform
priors on all parameters of interest such that the priors serve only to bound the parameter
values to the largest possible physically meaningful parameter space; they do not have an
impact on our derived posterior distributions.
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5.5 Results

5.5.1 Quasar bias as a function of redshift

We begin by measuring the linear bias of the DR14Q sample as a function of redshift.
The bias of the quasars is expected to be a strong function of redshift, and it is important
to understand if this evolution is consistent with our expectations, e.g., Croom et al. (2005);
Ross et al. (2009); Laurent et al. (2017). We choose identical redshift bins as those used
in Laurent et al. (2017), which reported quasar bias values for the first year of eBOSS
data, corresponding to roughly half of the sample size of the DR14Q data set. We report
our estimated linear bias parameters and their 1σ errors derived from MCMC sampling in
Table 5.1. We measure the bias values by fitting our linear power spectrum model described
in Section 5.4.3 to the monopole and quadrupole of the DR14Q sample. We fit over the range
10−3 < k < 0.3 hMpc−1 and have verified that restricting to a smaller kmax value, i.e., only
linear scales, does not change our results. Our values are roughly consistent with those of
Laurent et al. (2017). Discrepancies can likely be attributed to the significantly larger sample
size used here, as well as analysis differences (Laurent et al. (2017) use a configuration-space
based analysis). In our analysis, we assume the redshift evolution of Laurent et al. (2017),
given by

bQSO(z) = α[(1 + z)2 − 6.565] + β, (5.44)

with α = 0.278 and β = 2.393. We use this equation to describe the redshift evolution of
the bias when assigning weights to individual quasars using equation 5.24.

5.5.2 Unweighted results

In this section, we present constraints on fNL using traditional analysis techniques. We
treat the entirety of the DR14Q sample in a single redshift bin ranging from 0.8 ≤ z ≤ 2.2
with an effective redshift of zeff = 1.53. We do not employ the redshift weighting scheme
presented in Section 5.3.3. These results serve as a baseline measurement—an optimal
weighting scheme should improve upon the fNL constraints presented here. We first apply
and test our parameter estimation methods using the 1,000 EZ mock catalogs described in
Section 5.2.3 and then present the constraints measured from the DR14Q data sample.

EZ mock results

The set of EZ mock catalogs provides an opportunity to test our parameter estimation
pipeline and modeling systematics. We have 1,000 independent realizations for both the NGC
and SGC regions (2,000 in total). We perform fits to the measured monopole and quadrupole
from each mock using a wavenumber range 10−3 < k < 0.3 hMpc−1. We summarize the
resulting constraints in the top portion of Table 5.2. This table gives the mean values
of the parameters across the 1,000 realizations as well as the asymmetric 1σ confidence
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Parameter Set fNL bQSO σv Nshot

EZ Mock
NGC 63 +42

−46 2.223 +0.037
−0.037 4.166 +0.432

−0.385 −353 +119
−110

SGC 37 +49
−57 2.253 +0.049

−0.050 3.610 +0.531
−0.487 −433 +154

−156

DR14Q Data
NGC 14 +52

−73 2.269 +0.041
−0.037 4.850 +0.362

−0.357 −54 +98
−102

SGC −27 +55
−48 2.324 +0.050

−0.049 3.511 +0.399
−0.416 −282 +132

−141

NGC + SGC −9 +43
−46

Table 5.2 : The best-fit model parameters as measured from the 1,000 EZ mock catalogs (top) and
the DR14Q data set (bottom) for the NGC and SGC sky regions. We also give the constraint on
fNL when simultaneously fitting the DR14Q NGC and SGC samples. For these results, we treat the
data sample as a single redshift bin ranging from 0.8 ≤ z ≤ 2.2 with zeff = 1.53 and do not apply
any redshift weights. Parameters are obtained by fitting the 4-parameter model of equation 5.35
to the monopole and quadrupole over the wavenumber range 10−3 < k < 0.3 hMpc−1. The results
from the EZ mocks give the mean values and 1σ uncertainties obtained from the distribution of the
1,000 fits, and DR14Q results are estimated using MCMC sampling.

level intervals, as determined from the distribution of best-fit values. We also show the one-
dimensional histograms and two-dimensional correlations for the best-fit values in Figure 5.4.
As expected, we find that fNL is most strongly correlated with the linear bias bQSO. While
centered near fNL = 0, the distribution of recovered fNL values also shows significant non-
Gaussian tails stretching to large positive and negative values.

We find the mean fNL value to be fNL = 63+42
−46 for the NGC and fNL = 37+49

−57 for the SGC.
The EZ mocks contain no PNG signal, and given the fact that these constraints are averaged
over 1,000 mocks, we measure a statistically significant positive bias for both the NGC and
SGC data sets. The most likely culprit for this bias is large-scale systematics contaminating
the scale-dependent bias signature introduced by PNG. We have attempted to mitigate these
issues by using the completeness weights discussed in Section 5.2.2. However, our findings
here indicate that these weights may be insufficient for measuring fNL robustly from the
large-scale power spectrum. Further investigation of this potential large-scale contamination
is required.

Results for the DR14Q sample

We perform an identical analysis on the DR14Q data set as discussed in the previous
section when using the set of EZ mock catalogs. In particular, the results discussed here
use a single redshift bin ranging from 0.8 ≤ z ≤ 2.2 with zeff = 1.53, and we do not apply
any redshift weights The parameter constraints are summarized in the bottom portion of
Table 5.2. These constraints are obtained via MCMC sampling, and we report results when
separately fitting the NGC and SGC samples. We also perform a joint fit to the combined



5.6. CONCLUSIONS AND FUTURE WORK 138

data vector from both sky regions. In this case, we fit a single fNL value while varying
separate values for each of the other model parameters for the NGC and SGC multipoles.
The resulting PNG constraint when jointly fitting the multipoles from the NGC and SGC
sky regions is fNL = −9+43

−46. We compare the best-fit theoretical model to the measured
multipoles in Figure 5.5. Our 4-parameter model is able to accurately describe the multipoles
over the range of scales considered, 10−3 < k < 0.3 hMpc−1. The reduced chi-squared of the
fits to the NGC and SGC multipoles is χ2

red = 0.92 and χ2
red = 1.11, respectively.

We show the resulting posterior distributions for each of the four model parameters in
Figure 5.6.1 This figure gives both the marginalized one-dimensional distributions as well as
the joint, two-dimensional correlations between parameters. The results agree well with our
expectations based on the results obtained from the EZ mock catalogs. We obtain slightly
different bQSO and σv values for the NGC and SGC data sets. We expect such discrepancies
due to the slight differences in the targeting efficiency for these two samples (see Figure 5.1).
Furthermore, given the spread of the parameters measured from the 1,000 EZ mocks, the
DR14Q data appears to be a typical realization. Both the mean and 1σ uncertainties for
the four model parameters measured from the DR14Q data are consistent with the results
obtained from the EZ mock catalogs.

5.6 Conclusions and future work
In this work, we have constrained local type primordial non-Gaussianity, as parameterized

by fNL, using the eBOSS DR14 quasar sample. We have analyzed the quasar sample using
traditional analysis techniques, considering the entirety of the data set in a single redshift
bin ranging from 0.8 ≤ z ≤ 2.2. Modeling the redshift-space power spectrum multipoles with
a linear Kaiser model with Finger-of-God damping, we obtain a PNG constraint of fNL =
−9+43
−46 when jointly fitting the monopole and quadrupole measured from the NGC and SGC

sky regions. We have tested and verified our analysis pipeline with a large set of realistic mock
catalogs that accurately model the eBOSS angular selection function and redshift evolution.
Our results obtained from the 1,000 mock catalogs indicate a potential positive bias in
the recovered value of fNL. Such a bias is likely caused by large-scale contamination from
systematics that is not fully corrected by our weighting scheme. Mitigation of systematics
on the largest scales probed by a redshift survey is particularly challenging, and remains one
of the most significant impediments to using large-scale structure measurements to probe
PNG. Further investigation of any potential residual systematics on large scales in the eBOSS
multipoles is required.

The constraint using a single redshift bin from this work is not competitive with the tight-
est published constraints on fNL from large-scale structure data sets, e.g., σ(fNL) ∼ 20. How-
ever, improvements can be made using more optimal analysis techniques. In Section 5.3.3,
we derived an near-optimal power spectrum estimator for fNL using weights to account for
the evolution of the PNG signal as a function of redshift. An analysis including such weights

1Figure 5.6 was produced using the ChainConsumer software (Hinton 2016).
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is currently underway and should yield improved constraints on fNL. Furthermore, eBOSS
has observed quasars to higher redshift range than the maximum redshift of z = 2.2 used in
this work. The PNG signal is larger at higher redshift where the quasars are more strongly
biased. Consequently, the inclusion of all eBOSS quasars up to a redshift of z ∼ 3 will further
improve the fNL constraint. The systematics associated with the quasars at higher redshift
are currently not well-studied, and further analysis will be required to robustly utilize these
objects to constrain fNL. Initial tests indicate that the PNG constraints could improve as
much as ∼50% by extending the redshift range, so we believe additional systematics studies
are well-justified.

The entirety of the eBOSS quasar sample will probe roughly three times the volume of
the DR14 sample considered in this work. This additional volume will significantly enhance
measurements of the large-scale quasar power spectrum and offer the possibility of compet-
itive constraints on primordial non-Gaussianity. To fully exploit the constraining power of
the complete data set, analysis techniques such as those developed in this work will need
to be employed to optimally extract information across the enormous redshift range of the
sample. Mitigation of large-scale systematics will be crucial for achieving these goals and
constraining primordial non-Gaussianity in a robust manner from future large-scale structure
data sets.
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Figure 5.4 : The distribution of the best-fit model parameters as measured from the 1,000 EZ mock
catalogs for the NGC (top) and SGC (bottom) sky regions. We have fit the 4-parameter model of
equation 5.35 to the monopole and quadrupole over the wavenumber range 10−3 < k < 0.3 hMpc−1.
For these results, we treat the data sample as a single redshift bin ranging from 0.8 ≤ z ≤ 2.2 with
zeff = 1.53 and do not apply any redshift weights. The diagonal plots give the 1D histogram of
the best-fit values for each parameter and the off-diagonal plots show the 2D correlations between
parameters.
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reduced chi-squared of the fits for the NGC and SGC data sets is χ2
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−46.
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Appendix A

Velocity correlators in the Zel’dovich
approximation

In this section, we use Lagrangian perturbation theory (LPT) to compute two dark
matter velocity correlators that enter into the DF model: the density – radial momentum
cross spectrum, P01, and the radial momentum auto spectrum, P11. We closely follow the
notation of Vlah et al. (2015); see e.g., Vlah et al. (2015); Carlson et al. (2013); Matsubara
(2008) and references therein for further review of Lagrangian perturbation theory.

A.1 P01 and P11 using LPT
Following the definitions of Vlah et al. (2013), the velocity correlators that we wish to

compute are given by

(2π)3P̃01(k)δD(k + k′) = 〈δ(k)|p‖(k′)〉,
(2π)3P̃11(k)δD(k + k′) = 〈p‖(k)|p‖(k′)〉, (A.1)

where p‖ is the momentum projected along the line-of-sight, i.e., p‖ = p · ẑ. The scalar
component of the dark matter momentum (which correlates with density) can be computed
using the continuity equation: δ̇(k)− ik ·p = 0, where the dot in δ̇ represents the derivative
with respect to conformal time τ . Using this equation, we can express the velocity correlators
of interest as

P̃01(k) =
iµ

k
Pδδ̇(k), (A.2)

P̃11,s(k) =
µ2

k2
Pδ̇δ̇(k), (A.3)

where µ is defined as k‖/k. Here, we explicitly note that P̃11,s only includes scalar contribu-
tions, as only the scalar component of momentum enters into the continuity equation. The
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total contribution from these terms to the redshift-space power spectrum P S(k, µ) is given
by:

P01(k) = 2Re

(−ikµ
H

)
P̃01(k) = 2

µ2

HPδδ̇(k), (A.4)

P11,s(k) =

(
kµ

H

)2

P̃11,s(k) =
µ4

H2
Pδ̇δ̇(k). (A.5)

These are the spectra that we wish to compute in the Zel’dovich approximation. In linear
theory, these spectra are the anisotropic terms of the well-known Kaiser formula: P01(k) =
2fµ2PL(k) and P11,s(k) = f 2µ4PL(k) (Kaiser 1987).

We can compute δ and δ̇ using Lagrangian perturbation theory. In the Lagrangian
clustering description, the overdensity field is given by

(2π)3δD(k) + δ(k) =

∫
d3q eik·q exp[ik ·Ψ(q)], (A.6)

where Ψ(q) is the Lagrangian displacement field. The derivative of this equation with respect
to conformal time is given by

δ̇(k) =

∫
d3qeik·q

(
ik · Ψ̇

)
exp[ik ·Ψ(q)]. (A.7)

The quantity of interest for P01 is

(2π)3Pδδ̇(k)δD(k + k′) = 〈δ(k)|δ̇(k′)〉,

=

∫
d3qd3q′eik·q+ik′·q′

〈(
ik′ · Ψ̇′

)
eik·Ψ+ik′·Ψ′

〉
, (A.8)

where we have used the definition Ψ′ ≡ Ψ(q′). Similarly, for P11,s we need to compute

(2π)3Pδ̇δ̇(k)δD(k + k′) = 〈δ̇(k)|δ̇(k′)〉,

=

∫
d3qd3q′eik·q+ik′·q′

〈(
ik · Ψ̇

)(
ik′ · Ψ̇′

)
eik·Ψ+ik′·Ψ′

〉
. (A.9)

A.2 A generalized velocity generating function
To facilitate the calculation of equations A.6 and A.7, we introduce a generalized ve-

locity generating function in this section. First, let us define the sum and difference of the
displacement field Ψ(q) defined at points q1 and q2 in space:

∆−i = Ψi(q2)−Ψi(q1), ∆+
i = Ψi(q2) + Ψi(q1). (A.10)
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Now we can define the generalized velocity generating function G as

(2π)3δD(k) + G(k, γ, λ) =

∫
d3qeik·q

〈
e−ik·∆

−−iγk·∆̇−−iλk·∆̇+
〉
. (A.11)

Note that the case of γ = λ = 0 gives the well-known matter power spectrum Pδδ in the
LPT formalism (Schneider & Bartelmann 1995). We define the following moments of G:

G10(k) =
d

dγ
G(k, γ, λ)

∣∣∣
γ=0,λ=0

=

∫
d3qeik·q

〈(
ik · ∆̇−

)
e−ik·∆̇

−
〉
, (A.12)

G20(k) =
d2

dγ2
G(k, γ, λ)

∣∣∣
γ=0,λ=0

=

∫
d3qeik·q

〈(
ik · ∆̇−

)2

e−ik·∆̇
−
,

〉
, (A.13)

G02(k) =
d2

dλ2
G(k, γ, λ)

∣∣∣
γ=0,λ=0

=

∫
d3qeik·q

〈(
ik · ∆̇+

)2

e−ik·∆̇
−
,

〉
. (A.14)

Substituting the definitions of ∆+ and ∆− into these equations yields the following relations,

G10(k) = 2Pδδ̇(k), (A.15)
G20(k)−G02(k) = 4Pδ̇δ̇(k). (A.16)

We can evaluate G using the cumulant expansion theorem,

〈
e−iX

〉
= exp

[ ∞∑
N=0

(−i)N
N !

〈
XN
〉
c

]
, (A.17)

where X = k ·∆− + γk · ∆̇− + λk · ∆̇+. In the Zel’dovich approximation (tree-level LPT),
the displacement field remains Gaussian, so only the N = 2 term is non-zero in the above
expansion. Thus, the quantity of interest is

〈(
k ·∆− + γk · ∆̇− + λk · ∆̇+

)2
〉

= kikj

[
Aij + γȦij + γ2B−ij + λ2B+

ij + ...
]

≡ kikj [Aij + ...] , (A.18)

where we have explicitly ignored terms that vanish upon taking the derivatives in the ex-
pressions for G10, G20, and G02. The relevant definitions are

Aij(k) =
〈
∆−i ∆−j

〉
c
, (A.19)

B−ij (k) =
〈

∆̇−i ∆̇−j

〉
c
, (A.20)

B+
ij (k) =

〈
∆̇+
i ∆̇+

j

〉
c
. (A.21)
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Note that this definition of Aij matches the notation used in the recent LPT work of Vlah
et al. (2015); Carlson et al. (2013). Finally, using equations A.18, A.17, and A.11, the
velocity generating function becomes

(2π)3δD(k) + G(k, γ, λ) =

∫
d3qeik·q exp

[
−1

2
kikjAij

]
. (A.22)

A.3 The Zel’dovich approximation
In the Zel’dovich approximation, the displacement field and its time derivative are given

Ψ(k) = ikδL(k)/k2, (A.23)
Ψ̇(k) = fHΨ(k), (A.24)

where δL is the linear overdensity field which scales in time as the linear growth function D,
H = d ln a/dτ is the conformal Hubble parameter, and f = d lnD/d ln a is the logarithmic
growth rate.

With these relations, we can now compute the expressions for each term of equation A.18
(for a more in-depth discussion of this procedure, see Appendix B of Carlson et al. (2013)).
The relevant expressions are:

Aij(q) = I−ij (q), (A.25)

Ȧij(q) = 2fHI−ij (q), (A.26)
B−ij (q) = (fH)2I−ij (q), (A.27)
B+
ij (q) = (fH)2I+

ij (q), (A.28)

where we have defined the integral

I±ij (q) = 2

∫
d3k

(2π)3
[1± cos(k · q)]

kikj
k4

PL(k), (A.29)

where PL(q) is the linear power spectrum. Here, I−ij is the same quantity that enters into
the LPT calculation of the density auto power spectrum; for example, our expression is the
same as equation A6 of Vlah et al. (2015) (restricting to tree-level).

Equation A.29 can be expressed in terms of two scalar functions as

X±ij (q) = X±(q)δKij + Y ±(q)q̂iq̂j, (A.30)

We can compute X±ij and Y ±ij by performing the angular integration in equation A.29. To
facilitate comparisons with previous work (e.g., Vlah et al. 2015; Carlson et al. 2013), we
define
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X±ij (q) = 2σ2 ± 1

π2

∫
dkPL(k)

j1(kq)

kq
≡ 2σ2 ±X0(q),

X−ij (q) = X(q),

Y ±ij (q) = ∓Y (q), (A.31)

where the σ2 = 1/(6π2)
∫
dqP (q) is the square of the linear displacement field dispersion,

and the well-known Zel’dovich integrals X(q) and Y (q) are

X(q) =

∫
dk

2π2
PL(k)

[
2

3
− 2

j1(kq)

kq

]
,

Y (q) =

∫
dk

2π2
PL(k)

[
−2j0(kq) + 6

j1(kq)

kq

]
, (A.32)

where jn is the spherical Bessel function of order n.
With these integral expressions, we can now compute the relevant moments of G in order

to evaluate P01 and P11,s. First, for P01, we have

P01(k, µ) =
µ2

HG10(k),

= 2fµ2

∫
d3qeikqµ̄

[
−1

2
k2
(
X + µ̄2Y

)]
e−

1
2
k2(X+µ̄2Y ), (A.33)

where we have introduced the angle between the given k-mode and separation vector µ̄ = q̂·k̂.
Similarly, for P11,s, we have

P11,s(k, µ) =
µ4

4H2
[G20(k)−G02(k)] ,

=
1

4
f 2µ4

∫
d3qeikqµ̄k2

[
−2X0 + k2X2 + 2(k2X − 1)Y µ̄2 + k2Y 2µ̄4

]
e−

1
2
k2(X+µ̄2Y ).

(A.34)

Equations A.33 and A.34 represent the desired solution for P01 and P11,s in the Zel’dovich
approximation. The angular integration over µ̄ in these expressions can be performed using
the following expression (Schneider & Bartelmann 1995)∫ 1

−1

dµeiAµeBµ
2

= 2eB
∞∑
n=0

(
−2B

A

)n
jn(A), (A.35)

and the subsequent derivatives of this expression with respect to B yields
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∫ 1

−1

dµµ2eiAµeBµ
2

= 2eB
∞∑
n=0

(
−2B

A

)n
jn(A)

[
1 +

n

B

]
, (A.36)∫ 1

−1

dµµ4eiAµeBµ
2

= 2eB
∞∑
n=0

(
−2B

A

)n
jn(A)

[
1 +

n

B2
(n+ 2B − 1)

]
. (A.37)

With equations A.35, A.36, and A.37, we can compute the desired quantities in equations
A.33 and A.34 as a quickly converging sum of one-dimensional integrals, where the one-
dimensional integrals can be computed rapidly with the aid of software such as FFTLog
(Hamilton 2000). Typically, the sum over n can be truncated at n < 15 for k < 1 hMpc−1.
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Appendix B

Improved HZPT modeling

In this section, we give the best-fit parameters for the updated HZPT modeling used in
this work (as described in Section 4.4.2).

B.1 Dark matter correlators P00 and P01

For the dark matter power spectrum P00, we follow the parameterization of Seljak & Vlah
(2015) and provide updated best-fit parameters. We use a Padé expansion with nmax = 2,
such that the broadband term is given by

PBB
00 (k) = A0

(
1− 1

1 + k2R2

)
1 + (kR1)2

1 + (kR1h)2 + (kR2h)4
, (B.1)

where the free parameters of the model are given by: {A0, R,R1, R1h, R2h}. For these pa-
rameters, we find the best-fit parameters to be:

A0 = 708

(
σ8(z)

0.8

)3.65

[ h−3Mpc3], (B.2)

R = 31.8

(
σ8(z)

0.8

)0.13

[ h−1Mpc], (B.3)

R1 = 3.24

(
σ8(z)

0.8

)0.37

[ h−1Mpc], (B.4)

R1h = 3.77

(
σ8(z)

0.8

)−0.10

[ h−1Mpc], (B.5)

R2h = 1.70

(
σ8(z)

0.8

)0.42

[ h−1Mpc]. (B.6)
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As first shown in Seljak & McDonald (2011) and discussed in Appendix A (see equation A.2),
P01 is fully predicted from P00 through the relation

P01(k, a) = µ2dP00(k, a)

d ln a
, (B.7)

where a is the scale factor. Thus, the appropriate time derivative of equation B.1, combined
with the Zel’dovich expression for P01 discussed in detail in Appendix A amounts to a full
model for P01(k), using the same 5 parameters defined in equations B.2-B.6.

We also include measurements of the small-scale dark matter correlation function when
finding the best-fit parameters discussed in this section. For reference, we provide the full
relation for ξBB(r), the Fourier transform of equation B.1,

ξBB(r) = − A0e
−r/R

4πrR2(1−R2
1h/R

2 +R4
2h/R

4)

×
[

1−R2
1/R

2

+ A exp

[
r

{
R−1 −R−2

2h

√
(R2

1h − S)/2

}]
+B exp

[
r

{
R−1 −R−2

2h

√
(R2

1h + S)/2

}]]
, (B.8)

where we have defined the following quantities:

S ≡
√
R4

1h − 4R4
2h, (B.9)

A ≡ (2R4
2hS)−1

[
R2
(
−2R4

2h +R2
1(R2

1h − S)
)

+R4
2h(R

2
1h − S)

+R2
1(−R4

1h + 2R4
2h +R2

1hS)
]
, (B.10)

B ≡ −(2R4
2hS)−1

[
R4

2h(R
2
1h + S)−R2

1(R4
1h − 2R4

2h +R2
1hS)

+R2
(
−2R4

2h +R2
1(R2

1h + S)
) ]
. (B.11)

B.2 Dark matter radial momentum power spectrum, P11

We model the µ4 term of the scalar component of the radial momentum auto power
spectrum, P11[µ4], with a HZPT model, as the sum of a Zel’dovich term and a Padé sum

P11,s[µ
4](k) = P zel

11,s(k) + PBB
11 (k), (B.12)
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where P zel
11,s is the Zel’dovich approximation expression for the radial momentum power spec-

trum discussed in detail in Appendix A. For PBB
11 (k), we use a Padé sum of the form

PBB
11 (k) = A0

(
1− 1

1 + k2R2

)
1

1 + (kR1h)2
. (B.13)

The redshift dependence of the parameters enters into the model through both σ8(z) and
f(z), where f is the logarithmic growth rate. The best-fit parameters used in this work are
given by

A0 = 659

(
σ8(z)

0.8

)3.91(
f(z)

0.5

)1.92

[ h−3Mpc3], (B.14)

R = 19.0

(
σ8(z)

0.8

)−0.37(
f(z)

0.5

)−0.25

[ h−1Mpc], (B.15)

R1h = 0.85

(
σ8(z)

0.8

)−0.15(
f(z)

0.5

)0.77

[ h−1Mpc]. (B.16)

Note that in the large-scale, linear perturbation regime, we have P11,s[µ
4](k) = f 2Plin. As

discussed in Seljak & Vlah (2015), the density auto spectrum in both SPT and the Zel’dovich
approximation scales as the square of the linear power spectrum. Noting the additional factor
of f 2 in the case of P11,s, the low-k amplitude scalings predict A0 ∝ f 2σ4

8; this result is close
to the best-fit values found in equation B.14.

B.3 Halo-matter power spectrum, P hm

The HZPT model for the halo-matter power spectrum, as discussed in Section 4.4.2, is

P hm(k) = b1P
zel
00 (k) + PBB

00 (k,A0, R,R1, R1h, R2h), (B.17)

where PBB
00 is the broadband Padé term, as given by equation B.1. The best-fit parameters

for the Padé term used in this work are
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A0 = 752 b1.66
1

(
σ8(z)

0.8

)3.65

[ h−3Mpc3], (B.18)

R = 16.9 b−0.12
1

(
σ8(z)

0.8

)−1.07

[ h−1Mpc], (B.19)

R1 = 5.19 b−0.57
1

(
σ8(z)

0.8

)0.16

[ h−1Mpc], (B.20)

R1h = 8.25 b−0.84
1

(
σ8(z)

0.8

)−0.13

[ h−1Mpc], (B.21)

R2h = 3.05 b−1.03
1

(
σ8(z)

0.8

)−0.36

[ h−1Mpc]. (B.22)
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Appendix C

Relation between model parameters in
the halo model

In this section, we describe the relations between parameters of our model in the context
of the halo model, as discussed in Section 4.4.1. We apply previous analyses of clustering in
the halo model, i.e., Berlind & Weinberg (2002); Zheng (2004); Hikage & Yamamoto (2013);
Abramo et al. (2015), to the specific notation used in our model. In particular, we are able
to constrain the relative fraction (§C.1) and the linear bias (§C.2) for the sample of centrals
with satellites in the same halo. We also derive expressions for the 1-halo amplitudes, NcBs

and NsBsB , in terms of other model parameters using the halo model in Section C.3.

C.1 The fraction of centrals with satellites
The relative fraction for the cB sample fcB , which gives the fraction of central galaxies

that live in halos with at least one satellite galaxy, can be related to the other galaxy sample
fractions. The number of galaxies in the cB sample is equal to the number of centrals with
only one satellite plus the number of centrals with greater than one satellite. Assuming each
halo has exactly one central galaxy, we can express this as

fcB =
NcB

Nc

=
NsA

Nc

+
1

〈N>1,s〉
NsB

Nc

, (C.1)

where we have defined 〈N>1,s〉 to be the mean number of satellites galaxies in halos with
greater than one satellite. This parameter normalizes the number of sB galaxies to the
number of centrals, such that 〈N>1,s〉−1NsB gives the number of centrals with greater than
one satellite in the same halo. For a HOD similar to the BOSS CMASS galaxy sample, we
typically have 〈N>1,s〉 ∼ 2.4.

Using the definitions fs = Ns/Ng and fsB = NsB/Ns, and noting that Ns = NsA + NsB

and Ng = Nc +Ns, we can simplify equation C.1 as
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fcB =
fs

1− fs
[
1 + fsB

(
〈N>1,s〉−1 − 1

)]
. (C.2)

C.2 The linear bias of centrals with satellites
Using the halo model, we can express the bias of a specific galaxy sample as an integral

over the halo mass function, weighted by bias

bX =
1

n̄X

∫
d lnM

dn̄h
d lnM

N̄x(M)b(M)u(k|M), (C.3)

where n̄x is the mean number density of the sample, dn̄h/d lnM is the halo mass function,
N̄x gives the mean halo occupation for the sample as a function of halo mass, b(M) is the
halo bias – mass relation, and u(k|M) describes the halo profile in Fourier space.

For the sample of central galaxies with satellites in the same halo (denoted as cB), we are
able to express the mean occupation N̄cB in terms of quantities defined for the two satellite
samples, sA and sB. In particular, we can write

N̄cB = N̄sA + 〈N>1,s〉−1 N̄sB , (C.4)

where N̄sA is the occupation of satellites with only a single satellite in a halo, and N̄sB is
the occupation of satellites with multiple satellites in the same halo. Here, we have defined
〈N>1,s〉 to be the mean number of satellite galaxies in halos with greater than one satellite.
Using equations C.3 and C.4, we can relate the linear biases as

n̄cBb1,cB = b̄sA + 〈N>1,s〉−1 n̄sBb1,sB . (C.5)

We can relate the number density of individual samples to the total galaxy number density
n̄g as

n̄cB = fcB(1− fs)n̄g,
n̄sA = fs(1− fsB)n̄g,

n̄sB = fsfsB n̄g.

Finally, we obtain the expression for b1,cB

b1,cB =
(1− fsB)fs
fcB(1− fs)

b1,sA +
fsBfs

〈N>1,s〉 fcB(1− fs)
b1,sB . (C.6)

Using the expression for fcB from equation C.2, we can simplify this equation as

b1,cB =
1− fsB

1 + fsB(〈N>1,s〉−1 − 1)
b1,sA +

fsB
〈N>1,s〉 (1− fsB) + fsB

b1,sB . (C.7)
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Note that, as expected, the weights in this linear combination, b1,cB = w1b1,sA +w2b1,sB , sum
to unity such that w1 + w2 = 1.

C.3 1-halo term amplitudes
In this section, we express the 1-halo amplitudes NcBs and NsBsB in terms of other

model parameters using a description of the shot noise in terms of pair counts of galaxies.
Generically, we can write the shot noise of galaxies as

P shot = V

∑
halos N

2
i

(
∑

halosNi)
2 = V

∑
halos N

2
i

N2
g

, (C.8)

where V is the volume of the survey, Ni represents the number of galaxies in the ith halo,
Ng is the total number of galaxies, and we sum over all halos. Note that in the limit of
a single object per halo, this simplifies to the usual expression for the Poisson shot noise,
P shot = V Ng/N

2
g = n̄−1

g , where n̄g = V/Ng is the number density of the galaxy sample.
We can decompose the sum in the numerator of equation C.8 as

∑
halos

N2
i = Ng +

∑
halos

Ni(Ni − 1),

= Ng +
∑

halos,N=2

Ni(Ni − 1) +
∑

halos,N=3

Ni(Ni − 1) + . . . ,

= Ng + 2Nhalos
N=2 + 6Nhalos

N=3 + . . . ,

= Ng +

halos,j=∞∑
halos,j=2

j(j − 1)Nhalos
N=j , (C.9)

where Nhalos
N=j is the total number of halos with exactly j galaxies in the halo.

To mirror our definitions of galaxy subsamples, we can decompose the sum over halos
with greater than one galaxy member in equation C.9 into the contributions from central -
satellite pairs and those between only satellites. For the former case, we can consider the
number of pairs between centrals and satellites as

Npairs
cs = 2

∑
halos

Ns,i = 2Ns = 2fsNg, (C.10)

where Ns,i is the number of satellite galaxies in the ith halo. And then using equation C.8,
the total contribution of this term to the shot noise is

P 1h
cBs

=
V

N2
g

Npairs
cs =

2fs
n̄g
, (C.11)
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and using the fact that P 1h
cBs

= 2fs(1− fs)fcBNcBs, we have

NcBs =
1

n̄g
[(1− fs)fcB ]−1 , (C.12)

where n̄g is the number density of the full galaxy sample.
Similarly, we can consider the contribution to equation C.9 from the correlations between

satellites. The contribution to the shot noise from satellite-satellite pairs is

P shot
ss = V

∑
Ns,i>1Ns,i(Ns,i − 1)

N2
g

, (C.13)

=
V

N2
g

〈Ns,i(Ns,i − 1)〉>1,sN
halos
>1,s , (C.14)

where the quantity 〈Ns,i(Ns,i − 1)〉>1,s is averaged over halos with greater than one satellite,
and Nhalos

>1,s is the total number of halos that have more than one satellite. We can express
the latter quantity as

Nhalos
>1,s = Ng [fcB(1− fs)− fs(1− fsB)] , (C.15)

where the first term represents the total number of halos with at least one satellite, and
the second term is the number of halos with exactly one satellite. Here, we have explicitly
assumed that every halo has exactly one central galaxy.

Using the fact that P 1h
sBsB

= f 2
s f

2
sB
NsBsB , the 1-halo amplitude becomes

NsBsB =
f 1h
sBsB

n̄gf 2
s f

2
sB

[fcB(1− fs)− fs(1− fsB)] , (C.16)

where we have defined a normalization nuisance parameter f 1h
sBsB

, which allows for variations
in the unknown quantity 〈Ns,i(Ns,i − 1)〉>1,s. Typically, for a CMASS-like galaxy sample, we
find f 1h

sBsB
∼ 4. For comparison, if Ns,i = 2 (3) for all halos with greater than one satellite,

then f 1h
sBsB

= 2 (6).
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