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Abstract

Modification Detection using Nanopore Sequencing

by

Andrew D. Bailey IV

Both DNA and RNA modifications play critical roles in cell regulation. Tradi-

tionally, a chemical selection process alters base pairing or sequencing coverage is used to

sequence modified nucleotides. Therefore, a new chemical 2’O labeling process needs to

be created for each modification. Currently, we do not have methods for sequencing the

majority of the over 150 RNA and over 40 DNA modifications. However, with nanopore

sequencing, we can directly detect modifications on native DNA or RNA reads without any

selection or chemical 2’O labeling techniques. Nanopore sequencing measures the change

in current across a nanopore as a polynucleotide threads through the nanopore and we can

use this signal to identify modifications.

In chapter 2, we present a framework for the unsupervised determination of the

number of nucleotide modifications from nanopore sequencing readouts. We demonstrate

the approach can effectively recapitulate the number of modifications, the corresponding

ionic current signal levels, as well as mixing proportions under both DNA and RNA contexts.

We further show, by integrating information from multiple detected modification regions,

that the modification status of DNA and RNA molecules can be inferred. This method

forms a key step of de novo characterization of nucleotide modifications.

In chapter 3, we present a graph convolutional network-based deep learning frame-

work for predicting the mean of kmer distributions from corresponding chemical structures.

xxxv



We show such a framework can generalize the chemical information of the 5-methyl group

from thymine to cytosine by correctly predicting 5-methylcytosine-containing DNA 6mers.

In chapter 4, using a combination of yeast genetics and nanopore direct RNA

sequencing, we have developed a reliable method to track the modification status of single

rRNA molecules at 37 sites in 18S rRNA and 73 sites in 25S rRNA. We use our method to

characterize patterns of modification heterogeneity and identify concerted modification of

nucleotides found near functional centers of the ribosome. Distinct undermodified subpop-

ulations of rRNAs accumulate when ribosome biogenesis is compromised by loss of Dbp3

or Prp43-related RNA helicase function. Modification profiles are surprisingly resistant to

change in response to many genetic and environmental conditions that affect translation,

ribosome biogenesis, and pre-mRNA splicing. The ability to capture complete modification

profiles for RNAs at single-molecule resolution will provide new insights into the roles of

nucleotide modifications in RNA function.
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Chapter 1

Introduction

1.1 Biological Importance of Modifications

Both RNA and DNA modifications are dynamically regulated and play impor-

tant roles in cell function. 5-methylcytosine (5mC) is the most studied and abundant DNA

modification [19]. 5mC modifications help regulate histone binding, chromatin structure,

transcription factor binding, transcription start sites, transposition, recombination and over-

all genome stability [130, 19]. Irregular methylation patterns of 5mC on CpG islands, CpG

island shores, and repeat regions are linked to several cancers, neurological disorders and

autoimmune diseases [130, 133]. A table of diseases related to epigenetic modifications can

be found in Figure [130]. While there has been extensive research into 5mC, we are learning

more about other important but less frequent DNA modifications[33]. N6-methyladenine

(6mA) modulates transcription and causes resistance against host immune responses in

several bacteria[133]. 6mA also seems to effect nucleosome positioning and seems to play

a role in mammalian development[133, 97]. 5-hydroxymethylcytosine (5hmC) in DNA is
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maintained at enhancers and genes, can recruit specific binding proteins and is an epigenetic

signal for neuronal development[19, 33, 83]. For example, mice brains have up to 10 times

more 5hmC than most average cells[19, 33, 83]. Although there are over 40 verified DNA

modifications, most modifications do not have a sequencing based detection method[155].

Therefore, we know very little about many of these modifications and their role within cell

regulatory networks[155]. It is still an open question how many DNA modifications effect

cell regulatory systems and until we have accurate sequencing and detection of all DNA

modifications, it will be difficult to make progress towards a complete understanding of the

epigenetic landscape.

RNA post-transcriptional modifications (PTMs) are also crucial for cell function

[19, 74]. There are over 150 RNA PTMs and the majority of which have not been iden-

tified using sequencing[15]. Over the past several years, we have been discovering new

RNA modifications and the variety of roles they play in all types of RNA including mRNA,

tRNA, rRNA, snRNA and snoRNA[74]. RNA modifications have been linked to develop-

ment of cognitive functions, neurological defects, breast cancer, genetic birth defects and

diabetes[6, 186, 70, 38, 37, 10, 74] Several tRNAs and rRNAs have specific modifications

which are required for the RNAs to function[74]. 6mA, the most abundant mRNA modifi-

cation in mammals, has binding proteins that signal degradation of transcripts or increase

translational efficiency[174]. The regulation of 6mA also directly effects neuronal signaling

pathways[69]. Although RNA modifications are an important part of the cell regulatory

system, we cannot resolve the majority of modifications at a per read level which limits our

ability to understand of the regulatory importance of the RNA modification landscape[74].
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For example, back in 2010, we thought that RNA modifications were irreversible [76]. How-

ever, recently we discovered that many modifications are reversible, evolutionarily conserved

and required for correct function of mRNA and ncRNA[145, 94]. Improving modification

detection techniques an important step if we want to discover the role of modifications in

the regulatory networks of the cell.

1.2 Conventional Modification Detection

Classical approaches to modification detection were thin-layer chromatography

and capillary electrophoresis[74]. However, most non-sequencing based modification detec-

tion is done by liquid chromatography-tandem mass spectrometry (LC-MS/MS) or cryo-

genic electron microscopy (cryo-EM)[74, 23, 164]. Although all of these techniques made it

possible to identify the presence of modified nucleotides, they do not have the resolution for

single-molecule modification detection[23, 74]. LC-MS/MS is the most accurate way that

we currently have to determine the chemical signature of modifications[162]. LC-MS/MS

separates already digested DNA or RNA fragments, often according to their polarity, by

high-performance liquid chromatography (HPLC)[23, 164]. These fragments are then ion-

ized into sub-fragments which in turn are selected by their mass to charge ratio (m/q)

and analyzed by mass spectrometry[23, 164]. However, this technique requires a fairly ex-

tensive laboratory protocol, expensive equipment and expertise in the lab[23, 164]. More

importantly, a pure sample of several identical molecules are required to be analyzed via

mass spectrometry which removes the ability to detect modified nucleotides on an indi-

vidual molecule basis[23, 164]. Cryo-EM can resolve 3D structures of molecules at 2-4
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Angstroms[114]. Cryo-EM starts by freezing a purified sample within a non-crystalline

structure. Then transmission electron microscopy takes pictures of the several identical

molecules of which have froze in different orientations[136]. These 2D representations are

then aggregated to form a 3D model of the molecule of interest[136]. Although recent ad-

vances in cryo-EM have made this technique able to detect modifications, is time consuming,

expensive, cannot process a large number of samples efficiently[114, 136]. Therefore, we need

to develop high throughput sequencing techniques in order to identify modifications across

thousands or millions of individual molecules[114, 136].

1.3 Next Generation Sequencing

In order to understand the underlying cell state, it is often preferred to identify

modifications via sequencing so that we can understand the heterogeneity of modifica-

tions within a sample. Traditional chain termination sequencing has been overtaken by

the massively parallel sequencing by synthesis paradigms of Illumina, Ion Torrent and py-

rosequencing [141, 137, 138, 11, 170]. These platforms have made dramatic progress in

accuracy, throughput and price per base over the past 20 years[141, 137, 138, 11, 170].

Sequencing by synthesis (SBS) measures byproducts of polymerase nucleotide incorpora-

tion reactions and uses Watson-Crick base pairing to infer the target sequence[170]. SBS

techniques also need a DNA amplification step in order to generate enough signal from

the sequencing byproducts and have relatively short read lengths (150-800bp)[137, 138, 11].

For example, Ion Torrent measures the change in pH of a small well which contains a bead

covered in amplified DNA sequences[138]. A change in pH corresponds to the release of
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protons during nucleotide incorporation events which is then correlated to the expected

nucleotide[138]. Pyrosequencing converts the pyrophosphate byproduct of a nucleotide in-

corporation event into light via a cascade of enzymatic reactions which culminate in the

oxidization of luciferin and light generation[137]. Illumina, the current industry leader,

measures the light emitted from fluorescently labeled reversible-terminator nucleotides as

they incorporate into clusters of amplified DNA (see Figure 1.3) [11, 150, 170]. The past

20 years have been dominated by these sequencing by synthesis platforms[150]. Therefore,

modification detection protocols require added information to make predictions because

modified bases to not change the Watson-Crick base pairing mechanism[74]. As outlined

in Figure 1.2, RIP-seq, Chem-Seq and mismatch signatures are the three main sequencing

approaches to modification detection[74]. RIP-seq uses a chemical enrichment to isolate

reads with a specific modification before sequencing[42]. Often the enrichment is performed

with an antibody[42]. After the enrichment and sequencing, read coverage peaks over

the targeted modified nucleotide[42]. This technique can generate accurate per-reference

position modifications, but it only works for nucleotides with highly specific antibodies tar-

geting the modified nucleotide of interest[42]. For RNA modification detection, there were

antibodies for just 6mA, 1mA, 5mC, and 5hmC in 2017[74]. Another approach to modifi-

cation detection, chem-seq, uses differences in reactivity of modified bases compared to the

canonical nucleotides to extract information about their position. The classic example of

chem-seq is bisulfite sequencing. Bisulfite deaminates cytosine to uracil and does not effect

5mC[53]. Therefore, all called cytosines in a bisulfite treated sample are 5mC and 5mC

can be detected by comparing against an untreated bisulfite sample[53]. Another example
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of Chem-seq is pseudouridine-seq which uses 1-cyclohexyl-(2-morpholinoethyl)carbodiimide

metho-p-toluene sulfonate (CMCT) to modify guanosine, uridine, and pseudouridine with

carbodiimide (CMC)[146]. After CMCT treatment, an alkaline treatment at pH 10.3 re-

moves CMC from all other sites except the N3 of pseudouridine[146]. Reverse-transcription

is blocked by CMC so there is a pileup of reads terminating at pseudouridine sites[146].

Although Chem-seq also offers per-reference position, it is dependent upon the discovery of

a highly targeted and efficient chemical reaction for every unique modified nucleotide. One

last approach to modification detection is mismatch-signature based analyses. Mismatch-

signature analysis relies on modified nucleotides either entirely changing the Watson-Crick

base-pairing or generating non-random errors. For example, a group used known modifica-

tions in tRNA to create a model of mismatch signatures to detect modifications in other

datasets[139]. Since SBS technology requires amplification and incorporation byproducts to

sequence, none of the detection methods outlined are able to identify modified nucleotides

without a highly specialized chemical treatment[137, 138, 11]. However, with the devel-

opment of real-time, single-molecule (RTSM) sequencing, there are now platforms which

can generate relatively accurate sequencing data from the native polynucleotide and detect

modifications without chemical treatment or amplification steps.

1.4 Real-time Single-molecule Sequencing

Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT) are cur-

rently two most prevalent RTSM sequencing platforms[150]. PacBio sequencing measures

the fluorescence from incorporation of fluorescently tagged nucleotides by a DNA poly-
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merase [91]. As seen in Figure 1.4, PacBio is able to detect single nucleotide incorpora-

tions by fixing the DNA polymerase to the bottom of a small hole, limiting light exposure

from surrounding reactions and focusing the detection of nucleotide incorporation to an

individual polymerase[91, 150]. Figure 1.4 shows that PacBio sequencing can detect mod-

ifications by correlating the change in the rate of incorporation by a DNA polymerase

to detect N6-methyladenine, 5-methylcytosine and 5-hydroxymethylcytosine[51]. It has

also been shown that the same sequencing technique can be used using a reverse tran-

scriptase to detect m6A in RNA[140]. PacBio sequencing has random errors at a rate

of around 10% but allows for multiple readings of the same nucleotides because DNA

templates are circularized during library preparation[150]. Each subsequent prediction

of an individual base increases the accuracy of PacBio reads[51]. However, as the tem-

plate strand gets longer, it takes longer to process one complete loop around the template

strand[51]. So, there is a trade off between very long reads and improved accuracy via

several passes around the template[51]. Also, PacBio sequencers cost between $350,000 and

$700,0001. In comparison, ONT nanopore sequencing can also detect modified nucleotides

on a per read basis with no read length limitation and the upfront cost of a Minion is

only $1000https://nanoporetech.com/products/minion [57]. As seen in Figure 1.3,

nanopore sequencing measures the current across a parallel array of nanopores as an enzyme

controls the rate of translocation of the polynucleotide through each pore[35, 57]. The signal

recorded from each nanopore corresponds to the nucleotides within the pore. Therefore,

nanopore sequencing has the ability to directly detect modified nucleotides on the native

polynucleotide and has already been shown to identify 6mA, inosine (I), 7-methylguanine

1https://allseq.com/knowledge-bank/sequencing-platforms/pacific-biosciences/
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(7mG), pseudouridine (Q) in RNA, and 6mA, 5mC, 5hmC, and thymidine analogs including

EdU, FdU, BrdU and IdU in DNA[135, 152, 154, 112, 184, 99, 115, 108]. Although, we can

detect some modifications within some contexts, we know very little about the location and

function of most modifications.

1.5 Data Analysis of Nanopore sequencing

1.5.1 Understanding Nanopore Sequencing Signal

The current through the pore is recorded via an analog to digital converter (ADC)

which records 13 bits of information at 4000Hz. The current is directly related to the

nucleotides within the constriction site of the nanopore[77]. The constriction site of the

CsgG pore used for the R9/R9.4 sequencing chemistry has as height of about 0.9nm which

corresponds to about 3 nucleotides[60, 20]. Often, in order to correlate signal to specific

nucleotides within the pore (kmer), the raw signal is first segmented and summarized using

the mean, standard deviation, event start time and event duration (Figure 1.5)[34]. Event

detection or segmentation algorithms determine where there are significant changes in the

current level. The most common event detection algorithm uses a sliding Welch’s t-test

to determine event boundaries (Equation 1.5) 2. The segmented events correspond to a

set of nucleotides (kmer) within the pore. In theory, given any sequence context, all events

associated with a kmer of optimal length k should have the same corresponding event signal.

However, this is not the case so people often model the distribution of signals for a given

kmer as Gaussian [135, 108, 152]. Many modification detection algorithms are dependent

2https://github.com/UCSC-nanopore-cgl/signalAlign/commit/e468812eb0604562ac049828e4faf1eb

046e48aa#diff-60dfcf04ab7bcc7174c8a2fc19d7f83a
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upon the event segmentation of signal and the subsequent alignment of basecalled sequence

to the events[135, 108, 152]. Therefore, it is important to understand basecalling before

moving on to modification detection algorithms.

1.5.2 Basecalling Nanopore Reads

Over the past few years there have been several basecallers; Nanocall, Base-

cRAWller, DeepNano, Chiron, Metrichor, Albacore, Guppy, Scrappie 3, Flappie 4, and

Runnie 5 to just name a few[34, 158, 17, 166]. DeepNano, BasecRAWller and Chiron showed

that using machine learning based approaches to basecalling were much more accurate than

hidden Markov models[181]. Figure 1.8 shows the general structure of the basecalling model

used by Chiron. The Chiron model takes in normalized current readings, {x1...xnj}, and

feeds them through three stacked residual layers which feed into three stacked bidirectional

long short-term memory layers (BLSTM)[71, 144]. The BLSTM’s are important for inte-

grating information from before and after the current time step into the prediction of the

current time step[71, 144]. However, the key difference insight from Chiron was the inclusion

of the residual layers which increased accuracy from around 80% to 90%[158, 17, 166, 66].

Residual layers are feature extracting tools which allows the model to find valuable infor-

mation in the raw signal data without the vanishing gradient problem[182, 66, 166]. The

final BLSTM outputs are fed through a fully connected layer with 5 output nodes represent-

ing {A, T,G,C, b}. These outputs are decoded by a connectionist temporal classification

(CTC) decoder and finally converted into predicted nucleotide sequence[61]. Chiron was

3https://github.com/nanoporetech/scrappie
4https://github.com/nanoporetech/flappie
5https://github.com/nanoporetech/flappie/blob/master/RUNNIE.md
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the best open source basecaller at it’s time so all of the subsequent basecallers have very

similar architectures[181]. However, there are some key differences between the Chiron

model architecture and the ONT models like Flappie and Runnie. For example, ONT

uses GRU recurrent networks instead of LSTMs and has played with the size and number

of layers[181, 28]. Flappie uses a ”flip-flop” decoding layer which allows for very specific

transitions between ”flip” and ”flop” states which is then decoded as a linear conditional

random field 6. Runnie encodes nucleotide run lengths as a discrete Weibull distributions

7. Although there are some differences in basecalling networks, all downstream analysis of

nanopore sequencing comes after the basecalling step. Ideally, we would have basecallers

directly identify modified nucleotides. Flappie can detect 5mC in DNA but detecting infre-

quent modifications becomes very difficult for basecallers[132]. This is because modification

detection in a basecalling framework creates an extremely unbalanced dataset classification

problem. Therefore, it is often beneficial to incorporate reference information to correctly

detect modifications.

1.5.3 Supervised Nanopore Modification Detection Algorithms

Supervised modification detection algorithms all rely on labelled training data

and information regarding the alignment to the reference sequence. Given the basecalled

sequence, we use the basecall to reference alignment to determine if the canonical nucleotides

or modified nucleotides generated the signal. This approach adds a significant amount of

information because we now know the expected nucleotide sequence of the signal as well

6https://github.com/nanoporetech/flappie
7https://github.com/nanoporetech/flappie/blob/master/RUNNIE.md
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as information about the canonical and expected modified nucleotides. Megalodon8 is cur-

rently under development at ONT as the next iteration of Tombo as a variant/modification

detection caller and it uses the output of the basecalling neural network to determine a score

for the reference and proposed alternative sequence. However, it currently does not support

RNA or any de-novo detection algorithms so we have not explored using Megalodon for

our RNA modification detection work. Instead we use some of the more established mod-

ification detection algorithms. Both Nanopolish eventalign and signalAlign use an hidden

Markov Model (HMM) to generate an event to reference alignment[152, 135]. First, an

adaptive banded alignment is generated between the basecalled sequence and the events so

that each event is mapped to a predicted kmer. The adaptive banded alignment is simi-

lar to the Smith-Waterman alignment but only computes a fraction of the total alignment

matrix[55, 160, 45]. Then a guide alignment between the basecalled sequence and the ref-

erence is produced using a long read mapper, such as minimap2[92]. This event to kmer

to reference alignment is used anchor the HMM alignment, only include informative signal

and to decrease cost of computation by ignoring large stretches of perfect matches[152, 135].

Both of these algorithms use kmer models to produce emission probabilities and have a hard

coded set of transition probabilities. However, there are two main differences between sig-

nalAlign and eventalign. First, eventalign uses the viterbi algorithm to determine the best

path through the events to generate the reference sequence. On the other hand, signalAlign

uses the forward-backward algorithm to determine the posterior probability of an alignment

between an individual event and a kmer. Second, signalAlign has the option to use a non-

parametric hierarchical Dirchlet process (HDP) to model the emission distributions whereas

8https://github.com/nanoporetech/megalodon
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eventalign uses the Gaussian distribution to model the event mean and the Inverse-Gamma

distribution to model the standard deviation[152, 135]. The HDP uses Gibbs sampling

to generate a countably infinite set of shared mixture components which allows for more

flexibility in modelling kmer distributions[165]. As seen in Figure 1.7, in order to detect

modifications, signalAlign uses a pair-HMM that which allows branch points at specified

reference nucleotides to be modelled as a modified nucleotide and eventalign computes the

log-likelihood ratio between alignment of target positions to a modified reference compared

to canonical reference. Besides these two HMM approaches, Tombo is the other kmer model

based modification detection approach. Tombo9 is based off of the idea that there is no

need to generate an intermediate alignment to the basecalled sequence so instead you just

generate an alignment directly between events and the reference sequence[108]. Once the

alignment is generated, an outlier robust likelihood ratio is calculated across all positions

covering a target base[108]. The outlier robust likelihood ratio decreases once the event

means fall too far outside the canonical or modified kmer distributions[108]. All of these

kmer model alignment based approaches have used labelled modified nanopore reads as

training data for generating the kmer distributions of non-canonical nucleotides. The other

class of supervised modification detection algorithms are neural network based.

DeepMod10, DeepSignal11 and DNAscent v212 are a few neural network based

modification detection algorithms and they each have several similarities [115, 99, 16].

DeepMod and DeepSignal both classify 5mC in the CpG context of DNA where DNAscent

identifies Bromodeoxyuridine (BrdU) in DNA [115, 99]. While all three have unique net-

9https://nanoporetech.github.io/tombo/resquiggle.html
10https://github.com/WGLab/DeepMod
11https://github.com/bioinfomaticsCSU/deepsignal
12https://github.com/MBoemo/DNAscent/
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work architectures, they all have similar tasks and underlying data quality. The network

architectures are similar to basecalling networks, relying on either recurrent neural net-

works, convolutional neural networks or a combination of both[115, 99, 16]. These neural

network based approaches require a significant number of well labelled reads with the single

target modification covering a significant number of different sequence contexts [115, 99, 16].

The neural network based modification detection algorithms perform well when given well

labelled data but given the difficulty of producing high quality labelled sequencing data for

many modifications, de novo detection techniques may be required to identify rare or less

abundant modifications.

1.5.4 De novo Nanopore Modification Site Detection Algorithms

Nanoraw/Tombo was the first program to de novo identify modified nucleotides[108,

89]. In order to test the de-novo detection of modified nucleotides, the authors generated

control data by whole genome amplifying E. coli DNA and created test data by introducing

various types of methylases to the PCR amplified E. coli DNA. A summary of the methy-

lases and prediction accuracy can be found in Figure 1.6. Tombo initially normalizes the

signal and then generates an alignment between the segmented events and the reference

sequence using a banded alignment algorithm [108]. The match probabilities are gener-

ated using the z-score of an event coming from the corresponding kmer distribution [108].

After alignment, Tombo resolves skipped bases by re-segmenting signal around deletes in

the reference and generating alignments without the option for skips [108]. Once there

is a kmer to event mapping, we can do de-novo modification detection or sample com-

pare modification detection[108]. De-novo modification detection calculates the fraction of
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events which fall confidently into the expected kmer distribution compared to the fraction

of events which fall outside of the kmer distribution [108]. Z-scores are calculated using

the following equation where x is the event mean, µ and σ are the mean and standard

deviation of the kmer distribution respectively z = abs(x−µσ ) [108]. P-values are calculated

using the following equation p = 1+erf
(

z√
2

)
and can be aggregated using Fisher’s method.

One p-values are calculated, the algorithm classifies reads as modified if the p-value is less

than 0.05 or canonical if the p-value is above 0.4. The fraction modified is is calculated

per reference position j the following equation fractionj =
∑n

j=0 pj≤t2∑n
j=0 pj≤t2+

∑n
j=0 pj≥t1

where

t1 is the minimum canonical p-value threshold and t2 is the maximum modified p-value

threshold. The problem with this approach is that it is highly dependent upon an accurate

kmer model and relies on the assumption that a non-canonical distribution is far away from

the canonical distribution. Therefore, in order to look for modified nucleotides, we use

Tombo’s sample compare method. Sample compare uses an control experiment to generate

the expected per reference position kmer distribution which is then compared against a test

experiment’s distribution. This is done by computing the cumulative distribution function

of event means for each reference position using the equation Fn(x) = 1
n

∑n
i=1 I[−∞,x](Xi).

Then the KS-test is calculated using the following equation Dn = supx |Fn(x) − F (x)|.

Although the sample compare framework requires more sequencing, the method is more

accurate than de-novo and can quickly identify changes between control and experiment

sequencing runs[108]. Tombo’s sample compare method is extremely similar to the recently

published Nanocompore[89]. Nanocompore includes an option to use event duration infor-

mation along with event means to compute the probability that a position is modified[89].
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The original authors did not do a comparison with Tombo so it as of right now it is unclear

if there is a significant improvement using the Nanocompore detection framework[89]. The

key drawbacks from current de novo detection tools is that there is no way to determine

the underlying modification and it is very difficult to identify the specific nucleotide which

has been modified. However, there is some evidence that the underlying modification could

be determined using information from chemical structures[40].

1.6 Research Outline

Chapter 3, Towards Inferring Nanopore Sequencing Ionic Currents from Nu-

cleotide Chemical Structures. The characteristic ionic currents of nucleotide kmers are

commonly used in analyzing nanopore sequencing readouts. We present a graph convo-

lutional network-based deep learning framework for predicting kmer characteristic ionic

currents from corresponding chemical structures. We show such a framework can general-

ize the chemical information of the 5-methyl group from thymine to cytosine by correctly

predicting 5-methylcytosine-containing DNA 6mers, thus shedding light on the de novo

detection of nucleotide modifications.

Chapter 2, Gaussian Mixture Model-Based Unsupervised Nucleotide Modification

Number Detection Using Nanopore Sequencing Readouts. We present a framework for the

unsupervised determination of the number of nucleotide modifications from nanopore se-

quencing readouts. We demonstrate the approach can effectively recapitulate the number

of modifications, the corresponding ionic current signal levels, as well as mixing propor-

tions under both DNA and RNA contexts. We further show, by integrating information
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from multiple detected modification regions, that the modification status of DNA and RNA

molecules can be inferred.

Chapter 4, Single-molecule Modification Tracking of Saccharomyces cerevisiae 18S

and 25S Ribosomal RNA using Nanopore Sequencing.

Nucleotides in both RNA and DNA are subject to numerous enzymatic activities

that chemically modify them, altering their functional characteristics. Aberrant modifica-

tion patterns are linked to several cancers, neurological disorders, and autoimmune diseases.

Eukaryotic ribosomal RNA is modified at more than 100 locations, in particular at highly

conserved and functionally important nucleotides. During ribosome biogenesis, modifica-

tions are added at various stages of assembly. The precise timing, order, dependencies or

existence of differently modified classes of ribosomes are unknown because no method for

evaluating modification status at all sites within a single rRNA molecule is available. Using

a combination of yeast genetics and nanopore direct RNA sequencing, we have developed a

reliable method to track the modification status of single rRNA molecules at 37 sites in 18S

and 73 sites in 25S rRNA. We use our method to identify the presence of long-range corre-

lated modifications in wild type yeast and clear modification subpopulations within several

genetic and environmental conditions that affect yeast ribosome biogenesis and pre-mRNA

splicing.
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1.7 Equations

w = N1 = N2 (1.1)

X̄1 =
1

w

j∑
i=j−w

xi (1.2)

X̄2 =
1

w

j+w∑
i=j+1

xi (1.3)

σ2 = E[x̄2]− E[x̄2] =

∑N
i=1 x

2
i − (

∑N
i=1 xi)

2/N

N
(1.4)

t =
X̄1 − X̄2√
s21
N1

+
s22
N2

(1.5)

a = scale (1.6)

b = shift (1.7)

c = drift (1.8)

d = variance (1.9)

t = time (1.10)

µk = event mean (1.11)

σk = event standard deviation (1.12)

ti = start time (1.13)

normalized event standard deviation = (d · σk)2 (1.14)

normalized event mean = a · µk + b+ c · ti (1.15)
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σ(x) =
1

1 + e−x
(1.16)

tanh(x) =
ex − e−x

ex + e−x
(1.17)

ft = σ(Wf [xt, ht−1] + bf ) (1.18)

it = σ(Wi[xt, ht−1] + bi) (1.19)

c∗t = tanh(Wc[xt, ht−1] + bc) (1.20)

ot = σ(Wo[xt, ht−1] + bo) (1.21)

ct = ft ◦ ct−1 + it ◦ c∗t (1.22)

ht = ot ◦ tanh(ct) (1.23)

L(y, ŷ) = − 1

N

N∑
i=0

(y ∗ log(ŷi) + (1− y)log(1− ŷi)) (1.24)
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1.8 Figures

Figure 1.1: Table of diseases associated with epigenetic modifications. All references to
cited papers can be found in original paper where this figure was found [130].
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Figure 1.2: (Original Caption) Current genome-wide detection methods used to identify
RNA modifications. (A) In the left panel, antibody-based methods (RIP-seq) show how
RNA-modification enriched fragments are selected using pool-down, and compared to a
total fragmented sample (input), which is used for normalization, obtaining genome-wide
maps with peak resolution. (B) In the middle panel, RNA samples are pretreated with
chemical reagents (Chem-seq), which inhibit the reverse transcription reaction beyond the
chemically modified position. (C) In the right panel, mismatch signature-based methods,
which are based on the increased mismatch rates that occur upon reverse transcription at
certain RNA-modified positions, are depicted. [74]

20



Figure 1.3: (Original Caption) Schematic examples of first, second and third generation
sequencing are shown. Second generation sequencing is also referred to as next-generation
sequencing (NGS) in the text.[150]
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Figure 1.4: (Original Caption) Principle and corresponding example of detecting DNA
methylation during SMRT sequencing. (a) Schematics of polymerase synthesis of DNA
strands containing a methylated (top) or unmethylated (bottom) adenosine. (b) Typical
SMRT sequencing fluorescence traces from these templates. Letters above the fluorescence
trace pulses indicate the identity of the nucleotide incorporated into the growing comple-
mentary strand. The dashed arrows indicate the IPD before incorporation of the cognate
T, and, for this typical example, the IPD is ∼5x larger for mA in the template compared
to A. [51]
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Figure 1.5: The grey line is a standard ONT nanopore sequencing DNA signal trace and
the blue lines denote the events detected using the standard t-test event detection algorithm.

Figure 1.6: (Original Caption) Tested methylases with known recognition site (methylated
base underlined), depth of sequencing, methylation class, and other sample statistics.[108]
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Figure 1.7: (Original Caption) Overview of models. A. Architecture of hidden Markov
model used in this study. The match state, M (square), emits an event-k-mer pair and
proceeds along the reference and the event sequence, Insert-Y, Iy (diamond), emits a pair
and proceeds along the event sequence but stays in place with respect to the reference,
and Insert-X, Ix (circle), proceeds along the reference but does not emit a pair and stays
in place with respect to the event sequence. B. Variable-order HMM meta-structure over
an example reference sequence containing ambiguous methylation variants. Each C* in the
reference represents a potentially methylated cytosine. The structure expands around the
C* to accommodate all possible methylation states (in this case, C, 5-mC, and 5-hmC).
Each cell contains the three states shown in A, and transitions span between cells. The
transitions are restricted so that methylation states are labeled consistently within a path.
The match states are drawn with 4-mers for simplicity, but the model is implemented with
5-mers and 6-mers. Two-level (C) and three-level (D) hierarchical Dirichlet process shown
in graphical form. Circles represent random variables. The base distribution H is a normal
inverse-gamma distribution for both models. The Dirichlet processes G0, Gσn, and Gσni
are parameterized by their parent distribution and shared concentration parameters γB,
γM , and γL. The factors Θji specify the parameters of the normal distribution mixture
component that generates observation xji.[135]
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Figure 1.8: (Original Caption) A) An unrolled sketch of the neural network architecture.
The circles at the bottom represent the time series of raw signal input data. Local pattern
information is then discriminated from this input by a CNN. The output of the CNN is
then fed into a RNN to discern the long-range interaction information. A fully connected
layer is used to get the base probability from the output of the RNN. These probabilities
are then used by a CTC decoder to create the nucleotide sequence. The repeated compo-
nent is omitted. B) Final architecture of the Chiron model. We explored variants of this
architecture by varying the number of convolutional layers from 3 to 10 and recurrent layers
from 3 to 5. We also explored networks with only convolutional layers or recurrent layers,
1×3 conv, 256, no bias means a convolution operation with a 1×3 filter and a 256 channels
output with no bias added. [166]
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2.1 Abstract

We present a framework for the unsupervised determination of the number

of nucleotide modifications from nanopore sequencing readouts. We demonstrate the

approach can effectively recapitulate the number of modifications, the correspond-

ing ionic current signal levels, as well as mixing proportions under both DNA and

RNA contexts. We further show, by integrating information from multiple detected

modification regions, that the modification status of DNA and RNA molecules can

be inferred. This method forms a key step of de novo characterization of nucleotide

modifications, shedding light on the interpretation of various biological questions.

2.2 Introduction

Modified nucleotides play critical roles in diverse biological processes [94,

103]. Oxford Nanopore Technologies (ONT) nanopore sequencing monitors ionic cur-

rent signal shifts caused by various chemical structures of the nucleotides [35], which

opens up the possibility of routinely identifying DNA/RNA modifications [80]. Up

to now, modification calling softwares has been shown to identify 6mA [99, 135, 115],

5mC [99, 135, 115, 152], 5hmC [115] as well as the thymidine analogs EdU, FdU,

BrdU, IdU [112] in DNA, and 6mA [184], inosine (I) [184], 7-methylguanine (7mG)
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[154], pseudouridine (Q) [154] in RNA. All of these softwares require some models

of the expected signals for given modifications. For instance, nanopolish [152, 101],

signalAlign [135] and DNAscent [112] perform modification calling based on a priori

kmer models, which keep track of ionic current signals associated with all native and

modified kmers. DeepMod [99] and DeepSignal [115] are deep learning based modi-

fication detection algorithms, which identify modifications based on neural networks

trained on control datasets. However, these algorithms can only analyze modifica-

tions appeared in labelled training data, thereby considered as supervised method-

ologies. Meanwhile, for unidentified modifications, potential sites can be inferred

using unsupervised approaches, e.g. tombo [108] and nanocompore [89]. However

these unsupervised modification techniques do not include more detailed character-

izations, such as modification numbers, corresponding signal levels and proportions.

Understanding the number of modifications under specific sequence contexts can pro-

vide critical biological insights. For instance, during DNA demethylation, 5mC is

sequentially converted into 5hmC, 5-flucytosine (5fC), 5-carboxylcytosine (5caC) and

finally C. Therefore the number and corresponding proportion of modifications would

be indicator for DNA demethylation dynamics [13]. Meanwhile, from a technological

perspective, understanding the number of modifications is a crucial part of de novo

modification characterization, which is considered as one of the most important topics

in the nanopore sequencing community.

28



2.3 Materials and Methods

2.3.1 Data collection and preprocessing.

Nanopore sequencing datasets included here were composed of fast5 files,

which contain raw ionic current readouts from the sequencer, together with fastq

files, which contain sequences basecalled from corresponding fast5 records. The fast5

and fastq files are considered to be the “raw data” to be collected and preprocessed.

Specifically, in cases where fastq files were embedded in fast5 records, nanopolish

extract (0.11.1) [101], followed by porechop demultiplexing (0.2.4) [180] were used

to recover the fastq files. We used a Zymo native synthesized oligo nanopore se-

quencing dataset which was provided by authors of the original study [135]. We also

used a thymidine analogs-containing primer extension and native yeast genomic DNA

nanopore sequencing datasets which are available at GEO with accession number

GSE121941 [112]. Specifically, for the thymidine analogs-containing primer extension

dataset, EdU, FdU, BrdU and IdU were incorporated in the synthesized “head” oligo

(GAATTGGGCCCGCTCAGCAGACACAGAGCCTGAGCATCGCCGCGGAC, un-

derscore denotes positions where thymidine analogs were incorporated). For a specific

read, incorporated thymidine analog bases of the two positions are the same. And the

portions of EdU, FdU, BrdU, IdU and T were the same. Then primer extension was

performed, adding different extended “tail” sequences to different modifications, such

that these reads with different modifications can be separated by alignment. Our

RNA control dataset is a NA12878 cell line mRNA dataset (UCSC Run1 of Oxford
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Nanopore Human Reference Datasets) is available at: https://github.com/nanop

ore-wgs-consortium/NA12878/tree/master/nanopore-human-transcriptome

[184]. The RNA modification dataset is a E.coli 16S rRNA knockdown experiment

provided by authors of the original study [154]. Three sub-datasets were sequenced in

this study, containing reads from native, pseudouridine-deficient (Psi516) and m7G-

deficient (m7G) strains. For m7G strain, m7G at position 527 is substituted with G,

while for Psi516 strain, Q at position 516 is substituted with U [154]. For the m7G

and Psi516 strains, mutations only affect m7G at position 527 and Q at position

516, respectively, and such mutation will cause 100% of the reads to be aberrantly

modified.

2.3.2 Alignment, quality filtering and event table generation.

For the Zymo native synthesized oligo, thymidine analogs-containing primer

extension, native yeast genomic DNA and NA12878 cell line mRNA nanopore se-

quencing datasets, in total 38685, 3173426, 121266 and 1291028 reads were obtained.

Such reads in fastq files were first indexed using nanopolish index (0.11.1) [101],

to establish one-to-one correspondence between sequences and ionic current records.

The indexed fastq files were then aligned using minimap2 (2.16-r922) [92], followed

by samtools view, sort and index (1.9) [93], yielding sorted and indexed bam files.

Specifically, without loss of generality, for yeast genomic DNA and NA12878 cell line

mRNA datasets, only reads mapped to the first chromosome were used for down-

stream analysis. During the alignment, for ZYMO, primer extension, yeast genomic
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DNA and NA12878 cell line mRNA datasets, 35280, 17216, 117970 and 1269076 reads

were aligned, respectively. After alignment, reads with MAPQ score equal to 60 and

without secondary and supplementary alignments were kept for downstream analysis.

Specifically, for the thymidine analogs-containing primer extension dataset, only reads

mapped to the forward strand, where thymidine analogs reside, were kept. After such

data filtering, for ZYMO, primer extension, yeast genomic DNA and NA12878 cell

line mRNA datasets, 30241, 8450, 496 and 8640 reads were kept for downstream event

level analysis, respectively. The event tables were generated using nanopolish evental-

ign, by taking fast5 files, bam files, and indexed fastq files as described above. Event

tables contain kmer sequences and statistics of corresponding ionic current signals,

e.g. mean and standard deviation values. Here, we modified nanopolish evental-

ign so that it can also output per read event tables containing the position of each

kmer from the fastq sequence. We used these event tables to retrieve corresponding

CIGAR strings and Q-scores. Quality control results were shown in Supplementary

Figure 2.5, 2.6, 2.10 and 2.13-2.16. Specifically, filtered event tables for the 16S rRNA

dataset were provided by authors of the original study, therefore the above-mentioned

procedures were not applied.

2.3.3 Optimal kmer length determination

We first explored the kmer length that affects the signal (effective length).

So, in Figure 2.1, we analyzed both the native yeast genomic DNA and the NA12878

cell line mRNA datasets. Kmers with various lengths (4-8 for DNA, 3-7 for RNA) were
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generated based on the event tables (see previous section) and reference sequences.

The event tables contain mapping positions of kmers, based on which sequences cov-

ering +2 to -2 positions (prolonged kmers) were retrieved from the references. These

prolonged kmers were then trimmed centering around the original kmer. For in-

stance, for native yeast genomic DNA read 001082a7-d27b-418c-85f6-a0297adb346b,

the first signal event corresponded to ACGATT and mapped to position 11571, based

on which the prolonged kmer was determined as ATACGATTGC. This prolonged

kmer was further trimmed into, e.g. {ATACGATT, TACGATTG, ACGATTGC}

for length=8, annotated by the corresponding trimming strategy as {8 2 0, 8 1 1,

8 0 2}. Since {ATACGATT, TACGATTG, ACGATTGC} were trimmed from the

same signal event, they were corresponded to the same signal event level, in this case

71.89 pA. Following the same principle, we constructed other kmer trimming strate-

gies including {4 2 0, 4 1 1, 4 0 2, 5 1 0, 5 0 1, 7 1 0, 7 0 1}. Such kmers, together

with the above mentioned {8 2 0, 8 1 1, 8 0 2} and original kmer {6 0 0}, were all

corresponded signal event level 71.89 pA. Then, for each trimming strategy, across all

kmers included, we calculated the distribution of single event MAD (median absolute

deviation). As described in the main text, such MAD distributions were used for

determining optimal k for both DNA and RNA contexts.
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2.3.4 Assessing the contributions of kmer positions to the ionic current

shifts.

We then determined the effect of kmer positions on the signal, as shown in

Supplementary Figure 2.8 and 2.9. We analyzed the same datasets from the previ-

ous section. Pairwise signal differences within kmer pth position quadruplet {Np-

1ANk+1-p, Np-1TNk+1-p, Np-1GNk+1-p, Np-1CNk+1-p} were analyzed to assess

the contribution of position p, where k equals 6 (DNA) or 5 (RNA), integer p ranges

from 1 to k, Ns range in A, T, G, C and are identical for the same position, the

subscripts indicates number of independently varying Ns. For instance, for DNA

6mer 1st position quadruplet {ATGCAT, TTGCAT, GTGCAT, CTGCAT}, 6 pair-

wise absolute value differences of kmer event signal medians (A-T, A-G, A-C, T-G,

T-C, G-C) were calculated. Together with distance values generated from all other in-

cluded DNA 6mer 1st position quadruplets, the contribution of 1st position can then

be assessed. We then performed this analysis across all positions (1-6 for DNA, 1-5

for RNA) and used the distributions of absolute distance values as representations

of kmer positional contributions. We further assessed the contribution of different

nucleotides. For each nucleotide, e.g. A, at a given position p (Np-1ANk+1-p),

we calculated the average pairwise distance of event signal medians from the corre-

sponding 3 other nucleotides (Np-1TNk+1-p, Np-1GNk+1-p, Np-1CNk+1-p). The

distributions of positional average signal shift for each nucleotide were presented as

quantification of nucleotide-specific contributions.
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2.3.5 Skewness and Kurtosis determination.

Skewness and kurtosis values were calculated using skewness() and kurtosis()

functions in the CRAN R package e1071. As shown in Figure 2.2A-C, empirical signal

distribution of kmers usually have long tails caused by outlier events, which will bias

the determination of skewness and kurtosis. Therefore, for this specific analysis, we

filtered out the following kmer event signal data points:

si < medians− 3 ∗MADs, or si > medians+ 3 ∗MADs.

Subscript i denotes one specific signal event, and s denotes all corresponding

events of a specific kmer.

2.3.6 Gaussian mixture model order determination.

The order (number of components) of Gaussian mixture models were de-

termined by the statistical test reported in [25, 26], with the implementation of the

emtest.norm() function in the CRAN R package MixtureInf. The statistical test was

performed with the null hypothesis as order equals m0, against an alternative hypoth-

esis where order equals 2m0. We search across various null hypotheses (m0 equals

1-9 and 1-4 for primer extension and rRNA datasets, respectively) for empirical kmer

signal distributions, denoting the number of underlying Gaussian components of a

certain empirical kmer signal distribution. To ensure correct inference, we used a

more stringent filter to remove the following data points:

si < medians− 2 ∗MADs, or si > medians+ 2 ∗MADs.

as outliers, before performing the fitting, considering they might account
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for the “long tails” of the empirical kmer signal distribution, further introducing ad-

ditional Gaussian components as artifacts for determining number of modifications.

Subscript i denotes one specific signal event, and s denotes all corresponding events

of a specific kmer. Elbow points on order-p-value curves were used to determine the

number of components. P-values quantify significant levels of fitting performance

gained by modeling with 2m0 as opposed to m0 components. Elbow points on the

order-p-value curves denote marginal fitting performance gaining by including more

components, therefore considered as optimal number of components. Following such

principle, for both modified sites in the primer extension dataset, 7 was considered as

the optimal number of components. By filtering out components whose proportions

were less than 10%, for both sites 4 components remained, corresponding to T, FdU,

EdU and BrdU-IdU containing kmers. Removed Gaussian components usually ac-

count for noises. For instance, the 1st, 2nd and 7th components of GCCTGA fitting

were removed, and comparison between red (with all 7 components) and green (with

remaining 4 components) curves in Figure 2.3A showed such filtering majorly affected

the “tails” of the signal distribution. Actually signal levels of the removed Gaussian

components were 88.897, 89.692 and 97.499, which were in the range of the “tails”.

For CATCGC (Figure 2.3E), the signal levels of the three removed Gaussian compo-

nents were 110.597, 111.911 and 126.550, which were also in the range of the “tails”.

Specifically, BrdU- and IdU-containing kmers were considered as the same component

due to close signal levels, which was further quantified by U-test (Supplementary Fig-

ure 2.17A-F). For both modified sites in the rRNA dataset, 2 was considered as the
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optimal number of components, corresponding to the canonical and modified kmers

(Supplementary Figure 2.17G and H). Reads were annotated based on their modifi-

cation status in the original studies for both primer extension and rRNA datasets.

Therefore for every analyzed modification site, we took the original annotation of

reads covering this specific site, and calculated the mixing proportions of modified

kmers. We further calculated the median values (after filtering by equation 3 and 4)

of these modified kmers. Such proportion and median values were further used as

gold standard in evaluating the performance of Gaussian mixture model.

2.3.7 Clustering nanopore sequencing reads.

Only nanopore sequencing reads covering all targeted positions (position 25-

36 in the reference oligo sequence for primer extension dataset; position 511-515 and

522-526 in the reference transcript sequence for 16S rRNA dataset) were used for the

analysis. Nanopore sequencing positional kmer signal events were then represented

in read-position matrices, where reads in rows, targeted positions in columns and

corresponding signals as elements. Clustering analysis was performed based on such

read-position matrices.

2.3.8 Code availability.

Modified nanopolish is available at: https://github.com/adbailey4/n

anopolish/tree/cigar output. All other codes used to reproduce the results are

available at: https://github.com/hd2326/ModificationNumber.
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2.4 Results

2.4.1 Determining effective length for kmers

Shifts in ionic current (signal events) can be associated with nucleotide se-

quences (kmers) during their translocation through nanopores [152]. For multiple

methods, characterizing such kmer-current relationships is essential to interpreting

nanopore sequencing readouts. We first demonstrate that for our purpose an effec-

tive k for kmers (effective length for associating with the ionic current) equals 6 and 5

for DNA and RNA respectively, consistent with the information provided by Oxford

Nanopore Technologies. To determine an effective k for our datasets we associated

signal events to kmers of various lengths (4-8 for DNA, 3-7 for RNA). We chose a

k that minimizes variation in current observations between different instances of the

kmer while maximizing the numbers of distinct observations of each kmer. Specif-

ically, for every kmer, we used the event signal fluctuation (quantified by median

absolute deviation, MAD) as the criterion for determining the optimal k (see section

2.3). Here we analyzed a native yeast genomic DNA dataset [112] and one NA12878

cell line mRNA dataset [184] (see section 2.3), as examples for DNA and RNA scenar-

ios, respectively. Genomic and transcriptomic sequences were used in order to make

sure abundant sequence contexts could be included. As shown in Figure 2.1, the

MAD ecdf (empirical cumulative distribution function) curve started to dramatically

shift rightwards when k became smaller than 6 (DNA) or 5 (RNA). On the other

hand, marginal differences were observed among MAD distributions when k exceeded
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6 (DNA) or 5 (RNA). Taken together, these indicate the effective sequence length for

shifting ionic current during nanopore sequencing equals 6 and 5 for DNA and RNA.

We also quantified pairwise Kolmogorov-Smirnov d-values between the ecdf curves of

different kmer constructing strategies, as confirmation of the effective kmer lengths

(Supplementary Figure 2.7). We further assessed the contributions of kmer positions

to the ionic current shifts by measuring the difference in signal among constructed

sets of 4 kmers that are only different in 1 base at the examined position, e.g. ATG-

CAT, TTGCAT, GTGCAT, CTGCAT (see section 2.3). Results suggested for DNA

6mers, the 3rd position contributes the most, followed by the 4th position. The 2nd

and 5th positions have minor contributions and the 1st and 6th positions have least

contributions. For RNA 5mers, the 2nd position contributes the most, followed by

the 3rd and 4th positions, and the 1st and 5th positions have least contributions (see

Supplementary 2.8 and 2.9).

2.4.2 Empirical signal event distribution follows Gaussian

Gaussian has been widely used to model signal distribution. For instance

kmer models provided by ONT, as well as several widely-acknowledged modifica-

tion analysis algorithms [152, 112, 101, 108], assume the kmer signal distribution

follows Gaussian. Here, we further demonstrated, using quantitative measurements,

that the empirical distribution of nanopore sequencing kmer signal event means can

generally be modeled by a normal distribution N(median, MAD). Specifically, we

analyzed a Zymo synthesized oligo dataset [135] (see section 2.3), in order to make
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sure sequenced nucleotide molecules were well-controlled. Median and MAD are cal-

culated from all signal events of the corresponding kmer (Figure 2.2A). Compared to

N(median, MAD), N(mean, standard deviation) fittings tend to be “widened” and

“skewed” compared to the empirical distributions (Figure 2.2A). Such “widened” and

“skewed” fittings can be explained by deviated means and increased standard devi-

ations (Figure 2.2D and E), which are caused by “long tails” of kmer signal event

empirical distributions. We argue such “long tails” are outlier kmer signal events

well modeled by accounting for low sequencing quality and compromised alignment,

rather than being due to the nature of an underlying kmer signal event distribution.

We used the z-score computed from the kmer signal event median and MAD as a

measurement of the likelihood of being an outlier. As shown in Figure 2.2B, C and

Supplementary Figure 2.11, the likelihood of being an outlier is correlated with se-

quencing quality (quantified by Q-score) and affected by alignment status (quantified

by the number of matches in the CIGAR string), indicating that the “long tails”

are caused by outliers. Indeed most of the analyzed kmers can be well modeled by a

normal distribution, suggested by absolute kurtosis and skewness (see section 2.3): as

shown in Figure 2.2F, for 90.4% of analyzed kmers, such values ranged in the interval

[0, 0.5].

2.4.3 Gaussian mixture model-based modification number inference

Considering that the signal event distribution for a given kmer can be rea-

sonably modeled as normal, we can use a Gaussian mixture model to determine the
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number of “isoforms” for a specific kmer. If there’s no sequence variation, such as a

single nucleotide variation (SNV), then we can consider such “isoforms” as different

base modifications. The number of modifications correspond to the order (number

of components) of the Gaussian mixture model, determined by the statistical test

reported in [25] [26] (see section 2.3). As a proof of concept, we analyzed a thymidine

analog DNA primer extension dataset reported in [152]. Thymidines in the sequence

GAGCCTGAGCATCGCCG were substituted with EdU, FdU, BrdU or IdU, there-

fore we analyzed kmers GCCTGA and CATCGC (Figure 2.3A-D and E-H). For both

kmers, 4 components were detected (Supplementary Figure 2.17A and D, see section

2.3), corresponding to T, FdU, EdU and BrdU-IdU containing kmers. BrdU and

IdU were considered as one component by the Gaussian mixture model, due to the

similar kmer event signal levels (Figure 2.3A and H, see section 2.3). As negative

controls, we analyzed those non-modified sites, and 23 out of 26 sites were modeled

by a single Gaussian component (Supplementary Figure 2.18). We further quantified

the performance of a Gaussian mixture model in recapitulating signal event median

and MAD values, as well as mixing proportion, for each kmer. As shown, median val-

ues were well recapitulated (Figure 2.3B and F); mixing proportions were in general

recapitulated (Figure 2.3D and H); while inference on MAD values were unsatisfac-

tory (Figure 2.3C and G). Such biases were caused by the “long tails” of the kmer

signal event empirical distribution (Figure 2.3A and H), as previously discussed in

Figure 2.2. Although such unsatisfactory performance on MAD inference can be con-

sidered as a limitation of the method, we argue MAD values are not very informative
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for describing kmer signal events. As shown in Supplementary Figure 2.12 for kmer

signal events >95% of the MAD values fall into the range of [1, 3], with no significant

correlation with the corresponding median values. We speculate the variation of kmer

signal events is largely caused by the noise associated with the nanopore sequencing

platform itself, rather than an inherent characteristic of individual kmer signal events.

We further applied the Gaussian mixture model approach in analyzing RNA

modifications. Specifically, we analyzed the dataset reported in [154], where E.coli

16S rRNAs from native, pseudouridine-deficient (Psi516) and m7G-deficient (m7G)

strains were profiled. Compared to a native strain, in the Psi516 strain pseudouri-

dine in UCCGUGCCA site is substituted with U, while in the m7G strain m7G in

AGCCGCCGU site is substituted with G, therefore we analyzed kmers UGCCA and

GCCGC. Following the same analytical pipeline as previously discussed for the DNA

analysis (Supplementary Figure 2.17G and H, see section 2.3), we recapitulated the

signal event median values, as well as the mixing proportions of the corresponding

kmers (Supplementary Figure 2.19).

To further explore the detection limit of our approach, we performed down-

sampling as well as remixing analysis. As a proof of concept, we focused on the RNA

5mer UGCCA and corresponding counterpart QGCCA (Q stands for pseudouridine),

where we analyzed in Figure 2.3I. Specifically, we down-sampled to 100, 1000 and 2000

observations, at various QGCCA fractions, including 0.01, 0.05, 0.1, 0.25 and 0.5.

We performed such down-sampling as well as remixing 10 times. It’s clearly shown

in Supplementary Figure 2.20 that with as few as 100 observations, our approach
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can accurately recapitulate signal level and proportion of QGCCA component that

accounts for 25% of total observations. If we have 2000 observations, such detection

limits can further go down to only 1%. Taken together these suggested the high

robustness and sensitivity of our approach.

2.4.4 Associating identified modifications

Now that we characterized the per sequence site modification pattern, the

next question is how these modifications associate with each other. Therefore we

then performed sequencing read-level analysis to assess the association, e.g. the

co-occurrence, mutual-exclusiveness or independence, of the detected modifications.

Reads covering all the modified regions were represented in read-position signal matri-

ces, based on which hierarchical clustering was performed (see section 2.3). As shown

in Figure 2.4A, for the primer extension dataset, four major clusters (Cluster2-5, ac-

count for 96% of total reads) were detected. We further quantified the composition

of the four clusters, and as shown in Figure 2.4B and C, Cluster2-5 were majorly

composed by T, FdU, EdU and Br/IdU reads, respectively. These results further

suggested the expected co-occurrence of the T, FdU, EdU and Br/IdU (same modifi-

cation at both T-sites), consistent with the experimental design. As shown in Figure

2.4D, for the 16S rRNA dataset, three major clusters (Cluster1-3) were detected,

which were majorly composed of native, Psi516 and m7G reads, respectively. These

results further suggested the mutual-exclusiveness of the U and G (in Psi516 strain

pseudouridine is substituted with U, and in m7G strain m7G is substituted with G),
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again consistent with the experimental design.

2.5 Discussion

Nanopore sequencing has the potential to detect every canonical and modi-

fied nucleotide accurately. Without improved de novo detection techniques, progress

in modification detection will be dependent upon generating accurate labelled datasets

for every modification. Currently, there are over 40 known DNA modifications [155]

and over 150 known RNA modifications [15]. Also considering there might be modi-

fications that have never been identified, generating labelled training datasets would

be extremely challenging. Therefore, there is a pressing need for a de novo modifi-

cation analysis pipeline. Such a pipeline can further be divided into three sequential

steps, including de novo identification of modification sites, then de novo determi-

nation of modification numbers, and finally de novo inference on the corresponding

chemical structures. The first step has been successfully implemented by Tombo

[108] and Nanocompore [89], and our study focuses on the second step, providing

a novel algorithm for the community. Specifically, we first confirmed the effective

length of kmers for shifting ionic current signals during their translocation through

nanopores equals 6 and 5 for DNA and RNA respectively. We then demonstrated

the distributions of such kmer signals are mostly normal. A Gaussian mixture model

can therefore be used for unsupervised modification number determination. Such

a Gaussian mixture model-based approach can effectively recapitulate the number
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of modifications, the corresponding kmer signal event median values, as well as the

mixing proportions, in both DNA and RNA contexts. By integrating information

from multiple regions, we further assessed the association between the corresponding

modifications, which will shed light on modification status of DNA/RNA molecules,

allowing for insights into various biological questions. Now that we can accurately

determine number, signal levels and proportions of modifications, the next question

is what are the corresponding chemical structures for each determined modification

component. Answering this question would complete the pipeline for de novo modifi-

cation analysis, which should be one future direction to pursue. One major limitation

of the method, however, would be how to handle kmers with non-Gaussian signal dis-

tributions. For instance, as shown in Supplementary Figure 2.21, kmer TGATCC

appeared in 3 different sequence contexts of the Zymo dataset [135], and in all cases

a secondary peak was observed. Please note such secondary peaks were unlikely to

be caused by quality issues, thus they cannot be removed by excluding low-quality

reads. Such non-Gaussianity will introduce artifacts when analyzing modification

numbers. We speculate the non-Gaussianity could be something related to the bio-

physical characteristics of the nanopores, which are largely unknown. Therefore,

another future direction would be to find appropriate mixture models, for instance

the extreme value mixture model as reported in [104], to model the modifications on

non-Gaussian kmers.
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2.8 Figures
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Figure 2.1: We analyzed native yeast genomic DNA and NA12878 cell line mRNA datasets,
in both cases focusing on reads mapped to the first chromosome[135, 184]. Kmers with
various lengths (4-8 for DNA, 3-7 for RNA) were generated based on the event tables
and reference sequences. The event tables contain mapping positions of kmers, based on
which sequences covering +2 to -2 positions (prolonged kmers) were retrieved from the
references. Such prolonged kmers were then trimmed, centering around the original kmer,
into desired lengths. For each kmer, we calculated the mad of signal events. For kmers
with various lengths (4-8 for DNA, 3-7 for RNA) corresponding event signal mad (median
absolute deviation) the ecdf (empirical cumulative distribution function) curve are shown.
(A, B) Yeast genomic DNA and (C, D) NA12787 cell line mRNA datasets were analyzed
as examples for DNA and RNA scenarios. The mad ecdf distributions as opposed to kmer
lengths and constructing strategies are shown in (A, C) and (B, D).
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Figure 2.2: (A). Signal event distribution for an example 6-mer TGGTTA from the Zymo
dataset[135]. Solid curve, empirical distribution; dashed curve, normal distribution fitted
using mean and standard deviation (sd) of signal event; dotted curve, normal distribution
fitted using median and median absolute deviation (mad) of signal event. (B) Violin plot
showing z-score distribution under different q-score categories. Z-scores were computed
using median and mad of signal events. (C) Violin plot showing z-score distribution under
different CIGAR-string categories. Z-scores were computed using median and mad of signal
events. #M denotes number of matches in CIGAR strings. (D, E) Smoothscatter plots
showing signal event mean-median and sd-mad relationship of kmers. Red dashed line,
slope equals 1. (F) Smoothscatter plot showing signal event empirical distribution skewness-
kurtosis relationship of kmers.
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Figure 2.3: (A, B) Signal event distribution for the two modified kmers (GCCTGA and
CATCGC) from the primer extension dataset [152]. Solid black curve, empirical distribution
of all kmer signal events mapped to the specific position; solid red curve, fitted distribution
with all Gaussian components of the mixture model; solid green curve, fitted distribution
with Gaussian components that passed the mixing proportion threshold; dashed curves,
empirical distribution of T (blue), EdU (cyan), FdU (purple), BrdU (yellow) and IdU
(grey) kmer signal events. (A1, B1) -log10(p-value) of the fitting. #Components, numbers
of Gaussian components as the null hypothesis (see section 2.3). Accepted null hypotheses
were colored as red. (A2, B2) Mixing proportion of each Gaussian component. Removed
components were colored as red. (A3, B3) The -log10(p-value) of a pairwise two-sided U-test
among T, EdU, EdU BrdU and IdU kmer signal events. (A4-6, B4-6) Relationship between
empirical and fitted kmer signal event medians values, kmer signal event mads and mixing
proportions, respectively. Red dashed line, slope equals 1. (C, D) Signal event distribution
for the two modified kmers (UGCCA and GCCGC) from the 16S rRNA dataset [115].
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Figure 2.4: (A) Hierarchical clustering analysis on primer extension reads covering reference
position 25-36 (see section 2.3). Branches of dendrogram were color-coded according to the
cluster assignments. (B) Corresponding read annotation, including T- (cyan), IdU- (blue),
FdU- (green), EdU- (red) and BrdU-containing reads (black). (C) Read composition of
each cluster. (D) Hierarchical clustering analysis on 16S rRNA reads covering reference
position 511-515 and 522-526 (see section 2.3). Branches of dendrogram were color-coded
according to the cluster assignments. (B) Corresponding read annotation, including Psi516
(green), Native (red) and m7G reads (black). (C) Read composition of each cluster.
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2.9 Supplementary Information
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Figure 2.5: Quality control plots of the yeast genomic DNA dataset
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Figure 2.6: Quality control plots of the NA12787 cell line mRNA dataset.
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Figure 2.7: Pairwise Kolmogorov-Smirnov d-values between the ecdf curves of different
kmer constructing strategies.
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Figure 2.8: Assessing the contributions of DNA 6mer positions to the ionic current shifts.
(A) Positional contribution. For every 6mer, median of all corresponding events were consid-
ered as 6mer-specific event signal level, as described in Figure 3.7A. 6mers that are different
only at the examined position were collected into the same group. For every group, the
6 pairwise absolute value differences (A-T, A-G, A-C, T-G, T-C, G-C) were measured.
Density distribution of such differences across groups was then visualized (see section 2.3).
(B-G) Nucleotide-specific contribution of position 1-6. Same as in (A), for every 6mer,
median of all corresponding events were considered as 6mer-specific event signal level, and
6mers that are different only at the examined position were collected into the same group.
Then, for each nucleotide, e.g. A, the average pairwise distance of event signal level from the
corresponding 3 other nucleotides, e.g. T, G and C, were calculated. Density distribution
of such differences across groups was then visualized (see section 2.3).
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Figure 2.9: Assessing the contributions of RNA 5mer positions to the ionic current shifts.
(A) Positional contribution. (B-F) Nucleotide-specific contribution of position 1-5. Same
as Supplementary Figure 2.8, but in RNA context.
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Figure 2.10: Quality control plots of the Zymo dataset.
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AGCATT:21632
AATGCT:22110

K:1 S:−0.55
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Figure 2.11: Basic statistics of kmer signal event distribution. Same as Figure 3.1B-F, but
visualized in a strand-specific way. F, forward strand (blue); R, reverse strand (purple).

56



60 80 100

60
80

10
0

mean

m
ed

ia
n

60 80 100

60
80

10
0

mean

m
ed

ia
n

F
R

1 2 3 4 5 6 7

1
2

3
4

5
6

sd

m
ad

2 4 6 8 10

2
4

6
8

12

sd

m
ad

−6 −2 2 6

0
20

60

skewness

ku
rt

os
is

−5 0 5

0
40

80
12

0

skewness

ku
rt

os
is

−
30

−
10

10
30

0 4 8 12 17

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

q−score

z−
sc

or
e

−
40

0
20

0 4 8 12 17

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

q−score

z−
sc

or
e

−
30

−
10

10
30

1 2 3 4 5 6

● ● ● ● ● ●

#M

z−
sc

or
e

−
40

0
20

1 2 3 4 5 6

● ● ● ● ● ●

#M

z−
sc

or
e

Figure 2.12: Signal event median-mad relationship. F, forward strand (blue); R, reverse
strand (purple).
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Figure 2.13: Quality control plots of the primer extension dataset.
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Figure 2.14: Quality control plots of the pseudouridine-deficient 16S rRNA dataset.
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Figure 2.15: Quality control plots of the native 16S rRNA dataset.
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Figure 2.16: Quality control plots of the m7G-deficient 16S rRNA dataset.
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Figure 2.17: Determining optimal number of Gaussian mixture components. (A, D)
Order-p-value curves for the two modification sites in the primer extension dataset. For
both sites, 7 (marked as red) were considered as the optimal number. (B, E) Proportion
of each predicted Gaussian component. Components that were less than 10% were filtered
out (marked as red). (C, F) BrdU- and IdU-containing kmers were considered as the same
component due to close signal levels, quantified by pairwise u-test. As shown, for both
sites, BrdU-IdU pair gave the highest p-value. (G, H) Order-p-value curves for the two
modification sites in the rRNA dataset. For both sites, 4 (marked as red) were considered
as the optimal number.
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Figure 2.18: Unsupervised modification number detection for un-modified sites in 16S
rRNA dataset. Consistent with modified sites, elbow point on order-p-value curves were to
determine the optimal number of components for unmodified sites, as negative controls. All
26 non-modified sites in the “head oligo” (see “Data collection and preprocessing” subsection
of Materials and Methods for detail) weer analyzed, and 3 out of 26 were considered as false
positive by showing a big decent as order increased from 1 to 2.
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Figure 2.19: Unsupervised modification number detection for modified sites in 16S rRNA
dataset. Signal event distribution for the modified kmers UGCCA (A) and GCCGC (B)
from the 16S rRNA dataset. Solid black curve, empirical distribution of all kmer signal
events mapped to the specific position; solid red curve, empirical distribution of kmer signal
events from the m7G-deficient sample; solid green curve, empirical distribution of kmer
signal event from native sample; solid blue curve, empirical distribution of kmer signal
event from the pseudouridine-deficient sample; dashed curves, Gaussian mixture model-
fitted distributions. Numbers in red, green and blue denote sample-wise number of events
and percentages for corresponding samples. Numbers in cyan and purple denote the fitted
proportion of each component.
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Figure 2.20: Robustness and sensitivity analysis. (A) Boxplots of predicted QGCCA
fractions. Actual fractions were shown by horizontal red dashed lines. (B) Boxplots of
predicted UGCCA (blue) and QGCCA (black) signal levels (pAs). pAs determined from
all observations were shown by horizontal dashed lines.
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Figure 2.21: Signal distribution of example kmer TGATCC. In the Zymo dataset,
TGATCC appears in 3 different sequence contexts, including position 95, reverse strand
(black), position 444, forward strand (red) and position 504 reverse strand (blue). Solid
curves shows the signal distribution from all reads, and dashed curves shows the signal
distribution from high-quality reads (top 50% Q-score).
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3.1 Abstract

The characteristic ionic currents of nucleotide kmers are commonly used in

analyzing nanopore sequencing readouts. We present a graph convolutional network-

based deep learning framework for predicting kmer characteristic ionic currents from

corresponding chemical structures. We show such a framework can generalize the

chemical information of the 5-methyl group from thymine to cytosine by correctly

predicting 5-methylcytosine-containing DNA 6mers, thus shedding light on the de

novo detection of nucleotide modifications.

3.2 Glossary

Kmer, DNA or RNA sequence with length of k. Canonical kmer, kmer

sequences purely composed of non-modified nucleotides, including A, T, G, C for DNA

and A, U, G, C for RNA. Characteristic ionic current, ionic currents yielded by

a specific kmer are usually modeled by a Gaussian distribution, the mean of which is

referred to as the characteristic ionic current. Kmer model, a table recording kmers

and their corresponding nanopore sequencing characteristic ionic currents. To avoid

confusion, the “deep learning model” will be referred to as “framework” throughout

the paper. Framework, in this paper “framework” specifically refers to the deep

learning model used to predict the characteristic ionic current from kmer chemical

structures. GCN, Graph Convolutional Network. CNN, Convolutional Neural Net-

work. NN, Neural Network. RMSE, Root Mean Square Error. R, Pearson corre-
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lation. BA, Balanced accuracy. 5mC, 5-methylcytosine. 6mA, N6-methyladenine.

I, Inosine. SMILES, Simplified Molecular Input Line Entry System for annotating

chemical structures using character strings. Atom, specifically refers to non-hydrogen

atoms throughout the paper.

3.3 Introduction

During nanopore sequencing, consecutive nucleotide sequence kmers block

the pores sequentially, producing ionic currents [35]. Chemical modifications on nu-

cleotides additionally alter the ionic currents measured during nanopore sequencing

[135, 152, 100, 99, 111, 112, 115, 59, 81, 116, 89, 96, 154, 172, 184, 102, 106, 120,

157, 4, 56]. The characteristic ionic currents of kmers, which are represented in kmer

models, are used in interpreting nucleotide modifications [135, 152, 112, 184]. Up to

now, 29 [135, 152, 100, 99, 111, 112, 115, 59, 81, 116] and 30 [89, 96, 154, 172, 184,

102, 106, 120, 157, 4, 56] modifications have been successfully characterized in DNA

and RNA, respectively. To date, most modification analysis algorithms are based

on kmer models [135, 152, 101, 41]. However, such learning strategies struggle to

generalize knowledge between related kmers. For example, our previous hierarchical

Dirichlet process approach could be structured to learn associations between kmers

with specific shared properties, e.g. by numbers of pyrimidine bases, but could not

generally learn relationships between arbitrary chemical similarities [135]. Moreover,

such approaches necessarily represent base modifications as distinct, unrelated char-
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acters. The upshot being that such kmer character-based models require extensive

training data and are unable to de novo predict the impact of a chemical modification.

Given that the number of possible kmers increases polynomially with the number of

modifications being modeled, it is extremely challenging to generate sufficient control

data for such models, especially considering that more than 50 and 160 nucleotide

modifications have been verified in DNA and RNA respectively [155, 15].

To start to tackle this problem, we propose a graph convolutional network

(GCN)-based deep learning framework [46, 79] for predicting kmer characteristic ionic

currents from corresponding kmer chemical structures. We confirm that the proposed

framework is able to represent individual kmer chemical modules, such as the phos-

phate group, the sugar backbone, as well as the nucleobase methyl and amine groups.

We further demonstrate that this framework can infer full kmer models even when

the training data does not include all possible kmers. This opens up the possibil-

ity of modeling kmers that are under-represented in control datasets. We also show

the framework can generalize the 5-methyl group in thymine to cytosine, thereby

accurately predicting the characteristic ionic currents of 5-methylcytosine (5mC)-

containing DNA 6mers. Such generalization of chemical information is a reason for

optimism about the potential for de novo detection of nucleotide modifications.
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3.4 Results

3.4.1 Architecture of the deep learning framework

Our deep learning framework consists of three groups of layers, including

GCN layers, convolutional neural network (CNN) layers, and one fully connected

neural network (NN) layer. As shown in Figure 3.1A, the kmer chemical structures

are first represented as graphs, with atoms as nodes and covalent bonds as edges.

The atom chemical properties are then assigned as node attributes. Based on such

graphs, GCN layers extract one chemical feature vector for every atom, by visiting

its immediate graph neighbors. By this means, after several GCN layers, atom fea-

ture vectors will contain chemical information for all atoms within a certain graph

distance. Specifically, this distance equals the number of GCN layers applied. Con-

sidering the small encoding distance of each layer of a GCN, to improve the encoding

efficiency of the framework, CNN layers are then applied to summarize relatively

long-range chemical information above the GCN layers. The output matrices of the

final CNN layer are then “flattened” as feature vectors. Such feature vectors are then

passed to the final fully connected NN layer to summarize kmer-level information and

finally predict the kmer characteristic ionic currents (see section 2.3). For DNA and

RNA, the corresponding best-performing architecture in hyper-parameter tuning was

selected for downstream analysis (see 3.6).
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3.4.2 Kmer-level generalization

We first confirmed the proposed framework can accurately predict char-

acteristic ionic currents of kmers from their chemical structures. To do so, we per-

formed a down-sample analysis on the canonical DNA 6mer model provided by Oxford

Nanopore Technologies (ONT, see section 3.6), by randomly partitioning canonical

DNA 6mers with various train-test splits. For each train-test split group, we per-

formed 50-fold cross-validation and used root mean square error (RMSE) and Pearson

correlation (r) to quantify the goodness-of-fit (see section 3.6). As shown in Figure

3.1B, Supplementary Figure 3.6 and Supplementary Table 3.11.1, the performance

stabilized as more than 40% of DNA 6mers were included in the training. Specifi-

cally, for DNA 6mers only used in the test, average RMSE and Pearson correlation

reached 1 and 0.995, respectively. Such a result indicated on average 40% of randomly

selected DNA 6mers contain sufficient information to recapitulate the full DNA 6mer

model.

We next explored how training specific kmer subsets influence the ionic cur-

rent predictions. Specifically, we trained the framework using either the DNA 6mers

that a) do not contain a given nucleotide (base-dropout), b) do not specify a nucleotide

at a given position (position-dropout) and c) that are combined from different base-

dropouts (for instance using the union of A-dropout and T-dropout kmers, such that

kmers containing both A and T would be excluded, but not kmers containing either A

or T, noted as A-T model combination, see section 3.6 and Supplementary Note 3.11.2

for details). As with the down-sample analysis for each group in a-c) 50 independent
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repeats were performed, and goodness-of-fit was used to evaluate the performance.

As shown in Figure 3.1B and Supplementary Figure 3.6, base and position-dropouts

significantly decreased the prediction power. Moreover, dropouts in 3rd and 4th po-

sitions contributed the most to prediction power decrease, followed by 2nd and 5th

positions, consistent with [41]. Model combinations, on the other hand, in general

had a minor influence on the prediction power.

The above-mentioned analyses together suggest, once properly trained with

sufficient and diverse 6mers, the kmer-level generalizability of the framework. To

further validate and extend our framework we performed all the above-mentioned

analyses using RNA, switching to using 5mers instead of 6mers to match the available

training data. Considering the significantly smaller amount of training data (1/4th

the number of distinct RNA 5mers vs DNA 6mers), the prediction power of the

RNA architecture is compromised. However, once trained with a similar number of

kmers, the RNA architecture yielded comparable prediction power. For instance, the

RNA 0.95-0.05 (972 training kmers) and DNA 0.25-0.75 (1024 training kmers) train-

test splits yielded comparable performance on test data. Such a result suggests the

validity of our proposed architecture (see section 3.6, Supplementary Figure 3.7 and

Supplementary Note 3.11.3).

Such kmer-level generalizability could facilitate nucleotide modification de-

tection by greatly reducing the required control data to generate reliable full modification-

containing kmer models. As a proof-of-concept, we trained the DNA deep learning

architecture with all canonical 6mers plus 1%, 5%, 10%, 30%, 50%, 70%, 90% of
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randomly selected 5mC-containing 6mers. The characteristic ionic current signals

of such 5mC-containing DNA 6mers were obtained from the nanopolish model as

reported in [152, 101]. For each training group 50 independent repeats were per-

formed (see section 3.6). As shown in Figure 3.1C and Supplementary Figure 3.8,

decent goodness-of-fit could be obtained when as few as 5% of 5mC-containing DNA

6mers were used as training data. Specifically, for test DNA 6mers, average RMSE

and Pearson correlation reached 1.2 and 0.995, respectively. Furthermore, models

trained with knowledge of 50% 5mC-containing DNA 6mers performed about as well

as models trained with 90%.

3.4.3 Chemical group-level generalization in DNA 5mC de novo predic-

tion

We noted that performance of the model on held out 5mC kmers trained

with just 1% of 5mC kmers was better than chance. This raised the question of if

chemical group-level information was being usefully generalized among nucleotides by

our framework, potentially allowing the 5mC to be predicted de novo, without ever

having been seen by the model. As a chemical derivative of cytosine, 5mC contains an

additional methyl group at the 5th position (5-methyl) of the pyrimidine ring. This

5-methyl group is shared between 5mC and thymine. We thus hypothesized that 5mC

can be generalized by combining the pyrimidine ring from cytosine and 5-methyl group

from thymine. As a proof-of-concept, we trained the framework with all canonical

DNA 6mers to make de novo predictions on 5mC-containing DNA 6mers. Similar to
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previous analyses, 50 independent repeats were performed, and the prediction power

was first quantified by goodness-of-fit against the above-mentioned nanopolish model.

As shown in Figure 3.1D and Supplementary Figure 3.8, although goodness-of-fit of

5mC-containing DNA 6mers were significantly worse than canonical counterparts,

decent performance could still be obtained (average RMSE and Pearson correlation

reached 1.8 and 0.993, respectively). We also compared the goodness-of-fit between

canonical and 5mC-containing DNA 6mers, and as shown in Supplementary Figure

3.9, a positive correlation trend could be observed. Such a result confirmed that no

overfitting was introduced during architecture-training with canonical DNA 6mers,

and further suggested 5-methyl generalization.

3.4.4 Predictive analysis

We next performed “predictive analysis” to test whether the DNA 6mer

models inferred by our deep learning framework could be used to correctly predict

DNA C/5mC status at a per-read, per-site resolution from ionic currents (“predictive

accuracy”, see section 3.6). C/5mC-sites to be predicted were confirmed by bisulfite

sequencing (see section 3.6). We also quantified the predictive accuracy with the

above-mentioned nanopolish model as a baseline control (see section 3.6). As shown

in Figure 3.1E, average predictive accuracy, quantified by balanced accuracy, became

comparable with baseline control with 50% of imputed 5mC-containing 6mers. Taken

together, these results confirmed the kmer-level generalizability of our framework, as

well as suggesting that reliable modification-containing kmer models can be built
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with significantly less control data once facilitated by our methodology. Such a re-

sult confirmed the successful 5-methyl generalization. More confusion matrix-based

prediction evaluations can be found in Supplementary Figure 3.10.

3.4.5 The encoding of chemical structures

To better understand how chemical structures were encoded we visualized

DNA 6mer atom similarity matrices. Specifically, we trained the proposed framework

with all canonical DNA 6mers. We then calculated and visualized the Pearson corre-

lations of the feature vectors derived by the final GCN layer as atom-level similarities.

As shown in Supplementary Figure 3.11, we visualized 10 randomly chosen canonical

DNA 6mers. Taking CGACGT as an example, as shown in Figure 3.2A and 3.2B,

atoms were in general aggregated by chemical contexts. For instance, for the first cy-

tidine monophosphate in CGACGT, atoms #0-4 were tightly clustered with average

r>0.9, recapitulating the phosphate group. Atoms #5-8 and #17-18 also clustered

with average r>0.9, denoting the deoxyribose backbone. Among cytosine atoms #9-

16, #9 nitrogen atom connected the nucleobase to the deoxyribose backbone, atoms

#10-11 denoted the C=O group, and atoms #12-16 composed the C=C-C=N con-

jugation system and the covalently bonded amine group. Similarly, atoms in other

nucleotides can also be clustered into phosphate groups, deoxyribose backbones and

nucleobases. Within the nucleobases, chemical modules including chemical groups

and conjugation systems can further be dissected. Such a phosphate-deoxyribose-

nucleobase pattern repeated and constituted DNA 6mers.
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We also examined the inter-nucleotide similarities of different components.

As shown in Figure 3.2A and 3.2B, in general high similarities (average r>0.9) were

observed among phosphates, as well as deoxyriboses from different nucleotides. Mean-

while, chemical modules sharing similar structures, e.g. the conjugation systems of

adenines, cytosines and guanines were more similar to each other. On the other hand,

low similarities (average r<0.5) were observed between chemical modules with dis-

tinct structures, e.g. the cytosine C=O group and the thymine methyl group. Taken

together, these results suggest that the GCN layers in the proposed framework can

effectively capture features interpretable as individual chemical modules.

We further visualized the atom-level similarity matrices of 5mC-containing

DNA 6mers, aiming to understand the generalization of methyl group among thymine

and 5-methylcytosine. We thus trained our deep learning framework with all canoni-

cal DNA 6mers, calculated the Pearson correlations of the feature vectors derived by

the final GCN layer, and further visualized such atom-level similarity matrices of 10

randomly selected 5mC-containing DNA 6mers (Supplementary Figure 3.12). Tak-

ing GT(5mC)AGA as an example (Figure 3.2C and D), the phosphate-deoxyribose-

nucleobase repetitive pattern was recapitulated. Within nucleobases, high similarities

(average r>0.9) were again observed among chemical modules with similar structures.

Specifically, strong similarities (average r>0.9) were observed between thymine (#37-

38) and 5mC (#57-58) methyl groups (Me). In addition, such methyl groups were

uniquely encoded as they were less correlated with any other DNA 6mer chemi-

cal modules (average r<0.5). We also quantified the atom-level similarity between
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GT(5mC)AGA and corresponding canonical counterpart GTCAGA. As shown in Sup-

plementary Figure 3.13, strong similarities (average r>0.9) were observed between

GT(5mC)AGA and GTCAGA thymine methyl groups, as well as the 5mC methyl

groups from GT(5mC)AGA and thymine methyl groups from GTCAGA. These obser-

vations together suggested the successful chemical information generalization. Notice-

ably, the methyl groups were encoded with the pyrimidine backbone C=C modules.

Such a result suggests that the GCN-encoding is driven by chemical context, which

further implies when generalizing one specific chemical group among different nu-

cleotides, the corresponding chemical contexts in which such chemical group resides

should be the same.

Finally, we projected kmer atom feature vectors into the tSNE space, in

order to summarize the atom-level similarity matrices further providing a global vi-

sualization of kmer atoms. As shown in Figure 2B and E, atoms under the same

chemical context clustered together, e.g. phosphate group phosphate atoms (#1,

#20, #42, #63, #82, #104 in B and #1, #23, #43, #63, #84, #106 in F), de-

oxyribose ring oxygen atoms (#7, #26, #48, #69, #88, #110 in B and #7, #29,

#49, #69, #90, #112 in E), as well as NH3 group nitrogen atoms (#14, #35, #55,

#76, #97 in B and #16, #56, #76, #99, #119 in E). Specifically, as shown in E, in

5mC-containing DNA 6mer GT(5mC)AGA, T-methyl group carbon atom #38 and

5mC-methyl group carbon atom #58 clustered together, along with pyrimidine back-

bone C=C module atoms #37 and #39 in T, as well as #57 and #59 in 5mC. Taken

together, these results confirm that GCN could properly encode chemical structures
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based on the corresponding chemical contexts.

3.4.6 Analyzing the 2mG site in E.coli 16S rRNA

Our deep learning framework could potentially shed light on previously un-

derstudied, less prevalent nucleotide modifications. As a proof-of-concept, we ana-

lyzed 2mG, which can be represented as the purine ring in guanine with the N2-

methyl group in 6mA. Specifically, we generated a RNA 5mer model using canonical

and 6mA-containing kmers (see section 3.6). We then predicted the characteristic

ionic current signals of 2mG-containing RNA 5mers (see section 3.6). To test our

predictions, we analyzed nanopore sequencing reads of E.coli 16S rRNA transcript

J01859.1, which contains an annotated 2mG at position 1206 (see section 3.6). As

shown in Supplementary Figure 3.14, our predictions recapitulated the characteristic

ionic current signals of 2mG-containing and pairing canonical RNA 5mers (see section

3.6). Moreover, we confirmed that such predicted characteristic ionic current signals

could be used to correctly determine the G/2mG modification status (see section 3.6).

3.5 Discussion

We propose a GCN-based deep learning framework for associating kmer

chemical structures with corresponding characteristic ionic currents. We show that

such a framework can recapitulate full kmer models from partial training data, thus

greatly facilitating modification analysis by reducing the amount of required control

data. Specifically, for cases where a small proportion of random kmers are under-
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represented in control data, we can apply the same principle as the down-sample

analysis to learn around these training deficiencies. For cases where comprehensive

control datasets are available only for single modifications, we could apply model

combination (as we showed for individual nucleotides) to model kmers containing

multiple modifications simultaneously.

We further demonstrated that our framework can represent novel modifi-

cations by generalizing encoded chemical groups between nucleotides, thus shedding

light on de novo modification detection. However, the current model is not without its

limitations. For example, the proposed framework encodes chemical groups, e.g. the

methyl groups in thymine and 5mC, as well as the amine groups in cytosine, guanine

and adenine, with covalently bonded “backbone atoms”, showing a strong chemi-

cal context-specificity (Figure 3.2 and Supplementary Figure 3.11, 3.12). Thus, the

current framework cannot properly handle “stacked” chemical groups. For instance,

the methylamine group in N6-methyladenine (6mA) cannot be correctly encoded by

simply stacking methyl with amine. As shown in Supplementary Figure 3.15, substi-

tuting A with 6mA was predicted to decrease characteristic ionic currents, which is

the opposite of a previous study [111]. Therefore the extensibility of the framework

is largely limited. To overcome such a limitation, controlled nanopore sequencing

profiles of diverse nucleotide modifications are needed, in addition to the modeling of

other chemical interactions.

Deep learning-based approaches have emerged as powerful tools for detecting

nucleotide modifications from nanopore sequencing readouts. Compared to kmer
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model-based counterparts, deep learning-based approaches are reported to have better

accuracy and less computational resource consumption [99] [115]. Recently, ONT

released the megalodon algorithm 1, which can drastically increase the accuracy for

5mC identification (Supplementary Figure 3.10, see section 3.6). Thus, one potential

future extension of the paper would be using the learned models as components of a

larger, recurrent deep neural network.

Another potential future direction would be generalizing the proposed frame-

work to handle both DNA and RNA kmers. Due to different translocation speed, the

nanopore sequencing ionic currents of DNA and RNA are not directly comparable

[39]. Therefore, advanced deep learning frameworks which can take both kmer chem-

ical structures and nanopore sequencing experimental setups are needed. Considering

DNA and RNA share several non-canonical nucleobases, e.g. Inosine (I) [1], we might

combine the ribose in RNA and I in DNA to reconstruct I-containing RNA 5mers,

and vice versa for I-containing DNA 6mers. By this means, required RNA control

nanopore sequencing reads, which are usually challenging to obtain, can be largely

compensated. Meanwhile, such generalization would largely diversify the chemical

contexts that can be represented, further facilitating the de novo modification anal-

ysis.

1https://github.com/nanoporetech/megalodon
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3.6 Methods

3.6.1 Methods summary

The deep learning framework proposed here aims to associate kmer chemical

structures with corresponding characteristic ionic currents. The chemical structure

refers to the chemical properties of kmer atoms and how these atoms are covalently

bonded. Characteristic ionic current, on the other hand, refers to the average ionic

current that a specific kmer produces during nanopore sequencing.

Thus, in the following sections, we first describe how the chemical struc-

tures were represented (“graph representation of kmer chemical structures”). We

then describe the deep learning framework used in the study (“architecture of the

deep learning framework”, “training procedure” and “hyper-parameter tuning”). We

further describe analyses performed to evaluate the performance of the proposed

framework (“down-sample, base-dropout, position-dropout and combination anal-

ysis”, “predicting modification-containing kmers”, “human genome C/5mC-status

predictive analysis” and “E.coli 16S rRNA 2mG-site analysis”). Finally we describe

all required resources for the study (“kmer models”, “data availability” and “code

availability”).

3.6.2 Graph representation of kmer chemical structures

Following the workflow described in [46], kmer chemical structures were

first described by SMILES (Simplified Molecular Input Line Entry System) strings,
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which were assembled by concatenating SMILES strings of individual nucleotides, as

summarized in Table 3.1. Each nucleotide base can be described by several SMILES

strings. The SMILES strings presented in the table below were selected due to the

ease of combining them into complete kmers. Based on information provided by

Oxford Nanopore Technologies, as well as a previous study [41], DNA and RNA is

represented by 6mer and 5mer, respectively. An “O” was then added to the end of

each concatenation to represent the residual unbonded hydroxyl group on the sugar

backbone.

We then represent the SMILES string of each kmer as a graph noted as

G(A,X). Specifically, the topology (atom order is determined by SMILES string) of

each kmer chemical structure was represented by an adjacency matrix A, with Ai,j

equals 1 iff the ith and jth atoms were covalently bonded. Meanwhile, for every atom

in A, the corresponding chemical properties were represented by feature matrix X,

with Xi recording the chemical property vector for the ith atom. Atom chemical

properties included in the study were summarized in Table 3.2. Therefore, the GCN

has encoded as input a chemical feature matrix X with the guide of chemical topol-

ogy matrix A, representing kmer chemical structures. Notably, for convenient GCN

implementation, the size of A and X is kept constant. Due to the variable number of

atoms across kmers, A and X were thereby padded with zeros based on the largest

kmers. Specifically, the A matrix was padded at the end of its rows and columns,

with dim(A) is 133, 133 and 116, 116 for DNA and RNA, respectively. While the X

matrix was padded at the end of its rows, with dim(X) is 133, 8 and 116, 8 for DNA

82



and RNA, respectively. Note that the kmer representation is guided by the non-zero

elements (covalent bonds) in A, thus such padding will not affect the GCN encoding.

3.6.3 Architecture of the deep learning framework

The Graph Convolutional Network (GCN) layers of our framework were

built based on the procedure described by [46]. Fast approximate convolutions on G

were used to create a graph-based neural network f(X,A), following the propagation

rule:

H l+1 = σ
(
Ũ

1
2 ÃŨ

1
2H lW l

)
(3.1)

σ() is the activation function applied to each layer. Here, the activation

function used was Exponential Linear Unit (ELU). Ũi,j =
∑

j Ai,j the degree matrix

for each atom in the graph. Ã = A + I adds self edges to each of the atoms. The

Ũ
1
2 ÃŨ

1
2 transformation prevents changes in the scale of the feature vectors [79] and

constructs filters for the averaging of neighboring node features. H and W denote

the output (activation vectors) and weights of each GCN layer, respectively. The

corresponding superscript represents the layer index. H0 = X, however subsequent

H represent the GCN derived features.

The intuition of the graph convolution process is described as follows. For

every kmer, chemical properties of atoms, together with their covalently bonded neigh-

bors, will be convoluted with the guidance of G. Such graph convolution yields an

activation matrix H, following the aforementioned propagation rule. H is an atom-
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by-feature matrix, with dimension 133, N and 116, N for each of the DNA and RNA

kmers, respectively. Here N equals the number of nodes of the GCN layer, which

determines the number of features to be derived. The selection rule for N is described

in the following section. As more GCN layers are stacked, the graph convolution pro-

cess is repeated. The H matrix will thus contain chemical information of all atoms

within a certain graph distance, which equals the number of GCN layers applied. By

this means, “chemical modules” composed of several atoms linked by covalent bonds

are encoded.

Considering the small encoding distance of a GCN, for a better encoding

efficiency we wanted additional layers that can quickly summarize atom information.

We thus applied standard 1-D CNN layers with Rectified Linear Unit (ReLU) acti-

vation right after the GCN layers. Average Pooling [87] was applied on the output of

each 1-D CNN layer. Average Pooling takes the average of each 2x2 patch of the CNN

output matrix. Specifically, output dimension of the first CNN layer equals 133-K+1,

N’ and 116-K+1, N’ for DNA and RNA kmers, respectively. Here K is the CNN

kernel size and N’ is the node number of the final GCN layer. Output dimensions of

subsequent CNN layers equals m-K+1-2+1, n-2+1, where m, n denotes the output

dimension of the previous layer, and 2 denotes the Average Pooling patch size. The

output from the final 1-D CNN layer, after Average Pooling, was passed to a Flatten

layer, which converts the final 1-D CNN output matrix to a 1-D feature vector in

a row-wise fashion. The NN layer then takes the flattened vector as input, thereby

summarizing information about the entire kmer, and producing a highly informative
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representation. Elements of the NN layer output vector are linearly combined as the

final pA value.

3.6.4 Training procedure

Our framework was trained with the Keras [30] framework with TensorFlow

backend using the Adam [78] optimizer for gradient descent optimization. The frame-

work was allowed to train for a maximum of 500 epochs. To control for overfitting,

EarlyStopping [189] was used by monitoring the increase in validation loss. Early

termination of training was reached if the validation loss was increasing for 10 con-

secutive epochs, indicating that the framework had reached maximum convergence.

Mean Squared Error (MSE) was used as the loss function during the training process.

Meanwhile, a 10% random dropout was applied after each layer, to further prevent

overfitting [156]. In the following experiments the exact same training routine was

used.

3.6.5 Hyper-parameter tuning

In order to determine the optimal architecture, we performed hyperparam-

eter grid search. The search involved the hyperparameters shown in Table 3.3. We

used the following scaling factor to determine the number of nodes in each GCN/CNN

layer of our framework:

n = 16 ∗ 2l−1 (3.2)
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where l is the layer index of the GCN, CNN, and NN layer groups. For instance, the

number of GCN layers determined to yield the best performance for DNA were 4. The

number of nodes for each GCN layer was therefore 128, 64, 32, and 16. The same

logic was applied to all other layer groups. We performed 10-fold cross validation

for each hyper-parameter combination. The combination that produced the lowest

average RMSE across all folds was adopted as the optimal architecture. The optimal

DNA framework has 4 GCN layers, 3 CNN layers with a kernel size of 10 and 8192

nodes in the NN layer. The optimal RNA framework has 4 GCN layers, 5 CNN layers

with a kernel size of 10 and 8192 in the NN layer.

3.6.6 Down-sample, base-dropout, position-dropout and combination anal-

ysis

For down-sample analysis, we performed random train-test splits in 5% in-

tervals, noted as 0.95-0.05, etc. For base-dropout analysis, we created training sets by

removing certain bases. Such train-test split creates 729/4096 (18%) training kmers

and 3367/4096 (82%) test kmers for DNA, and 243/1024 (24%) training kmers and

781/1024 (76%) test kmers for RNA. It is important to note that everytime a base is

dropped from the training set it is retained in the test set. Similar to base-dropout,

the position-dropout adds one more dimension, which is the position of the nucleotide

base. For a given position-dropout, the testing kmers are all kmers with the dropout

nucleotide covering the target position, and the training kmers are the remaining

kmers. Such position-dropout creates 3072/4096 (75%) training kmers and 1024/4096
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(25%) test kmers for DNA, and 768/1024 (24%) training kmers and 256/1024 (25%)

test kmers for RNA. It is important to note that bases dropped in a specific position

in the training appear in the same position in testing. For combination analysis, we

trained the framework by combining any of the two base-dropout kmer sets. For

instance, all G and C-dropout DNA 6mers, which was noted as G-C. Such analysis

creates 1394/4096 (34%) training kmers and 2702/4096 (66%) test kmers for DNA,

and 454/1024 (44%) training kmers and 570/1024 (56%) test kmers for RNA. For

each above-mentioned train-test split, in order to perform statistical analyses, we

produced 50 independently trained frameworks for each experiment. Specifically, we

performed 50-fold cross validation in the down-sample analysis, considering for each

fold the train kmers were randomly selected. As for other analyses, we performed 50

independent repeats using the same training kmer sets. The variability among repeats

came from the stochasticity of the training process. To confirm the robustness of our

architecture, we further performed two independent replicates (run-1 and run-2) of

50.

3.6.7 Predicting modification-containing DNA 6mers

For the 5mC imputation experiment, the framework was trained on all 4096

A, T, C, G DNA 6mers, plus 1%, 5%, 10%, 30%, 50%, 70%, 90% of randomly selected

5mC-containing DNA 6mers, following the training process as described above. In or-

der to perform statistical analyses, we produced 50 independently trained frameworks

(50 independent repeats) for each category, with in total two independent replicates
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(run-1 and run-2) of 50. Such frameworks were then applied on all 15625 possible A,

T, C, G, 5mC DNA 6mers. For the chemical group-level generalization experiment,

the framework was trained on all 4096 A, T, C, G DNA 6mers following the training

process as described above. In order to perform statistical analyses, we produced 50

independently trained frameworks (50 independent repeats), with in total two inde-

pendent replicates (run-1 and run-2) of 50. Such frameworks were then applied on

all 15625 possible DNA 6mers, including those composed of A, T, C, G, 5mC and A,

T, C, G, 6mA.

3.6.8 Predictive analysis of predicted kmer models

Overview

To test whether the generated kmer models can be used to correctly in-

terpret C-5mC status from nanopore readouts, we performed predictive analysis by

using signalAlign to make per-read per-base predictions [135]. For a given reference

position, signalAlign can produce posterior probabilities for all possible bases based

on a provided kmer model. Thus, for DNA 6mer models generated as described

in “predicting modification-containing DNA 6mers”, the empirical nanopolish [152]

[101] model obtained as described in “kmer models”, we allowed signalAlign to pre-

dict between C and 5mC. Considering no significant goodness-of-fit differences were

observed between run-1 and run-2, only models generated in run-1 were used here.

All predictive analyses performed in this paper were within the human NA12878 cell

line.
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Selecting prediction sites

The prediction sites were selected among the entire human genome. To avoid

artifacts caused by ambiguous genomic DNA modification status, we only focused on

confident 5mC sites and canonical genomic regions in our analysis. Besides 5mC,

other modifications exist in genomic DNA. Considering extremely low fractions of

other modifications, e.g. only 0.05% are modified as 6mAs in the human genome

[187], we define ”non-5mC” sites as ”canonical regions” during predictive analysis.

Among these canonical regions, we used the Poisson process with lambda equals 50

to randomly select genomic sites for signalAlign to predict. Such selected sites were

at least 12 nucleotides apart, avoiding potential interference by the neighbors. We

thus obtained confident 5mC and C sites for signalAlign prediction. The genomic

DNA C-5mC status was determined by analyzing two independent NA12878 cell line

bisulfite sequencing datasets [44]. A C-site was determined as confidently methylated

if, for both bisulfite sequencing datasets, 95% of reads were methylated with at least

10x coverage. On the other hand, a C-site was considered confidently unmodified

if, for both bisulfite sequencing datasets, at most 1% of reads were methylated with

at least 10x coverage. Such analysis covered 3367/3367 canonical C-containing DNA

6mers, and 3950/6144 single 5mC-containing DNA 6mers.

Selecting nanopore sequencing reads

We then ran signalAlign with reads reported in the nanopore consortium

NA12878 cell line native genomic DNA datasets [73] covering the above-mentioned
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prediction sites. Considering the computational complexity of signalAlign, we per-

formed the following filtering steps to use the fewest reads to cover the most kmers.

First, we calculated read-level kmer coverage. For example, the center 5mC-site of

DNA read CAGAT(5mC)ACAGA was selected for signalAlign prediction. 6mers

CAGAT(5mC), AGAT(5mC)A, GAT(5mC)AC, AT(5mC)ACA, T(5mC)ACAG and

(5mC)ACAGA span such 5mC-site, therefore considered as being covered. Based on

such read-level kmer coverage, we iteratively selected reads that covered the least

frequently covered kmers. Thus, building a read set which covers as many kmers as

possible as often as possible with the fewest number of reads. We included two bio-

logical replicates of NA12878 cell line native genomic DNA sequencing experiments

(FAB39088 and FAF01169) in the C-5mC predictive analysis. For such analysis,

our final FAB39088 set contained 1706 reads, which covered 2625/3367 C-only DNA

6mers with an average 61.52x coverage as negative control, and 3105/3950 possible

single-5mC DNA 6mers with an average 5.01x coverage. The final FAF01169 set

contained 1396 reads, which covered 2610/3367 C-only DNA 6mers with an aver-

age 63.26x coverage as negative control, and 3140/3950 single-5mC DNA 6mers with

an average 4.76x coverage. Combining the two sets, in total 2792/3367 C-only DNA

6mers were covered with an average 58.49x coverage, and 3481/3950 single-5mC DNA

6mers were covered with an average 4.38x coverage.
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Performing signalAlign prediction

Based on the selected prediction sites and nanopore sequencing reads as

described above, per-read per-site predictive analysis was performed by signalAlign.

The signalAlign analysis was performed with default parameters, except for internal

read-level quality filtering. Such quality filtering removes reads with poor kmer to

ionic current correspondence. During signalAlign analysis, kmer-to-ionic current cor-

respondence probability matrices (event tables) are first generated. Based on such

event tables, signalAlign will remove reads with low average probabilities (<10-5).

Additionally, reads with >50 consecutive ionic current signals that cannot be corre-

sponded to kmers (probability equals 0) will be discarded. Considering the event table

generation is based on the provided kmer model, therefore after the above-mentioned

default quality filtering, the number of remaining reads varies when different kmer

models are supplied during predictive analysis. To ensure the statistical soundness,

we deactivate the default quality filtering, such that reads to be analyzed by different

supplied kmer models will be the same.

Performing megalodon prediction

We also performed predictive analysis using the deep learning-based modifi-

cation calling algorithm megalodon2 as an additional baseline control. The megalodon

(version 2.3.1) analysis was performed with tags ”fast5 --outputs mod mappings mods

--reference reference –processes 1 –overwrite --guppy-server-path guppy basecall se

2https://github.com/nanoporetech/megalodon
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rver –output-directory output dir –guppy-timeout 1000 --guppy-concurrent-reads 1

–guppy-params ’–num callers 7 –cpu threads per caller 10 –chunks per runner 100’ ”

Considering the extraordinary performance of megalodon (Supplementary

Figure 3.10), we further used megalodon predictions as an additional ground truth

for the C/5mC status for every nanopore sequencing read at every prediction site.

Please see Supplementary Note 3.11.4 for more information.

Quantifying predictive accuracy

signalAlign quantifies the probability of being C or 5mC for every prediction.

We used probability threshold 0.7 to ensure only confident predictions were included

in predictive accuracy quantification. Together with the megalodon 5mC calling

results, we further created confusion matrices (2x2 for 5mC predictive analysis with

5mC as “positive” class and C as “negative” class) to quantify predictive accuracy.

Specifically, we calculated the true positive rate (TPR), true negative rate (TNR),

positive predictive value (PPV), negative predictive value (NPV), F1-score (F1) and

balanced accuracy (BA) as predictive accuracy quantifications. BA was presented in

Figure 3.1E as representative quantification, and the full predictive performance can

be found in Supplementary Figure 3.10.
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3.6.9 E.coli 16S rRNA 2mG-site analysis

Ionic current signal distributions

We first downloaded the nanopore sequencing fast5 reads of E.coli 16S rRNA

nanopore sequencing reads reported in [154]. We then performed nanopolish extract

analysis [152, 101]to retrieve the fastq records, with tags “-v -r -q -t template”. The

fastq records were then aligned using minimap2 [92] with flags “-ax map-ont”, further

sorted and indexed by samtools [93]. Per-read event tables were generated using

nanopolish eventalign with flag “–scale-events”, by taking fast5 reads, alignment files,

and retrieved fastq records as described above. The yielded event tables contain

RNA 5mer sequences and corresponding ionic current signals. We then quantified

the distributions of RNA 5mer ionic current signals.

Predictive analysis

We also performed predictive analysis for the A, 6mA, T, G, 2mG, C RNA

5mer model described in “predicting modification-containing kmers”. Specifically, we

tested whether the predicted RNA 5mer model could be used to correctly identify the

2mG site in E.coli 16S rRNA (position 1206, see https://www.ncbi.nlm.nih.gov/n

uccore/J01859 for details). We thus ran signalAlign with nanopore sequencing reads

reported in [14], following the same steps as described in “human genome C/5mC-

status predictive analysis”. We also used probability threshold 0.7 to select confident

predictions.
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3.6.10 Kmer models

Canonical DNA 6mer and RNA 5mer models are available at: https://

github.com/nanoporetech/kmer models. The Nanopolish 5mC-containing DNA

6mer model is available at: https://github.com/nanoporetech/nanopolish/t

ree/master/etc/r9-models. The GSE124309 model, which contains the union of

{A, U, C, G} and {6mA, U, G, C} RNA 5mers, was constructed by the following

steps. We first downloaded the nanopore sequencing fast5 reads of modified and

non-modified ”curlcake constructs” replicate 1 with GEO accession code GSE124309

[96]. We then performed nanopolish extract analysis [152, 101] to retrieve the fastq

records, with tags ”-v -r -q -t template”. The fastq records were then aligned using

minimap2 [92] with flags ”-ax map-ont”, further sorted and indexed by samtools [93].

Per-read event tables were generated using nanopolish eventalign with flag ”–scale-

events”, by taking fast5 reads, alignment files, and retrieved fastq records as described

above. The yielded event tables contain RNA 5mer sequences and corresponding ionic

current signals. For every RNA 5mer, we averaged ionic current signals of all instances

recorded in the event tables to build the GSE124309 model. Please note that for more

recent nanopore sequencing chemistries, e.g. R10 where ONT kmer models are no

longer available, empirical kmer models could be trained instead as above-mentioned.

Please see Supplementary Note 3.11.5 for details.
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3.6.11 Data availability

The FAB39088 and FAF01169 NA12878 cell line native genomic DNA nanopore

sequencing datasets were downloaded from https://github.com/nanopore-wgs-

consortium/NA12878/blob/master/Genome.md. The two independent NA12878

bisulfite datasets were downloaded from https://www.encodeproject.org/experi

ments/ENCSR890UQO/.

3.6.12 Code availability

Codes for constructing, training and running the deep learning framework

are available at https://github.com/ioannisa92/Nanopore modification i

nference. Codes for nanopore sequencing data analysis are available at https:

//github.com/adbailey4/functional model analysis. Codes for reproducing all

figures are available upon request to the corresponding authors.
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3.9 Figures

A

B

C ED

Figure 3.1: Predicting kmer characteristic ionic currents from chemical struc-
tures. (A) Graphic overview of the proposed deep learning framework for DNA analysis.
(B) Goodness-of-fit of DNA canonical random down-sample, base-dropout, position-dropout
and model combination analyses. (C) Goodness-of-fit of 5mC-containing DNA 6mer impu-
tation analysis. (D) Goodness-of-fit of de novo 5mC-containing DNA 6mer prediction. C
and 5mC refer to goodness-of-fit of canonical DNA 6mers and 5mC-containing DNA 6mers,
respectively. In panel B-D, Train (red) and Test (blue) refer to goodness-of-fit of the train-
ing and test DNA 6mers, respectively. (E) Predictive accuracy of C/5mC status quantified
by balanced accuracy.
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ED

BA C

F

Figure 3.2: Visualizing the encoding of chemical structures. (A-C) Atom simi-
larity matrix, tSNE visualization and chemical structure of the example canonical DNA
6mer CGACGT. In (A) and (B), atoms were numbered and colored based on the chemical
structure in (C). Carbon, nitrogen, oxygen and phosphorus were colored as black, blue, red
and orange, respectively. Specifically, in (A), nucleobases were highlighted by dashed boxes.
(D-F) Atom similarity matrix, tSNE visualization and chemical structure of the example
5mC-containing DNA 6mer GT(5mC)AGA. In (D) and (E), atoms were numbered and col-
ored based on the chemical structure in (F). Carbon, nitrogen, oxygen and phosphorus were
colored as black, blue, red and orange, respectively. Specifically, in (D) and (E), methyl
group carbon atoms (#38 in T and #58 in 5mC) were highlighted.
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3.10 Tables

Table 3.1: SMILE String Encoding

Nucleotide SMILES string

A (DNA) OP(=O)(O)OCC1OC(N3C=NC2=C(N)N=CN=C23)CC1

T (DNA) OP(=O)(O)OCC1OC(N2C(=O)NC(=O)C(C)=C2)CC1

C (DNA) OP(=O)(O)OCC1OC(N2C(=O)N=C(N)C=C2)CC1

G (DNA) OP(=O)(O)OCC1OC(N2C=NC3=C2N=C(N)NC3=O)CC1

5mC (DNA) OP(=O)(O)OCC1OC(N2C(=O)N=C(N)C(C)=C2)CC1

6mA (DNA) OP(=O)(O)OCC1OC(N3C=NC2=C(NC)N=CN=C23)CC1

A (RNA) OP(=O)(O)OCC1OC(N3C=NC2=C(N)N=CN=C23)C(O)C1

U (RNA) OP(=O)(O)OCC1OC(N2C(=O)NC(=O)C=C2)C(O)C1

C (RNA) OP(=O)(O)OCC1OC(N2C(=O)N=C(N)C=C2)C(O)C1

G (RNA) OP(=O)(O)OCC1OC(N2C=NC3=C2N=C(N)NC3=O)C(O)C1

Table 3.2: Features in Feature matrix X

Feature Description

Carbon 1 if the atom is carbon, 0 otherwise (boolean)

Nitrogen 1 if the atom is nitrogen, 0 otherwise (boolean)

Oxygen 1 if the atom is oxygen, 0 otherwise (boolean)

Phosphorus 1 if the atom is phosphorus, 0 otherwise (boolean)

Atom degree Total number of covalent bonds around an atom (integer)

Implicit valence It equals the valence of the atom minus the valence calculated
from the bond connections (integer)

Number of hydrogens Total count of hydrogens (integer)

Aromaticity 1 if atom in an aromatic ring, 0 otherwise (boolean)
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Table 3.3: Hyper-parameter tuning grid search parameters

Parameters Space Searched Best Parame-
ters (DNA)

Best Parame-
ters (RNA)

The number of
GCN layers

{2, 3, 4, 5, 6} 4 4

The number of
CNN layers

{2, 3, 4, 5, 6} 3 5

The kernel size for
the CNN layers

{2, 4, 10, 20} 10 10

The number of
nodes in dense
(NN) layer

{32, 128, 512,
2048, 8192}

8192 8192
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3.11 Supplementary Information

3.11.1 Supplementary Table 1

Figure 3.3: Median RMSE and Pearson correlation values of the down-sample
analysis.
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3.11.2 Supplementary Note 1. Goodness-of-fit of the canonical DNA

analysis.

We first evaluated whether the proposed framework could generalize infor-

mation to nucleotides that were not present in the entire training data. We thus

trained the framework using the DNA 6mers that do not contain each nucleotide

(base-dropout, See section 3.6). Such training sets retain 18% of the total 6mers.

Therefore we used the 0.2-0.8 train-test split as the baseline null model. As shown in

Figure 3.1B and Supplementary Figure 3.6, base-dropouts significantly decreased the

prediction power compared to the baseline null model. Such a result suggests that the

four DNA nucleotides provide orthogonal information during training. In addition,

the prediction power was more impaired by excluding T and C, which suggests that

the four nucleotides have unequal importance.

We also evaluated the framework’s generalizability to nucleotides that were

not present in particular DNA 6mer positions (position-dropout, see section 3.6).

Such position-dropout retains 75% of total 6mers for training, so we used the 0.75-

0.25 train-test split as the baseline null model. As shown in Figure 3.1B and Sup-

plementary Figure 3.6, in general the prediction power was significantly impaired by

excluding T and C, consistent with the nucleotide importance evaluated by base-

dropout analysis. Meanwhile, dropouts in 3rd and 4th positions contributed the

most to prediction power decrease, followed by 2nd and 5th positions. The positional

importance suggested here was further consistent with [41].

We further explored whether full DNA 6mer models can be generalized by
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combining complementary base-dropout training sets, e.g. G-dropout and C-dropout

that contains instances of C and G containing kmers, but no kmers containing both

C and G (noted as G-C, see section 3.6). Such training sets contain 34% of total

DNA 6mers, thus 0.35-0.65 train-test split was used as the baseline null model. As

shown in Figure 3.1B and Supplementary Figure 3.6, in general the prediction power

was comparable with the baseline null model, suggesting the validity of such model

combination.

3.11.3 Supplementary Note 2. Goodness-of-fit of the canonical RNA

analysis.

Following the same pipeline as in DNA, down-sample, base-dropout, position-

dropout and model combination analyses were also performed under RNA context.

Meanwhile, RMSE and r were also used for prediction power evaluation for RNA

analysis (see section 3.6). Compared to DNA analysis, two major differences were

observed. First, for RNA analysis as shown in Supplementary Figure 3.7, in gen-

eral the prediction power was lower. For instance random down-sample analysis

with 0.95-0.05 train-test split (best-performing random down-sample group), aver-

age RMSE values were 0.8 and 2.4 for DNA and RNA, respectively. We speculate

that such prediction power difference was majorly caused by the number of training

data points. As mentioned in the main text, with the currently most prevalent Oxford

Nanopore Technologies R9.4 nanopore sequencing chemistry, DNA is modeled with in

total 4096 6mers. On the other hand, RNA is modeled with in total 1024 5mers, only
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25% as opposed to the DNA scenario. Such fewer possible training data points might

strongly compromise the prediction power of our framework. However, once trained

with a similar amount of kmers, the RNA architecture could yield comparable predic-

tion power. For instance, the RNA 0.95-0.05 (972 training kmers) and DNA 0.25-0.75

(1024 training kmers) train-test splits yielded comparable performance. Such a result

suggested the validity of our proposed architecture.

The other major difference between DNA and RNA analysis is, the four

canonical DNA bases (A, T, G, C) are “orthogonal” to each other (Figure 3.1B and

Supplementary Figure 3.6). In contrast, base-dropout will not cause statistically sig-

nificant decrease in prediction power, suggesting that the four canonical RNA bases

(A, U, G, C) can complement each other in terms of their chemical properties (Sup-

plementary Figure 3.7). Here “orthogonal” means base-dropouts will significantly

decrease the prediction power as opposed to the corresponding random down-sample

null model. Notably, such an “orthogonality effect” was particularly strong for T and

C. We speculate that such a difference can be explained by the additional methyl

group in T. Among the four DNA canonical bases, methyl only appears in T, thus

cannot be compensated by other combining A, G and C. Similarly, considering such

methyl is encoded with pyrimidine backbone (Figure 3.7A and Supplementary Fig-

ure 3.11), the representation of the other pyrimidine nucleobase, C is also affected.

Thus T and C were more “orthogonal” compared to A and G. As for RNA, with-

out the additional methyl, the four canonical RNA bases complement each other in

terms of their chemical structures. Further, the chemical information generalization
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among bases guarantees the proper representation of RNA 5mers under base-dropout

scenario, thus producing statistical insignificant prediction power as opposed to the

corresponding null model.

3.11.4 Supplementary Note 3. Benchmarking human genome C/5mC-

status predictive analysis with the megalodon algorithm.

As described in Supplementary Figure 3.10, the recently released megalodon

algorithm (https://github.com/nanoporetech/megalodon) could drastically increase

the accuracy for NA12878 cell line C/5mC status prediction, therefore could be used

as an additional ground truth for benchmarking our “human genome C/5mC-status

predictive analysis”. Compared to the ground truth established from bisulfite se-

quencing datasets [44], using megalodon predictions as ground truth has two promi-

nent advantages: 1) the megalodon algorithm yields per-read per-site predictions,

which could provide higher resolution as opposed to bisulfite sequencing ground truth

when evaluating predictive accuracy. 2) The bisulfite sequencing ground truth was

established from separate experiments thus potential biological/technical batch ef-

fects could be the concerns. We therefore adopted the megalodon predictions as the

additional per-read per-site C/5mC status ground truth. We yielded the following

predictive accuracy, which is comparable with the result in Supplementary Figure

3.10.
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Figure 3.4:

However, please note that the undermining limitation of the megalodon

ground truth is the reliability of the megalodon predictions. Considering the algo-

rithm has not been peer reviewed, as well as there are no available results bench-

marking the performance under various scenarios, e.g. biological/technical replicates,

different species, etc., we adopted the bisulfite sequencing ground truth throughout

the study.

3.11.5 Supplementary Note 4. Building empirical kmer models.

For nanopore sequencing chemistries after R9.4, the “official” ONT kmer

models are no longer available. To solve such a problem, users could build empiri-

cal kmer models by the nanopore sequencing of synthesized control oligos. The first

question regarding building empirical kmer models is determining the effective kmer

length (k). This could be done by following the procedures reported in our previous

study [41]. The second question would be to determine the sequences of synthesized

control oligos. Specifically, users need to decide 1) depth of nanopore sequencing,
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e.g. number of reads, and 2) kmers to be covered, e.g. the “minimal ideal kmer

set”. These need to be done to 1) make sure full kmer models could be recapitulated

from partial training using the deep learning architecture, and 2) save oligo synthesis

and sequencing cost. Please note that it’s crucially important that the control oligos

cover all possible kmers. Otherwise, modification calling might be compromised. As

shown in the following figure, we quantified the predictive accuracy of C/5mC status

in a sequence context-specific manner. Specifically, with the same set of nanopore

sequencing reads described in “human genome C/5mC-status predictive analysis” in

section 3.6, we quantified the balanced accuracy under CA, CT and CG contexts

(CC motif is rare in human genome and was not covered by the selected reads). As

shown in the following figure, in general the predictive power of DNA kmer models

inferred by our deep learning architecture (De Novo, 0.01, 0.05, 0.1, 0.3, 0.5, 0.7,

0.9) was comparable to the control nanopolish model. Meanwhile, kmer model-based

signalAlign algorithm and deep learning-based megalodon algorithm yielded compa-

rable predictive accuracy for CG context. However, signalAlign predictive accuracy

was significantly compromised under CA and CT contexts. Moreover, predictive ac-

curacy for CA and CT motifs was in general lower compared to the CG motif, even

with the control nanopolish model. This is because the nanopolish model was con-

structed with the human genome, in which CA and CT motifs are less prevalent, and

CC motif is rare. Therefore, CA, CT and CG contexts are less confidently represented

in the nanopolish model.
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Figure 3.5:

As for determining the proper depth of nanopore sequencing, we find it to

be unnecessary: based on previous work, we believe that only modest sequencing

is needed for building robust kmer models. Specifically, as reported in [96], the

authors performed two parallel nanopore sequencing of synthesized RNA molecules,
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each with only a single MinION flowcell, further constructed corresponding 6mA, U,

G, C RNA 5mer models (two technical replicates). It was demonstrated that the two

technical replicate RNA 5mer models are highly comparable, suggesting that robust

kmer models could be generated from relatively small scale nanopore sequencing

experiments. As for finding the “minimal ideal kmer set”, although it might be

a valuable idea to pursue, we find it to be less feasible. The reason being that the

stochastic deep learning framework training process will introduce stochasticity in the

prediction performance. That being said, the best prediction performance achieved

by a certain training set could just be an effect of stochasticity, rather than the actual

kmer composition. We also find the idea of finding the “minimal ideal kmer set” to be

unnecessary, as kmers could be covered with relatively short sequences. As reported

in the above-mentioned study [96], all possible 6mA, U, G, C RNA 5mers could be

covered with 4 sequences with average length ∼2.5kb (2329, 2543, 2678, and 2795bp,

respectively). Taken together, we believe that robust full kmer models could be built

with affordable cost, following procedures reported in [96]. The last question would

be to generate kmer models from nanopore sequencing readouts on the synthesized

control oligos. We provide detailed procedures in section 3.6.
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3.11.6 Supplementary Figures
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Figure 3.6: Goodness-of-fit of the canonical DNA analysis. Root Mean Square Error
(RMSE) and Pearson correlation (r) values of DNA down-sample, base-dropout, position-
dropout and model combination analyses. Run-1 (solid boxes) and Run-2 (dashed boxes)
refer to two independent replicates. RMSE and r values for the predictions of all DNA
6mers (Overall), DNA 6mers in training set only (Train) and DNA 6mers in test set only
(Test) were marked as black, red and blue, respectively. The median, minimum/maximum
(excluding outliers) and first/third quartile values were shown by the boxplots. See section
3.6 for details.
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Figure 3.7: Goodness-of-fit of the canonical RNA analysis. Root Mean Square Error
(RMSE) and Pearson correlation (r) values of DNA down-sample, base-dropout, position-
dropout and model combination analyses. Run-1 (solid boxes) and Run-2 (dashed boxes)
refer to two independent replicates. RMSE and r values for the predictions of all DNA
6mers (Overall), DNA 6mers in training set only (Train) and DNA 6mers in test set only
(Test) were marked as black, red and blue, respectively. The median, minimum/maximum
(excluding outliers) and first/third quartile values were shown by the boxplots. See section
3.6 for details.
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Figure 3.9: RMSE correlation in DNA 5mC-de novo analysis. For both Run-1
and Run-2, RMSE values obtained from canonical and 5mC-containing DNA 6mers were
compared. Dots on the scatter-plots represent training-prediction repeats.
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Figure 3.10: Predictive accuracy of DNA 5mC analysis. Predictive accuracy
was quantified by true positive rate (TPR), true negative rate (TNR), positive predictive
value (PPV), negative predictive value (NPV), F1-score (F1) and balanced accuracy (BA).
FAB39088 (black) and FAF01169 (red) refer to two independent NA12878 cell line native
genomic DNA nanopore sequencing datasets [73]. Nanopolish refers to predictive analysis
using the nanopolish model [152, 101]. Megalodon refers to predictive analysis performed
using the deep learning-based megalodon algorithm https://github.com/nanoporetech/

megalodon. The median, minimum/maximum (excluding outliers) and first/third quartile
values were shown by the boxplots. See section 3.6 for details.
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Figure 3.11: Visualizing canonical DNA 6mer atom similarity matrices. With-
out losing generality, we visualized the atom similarity matrices of 10 random canonical
DNA 6mers. Similarity matrices were calculated using the Pearson correlation of the state
vectors outputted by the final GCN layers. Corresponding chemical structures of analyzed
DNA 6mers were shown side-by-side of the similarity matrices, based on which atoms were
numbered and colored. Carbon, nitrogen, oxygen and phosphorus were colored as black,
blue, red and orange, respectively.
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Figure 3.12: Visualizing 5mC-containing DNA 6mer atom similarity matrices.
Without losing generality, we visualized the atom similarity matrices of 10 random 5mC-
containing DNA 6mers. 5mC was abbreviated as M for simplicity. Similarity matrices were
calculated using the Pearson correlation of the state vectors outputted by the final GCN
layers. Corresponding chemical structures of analyzed DNA 6mers were shown side-by-side
of the similarity matrices, based on which atoms were numbered and colored. Carbon,
nitrogen, oxygen and phosphorus were colored as black, blue, red and orange, respectively.
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A B

C

Figure 3.13: Visualizing inter-kmer atom similarity matrices. Without los-
ing generality, we analyzed the inter-kmer atom similarity between modified DNA 6mer
GT(5mC)AGA and corresponding canonical counterpart GTCAGA. (A) Visualizing the
inter-kmer similarity matrix, which was calculated using the Pearson correlation of the
state vectors outputted by the final GCN layers. (B) The chemical structure of DNA 6mer
GT(5mC)AGA. (C) The chemical structure of DNA 6mer GTCAGA. Based on chemical
structures in (B) and (C) atoms were numbered and colored. Carbon, nitrogen, oxygen and
phosphorus were colored as black, blue, red and orange, respectively.
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Figure 3.14: RNA 2mG analysis.(A) The empirical ionic current signal distribution of
RNA 5mer G(2mG)CCC, as well as the ONT ionic current signal distribution of pairing
canonical RNA 5mer GCCCC were visualized in red and blue curves, respectively. Charac-
teristic ionic current signals of G(2mG)CCC and GGCCC predicted by the deep learning
framework were visualized in red and blue boxes, respectively. (B) For E.coli 16S rRNA
transcript J01859.1 position 1206, the fraction of modified (2mG) reads determined by sig-
nalAlign with predicted RNA 5mer ionic current signals was quantified. For boxplots in
(A) and (B), the median, minimum/maximum (excluding outliers) and first/third quartile
across the 50 prediction repeats were shown.
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for details.
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Chapter 4

Single-molecule modification

profiling of Saccharomyces

cerevisiae ribosomal RNA reveals

concerted modification at

functional locations in the

ribosome
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4.1 Abstract

Nucleotides in RNA and DNA are subject to numerous enzymatic activities

that chemically modify them, altering their functional characteristics. Eukaryotic

ribosomal RNA is modified at more than 100 locations, particularly at highly con-

served and functionally important nucleotides. During ribosome biogenesis, modifi-

cations are added at various stages of assembly. The existence of differently modified

classes of ribosomes is unknown because no method for simultaneously evaluating

modification status at all sites within a single rRNA molecule is available. Using a

combination of yeast genetics and nanopore direct RNA sequencing, we have devel-

oped a reliable method to track the modification status of single rRNA molecules at 37

sites in 18S rRNA and 73 sites in 25S rRNA. We use our method to characterize pat-
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terns of modification heterogeneity and identify concerted modification of nucleotides

found near functional centers of the ribosome. Distinct undermodified subpopulations

of rRNAs accumulate when ribosome biogenesis is compromised by loss of Dbp3 or

Prp43-related RNA helicase function. Modification profiles are surprisingly resistant

to change in response to many genetic and environmental conditions that affect trans-

lation, ribosome biogenesis, and pre-mRNA splicing. The ability to capture complete

modification profiles for RNAs at single-molecule resolution will provide new insights

into the roles of nucleotide modifications in RNA function.

4.2 Introduction

In addition to the four standard nucleotides, there are more than 160 dis-

tinctly modified ribonucleotides and more than 50 distinctly modified deoxyribonu-

cleotides found in the RNA and DNA of cells[74, 15, 155]. Many of these modified

nucleotides provide extra regulatory information and are crucial for cell function.

Irregular DNA methylation patterns are linked to several cancers, neurological disor-

ders and autoimmune diseases[130, 133]. RNA modifications have been linked to the

development of cognitive functions, neurological defects, breast cancer, genetic birth

defects and diabetes [185, 6, 70, 37, 10, 38]. In ribosomal RNA (rRNA), extensive and

highly conserved modifications are vital for correct ribosome structure and function

[128]. Modifications on rRNA have been generally considered to be constitutive in

support of fine tuning function [76] rather than mediating specific regulatory changes
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in ribosome function. However, the fraction of rRNA molecules modified at many

specific positions can change in association with changes in environment, disease and

during development [163, 14, 153]. Recently modification status at an adenosine near

the 3’ end of yeast 18S rRNA has been implicated in controlling sulfur metabolism

[98]. It seems possible that subtle alterations in modification status at particular

locations in the ribosome could be used to control translation by creating functional

heterogeneity in the cell’s pool of ribosomes.

One technical challenge in analyzing the effect of modification on the func-

tion of rRNA is that it has not yet been possible to capture modification states at all

positions of single RNA molecules. Traditional modification detection approaches

examine ensembles of molecules and estimate the extent of modification at indi-

vidual sites independently. For example, non-sequencing based techniques such as

liquid chromatography-tandem mass spectrometry (LC-MS/MS) and cryogenic elec-

tron microscopy (cryo-EM) can identify the presence of many modified nucleotides

[114, 136, 163, 23, 164]. Some methods such as immunoprecipitation-seq or mismatch-

seq, aggregate information from several reads to detect modifications at a specific site

[65, 134, 147, 184, 36, 154, 42, 43], but do not capture associations between mod-

ification status at distant sites in large RNA molecules. Other approaches such as

bisulfite-seq, pseudouridine-seq, and RiboMeth-seq [53, 146, 14, 150] are highly spe-

cific for a single modified nucleotide, but also require fragmentation, preventing cap-

ture of modification status at multiple distant sites in an RNA. Such whole molecule

information would be necessary for assessing the relationship between function and
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modification status of individual ribosomal sub-units.

New advances in direct single-molecule sequencing of RNA using nanopore

technology may circumvent many of these limitations. Direct nanopore sequencing of

full-length RNA molecules[35, 57] can report modification status across entire RNA

molecules without chemical treatment or amplification steps. Modified nucleotides

produce changes in electrical current that are distinct to canonical nucleotides, per-

mitting modification detection algorithms to identify modifications in both DNA and

RNA. Given enough training data, basecalling algorithms like Guppy can predict

modifications directly from the signal along with canonical nucleotides [181]. How-

ever, training data for most modifications is limited, and thus many detection algo-

rithms rely on aligning basecalled reads to a reference sequence and comparing mod-

ified signal to canonical signal [54]. Current signals can be modelled using secondary

features like quality scores and base miscalls [98, 7] or directly using the underlying

signal [108, 135, 152]. To model the underlying signal, most algorithms summarize

the stream of signal into segments (events), align events to subsequences (kmers) of a

reference, and compare aligned events to models of canonical or modified nucleotides.

Thus far, no currently available method captures combinations of distinctly modified

nucleotides at multiple distant sites in RNA.

Here we demonstrate accurate, single-molecule modification profiling of 13

distinct types of modified nucleotide at 110 positions across full transcripts of 18S

and 25S rRNA from S. cerevisiae. We preserve long-range associations between mod-

ification status at distant positions on single RNA molecules, allowing us to identify
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highly correlated positions and explore heterogeneity in ribosomal RNA modification.

Clustering analysis identifies distinct populations of differently modified ribosomes in

wild type yeast as well as yeast depleted for various components of the modification

machinery, providing evidence that modification status of groups of nucleotides are

established in a concerted manner, especially at functional centers of the ribosome.

Further application of single-molecule modification profiling will enable dissection of

the contributions of nucleotide modification to the function of large RNAs.

4.3 Results

4.3.1 Profiling rRNA modifications at single-molecule resolution

To investigate the overall modification status of yeast rRNA on a single-

molecule level, we sought to use the nanopore current traces from Oxford Nanopore

flow cells (see section 4.5) of complete rRNA transcripts to capture modification status

at each modified position along individual molecules. To create these single-molecule

profiles, we trained signalAlign [135] by modeling wild type rRNA reads as modified

and in vitro transcribed (IVT) reads as unmodified to detect all 110 annotated mod-

ifications in S. cerevisiae 18S and 25S rRNA [163, 108](See section 4.5, Supplemental

Fig. 4.7). For each rRNA read, the model estimates the probability of modification

at each annotated modified site and outputs a list of modification probabilities for

the entire read, regardless of modification type (Supplemental Fig. 4.8A). We an-

ticipated that rRNA modification profiles obtained from different conditions could
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be searched for subpopulations of distinctly modified ribosomes using hierarchical

clustering, or to quantify the extent of correlation between modified positions under

different conditions of ribosome function.

To test the ability of the trained model to capture single-molecule modifi-

cation profiles in yeast catastrophically depleted of rRNA modifications, we isolated

RNA under conditions in which either of two classes of snoRNA-guided modifications

is blocked. In S. cerevisiae, 34 of the 37 18S and 66 of the 73 25S rRNA annotated

modifications are guided by the C/D box and H/ACA box snoRNPs, respectively

[167, 188, 127]. To ablate these modifications en masse we used strains in which

expression of Nop58 (core component of C/D snoRNPs) or Cbf5 (H/ACA snoRNP

pseudouridylase) are under control of a GAL1 promoter [178, 85]. Thus, in cells

shifted to glucose medium, Nop58 (or Cbf5) expression will be repressed, leading

to depletion of C/D box (or H/ACA box) snoRNPs, and widespread loss of modifi-

cation [84, 85]. As expected, single-molecule modification profiles produced by our

model reveal accumulation of large numbers of rRNA molecules lacking most 2’O-

methyl (Nm) (Nop58-depleted) or pseudouridine (Ψ) (Cbf5-depleted) modifications

at snoRNA-guided positions in 18S (Supplemental Fig. 4.9) or 25S rRNA (Fig. 4.1).

To examine subpopulations of modified rRNA molecules in these cells, we

pooled single-molecule modification profiles from IVT, wild type, and cells depleted

of Nop58 or Cbf5, and performed hierarchical clustering. We observe clear separation

of 4 clusters representing wild type rRNA, IVTs, and molecules arising from the

Nop58 or Cbf5-depleted cells, respectively (Fig. 4.1A, Supplemental Fig. 4.9A).
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Dimension reduction UMAP visualization [110] of 18S and 25S rRNA modification

profiles confirms the separation of these distinct molecular populations (Fig. 4.1C

and Supplemental Fig. 4.9C). Comparing the two clusters derived from the snoRNP-

depleted cells (Fig 4.1A and C, clusters 1 and 3) suggests that 2’O methylation is

largely independent from pseudouridylation. Some molecules from snoRNP-depleted

cells appear in cluster 2 with wild type rRNA (Fig. 4.1A and C), more often for 18S

rRNA than for 25S rRNA, consistent with the finding that 18S rRNA accumulation

is more sensitive to snoRNP depletion than is 25S rRNA [84, 85](Supplemental Fig.

4.9D). We conclude that clustering of single-molecule rRNA modification profiles

reveals two large but distinct classes of undermodified rRNA molecules induced by

depletion of one or the other class of snoRNPs.

To test for correlation of modification at two different sites, we measure

the change in Spearman correlation for each pair of modified sites in an experimen-

tal sample as compared to their correlation in wild type profiles (Fig. 4.1D and E,

Supplemental Fig. 4.9E-F, Supplemental Table S1). We then test if the Spearman

correlation in the mutant is significantly different from that in wild type, correcting for

multiple testing via the Benjamani-Hochberg procedure (two sided t-test and Fisher

z-transform test, see section 4.5, Supplemental Table S1). This test indicates that

changes in correlation between each of the snoRNA-guided pseudouridine positions

in the Cbf5-depleted cells are highly significant (p-value=5.5e-05, Brown’s method).

Likewise, changes in correlation between each of the snoRNA guided 2’O-methyl posi-

tions in the Nop58-depleted cells are highly significant (Fig. 4.1D-E and Supplemental
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Fig. 4.8C-D, p-value=1.5e-16, Brown’s method). A comparison of the pairwise tests

for all combinations of modified positions (Fig. 4.1D and 4.1E) confirms that to a

large extent 2’O-methylation is independent of pseudouridylation in yeast rRNA.

Although the majority of molecules in either depletion experiment lacked

the expected modifications and clustered together (Fig. 4.1A-B and Supplemental

Fig. 4.9A-B), several subpopulations of molecules displayed concerted patterns of

modification loss. The sites of methylation guided by the C/D box snoRNA U24

(Cm1437, Am1449, Gm1450 within the nascent polypeptide exit tunnel (PET) in 25S

rRNA) appear to be modified together, or not, in a concerted fashion. Almost half of

the molecules from the Nop58 depletion remain methylated at all three sites, splitting

cluster 3 into two nodes (Fig. 4.1A). Furthermore a fraction of molecules in cluster 1

(formed by depletion of Cbf5) are also unmodified at all three sites, suggesting that

concerted methylation at these positions may be partly dependent on pseudouridine

modification elsewhere. Particularly striking is the highly concerted modification

at 25S rRNA positions Um2921, Gm2922, and Ψ2923 in the peptidyl transfer center

(PTC). These appear refractory to loss of modification in both depletion experiments,

remaining modified on a large fraction of molecules otherwise lacking multiple other

modifications (Fig. 4.1A). Modification of Um2921 is guided by C/D box snoRNA

snR52, and Gm2922 is modified by the non-snoRNP methyltransferase Sbp1, which

can also methylate Um2921 in the absence of snR52 [86]. The extremely low numbers

of ribosomes unmodified at these important positions suggests their modification may

be essential for rRNA stability.
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We also observe correlation between the two N4-acetylcytidines (ac4C1280

and ac4C1773) in 18S and the 2’O-methyl positions in the Nop58 depletion (p-value =

2.3e-05, Brown’s method) (Supplemental Fig. 4.9A and E). N4-acetylcytidine modifi-

cation depends on the C/D box snoRNAs snR4 and snR45, which do not guide methy-

lation, but instead bring the cytidine acetylase Kre33 to positions C1280 and C1773,

respectively [171, 149]. These atypical C/D box snRNAs also require Nop58, explain-

ing the coordinate loss of cytidine acetylation and 2’O-methylation. We confirmed

that our model recognizes ac4C modified sites by knocking out each snoRNA (Sup-

plemental Fig. 4.11A, B). The N1-methyl-N3-aminocarboxypropyl-pseudouridine

(m1acp3Φ1191) residue in 18S is significantly correlated with pseudouridine posi-

tions in the Cbf5 depletion (p-value = 5.4e-07, Brown’s method, Supplemental Fig.

4.9A and F), as expected given that snR35-guided pseudouridylation of U1191 is

the first step to generate this complex modification[18]. We conclude that single

molecule modification profiling allows identification of subpopulations of individual

rRNA molecules and captures modification correlation between chemically distinct

modifications.

The model we have developed assesses signal for 5 sequential overlapping

5-mers centered on the annotated position of interest, and when there is tight clus-

tering of modification sites, the evaluation of modification at one position may be in-

fluenced by the modification status at the nearby position. In both locations above,

we were concerned that the co-modification patterns we observe might arise from

limited training of the model to resolve closely spaced partly modified regions. To
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examine whether the modification patterns observed match the patterns found in the

underlying signal, we clustered single molecule signal event means covering a subset

of modifications (see section 4.5) [41]. This test reveals that, in general, patterns of

modifications found in the modification profile clustering match with the underlying

event means clustering (Supplemental Fig. 4.10B/D). However, upon close inspec-

tion of three highly concerted modifications in the PTC (Supplemental Fig. 4.10E),

event mean clustering reveals a slight partitioning of depletion reads. Given that

both Um2921 and Gm2922 are expected to be present in both depletion experiments

and wild type, the slight variation in signal found in the clustering of event means

indicates that the true level of Φ2923 in the Cbf5 depletion is lower than estimated

(Supplemental Note 4.11.1).

4.3.2 Resolving subpopulations of ribosomes that differ at a single mod-

ified site

The global loss of modification by depletion of snoRNPs creates catastroph-

ically undermodified rRNA molecules that are easily distinguished by profiling. To

test the ability of the method to resolve classes of ribosomes with modification profiles

that differ at one or a few sites, we first estimated variation in our wild type rRNA

profiles arising from experimental noise, model uncertainty, or true variation in mod-

ification levels in wild type. We calculated the variance in the predictions for each

annotated modification for three wild type replicates. Based on the largest variance

(position 18S:562, 9%), we chose a conservative cutoff of a 10% change in modification
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frequency as a sign that modification at a site was affected by a given experimental

perturbation (mutation or treatment, Supplemental Fig. 4.11B). We also compare

the predicted modification frequency at a given site in an experiment to its predicted

frequency in wild type using a chi-square test (see section 4.5, Supplemental Table

S2). We sequenced rRNAs from strains containing individual snoRNA knockouts

(snR80, snR83, snR87, snR4, and snR45) expected to completely lack modification

at one or a few annotated sites in each case. There are significant decreases in modi-

fication frequency at the appropriate site for each snoRNA knockout (p-values¡1e-04,

chi-square test, Supplemental Fig. 4.11B) and snoRNA knockout kmer distributions

match the model’s canonical kmer distributions (Supplemental Fig. 4.12). This ex-

periment confirms our ability to identify undermodifcation at single locations with

high confidence.

To test if we could deconvolute a mixture of heterogeneously modified rRNAs,

recognizing those missing just 1-2 modifications against a background of other differ-

ently modified ribosomes, we pooled equal amounts of total RNA from three snoRNA

knockout strains (snR80, snR83 and snR87) and wild type, and acquired single

molecule modification profiles from the mixed sample (Fig. 4.2D). The idea was

to create a sample that might mimic a cellular population of heterogeneously mod-

ified ribosomes. As seen in Fig. 4.2A and C, hierarchical clustering of the profiles

obtained from the reconstructed sample reveals four similarly sized main clusters of

differently modified 18S rRNA (see section 4.5). In this experiment we would expect

to see positive correlation changes between positions Φ1290 and Φ1415, since their
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loss arises from a shared dependence on snR83, and this expectation is fulfilled (Fig.

4.2B, p-value= 6.4e-16, Fisher z-transform test). Furthermore, since loss of modifica-

tion in this reconstruction occurs independently at M436, Φ759, and [Φ1290+Φ1415],

we expect negative correlation changes between these pairs relative to wild type, and

this is what we observe (Fig. 4.2B, p-value=3.5e-08, Brown’s method). These signifi-

cant changes in correlations between long range modifications demonstrate clear and

accurate partitioning of known subpopulations of differentially modified rRNA.

4.3.3 Correlated modification at distant sites on rRNA from wild type

yeast

Previous studies have shown that alternatively modified yeast rRNA leads

to changes in translational patterns of specific mRNAs [143, 148, 98]. Analysis of

the modification status of the ensemble of wild type rRNAs reveal positions that are

nearly completely modified as well as others that are only partly modified (Supple-

mental Table S3). For most annotated positions, our estimates largely agree with

previous efforts to quantify percent modification in total yeast rRNA (Supplemental

Fig. 4.13A-B) [14, 107, 163, 188]. Examination of the relationship between extent of

modification and location in the ribosome shows that positions around the functional

centers (decoding site, PTC, and intersubunit bridge) of the ribosome are overall less

modified than those that lie in the periphery (Supplemental Fig. 4.14A). However,

our analysis also shows a number of positions in the functional centers that are less

than 95% modified (Supplemental Fig. 4.14B-D, Supplemental Table S3) suggesting
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their modification status could have a larger impact on control of ribosome function.

To evaluate patterns of heterogeneity in the modification status of normal

yeast ribosomes, we searched for subpopulations of rRNA in wild type yeast that

might carry distinct modification profiles not expected by chance. Hierarchical clus-

tering of wild type reads shows that there are no large and distinct classes of differently

modified ribosomes in wild type cells, however some smaller (¡10% of total) subpopu-

lations appear to cluster on the basis of correlated unmodified status between pairs of

positions (Fig. 4.2E and Supplemental Fig. 4.15A). To identify correlated modifica-

tion status at pairs of positions we applied our correlation change method by compar-

ing wild type to IVT (See section 4.5). As seen in Fig. 4.2F and Supplemental Fig.

4.15B, wild type ribosomes have significant correlation changes in modification at dis-

tant positions in rRNA. One pair of significantly correlated positions in 18S, Φ632 and

Φ766, are guided by the same snoRNA (snR161, p-value=1.3e-04, Fisher z-transform

test), possibly explaining the basis for this correlation. We also observe a significant

correlation between Am100 and Am436 (p-value=3.1e-04, Fisher z-transform test) as

well as between Cm1639 and ac4C1773 in 18S (p-value=4.5e-06, Fisher z-transform

test, Fig. 4.2F). None of these sites share a snoRNA or modification enzyme that

could account for these correlations, however the correlated pairs lie close to each

other (15-22Å) in three-dimensional structure of the mature ribosome (Fig. 4.2G),

suggesting a structural or functional basis for their coordinated modification status.

In 25S, consistent with our observations in the depletion experiment, 25S positions

Cm1437, Am1449 and Gm1450 are all significantly more correlated with each other
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than expected (Supplemental Fig 4.15, p-value=1.0e-44, Brown’s method). Several

of the significant long range correlations in wild type show up at significant levels

in many other experiments (see below), indicating that the concerted modification

status relationships at those positions are features of normal yeast ribosomes.

4.3.4 Loss of different RNA helicase-related functions results in distinct

subpopulations of differently modified rRNA molecules

Previous studies have connected helicase activity required for ribosome bio-

genesis with changes in 2’O methylation at single positions in ensembles of rRNA

molecules[2]. To explore how RNA helicases may affect correlated patterns of rRNA

modification, we profiled cells compromised for Dbp3 or Prp43 helicase functions,

both known to contribute to ribosome biogenesis[32, 88, 179]. Using a Dbp3 knock-

out strain (dbp3∆) or a cold-sensitive Prp43 Q423N mutant (prp43-cs) grown at

nonpermissive temperature (see section 4.5), we observed loss of 2’O methylation at

specific locations in 18S and 25S rRNAs (Fig. 4.3A and Supplemental Fig. 4.16A)

consistent with previous ensemble studies (Supplemental Figure 4.13C-D)[2]. Despite

the numerous locations at which modification is compromised, hierarchical clustering

of 25S rRNA single molecule profiles reveals that just 2-3 distinct but related sets

of modification profiles describe the vast majority of ribosomes in both experiments.

The triad of 2’O methylations guided by the snoRNA U24 at 25S positions 1437,

1449 and 1450 are often left unmodified in a highly concerted manner (Fig. 4.3B), as

observed in wild type 25S (Supplemental Fig 4.15), and the snoRNP depletion experi-
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ments (Fig 4.1). The pairwise correlations within this triad are significantly higher in

both the dbp3∆ and the prp43-cs mutants relative to wild type (Fig4, Supplemental

Fig. 4.17D-E, dbp3∆ p-value = 3.6e-68, prp43-cs 3.5e-11), Brown’s method). To con-

firm the pattern seen in the probability clustering of the U24 positions, we clustered

the underlying raw signal event means from the dbp3∆ and prp43-cs mutants (see

section 4.5) [41]). As seen in Supplemental Fig. 4.18, there are two clear subpop-

ulations of reads distinguished by the signal means at positions Cm1437, Am1449,

Gm1450 in both the dbp3∆ and prp43-cs mutants, supporting the profile clustering

results generated using the trained model. This suggests that if the U24 snoRNP is

unable to guide modification of any of these positions, then all 3 positions are very

likely to be left unmodified in a concerted fashion.

Prp43 interacts with a number of G-patch proteins that direct it to either

the ribosome or the spliceosome [67, 124, 109, 161, 168, 27]. Two of these, Pxr1

and Sqs1, are important for correct pre-rRNA processing[124, 5, 63]. To test how

the loss of Pxr1 or Sqs1 might affect ribosome modification profiles, we sequenced

libraries from strains deleted for each. Although deletion of Sqs1 had little effect on

modification (Fig. 4.5), loss of Pxr1 produced an extreme alteration in modification

profiles resembling the more mild pattern produced by the prp43-cs mutant (Fig.

4.3A). All modifications affected by prp43-cs and all but two 18S 2’O methylations

affected by dbp3∆ (Supplemental Fig. 4.16A) are also observed in pxr1∆. This

suggests that loss of Prp43 activity guided by Pxr1, but not that guided by Sqs1, is

responsible for the concerted changes in modification pattern observed in the prp43-cs
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strain.

Despite the similarities in modification patterns in the different mutants

(Fig. 4.4, Supplemental Fig. 4.17), they are not identical. For example in 25S, po-

sitions Am817 and Gm908 (both guided by snR60) and Gm2619 and Um2724 (both

guided by snR67) are significantly more correlated in dbp3∆ relative to wild type

(817-908 p-value = 2.4e-33, 2619-2724 p-value = 3.5e-22, Fisher z-transform tests,

Supplemental Fig. 4.17D), however, these positions are not significantly more corre-

lated in the prp43-cs mutant relative to wild type (817-908 p-value=0.34, 2619-2724

p-value=0.919, Fisher z-transform test). Pxr1 and (more significantly) Dbp3 appear

to promote efficient modification of positions guided by snR60 and snR67, however

the contribution of Prp43 is less clear. It is possible that the conditional Prp43 muta-

tion is not severe enough to produce a strong block to modification at those sites, or

alternatively that Pxr1 has functions that do not require Prp43. Together our data

show that loss of Dbp3 and Prp43 activity leads to loss of an overlapping but not

identical set of rRNA modifications that create distinct classes of ribosomes in the

cell in these mutants.

We have summarized the network of correlation changes observed in each

mutant relative to wild type, displaying nucleotide positions as nodes and correlation

changes as edges (Fig 4.4). In addition to the overlapping changes described above,

this analysis highlights the connected nature of these modifications as well as their

association with the functional centers of the ribosome. For example, loss of Prp43

and Pxr1 induce a concerted loss of modification of a set of nucleotides in the decoding
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site of the small subunit (Fig 4.4B). Loss of Pxr1 leads to concerted loss of a set of

modifications in the peptidyl transfer center of the large subunit Fig 4.4A. And all

three mutants create a complex set of correlated modification changes in the triad

Cm1437, Am1449, and Gm1450 near the protein exit tunnel of the large subunit

(Fig 4.4A). Concerted modification of this triad is observed in wild type ribosomes

(Supplemental Fig 4.15) as well as in the snoRNP depletion experiments (Fig 4.1).

As discussed above, a shared snoRNP (e. g. snR60, snR67) may explain part of the

concerted modification phenomenon, however in the majority of cases the elements

that underlie concerted modification are not obvious.

4.3.5 Resilience of rRNA modification profiles to other genetic mutations

and environmental treatments

Prp43 has a separate function in the disassembly of spliceosomes [109]. In

addition some snoRNAs are encoded within introns and their synthesis can be com-

promised by mutations that affect splicing [173, 127, 125, 118]. To disentangle effects

on modification by factors like Prp43 and intronic snoRNAs that arise from regulatory

crosstalk between ribosome biogenesis and RNA splicing in yeast, we acquired single

profile modification profiles for ribosomes from additional yeast mutants. Spp382

(also called Ntr1) is a G-patch protein that specifically mediates Prp43 interactions

with the spliceosome [168, 161, 31, 52, 119]. In addition we employed a cold sensitive

mutant of Prp16 (prp16-302) that accumulates splicing intermediates, as well as a

deletion of Dbr1 that prevents debranching of the intron lariat [24, 169, 82, 47], a

137



reaction that promotes processing of some intronic snoRNAs, in particular U24 [118].

Using the threshold of ¿10% change in modification relative to wild type es-

tablished above (Fig. 4.3A and Supplemental Fig. 4.11), we examined splicing-related

perturbations for effects on rRNA modification that might be mediated through loss

of one or more intronic snoRNAs (Fig 4.5). We observe a 36.8% reduction in mod-

ification for 18S Ψ106 (guided by snR44 from intron 2 of RPS22B) and an 11.0%

reduction in modification frequency for 18S Am974 (guided by snR54 from intron 1

of IMD4). Although these are the only modification changes that pass the threshold,

modification of the nucleotides in the 25S triad Cm1437, Am1449, and Gm1450 (all

guided by U24 from ASC1) is detectably reduced, as is modification of Ψ2258 and

Ψ2250 (both guided by snRN191 from intron 1 of NOG2). There are alternative

snoRNA maturation pathways that are independent of splicing, for example via Rnt1

[62] and partially processed U24 still can guide modifications at its corresponding

locations [118, 2, 125], consistent with our observation that loss of function in splic-

ing is not sufficient to greatly impact rRNA modification through either Prp43 or

by virtue of the intronic origin of some snoRNAs. Only one modification event, the

pseudouridylation of 18S U106 by snR44, seems substantially affected by the loss of

Dbr1 (Fig 4.5).

To test whether single molecule modification profiles were altered by envi-

ronmental and growth conditions known to affect ribosome function and biogenesis[58,

176], we isolated and acquired profiles of rRNA isolated from cells at stationary phase

[75], after a 1 hour shift to potassium acetate to induce starvation, treated with ra-
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pamycin (TOR kinase inhibitor) for 1 h to block nutrient signalling [131, 22, 64, 68],

treated with cycloheximide to block translational elongation [117] and create ribo-

some collisions [151], or after cold shock. In none of these treatments did we detect

substantial changes in modification profile (Fig 4.5, Supplemental Tables S1 and S2).

These observations indicate that in general the annotated modification patterns on

rRNA are refractory to rapid alterations by dramatic changes in the physiological

conditions we tested. At this time there are no known enzymes that would reverse

either pseudouridylation or 2’O methylation of ribose in RNA, as would be required if

modifications added during ribosome biogenesis were removed as part of a regulatory

response to changes in the environment.

4.4 Discussion

A central goal of this research was to capture single molecule modification

profiles of S. cerevisiae 18S and 25S rRNA, in order to understand the coordination

of modification across the ribosome during ribosome biogenesis, and to discover re-

lationships and dependencies between distant modifications. Using a catastrophic

disruption of modification by depletion of the two main classes of snoRNPs responsi-

ble for the bulk of ribosome pseudouridylation and 2’O methylation, we validate the

framework for our method and find that to a large extent these two classes of mod-

ification are not dependent on each other (Fig 4.1). Using a mixture of rRNA from

wild type cells and cells deleted for different individual snoRNAs, we show we can
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resolve populations of ribosomes that differ by a single modification, and apply this

to characterize modification heterogeneity and identify instances of concerted modifi-

cation of sets of nucleotides in the wild type ribosome population (Fig 4.2). We then

characterized the single molecule modification profiles that result from loss of two

distinct helicase activities provided by Dbp3 and Prp43, finding that a complex set of

concerted effects on modification arise from these disruptions, with implications for

ribosome biogenesis and the important functional centers of the ribosome (Figs 4.3

and 4.4). Finally, we examine the effect of other mutations, changes in physiological

conditions, or inhibitors of ribosome function on the annotated modifications across

the ribosome and find that they are refractory to change (Fig 4.5). These results

provide a new perspective on ribosome heterogeneity as represented by RNA modi-

fication patterns, and open a path to whole molecule analysis of RNA modification

for other classes of RNA.

rRNA modifications are thought to fine-tune and regulate rRNA folding and

ribosome function [153]. Many rRNA modifications cluster around the functional

centers of the ribosome and recent studies have illuminated the role that different

individual modifications play during translation of specific sets of mRNAs under dif-

ferent physiological conditions [143, 148, 98]. Our results reveal a number of instances

where RNA modifications in the functional domains of wild type ribosome are het-

erogeneous, and their presence or absence occurs in a concerted manner.

During protein synthesis, the nascent polypeptide chain moves from the PTC

and exits the ribosome through the polypeptide exit tunnel (PET). Numerous studies
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have shown that interactions between the nascent polypeptide chain and the PET can

lead to ribosome pausing/stalling resulting in regulation of translation and protein

folding [29]. Our work reveals distinct clusters of 25S rRNAs missing 2’O-methyl

modifications at positions Cm1437, Am1449, and Gm1450 in Pxr1, Prp43, and Dbp3

mutants (Fig. 4.3-4.4). Importantly, we also observe correlation and clustering of

rRNAs that do not contain these modifications in wild type cells (Supplemental Fig.

4.15) suggesting a potential regulatory mechanism. Cm1437, Am1449, and Gm1450

all line the PET of the 60S subunit and appear to interact with conserved internal

loops of ribosomal proteins L4 and L17[8]. These loops insert into the PET to form the

constriction site and is thought to act as an “exit gate” by interacting with the nascent

polypeptide chain during translation (Fig. 4.6 and [183, 191, 113]). Furthermore,

these three positions are in domain 0 of ribosomal rRNA, which acts as a central

hub around which the other six 25S rRNA domains fold [126]. Regulation of these

modifications could impact how each domain of rRNA folds upon each other during

ribosome biogenesis and exit tunnel formation. Thus, in the absence of Cm1437,

Am1449, and Gm1450, the rRNA and the loops of L4 and L17 may not be properly

positioned, affecting the structure and chemistry of the PET, translation, and protein

folding.

We also observe a number of correlated modifications in wild type 18S rRNA

within the decoding center and the intersubunit bridge of the 40S subunit. Cm1639

(snR70) in the P-site exhibits correlation with Φ999 (snR31, E-site), ac4C1280 (Kre33),

and ac4C1773 (Kre33, intersubunit bridge) (Fig. 4.2). Furthermore, ac4C1773 and
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m26A1782 (Dim1, intersubunit bridge) are correlated. Together, our correlation data

using single-molecule profiling suggests a functional relationship among groups of

modifications in wild type ribosomes that could impact how these functional regions

form as well as their activity during translation.

Recent work from [2] demonstrated the role that RNA helicases play in regu-

lating the dynamics of snoRNPs during rRNA modification and ribosome biogenesis.

Their data suggests a model in which Dbp3 and Prp43 function by releasing snoRNAs

from the pre-ribosome to allow subsequent modification of adjacent sites that are oth-

erwise occluded due to overlapping basepairing positions of adjacent snoRNPs. Here,

by profiling full-length rRNAs, we extend this model by revealing concerted changes

in modifications over long distances when the activity of Dbp3 or Prp43 is compro-

mised. Furthermore, our work shows that Pxr1, but not Sqs1, is the main G-patch

protein important for Prp43 function during rRNA modification.

In the absence of these helicases we observe a large set of overlapping but

not identical changes in modified positions for each of the mutants tested. Analysis

of pairs of nucleotides that change in a concerted fashion in each mutant, across the

entire length of the rRNA, reveals distinct hubs of correlated modifications, many

of which reside in the functional centers of the ribosome. These hubs of correlated

positions might reflect critical points in ribosome biogenesis and function such that

each This suggests a dependency among them during ribosome biogenesis or ribosome

function (Fig. 4.4).

We developed a hidden Markov model-based approach that allows 1) single
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molecule profiling and clustering of RNAs to visualize high-level relationships within

a population, 2) the ability to test for changes in correlations between any given

pair of modifications on the same molecule, and 3) a way to estimate the fraction of

modification of each site. The model training paradigm we have developed to profile

modifications can easily be applied to other nucleic acids of interest such as other

non-coding RNAs and messenger RNAs, provided unmodified molecules (IVT) and

fully modified molecules are available as reference for training. Here we used wild

type rRNA as our fully modified training example, with the clear understanding that

not all wild type molecules are fully modified. In several instances we confirmed that

this had little or no effect on performance of the model (Supplemental Fig. 4.8). A

second limitation arises when the training samples do not have enough information to

learn to resolve dense clusters of modifications. In cases where this was a concern, we

were able to validate the predictions of our model by clustering the raw signal means

and showing that closely spaced modifications that shared overlapping k-mers were

called correctly (Supplemental Fig. 4.10). While there is some evidence that unknown

modified kmer distributions can be estimated using known kmer distributions [40],

generating more specific modification training data sets that contain all combinations

of partially modified closely spaced clusters of nucleotides may be required to produce

more accurate and general modification detection algorithms. This is especially true

if de-novo detection of modifications within complex sequences is the goal[108, 89].
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4.5 Methods

4.5.1 Growth of yeast strains

Yeast strains GAL-NOP58 and GAL-CBF5 are described in (Lafontaine and

Tollervey 1999)(Lafontaine et al. 1998). Cells were grown at 30 °C in YEPgal liquid

medium (2% galactose, 2% peptone, 1% yeast extract) or shifted to liquid YEPD (2%

dextrose, 2% peptone, 1% yeast extract) to mid-log phase (OD600 = 0.25-0.5) for 16

hours to repress expression of Nop58 or Cbf5. Cells were harvested by centrifugation

and RNA was isolated. Unless indicated, all other strains were grown in YEPD at 30

°C to mid-log phase. Cells exposed to various environmental conditions were treated

as follows: 1% KOAc (1 hr, 30 °C), cycloheximide (1 ug/ml for 1 hour), rapamycin

(200 ng/ml for 1 or 5 hours), and pladienolide B (5 uM for 1 hour). Stationary phase

cells were grown to an OD600 = 10. Strains carrying prp16-302 [105] and prp43

Q423N [88] mutations, and wild type [142] were grown to mid log phase at 30 °C

and shifted to 18 °C for 1 hour by addition of an equal volume of 6 °C YEPD. The

spp382-1 strain is described in [119]). The strains deleted for the SNR80 (YWD448a),

SNR83 (YWD451a) or SNR87 (YWD452a) genes are described in [142]. Yeast strains

deleted for the SNR4 and SNR45 genes are described in [121]. All yeast strains and

genotypes can be found in Supplemental Table S4.
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4.5.2 RNA isolation

RNA was extracted from approximately five total OD600 of cells (usually

10 ml culture at OD600 = 0.5 for mid log cells, 0.5 ml of stationary cells at OD600

= 10) using a hot phenol protocol 1 described in [3].

4.5.3 In vitro synthesis of 18S and 25S rRNA

Unmodified yeast 18S and 25S rRNAs were transcribed in vitro from plas-

mids encoding T7-18S and T7-25S sequences using T7 RNA polymerase. PCR prod-

ucts encoding 18S and 25S rDNA were amplified from the plasmid pWL155 which

contains the RDN1-1 gene fused with the GAL promoter at the 5’ end ([95] a kind

gift from Jelena Jakovlievic) and cloned into a T7 promoter-containing plasmid di-

gested with EcoRI and HindIII using Gibson Assembly (NEB). The resulting plasmids

were then digested with HindIII and run-off transcription was performed using the

MEGAscript T7 kit (Invitrogen) following the manufacturer’s instructions. T7-18S

and -25S in vitro transcription reactions were evaluated by gel electrophoresis for

bands of correct size that correspond to 18S and 25S rRNAs. Transcription reac-

tions were extracted and purified with phenol:chloroform:isoamyl alcohol (25:24:1),

ethanol precipitated and resuspended in nuclease-free H2O. Purified T7-18S and -25S

rRNA transcripts were then quantified on a NanoDrop spectrophotometer and pooled

in equimolar ratios for sequencing library preparation. The T7 run-off transcription

reactions terminate in a 3’ end generated by HindIII digestion and thus include an

additional AAGCU sequence not present in endogenous 18S and 25S rRNAs. There-
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fore, T7-18S and T7-25S splint oligonucleotides were used to capture the 3’ end of T7

transcribed rRNAs (see below, Supplemental Table S5).

4.5.4 Sequencing library preparation

Direct RNA sequencing libraries were constructed using the SQK-RNA002

(Oxford Nanopore Technologies) kit following the manufacturer’s protocol with the

following modifications. Briefly, 750 ng of total yeast RNA was used as input material.

To facilitate ligation of sequencing adapters to endogenous yeast 18S and 25S rRNA,

1 ul of 10 pmol/ul custom oligonucleotide duplexes complementary to the 3’ ends of

18S and 25S rRNA and the 5’ end of the ONT RMX sequencing adapter were used

instead of the kit provided RTA adapter (Supplemental Table S5). To create duplexes,

100 pmol of either 18S or 25S splint oligo was incubated with 100 pmol of sequencing

adapter and nuclease free H20 in a total volume of 10 ul. Reactions were heated to 95

°C for 2 minutes and gradually cooled at 65 °C for 10 minutes, 48 °C for 10 minutes,

room temperature for 10 minutes and then placed on ice. Annealed oligonucleotide

duplexes targeting 18S and 25S rRNAs were then pooled in equimolar ratio and 1

ul of the pool was used for sequencing library preparation. In the case of T7 rRNA

sequencing libraries, T7-18S splint and T7-25S splint oligos were used to capture

the 3’ end generated by HindIII digestion and run-off transcription. To enhance

ligation efficiency during library preparation, the first and second ligation steps were

increased from 10 minutes to 15 minutes and performed at room temperature. Reverse

transcription was omitted. Sequencing-adapted libraries were eluted in 21 ul of elution
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buffer.

4.5.5 Nanopore sequencing

RNAs extracted from GAL-NOP58 and GAL-CBF5 strains, and in vitro

transcribed RNA were sequenced on the MinION Mk1B sequencer using MinION

FLO-MIN106D R9.4.1 flow cells (Oxford Nanopore Technologies) following the man-

ufacturer’s instructions. 20 ul of Sequencing libraries was mixed with 17.5 ul of H20

and 37.5 ul of RRB buffer. 75 ul of the prepared sequencing library was loaded onto a

flushed and primed flow cell and sequenced for 12-48 hour depending on the lifetime

of active pores. RNAs extracted from all other strains and growth conditions were

sequenced on the MinION Mk1B sequencer using Flongle FLO-FLG001 R9.4.1 flow

cells. Flongle flow cells were flushed and primed with 120 ul of flush buffer mix (117

ul FLB and 3 ul FLT). 30 ul of prepared sequencing library (described above) was

loaded onto the flow cell and sequenced for 8-24 hours. Sequencing experiments were

controlled using the MinKNOW software (Oxford Nanopore Technologies).

4.5.6 Data preprocessing

The following preprocessing steps were applied to all of the sequencing exper-

iments. Basecalling was done by Guppy v3.1.5+781ed57. In order to analyze specific

subsets of reads more efficiently, we split the multi-fast5 reads into individual reads

using the multi to single fast5 command from https://github.com/nanoporetec

h/ont fast5 api. We then created an index file matching a fast5 to a fastq entry us-
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ing nanopolish index from https://github.com/jts/nanopolish (Simpson et al. 2017).

The reference sequence for the S. cerevisiae 18S and 25S rRNA came from (Engel

et al. 2014). Initial basecalled sequence to reference alignment was done via min-

imap2 version 2.17-r943-dirty from https://github.com/lh3/minimap2 using the

–MD flag which speeds up processing of signalAlign[92]. Alignment files were sorted

and filtered using samtools version 1.9 by flag -F 2308 which filters out unmapped

reads, non-primary alignment reads and supplemental alignment reads [93]. Given

that nanopore sequencing with RNA is 3’-5’, in order to filter for ‘full length’ reads

we used samtools view to select for reads that covered the first 15 bases of both 18S

and 25S rRNAs[93]. Read information and quality control metrics in Supplemental

Table S6 were gathered using pycoQC version v2.5.0.23 [90].

4.5.7 SignalAlign Pipeline

Model Definition

We initialized the transition probabilities from previous signalAlign r9.4

models. The initialized kmer distributions were defined in r9.4 180mv 70bps 5mer RNA

from ONT https://github.com/nanoporetech/kmer models. Unlike previ-

ous kmer model modification detection algorithms, we chose to model modifications

independently from other modifications of the same class in order to maintain the

same informational inputs to each modification position. So, we iteratively rede-

fined shared kmers with unused kmers from the model until all modifications were

covered by unique kmers (see Code availability). For all kmers outside of mod-
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ification branch points, we used the default RNA kmer distributions from ONT

(r9.4 180mv 70bps 5mer RNA).

Training Configuration

SignalAlign uses a variable-order hidden Markov model (HMM) which allows

the number of paths through the HMM to be correctly constructed when ambiguous

positions are defined [135]. Recent updates to signalAlign allow for relatively easy

model definition and variant site selection which allows a user to define modifications,

set prediction site locations and train a model. We defined all positions in the IVT

sample as canonical and all positions in the wild type as modified. The locations of

ambiguous positions are determined by the presence of ambiguous characters in the

reference sequence[163]. In this experiment, ambiguous characters represent two pos-

sible nucleotides, a canonical nucleotide and the most prevalent modified nucleotide.

The ambiguous characters were defined in a small model file. The annotated modified

nucleotides in 18S and 25S S. cerevisiae rRNA were defined as ambiguous during all

inference steps. For supervised training using IVT and wild type sequencing data,

all potential ambiguous positions were defined as either canonical or modified respec-

tively. We used 500 18S and 25S wild type reads and 500 18S and 25S IVT reads

and ran 30 rounds of training. For each round of training, we generated alignments

between events and the reference sequence. Then, we generated new event Gaussian

distributions for all kmers covering modified positions. The mean of the Gaussian

distribution was defined as the median of the empirical kmer distribution and the
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standard deviation was defined as the median absolute deviation of the empirical dis-

tribution. Similar to another study, we have seen that the median is less susceptible

to being influenced by outliers[41]. To train the model, we used trainModels.py from

signalAlign.

Inference and Accuracy Metrics

In order to validate our results, we used ‘runSignalAlign.py’ and a trained

model to predict modification status on all positions of 500 hold out IVT reads and

500 hold out wild type reads. We placed ambiguous characters at modified posi-

tions in the reference for both IVT and wild type reads and signalAlign produced the

posterior probability of event to kmer alignments given the trained model. We use

embed main sa2bed to decode the posterior probabilities from the signalAlign output

into the probability of a position being modified (Rand et al. 2017). These probabili-

ties are used for the receiver operating characteristic curve, precision-recall curve, and

calibration curve of Supplemental Fig 4.8. A probability cutoff of 0.5 is used for the

confusion matrix as well as the quantification of percent modified for any position.

We also compared accuracy on our test set to several snoRNA knockouts. Again,

assuming snoRNA knockouts completely ablate target modifications and modifica-

tions are 100% present at all other positions, the average balanced accuracy over the

snoRNA knockout positions is 82.8% and the expected balanced accuracy is 87.1%

(Supplemental Table S2-3). Average balanced accuracy is calculated by getting the

average of all balanced accuracies across all snoRNA knockout positions. Balanced
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accuracy for one position is calculated by adding the specificity to the sensitivity and

dividing by two.

Percent Modification Change

For every experiment and each modification position, we perform a chi-

square two sample test comparing the wild type’s modification frequency to the ex-

periment’s modification frequency[122]. We then correct for multiple tests using the

Benjamani-Hochberg procedure [9]. We also control for batch effects by filtering out

reads which fall below the maximum change in modification frequency between the

replicates of the snR48 KO. Percent modified, chi-square two sample test between

wild type and all other samples p-value, Benjamani-Hochberg corrected p-value can

be found in Supplemental Table S2.

4.5.8 Hierarchical Clustering Analysis

Dendrogram creation procedure

In order to determine any subclusters of reads based on a modification pro-

file, we used hierarchical clustering on the per-read per-site modification probabilities

we generated from the inference step [177, 123]. We generated the dendrogram using

Ward’s method as the hierarchical clustering method and euclidean distance as the

distance metric [175]. UMAP dimension reduction was done using the umap python

package and visualization using matplotlib [110, 72]. Before clustering analysis, we

filter out reads which do not cover every modification site.
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Cluster Partitioning

To determine the number of reads in a set of N clusters we simply cut the

dendrogram to create N subclusters and calculated the fraction of reads within each

branch.

4.5.9 Modification Correlations

To calculate correlations between modified positions, we first filter out reads

which did not cover all modifications and select the set of probabilities associated with

each position. We then calculate the Spearman correlation between all pairwise com-

binations of modification positions on the same molecule. P-values were calculated

using a two sided t-test and multiple tests corrected via the Benjamani-Hochberg

procedure[159, 9].

To compare correlations between experiments, we used Fisher’s z-transformation

to convert correlations into z-scores and then performed a z-test to obtain p-values[50,

48, 49, 190]. We then correct for multiple tests using the Benjamani-Hochberg pro-

cedure [9]. These p-values represent the confidence that, between two samples, there

is a significant difference between the two correlations. All correlation plots have

stars for positions which are both significantly different from a comparison experi-

ment (wild type or IVT) and are significantly different from zero (p-value ¡ 0.05). To

account for variation in experimental repeats, we plot the minimum difference and

highest corrected p-value for all pairwise comparisons between experimental repeats

and wild type repeats.
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For higher order claims which require aggregating information from several

hypothesis tests we use Empirical Brown’s method [129, 21]. The Empirical Brown’s

method uses empirical data to calculate the covariance matrix which is used to ex-

tended Fisher’s method to the dependent case by using a re-scaled χ2 distribution (see

Code availability). Spearman correlation values, original two sided t-test p-values,

corrected two sided t-test p-values, Fisher z-transform test comparison p-values, and

corrected Fisher z-transform tests p-values can be found in Supplemental Table S1.

4.5.10 Event Cluster Visualization

Using almost the exact same procedure outlined in a previous study[41], we

gather the kmer to reference mapping generated from signalAlign and extract the

most probable event to kmer alignment path using the maximum expected accuracy

alignment [135, 45]. For each read, we standardize the raw signal and calculate event

means. Prior to clustering and visualization, we combine all reads together and stan-

dardize events by column. We generate the dendrogram using the same procedure as

hierarchical clustering of modification profiles, Ward’s method and euclidean distance

[175].

For kmer distributions seen in Supplemental Figure 4.11, we plot the kernel

density estimate of all events aligning to the corresponding kmer with a probability

greater than 0.5. We then simply plot the corresponding kmer distributions from the

final trained kmer model.
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4.5.11 Sample Compare Site Detection

Tombo Pipeline

Using Tombo version 1.5.1, initial embedding of fastq data into the raw

fast5s was done with the tombo preprocess annotate raw with fastqs and signal to

reference alignment with tombo resquiggle [108]. Finally, tombo detect modifications

level sample compare was used to generate windowed means of individual position

Kolmogorov–Smirnov tests comparing the IVT sample position signal distributions

to the wild type sample (WT YPD) position signal distributions [108]. For a given

position i, the windowed mean D-statistic is wi =
∑i+1

i−1 di

3
where d is the D-statistic

for a given position and w is the final reported statistic plotted in Supplemental Fig.

4.7.

Accuracy of Modification Site Prediction

In order to get a general view of how all of the modifications are affecting

the current signal we analyzed the signal shift between in vitro transcribed (IVT)

and one wild type sample (WT YPD) using Tombo [108]. The signal difference of

18S and 25S strands using Tombo is shown in Supplemental Fig. 4.7A and 4.7B

respectively. There is a clear correlation between annotated modified positions and

signal deviation but in order to quantify the relative accuracy of both approaches, we

naively labeled the per-position deviations with the corresponding windowed mean

D-statistic. As shown in Supplemental Fig. S1C-D, the per-position modification
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calling detection AUROC (Area Under the Receiver Operating Characteristic) was

0.924 for 18S and 0.934 for 25S. However, if a canonical position is directly next to

a modified position, it is very likely the underlying current is going to be shifted for

that position. Also, the uncertainty of which specific nucleotide in the pore gives

rise to the most significant signal shift makes site selection for kmer based sample

compare frameworks very difficult [41, 89, 108]. Therefore, instead of evaluating

Tombo on the per-position modification calling accuracy, we used a less stringent

metric of modification window calling accuracy. We looked to see if a peak was

within a window of a specific modification and disregarded large differences in signal

in the neighboring 2 bases of a modification. Specifically, for each modification, we

took the maximum corresponding statistic value of a window of 5 positions covering

that modification. For example, if pos 20 was modified, the corresponding statistic

for position 20 was the maximum value for positions 18, 19, 20, 21 and 22. Then, we

removed the 2 upstream and downstream values from being classified. So, positions

18, 19, 21 and 22 will not be classified as true negatives or false positives. This

approach allows for uncertainty of where the modification is within a small window of

5 positions and greatly reduces the false positive rate. As seen in Supplemental Fig.

4.7C and 4.7D, by decreasing the stringency of our accuracy metric we see a marked

improvement of modification detection to an AUROC of 0.984 for 18S and 0.986 for

25S.
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4.5.12 Modification Labels and Frequency

Underlying labels for modification and frequency for the S. cerevisiae 18S

and 25S rRNA came from Taoka et al [163]. Expected changes in modification fre-

quency in the Dbp3 deletion experiment came from Aquino et al [2]. SnoRNA modifi-

cation sites on yeast rRNA come from the UMASS Amherst Yeast snoRNA database

[127].

4.5.13 Data availability

Fastq files from all direct RNA sequencing runs and signalAlign modifica-

tion calls are publicly available in NCBI’s Gene Expression Omnibus (GEO) and are

accessible through GEO Series accession number GSE186634 https://www.ncbi.n

lm.nih.gov/geo/query/acc.cgi?acc=GSE186634. Fast5 files for all direct RNA

sequencing are available in the European Nucleotide Archive (ENA) at EMBL-EBI

under accession number PRJEB48183 https://www.ebi.ac.uk/ena/browser/view

/PRJEB48183. A detailed description of the datasets used and sequenced in this work

with their corresponding ENA, GEO, and SRA IDs can be found in Supplementary

Table S7.

4.5.14 Code availability

Documentation, install requirements, and analysis scripts can be found at ht

tps://github.com/adbailey4/yeast rrna modification detection. SignalAlign

can be found at https://github.com/UCSC-nanopore-cgl/signalAlign and
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embed fast5 can be found https://github.com/adbailey4/embed fast5.
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Figure 4.1: Clustering and correlation analysis of depletion experiment modification pro-
files in 25S. (A) Hierarchical clustering of 25S yeast rRNA modification profiles of IVT,
wild type, and both pseudouridine and 2’O methyl depletion experiments. (B) Fraction
reads from IVT, wild type and both depletion experiments in each cluster of 25S rRNA.
(C) UMAP visualization of 25S yeast rRNA modification profiles of IVT, wild type, and
both pseudouridine and 2’O methyl depletion experiments. (D/E) Change in Spearman cor-
relations of 25S reads in 2’O methyl depletion (D) and pseudouridine depletion (E) when
compared to wild type. Stars represent significant changes when compared to wild type
correlation and significantly different from zero correlation. All nucleotide positions are
color coded where blue positions are 2’O-methyl, red positions are pseudouridine, and black
positions are neither 2’O-methyl nor pseudouridine.
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Figure 4.2: Clustering of 18S rRNA modification profiles and correlation analysis from the
mixture experiment and wild type rRNA. (A) Hierarchical clustering of 18S modification
of profiles from wild type, mixed, snR80 KO, snR83 KO, and snR87 KO samples. (B)
Change in Spearman correlations of 18S reads in the mixture experiment when compared
to wild type. Stars represent significant changes when compared to wild type correlation
and significantly different from zero correlation. (C) Fraction of wild type, mixed sample,
snR80 KO, snR83 KO, and snR87 KO in each cluster of 18S rRNA. (D) Table of snoRNAs
knocked down with the corresponding expected knocked down modifications. (E) Hierarchi-
cal clustering of 18S yeast rRNA modification profiles from wild type yeast. (F) Wild type
Spearman correlation of 18S wild type reads. Stars represent significantly different to IVT
correlations and significantly different from zero correlation. (G) Crystal structure model of
wild type S. cerevisiae 18S rRNA highlighting significant correlated positions. PDB: 4V88
[8]
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Figure 4.3: Clustering of 25S rRNA modification profiles and percent change in modification
frequency of helicase mutants Dbp3 and Prp43 and G-patch proteins Pxr1 and Sqs1. (A)
Barplots of the difference between wild type modification frequency and Dbp3 KO, Prp43
cold mutant, Pxr1 KO, and Sqs1 KO modification frequencies in 25S yeast rRNA. Grey bars
indicate the variance of wild type rRNA modification at each position and the black dotted
lines represent the maximum variance observed at any site. (B) Hierarchical clustering of
25S yeast rRNA modification profiles from wild type, Dbp3 knockout, Prp43 cold mutant,
and Pxr1 KO.
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Figure 4.4: Figure 4: Changes in correlated nucleotide positions in dbp3∆ , prp43-cs, or
pxr1∆ mutants. Pairs of correlated nucleotide changes (nodes) are shown for each mu-
tant (edges) relative to wild type yeast 25S rRNA (A) and 18S rRNA (B). In cases where
correlated pairs show differential changes in correlation in different mutants (eg. U24 modi-
fications), node color rings are fragmented with the appropriate mutant edge connecting to
either the magenta (negative change in correlation) or black (positive change in correlation)
portion of the node.
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Figure 4.5: Resilience of yeast rRNA modifications to a variety of splicing mutants and ex-
perimental conditions. Barplots of the difference between wild type modification frequency
and Dbr1 KO, Spp382 KO, Prp16 cold mutant, KOAc treated, cycloheximide treated, sta-
tionary, rapamycin treated and cold shock yeast modification frequencies in yeast 18S (A)
and 25S (B) rRNA. Grey bars indicate the variance of wild type rRNA modification at each
position and the black dotted lines represent the maximum variance across sites.
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Figure 4.6: 2’O-methyl modifications guided by U24 line the polypeptide exit tunnel and
interact with ribosomal proteins L4 and L17. (A) Crystal structure model of yeast 25S
rRNA and ribosomal proteins L4 and L17 in surface view (PDB:4V88)[8]. rRNA domains
are color coded according to the RiboVision Suite [12]. The distal end of the polypeptide
exit tunnel is indicated. U24-guided modified nucleotides Cm1437, Am1449, and Gm1450
are shown in blue. (B) Focused view of the L4 tunnel domain and the internal loop of L17
forming the exit tunnel constriction sites. 25S rRNA domain 0 is shown in black.
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4.10 Tables

All tables for this chapter have been included in a supplementary file

yeast rrna supplemental tables.xlsx.

4.11 Supplementary Information

4.11.1 Supplementary Note 1

In order to better resolve tight clusters of modification we need training data

with labelled reads for all possible permutations of modifications. However, we do not

have that information. So, we rely on prior information, experimental design expec-

tations and signal comparisons to determine confidence in signalAlign predictions of

modification clusters. Specifically, for high interest modification clusters, we validate

modification profile clusters found using signalAlign using nanopore signal patterns

by clustering the underlying event means (see section 4.5)[41]. In Supplemental Fig-

ure 4.10, we noticed two interesting patterns of modifications positions located in the

peptidyl transfer center (PTC) (Um2921, Gm2922, Ψ2923) and positions targeted by

U24 (Cm1437, Am1449, Gm1450).

Prior to running our depletion experiments, we were uncertain if inhibiting

box C/D snoRNP function would alter the modification status of Um2921 because

both Um2921 and Gm2922 can be methylated with the non-snoRNP methyltrans-

ferase Sbp1 [86]. However, we did expect the Cbf5 depletion would create a high

proportion of reads with a modification pattern unseen by the model (only missing
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the Ψ2923). Thus, prior to analysis, we were uncertain on the number of high propor-

tion modification patterns across these three positions. After analysis by signalAlign,

we see similarly modified wild type and Nop58 depletion reads with a slight decrease

in frequency of all three modifications in the Cbf5 depletion (Supplemental Figure

4.10A and Supplemental Table S2). Thus, our initial hypotheses are that Um2921

modification is not altered by inhibiting box C/D snoRNP function and that the

altered signal caused by missing Ψ2923 manifests as a slight (¡5%) decrease in modi-

fication frequency of Um2921 and a larger (¡10%) decrease of modification frequency

of Gm2922 and Ψ2923. To determine if our hypothesis is correct, we used the un-

derlying event means to identify the number modification patterns through the PTC

modifications. At a high level look (2917-2922) we see two clear clusters; one cluster

of IVT reads indicating three unmodified positions and one cluster with wild type and

both depletion experiments (Supplemental Figure 4.10C). Upon closer inspection of

the most informative kmers (2921, 2922, 2923, and 2924), we see clustering of event

means partition Cbf5 depletion reads and 2’O-methyl depletion reads (Supplemental

Figure 4.10E). Given that we only see two main clusters outside of the IVT cluster

leads us to believe that the 2’O-methyl depletion had little to no effect on modifica-

tion status on Um2921 and Cbf5 depletion experiment most likely causes an unknown

decrease in modification at Ψ2923.

For the U24 positions, our model shows a high level of correlation between

each position, unexpected missing 2’O-methyls in the Cbf5 depletion and unexpected

presence of 2’O-methyls in the Nop58 depletion (Supplemental Figure 4.10A). Given
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the isolation of Cm1437, we are confident that the unexpected predicted status of

Cm1437 in both depletion experiments are accurate. The high level of correlation

is not necessarily surprising given the shared snoRNA and we confirm the patterns

found in modification profile clustering with event means clustering (Supplemental

Figure 4.10B). However, to confirm the results at the pair of 2’O-methyls (Am1449

and Gm1450), we clustered the most informative kmers (1448, 1449, and 1450) and

saw only two clusters of events, corresponding with IVT and wild type (Supplemental

Figure 4.10D). Given we see only two clusters and no partitioning between the two

depletion experiments leads us to believe that there are only two primary modifi-

cation patterns for Am1449 and Gm1450, either both modified or both unmodified.

Given the underlying clustering of the U24 positions, we believe that there is a high

level of correlation between the U24 positions, Cbf5 depletion leads to a decrease in

U24 modification efficiency and rRNAs with U24 modifications maybe preferentially

selected or modified in the Nop58 depletion.
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4.11.2 Supplementary Figures
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Figure 4.7: De-novo detection of modifications using Tombo. (A-B) Per position, window
averaged D-statistic plots from Tombo’s sample compare method for yeast 18S (A) and
25S (B) rRNA [108]. The blue line represents the difference between the per-position
distributions of the IVT sample vs the wild type sample. The red markers are the location
of each annotated modification on the corresponding rRNA4.5).
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Figure 4.8: SignalAlign pipeline overview, overall accuracy metrics from testing data and
per-position model accuracy. (A) Analysis pipeline. (B-E) Testing accuracy metrics of the
final model of supervised training. Both training protocol and testing metrics are described
in detail in section 4.5. (B) Receiver operating characteristic (ROC) curve and area under
the ROC (0.93). (C) Calibration curve showing the fraction of true positives for several
ranges of probabilities. The brier score (0.101) is a metric for determining how well a model
is calibrated. (D) Precision-recall curve. (E) Per-position accuracy with corresponding
modification annotation for each position [163].
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Figure 4.9: (related to Figure 4.1): Clustering and correlation analysis of depletion experi-
ment modification profiles in 18S. (A) Hierarchical clustering of 18S yeast rRNA modifica-
tion profiles of IVT, wild type, and both pseudouridine and 2’O methyl depletion experi-
ments. (B) Fraction reads from IVT, wild type and both depletion experiments (CBF5 GAL,
NOP58 GAL) in each cluster of 18S rRNA. (C) UMAP visualization of 18S yeast rRNA
modification profiles of IVT, wild type, and both pseudouridine and 2’O methyl depletion
experiments. (D) Bioanalyzer of comparing levels of 18S and 25S in galactose treated sam-
ples (CBF5 GAL, NOP58 GAL) compared to glucose treated samples (CBF5 GLU, NOP58 GLU).
(E/F) Change in Spearman correlations of 25S reads in 2’O methyl depletion (E) and pseu-
douridine depletion (F) when compared to wild type. Stars represent significant changes
when compared to wild type correlation and significantly different from zero correlation (see
section 4.5).
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Figure 4.10: (related to Figure 4.1): Clustering of underlying events to search for patterns
of modification in the pseudouridine and 2’O methyl depletion experiments. (A) Hierarchical
clustering of 25S yeast rRNA modification profiles of IVT, wild type, and both pseudouridine
and 2’O methyl depletion experiments. (B-E) Hierarchical clustering of normalized event
means aligned to the reference sequence from IVT, wild type, and both pseudouridine and
2’O methyl depletion experiments covering positions 1433 to 1457 (B), 2917-2932 (C), 1448-
1450 (D), and 2921-2924 (E) (see section 4.5 and Supplemental Note 4.11.1).
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Figure 4.11: (related to Figure 4.2): Heatmaps and percent modification change of snoRNA
knockout and mixture experiments. (A) Heatmap of wild type, mixed sample, snR80 KO,
snR83 KO, snR87, snR45 and snR4 KO modification profiles of 18S. (B) Mixed sample,
snR80 KO, snR83 KO, snR87, snR45 and snR4 KO 18S percent change in modification
frequency when compared to wild type. Grey bars indicate the variance of wild type rRNA
modification at each position and the black dotted lines represent the maximum variance
found at any position. (C) Table of snoRNAs knocked down with the corresponding ex-
pected knocked down modifications. (D) Heatmap of wild type, mixed sample, snR80 KO,
snR83 KO, snR87, snR45 and snR4 KO modification profiles of 25S. (E) Mixed sample,
snR80 KO, snR83 KO, snR87, snR45 and snR4 KO 25S percent change in modification
frequency when compared to wild type.
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Figure 4.12: Kmer distribution comparison between snoRNA knockout kmer distributions
and the trained model kmer distributions. Each figure has the model’s canonical kmer dis-
tribution, the model’s modified kmer distribution and the corresponding snoRNA knockout
kernel density estimate (KDE) of all events aligned to that position (see section 4.5). The
rows show kmers covering position 759 in 18S from snR80 KO, position 776 in 25S from
snR80 KO, position 1290 in 18S from snR83 KO, position 1415 in 18S from snR83 KO,
position 436 in 18S from snR87 KO, position 436 in 18S from snR87 KO, position 1773 in
18S from snR45 KO and position 1280 in 18S from snR4 KO.
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Figure 4.13: Comparison of rRNA 2’O-methylation calling from other modification detec-
tion techniques and signalAlign modification detection. (A-B) Comparison between the
range of modification percentages called via mass spectrometry [163], HPLC [188], and two
RiboMeth-seq approaches [14, 107] vs signalAlign modification percentages of wild type
yeast in 18S (A) and 25S (B). (C-D) Comparison between RiboMeth-seq modification per-
centages [2] and signalAlign modification percentages for the Dbp3 knockout strain in 18S
(C) and 25S (D) yeast rRNA. For the combination of several detection approaches, we cal-
culated the minimum, maximum and mean modification percentage from the four papers.
For all plots, error bars represent the minimum or maximum percent modification called
and circles represent the mean modification percentage.
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Figure 4.14: Analysis of yeast rRNA modification frequency in relation to functional centers
of the ribosome. (A) Distribution of fraction modified for positions within or not within
the functional centers of yeast rRNA. Distribution means are significantly (p-value=0.0031)
different via a two-sided Mann-Whitney U-test. (B-D) Crystal structure model of wild type
S. cerevisiae 80S (B), 40S (C) and 60S (D) rRNA highlighting modification frequency within
functional centers. PDB: 4V88 [8].
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Figure 4.15: (related to Figure 4.2): Yeast 25S rRNA modification profile clustering and
correlation analysis. (A) Hierarchical clustering of 25S yeast rRNA modification profiles
from wild type yeast. (B) Wild type Spearman correlation of 25S wild type reads. Stars
represent significantly different to IVT correlations and significantly different from zero
correlation. (C) Crystal structure model of wild type S. cerevisiae 25S rRNA highlighting
significant correlated positions. PDB: 4V88 [8]
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Figure 4.16: (related to Figure 4.3): Clustering of 18S rRNA modification profiles and
percent change in modification frequency of helicase mutants Dbp3 and Prp43 and G-patch
proteins Pxr1 and Sqs1. (A) Barplots of the difference between wild type modification fre-
quency and Dbp3 KO, Prp43 cold mutant, Pxr1 KO, and Sqs1 KO modification frequencies
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clustering of 18S yeast rRNA modification profiles from wild type, Dbp3 knockout, Prp43
cold mutant, and Pxr1 KO.
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Figure 4.17: (related to Figure 4.3): Correlation analysis of Dbp3 knockout, Prp43 cold
mutant Pxr1 knockout. Change in Spearman correlations of 18S (A-C) and 25S (D-E)
reads in Dbp3 knockout (A/D), Prp43 cold mutant (B/E), and Pxr1 knockout (C/F) when
compared to wild type. Stars represent significant changes when compared to wild type
correlation and significantly different from zero correlation.
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A Dendrogram of Normalized Event Means:
Prp43 Cold Mutant 
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Figure 4.18: Clustering of underlying events to search for patterns of modification in the
Dbp3 KO and Prp43 cold mutant. Hierarchical clustering of aligned standardized events
from Dbp3 KO (A) and Prp43 cold mutant (B) covering the events from positions 1431 to
1455 (see section 4.5). These positions cover the 3 2’O ribose methylations guided by the
snoRNA U24 at positions 1437, 1449 and 1450.
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202



Marie Luise Winz, Sunny Sharma, Karl Dieter Entian, Ludivine Wacheul, De-

nis L.J. Lafontaine, James Anderson, Juan Alfonzo, Andreas Hildebrandt, An-
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Caizergues-Ferrer, and David Tollervey. The box H + ACA snoRNAs carry

Cbf5p, the putative rRNA pseudouridine synthase. Genes and Development,

12(4):527–537, 1998.

[85] DENIS L.J. LAFONTAINE and DAVID TOLLERVEY. Nop58p is a common

component of the box C+D snoRNPs that is required for snoRNA stability.

RNA, 5(3):S135583829998192X, 3 1999.

[86] Bruno Lapeyre and Suresh K. Purushothaman. Spb1p-Directed Formation of

Gm2922 in the Ribosome Catalytic Center Occurs at a Late Processing Stage.

Molecular Cell, 16(4):663–669, 11 2004.

[87] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard,

206



and L. D. Jackel. Backpropagation Applied to Handwritten Zip Code Recogni-

tion. Neural Computation, 1(4):541–551, 12 1989.

[88] Nina B Leeds, Eliza C Small, Shawna L Hiley, Timothy R Hughes, and

Jonathan P Staley. The Splicing Factor Prp43p, a DEAH Box ATPase, Func-

tions in Ribosome Biogenesis. Molecular and Cellular Biology, 26(2):513–522,

1 2006.

[89] Adrien Leger, Paulo P Amaral, Luca Pandolfini, Charlotte Capitanchik, Fed-

erica Capraro, Isaia Barbieri, Valentina Migliori, Nicholas M Luscombe, An-

ton J Enright, Kostantinos Konstantinos Tzelepis, Jernej Ule, Tomas Fitzger-

ald, Ewan Birney, Tommaso Leonardi, and Tony Kouzarides. RNA modifica-

tions detection by comparative Nanopore direct RNA sequencing. bioRxiv, page

843136, 2019.

[90] Adrien Leger and Tommaso Leonardi. pycoQC, interactive quality control for

Oxford Nanopore Sequencing. Journal of Open Source Software, 4(34):1236, 2

2019.

[91] H. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and

W. W. Webb. Zero-mode waveguides for single-molecule analysis at high con-

centrations. Science, 299(5607):682–686, 2003.

[92] Heng Li. Minimap2: pairwise alignment for nucleotide sequences. Bioinformat-

ics, 34(18):3094–3100, 9 2018.

207



[93] Heng Li, Bob Handsaker, Alec Wysoker, Tim Fennell, Jue Ruan, Nils Homer,

Gabor Marth, Goncalo Abecasis, and Richard Durbin. The Sequence Align-

ment/Map format and SAMtools. Bioinformatics, 25(16):2078–2079, 8 2009.

[94] Sheng Li and Christopher E. Mason. The Pivotal Regulatory Landscape of RNA

Modifications. Annual Review of Genomics and Human Genetics, 15(1):127–

150, 8 2014.

[95] W.-Q. Liang and M J Fournier. Synthesis of functional eukaryotic ribosomal

RNAs in trans: Development of a novel in vivo rDNA system for dissecting ribo-

some biogenesis. Proceedings of the National Academy of Sciences, 94(7):2864–

2868, 4 1997.

[96] Huanle Liu, Oguzhan Begik, Morghan C. Lucas, Jose Miguel Ramirez, Christo-

pher E. Mason, David Wiener, Schraga Schwartz, John S. Mattick, Martin A.

Smith, and Eva Maria Novoa. Accurate detection of m6A RNA modifications

in native RNA sequences. Nature Communications, 10(1):1–9, 9 2019.

[97] Jianzhao Liu, Yuanxiang Zhu, Guan-Zheng Luo, Xinxia Wang, Yanan Yue,

Xiaona Wang, Xin Zong, Kai Chen, Hang Yin, Ye Fu, Dali Han, Yizhen Wang,

Dahua Chen, and Chuan He. Abundant DNA 6mA methylation during early

embryogenesis of zebrafish and pig. Nature Communications, 7(1):13052, 12

2016.

[98] Kuanqing Liu, Daniel A Santos, Jeffrey A Hussmann, Yun Wang, Benjamin M

208



Sutter, Jonathan S Weissman, and Benjamin P Tu. Regulation of translation

by methylation multiplicity of 18S rRNA. Cell Reports, 34(10):108825, 3 2021.

[99] Qian Liu, Li Fang, Guoliang Yu, Depeng Wang, Chuan-le Le Xiao, and Kai

Wang. Detection of DNA base modifications by a deep recurrent neural network

on Oxford Nanopore sequencing data. Nature Communications, 10(1), 2019.

[100] Qian Liu, Daniela C. Georgieva, Dieter Egli, and Kai Wang. NanoMod: a

computational tool to detect DNA modifications using Nanopore long-read se-

quencing data. bioRxiv, page 277178, 2018.

[101] Nicholas J. Loman, Joshua Quick, and Jared T. Simpson. A complete bacte-

rial genome assembled de novo using only nanopore sequencing data. Nature

Methods, 12(8):733–735, 2015.

[102] Daniel A. Lorenz, Shashank Sathe, Jaclyn M. Einstein, and Gene W. Yeo. Direct

RNA sequencing enables m6A detection in endogenous transcript isoforms at

base-specific resolution. Rna, 26(1):19–28, 2020.

[103] Frank Lyko. The DNA methyltransferase family: A versatile toolkit for epige-

netic regulation, 2018.

[104] A. MacDonald, C.J. Scarrott, D. Lee, B. Darlow, M. Reale, and G. Russell. A

flexible extreme value mixture model. Computational Statistics & Data Analy-

sis, 55(6):2137–2157, 6 2011.

[105] H D Madhani and C Guthrie. Genetic interactions between the yeast RNA

209



helicase homolog Prp16 and spliceosomal snRNAs identify candidate ligands

for the Prp16 RNA-dependent ATPase, 7 1994.

[106] Kerstin C. Maier, Saskia Gressel, Patrick Cramer, and Björn Schwalb. Native

molecule sequencing by nano-ID reveals synthesis and stability of RNA isoforms.

Genome Research, 30(9):1332–1344, 9 2020.

[107] Virginie Marchand, Florence Blanloeil-Oillo, Mark Helm, and Yuri Motorin.

Illumina-based RiboMethSeq approach for mapping of 2’-O-Me residues in

RNA. Nucleic Acids Research, 44(16):e135–e135, 9 2016.

[108] Marcus H Stoiber, Joshua Quick, Rob Egan, Ji Eun Lee, Susan E Celniker,

Robert Neely, Nicholas Loman, Len Pennacchio, and James B Brown. De novo

Identification of DNA Modifications Enabled by Genome-Guided Nanopore Sig-

nal Processing. biorXiv, 2016.

[109] Arnold Martin, Susanne Schneider, and Beate Schwer. Prp43 Is an Essential

RNA-dependent ATPase Required for Release of Lariat-Intron from the Spliceo-

some. Journal of Biological Chemistry, 277(20):17743–17750, 5 2002.

[110] Leland McInnes, John Healy, and James Melville. UMAP: Uniform Manifold

Approximation and Projection for Dimension Reduction. arXiv, 2 2018.

[111] Alexa B. R. McIntyre, Noah Alexander, Kirill Grigorev, Daniela Bezdan, Heike

Sichtig, Charles Y Chiu, and Christopher E Mason. Single-molecule sequencing

210



detection of N6-methyladenine in microbial reference materials. Nature Com-

munications, 10(1):579, 12 2019.

[112] Carolin A. Müller, Michael A. Boemo, Paolo Spingardi, Benedikt M. Kessler,

Skirmantas Kriaucionis, Jared T. Simpson, and Conrad A. Nieduszynski. Cap-

turing the dynamics of genome replication on individual ultra-long nanopore

sequence reads. Nature Methods, 16(5):429–436, 2019.

[113] Hitoshi Nakatogawa and Koreaki Ito. The Ribosomal Exit Tunnel Functions as

a Discriminating Gate. Cell, 108(5):629–636, 3 2002.

[114] S. Kundhavai Natchiar, Alexander G. Myasnikov, Hanna Kratzat, Isabelle

Hazemann, and Bruno P. Klaholz. Visualization of chemical modifications in

the human 80S ribosome structure. Nature, 551(7681):472–477, 2017.

[115] Peng Ni, Neng Huang, Zhi Zhang, De-Peng Peng Wang, Fan Liang, Yu Miao,

Chuan-Le Le Xiao, Feng Luo, and Jianxin Wang. DeepSignal: detecting DNA

methylation state from Nanopore sequencing reads using deep-learning. Bioin-

formatics, 35(22):4586–4595, 11 2019.

[116] Intawat Nookaew, Piroon Jenjaroenpun, Hua Du, Pengcheng Wang, Jun Wu,

Thidathip Wongsurawat, Sun Hee Moon, En Huang, Yinsheng Wang, and Gun-

nar Boysen. Detection and Discrimination of DNA Adducts Differing in Size,

Regiochemistry, and Functional Group by Nanopore Sequencing. Chemical Re-

search in Toxicology, 33(12):2944–2952, 12 2020.

211



[117] T G Obrig, W J Culp, W L McKeehan, and B Hardesty. The mechanism by

which cycloheximide and related glutarimide antibiotics inhibit peptide synthe-

sis on reticulocyte ribosomes. The Journal of biological chemistry, 246(1):174–

81, 1 1971.

[118] Siew Loon Ooi, Dmitry A. Samarsky, Maurille J. Fournier, and Jef D. Boeke.

Intronic snoRNA biosynthesis in saccharomyces cerevisiae depends on the lariat-

debranching enzyme: Intron length effects and activity of a precursor snoRNA.

Rna, 4(9):1096–1110, 9 1998.

[119] Shatakshi Pandit, Bert Lynn, and Brian C Rymond. Inhibition of a spliceo-

some turnover pathway suppresses splicing defects. Proceedings of the National

Academy of Sciences of the United States of America, 103(37):13700–13705, 9

2006.

[120] Matthew T Parker, Katarzyna Knop, Anna V Sherwood, Nicholas J Schurch,

Katarzyna Mackinnon, Peter D Gould, Anthony JW Hall, Geoffrey J Barton,

and Gordon G Simpson. Nanopore direct RNA sequencing maps the complexity

of Arabidopsis mRNA processing and m6A modification. eLife, 9, 1 2020.

[121] Steven Parker, Marcin G Fraczek, Jian Wu, Sara Shamsah, Alkisti Manousaki,

Kobchai Dungrattanalert, Rogerio Alves de Almeida, Edith Invernizzi, Tim

Burgis, Walid Omara, Sam Griffiths-Jones, Daniela Delneri, and Raymond T.

O’Keefe. Large-scale profiling of noncoding RNA function in yeast. PLoS Ge-

netics, 14(3):e1007253, 3 2018.

212



[122] Karl Pearson. X. On the criterion that a given system of deviations from the

probable in the case of a correlated system of variables is such that it can be

reasonably supposed to have arisen from random sampling. The London, Edin-

burgh, and Dublin Philosophical Magazine and Journal of Science, 50(302):157–

175, 7 1900.
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Rémigy, Holger Stark, and Christian Wiesmann. Cryo-EM in drug discov-

ery: Achievements, limitations and prospects. Nature Reviews Drug Discovery,

17(7):471–492, 2018.

[137] M. Ronaghi. Pyrosequencing Sheds Light on DNA Sequencing. Genome Re-

search, 11(1):3–11, 1 2001.

[138] Jonathan M. Rothberg, Wolfgang Hinz, Todd M. Rearick, Jonathan Schultz,

William Mileski, Mel Davey, John H. Leamon, Kim Johnson, Mark J. Milgrew,

Matthew Edwards, Jeremy Hoon, Jan F. Simons, David Marran, Jason W. My-

ers, John F. Davidson, Annika Branting, John R. Nobile, Bernard P. Puc, David

Light, Travis A. Clark, Martin Huber, Jeffrey T. Branciforte, Isaac B. Stoner,

215



Simon E. Cawley, Michael Lyons, Yutao Fu, Nils Homer, Marina Sedova, Xin

Miao, Brian Reed, Jeffrey Sabina, Erika Feierstein, Michelle Schorn, Moham-

mad Alanjary, Eileen Dimalanta, Devin Dressman, Rachel Kasinskas, Tanya

Sokolsky, Jacqueline A. Fidanza, Eugeni Namsaraev, Kevin J. McKernan, Alan

Williams, G. Thomas Roth, and James Bustillo. An integrated semiconductor

device enabling non-optical genome sequencing. Nature, 475(7356):348–352, 7

2011.

[139] Paul Ryvkin, Y. Y. Leung, I. M. Silverman, Micah Childress, Otto Valladares,

Isabelle Dragomir, Brian D Gregory, and L.-S. Wang. HAMR: high-throughput

annotation of modified ribonucleotides. RNA, 19(12):1684–1692, 12 2013.

[140] Yogesh Saletore, Kate Meyer, Jonas Korlach, Igor D Vilfan, Samie Jaffrey, and

Christopher E Mason. The birth of the Epitranscriptome: deciphering the

function of RNA modifications. Genome Biology, 13(10):175, 2012.

[141] F. Sanger, S. Nicklen, and A. R. Coulson. DNA sequencing with chain-

terminating inhibitors. Proceedings of the National Academy of Sciences,

74(12):5463–5467, 12 1977.

[142] Peter Schattner, Wayne A Decatur, Carrie A Davis, Manuel Ares Jr, Maurille J

Fournier, and Todd M Lowe. Genome-wide searching for pseudouridylation

guide snoRNAs: analysis of the Saccharomyces cerevisiae genome. Nucleic

Acids Research, 32(14):4281–4296, 8 2004.

[143] Markus Schosserer, Nadege Minois, Tina B. Angerer, Manuela Amring, Hanna

216



Dellago, Eva Harreither, Alfonso Calle-Perez, Andreas Pircher, Matthias Pe-

ter Gerstl, Sigrid Pfeifenberger, Clemens Brandl, Markus Sonntagbauer, Albert

Kriegner, Angela Linder, Andreas Weinhäusel, Thomas Mohr, Matthias Steiger,
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[191] Ying Zhang, Tina Wölfle, and Sabine Rospert. Interaction of Nascent Chains

with the Ribosomal Tunnel Proteins Rpl4, Rpl17, and Rpl39 of Saccharomyces

cerevisiae. Journal of Biological Chemistry, 288(47):33697–33707, 11 2013.

225


	List of Figures
	List of Tables
	Abstract
	Dedication
	Acknowledgments
	Introduction
	Biological Importance of Modifications
	Conventional Modification Detection
	Next Generation Sequencing
	Real-time Single-molecule Sequencing
	Data Analysis of Nanopore sequencing
	Understanding Nanopore Sequencing Signal
	Basecalling Nanopore Reads
	Supervised Nanopore Modification Detection Algorithms
	De novo Nanopore Modification Site Detection Algorithms

	Research Outline
	Equations
	Figures

	Gaussian Mixture Model-Based Unsupervised Nucleotide Modification Number Detection Using Nanopore Sequencing Readouts
	Abstract
	Introduction
	Materials and Methods
	Data collection and preprocessing.
	Alignment, quality filtering and event table generation.
	Optimal kmer length determination
	Assessing the contributions of kmer positions to the ionic current shifts.
	Skewness and Kurtosis determination.
	Gaussian mixture model order determination.
	Clustering nanopore sequencing reads.
	Code availability.

	Results
	Determining effective length for kmers
	Empirical signal event distribution follows Gaussian
	Gaussian mixture model-based modification number inference
	Associating identified modifications

	Discussion
	Acknowledgements
	Author Contributions
	Figures
	Supplementary Information

	Towards Inferring Nanopore Sequencing Ionic Currents from Nucleotide Chemical Structures
	Abstract
	Glossary
	Introduction
	Results
	Architecture of the deep learning framework
	Kmer-level generalization
	Chemical group-level generalization in DNA 5mC de novo prediction
	Predictive analysis
	The encoding of chemical structures
	Analyzing the 2mG site in E.coli 16S rRNA

	Discussion
	Methods
	Methods summary
	Graph representation of kmer chemical structures
	Architecture of the deep learning framework
	Training procedure
	Hyper-parameter tuning
	Down-sample, base-dropout, position-dropout and combination analysis
	Predicting modification-containing DNA 6mers
	Predictive analysis of predicted kmer models
	E.coli 16S rRNA 2mG-site analysis
	Kmer models
	Data availability
	Code availability

	Acknowledgements
	Author Contributions
	Figures
	Tables
	Supplementary Information
	Supplementary Table 1
	Supplementary Note 1. Goodness-of-fit of the canonical DNA analysis.
	Supplementary Note 2. Goodness-of-fit of the canonical RNA analysis.
	Supplementary Note 3. Benchmarking human genome C/5mC-status predictive analysis with the megalodon algorithm.
	Supplementary Note 4. Building empirical kmer models.
	Supplementary Figures


	Single-molecule modification profiling of Saccharomyces cerevisiae ribosomal RNA reveals concerted modification at functional locations in the ribosome
	Abstract
	Introduction
	Results
	Profiling rRNA modifications at single-molecule resolution
	Resolving subpopulations of ribosomes that differ at a single modified site
	Correlated modification at distant sites on rRNA from wild type yeast
	Loss of different RNA helicase-related functions results in distinct subpopulations of differently modified rRNA molecules
	Resilience of rRNA modification profiles to other genetic mutations and environmental treatments

	Discussion
	Methods
	Growth of yeast strains
	RNA isolation
	In vitro synthesis of 18S and 25S rRNA
	Sequencing library preparation
	Nanopore sequencing
	Data preprocessing
	SignalAlign Pipeline
	Hierarchical Clustering Analysis
	Modification Correlations
	Event Cluster Visualization
	Sample Compare Site Detection
	Modification Labels and Frequency
	Data availability
	Code availability

	Acknowledgements
	Author Contributions
	Competing Financial Interests
	Figures
	Tables
	Supplementary Information
	Supplementary Note 1
	Supplementary Figures


	Supplemental Files
	Bibliography



