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List of Figures

.1

Table of diseases associated with epigenetic modifications. All references to

cited papers can be found in original paper where this figure was found [130].

| 19

1.2

(Original Caption) Current genome-wide detection methods used to identify

RNA modifications. (A) In the left panel, antibody-based methods (RIP-

seq) show how RNA-modification enriched fragments are selected using pool-

down, and compared to a total fragmented sample (input), which is used for

normalization, obtaining genome-wide maps with peak resolution. (B) In the

middle panel, RNA samples are pretreated with chemical reagents (Chem-

seq), which inhibit the reverse transcription reaction beyond the chemically

modified position. (C) In the right panel, mismatch signature-based methods,

which are based on the increased mismatch rates that occur upon reverse

transcription at certain RNA-modified positions, are depicted. [74]|. . . . .

20

3

(Original Caption) Schematic examples of first, second and third generation

sequencing are shown. Second generation sequencing is also referred to as

next-generation sequencing (NGS) in the text.[150] | . . . . ... ... ...
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1

(Original Caption) Principle and corresponding example of detecting DNA

methylation during SMRT sequencing. (a) Schematics of polymerase synthe-

sis of DNA strands containing a methylated (top) or unmethylated (bottom)

adenosine. (b) Typical SMRT sequencing fluorescence traces from these tem-

plates. Letters above the fluorescence trace pulses indicate the 1dentity of the

nucleotide incorporated into the growing complementary strand. The dashed

arrows indicate the IPD betore incorporation of the cognate T, and, for this

typical example, the IPD is ~5x larger for mA in the template compared to

22

[1.5

The grey line is a standard ON'T nanopore sequencing DNA signal trace

and the blue lines denote the events detected using the standard t-test event

detection algorithm. |. . . . . . .. . ... oo

6

(Original Caption) Tested methylases with known recognition site (methy-

lated base underlined), depth of sequencing, methylation class, and other

sample statistics. [LOS8|| . . . . . . ..o

viii



7

(Original Caption) Overview of models. A. Architecture of hidden Markov

model used in this study. The match state, M (square), emits an event-k-mer

pair and proceeds along the reference and the event sequence, Insert-Y, [,

(diamond), emits a pair and proceeds along the event sequence but stays in

place with respect to the reference, and Insert-X, I, (circle), proceeds along

the reference but does not emit a pair and stays in place with respect to

the event sequence. B. Variable-order HMM meta-structure over an exam-

ple reference sequence containing ambiguous methylation variants. Each C*

in the reference represents a potentially methylated cytosine. The structure

expands around the C* to accommodate all possible methylation states (in

this case, C, 5-mC, and 5-hmC). Each cell contains the three states shown in

A, and transitions span between cells. The transitions are restricted so that

methylation states are labeled consistently within a path. The match states

are drawn with 4-mers for simplicity, but the model i1s implemented with

5-mers and 6-mers. Two-level (C) and three-level (D) hierarchical Dirichlet

process shown 1n graphical form. Circles represent random variables. The

base distribution H is a normal inverse-gamma distribution for both mod-

els. The Dirichlet processes Gg, Gy, and G,,; are parameterized by their

parent distribution and shared concentration parameters vB, vM, and L.

The factors ©;; specify the parameters of the normal distribution mixture

component that generates observation x;;.[135] . . . ... ... ... ...

X



.8

(Original Caption) A) An unrolled sketch of the neural network architecture.

The circles at the bottom represent the time series of raw signal input data.

Local pattern information is then discriminated from this input by a CNN.

The output of the CNN 1is then fed into a RNN to discern the long-range

mteraction information. A fully connected layer is used to get the base

probability from the output of the RNN. These probabilities are then used by

a C'TC decoder to create the nucleotide sequence. The repeated component

is omitted. B) Final architecture of the Chiron model. We explored variants

of this architecture by varying the number of convolutional layers from 3

to 10 and recurrent layers from 3 to 5. We also explored networks with

only convolutional layers or recurrent layers, 1x3 conv, 256, no bias means

a convolution operation with a 1x3 filter and a 256 channels output with no

bias added. [166]|. . . . . . . ...




PRI

We analyzed native yeast genomic DNA and NA12878 cell line mRNA datasets,

in both cases focusing on reads mapped to the first chromosome|135] [184].

Kmers with various lengths (4-8 for DNA, 3-7 for RNA) were generated

based on the event tables and reterence sequences. The event tables contain

mapping positions of kmers, based on which sequences covering +2 to -2

positions (prolonged kmers) were retrieved from the references. Such pro-

longed kmers were then trimmed, centering around the original kmer, into

desired lengths. For each kmer, we calculated the mad of signal events. For

kmers with various lengths (4-8 for DNA, 3-7 for RNA) corresponding event

signal mad (median absolute deviation) the ecdf (empirical cumulative dis-

tribution function) curve are shown. (A, B) Yeast genomic DNA and (C, D)

NA12787 cell line mRNA datasets were analyzed as examples for DNA and

RNA scenarios. The mad ecdf distributions as opposed to kmer lengths and

constructing strategies are shown in (A, C) and (B, D). . . ... ... ...

xi



R.2

(A). Signal event distribution for an example 6-mer TGGTTA from the Zymo

dataset|135]. Solid curve, empirical distribution; dashed curve, normal distri-

bution fitted using mean and standard deviation (sd) of signal event; dotted

curve, normal distribution fitted using median and median absolute devia-

tion (mad) of signal event. (B) Violin plot showing z-score distribution under

different g-score categories. Z-scores were computed using median and mad

of signal events. (C) Violin plot showing z-score distribution under different

CIGAR-string categories. Z-scores were computed using median and mad

of signal events. #M denotes number of matches in CIGAR strings. (D,

E) Smoothscatter plots showing signal event mean-median and sd-mad rela-

tionship of kmers. Red dashed line, slope equals 1. (F) Smoothscatter plot

showing signal event empirical distribution skewness-kurtosis relationship ot
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B3

(A, B) Signal event distribution for the two modified kmers (GCCTGA and

CATCGC) from the primer extension dataset [152]. Solid black curve, em-

pirical distribution of all kmer signal events mapped to the specific position;

solid red curve, fitted distribution with all Gaussian components of the mix-

ture model; solid green curve, fitted distribution with (Gaussian components

that passed the mixing proportion threshold; dashed curves, empirical distri-

bution of T (blue), EAU (cyan), FdU (purple), BrdU (yellow) and IdU (grey)

kmer signal events. (A1, B1) -logl0(p-value) of the fitting. #Components,

numbers of Gaussian components as the null hypothesis (see section [2.3]). Ac-

cepted null hypotheses were colored as red. (A2, B2) Mixing proportion of

each Gaussian component. Removed components were colored as red. (A3,

B3) The -logl0(p-value) of a pairwise two-sided U-test among T, EAU, EAU

BrdU and IdU kmer signal events. (A4-6, B4-6) Relationship between em-

pirical and fitted kmer signal event medians values, kmer signal event mads

and mixing proportions, respectively. Red dashed line, slope equals 1. (C, D)

Signal event distribution for the two modified kmers (UGCCA and GCCGC)

from the 16S rRNA dataset [II15]. | . . . . .. ... ... ... ... . ...
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(A) Hierarchical clustering analysis on primer extension reads covering ref- |

erence position 25-36 (see section [2.3). Branches of dendrogram were color- |

coded according to the cluster assignments. (B) Corresponding read an- |

notation, including T- (cyan), IdU- (blue), FAU- (green), EAU- (red) and |

BrdU-containing reads (black). (C) Read composition of each cluster. (D) |

Hierarchical clustering analysis on 165 rRNA reads covering reference posi- |

tion 511-515 and 522-526 (see section [2.3). Branches of dendrogram were |

color-coded according to the cluster assignments. (B) Corresponding read |

annotation, including Psi516 (green), Native (red) and m7G reads (black). |

(C) Read composition of each cluster. |. . . . ... ... ... ... ... .. 49

[2.5

Quality control plots of the yeast genomic DNA dataset|. . . . ... .. .. 50

2.6

Quality control plots of the NA12787 cell line mRNA dataset. | . . . . . .. 51

27

Pairwise Kolmogorov-Smirnov d-values between the ecdt curves of different |

kmer constructing strategies. | . . . . . . . .. ..o 52
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Assessing the contributions of DNA 6mer positions to the ionic current shifts.

(A) Positional contribution. For every 6mer, median of all corresponding

events were considered as 6mer-specific event signal level, as described in

Figure [3.7/A. 6mers that are different only at the examined position were

collected into the same group. For every group, the 6 pairwise absolute

value differences (A-T, A-G, A-C, T-G, T-C, G-C) were measured. Density

distribution of such differences across groups was then visualized (see section

[2.3). (B-G) Nucleotide-specific contribution of position 1-6. Same as in (A),

for every b6mer, median of all corresponding events were considered as 6mer-

specific event signal level, and 6mers that are different only at the examined

position were collected into the same group. Then, for each nucleotide, e.g.

A, the average pairwise distance of event signal level from the corresponding

3 other nucleotides, e.g. T, G and C, were calculated. Density distribution

of such differences across groups was then visualized (see section [2.3)). | . . . 53
[2.9  Assessing the contributions of RNA 5mer positions to the ionic current shitts. |
(A) Positional contribution. (B-F) Nucleotide-specific contribution of posi- |
tion 1-5. Same as Supplementary Figure [2.8] but in RNA context. |. . . . . 54
[2.10 Quality control plots of the Zymo dataset. | . . . . . . ... ... ... ... 55
[2.11 Basic statistics of kmer signal event distribution. Same as Figure [3.1B-F, |
but visualized in a strand-specific way. F, forward strand (blue); R, reverse |
strand (purple). | . . . . ... 56
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Signal event median-mad relationship. F, forward strand (blue); R, reverse

strand (purple). | . . . . ...
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R17

Determining optimal number of Gaussian mixture components. (A, D) Order-

p-value curves for the two modification sites in the primer extension dataset.

For both sites, 7 (marked as red) were considered as the optimal number.

(B, E) Proportion of each predicted Gaussian component. Components that

were less than 10% were filtered out (marked as red). (C, F) BrdU- and

IdU-containing kmers were considered as the same component due to close

signal levels, quantified by pairwise u-test. As shown, for both sites, BrdU-

IdU pair gave the highest p-value. (G, H) Order-p-value curves for the two

modification sites in the rRNA dataset. For both sites, 4 (marked as red)

were considered as the optimal number. |. . . . . . . ... o000
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PRE

Unsupervised modification number detection for un-modified sites in 165

rRNA dataset. Consistent with modified sites, elbow point on order-p-value

curves were to determine the optimal number of components for unmodified

sites, as negative controls. All 26 non-modified sites in the “head oligo” (see

“Data collection and preprocessing” subsection of Materials and Methods for

detail) weer analyzed, and 3 out of 26 were considered as false positive by

showing a big decent as order increased from 1to2.|. . . . ... ... ...

62

2.19

Unsupervised modification number detection for modified sites in 165 rRNA

dataset. Signal event distribution for the modified kmers UGCCA (A) and

GCCGC (B) from the 165 rRNA dataset. Solid black curve, empirical dis-

tribution of all kmer signal events mapped to the specific position; solid red

curve, empirical distribution of kmer signal events from the m7G-deficient

sample; solid green curve, empirical distribution of kmer signal event from

native sample; solid blue curve, empirical distribution of kmer signal event

from the pseudouridine-deficient sample; dashed curves, Gaussian mixture

model-fitted distributions. Numbers in red, green and blue denote sample-

wise number of events and percentages for corresponding samples. Numbers

in cyan and purple denote the fitted proportion of each component. | . . . .
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2.20

Robustness and sensitivity analysis. (A) Boxplots of predicted QGCCA frac-

tions. Actual fractions were shown by horizontal red dashed lines. (B) Box-

plots of predicted UGCCA (blue) and QGCCA (black) signal levels (pAs).

pAs determined from all observations were shown by horizontal dashed lines. | 64
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[2.21 Signal distribution of example kmer TGATCC. In the Zymo dataset, TGATCC
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(black), position 444, forward strand (red) and position 504 reverse strand
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tures. (A) Graphic overview of the proposed deep learning framework
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sample, base-dropout, position-dropout and model combination analyses.
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Visualizing the encoding of chemical structures. (A-C) Atom sim-

ilarity matrix, tSNE visualization and chemical structure of the example

canonical DNA 6mer CGACGT. In (A) and (B), atoms were numbered and

colored based on the chemical structure in (C). Carbon, nitrogen, oxygen

and phosphorus were colored as black, blue, red and orange, respectively.

Specifically, in (A), nucleobases were highlighted by dashed boxes. (D-F)

Atom similarity matrix, tSNE visualization and chemical structure of the

example SmC-containing DNA 6mer GT(5mC)AGA. In (D) and (E), atoms

were numbered and colored based on the chemical structure in (F). Carbon,

nitrogen, oxygen and phosphorus were colored as black, blue, red and orange

respectively. Specifically, in (D) and (E), methyl group carbon atoms (#38
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Goodness-of-fit of the canonical DN A analysis. Root Mean Square Fr-
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and r values for the predictions of all DNA 6mers (Overall), DNA 6mers in

training set only (Train) and DNA 6mers in test set only (Test) were marked

as black, red and blue, respectively. The median, minimum/maximum (ex-

cluding outliers) and first /third quartile values were shown by the boxplots.
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correlation of the state vectors outputted by the final GCN layers. Corre-

sponding chemical structures of analyzed DNA 6mers were shown side-by-side

of the similarity matrices, based on which atoms were numbered and colored.

Carbon, nitrogen, oxygen and phosphorus were colored as black, blue, red

and orange, respectively. | . . . . . . ... .. L
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B.12

Visualizing 5mC-containing DNA 6mer atom similarity matrices.

Without losing generality, we visualized the atom similarity matrices ot 10

random bmC-containing DNA 6mers. bmC was abbreviated as M for sim-

plicity. Similarity matrices were calculated using the Pearson correlation of

the state vectors outputted by the final GCN layers. Corresponding chemical

structures of analyzed DNA 6mers were shown side-by-side of the similarity

matrices, based on which atoms were numbered and colored. Carbon, ni-

trogen, oxygen and phosphorus were colored as black, blue, red and orange,

respectively. | . . . . . . L
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[3.13

Visualizing inter-kmer atom similarity matrices. Without losing gen-

erality, we analyzed the inter-kmer atom similarity between modified DNA

6mer GT(5mC)AGA and corresponding canonical counterpart GTCAGA.

(A) Visualizing the inter-kmer similarity matrix, which was calculated us-

ing the Pearson correlation ot the state vectors outputted by the final GCN

layers. (B) The chemical structure of DNA 6mer GT(5mC)AGA. (C) The

Al Al Al

(B) and (C) atoms were numbered and colored. Carbon, nitrogen, oxygen

and phosphorus were colored as black, blue, red and orange, respectively. | .

Xx1il
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314

RNA 2mG analysis.(A) The empirical ionic current signal distribution of

RNA bSmer G(2mG)CCC, as well as the ONT ionic current signal distribu-

tion of pairing canonical RNA bmer GCCCC were visualized in red and blue

curves, respectively. Characteristic ionic current signals of G(2mG)CCC and

GGCCC predicted by the deep learning framework were visualized in red and

blue boxes, respectively. (B) For E.coli 16S rRNA transcript J01859.1 posi-

tion 1206, the fraction of modified (2mG) reads determined by signalAlign

with predicted RNA 5mer ionic current signals was quantified. For boxplots

in (A) and (B), the median, minimum/maximum (excluding outliers) and

first /third quartile across the 50 prediction repeats were shown. | . . . . . .

B.15

Chemical group stack analysis.Framework trained with all possible canon-

ical DNA 6mers was used to predict 6mA-containing 6mers. 6mA-containing

kmers were grouped by the positions of 6mAs. Signal distributions of 6mA-

containing kmers and their canonical counterparts were shown in the boxplot.

The median, minimum/maximum (excluding outliers) and first/third quar-

tile values were shown by the boxplots. See section [3.6[ for details. | . . . . .
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4.1  Clustering and correlation analysis of depletion experiment modification pro-

files in 25S. (A) Hierarchical clustering of 25S yeast rRNA modification pro-

files of IV'T', wild type, and both pseudouridine and 2’0 methyl depletion

experiments. (B) Fraction reads from IVT, wild type and both depletion

experiments in each cluster of 25S rRNA. (C) UMAP visualization of 25S

yveast TRNA modification profiles of IV'T, wild type, and both pseudouridine

and 2’0 methyl depletion experiments. (D/E) Change in Spearman correla-

tions of 255 reads in 2’0 methyl depletion (D) and pseudouridine depletion

(E) when compared to wild type. Stars represent significant changes when

compared to wild type correlation and significantly different from zero cor-

relation. All nucleotide positions are color coded where blue positions are

2’0O-methyl, red positions are pseudouridine, and black positions are neither

2’0O-methyl nor pseudouridine.| . . . . ... ... ... o L.
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4.2 Clustering of 185 rRNA modification profiles and correlation analysis from

the mixture experiment and wild type rRNA. (A) Hierarchical clustering of

185 modification of profiles from wild type, mixed, snR80 KO, snR83 KO, and

snR87 KO samples. (B) Change in Spearman correlations of 18S reads in the

mixture experiment when compared to wild type. Stars represent significant

changes when compared to wild type correlation and significantly ditterent

from zero correlation. (C) Fraction of wild type, mixed sample, snR80 KO,

snR83 KO, and snR87 KO in each cluster of 185 rRNA. (D) Table of snoRNAs

knocked down with the corresponding expected knocked down modifications.

(E) Hierarchical clustering of 18S yeast rRNA modification profiles from wild

type yeast. (F) Wild type Spearman correlation of 18S wild type reads. Stars

represent significantly difterent to IVl correlations and significantly different

from zero correlation. (G) Crystal structure model of wild type S. cerevisiae

18S rRNA highlighting significant correlated positions. PDB: 4VS8S [8]] . . . 160
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A3

Clustering of 255 rRNA modification profiles and percent change in modifi-

cation frequency of helicase mutants Dbp3 and Prp43 and G-patch proteins

Pxrl and Sqsl. (A) Barplots of the difference between wild type modification

frequency and Dbp3 KO, Prp43 cold mutant, Pxrl KO, and Sgs1 KO modifi-

cation frequencies in 255 yeast rRNA. Grey bars indicate the variance of wild

type rRNA modification at each position and the black dotted lines represent

the maximum variance observed at any site. (B) Hierarchical clustering of

255 yeast rRNA modification profiles from wild type, Dbp3 knockout, Prp43

cold mutant, and Pxrx1 KO . . . . . ... ... ... ... ... ...
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4

Figure 4: Changes in correlated nucleotide positions in dbp3A , prp43-cs, or

pxrlA mutants. Pairs of correlated nucleotide changes (nodes) are shown for

each mutant (edges) relative to wild type yeast 255 rRNA (A) and 18S rRNA

(B). In cases where correlated pairs show differential changes in correlation

in different mutants (eg. U24 modifications), node color rings are fragmented

with the appropriate mutant edge connecting to either the magenta (negative

change in correlation) or black (positive change in correlation) portion of the

xXxXvil



5

Resilience of yeast rRNA modifications to a variety of splicing mutants and

experimental conditions. Barplots of the difference between wild type mod-

ification frequency and Dbrl KO, Spp382 KO, Prpl6 cold mutant, KOAc

treated, cycloheximide treated, stationary, rapamycin treated and cold shock

yeast modification frequencies in yeast 185 (A) and 25S (B) rRNA. Grey bars

indicate the variance of wild type rRNA modification at each position and

the black dotted lines represent the maximum variance across sites.|. . . . .
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4.6

2’0O-methyl modifications guided by U24 line the polypeptide exit tunnel

and interact with ribosomal proteins L4 and L17. (A) Crystal structure

model of yeast 255 rRNA and ribosomal proteins .4 and LL17 in surface view

(PDB:4V88)[8]. rRNA domains are color coded according to the RiboVision

Suite [12]. The distal end of the polypeptide exit tunnel is indicated. U24-

guided modified nucleotides Cm1437, Am1449, and Gm1450 are shown in

blue. (B) Focused view of the L4 tunnel domain and the internal loop of L17

forming the exit tunnel constriction sites. 255 rRNA domain 0 is shown in

{4.7  De-novo detection of modifications using Tombo. (A-B) Per position, window

averaged D-statistic plots from Tombo’s sample compare method for yeast

18S (A) and 25S (B) rRNA [108|. The blue line represents the difference

between the per-position distributions of the IV'T sample vs the wild type

sample. The red markers are the location of each annotated modification on

the corresponding rRNAML5).| . . . .. ... .. oo
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I3

SignalAlign pipeline overview, overall accuracy metrics from testing data and

per-position model accuracy. (A) Analysis pipeline. (B-E) Testing accuracy

metrics of the final model of supervised training. Both training protocol and

testing metrics are described in detail in section [4.5] (B) Receiver operating

characteristic (ROC) curve and area under the ROC (0.93). (C) Calibration

curve showing the fraction of true positives for several ranges ot probabili-

ties. The brier score (0.101) is a metric for determining how well a model

is calibrated. (D) Precision-recall curve. (E) Per-position accuracy with

corresponding modification annotation for each position [169].. . . . . . . .
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%y

(related to Figure 4.1): Clustering and correlation analysis of depletion ex-

periment modification profiles in 18S. (A) Hierarchical clustering of 18S yeast

rRNA modification profiles ot IV'T, wild type, and both pseudouridine and

2’0 methyl depletion experiments. (B) Fraction reads from IVT, wild type

and both depletion experiments (CBF5_GAL, NOP58_GAL) in each cluster of 18S

rRNA. (C) UMAP visualization of 18S yeast rRNA modification profiles of

IV'T, wild type, and both pseudouridine and 2°0O methyl depletion exper-

iments. (D) Bioanalyzer of comparing levels of 18S and 25S in galactose

treated samples (CBF5_GAL, NOP58_GAL) compared to glucose treated samples

(CBF5_GLU, NOP58_GLU). (E/F) Change in Spearman correlations of 25S reads

in 2’0 methyl depletion (E) and pseudouridine depletion (F) when compared

to wild type. Stars represent significant changes when compared to wild type

correlation and significantly different from zero correlation (see section |4.5)).|
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[4.10 (related to Figurel4.1f): Clustering of underlying events to search for patterns

of modification in the pseudouridine and 2’0 methyl depletion experiments.

(A) Hierarchical clustering of 25S yeast rRNA modification profiles of IVT,

wild type, and both pseudouridine and 2’0 methyl depletion experiments.

(B-E) Hierarchical clustering of normalized event means aligned to the refer-

ence sequence from IV'T, wild type, and both pseudouridine and 2’0 methyl

depletion experiments covering positions 1433 to 1457 (B), 2917-2932 (C),

1448-1450 (D), and 2921-2924 (E) (see section [4.5[ and Supplemental Note

ATAD] o o oo o e

il

(related to Figureld.2)): Heatmaps and percent modification change of snoRNA

knockout and mixture experiments. (A) Heatmap of wild type, mixed sam-

ple, snR80 KO, snR83 KO, snR&7, snR45 and snR4 KO modification profiles

of 18S. (B) Mixed sample, snR80 KO, snR83 KO, snR&87, snR45 and snR4

KO 185 percent change in modification frequency when compared to wild

type. Grey bars indicate the variance ot wild type rRNA modification at

each position and the black dotted lines represent the maximum variance

found at any position. (C) Table of snoRNAs knocked down with the corre-

sponding expected knocked down modifications. (D) Heatmap of wild type,

mixed sample, snR80 KO, snR83 KO, snR87, snR45 and snR4 KO modifica-

tion profiles of 25S. (E) Mixed sample, snR80 KO, snR83 KO, snR&87, snR45

and snR4 KO 255 percent change in modification frequency when compared

to wild type.| . . . . . .
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I12

Kmer distribution comparison between snoRNA knockout kmer distributions

and the trained model kmer distributions. Each figure has the model’s canon-

ical kmer distribution, the model’s modified kmer distribution and the cor-

responding snoRNA knockout kernel density estimate (KDE) of all events

aligned to that position (see section [4.5). The rows show kmers covering

position 759 in 185 from snR80 KO, position 776 in 255 from snR80 KO,

position 1290 in 185 from snR83 KO, position 1415 in 185 from snR83 KO,

position 436 in 185 from snR&87 KO, position 436 in 185 from snR87 KO,

position 1773 in 185 from snR45 KO and position 1280 in 18S from snR4 KO.[173

A13

Comparison of RNA 2’0O-methylation calling from other modification detec-

tion techniques and signalAlign modification detection. (A-B) Comparison

between the range of modification percentages called via mass spectrome-

try [164], HPLC [I88], and two RiboMeth-seq approaches [14, 107] vs sig-

nalAlign modification percentages of wild type yeast in 18S (A) and 25S

(B). (C-D) Comparison between RiboMeth-seq modification percentages [2]

and signalAlign modification percentages for the Dbp3 knockout strain in

18S (C) and 25S (D) yeast rRNA. For the combination of several detection

approaches, we calculated the minimum, maximum and mean modification

percentage from the four papers. For all plots, error bars represent the mini-

mum or maximum percent modification called and circles represent the mean

modification percentage.| . . . . . . . ... .o
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A4

Analysis of yeast rRNA modification frequency in relation to functional cen-

ters of the ribosome. (A) Distribution of fraction modified for positions

within or not within the tfunctional centers of yeast rRNA. Distribution means

are significantly (p-value=0.0031) different via a two-sided Mann-Whitney U-

test. (B-D) Crystal structure model of wild type S. cerevisiae 80S (B), 40S

(C) and 60S (D) rRNA highlighting modification frequency within functional

centers. PDB: 4V88 [8].[ . . . . ... ... o

175

A5

(related to Figure 4.2)): Yeast 25S rRNA modification profile clustering and

correlation analysis. (A) Hierarchical clustering of 25S yeast rRNA modifi-

cation profiles from wild type yeast. (B) Wild type Spearman correlation of

255 wild type reads. Stars represent significantly different to IV'T correla-

tions and significantly different from zero correlation. (C) Crystal structure

model of wild type S. cerevisiae 255 rRNA highlighting significant correlated

positions. PDB: 4V83 [8] | . . . . . . ... o
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116

(related to Figure [4.3): Clustering of 185 rRNA modification profiles and

percent change in modification frequency of helicase mutants Dbp3 and Prp43

and G-patch proteins Pxrl and Sgsl. (A) Barplots of the difference between

wild type modification frequency and Dbp3d KO, Prp43 cold mutant, Pxrl

KO, and Sgsl KO modification frequencies in 185 yeast rRNA. Grey bars

indicate the variance of wild type rRNA modification at each position and

the black dotted lines represent the maximum variance. (B) Hierarchical

clustering of 185 yeast rRNA modification profiles from wild type, Dbp3

knockout, Prp43 cold mutant, and Pxr1 KO.| . . .. .. ... ... .. ...

L7

(related to Figure [4.3)): Correlation analysis of Dbp3 knockout, Prp43 cold

mutant Pxrl knockout. Change in Spearman correlations of 185 (A-C) and

255 (D-E) reads in Dbp3 knockout (A/D), Prp43 cold mutant (B/E), and

Pxrl knockout (C/F) when compared to wild type. Stars represent significant

changes when compared to wild type correlation and significantly difterent

178

18

Clustering of underlying events to search for patterns ot modification in the

Dbp3d KO and Prp43 cold mutant. Hierarchical clustering of aligned stan-

dardized events from Dbp3 KO (A) and Prp43 cold mutant (B) covering the

events from positions 1431 to 1455 (see section [4.5). These positions cover

the 3 2’0 ribose methylations guided by the snoRNA U24 at positions 1437,

1449 and 1450, 1. . . . . o . oL
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Abstract

Modification Detection using Nanopore Sequencing
by
Andrew D. Bailey IV

Both DNA and RNA modifications play critical roles in cell regulation. Tradi-
tionally, a chemical selection process alters base pairing or sequencing coverage is used to
sequence modified nucleotides. Therefore, a new chemical 2’0 labeling process needs to
be created for each modification. Currently, we do not have methods for sequencing the
majority of the over 150 RNA and over 40 DNA modifications. However, with nanopore
sequencing, we can directly detect modifications on native DNA or RNA reads without any
selection or chemical 2’0 labeling techniques. Nanopore sequencing measures the change
in current across a nanopore as a polynucleotide threads through the nanopore and we can
use this signal to identify modifications.

In chapter [2| we present a framework for the unsupervised determination of the
number of nucleotide modifications from nanopore sequencing readouts. We demonstrate
the approach can effectively recapitulate the number of modifications, the corresponding
ionic current signal levels, as well as mixing proportions under both DNA and RNA contexts.
We further show, by integrating information from multiple detected modification regions,
that the modification status of DNA and RNA molecules can be inferred. This method
forms a key step of de novo characterization of nucleotide modifications.

In chapter|3] we present a graph convolutional network-based deep learning frame-

work for predicting the mean of kmer distributions from corresponding chemical structures.

XXXV



We show such a framework can generalize the chemical information of the 5-methyl group
from thymine to cytosine by correctly predicting 5-methylcytosine-containing DNA 6mers.

In chapter [4 using a combination of yeast genetics and nanopore direct RNA
sequencing, we have developed a reliable method to track the modification status of single
rRNA molecules at 37 sites in 18S rRNA and 73 sites in 255 rRNA. We use our method to
characterize patterns of modification heterogeneity and identify concerted modification of
nucleotides found near functional centers of the ribosome. Distinct undermodified subpop-
ulations of rRNAs accumulate when ribosome biogenesis is compromised by loss of Dbp3
or Prp43-related RNA helicase function. Modification profiles are surprisingly resistant to
change in response to many genetic and environmental conditions that affect translation,
ribosome biogenesis, and pre-mRNA splicing. The ability to capture complete modification
profiles for RNAs at single-molecule resolution will provide new insights into the roles of

nucleotide modifications in RNA function.
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Chapter 1

Introduction

1.1 Biological Importance of Modifications

Both RNA and DNA modifications are dynamically regulated and play impor-
tant roles in cell function. 5-methylcytosine (5mC) is the most studied and abundant DNA
modification [19]. 5mC modifications help regulate histone binding, chromatin structure,
transcription factor binding, transcription start sites, transposition, recombination and over-
all genome stability [130, 19]. Irregular methylation patterns of 5mC on CpG islands, CpG
island shores, and repeat regions are linked to several cancers, neurological disorders and
autoimmune diseases [130} [I33]. A table of diseases related to epigenetic modifications can
be found in Figure [I30]. While there has been extensive research into 5mC, we are learning
more about other important but less frequent DNA modifications[33]. N6-methyladenine
(6mA) modulates transcription and causes resistance against host immune responses in
several bacteria[I33]. 6mA also seems to effect nucleosome positioning and seems to play

a role in mammalian development[133] 97]. 5-hydroxymethylcytosine (5hmC) in DNA is



maintained at enhancers and genes, can recruit specific binding proteins and is an epigenetic
signal for neuronal development[19, B33], 83]. For example, mice brains have up to 10 times
more 5hmC than most average cells[19, 33, 83]. Although there are over 40 verified DNA
modifications, most modifications do not have a sequencing based detection method[I55].
Therefore, we know very little about many of these modifications and their role within cell
regulatory networks[I55]. It is still an open question how many DNA modifications effect
cell regulatory systems and until we have accurate sequencing and detection of all DNA
modifications, it will be difficult to make progress towards a complete understanding of the
epigenetic landscape.

RNA post-transcriptional modifications (PTMs) are also crucial for cell function
[19, [74]. There are over 150 RNA PTMs and the majority of which have not been iden-
tified using sequencing[I5]. Over the past several years, we have been discovering new
RNA modifications and the variety of roles they play in all types of RNA including mRNA,
tRNA, rRNA, snRNA and snoRNA[74]. RNA modifications have been linked to develop-
ment of cognitive functions, neurological defects, breast cancer, genetic birth defects and
diabetes[6], 186, 70, B8], 37, 10} [74] Several tRNAs and rRNAs have specific modifications
which are required for the RNAs to function[74]. 6mA, the most abundant mRNA modifi-
cation in mammals, has binding proteins that signal degradation of transcripts or increase
translational efficiency[174]. The regulation of 6mA also directly effects neuronal signaling
pathways[69]. Although RNA modifications are an important part of the cell regulatory
system, we cannot resolve the majority of modifications at a per read level which limits our

ability to understand of the regulatory importance of the RNA modification landscape[74].



For example, back in 2010, we thought that RNA modifications were irreversible [76]. How-
ever, recently we discovered that many modifications are reversible, evolutionarily conserved
and required for correct function of mRNA and ncRNA[I45, 94]. Improving modification
detection techniques an important step if we want to discover the role of modifications in

the regulatory networks of the cell.

1.2 Conventional Modification Detection

Classical approaches to modification detection were thin-layer chromatography
and capillary electrophoresis[74]. However, most non-sequencing based modification detec-
tion is done by liquid chromatography-tandem mass spectrometry (LC-MS/MS) or cryo-
genic electron microscopy (cryo-EM)[74], 23], 164]. Although all of these techniques made it
possible to identify the presence of modified nucleotides, they do not have the resolution for
single-molecule modification detection[23] [74]. LC-MS/MS is the most accurate way that
we currently have to determine the chemical signature of modifications[162]. LC-MS/MS
separates already digested DNA or RNA fragments, often according to their polarity, by
high-performance liquid chromatography (HPLC)[23] [164]. These fragments are then ion-
ized into sub-fragments which in turn are selected by their mass to charge ratio (m/q)
and analyzed by mass spectrometry[23, [164]. However, this technique requires a fairly ex-
tensive laboratory protocol, expensive equipment and expertise in the lab[23] [164]. More
importantly, a pure sample of several identical molecules are required to be analyzed via
mass spectrometry which removes the ability to detect modified nucleotides on an indi-

vidual molecule basis[23] 164]. Cryo-EM can resolve 3D structures of molecules at 2-4



Angstroms[I14]. Cryo-EM starts by freezing a purified sample within a non-crystalline
structure. Then transmission electron microscopy takes pictures of the several identical
molecules of which have froze in different orientations[136]. These 2D representations are
then aggregated to form a 3D model of the molecule of interest[I36]. Although recent ad-
vances in cryo-EM have made this technique able to detect modifications, is time consuming,
expensive, cannot process a large number of samples efficiently[114], 136]. Therefore, we need
to develop high throughput sequencing techniques in order to identify modifications across

thousands or millions of individual molecules[114} [136].

1.3 Next Generation Sequencing

In order to understand the underlying cell state, it is often preferred to identify
modifications via sequencing so that we can understand the heterogeneity of modifica-
tions within a sample. Traditional chain termination sequencing has been overtaken by
the massively parallel sequencing by synthesis paradigms of Illumina, Ion Torrent and py-
rosequencing [141], 137, 138, [I1), 170]. These platforms have made dramatic progress in
accuracy, throughput and price per base over the past 20 years[I41l [137, 138, [I1], [I70].
Sequencing by synthesis (SBS) measures byproducts of polymerase nucleotide incorpora-
tion reactions and uses Watson-Crick base pairing to infer the target sequence[I70]. SBS
techniques also need a DNA amplification step in order to generate enough signal from
the sequencing byproducts and have relatively short read lengths (150-800bp)[137, 138, [11].
For example, Ion Torrent measures the change in pH of a small well which contains a bead

covered in amplified DNA sequences[I38]. A change in pH corresponds to the release of



protons during nucleotide incorporation events which is then correlated to the expected
nucleotide[I3§]. Pyrosequencing converts the pyrophosphate byproduct of a nucleotide in-
corporation event into light via a cascade of enzymatic reactions which culminate in the
oxidization of luciferin and light generation[I37]. Illumina, the current industry leader,
measures the light emitted from fluorescently labeled reversible-terminator nucleotides as
they incorporate into clusters of amplified DNA (see Figure [11} 150k I70]. The past
20 years have been dominated by these sequencing by synthesis platforms[I50]. Therefore,
modification detection protocols require added information to make predictions because
modified bases to not change the Watson-Crick base pairing mechanism[74]. As outlined
in Figure RIP-seq, Chem-Seq and mismatch signatures are the three main sequencing
approaches to modification detection[74]. RIP-seq uses a chemical enrichment to isolate
reads with a specific modification before sequencing[42]. Often the enrichment is performed
with an antibody[42]. After the enrichment and sequencing, read coverage peaks over
the targeted modified nucleotide[42]. This technique can generate accurate per-reference
position modifications, but it only works for nucleotides with highly specific antibodies tar-
geting the modified nucleotide of interest[42]. For RNA modification detection, there were
antibodies for just 6mA, ImA, 5mC, and 5hmC in 2017[74]. Another approach to modifi-
cation detection, chem-seq, uses differences in reactivity of modified bases compared to the
canonical nucleotides to extract information about their position. The classic example of
chem-seq is bisulfite sequencing. Bisulfite deaminates cytosine to uracil and does not effect
5mC[53]. Therefore, all called cytosines in a bisulfite treated sample are 5mC and 5mC

can be detected by comparing against an untreated bisulfite sample[53]. Another example



of Chem-seq is pseudouridine-seq which uses 1-cyclohexyl-(2-morpholinoethyl)carbodiimide
metho-p-toluene sulfonate (CMCT) to modify guanosine, uridine, and pseudouridine with
carbodiimide (CMC)[146]. After CMCT treatment, an alkaline treatment at pH 10.3 re-
moves CMC from all other sites except the N3 of pseudouridine[I46]. Reverse-transcription
is blocked by CMC so there is a pileup of reads terminating at pseudouridine sites[146].
Although Chem-seq also offers per-reference position, it is dependent upon the discovery of
a highly targeted and efficient chemical reaction for every unique modified nucleotide. One
last approach to modification detection is mismatch-signature based analyses. Mismatch-
signature analysis relies on modified nucleotides either entirely changing the Watson-Crick
base-pairing or generating non-random errors. For example, a group used known modifica-
tions in tRNA to create a model of mismatch signatures to detect modifications in other
datasets[139]. Since SBS technology requires amplification and incorporation byproducts to
sequence, none of the detection methods outlined are able to identify modified nucleotides
without a highly specialized chemical treatment[I37, 138, [11]. However, with the devel-
opment of real-time, single-molecule (RTSM) sequencing, there are now platforms which
can generate relatively accurate sequencing data from the native polynucleotide and detect

modifications without chemical treatment or amplification steps.

1.4 Real-time Single-molecule Sequencing

Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT) are cur-
rently two most prevalent RTSM sequencing platforms[I50]. PacBio sequencing measures

the fluorescence from incorporation of fluorescently tagged nucleotides by a DNA poly-



merase [91]. As seen in Figure PacBio is able to detect single nucleotide incorpora-
tions by fixing the DNA polymerase to the bottom of a small hole, limiting light exposure
from surrounding reactions and focusing the detection of nucleotide incorporation to an
individual polymerase[91, [150]. Figure shows that PacBio sequencing can detect mod-
ifications by correlating the change in the rate of incorporation by a DNA polymerase
to detect N6-methyladenine, 5-methylcytosine and 5-hydroxymethylcytosine[51]. It has
also been shown that the same sequencing technique can be used using a reverse tran-
scriptase to detect m6A in RNAJI40]. PacBio sequencing has random errors at a rate
of around 10% but allows for multiple readings of the same nucleotides because DNA
templates are circularized during library preparation[I50]. Each subsequent prediction
of an individual base increases the accuracy of PacBio reads[51]. However, as the tem-
plate strand gets longer, it takes longer to process one complete loop around the template
strand[51]. So, there is a trade off between very long reads and improved accuracy via
several passes around the template[51]. Also, PacBio sequencers cost between $350,000 and
$700,00dﬂ In comparison, ONT nanopore sequencing can also detect modified nucleotides
on a per read basis with no read length limitation and the upfront cost of a Minion is
only $1000https://nanoporetech.com/products/minion [57]. As seen in Figure
nanopore sequencing measures the current across a parallel array of nanopores as an enzyme
controls the rate of translocation of the polynucleotide through each pore[35, [57]. The signal
recorded from each nanopore corresponds to the nucleotides within the pore. Therefore,
nanopore sequencing has the ability to directly detect modified nucleotides on the native

polynucleotide and has already been shown to identify 6mA, inosine (I), 7-methylguanine

"https:/ /allseq.com/knowledge-bank /sequencing-platforms/pacific-biosciences/
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(7TmG), pseudouridine (Q) in RNA, and 6mA, 5mC, 5hmC, and thymidine analogs including
EdU, FdU, BrdU and IdU in DNA[I35] 152} [154] 112} [184] 99, 115, 108]. Although, we can
detect some modifications within some contexts, we know very little about the location and

function of most modifications.

1.5 Data Analysis of Nanopore sequencing

1.5.1 Understanding Nanopore Sequencing Signal

The current through the pore is recorded via an analog to digital converter (ADC)
which records 13 bits of information at 4000Hz. The current is directly related to the
nucleotides within the constriction site of the nanopore[77]. The constriction site of the
CsgG pore used for the R9/R9.4 sequencing chemistry has as height of about 0.9nm which
corresponds to about 3 nucleotides[60}, 20]. Often, in order to correlate signal to specific
nucleotides within the pore (kmer), the raw signal is first segmented and summarized using
the mean, standard deviation, event start time and event duration (Figure [1.5))[34]. Event
detection or segmentation algorithms determine where there are significant changes in the
current level. The most common event detection algorithm uses a sliding Welch’s t-test
to determine event boundaries (Equation ﬂ The segmented events correspond to a
set of nucleotides (kmer) within the pore. In theory, given any sequence context, all events
associated with a kmer of optimal length k should have the same corresponding event signal.
However, this is not the case so people often model the distribution of signals for a given

kmer as Gaussian [135], [108] [152]. Many modification detection algorithms are dependent

*https://github.com/UCSC-nanopore-cgl/signalAlign/commit/e468812eb0604562ac049828e4faf 1eb
046e48aa#diff-60dfcf04ab7bcc7174c8a2fc19d7£83a
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https://github.com/UCSC-nanopore-cgl/signalAlign/commit/e468812eb0604562ac049828e4faf1eb046e48aa#diff-60dfcf04ab7bcc7174c8a2fc19d7f83a

upon the event segmentation of signal and the subsequent alignment of basecalled sequence
to the events[I35], (108, [152]. Therefore, it is important to understand basecalling before

moving on to modification detection algorithms.

1.5.2 Basecalling Nanopore Reads

Over the past few years there have been several basecallers; Nanocall, Base-
cRAWIller, DeepNano, Chiron, Metrichor, Albacore, Guppy, Scrappie El Flappie E], and
RunnieE]to just name a few[34] 158, [17,[166]. DeepNano, BasecRAWIller and Chiron showed
that using machine learning based approaches to basecalling were much more accurate than
hidden Markov models[I81]. Figure shows the general structure of the basecalling model
used by Chiron. The Chiron model takes in normalized current readings, {z1...7,,}, and
feeds them through three stacked residual layers which feed into three stacked bidirectional
long short-term memory layers (BLSTM)[71], [144]. The BLSTM’s are important for inte-
grating information from before and after the current time step into the prediction of the
current time step[71, [144]. However, the key difference insight from Chiron was the inclusion
of the residual layers which increased accuracy from around 80% to 90%[158, [17), (160, [66].
Residual layers are feature extracting tools which allows the model to find valuable infor-
mation in the raw signal data without the vanishing gradient problem[I82] [66, [166]. The
final BLSTM outputs are fed through a fully connected layer with 5 output nodes represent-
ing {A,T,G,C,b}. These outputs are decoded by a connectionist temporal classification

(CTC) decoder and finally converted into predicted nucleotide sequence[61]. Chiron was

3https://github.com/nanoporetech/scrappie
“https://github.com/nanoporetech/flappie
Shttps://github.com/nanoporetech/flappie/blob/master/RUNNIE.md
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the best open source basecaller at it’s time so all of the subsequent basecallers have very
similar architectures[I81]. However, there are some key differences between the Chiron
model architecture and the ONT models like Flappie and Runnie. For example, ONT
uses GRU recurrent networks instead of LSTMs and has played with the size and number
of layers[I81], 28]. Flappie uses a "flip-flop” decoding layer which allows for very specific
transitions between ”flip” and ”flop” states which is then decoded as a linear conditional
random field ] Runnie encodes nucleotide run lengths as a discrete Weibull distributions
m Although there are some differences in basecalling networks, all downstream analysis of
nanopore sequencing comes after the basecalling step. Ideally, we would have basecallers
directly identify modified nucleotides. Flappie can detect 5mC in DNA but detecting infre-
quent modifications becomes very difficult for basecallers[132]. This is because modification
detection in a basecalling framework creates an extremely unbalanced dataset classification
problem. Therefore, it is often beneficial to incorporate reference information to correctly

detect modifications.

1.5.3 Supervised Nanopore Modification Detection Algorithms

Supervised modification detection algorithms all rely on labelled training data
and information regarding the alignment to the reference sequence. Given the basecalled
sequence, we use the basecall to reference alignment to determine if the canonical nucleotides
or modified nucleotides generated the signal. This approach adds a significant amount of

information because we now know the expected nucleotide sequence of the signal as well

Shttps://github.com/nanoporetech/flappie
"https://github.com/nanoporetech/flappie/blob/master/RUNNIE.md
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as information about the canonical and expected modified nucleotides. Megalodorf|is cur-
rently under development at ONT as the next iteration of Tombo as a variant /modification
detection caller and it uses the output of the basecalling neural network to determine a score
for the reference and proposed alternative sequence. However, it currently does not support
RNA or any de-novo detection algorithms so we have not explored using Megalodon for
our RNA modification detection work. Instead we use some of the more established mod-
ification detection algorithms. Both Nanopolish eventalign and signalAlign use an hidden
Markov Model (HMM) to generate an event to reference alignment[I52) 135]. First, an
adaptive banded alignment is generated between the basecalled sequence and the events so
that each event is mapped to a predicted kmer. The adaptive banded alignment is simi-
lar to the Smith-Waterman alignment but only computes a fraction of the total alignment
matrix[55), (160, [45]. Then a guide alignment between the basecalled sequence and the ref-
erence is produced using a long read mapper, such as minimap2[92]. This event to kmer
to reference alignment is used anchor the HMM alignment, only include informative signal
and to decrease cost of computation by ignoring large stretches of perfect matches[152] [135].
Both of these algorithms use kmer models to produce emission probabilities and have a hard
coded set of transition probabilities. However, there are two main differences between sig-
nalAlign and eventalign. First, eventalign uses the viterbi algorithm to determine the best
path through the events to generate the reference sequence. On the other hand, signalAlign
uses the forward-backward algorithm to determine the posterior probability of an alignment
between an individual event and a kmer. Second, signalAlign has the option to use a non-

parametric hierarchical Dirchlet process (HDP) to model the emission distributions whereas

Shttps://github.com/nanoporetech /megalodon
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eventalign uses the Gaussian distribution to model the event mean and the Inverse-Gamma
distribution to model the standard deviation[I52] [135]. The HDP uses Gibbs sampling
to generate a countably infinite set of shared mixture components which allows for more
flexibility in modelling kmer distributions[I65]. As seen in Figure in order to detect
modifications, signalAlign uses a pair-HMM that which allows branch points at specified
reference nucleotides to be modelled as a modified nucleotide and eventalign computes the
log-likelihood ratio between alignment of target positions to a modified reference compared
to canonical reference. Besides these two HMM approaches, Tombo is the other kmer model
based modification detection approach. Tombﬂ is based off of the idea that there is no
need to generate an intermediate alignment to the basecalled sequence so instead you just
generate an alignment directly between events and the reference sequence[l108]. Once the
alignment is generated, an outlier robust likelihood ratio is calculated across all positions
covering a target base[I0§]. The outlier robust likelihood ratio decreases once the event
means fall too far outside the canonical or modified kmer distributions[I08]. All of these
kmer model alignment based approaches have used labelled modified nanopore reads as
training data for generating the kmer distributions of non-canonical nucleotides. The other
class of supervised modification detection algorithms are neural network based.
DeepMod™”, DeepSignall] and DNAscent v4| are a few neural network based
modification detection algorithms and they each have several similarities [I15] [99) [16].
DeepMod and DeepSignal both classify 5mC in the CpG context of DNA where DNAscent

identifies Bromodeoxyuridine (BrdU) in DNA [115, [99]. While all three have unique net-

“https://nanoporetech.github.io/tombo/resquiggle.html
Yhttps://github.com/WGLab/DeepMod
"https://github.com/bioinfomaticsCSU/deepsignal
?https://github.com/MBoemo/DNAscent/
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work architectures, they all have similar tasks and underlying data quality. The network
architectures are similar to basecalling networks, relying on either recurrent neural net-
works, convolutional neural networks or a combination of both[115, @9, [16]. These neural
network based approaches require a significant number of well labelled reads with the single
target modification covering a significant number of different sequence contexts [115], 99, [16].
The neural network based modification detection algorithms perform well when given well
labelled data but given the difficulty of producing high quality labelled sequencing data for
many modifications, de novo detection techniques may be required to identify rare or less

abundant modifications.

1.5.4 De novo Nanopore Modification Site Detection Algorithms

Nanoraw/Tombo was the first program to de novo identify modified nucleotides[108],
89]. In order to test the de-novo detection of modified nucleotides, the authors generated
control data by whole genome amplifying E. coli DNA and created test data by introducing
various types of methylases to the PCR amplified E. coli DNA. A summary of the methy-
lases and prediction accuracy can be found in Figure [1.6] Tombo initially normalizes the
signal and then generates an alignment between the segmented events and the reference
sequence using a banded alignment algorithm [I0§]. The match probabilities are gener-
ated using the z-score of an event coming from the corresponding kmer distribution [108].
After alignment, Tombo resolves skipped bases by re-segmenting signal around deletes in
the reference and generating alignments without the option for skips [108]. Once there
is a kmer to event mapping, we can do de-novo modification detection or sample com-

pare modification detection[I08]. De-novo modification detection calculates the fraction of
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events which fall confidently into the expected kmer distribution compared to the fraction
of events which fall outside of the kmer distribution [108]. Z-scores are calculated using
the following equation where x is the event mean, u and o are the mean and standard
deviation of the kmer distribution respectively z = abs(*>#) [108]. P-values are calculated
using the following equation p = 1+erf (%) and can be aggregated using Fisher’s method.
One p-values are calculated, the algorithm classifies reads as modified if the p-value is less

than 0.05 or canonical if the p-value is above 0.4. The fraction modified is is calculated

‘s . . . . oDt
per reference position j the following equation fraction; = s 2 j—oPsSts where

i=oPi<ta+> 27 P>t
t1 is the minimum canonical p-value threshold and ¢ is the maximum modified p-value
threshold. The problem with this approach is that it is highly dependent upon an accurate
kmer model and relies on the assumption that a non-canonical distribution is far away from
the canonical distribution. Therefore, in order to look for modified nucleotides, we use
Tombo’s sample compare method. Sample compare uses an control experiment to generate
the expected per reference position kmer distribution which is then compared against a test
experiment’s distribution. This is done by computing the cumulative distribution function
of event means for each reference position using the equation F,(z) = 2 3% | I ) (Xi)-
Then the KS-test is calculated using the following equation D,, = sup, |F,(z) — F(z)|.
Although the sample compare framework requires more sequencing, the method is more
accurate than de-novo and can quickly identify changes between control and experiment
sequencing runs[I08]. Tombo’s sample compare method is extremely similar to the recently

published Nanocompore[89]. Nanocompore includes an option to use event duration infor-

mation along with event means to compute the probability that a position is modified[89].
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The original authors did not do a comparison with Tombo so it as of right now it is unclear
if there is a significant improvement using the Nanocompore detection framework[89]. The
key drawbacks from current de novo detection tools is that there is no way to determine
the underlying modification and it is very difficult to identify the specific nucleotide which
has been modified. However, there is some evidence that the underlying modification could

be determined using information from chemical structures[40)].

1.6 Research Outline

Chapter B Towards Inferring Nanopore Sequencing Ionic Currents from Nu-
cleotide Chemical Structures. The characteristic ionic currents of nucleotide kmers are
commonly used in analyzing nanopore sequencing readouts. We present a graph convo-
lutional network-based deep learning framework for predicting kmer characteristic ionic
currents from corresponding chemical structures. We show such a framework can general-
ize the chemical information of the 5-methyl group from thymine to cytosine by correctly
predicting 5-methylcytosine-containing DNA 6mers, thus shedding light on the de novo
detection of nucleotide modifications.

Chapter [2| Gaussian Mixture Model-Based Unsupervised Nucleotide Modification
Number Detection Using Nanopore Sequencing Readouts. We present a framework for the
unsupervised determination of the number of nucleotide modifications from nanopore se-
quencing readouts. We demonstrate the approach can effectively recapitulate the number
of modifications, the corresponding ionic current signal levels, as well as mixing propor-

tions under both DNA and RNA contexts. We further show, by integrating information
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from multiple detected modification regions, that the modification status of DNA and RNA
molecules can be inferred.

Chapter[d] Single-molecule Modification Tracking of Saccharomyces cerevisiae 185
and 25S Ribosomal RNA using Nanopore Sequencing.

Nucleotides in both RNA and DNA are subject to numerous enzymatic activities
that chemically modify them, altering their functional characteristics. Aberrant modifica-
tion patterns are linked to several cancers, neurological disorders, and autoimmune diseases.
Eukaryotic ribosomal RNA is modified at more than 100 locations, in particular at highly
conserved and functionally important nucleotides. During ribosome biogenesis, modifica-
tions are added at various stages of assembly. The precise timing, order, dependencies or
existence of differently modified classes of ribosomes are unknown because no method for
evaluating modification status at all sites within a single rRNA molecule is available. Using
a combination of yeast genetics and nanopore direct RNA sequencing, we have developed a
reliable method to track the modification status of single rRNA molecules at 37 sites in 18S
and 73 sites in 255 rRNA. We use our method to identify the presence of long-range corre-
lated modifications in wild type yeast and clear modification subpopulations within several
genetic and environmental conditions that affect yeast ribosome biogenesis and pre-mRNA

splicing.
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1.7 Equations
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1

o) = 1 (1.16)
tanh(z) = Zz ;2:: (1.17)
fi = o(Wilze, hur] + by) (1.18)
ir = o (Wilwe, he_] + b;) (1.19)
¢t = tanh(Wolws, hy1] + be) (1.20)
01 = o(Wylae, he_1] + bo) (1.21)
c=fiocia+iroc] (1.22)
hy = o o tanh(c,) (1.23)
N
L(y.9) = — ;(y *1log(fi) + (1 — y)log(1 — 95)) (1.24)
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1.8 Figures

Table 1 Epigenetic modifications in human diseases

Aberrant epigenetic mark

Alteration

Consequences

Examples of genes affected and/for
resulting disease

Cancer

DNA methylation

Histone modification

Nucleosome positioning

CpG island hypermethylation

CpG island hypomethylation

CpG island shore hypermethylation

Repetitive sequences hypomethylation

Loss of H3 and H4 acetylation
Loss of H3K4me3

Loss of H4K20me3

Gain of H3K9me and H3K27me3

Silencing and/or mutation of remodeler
subunits

Aberrant recruitment of remodelers
Histone variants replacement

Transcription repression

Transcription activation

Transcription repression

Transposition, recombination genomic
instability

Transcription repression

Transcription repression

Loss of heterochromatic structure
Transcription repression

Diverse, leading to oncogenic transformation

Transcription repression

Diverse (promotion cell cycle/destabilization
of chromosomal boundaries)

MLHI (colon, endometrium, stomach®!},
BRCAI (breast, ovary!' 1), MGMT (several
tumor types'!), pl&™%44 (colon!l)

MASPIN (pancreas®?), S100F (pancreas??),
SNCG (breast and ovary?2), MAGE
{melanomas?2)

HOXAZ (colon2%), GATAZ (colon20)
L1 (ref. 11), IAP!1, Sat2 (ref. 107)

p21"AF1 (alsp known as CDKNIA)Y
HOX genes

Sat2, D424 (ref. 107)

CDKN2A, RASSFI (refs. 115-116)
BRG1, CHD5 (refs. 127-131)

PLM-RAR2'93 recruits NuRD

H2A.Z overexpression/loss

Neurological disorders

DNA methylation

Histone modification

CpG island hypermethylation
CpG island hypomethylation
Repetitive sequences aberrant methylation

Aberrant acetylation
Aberrant methylation

Aberrant phosphorylation
Misposition in trinucleotide repeats

Transcription repression
Transcription activation
Transposition, recombination genomic
instability

Diverse

Diverse

Diverse
Creation of a ‘closed’ chromatin domain

Alzheimer's disease (NEP)3®
Multiple sclerosis (PADIZ)135
ATRX syndrome (subtelomeric repeats) 135143

Parkinson's and Huntington's diseases’3®

Huntington's disease and Friedreich's
ataxial3®

Alzheimer's disease!39

Congenital myotonic dystrophy?51

Nucleosome positioning

DNA methylation

Histone madification

Nucleosome positioning

CpG island hypermethylation
CpG island hypomethylation
Repetitive sequences aberrant methylation

Aberrant acetylation

Aberrant methylation

Aberrant phosphorylation
SNPs in the 17g12-q21 region

Histone variants replacement

Transcription repression

Transcription activation
Transposition, recombination genomic
instability

Diverse

Diverse

Diverse

Allele-specific differences in nucleosome
distribution

Interferes with proper remodeling

Rheumatoid arthritis (DR3)154.158
SLE (PRF1, CD70, CD154, AIM2)E

ICF (Sat2, Sat3), rheumatoid arthritis
“_1)152.155

SLE (CD154, IL10, IFN-1)®
Diabetes type 1 (CLTA4, (L6152
SLE (NF-kB targets)

Diabetes type 1 (CLTA4, IL6)

Rheumatoid arthritis (histone variant
macroH2A at NF-xB targets)157

Figure 1.1: Table of diseases associated with epigenetic modifications. All references to
cited papers can be found in original paper where this figure was found [130)].

19



APRRADEE DAL
4 &4 ™

A RIP-Seq B Chem-Seq C Mismatch signature
( Antibody binding N (0 Chemical treatment ) No enrichment/treatment
v o Ay g
"".l.' ++ ""-'t, +
g * .‘.'-' a, 6@ .
. > sl ~Q‘- Chemical
“.I.‘,‘."l"' *’. Antibody '.‘"-‘.'“_ e ".‘.
Immunoprecipitation Reverse transcription
——P| RT drop-off
.'.'.’.ﬁ.f!-'-'-' 2 il 1:_{:391.-_-; melm)
e Y o ® Ty
-.-.-'-l"-.-'-.-.
@ Library preparation @ Library preparation @ Library preparation
Non-random mismatch signature analysis
© s CE— G = e— o —— CEE— G SE— CGAGUCGUGAGC
—__ - CGAGUCGUGAGC
—
- T coAcucluGAce
- - .—_ . CGAGUCGUGAGC
—_ ———— m—— ? ccacucllugace
2 § £
g o e
E‘ A 3 :
=4 2 =
- N\ \2

Figure 1.2: (Original Caption) Current genome-wide detection methods used to identify
RNA modifications. (A) In the left panel, antibody-based methods (RIP-seq) show how
RNA-modification enriched fragments are selected using pool-down, and compared to a
total fragmented sample (input), which is used for normalization, obtaining genome-wide
maps with peak resolution. (B) In the middle panel, RNA samples are pretreated with
chemical reagents (Chem-seq), which inhibit the reverse transcription reaction beyond the
chemically modified position. (C) In the right panel, mismatch signature-based methods,
which are based on the increased mismatch rates that occur upon reverse transcription at
certain RNA-modified positions, are depicted. [74]
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Figure 1.3: (Original Caption) Schematic examples of first, second and third generation

sequencing are shown. Second generation sequencing is also referred to as next-generation
sequencing (NGS) in the text.[I50]
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Figure 1.4: (Original Caption) Principle and corresponding example of detecting DNA
methylation during SMRT sequencing. (a) Schematics of polymerase synthesis of DNA
strands containing a methylated (top) or unmethylated (bottom) adenosine. (b) Typical
SMRT sequencing fluorescence traces from these templates. Letters above the fluorescence
trace pulses indicate the identity of the nucleotide incorporated into the growing comple-
mentary strand. The dashed arrows indicate the IPD before incorporation of the cognate
T, and, for this typical example, the IPD is ~5x larger for mA in the template compared

to A. [51]
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The grey line is a standard ONT nanopore sequencing DNA signal trace and
the blue lines denote the events detected using the standard t-test event detection algorithm.

Methylase Known Average | Methylase | Motifs in Detection 1D
Meth. Site Depth Class Genome AUC Accuracy
Taql TCGA 22 6mA 30914 0.82 87.8
BamHI GGATCC 36 4mC 988 0.84 87.9
EcoRl GAATTC 27 6mA 1290 0.88 87.8
Hhal GCGC 50 5mC 65566 0.97 87.3
Mpel CG 39 5mC 693340 0.62 86.4
Sssl CG 19 5mC 693340 0.78 83.9
dam GATC 33 BmA 38240 0.66 89.6
Figure 1.6: (Original Caption) Tested methylases with known recognition site (methylated

base underlined), depth of sequencing, methylation class, and other sample statistics.[108]
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Figure 1.7:  (Original Caption) Overview of models. A. Architecture of hidden Markov
model used in this study. The match state, M (square), emits an event-k-mer pair and
proceeds along the reference and the event sequence, Insert-Y, I, (diamond), emits a pair
and proceeds along the event sequence but stays in place with respect to the reference,
and Insert-X, I, (circle), proceeds along the reference but does not emit a pair and stays
in place with respect to the event sequence. B. Variable-order HMM meta-structure over
an example reference sequence containing ambiguous methylation variants. Each C* in the
reference represents a potentially methylated cytosine. The structure expands around the
C* to accommodate all possible methylation states (in this case, C, 5-mC, and 5-hmC).
Each cell contains the three states shown in A, and transitions span between cells. The
transitions are restricted so that methylation states are labeled consistently within a path.
The match states are drawn with 4-mers for simplicity, but the model is implemented with
5-mers and 6-mers. Two-level (C) and three-level (D) hierarchical Dirichlet process shown
in graphical form. Circles represent random variables. The base distribution H is a normal
inverse-gamma distribution for both models. The Dirichlet processes Go, Gon, and Ggp;
are parameterized by their parent distribution and shared concentration parameters vB,
yM, and L. The factors ©j; specify the parameters of the normal distribution mixture
component that generates observation x ;.[135]
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Figure 1.8: (Original Caption) A) An unrolled sketch of the neural network architecture.
The circles at the bottom represent the time series of raw signal input data. Local pattern
information is then discriminated from this input by a CNN. The output of the CNN is
then fed into a RNN to discern the long-range interaction information. A fully connected
layer is used to get the base probability from the output of the RNN. These probabilities
are then used by a CTC decoder to create the nucleotide sequence. The repeated compo-
nent is omitted. B) Final architecture of the Chiron model. We explored variants of this
architecture by varying the number of convolutional layers from 3 to 10 and recurrent layers
from 3 to 5. We also explored networks with only convolutional layers or recurrent layers,
1x3 conv, 256, no bias means a convolution operation with a 1x3 filter and a 256 channels
output with no bias added. [166]
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2.1 Abstract

We present a framework for the unsupervised determination of the number
of nucleotide modifications from nanopore sequencing readouts. We demonstrate the
approach can effectively recapitulate the number of modifications, the correspond-
ing ionic current signal levels, as well as mixing proportions under both DNA and
RNA contexts. We further show, by integrating information from multiple detected
modification regions, that the modification status of DNA and RNA molecules can
be inferred. This method forms a key step of de novo characterization of nucleotide

modifications, shedding light on the interpretation of various biological questions.

2.2 Introduction

Modified nucleotides play critical roles in diverse biological processes [94]
103]. Oxford Nanopore Technologies (ONT) nanopore sequencing monitors ionic cur-
rent signal shifts caused by various chemical structures of the nucleotides [35], which
opens up the possibility of routinely identifying DNA/RNA modifications [80]. Up
to now, modification calling softwares has been shown to identify 6mA [99] 135}, [115],
5mC [99 135, 115, 152], 5hmC [115] as well as the thymidine analogs EAU, FdU,

BrdU, IdU [112] in DNA, and 6mA [184], inosine (I) [I84], 7-methylguanine (7TmG)
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[154], pseudouridine (Q) [I54] in RNA. All of these softwares require some models
of the expected signals for given modifications. For instance, nanopolish [152] [T0T],
signalAlign [135] and DNAscent [I12] perform modification calling based on a priori
kmer models, which keep track of ionic current signals associated with all native and
modified kmers. DeepMod [99] and DeepSignal [I15] are deep learning based modi-
fication detection algorithms, which identify modifications based on neural networks
trained on control datasets. However, these algorithms can only analyze modifica-
tions appeared in labelled training data, thereby considered as supervised method-
ologies. Meanwhile, for unidentified modifications, potential sites can be inferred
using unsupervised approaches, e.g. tombo [I08] and nanocompore [89]. However
these unsupervised modification techniques do not include more detailed character-
izations, such as modification numbers, corresponding signal levels and proportions.
Understanding the number of modifications under specific sequence contexts can pro-
vide critical biological insights. For instance, during DNA demethylation, 5mC is
sequentially converted into 5hmC, 5-flucytosine (5fC), 5-carboxylcytosine (5caC) and
finally C. Therefore the number and corresponding proportion of modifications would
be indicator for DNA demethylation dynamics [13]. Meanwhile, from a technological
perspective, understanding the number of modifications is a crucial part of de novo
modification characterization, which is considered as one of the most important topics

in the nanopore sequencing community.
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2.3 DMaterials and Methods

2.3.1 Data collection and preprocessing.

Nanopore sequencing datasets included here were composed of fast) files,
which contain raw ionic current readouts from the sequencer, together with fastq
files, which contain sequences basecalled from corresponding fastb records. The fastb
and fastq files are considered to be the “raw data” to be collected and preprocessed.
Specifically, in cases where fastq files were embedded in fastb records, nanopolish
extract (0.11.1) [101], followed by porechop demultiplexing (0.2.4) [180] were used
to recover the fastq files. We used a Zymo native synthesized oligo nanopore se-
quencing dataset which was provided by authors of the original study [135]. We also
used a thymidine analogs-containing primer extension and native yeast genomic DNA
nanopore sequencing datasets which are available at GEO with accession number
GSE121941 [112]. Specifically, for the thymidine analogs-containing primer extension
dataset, EAU, FAU, BrdU and IdU were incorporated in the synthesized “head” oligo
(GAATTGGGCCCGCTCAGCAGACACAGAGCCTGAGCATCGCCGCGGAC, un-
derscore denotes positions where thymidine analogs were incorporated). For a specific
read, incorporated thymidine analog bases of the two positions are the same. And the
portions of EAU, FAU, BrdU, IdU and T were the same. Then primer extension was
performed, adding different extended “tail” sequences to different modifications, such
that these reads with different modifications can be separated by alignment. Our

RNA control dataset is a NA12878 cell line mRNA dataset (UCSC Runl of Oxford
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Nanopore Human Reference Datasets) is available at: https://github.com/nanop
ore-wgs-consortium/NA12878/tree/master/nanopore-human-transcriptome
[184]. The RNA modification dataset is a E.coli 16S rRNA knockdown experiment
provided by authors of the original study [154]. Three sub-datasets were sequenced in
this study, containing reads from native, pseudouridine-deficient (Psi516) and m7G-
deficient (m7G) strains. For m7G strain, m7G at position 527 is substituted with G,
while for Psi516 strain, Q at position 516 is substituted with U [154]. For the m7G
and Psi516 strains, mutations only affect m7G at position 527 and Q at position
516, respectively, and such mutation will cause 100% of the reads to be aberrantly

modified.

2.3.2 Alignment, quality filtering and event table generation.

For the Zymo native synthesized oligo, thymidine analogs-containing primer
extension, native yeast genomic DNA and NA12878 cell line mRNA nanopore se-
quencing datasets, in total 38685, 3173426, 121266 and 1291028 reads were obtained.
Such reads in fastq files were first indexed using nanopolish index (0.11.1) [I01],
to establish one-to-one correspondence between sequences and ionic current records.
The indexed fastq files were then aligned using minimap2 (2.16-r922) [92], followed
by samtools view, sort and index (1.9) [93], yielding sorted and indexed bam files.
Specifically, without loss of generality, for yeast genomic DNA and NA12878 cell line
mRNA datasets, only reads mapped to the first chromosome were used for down-

stream analysis. During the alignment, for ZYMO, primer extension, yeast genomic
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DNA and NA12878 cell line mRNA datasets, 35280, 17216, 117970 and 1269076 reads
were aligned, respectively. After alignment, reads with MAPQ score equal to 60 and
without secondary and supplementary alignments were kept for downstream analysis.
Specifically, for the thymidine analogs-containing primer extension dataset, only reads
mapped to the forward strand, where thymidine analogs reside, were kept. After such
data filtering, for ZYMO, primer extension, yeast genomic DNA and NA12878 cell
line mRNA datasets, 30241, 8450, 496 and 8640 reads were kept for downstream event
level analysis, respectively. The event tables were generated using nanopolish evental-
ign, by taking fastb files, bam files, and indexed fastq files as described above. Event
tables contain kmer sequences and statistics of corresponding ionic current signals,
e.g. mean and standard deviation values. Here, we modified nanopolish evental-
ign so that it can also output per read event tables containing the position of each
kmer from the fastq sequence. We used these event tables to retrieve corresponding

CIGAR strings and Q-scores. Quality control results were shown in Supplementary

Figure[2.5] 2.6] 2.10 and 2.13}2.16] Specifically, filtered event tables for the 16S rRNA

dataset were provided by authors of the original study, therefore the above-mentioned

procedures were not applied.

2.3.3 Optimal kmer length determination

We first explored the kmer length that affects the signal (effective length).
So, in Figure [2.1] we analyzed both the native yeast genomic DNA and the NA12878

cell line mRNA datasets. Kmers with various lengths (4-8 for DNA, 3-7 for RNA) were
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generated based on the event tables (see previous section) and reference sequences.
The event tables contain mapping positions of kmers, based on which sequences cov-
ering +2 to -2 positions (prolonged kmers) were retrieved from the references. These
prolonged kmers were then trimmed centering around the original kmer. For in-
stance, for native yeast genomic DNA read 001082a7-d27b-418¢-85f6-a0297adb346b,
the first signal event corresponded to ACGATT and mapped to position 11571, based
on which the prolonged kmer was determined as ATACGATTGC. This prolonged
kmer was further trimmed into, e.g. {ATACGATT, TACGATTG, ACGATTGC}
for length=8, annotated by the corresponding trimming strategy as {820, 8.1_1,
8.0-2}. Since {ATACGATT, TACGATTG, ACGATTGC} were trimmed from the
same signal event, they were corresponded to the same signal event level, in this case
71.89 pA. Following the same principle, we constructed other kmer trimming strate-
gies including {4.2.0,4.1.1,402,51.0,50.1, 7.1.0, 7.0_1}. Such kmers, together
with the above mentioned {820, 8_1_1, 8.0_2} and original kmer {6_.0_0}, were all
corresponded signal event level 71.89 pA. Then, for each trimming strategy, across all
kmers included, we calculated the distribution of single event MAD (median absolute
deviation). As described in the main text, such MAD distributions were used for

determining optimal k for both DNA and RNA contexts.
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2.3.4 Assessing the contributions of kmer positions to the ionic current

shifts.

We then determined the effect of kmer positions on the signal, as shown in
Supplementary Figure and 2.9) We analyzed the same datasets from the previ-
ous section. Pairwise signal differences within kmer pth position quadruplet {Np-
1ANk-+1-p, Np-1TNk+1-p, Np-1GNk+1-p, Np-1CNk+1-p} were analyzed to assess
the contribution of position p, where k equals 6 (DNA) or 5 (RNA), integer p ranges
from 1 to k, Ns range in A, T, G, C and are identical for the same position, the
subscripts indicates number of independently varying Ns. For instance, for DNA
6mer 1st position quadruplet {ATGCAT, TTGCAT, GTGCAT, CTGCAT}, 6 pair-
wise absolute value differences of kmer event signal medians (A-T, A-G, A-C, T-G,
T-C, G-C) were calculated. Together with distance values generated from all other in-
cluded DNA 6mer 1st position quadruplets, the contribution of 1st position can then
be assessed. We then performed this analysis across all positions (1-6 for DNA, 1-5
for RNA) and used the distributions of absolute distance values as representations
of kmer positional contributions. We further assessed the contribution of different
nucleotides. For each nucleotide, e.g. A, at a given position p (Np-1ANk+1-p),
we calculated the average pairwise distance of event signal medians from the corre-
sponding 3 other nucleotides (Np-1TNk+1-p, Np-1GNk+1-p, Np-1CNk+1-p). The
distributions of positional average signal shift for each nucleotide were presented as

quantification of nucleotide-specific contributions.
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2.3.5 Skewness and Kurtosis determination.

Skewness and kurtosis values were calculated using skewness() and kurtosis()
functions in the CRAN R package e1071. As shown in Figure[2.2]A-C, empirical signal
distribution of kmers usually have long tails caused by outlier events, which will bias
the determination of skewness and kurtosis. Therefore, for this specific analysis, we
filtered out the following kmer event signal data points:

s; < medians — 3 MAD,, or s; > medians + 3 x MAD;.

Subscript i denotes one specific signal event, and s denotes all corresponding

events of a specific kmer.

2.3.6 (Gaussian mixture model order determination.

The order (number of components) of Gaussian mixture models were de-
termined by the statistical test reported in [25, 26], with the implementation of the
emtest.norm() function in the CRAN R package Mixturelnf. The statistical test was
performed with the null hypothesis as order equals m0, against an alternative hypoth-
esis where order equals 2m0. We search across various null hypotheses (m0 equals
1-9 and 1-4 for primer extension and rRNA datasets, respectively) for empirical kmer
signal distributions, denoting the number of underlying Gaussian components of a
certain empirical kmer signal distribution. To ensure correct inference, we used a
more stringent filter to remove the following data points:

s; < medians — 2+ MAD,, or s; > medians + 2 x M AD;.

as outliers, before performing the fitting, considering they might account
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for the “long tails” of the empirical kmer signal distribution, further introducing ad-
ditional Gaussian components as artifacts for determining number of modifications.
Subscript i denotes one specific signal event, and s denotes all corresponding events
of a specific kmer. Elbow points on order-p-value curves were used to determine the
number of components. P-values quantify significant levels of fitting performance
gained by modeling with 2m0 as opposed to m0 components. Elbow points on the
order-p-value curves denote marginal fitting performance gaining by including more
components, therefore considered as optimal number of components. Following such
principle, for both modified sites in the primer extension dataset, 7 was considered as
the optimal number of components. By filtering out components whose proportions
were less than 10%, for both sites 4 components remained, corresponding to T, FdU,
EdU and BrdU-IdU containing kmers. Removed Gaussian components usually ac-
count for noises. For instance, the 1st, 2nd and 7th components of GCCTGA fitting
were removed, and comparison between red (with all 7 components) and green (with
remaining 4 components) curves in Figure showed such filtering majorly affected
the “tails” of the signal distribution. Actually signal levels of the removed Gaussian
components were 88.897, 89.692 and 97.499, which were in the range of the “tails”.
For CATCGC (Figure ), the signal levels of the three removed Gaussian compo-
nents were 110.597, 111.911 and 126.550, which were also in the range of the “tails”.
Specifically, BrdU- and IdU-containing kmers were considered as the same component
due to close signal levels, which was further quantified by U-test (Supplementary Fig-

ure [2.17)A-F). For both modified sites in the rRNA dataset, 2 was considered as the
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optimal number of components, corresponding to the canonical and modified kmers
(Supplementary Figure 2.17/G and H). Reads were annotated based on their modifi-
cation status in the original studies for both primer extension and rRNA datasets.
Therefore for every analyzed modification site, we took the original annotation of
reads covering this specific site, and calculated the mixing proportions of modified
kmers. We further calculated the median values (after filtering by equation 3 and 4)
of these modified kmers. Such proportion and median values were further used as

gold standard in evaluating the performance of Gaussian mixture model.

2.3.7 Clustering nanopore sequencing reads.

Only nanopore sequencing reads covering all targeted positions (position 25-
36 in the reference oligo sequence for primer extension dataset; position 511-515 and
522-526 in the reference transcript sequence for 16S rRNA dataset) were used for the
analysis. Nanopore sequencing positional kmer signal events were then represented
in read-position matrices, where reads in rows, targeted positions in columns and
corresponding signals as elements. Clustering analysis was performed based on such

read-position matrices.

2.3.8 Code availability.

Modified nanopolish is available at: https://github.com/adbailey4/n
anopolish/tree/cigar output. All other codes used to reproduce the results are

available at: https://github.com/hd2326/ModificationNumber.
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2.4 Results

2.4.1 Determining effective length for kmers

Shifts in ionic current (signal events) can be associated with nucleotide se-
quences (kmers) during their translocation through nanopores [152]. For multiple
methods, characterizing such kmer-current relationships is essential to interpreting
nanopore sequencing readouts. We first demonstrate that for our purpose an effec-
tive k for kmers (effective length for associating with the ionic current) equals 6 and 5
for DNA and RNA respectively, consistent with the information provided by Oxford
Nanopore Technologies. To determine an effective k for our datasets we associated
signal events to kmers of various lengths (4-8 for DNA, 3-7 for RNA). We chose a
k that minimizes variation in current observations between different instances of the
kmer while maximizing the numbers of distinct observations of each kmer. Specif-
ically, for every kmer, we used the event signal fluctuation (quantified by median
absolute deviation, MAD) as the criterion for determining the optimal k (see section
2.3). Here we analyzed a native yeast genomic DNA dataset [112] and one NA12878
cell line mRNA dataset [I84] (see section[2.3), as examples for DNA and RNA scenar-
ios, respectively. Genomic and transcriptomic sequences were used in order to make
sure abundant sequence contexts could be included. As shown in Figure [2.1] the
MAD ecdf (empirical cumulative distribution function) curve started to dramatically
shift rightwards when k became smaller than 6 (DNA) or 5 (RNA). On the other

hand, marginal differences were observed among MAD distributions when k exceeded
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6 (DNA) or 5 (RNA). Taken together, these indicate the effective sequence length for
shifting ionic current during nanopore sequencing equals 6 and 5 for DNA and RNA.
We also quantified pairwise Kolmogorov-Smirnov d-values between the ecdf curves of
different kmer constructing strategies, as confirmation of the effective kmer lengths
(Supplementary Figure . We further assessed the contributions of kmer positions
to the ionic current shifts by measuring the difference in signal among constructed
sets of 4 kmers that are only different in 1 base at the examined position, e.g. ATG-
CAT, TTGCAT, GTGCAT, CTGCAT (see section . Results suggested for DNA
6mers, the 3rd position contributes the most, followed by the 4th position. The 2nd
and bHth positions have minor contributions and the 1st and 6th positions have least
contributions. For RNA bmers, the 2nd position contributes the most, followed by

the 3rd and 4th positions, and the 1st and 5th positions have least contributions (see

Supplementary and .

2.4.2 Empirical signal event distribution follows Gaussian

Gaussian has been widely used to model signal distribution. For instance
kmer models provided by ONT, as well as several widely-acknowledged modifica-
tion analysis algorithms [152] 112, 10T, [T08], assume the kmer signal distribution
follows Gaussian. Here, we further demonstrated, using quantitative measurements,
that the empirical distribution of nanopore sequencing kmer signal event means can
generally be modeled by a normal distribution N(median, MAD). Specifically, we

analyzed a Zymo synthesized oligo dataset [I35] (see section [2.3)), in order to make
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sure sequenced nucleotide molecules were well-controlled. Median and MAD are cal-
culated from all signal events of the corresponding kmer (Figure ) Compared to
N(median, MAD), N(mean, standard deviation) fittings tend to be “widened” and
“skewed” compared to the empirical distributions (Figure ) Such “widened” and
“skewed” fittings can be explained by deviated means and increased standard devi-
ations (Figure and E), which are caused by “long tails” of kmer signal event
empirical distributions. We argue such “long tails” are outlier kmer signal events
well modeled by accounting for low sequencing quality and compromised alignment,
rather than being due to the nature of an underlying kmer signal event distribution.
We used the z-score computed from the kmer signal event median and MAD as a
measurement of the likelihood of being an outlier. As shown in Figure [2.2B, C and
Supplementary Figure the likelihood of being an outlier is correlated with se-
quencing quality (quantified by Q-score) and affected by alignment status (quantified
by the number of matches in the CIGAR string), indicating that the “long tails”
are caused by outliers. Indeed most of the analyzed kmers can be well modeled by a
normal distribution, suggested by absolute kurtosis and skewness (see section : as
shown in Figure 2.2, for 90.4% of analyzed kmers, such values ranged in the interval

[0, 0.5].

2.4.3 (Gaussian mixture model-based modification number inference

Considering that the signal event distribution for a given kmer can be rea-

sonably modeled as normal, we can use a Gaussian mixture model to determine the
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number of “isoforms” for a specific kmer. If there’s no sequence variation, such as a
single nucleotide variation (SNV), then we can consider such “isoforms” as different
base modifications. The number of modifications correspond to the order (number
of components) of the Gaussian mixture model, determined by the statistical test
reported in [25] [26] (see section[2.3)). As a proof of concept, we analyzed a thymidine
analog DNA primer extension dataset reported in [I52]. Thymidines in the sequence
GAGCCTGAGCATCGCCG were substituted with EAU, FdU, BrdU or 1dU, there-
fore we analyzed kmers GCCTGA and CATCGC (Figure[2.3A-D and E-H). For both
kmers, 4 components were detected (Supplementary Figure and D, see section
, corresponding to T, FdU, EdU and BrdU-IdU containing kmers. BrdU and
IdU were considered as one component by the Gaussian mixture model, due to the
similar kmer event signal levels (Figure and H, see section . As negative
controls, we analyzed those non-modified sites, and 23 out of 26 sites were modeled
by a single Gaussian component (Supplementary Figure . We further quantified
the performance of a Gaussian mixture model in recapitulating signal event median
and MAD values, as well as mixing proportion, for each kmer. As shown, median val-
ues were well recapitulated (Figure and F); mixing proportions were in general
recapitulated (Figure and H); while inference on MAD values were unsatisfac-
tory (Figure and G). Such biases were caused by the “long tails” of the kmer
signal event empirical distribution (Figure and H), as previously discussed in
Figure 2.2l Although such unsatisfactory performance on MAD inference can be con-

sidered as a limitation of the method, we argue MAD values are not very informative
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for describing kmer signal events. As shown in Supplementary Figure for kmer
signal events >95% of the MAD values fall into the range of [1, 3], with no significant
correlation with the corresponding median values. We speculate the variation of kmer
signal events is largely caused by the noise associated with the nanopore sequencing
platform itself, rather than an inherent characteristic of individual kmer signal events.

We further applied the Gaussian mixture model approach in analyzing RNA
modifications. Specifically, we analyzed the dataset reported in [I54], where E.coli
16S rRNAs from native, pseudouridine-deficient (Psi516) and m7G-deficient (m7G)
strains were profiled. Compared to a native strain, in the Psi516 strain pseudouri-
dine in UCCGUGCCA site is substituted with U, while in the m7G strain m7G in
AGCCGCCGU site is substituted with G, therefore we analyzed kmers UGCCA and
GCCGC. Following the same analytical pipeline as previously discussed for the DNA
analysis (Supplementary Figure [2.17G and H, see section , we recapitulated the
signal event median values, as well as the mixing proportions of the corresponding
kmers (Supplementary Figure .

To further explore the detection limit of our approach, we performed down-
sampling as well as remixing analysis. As a proof of concept, we focused on the RNA
Smer UGCCA and corresponding counterpart QGCCA (Q stands for pseudouridine),
where we analyzed in Figure[2.3[[. Specifically, we down-sampled to 100, 1000 and 2000
observations, at various QGCCA fractions, including 0.01, 0.05, 0.1, 0.25 and 0.5.
We performed such down-sampling as well as remixing 10 times. It’s clearly shown

in Supplementary Figure that with as few as 100 observations, our approach
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can accurately recapitulate signal level and proportion of QGCCA component that
accounts for 25% of total observations. If we have 2000 observations, such detection
limits can further go down to only 1%. Taken together these suggested the high

robustness and sensitivity of our approach.

2.4.4 Associating identified modifications

Now that we characterized the per sequence site modification pattern, the
next question is how these modifications associate with each other. Therefore we
then performed sequencing read-level analysis to assess the association, e.g. the
co-occurrence, mutual-exclusiveness or independence, of the detected modifications.
Reads covering all the modified regions were represented in read-position signal matri-
ces, based on which hierarchical clustering was performed (see section . As shown
in Figure , for the primer extension dataset, four major clusters (Cluster2-5, ac-
count for 96% of total reads) were detected. We further quantified the composition
of the four clusters, and as shown in Figure and C, Cluster2-5 were majorly
composed by T, FAU, EdU and Br/IdU reads, respectively. These results further
suggested the expected co-occurrence of the T, FAU, EAU and Br/IdU (same modifi-
cation at both T-sites), consistent with the experimental design. As shown in Figure
2.4D, for the 16S rRNA dataset, three major clusters (Clusterl-3) were detected,
which were majorly composed of native, Psi516 and m7G reads, respectively. These
results further suggested the mutual-exclusiveness of the U and G (in Psi516 strain

pseudouridine is substituted with U, and in m7G strain m7G is substituted with G),
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again consistent with the experimental design.

2.5 Discussion

Nanopore sequencing has the potential to detect every canonical and modi-
fied nucleotide accurately. Without improved de novo detection techniques, progress
in modification detection will be dependent upon generating accurate labelled datasets
for every modification. Currently, there are over 40 known DNA modifications [155]
and over 150 known RNA modifications [I5]. Also considering there might be modi-
fications that have never been identified, generating labelled training datasets would
be extremely challenging. Therefore, there is a pressing need for a de novo modifi-
cation analysis pipeline. Such a pipeline can further be divided into three sequential
steps, including de novo identification of modification sites, then de novo determi-
nation of modification numbers, and finally de novo inference on the corresponding
chemical structures. The first step has been successfully implemented by Tombo
[T08] and Nanocompore [89], and our study focuses on the second step, providing
a novel algorithm for the community. Specifically, we first confirmed the effective
length of kmers for shifting ionic current signals during their translocation through
nanopores equals 6 and 5 for DNA and RNA respectively. We then demonstrated
the distributions of such kmer signals are mostly normal. A Gaussian mixture model
can therefore be used for unsupervised modification number determination. Such

a Gaussian mixture model-based approach can effectively recapitulate the number
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of modifications, the corresponding kmer signal event median values, as well as the
mixing proportions, in both DNA and RNA contexts. By integrating information
from multiple regions, we further assessed the association between the corresponding
modifications, which will shed light on modification status of DNA/RNA molecules,
allowing for insights into various biological questions. Now that we can accurately
determine number, signal levels and proportions of modifications, the next question
is what are the corresponding chemical structures for each determined modification
component. Answering this question would complete the pipeline for de novo modifi-
cation analysis, which should be one future direction to pursue. One major limitation
of the method, however, would be how to handle kmers with non-Gaussian signal dis-
tributions. For instance, as shown in Supplementary Figure [2.21] kmer TGATCC
appeared in 3 different sequence contexts of the Zymo dataset [I135], and in all cases
a secondary peak was observed. Please note such secondary peaks were unlikely to
be caused by quality issues, thus they cannot be removed by excluding low-quality
reads. Such non-Gaussianity will introduce artifacts when analyzing modification
numbers. We speculate the non-Gaussianity could be something related to the bio-
physical characteristics of the nanopores, which are largely unknown. Therefore,
another future direction would be to find appropriate mixture models, for instance
the extreme value mixture model as reported in [104], to model the modifications on

non-Gaussian kmers.
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2.8 Figures

ecdf

ecdf

Figure 2.1: We analyzed native yeast genomic DNA and NA12878 cell line mRNA datasets,
in both cases focusing on reads mapped to the first chromosome[I35], [184]. Kmers with
various lengths (4-8 for DNA, 3-7 for RNA) were generated based on the event tables
and reference sequences. The event tables contain mapping positions of kmers, based on
which sequences covering +2 to -2 positions (prolonged kmers) were retrieved from the
references. Such prolonged kmers were then trimmed, centering around the original kmer,
into desired lengths. For each kmer, we calculated the mad of signal events. For kmers
with various lengths (4-8 for DNA, 3-7 for RNA) corresponding event signal mad (median
absolute deviation) the ecdf (empirical cumulative distribution function) curve are shown.
(A, B) Yeast genomic DNA and (C, D) NA12787 cell line mRNA datasets were analyzed
as examples for DNA and RNA scenarios. The mad ecdf distributions as opposed to kmer
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Figure 2.2: (A). Signal event distribution for an example 6-mer TGGTTA from the Zymo
dataset[I35]. Solid curve, empirical distribution; dashed curve, normal distribution fitted
using mean and standard deviation (sd) of signal event; dotted curve, normal distribution
fitted using median and median absolute deviation (mad) of signal event. (B) Violin plot
showing z-score distribution under different g-score categories. Z-scores were computed
using median and mad of signal events. (C) Violin plot showing z-score distribution under
different CIGAR-string categories. Z-scores were computed using median and mad of signal
events. #M denotes number of matches in CIGAR strings. (D, E) Smoothscatter plots
showing signal event mean-median and sd-mad relationship of kmers. Red dashed line,
slope equals 1. (F) Smoothscatter plot showing signal event empirical distribution skewness-
kurtosis relationship of kmers.
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Figure 2.3: (A, B) Signal event distribution for the two modified kmers (GCCTGA and
CATCGQC) from the primer extension dataset [I52]. Solid black curve, empirical distribution
of all kmer signal events mapped to the specific position; solid red curve, fitted distribution
with all Gaussian components of the mixture model; solid green curve, fitted distribution
with Gaussian components that passed the mixing proportion threshold; dashed curves,
empirical distribution of T (blue), EAU (cyan), FAU (purple), BrdU (yellow) and IdU
(grey) kmer signal events. (A1, B1) -logl0(p-value) of the fitting. #Components, numbers
of Gaussian components as the null hypothesis (see section . Accepted null hypotheses
were colored as red. (A2, B2) Mixing proportion of each Gaussian component. Removed
components were colored as red. (A3, B3) The -logl10(p-value) of a pairwise two-sided U-test
among T, EAU, EAU BrdU and IdU kmer signal events. (A4-6, B4-6) Relationship between
empirical and fitted kmer signal event medians values, kmer signal event mads and mixing
proportions, respectively. Red dashed line, slope equals 1. (C, D) Signal event distribution
for the two modified kmers (UGCCA and GCCGC) from the 16S rRNA dataset [I15].
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Figure 2.4: (A) Hierarchical clustering analysis on primer extension reads covering reference
position 25-36 (see section [2.3). Branches of dendrogram were color-coded according to the
cluster assignments. (B) Corresponding read annotation, including T- (cyan), IdU- (blue),
FdU- (green), EAU- (red) and BrdU-containing reads (black). (C) Read composition of
each cluster. (D) Hierarchical clustering analysis on 16S rRNA reads covering reference
position 511-515 and 522-526 (see section . Branches of dendrogram were color-coded
according to the cluster assignments. (B) Corresponding read annotation, including Psi516
(green), Native (red) and m7G reads (black). (C) Read composition of each cluster.
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Figure 2.5: Quality control plots of the yeast genomic DNA dataset
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kmer constructing strategies.

52



Pos:1
Pos:2
Pos:3
Pos:4
Pos:5
Pos:6

00 01 02 03 04 05 06

kmer median difference

o S Q 4
- o o
fee]
S 7 g 4 g 4
<] <]
© ]
° o o
[=% o < 4 o i -
< o o
3 4
] ] !
3 1 S s
S - . g - g1
T T T T T S T T T T T S T T T T T
-20 -10 O 10 20 -20 -10 O 10 20 -20 -10 O 10 20
mean base median difference mean base median difference mean base median difference
< < S ]
o o - — A
© ---C
™ ™ O - % G
c 7 o 7 - T
©
s
o g — o g — o
<
3 4
— —
S 7 S 7 N
o
< ] 8 . . o | o | )
e T T T T T e T T T T T e T T T T T
-20 -10 O 10 20 -20 -10 O 10 20 -20 -10 O 10 20
mean base median difference mean base median difference mean base median difference

Figure 2.8: Assessing the contributions of DNA 6mer positions to the ionic current shifts.
(A) Positional contribution. For every 6mer, median of all corresponding events were consid-
ered as 6mer-specific event signal level, as described in Figure[3.7]A. 6mers that are different
only at the examined position were collected into the same group. For every group, the
6 pairwise absolute value differences (A-T, A-G, A-C, T-G, T-C, G-C) were measured.
Density distribution of such differences across groups was then visualized (see section .
(B-G) Nucleotide-specific contribution of position 1-6. Same as in (A), for every 6mer,
median of all corresponding events were considered as 6mer-specific event signal level, and
6mers that are different only at the examined position were collected into the same group.
Then, for each nucleotide, e.g. A, the average pairwise distance of event signal level from the
corresponding 3 other nucleotides, e.g. T, G and C, were calculated. Density distribution
of such differences across groups was then visualized (see section .
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Figure 2.9: Assessing the contributions of RNA 5mer positions to the ionic current shifts.
(A) Positional contribution. (B-F) Nucleotide-specific contribution of position 1-5. Same
as Supplementary Figure , but in RNA context.
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Figure 2.11: Basic statistics of kmer signal event distribution. Same as Figure [3.1B-F, but
visualized in a strand-specific way. F, forward strand (blue); R, reverse strand (purple).
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Figure 2.15: Quality control plots of the native 16S rRNA dataset.
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Figure 2.16: Quality control plots of the m7G-deficient 16S rRNA dataset.
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(A, D)

Order-p-value curves for the two modification sites in the primer extension dataset. For
both sites, 7 (marked as red) were considered as the optimal number. (B, E) Proportion
of each predicted Gaussian component. Components that were less than 10% were filtered
out (marked as red). (C, F) BrdU- and IdU-containing kmers were considered as the same
component due to close signal levels, quantified by pairwise u-test. As shown, for both
sites, BrdU-IdU pair gave the highest p-value. (G, H) Order-p-value curves for the two
modification sites in the rRNA dataset. For both sites, 4 (marked as red) were considered

as the optimal number.
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Unsupervised modification number detection for un-modified sites in 16S

rRNA dataset. Consistent with modified sites, elbow point on order-p-value curves were to
determine the optimal number of components for unmodified sites, as negative controls. All
26 non-modified sites in the “head oligo” (see “Data collection and preprocessing” subsection
of Materials and Methods for detail) weer analyzed, and 3 out of 26 were considered as false
positive by showing a big decent as order increased from 1 to 2.
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Figure 2.19: Unsupervised modification number detection for modified sites in 16S rRNA
dataset. Signal event distribution for the modified kmers UGCCA (A) and GCCGC (B)
from the 16S rRNA dataset. Solid black curve, empirical distribution of all kmer signal
events mapped to the specific position; solid red curve, empirical distribution of kmer signal
events from the m7G-deficient sample; solid green curve, empirical distribution of kmer
signal event from native sample; solid blue curve, empirical distribution of kmer signal
event from the pseudouridine-deficient sample; dashed curves, Gaussian mixture model-
fitted distributions. Numbers in red, green and blue denote sample-wise number of events
and percentages for corresponding samples. Numbers in cyan and purple denote the fitted
proportion of each component.
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Figure 2.20: Robustness and sensitivity analysis. (A) Boxplots of predicted QGCCA
fractions. Actual fractions were shown by horizontal red dashed lines. (B) Boxplots of
predicted UGCCA (blue) and QGCCA (black) signal levels (pAs). pAs determined from
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Figure 2.21: Signal distribution of example kmer TGATCC. In the Zymo dataset,
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curves shows the signal distribution from all reads, and dashed curves shows the signal

distribution from high-quality reads (top 50% Q-score).
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Towards Inferring Nanopore
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3.1 Abstract

The characteristic ionic currents of nucleotide kmers are commonly used in
analyzing nanopore sequencing readouts. We present a graph convolutional network-
based deep learning framework for predicting kmer characteristic ionic currents from
corresponding chemical structures. We show such a framework can generalize the
chemical information of the 5-methyl group from thymine to cytosine by correctly
predicting 5-methylcytosine-containing DNA 6mers, thus shedding light on the de

novo detection of nucleotide modifications.

3.2 Glossary

Kmer, DNA or RNA sequence with length of k. Canonical kmer, kmer
sequences purely composed of non-modified nucleotides, including A, T, G, C for DNA
and A, U, G, C for RNA. Characteristic ionic current, ionic currents yielded by
a specific kmer are usually modeled by a Gaussian distribution, the mean of which is
referred to as the characteristic ionic current. Kmer model, a table recording kmers
and their corresponding nanopore sequencing characteristic ionic currents. To avoid
confusion, the “deep learning model” will be referred to as “framework” throughout
the paper. Framework, in this paper “framework” specifically refers to the deep
learning model used to predict the characteristic ionic current from kmer chemical
structures. GCIN, Graph Convolutional Network. CNIN, Convolutional Neural Net-

work. NN, Neural Network. RMSE, Root Mean Square Error. R, Pearson corre-
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lation. BA, Balanced accuracy. 5mC, 5-methylcytosine. 6mA, N6-methyladenine.
I, Inosine. SMILES, Simplified Molecular Input Line Entry System for annotating
chemical structures using character strings. Atom, specifically refers to non-hydrogen

atoms throughout the paper.

3.3 Introduction

During nanopore sequencing, consecutive nucleotide sequence kmers block
the pores sequentially, producing ionic currents [35]. Chemical modifications on nu-
cleotides additionally alter the ionic currents measured during nanopore sequencing
[135], 152, 100, @9, MTTT], 112, 115, 59, 81, 116, RIL 96l 154, 172, 184, 102, 106, 120,
157, 4, [56]. The characteristic ionic currents of kmers, which are represented in kmer
models, are used in interpreting nucleotide modifications [135], 152} 112} [184]. Up to
now, 29 [I35], 152, 100, Q9] 1111, 1T2), 115, (9, R1, 116] and 30 [89, 96l 154 [172] 184
102], 106, 120, 157, 4, 56] modifications have been successfully characterized in DNA
and RNA, respectively. To date, most modification analysis algorithms are based
on kmer models [135] 152, [101}, 41]. However, such learning strategies struggle to
generalize knowledge between related kmers. For example, our previous hierarchical
Dirichlet process approach could be structured to learn associations between kmers
with specific shared properties, e.g. by numbers of pyrimidine bases, but could not
generally learn relationships between arbitrary chemical similarities [I35]. Moreover,

such approaches necessarily represent base modifications as distinct, unrelated char-
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acters. The upshot being that such kmer character-based models require extensive
training data and are unable to de novo predict the impact of a chemical modification.
Given that the number of possible kmers increases polynomially with the number of
modifications being modeled, it is extremely challenging to generate sufficient control
data for such models, especially considering that more than 50 and 160 nucleotide
modifications have been verified in DNA and RNA respectively [155], [15].

To start to tackle this problem, we propose a graph convolutional network
(GCN)-based deep learning framework [46], [79] for predicting kmer characteristic ionic
currents from corresponding kmer chemical structures. We confirm that the proposed
framework is able to represent individual kmer chemical modules, such as the phos-
phate group, the sugar backbone, as well as the nucleobase methyl and amine groups.
We further demonstrate that this framework can infer full kmer models even when
the training data does not include all possible kmers. This opens up the possibil-
ity of modeling kmers that are under-represented in control datasets. We also show
the framework can generalize the 5-methyl group in thymine to cytosine, thereby
accurately predicting the characteristic ionic currents of 5-methylcytosine (5mC)-
containing DNA 6mers. Such generalization of chemical information is a reason for

optimism about the potential for de novo detection of nucleotide modifications.
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3.4 Results

3.4.1 Architecture of the deep learning framework

Our deep learning framework consists of three groups of layers, including
GCN layers, convolutional neural network (CNN) layers, and one fully connected
neural network (NN) layer. As shown in Figure 3.1, the kmer chemical structures
are first represented as graphs, with atoms as nodes and covalent bonds as edges.
The atom chemical properties are then assigned as node attributes. Based on such
graphs, GCN layers extract one chemical feature vector for every atom, by visiting
its immediate graph neighbors. By this means, after several GCN layers, atom fea-
ture vectors will contain chemical information for all atoms within a certain graph
distance. Specifically, this distance equals the number of GCN layers applied. Con-
sidering the small encoding distance of each layer of a GCN, to improve the encoding
efficiency of the framework, CNN layers are then applied to summarize relatively
long-range chemical information above the GCN layers. The output matrices of the
final CNN layer are then “flattened” as feature vectors. Such feature vectors are then
passed to the final fully connected NN layer to summarize kmer-level information and
finally predict the kmer characteristic ionic currents (see section [2.3). For DNA and
RNA, the corresponding best-performing architecture in hyper-parameter tuning was

selected for downstream analysis (see [3.6)).
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3.4.2 Kmer-level generalization

We first confirmed the proposed framework can accurately predict char-
acteristic ionic currents of kmers from their chemical structures. To do so, we per-
formed a down-sample analysis on the canonical DNA 6mer model provided by Oxford
Nanopore Technologies (ONT, see section , by randomly partitioning canonical
DNA 6mers with various train-test splits. For each train-test split group, we per-
formed 50-fold cross-validation and used root mean square error (RMSE) and Pearson
correlation (r) to quantify the goodness-of-fit (see section [3.6). As shown in Figure
B.1B, Supplementary Figure [3.6] and Supplementary Table the performance
stabilized as more than 40% of DNA 6mers were included in the training. Specifi-
cally, for DNA 6mers only used in the test, average RMSE and Pearson correlation
reached 1 and 0.995, respectively. Such a result indicated on average 40% of randomly
selected DNA 6mers contain sufficient information to recapitulate the full DNA 6mer
model.

We next explored how training specific kmer subsets influence the ionic cur-
rent predictions. Specifically, we trained the framework using either the DNA 6mers
that a) do not contain a given nucleotide (base-dropout), b) do not specify a nucleotide
at a given position (position-dropout) and c) that are combined from different base-
dropouts (for instance using the union of A-dropout and T-dropout kmers, such that
kmers containing both A and T would be excluded, but not kmers containing either A
or T, noted as A-T model combination, see section [3.6|and Supplementary Note[3.11.2

for details). As with the down-sample analysis for each group in a-c) 50 independent
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repeats were performed, and goodness-of-fit was used to evaluate the performance.
As shown in Figure and Supplementary Figure [3.6] base and position-dropouts
significantly decreased the prediction power. Moreover, dropouts in 3rd and 4th po-
sitions contributed the most to prediction power decrease, followed by 2nd and 5th
positions, consistent with [41]. Model combinations, on the other hand, in general
had a minor influence on the prediction power.

The above-mentioned analyses together suggest, once properly trained with
sufficient and diverse 6mers, the kmer-level generalizability of the framework. To
further validate and extend our framework we performed all the above-mentioned
analyses using RNA, switching to using 5mers instead of 6mers to match the available
training data. Considering the significantly smaller amount of training data (1/4th
the number of distinct RNA 5mers vs DNA 6mers), the prediction power of the
RNA architecture is compromised. However, once trained with a similar number of
kmers, the RNA architecture yielded comparable prediction power. For instance, the
RNA 0.95-0.05 (972 training kmers) and DNA 0.25-0.75 (1024 training kmers) train-
test splits yielded comparable performance on test data. Such a result suggests the
validity of our proposed architecture (see section Supplementary Figure and
Supplementary Note .

Such kmer-level generalizability could facilitate nucleotide modification de-
tection by greatly reducing the required control data to generate reliable full modification-
containing kmer models. As a proof-of-concept, we trained the DNA deep learning

architecture with all canonical 6mers plus 1%, 5%, 10%, 30%, 50%, 70%, 90% of
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randomly selected 5mC-containing 6mers. The characteristic ionic current signals
of such b5mC-containing DNA 6mers were obtained from the nanopolish model as
reported in [I52], 101]. For each training group 50 independent repeats were per-
formed (see section . As shown in Figure and Supplementary Figure ,
decent goodness-of-fit could be obtained when as few as 5% of 5mC-containing DNA
6mers were used as training data. Specifically, for test DNA 6mers, average RMSE
and Pearson correlation reached 1.2 and 0.995, respectively. Furthermore, models
trained with knowledge of 50% 5mC-containing DNA 6mers performed about as well

as models trained with 90%.

3.4.3 Chemical group-level generalization in DNA 5mC de novo predic-

tion

We noted that performance of the model on held out 5mC kmers trained
with just 1% of 5mC kmers was better than chance. This raised the question of if
chemical group-level information was being usefully generalized among nucleotides by
our framework, potentially allowing the 5mC to be predicted de novo, without ever
having been seen by the model. As a chemical derivative of cytosine, 5mC contains an
additional methyl group at the 5th position (5-methyl) of the pyrimidine ring. This
5-methyl group is shared between 5mC and thymine. We thus hypothesized that 5mC
can be generalized by combining the pyrimidine ring from cytosine and 5-methyl group
from thymine. As a proof-of-concept, we trained the framework with all canonical

DNA 6mers to make de novo predictions on 5mC-containing DNA 6mers. Similar to

73



previous analyses, 50 independent repeats were performed, and the prediction power
was first quantified by goodness-of-fit against the above-mentioned nanopolish model.
As shown in Figure and Supplementary Figure 3.8 although goodness-of-fit of
5mC-containing DNA 6mers were significantly worse than canonical counterparts,
decent performance could still be obtained (average RMSE and Pearson correlation
reached 1.8 and 0.993, respectively). We also compared the goodness-of-fit between
canonical and 5mC-containing DNA 6mers, and as shown in Supplementary Figure
3.9, a positive correlation trend could be observed. Such a result confirmed that no
overfitting was introduced during architecture-training with canonical DNA 6mers,

and further suggested 5-methyl generalization.

3.4.4 Predictive analysis

We next performed “predictive analysis” to test whether the DNA 6mer
models inferred by our deep learning framework could be used to correctly predict
DNA C/5mC status at a per-read, per-site resolution from ionic currents (“predictive
accuracy”, see section . C/5mC-sites to be predicted were confirmed by bisulfite
sequencing (see section . We also quantified the predictive accuracy with the
above-mentioned nanopolish model as a baseline control (see section [3.6). As shown
in Figure 3.1[E, average predictive accuracy, quantified by balanced accuracy, became
comparable with baseline control with 50% of imputed 5mC-containing 6mers. Taken
together, these results confirmed the kmer-level generalizability of our framework, as

well as suggesting that reliable modification-containing kmer models can be built
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with significantly less control data once facilitated by our methodology. Such a re-
sult confirmed the successful 5-methyl generalization. More confusion matrix-based

prediction evaluations can be found in Supplementary Figure [3.10

3.4.5 The encoding of chemical structures

To better understand how chemical structures were encoded we visualized
DNA 6mer atom similarity matrices. Specifically, we trained the proposed framework
with all canonical DNA 6mers. We then calculated and visualized the Pearson corre-
lations of the feature vectors derived by the final GCN layer as atom-level similarities.
As shown in Supplementary Figure [3.11], we visualized 10 randomly chosen canonical
DNA 6mers. Taking CGACGT as an example, as shown in Figure and [3.2B,
atoms were in general aggregated by chemical contexts. For instance, for the first cy-
tidine monophosphate in CGACGT, atoms #0-4 were tightly clustered with average
r>0.9, recapitulating the phosphate group. Atoms #5-8 and #17-18 also clustered
with average r>0.9, denoting the deoxyribose backbone. Among cytosine atoms #9-
16, #9 nitrogen atom connected the nucleobase to the deoxyribose backbone, atoms
#10-11 denoted the C=0 group, and atoms #12-16 composed the C=C-C=N con-
jugation system and the covalently bonded amine group. Similarly, atoms in other
nucleotides can also be clustered into phosphate groups, deoxyribose backbones and
nucleobases. Within the nucleobases, chemical modules including chemical groups
and conjugation systems can further be dissected. Such a phosphate-deoxyribose-

nucleobase pattern repeated and constituted DNA 6mers.
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We also examined the inter-nucleotide similarities of different components.
As shown in Figure and , in general high similarities (average r>0.9) were
observed among phosphates, as well as deoxyriboses from different nucleotides. Mean-
while, chemical modules sharing similar structures, e.g. the conjugation systems of
adenines, cytosines and guanines were more similar to each other. On the other hand,
low similarities (average r<0.5) were observed between chemical modules with dis-
tinct structures, e.g. the cytosine C=0 group and the thymine methyl group. Taken
together, these results suggest that the GCN layers in the proposed framework can
effectively capture features interpretable as individual chemical modules.

We further visualized the atom-level similarity matrices of HhmC-containing
DNA 6mers, aiming to understand the generalization of methyl group among thymine
and 5-methylcytosine. We thus trained our deep learning framework with all canoni-
cal DNA 6mers, calculated the Pearson correlations of the feature vectors derived by
the final GCN layer, and further visualized such atom-level similarity matrices of 10
randomly selected 5mC-containing DNA 6mers (Supplementary Figure [3.12). Tak-
ing GT(5mC)AGA as an example (Figure and D), the phosphate-deoxyribose-
nucleobase repetitive pattern was recapitulated. Within nucleobases, high similarities
(average r>0.9) were again observed among chemical modules with similar structures.
Specifically, strong similarities (average r>0.9) were observed between thymine (#37-
38) and 5mC (#57-58) methyl groups (Me). In addition, such methyl groups were
uniquely encoded as they were less correlated with any other DNA 6mer chemi-

cal modules (average r<0.5). We also quantified the atom-level similarity between
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GT(5mC)AGA and corresponding canonical counterpart GTCAGA. As shown in Sup-
plementary Figure m strong similarities (average r>0.9) were observed between
GT(5mC)AGA and GTCAGA thymine methyl groups, as well as the 5mC methyl
groups from GT(5mC)AGA and thymine methyl groups from GTCAGA. These obser-
vations together suggested the successful chemical information generalization. Notice-
ably, the methyl groups were encoded with the pyrimidine backbone C=C modules.
Such a result suggests that the GCN-encoding is driven by chemical context, which
further implies when generalizing one specific chemical group among different nu-
cleotides, the corresponding chemical contexts in which such chemical group resides
should be the same.

Finally, we projected kmer atom feature vectors into the tSNE space, in
order to summarize the atom-level similarity matrices further providing a global vi-
sualization of kmer atoms. As shown in Figure 2B and E, atoms under the same
chemical context clustered together, e.g. phosphate group phosphate atoms (#1,
#20, #42, #63, #82, #104 in B and #1, #23, #43, #63, #84, #106 in F), de-
oxyribose ring oxygen atoms (#7, #26, #48, #69, #88, #110 in B and #7, #29,
#49, #69, #90, #112 in E), as well as NH3 group nitrogen atoms (#14, #35, #55,
#76, #97 in B and #16, #56, #76, #99, #119 in E). Specifically, as shown in E, in
5mC-containing DNA 6mer GT(5mC)AGA, T-methyl group carbon atom #38 and
5mC-methyl group carbon atom #58 clustered together, along with pyrimidine back-
bone C=C module atoms #37 and #39 in T, as well as #57 and #59 in 5mC. Taken

together, these results confirm that GCN could properly encode chemical structures
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based on the corresponding chemical contexts.

3.4.6 Analyzing the 2mG site in E.coli 16S rRNA

Our deep learning framework could potentially shed light on previously un-
derstudied, less prevalent nucleotide modifications. As a proof-of-concept, we ana-
lyzed 2m@G, which can be represented as the purine ring in guanine with the N2-
methyl group in 6mA. Specifically, we generated a RNA 5mer model using canonical
and 6mA-containing kmers (see section [3.6). We then predicted the characteristic
ionic current signals of 2mG-containing RNA 5mers (see section . To test our
predictions, we analyzed nanopore sequencing reads of E.coli 16S rRNA transcript
J01859.1, which contains an annotated 2mG at position 1206 (see section . As
shown in Supplementary Figure [3.14] our predictions recapitulated the characteristic
ionic current signals of 2mG-containing and pairing canonical RNA 5mers (see section
. Moreover, we confirmed that such predicted characteristic ionic current signals

could be used to correctly determine the G/2mG modification status (see section [3.6).

3.5 Discussion

We propose a GCN-based deep learning framework for associating kmer
chemical structures with corresponding characteristic ionic currents. We show that
such a framework can recapitulate full kmer models from partial training data, thus
greatly facilitating modification analysis by reducing the amount of required control

data. Specifically, for cases where a small proportion of random kmers are under-
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represented in control data, we can apply the same principle as the down-sample
analysis to learn around these training deficiencies. For cases where comprehensive
control datasets are available only for single modifications, we could apply model
combination (as we showed for individual nucleotides) to model kmers containing
multiple modifications simultaneously.

We further demonstrated that our framework can represent novel modifi-
cations by generalizing encoded chemical groups between nucleotides, thus shedding
light on de novo modification detection. However, the current model is not without its
limitations. For example, the proposed framework encodes chemical groups, e.g. the
methyl groups in thymine and 5mC, as well as the amine groups in cytosine, guanine
and adenine, with covalently bonded “backbone atoms”, showing a strong chemi-
cal context-specificity (Figure and Supplementary Figure . Thus, the
current framework cannot properly handle “stacked” chemical groups. For instance,
the methylamine group in N6-methyladenine (6mA) cannot be correctly encoded by
simply stacking methyl with amine. As shown in Supplementary Figure [3.15] substi-
tuting A with 6mA was predicted to decrease characteristic ionic currents, which is
the opposite of a previous study [I11]. Therefore the extensibility of the framework
is largely limited. To overcome such a limitation, controlled nanopore sequencing
profiles of diverse nucleotide modifications are needed, in addition to the modeling of
other chemical interactions.

Deep learning-based approaches have emerged as powerful tools for detecting

nucleotide modifications from nanopore sequencing readouts. Compared to kmer
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model-based counterparts, deep learning-based approaches are reported to have better
accuracy and less computational resource consumption [99] [I15]. Recently, ONT
released the megalodon algorithm EL which can drastically increase the accuracy for
5mC identification (Supplementary Figure , see section . Thus, one potential
future extension of the paper would be using the learned models as components of a
larger, recurrent deep neural network.

Another potential future direction would be generalizing the proposed frame-
work to handle both DNA and RNA kmers. Due to different translocation speed, the
nanopore sequencing ionic currents of DNA and RNA are not directly comparable
[39]. Therefore, advanced deep learning frameworks which can take both kmer chem-
ical structures and nanopore sequencing experimental setups are needed. Considering
DNA and RNA share several non-canonical nucleobases, e.g. Inosine (I) [I], we might
combine the ribose in RNA and I in DNA to reconstruct I-containing RNA 5mers,
and vice versa for I-containing DNA 6mers. By this means, required RNA control
nanopore sequencing reads, which are usually challenging to obtain, can be largely
compensated. Meanwhile, such generalization would largely diversify the chemical
contexts that can be represented, further facilitating the de novo modification anal-

ysis.

"https://github.com/nanoporetech/megalodon
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3.6 Methods

3.6.1 Methods summary

The deep learning framework proposed here aims to associate kmer chemical
structures with corresponding characteristic ionic currents. The chemical structure
refers to the chemical properties of kmer atoms and how these atoms are covalently
bonded. Characteristic ionic current, on the other hand, refers to the average ionic
current that a specific kmer produces during nanopore sequencing.

Thus, in the following sections, we first describe how the chemical struc-
tures were represented (“graph representation of kmer chemical structures”). We
then describe the deep learning framework used in the study (“architecture of the
deep learning framework”, “training procedure” and “hyper-parameter tuning”). We
further describe analyses performed to evaluate the performance of the proposed
framework (“down-sample, base-dropout, position-dropout and combination anal-
ysis”, “predicting modification-containing kmers”, “human genome C/5mC-status
predictive analysis” and “E.coli 16S rRNA 2mG-site analysis”). Finally we describe
all required resources for the study (“kmer models”, “data availability” and “code

availability”).

3.6.2 Graph representation of kmer chemical structures

Following the workflow described in [46], kmer chemical structures were

first described by SMILES (Simplified Molecular Input Line Entry System) strings,
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which were assembled by concatenating SMILES strings of individual nucleotides, as
summarized in Table [3.1] Each nucleotide base can be described by several SMILES
strings. The SMILES strings presented in the table below were selected due to the
ease of combining them into complete kmers. Based on information provided by
Oxford Nanopore Technologies, as well as a previous study [41], DNA and RNA is
represented by 6mer and bmer, respectively. An “O” was then added to the end of
each concatenation to represent the residual unbonded hydroxyl group on the sugar
backbone.

We then represent the SMILES string of each kmer as a graph noted as
G(A, X). Specifically, the topology (atom order is determined by SMILES string) of
each kmer chemical structure was represented by an adjacency matrix A, with A, ;
equals 1 iff the ith and jth atoms were covalently bonded. Meanwhile, for every atom
in A, the corresponding chemical properties were represented by feature matrix X,
with X, recording the chemical property vector for the ith atom. Atom chemical
properties included in the study were summarized in Table [3.2] Therefore, the GCN
has encoded as input a chemical feature matrix X with the guide of chemical topol-
ogy matrix A, representing kmer chemical structures. Notably, for convenient GCN
implementation, the size of A and X is kept constant. Due to the variable number of
atoms across kmers, A and X were thereby padded with zeros based on the largest
kmers. Specifically, the A matrix was padded at the end of its rows and columns,
with dim(A) is 133, 133 and 116, 116 for DNA and RNA, respectively. While the X

matrix was padded at the end of its rows, with dim(X) is 133, 8 and 116, 8 for DNA
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and RNA, respectively. Note that the kmer representation is guided by the non-zero

elements (covalent bonds) in A, thus such padding will not affect the GCN encoding.

3.6.3 Architecture of the deep learning framework

The Graph Convolutional Network (GCN) layers of our framework were
built based on the procedure described by [46]. Fast approximate convolutions on G
were used to create a graph-based neural network f(X, A), following the propagation

rule:

H*' = o(U2 AUz H'W) (3.1)

o() is the activation function applied to each layer. Here, the activation
function used was Exponential Linear Unit (ELU). U;; = 3 ; Aij the degree matrix
for each atom in the graph. A = A + I adds self edges to each of the atoms. The
U2 AU transformation prevents changes in the scale of the feature vectors [79] and
constructs filters for the averaging of neighboring node features. H and W denote
the output (activation vectors) and weights of each GCN layer, respectively. The
corresponding superscript represents the layer index. H° = X, however subsequent
H represent the GCN derived features.

The intuition of the graph convolution process is described as follows. For
every kmer, chemical properties of atoms, together with their covalently bonded neigh-

bors, will be convoluted with the guidance of G. Such graph convolution yields an

activation matrix H, following the aforementioned propagation rule. H is an atom-
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by-feature matrix, with dimension 133, N and 116, N for each of the DNA and RNA
kmers, respectively. Here N equals the number of nodes of the GCN layer, which
determines the number of features to be derived. The selection rule for N is described
in the following section. As more GCN layers are stacked, the graph convolution pro-
cess is repeated. The H matrix will thus contain chemical information of all atoms
within a certain graph distance, which equals the number of GCN layers applied. By
this means, “chemical modules” composed of several atoms linked by covalent bonds
are encoded.

Considering the small encoding distance of a GCN, for a better encoding
efficiency we wanted additional layers that can quickly summarize atom information.
We thus applied standard 1-D CNN layers with Rectified Linear Unit (ReLU) acti-
vation right after the GCN layers. Average Pooling [87] was applied on the output of
each 1-D CNN layer. Average Pooling takes the average of each 2x2 patch of the CNN
output matrix. Specifically, output dimension of the first CNN layer equals 133-K+1,
N’ and 116-K+1, N’ for DNA and RNA kmers, respectively. Here K is the CNN
kernel size and N’ is the node number of the final GCN layer. Output dimensions of
subsequent CNN layers equals m-K+1-2+1, n-241, where m, n denotes the output
dimension of the previous layer, and 2 denotes the Average Pooling patch size. The
output from the final 1-D CNN layer, after Average Pooling, was passed to a Flatten
layer, which converts the final 1-D CNN output matrix to a 1-D feature vector in
a row-wise fashion. The NN layer then takes the flattened vector as input, thereby

summarizing information about the entire kmer, and producing a highly informative
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representation. Elements of the NN layer output vector are linearly combined as the

final pA value.

3.6.4 Training procedure

Our framework was trained with the Keras [30] framework with TensorFlow
backend using the Adam [78] optimizer for gradient descent optimization. The frame-
work was allowed to train for a maximum of 500 epochs. To control for overfitting,
EarlyStopping [189] was used by monitoring the increase in validation loss. Early
termination of training was reached if the validation loss was increasing for 10 con-
secutive epochs, indicating that the framework had reached maximum convergence.
Mean Squared Error (MSE) was used as the loss function during the training process.
Meanwhile, a 10% random dropout was applied after each layer, to further prevent
overfitting [I56]. In the following experiments the exact same training routine was

used.

3.6.5 Hyper-parameter tuning

In order to determine the optimal architecture, we performed hyperparam-
eter grid search. The search involved the hyperparameters shown in Table [3.3] We
used the following scaling factor to determine the number of nodes in each GCN/CNN
layer of our framework:

n=16x2"" (3.2)

85



where 1 is the layer index of the GCN, CNN, and NN layer groups. For instance, the
number of GCN layers determined to yield the best performance for DNA were 4. The
number of nodes for each GCN layer was therefore 128, 64, 32, and 16. The same
logic was applied to all other layer groups. We performed 10-fold cross validation
for each hyper-parameter combination. The combination that produced the lowest
average RMSE across all folds was adopted as the optimal architecture. The optimal
DNA framework has 4 GCN layers, 3 CNN layers with a kernel size of 10 and 8192
nodes in the NN layer. The optimal RNA framework has 4 GCN layers, 5 CNN layers

with a kernel size of 10 and 8192 in the NN layer.

3.6.6 Down-sample, base-dropout, position-dropout and combination anal-

ysis

For down-sample analysis, we performed random train-test splits in 5% in-
tervals, noted as 0.95-0.05, etc. For base-dropout analysis, we created training sets by
removing certain bases. Such train-test split creates 729/4096 (18%) training kmers
and 3367/4096 (82%) test kmers for DNA, and 243/1024 (24%) training kmers and
781/1024 (76%) test kmers for RNA. It is important to note that everytime a base is
dropped from the training set it is retained in the test set. Similar to base-dropout,
the position-dropout adds one more dimension, which is the position of the nucleotide
base. For a given position-dropout, the testing kmers are all kmers with the dropout
nucleotide covering the target position, and the training kmers are the remaining

kmers. Such position-dropout creates 3072/4096 (75%) training kmers and 1024/4096
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(25%) test kmers for DNA, and 768/1024 (24%) training kmers and 256/1024 (25%)
test kmers for RNA. It is important to note that bases dropped in a specific position
in the training appear in the same position in testing. For combination analysis, we
trained the framework by combining any of the two base-dropout kmer sets. For
instance, all G and C-dropout DNA 6mers, which was noted as G-C. Such analysis
creates 1394/4096 (34%) training kmers and 2702/4096 (66%) test kmers for DNA,
and 454/1024 (44%) training kmers and 570/1024 (56%) test kmers for RNA. For
each above-mentioned train-test split, in order to perform statistical analyses, we
produced 50 independently trained frameworks for each experiment. Specifically, we
performed 50-fold cross validation in the down-sample analysis, considering for each
fold the train kmers were randomly selected. As for other analyses, we performed 50
independent repeats using the same training kmer sets. The variability among repeats
came from the stochasticity of the training process. To confirm the robustness of our

architecture, we further performed two independent replicates (run-1 and run-2) of

50.

3.6.7 Predicting modification-containing DNA 6mers

For the 5mC imputation experiment, the framework was trained on all 4096
A, T, C, G DNA 6mers, plus 1%, 5%, 10%, 30%, 50%, 70%, 90% of randomly selected
5mC-containing DNA 6mers, following the training process as described above. In or-
der to perform statistical analyses, we produced 50 independently trained frameworks

(50 independent repeats) for each category, with in total two independent replicates
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(run-1 and run-2) of 50. Such frameworks were then applied on all 15625 possible A,
T, C, G, 5mC DNA 6mers. For the chemical group-level generalization experiment,
the framework was trained on all 4096 A, T, C, G DNA 6mers following the training
process as described above. In order to perform statistical analyses, we produced 50
independently trained frameworks (50 independent repeats), with in total two inde-
pendent replicates (run-1 and run-2) of 50. Such frameworks were then applied on
all 15625 possible DNA 6mers, including those composed of A, T, C, G, 5mC and A,

T, C, G, 6mA.

3.6.8 Predictive analysis of predicted kmer models
Overview

To test whether the generated kmer models can be used to correctly in-
terpret C-5mC status from nanopore readouts, we performed predictive analysis by
using signalAlign to make per-read per-base predictions [I135]. For a given reference
position, signalAlign can produce posterior probabilities for all possible bases based
on a provided kmer model. Thus, for DNA 6mer models generated as described
in “predicting modification-containing DNA 6mers”, the empirical nanopolish [152]
[TOT] model obtained as described in “kmer models”, we allowed signalAlign to pre-
dict between C and 5mC. Considering no significant goodness-of-fit differences were
observed between run-1 and run-2, only models generated in run-1 were used here.
All predictive analyses performed in this paper were within the human NA12878 cell

line.
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Selecting prediction sites

The prediction sites were selected among the entire human genome. To avoid
artifacts caused by ambiguous genomic DNA modification status, we only focused on
confident 5mC sites and canonical genomic regions in our analysis. Besides 5mC,
other modifications exist in genomic DNA. Considering extremely low fractions of
other modifications, e.g. only 0.05% are modified as 6mAs in the human genome
[187], we define "non-5mC” sites as ”canonical regions” during predictive analysis.
Among these canonical regions, we used the Poisson process with lambda equals 50
to randomly select genomic sites for signalAlign to predict. Such selected sites were
at least 12 nucleotides apart, avoiding potential interference by the neighbors. We
thus obtained confident 5mC and C sites for signalAlign prediction. The genomic
DNA C-5mC status was determined by analyzing two independent NA12878 cell line
bisulfite sequencing datasets [44]. A C-site was determined as confidently methylated
if, for both bisulfite sequencing datasets, 95% of reads were methylated with at least
10x coverage. On the other hand, a C-site was considered confidently unmodified
if, for both bisulfite sequencing datasets, at most 1% of reads were methylated with
at least 10x coverage. Such analysis covered 3367/3367 canonical C-containing DNA

6mers, and 3950/6144 single 5mC-containing DNA 6mers.

Selecting nanopore sequencing reads

We then ran signalAlign with reads reported in the nanopore consortium

NA12878 cell line native genomic DNA datasets [73] covering the above-mentioned
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prediction sites. Considering the computational complexity of signalAlign, we per-
formed the following filtering steps to use the fewest reads to cover the most kmers.
First, we calculated read-level kmer coverage. For example, the center 5mC-site of
DNA read CAGAT(5mC)ACAGA was selected for signalAlign prediction. 6mers
CAGAT(5mC), AGAT(5mC)A, GAT(5mC)AC, AT(5mC)ACA, T(5mC)ACAG and
(bmC)ACAGA span such bmC-site, therefore considered as being covered. Based on
such read-level kmer coverage, we iteratively selected reads that covered the least
frequently covered kmers. Thus, building a read set which covers as many kmers as
possible as often as possible with the fewest number of reads. We included two bio-
logical replicates of NA12878 cell line native genomic DNA sequencing experiments
(FAB39088 and FAF01169) in the C-5mC predictive analysis. For such analysis,
our final FAB39088 set contained 1706 reads, which covered 2625/3367 C-only DNA
6mers with an average 61.52x coverage as negative control, and 3105/3950 possible
single-bmC DNA 6mers with an average 5.01x coverage. The final FAF01169 set
contained 1396 reads, which covered 2610/3367 C-only DNA 6mers with an aver-
age 63.26x coverage as negative control, and 3140/3950 single-5mC DNA 6mers with
an average 4.76x coverage. Combining the two sets, in total 2792/3367 C-only DNA
6mers were covered with an average 58.49x coverage, and 3481/3950 single-5mC DNA

6mers were covered with an average 4.38x coverage.
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Performing signalAlign prediction

Based on the selected prediction sites and nanopore sequencing reads as
described above, per-read per-site predictive analysis was performed by signalAlign.
The signalAlign analysis was performed with default parameters, except for internal
read-level quality filtering. Such quality filtering removes reads with poor kmer to
ionic current correspondence. During signalAlign analysis, kmer-to-ionic current cor-
respondence probability matrices (event tables) are first generated. Based on such
event tables, signalAlign will remove reads with low average probabilities (<10-5).
Additionally, reads with >50 consecutive ionic current signals that cannot be corre-
sponded to kmers (probability equals 0) will be discarded. Considering the event table
generation is based on the provided kmer model, therefore after the above-mentioned
default quality filtering, the number of remaining reads varies when different kmer
models are supplied during predictive analysis. To ensure the statistical soundness,
we deactivate the default quality filtering, such that reads to be analyzed by different

supplied kmer models will be the same.

Performing megalodon prediction

We also performed predictive analysis using the deep learning-based modifi-
cation calling algorithm megalodonP|as an additional baseline control. The megalodon
(version 2.3.1) analysis was performed with tags " fasth --outputs mod_mappings mods

--reference reference —processes 1 —overwrite --guppy-server-path guppy_basecall se

https://github.com/nanoporetech /megalodon
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rver —output-directory output_dir —~guppy-timeout 1000 --guppy-concurrent-reads 1
—guppy-params '—num_callers 7 —cpu_threads_per_caller 10 —chunks_per_runner 100’ ”

Considering the extraordinary performance of megalodon (Supplementary
Figure , we further used megalodon predictions as an additional ground truth
for the C/5mC status for every nanopore sequencing read at every prediction site.

Please see Supplementary Note [3.11.4] for more information.

Quantifying predictive accuracy

signal Align quantifies the probability of being C or 5mC for every prediction.
We used probability threshold 0.7 to ensure only confident predictions were included
in predictive accuracy quantification. Together with the megalodon 5mC calling
results, we further created confusion matrices (2x2 for 5mC predictive analysis with
5mC as “positive” class and C as “negative” class) to quantify predictive accuracy.
Specifically, we calculated the true positive rate (TPR), true negative rate (TNR),
positive predictive value (PPV), negative predictive value (NPV), Fl-score (F1) and
balanced accuracy (BA) as predictive accuracy quantifications. BA was presented in
Figure as representative quantification, and the full predictive performance can

be found in Supplementary Figure [3.10]
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3.6.9 E.coli 16S rRNA 2mG-site analysis
Ionic current signal distributions

We first downloaded the nanopore sequencing fastb reads of E.coli 16S rRNA
nanopore sequencing reads reported in [I54]. We then performed nanopolish extract

4

analysis [152], T01]to retrieve the fastq records, with tags “-v -r -q -t template”. The
fastq records were then aligned using minimap2 [92] with flags “-ax map-ont”, further
sorted and indexed by samtools [03]. Per-read event tables were generated using
nanopolish eventalign with flag “~scale-events”, by taking fast5 reads, alignment files,
and retrieved fastq records as described above. The yielded event tables contain

RNA bmer sequences and corresponding ionic current signals. We then quantified

the distributions of RNA 5mer ionic current signals.

Predictive analysis

We also performed predictive analysis for the A, 6mA, T, G, 2mG, C RNA
S5mer model described in “predicting modification-containing kmers”. Specifically, we
tested whether the predicted RNA 5mer model could be used to correctly identify the
2mG site in E.coli 16S rRNA (position 1206, see https://www.ncbi.nlm.nih.gov/n
uccore/J01859 for details). We thus ran signalAlign with nanopore sequencing reads
reported in [14], following the same steps as described in “human genome C/5mC-
status predictive analysis”. We also used probability threshold 0.7 to select confident

predictions.
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3.6.10 Kmer models

Canonical DNA 6mer and RNA bmer models are available at: https://
github.com/nanoporetech/kmer models. The Nanopolish 5mC-containing DNA
6mer model is available at: https://github.com/nanoporetech/nanopolish/t
ree/master/etc/r9-models. The GSE124309 model, which contains the union of
{A, U, C, G} and {6mA, U, G, C} RNA 5mers, was constructed by the following
steps. We first downloaded the nanopore sequencing fastb reads of modified and
non-modified ”curlcake constructs” replicate 1 with GEO accession code GSE124309
[96]. We then performed nanopolish extract analysis [I52], [101] to retrieve the fastq
records, with tags ”-v -r -q -t template”. The fastq records were then aligned using
minimap2 [92] with flags ”-ax map-ont”, further sorted and indexed by samtools [93].
Per-read event tables were generated using nanopolish eventalign with flag ”—scale-
events”, by taking fastb reads, alignment files, and retrieved fastq records as described
above. The yielded event tables contain RNA Smer sequences and corresponding ionic
current signals. For every RNA bmer, we averaged ionic current signals of all instances
recorded in the event tables to build the GSE124309 model. Please note that for more
recent nanopore sequencing chemistries, e.g. R10 where ONT kmer models are no

longer available, empirical kmer models could be trained instead as above-mentioned.

Please see Supplementary Note [3.11.5| for details.
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3.6.11 Data availability

The FAB39088 and FAF01169 NA12878 cell line native genomic DNA nanopore
sequencing datasets were downloaded from https://github.com/nanopore-wgs-
consortium/NA12878/blob/master/Genome.md. The two independent NA12878
bisulfite datasets were downloaded from https://www.encodeproject.org/experi

ments/ENCSR890UQO/.

3.6.12 Code availability

Codes for constructing, training and running the deep learning framework
are available at https://github.com/ioannisa92/Nanopore modification_i
nference. Codes for nanopore sequencing data analysis are available at https:
//github.com/adbailey4/functional model_analysis. Codes for reproducing all

figures are available upon request to the corresponding authors.
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3.9 Figures

A
Step 1. Graph Representation Step 2. Graph Convolution Step 3. Convolution Step 4. pA Prediction

/ “Flatten” the
output of the

L7
o

bdodpdcd..

structure as adjacency
and feature matrices.

zuiker  Tyisker

Adjacency Feature

\ —\{ | [(hd P =
,/ o i1jojojofo|...o@..|..|.. 5
neRRROs § 7 —
S\ p2oj1 0]0]0].. Ed ;w'a‘ the NN output.
i p3ojijo 00
= pdo[1]olo[T1 Convolute the output of the 3
/ T edofofofo[1 P o wi final GCN layer. pA
% @
°
s e
o o
T * LR
o seeemetbiisesebbibisibbidbiots PR AR
o
5.
S
2
T o
D o
o
= <
<
) o
S s
w e w o [y
2 o E= s
S e = ofrti= 3°
o - [ j¢]
S g < g
° T S
-2 - fE== 8
c g = <
o o . O o o35
2 o B 23 ©
T 8 _ =_= T @ ° — o
o 2 L == i} 3
o ° = I = S s sy - oo o s
=g + =3 - §3S8s533s8 32
3 3 233 g
= 5 = @ o ~ £
° g S S 3 3 3 3 ° 9 ¢ 8 s
° e & §
2

Figure 3.1: Predicting kmer characteristic ionic currents from chemical struc-
tures. (A) Graphic overview of the proposed deep learning framework for DNA analysis.
(B) Goodness-of-fit of DNA canonical random down-sample, base-dropout, position-dropout
and model combination analyses. (C) Goodness-of-fit of 5mC-containing DNA 6mer impu-
tation analysis. (D) Goodness-of-fit of de novo 5mC-containing DNA 6mer prediction. C
and 5mC refer to goodness-of-fit of canonical DNA 6mers and 5mC-containing DNA 6mers,
respectively. In panel B-D, Train (red) and Test (blue) refer to goodness-of-fit of the train-
ing and test DNA 6mers, respectively. (E) Predictive accuracy of C/5mC status quantified
by balanced accuracy.
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Figure 3.2: Visualizing the encoding of chemical structures. (A-C) Atom simi-
larity matrix, tSNE visualization and chemical structure of the example canonical DNA
6mer CGACGT. In (A) and (B), atoms were numbered and colored based on the chemical
structure in (C). Carbon, nitrogen, oxygen and phosphorus were colored as black, blue, red
and orange, respectively. Specifically, in (A), nucleobases were highlighted by dashed boxes.
(D-F) Atom similarity matrix, tSNE visualization and chemical structure of the example
5mC-containing DNA 6mer GT(5mC)AGA. In (D) and (E), atoms were numbered and col-
ored based on the chemical structure in (F). Carbon, nitrogen, oxygen and phosphorus were
colored as black, blue, red and orange, respectively. Specifically, in (D) and (E), methyl
group carbon atoms (#38 in T and #58 in 5mC) were highlighted.
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3.10 Tables

Table 3.1: SMILE String Encoding

Nucleotide SMILES string
A (DNA) OP(=0)(0)0OCC10C(N3C=NC2=C(N)N=CN=(23)CC1
T (DNA) OP(=0)(0)0OCC10C(N2C(=0)NC(=0)C(C)=C2)CC1
C (DNA) OP(=0)(0)OCC10C(N2C(=0)N=C(N)C=C2)CC1
G (DNA) OP(=0)(0)OCC10C(N2C=NC3=C2N=C(N)NC3=0)CC1
5mC (DNA) OP(=0)(0)OCC10C(N2C(=0)N=C(N)C(C)=C2)CC1
6mA (DNA) OP(=0)(0)OCC10C(N3C=NC2=C(NC)N=CN=(23)CC1
A (RNA) OP(=0)(0)OCC10C(N3C=NC2=C(N)N=CN=(23)C(0)C1
U (RNA) OP(=0)(0)OCC10C(N2C(=0)NC(=0)C=C2)C(0)C1
C (RNA) OP(=0)(0)OCC10C(N2C(=0)N=C(N)C=C2)C(0)C1
G (RNA) | OP(=0)(0)OCC10C(N2C=NC3=C2N=C(N)NC3=0)C(0)C1
Table 3.2: Features in Feature matrix X
Feature Description
Carbon 1 if the atom is carbon, 0 otherwise (boolean)
Nitrogen 1 if the atom is nitrogen, 0 otherwise (boolean)
Oxygen 1 if the atom is oxygen, 0 otherwise (boolean)
Phosphorus 1 if the atom is phosphorus, 0 otherwise (boolean)

Atom degree

Total number of covalent bonds around an atom (integer)

Implicit valence

It equals the valence of the atom minus the valence calculated
from the bond connections (integer)

Number of hydrogens

Total count of hydrogens (integer)

Aromaticity

1 if atom in an aromatic ring, 0 otherwise (boolean)
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Table 3.3: Hyper-parameter tuning grid search parameters

Parameters Space Searched | Best Parame- | Best Parame-
ters (DNA) ters (RNA)
The number of | {2, 3,4, 5, 6} 4 4
GCN layers
The number of | {2, 3,4, 5, 6} 3 5
CNN layers
The kernel size for | {2, 4, 10, 20} 10 10
the CNN layers
The number of | {32, 128, 512, | 8192 8192
nodes in dense | 2048, 8192}
(NN) layer
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3.11 Supplementary Information

3.11.1 Supplementary Table 1

RMSE r(Pearson)

0.05-0.95 12.93 12.92 0.2142 0.215
0.1-0.9 12.11 12.51
0.15-0.85 2.591 2.899
0.2-0.8 2.401 2.533
0.25-0.75 2.049 2.243
0.3-0.7 1.505 1.633
0.35-0.65 1.468 1.595
0.4-0.6 1.285 1.441
0.45-0.55 1.128 1.217
0.5-0.5 0.9553 1.05
0.55-0.45 0.9976 1.071
0.6-0.4 0.9814 1.06
0.65-0.35 0.7809  0.8686
0.7-0.3 0.8658 0.9145
0.75-0.25 0.7468  0.8009
0.8-0.2 0.9185  0.9629
0.85-0.15 0.6881  0.7183
0.9-0.1 0.6765 0.7212
0.95-0.05 0.724 0.7601

Run-1 Run-2 Run-1 Run-2

Figure 3.3: Median RMSE and Pearson correlation values of the down-sample

analysis.
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3.11.2 Supplementary Note 1. Goodness-of-fit of the canonical DNA

analysis.

We first evaluated whether the proposed framework could generalize infor-
mation to nucleotides that were not present in the entire training data. We thus
trained the framework using the DNA 6mers that do not contain each nucleotide
(base-dropout, See section [3.6). Such training sets retain 18% of the total 6mers.
Therefore we used the 0.2-0.8 train-test split as the baseline null model. As shown in
Figure and Supplementary Figure [3.6] base-dropouts significantly decreased the
prediction power compared to the baseline null model. Such a result suggests that the
four DNA nucleotides provide orthogonal information during training. In addition,
the prediction power was more impaired by excluding T and C, which suggests that
the four nucleotides have unequal importance.

We also evaluated the framework’s generalizability to nucleotides that were
not present in particular DNA 6mer positions (position-dropout, see section .
Such position-dropout retains 75% of total 6mers for training, so we used the 0.75-
0.25 train-test split as the baseline null model. As shown in Figure [3.1B and Sup-
plementary Figure [3.6], in general the prediction power was significantly impaired by
excluding T and C, consistent with the nucleotide importance evaluated by base-
dropout analysis. Meanwhile, dropouts in 3rd and 4th positions contributed the
most to prediction power decrease, followed by 2nd and 5th positions. The positional
importance suggested here was further consistent with [41].

We further explored whether full DNA 6mer models can be generalized by
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combining complementary base-dropout training sets, e.g. G-dropout and C-dropout
that contains instances of C and G containing kmers, but no kmers containing both
C and G (noted as G-C, see section [3.6). Such training sets contain 34% of total
DNA 6mers, thus 0.35-0.65 train-test split was used as the baseline null model. As
shown in Figure and Supplementary Figure [3.0] in general the prediction power
was comparable with the baseline null model, suggesting the validity of such model

combination.

3.11.3 Supplementary Note 2. Goodness-of-fit of the canonical RNA

analysis.

Following the same pipeline as in DNA, down-sample, base-dropout, position-
dropout and model combination analyses were also performed under RNA context.
Meanwhile, RMSE and r were also used for prediction power evaluation for RNA
analysis (see section . Compared to DNA analysis, two major differences were
observed. First, for RNA analysis as shown in Supplementary Figure [3.7) in gen-
eral the prediction power was lower. For instance random down-sample analysis
with 0.95-0.05 train-test split (best-performing random down-sample group), aver-
age RMSE values were 0.8 and 2.4 for DNA and RNA, respectively. We speculate
that such prediction power difference was majorly caused by the number of training
data points. As mentioned in the main text, with the currently most prevalent Oxford
Nanopore Technologies R9.4 nanopore sequencing chemistry, DNA is modeled with in

total 4096 6mers. On the other hand, RNA is modeled with in total 1024 5mers, only
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25% as opposed to the DNA scenario. Such fewer possible training data points might
strongly compromise the prediction power of our framework. However, once trained
with a similar amount of kmers, the RNA architecture could yield comparable predic-
tion power. For instance, the RNA 0.95-0.05 (972 training kmers) and DNA 0.25-0.75
(1024 training kmers) train-test splits yielded comparable performance. Such a result
suggested the validity of our proposed architecture.

The other major difference between DNA and RNA analysis is, the four
canonical DNA bases (A, T, G, C) are “orthogonal” to each other (Figure and
Supplementary Figure . In contrast, base-dropout will not cause statistically sig-
nificant decrease in prediction power, suggesting that the four canonical RNA bases
(A, U, G, C) can complement each other in terms of their chemical properties (Sup-
plementary Figure . Here “orthogonal” means base-dropouts will significantly
decrease the prediction power as opposed to the corresponding random down-sample
null model. Notably, such an “orthogonality effect” was particularly strong for T and
C. We speculate that such a difference can be explained by the additional methyl
group in T. Among the four DNA canonical bases, methyl only appears in T, thus
cannot be compensated by other combining A, G and C. Similarly, considering such
methyl is encoded with pyrimidine backbone (Figure and Supplementary Fig-
ure , the representation of the other pyrimidine nucleobase, C is also affected.
Thus T and C were more “orthogonal” compared to A and G. As for RNA, with-
out the additional methyl, the four canonical RNA bases complement each other in

terms of their chemical structures. Further, the chemical information generalization
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among bases guarantees the proper representation of RNA 5mers under base-dropout
scenario, thus producing statistical insignificant prediction power as opposed to the

corresponding null model.

3.11.4 Supplementary Note 3. Benchmarking human genome C/5mC-

status predictive analysis with the megalodon algorithm.

As described in Supplementary Figure[3.10] the recently released megalodon
algorithm (https://github.com/nanoporetech/megalodon) could drastically increase
the accuracy for NA12878 cell line C/5mC status prediction, therefore could be used
as an additional ground truth for benchmarking our “human genome C/5mC-status
predictive analysis”. Compared to the ground truth established from bisulfite se-
quencing datasets [44], using megalodon predictions as ground truth has two promi-
nent advantages: 1) the megalodon algorithm yields per-read per-site predictions,
which could provide higher resolution as opposed to bisulfite sequencing ground truth
when evaluating predictive accuracy. 2) The bisulfite sequencing ground truth was
established from separate experiments thus potential biological/technical batch ef-
fects could be the concerns. We therefore adopted the megalodon predictions as the
additional per-read per-site C/5mC status ground truth. We yielded the following

predictive accuracy, which is comparable with the result in Supplementary Figure

.10
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Figure 3.4:

However, please note that the undermining limitation of the megalodon
ground truth is the reliability of the megalodon predictions. Considering the algo-
rithm has not been peer reviewed, as well as there are no available results bench-
marking the performance under various scenarios, e.g. biological/technical replicates,
different species, etc., we adopted the bisulfite sequencing ground truth throughout

the study.

3.11.5 Supplementary Note 4. Building empirical kmer models.

For nanopore sequencing chemistries after R9.4, the “official” ONT kmer
models are no longer available. To solve such a problem, users could build empiri-
cal kmer models by the nanopore sequencing of synthesized control oligos. The first
question regarding building empirical kmer models is determining the effective kmer
length (k). This could be done by following the procedures reported in our previous
study [41]. The second question would be to determine the sequences of synthesized

control oligos. Specifically, users need to decide 1) depth of nanopore sequencing,
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e.g. number of reads, and 2) kmers to be covered, e.g. the “minimal ideal kmer
set”. These need to be done to 1) make sure full kmer models could be recapitulated
from partial training using the deep learning architecture, and 2) save oligo synthesis
and sequencing cost. Please note that it’s crucially important that the control oligos
cover all possible kmers. Otherwise, modification calling might be compromised. As
shown in the following figure, we quantified the predictive accuracy of C/5mC status
in a sequence context-specific manner. Specifically, with the same set of nanopore
sequencing reads described in “human genome C/5mC-status predictive analysis” in
section [3.6] we quantified the balanced accuracy under CA, CT and CG contexts
(CC motif is rare in human genome and was not covered by the selected reads). As
shown in the following figure, in general the predictive power of DNA kmer models
inferred by our deep learning architecture (De Novo, 0.01, 0.05, 0.1, 0.3, 0.5, 0.7,
0.9) was comparable to the control nanopolish model. Meanwhile, kmer model-based
signalAlign algorithm and deep learning-based megalodon algorithm yielded compa-
rable predictive accuracy for CG context. However, signalAlign predictive accuracy
was significantly compromised under CA and CT contexts. Moreover, predictive ac-
curacy for CA and CT motifs was in general lower compared to the CG motif, even
with the control nanopolish model. This is because the nanopolish model was con-
structed with the human genome, in which CA and CT motifs are less prevalent, and
CC motif is rare. Therefore, CA, CT and CG contexts are less confidently represented

in the nanopolish model.
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As for determining the proper depth of nanopore sequencing, we find it to
be unnecessary: based on previous work, we believe that only modest sequencing
is needed for building robust kmer models. Specifically, as reported in [96], the

authors performed two parallel nanopore sequencing of synthesized RNA molecules,
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each with only a single MinION flowcell, further constructed corresponding 6mA, U,
G, C RNA 5mer models (two technical replicates). It was demonstrated that the two
technical replicate RNA bmer models are highly comparable, suggesting that robust
kmer models could be generated from relatively small scale nanopore sequencing
experiments. As for finding the “minimal ideal kmer set”, although it might be
a valuable idea to pursue, we find it to be less feasible. The reason being that the
stochastic deep learning framework training process will introduce stochasticity in the
prediction performance. That being said, the best prediction performance achieved
by a certain training set could just be an effect of stochasticity, rather than the actual
kmer composition. We also find the idea of finding the “minimal ideal kmer set” to be
unnecessary, as kmers could be covered with relatively short sequences. As reported
in the above-mentioned study [96], all possible 6mA, U, G, C RNA 5mers could be
covered with 4 sequences with average length ~2.5kb (2329, 2543, 2678, and 2795bp,
respectively). Taken together, we believe that robust full kmer models could be built
with affordable cost, following procedures reported in [96]. The last question would
be to generate kmer models from nanopore sequencing readouts on the synthesized

control oligos. We provide detailed procedures in section [3.6]
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3.11.6 Supplementary Figures
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Figure 3.6: Goodness-of-fit of the canonical DN A analysis. Root Mean Square Error
(RMSE) and Pearson correlation (r) values of DNA down-sample, base-dropout, position-
dropout and model combination analyses. Run-1 (solid boxes) and Run-2 (dashed boxes)
refer to two independent replicates. RMSE and r values for the predictions of all DNA
6mers (Overall), DNA 6mers in training set only (Train) and DNA 6mers in test set only
(Test) were marked as black, red and blue, respectively. The median, minimum/maximum
(excluding outliers) and first/third quartile values were shown by the boxplots. See section

for details.
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Figure 3.7: Goodness-of-fit of the canonical RN A analysis. Root Mean Square Error
(RMSE) and Pearson correlation (r) values of DNA down-sample, base-dropout, position-
dropout and model combination analyses. Run-1 (solid boxes) and Run-2 (dashed boxes)
refer to two independent replicates. RMSE and r values for the predictions of all DNA
6mers (Overall), DNA 6mers in training set only (Train) and DNA 6mers in test set only
(Test) were marked as black, red and blue, respectively. The median, minimum/maximum

(excluding outliers) and first/third quartile values were shown by the boxplots. See section
M for details.
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Figure 3.8: Goodness-of-fit of the DNA 5mC analysis. Root Mean Square Error
(RMSE) and Pearson correlation (r) values of DNA 5mC-imputation analysis. These values
were quantified against the nanopolish model [152, 101]. Run-1 (solid boxes) and Run-2
(dashed boxes) refer to two independent replicates. RMSE and r values for the predictions
of all DNA 6mers (Overall), DNA 6mers in training set only (Train) and DNA 6mers
in test set only (Test) were marked as black, red and blue, respectively. The median,
minimum/maximum (excluding outliers) and first/third quartile values were shown by the
boxplots. See section for details.
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Figure 3.9: RMSE correlation in DNA 5mC-de novo analysis. For both Run-1

and Run-2, RMSE values obtained from canonical and 5mC-containing DNA 6mers were
compared. Dots on the scatter-plots represent training-prediction repeats.
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Figure 3.10: Predictive accuracy of DNA 5mC analysis. Predictive accuracy
was quantified by true positive rate (TPR), true negative rate (TNR), positive predictive
value (PPV), negative predictive value (NPV), Fl-score (F1) and balanced accuracy (BA).
FAB39088 (black) and FAF01169 (red) refer to two independent NA12878 cell line native
genomic DNA nanopore sequencing datasets [73]. Nanopolish refers to predictive analysis
using the nanopolish model [I52] [I01]. Megalodon refers to predictive analysis performed
using the deep learning-based megalodon algorithm https://github.com/nanoporetech/
megalodon. The median, minimum/maximum (excluding outliers) and first/third quartile
values were shown by the boxplots. See section for details.
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Figure 3.11: Visualizing canonical DNA 6mer atom similarity matrices. With-
out losing generality, we visualized the atom similarity matrices of 10 random canonical
DNA 6mers. Similarity matrices were calculated using the Pearson correlation of the state
vectors outputted by the final GCN layers. Corresponding chemical structures of analyzed
DNA 6mers were shown side-by-side of the similarity matrices, based on which atoms were
numbered and colored. Carbon, nitrogen, oxygen and phosphorus were colored as black,
blue, red and orange, respectively.
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Figure 3.12: Visualizing 5mC-containing DNA 6mer atom similarity matrices.
Without losing generality, we visualized the atom similarity matrices of 10 random 5mC-
containing DNA 6mers. 5mC was abbreviated as M for simplicity. Similarity matrices were
calculated using the Pearson correlation of the state vectors outputted by the final GCN
layers. Corresponding chemical structures of analyzed DNA 6mers were shown side-by-side
of the similarity matrices, based on which atoms were numbered and colored. Carbon,
nitrogen, oxygen and phosphorus were colored as black, blue, red and orange, respectively.
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Figure 3.13: Visualizing inter-kmer atom similarity matrices. Without los-

ing generality, we analyzed the inter-kmer atom similarity between modified DNA 6mer
GT(5mC)AGA and corresponding canonical counterpart GTCAGA. (A) Visualizing the
inter-kmer similarity matrix, which was calculated using the Pearson correlation of the
state vectors outputted by the final GCN layers. (B) The chemical structure of DNA 6mer
GT(5mC)AGA. (C) The chemical structure of DNA 6mer GTCAGA. Based on chemical
structures in (B) and (C) atoms were numbered and colored. Carbon, nitrogen, oxygen and
phosphorus were colored as black, blue, red and orange, respectively.
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Figure 3.14: RNA 2mG analysis.(A) The empirical ionic current signal distribution of
RNA 5mer G(2mG)CCC, as well as the ONT ionic current signal distribution of pairing
canonical RNA 5mer GCCCC were visualized in red and blue curves, respectively. Charac-
teristic ionic current signals of G(2mG)CCC and GGCCC predicted by the deep learning
framework were visualized in red and blue boxes, respectively. (B) For E.coli 16S rRNA
transcript J01859.1 position 1206, the fraction of modified (2mG) reads determined by sig-
nalAlign with predicted RNA 5mer ionic current signals was quantified. For boxplots in
(A) and (B), the median, minimum/maximum (excluding outliers) and first/third quartile
across the 50 prediction repeats were shown.
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Figure 3.15: Chemical group stack analysis.Framework trained with all possible canon-
ical DNA 6mers was used to predict 6mA-containing 6mers. 6mA-containing kmers were
grouped by the positions of 6mAs. Signal distributions of 6mA-containing kmers and their
canonical counterparts were shown in the boxplot. The median, minimum/maximum (ex-
cluding outliers) and first/third quartile values were shown by the boxplots. See section
for details.
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4.1 Abstract

Nucleotides in RNA and DNA are subject to numerous enzymatic activities
that chemically modify them, altering their functional characteristics. Eukaryotic
ribosomal RNA is modified at more than 100 locations, particularly at highly con-
served and functionally important nucleotides. During ribosome biogenesis, modifi-
cations are added at various stages of assembly. The existence of differently modified
classes of ribosomes is unknown because no method for simultaneously evaluating
modification status at all sites within a single rRNA molecule is available. Using a
combination of yeast genetics and nanopore direct RNA sequencing, we have devel-
oped a reliable method to track the modification status of single rRNA molecules at 37

sites in 185 rRNA and 73 sites in 25S rRNA. We use our method to characterize pat-
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terns of modification heterogeneity and identify concerted modification of nucleotides
found near functional centers of the ribosome. Distinct undermodified subpopulations
of rRNAs accumulate when ribosome biogenesis is compromised by loss of Dbp3 or
Prp43-related RNA helicase function. Modification profiles are surprisingly resistant
to change in response to many genetic and environmental conditions that affect trans-
lation, ribosome biogenesis, and pre-mRNA splicing. The ability to capture complete
modification profiles for RNAs at single-molecule resolution will provide new insights

into the roles of nucleotide modifications in RNA function.

4.2 Introduction

In addition to the four standard nucleotides, there are more than 160 dis-
tinctly modified ribonucleotides and more than 50 distinctly modified deoxyribonu-
cleotides found in the RNA and DNA of cells[74, 15, [155]. Many of these modified
nucleotides provide extra regulatory information and are crucial for cell function.
Irregular DNA methylation patterns are linked to several cancers, neurological disor-
ders and autoimmune diseases[130], 133]. RNA modifications have been linked to the
development of cognitive functions, neurological defects, breast cancer, genetic birth
defects and diabetes [185 6], [70, 37, 10, 38]. In ribosomal RNA (rRNA), extensive and
highly conserved modifications are vital for correct ribosome structure and function
[128]. Modifications on rRNA have been generally considered to be constitutive in

support of fine tuning function [76] rather than mediating specific regulatory changes
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in ribosome function. However, the fraction of rRNA molecules modified at many
specific positions can change in association with changes in environment, disease and
during development [163] 14, [153]. Recently modification status at an adenosine near
the 3’ end of yeast 185 rRNA has been implicated in controlling sulfur metabolism
[98]. It seems possible that subtle alterations in modification status at particular
locations in the ribosome could be used to control translation by creating functional
heterogeneity in the cell’s pool of ribosomes.

One technical challenge in analyzing the effect of modification on the func-
tion of rRNA is that it has not yet been possible to capture modification states at all
positions of single RNA molecules. Traditional modification detection approaches
examine ensembles of molecules and estimate the extent of modification at indi-
vidual sites independently. For example, non-sequencing based techniques such as
liquid chromatography-tandem mass spectrometry (LC-MS/MS) and cryogenic elec-
tron microscopy (cryo-EM) can identify the presence of many modified nucleotides
[1141, 136, 163, 23, 164]. Some methods such as immunoprecipitation-seq or mismatch-
seq, aggregate information from several reads to detect modifications at a specific site
[65, [134], 147, [184] 36, 154, 42| [43], but do not capture associations between mod-
ification status at distant sites in large RNA molecules. Other approaches such as
bisulfite-seq, pseudouridine-seq, and RiboMeth-seq [53, 146} (14, 150] are highly spe-
cific for a single modified nucleotide, but also require fragmentation, preventing cap-
ture of modification status at multiple distant sites in an RNA. Such whole molecule

information would be necessary for assessing the relationship between function and
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modification status of individual ribosomal sub-units.

New advances in direct single-molecule sequencing of RNA using nanopore
technology may circumvent many of these limitations. Direct nanopore sequencing of
full-length RNA molecules[35], [57] can report modification status across entire RNA
molecules without chemical treatment or amplification steps. Modified nucleotides
produce changes in electrical current that are distinct to canonical nucleotides, per-
mitting modification detection algorithms to identify modifications in both DNA and
RNA. Given enough training data, basecalling algorithms like Guppy can predict
modifications directly from the signal along with canonical nucleotides [I81]. How-
ever, training data for most modifications is limited, and thus many detection algo-
rithms rely on aligning basecalled reads to a reference sequence and comparing mod-
ified signal to canonical signal [54]. Current signals can be modelled using secondary
features like quality scores and base miscalls [98] [7] or directly using the underlying
signal [108, 135, 152]. To model the underlying signal, most algorithms summarize
the stream of signal into segments (events), align events to subsequences (kmers) of a
reference, and compare aligned events to models of canonical or modified nucleotides.
Thus far, no currently available method captures combinations of distinctly modified
nucleotides at multiple distant sites in RNA.

Here we demonstrate accurate, single-molecule modification profiling of 13
distinct types of modified nucleotide at 110 positions across full transcripts of 18S
and 25S rRNA from S. cerevisiae. We preserve long-range associations between mod-

ification status at distant positions on single RNA molecules, allowing us to identify
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highly correlated positions and explore heterogeneity in ribosomal RNA modification.
Clustering analysis identifies distinct populations of differently modified ribosomes in
wild type yeast as well as yeast depleted for various components of the modification
machinery, providing evidence that modification status of groups of nucleotides are
established in a concerted manner, especially at functional centers of the ribosome.
Further application of single-molecule modification profiling will enable dissection of

the contributions of nucleotide modification to the function of large RNAs.

4.3 Results

4.3.1 Profiling rRNA modifications at single-molecule resolution

To investigate the overall modification status of yeast TRNA on a single-
molecule level, we sought to use the nanopore current traces from Oxford Nanopore
flow cells (see section of complete rRNA transcripts to capture modification status
at each modified position along individual molecules. To create these single-molecule
profiles, we trained signalAlign [I135] by modeling wild type rRNA reads as modified
and in vitro transcribed (IVT) reads as unmodified to detect all 110 annotated mod-
ifications in S. cerevisiae 18S and 25S rRNA [163), [108](See section [4.5] Supplemental
Fig. . For each rRNA read, the model estimates the probability of modification
at each annotated modified site and outputs a list of modification probabilities for
the entire read, regardless of modification type (Supplemental Fig. ) We an-

ticipated that rTRNA modification profiles obtained from different conditions could
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be searched for subpopulations of distinctly modified ribosomes using hierarchical
clustering, or to quantify the extent of correlation between modified positions under
different conditions of ribosome function.

To test the ability of the trained model to capture single-molecule modifi-
cation profiles in yeast catastrophically depleted of rRNA modifications, we isolated
RNA under conditions in which either of two classes of snoRNA-guided modifications
is blocked. In S. cerevisiae, 34 of the 37 18S and 66 of the 73 25S rRNA annotated
modifications are guided by the C/D box and H/ACA box snoRNPs, respectively
[167, 188, 127]. To ablate these modifications en masse we used strains in which
expression of Nop58 (core component of C/D snoRNPs) or Cbf5 (H/ACA snoRNP
pseudouridylase) are under control of a GAL1 promoter [I78, [85]. Thus, in cells
shifted to glucose medium, Nop58 (or Chf5) expression will be repressed, leading
to depletion of C/D box (or H/ACA box) snoRNPs, and widespread loss of modifi-
cation [84], [85]. As expected, single-molecule modification profiles produced by our
model reveal accumulation of large numbers of rRNA molecules lacking most 2’0-
methyl (Nm) (Nop58-depleted) or pseudouridine (V) (Cbf5-depleted) modifications
at snoRNA-guided positions in 18S (Supplemental Fig. or 25S rRNA (Fig. [4.1).

To examine subpopulations of modified rRNA molecules in these cells, we
pooled single-molecule modification profiles from IVT, wild type, and cells depleted
of Nop58 or Cbf5, and performed hierarchical clustering. We observe clear separation
of 4 clusters representing wild type rRNA, IVTs, and molecules arising from the

Nop58 or Cbf5-depleted cells, respectively (Fig. , Supplemental Fig. [4.9A).
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Dimension reduction UMAP visualization [110] of 18S and 25S rRNA modification
profiles confirms the separation of these distinct molecular populations (Fig.
and Supplemental Fig. [4.9C). Comparing the two clusters derived from the snoRNP-
depleted cells (Fig and C, clusters 1 and 3) suggests that 2’0 methylation is
largely independent from pseudouridylation. Some molecules from snoRNP-depleted
cells appear in cluster 2 with wild type rRNA (Fig. and C), more often for 18S
rRNA than for 25S rRNA, consistent with the finding that 185 rRNA accumulation
is more sensitive to snoRNP depletion than is 25S rTRNA [84] 85](Supplemental Fig.
4.9D). We conclude that clustering of single-molecule TRNA modification profiles
reveals two large but distinct classes of undermodified rRNA molecules induced by
depletion of one or the other class of snoRNPs.

To test for correlation of modification at two different sites, we measure
the change in Spearman correlation for each pair of modified sites in an experimen-
tal sample as compared to their correlation in wild type profiles (Fig. and E,
Supplemental Fig. —F, Supplemental Table S1). We then test if the Spearman
correlation in the mutant is significantly different from that in wild type, correcting for
multiple testing via the Benjamani-Hochberg procedure (two sided t-test and Fisher
z-transform test, see section , Supplemental Table S1). This test indicates that
changes in correlation between each of the snoRNA-guided pseudouridine positions
in the Chf5-depleted cells are highly significant (p-value=5.5e-05, Brown’s method).
Likewise, changes in correlation between each of the snoRNA guided 2’0O-methyl posi-

tions in the Nop58-depleted cells are highly significant (Fig. -E and Supplemental
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Fig. —D, p-value=1.5e-16, Brown’s method). A comparison of the pairwise tests
for all combinations of modified positions (Fig. [{.1D and [4.1E) confirms that to a
large extent 2’0O-methylation is independent of pseudouridylation in yeast rRNA.
Although the majority of molecules in either depletion experiment lacked
the expected modifications and clustered together (Fig. —B and Supplemental
Fig. 4.9A-B), several subpopulations of molecules displayed concerted patterns of
modification loss. The sites of methylation guided by the C/D box snoRNA U24
(Cm1437, Am1449, Gm1450 within the nascent polypeptide exit tunnel (PET) in 25S
rRNA) appear to be modified together, or not, in a concerted fashion. Almost half of
the molecules from the Nop58 depletion remain methylated at all three sites, splitting
cluster 3 into two nodes (Fig. [4.1]A). Furthermore a fraction of molecules in cluster 1
(formed by depletion of Cbf5) are also unmodified at all three sites, suggesting that
concerted methylation at these positions may be partly dependent on pseudouridine
modification elsewhere. Particularly striking is the highly concerted modification
at 25S rRNA positions Um2921, Gm2922, and ¥2923 in the peptidyl transfer center
(PTC). These appear refractory to loss of modification in both depletion experiments,
remaining modified on a large fraction of molecules otherwise lacking multiple other
modifications (Fig. 4.1]A). Modification of Um2921 is guided by C/D box snoRNA
snR52, and Gm2922 is modified by the non-snoRNP methyltransferase Sbpl, which
can also methylate Um2921 in the absence of snR52 [86]. The extremely low numbers
of ribosomes unmodified at these important positions suggests their modification may

be essential for rRNA stability.
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We also observe correlation between the two N4-acetylcytidines (ac4C1280
and ac4C1773) in 18S and the 2’O-methyl positions in the Nop58 depletion (p-value =
2.3e-05, Brown’s method) (Supplemental Fig. and E). N4-acetylcytidine modifi-
cation depends on the C/D box snoRNAs snR4 and snR45, which do not guide methy-
lation, but instead bring the cytidine acetylase Kre33 to positions C1280 and C1773,
respectively [I71) [149]. These atypical C/D box snRNAs also require Nop5h8, explain-
ing the coordinate loss of cytidine acetylation and 2’0O-methylation. We confirmed
that our model recognizes ac4C modified sites by knocking out each snoRNA (Sup-
plemental Fig. , B). The Nl1-methyl-N3-aminocarboxypropyl-pseudouridine
(mlacp3®1191) residue in 18S is significantly correlated with pseudouridine posi-
tions in the Cbf5 depletion (p-value = 5.4e-07, Brown’s method, Supplemental Fig.
4.9A and F), as expected given that snR35-guided pseudouridylation of U1191 is
the first step to generate this complex modification[I§]. We conclude that single
molecule modification profiling allows identification of subpopulations of individual
rRNA molecules and captures modification correlation between chemically distinct
modifications.

The model we have developed assesses signal for 5 sequential overlapping
5-mers centered on the annotated position of interest, and when there is tight clus-
tering of modification sites, the evaluation of modification at one position may be in-
fluenced by the modification status at the nearby position. In both locations above,
we were concerned that the co-modification patterns we observe might arise from

limited training of the model to resolve closely spaced partly modified regions. To
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examine whether the modification patterns observed match the patterns found in the
underlying signal, we clustered single molecule signal event means covering a subset
of modifications (see section [41]. This test reveals that, in general, patterns of
modifications found in the modification profile clustering match with the underlying
event means clustering (Supplemental Fig. /D). However, upon close inspec-
tion of three highly concerted modifications in the PTC (Supplemental Fig. 4.10E),
event mean clustering reveals a slight partitioning of depletion reads. Given that
both Um2921 and Gm2922 are expected to be present in both depletion experiments
and wild type, the slight variation in signal found in the clustering of event means

indicates that the true level of $2923 in the Cbf5 depletion is lower than estimated

(Supplemental Note |4.11.1]).

4.3.2 Resolving subpopulations of ribosomes that differ at a single mod-

ified site

The global loss of modification by depletion of snoRNPs creates catastroph-
ically undermodified rRNA molecules that are easily distinguished by profiling. To
test the ability of the method to resolve classes of ribosomes with modification profiles
that differ at one or a few sites, we first estimated variation in our wild type rRNA
profiles arising from experimental noise, model uncertainty, or true variation in mod-
ification levels in wild type. We calculated the variance in the predictions for each
annotated modification for three wild type replicates. Based on the largest variance

(position 18S:562, 9%), we chose a conservative cutoff of a 10% change in modification
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frequency as a sign that modification at a site was affected by a given experimental
perturbation (mutation or treatment, Supplemental Fig. 4.11B). We also compare
the predicted modification frequency at a given site in an experiment to its predicted
frequency in wild type using a chi-square test (see section , Supplemental Table
S2). We sequenced rRNAs from strains containing individual snoRNA knockouts
(snR80, snR83, snR&7, snR4, and snR45) expected to completely lack modification
at one or a few annotated sites in each case. There are significant decreases in modi-
fication frequency at the appropriate site for each snoRNA knockout (p-valuesjle-04,
chi-square test, Supplemental Fig. |4.11B) and snoRNA knockout kmer distributions
match the model’s canonical kmer distributions (Supplemental Fig. |4.12)). This ex-
periment confirms our ability to identify undermodifcation at single locations with
high confidence.

To test if we could deconvolute a mixture of heterogeneously modified rRNAs,
recognizing those missing just 1-2 modifications against a background of other differ-
ently modified ribosomes, we pooled equal amounts of total RNA from three snoRNA
knockout strains (snR80, snR83 and snR87) and wild type, and acquired single
molecule modification profiles from the mixed sample (Fig. [4.2D). The idea was
to create a sample that might mimic a cellular population of heterogeneously mod-
ified ribosomes. As seen in Fig. and C, hierarchical clustering of the profiles
obtained from the reconstructed sample reveals four similarly sized main clusters of
differently modified 18S rRNA (see section . In this experiment we would expect

to see positive correlation changes between positions ®1290 and $1415, since their
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loss arises from a shared dependence on snR83, and this expectation is fulfilled (Fig.
, p-value= 6.4e-16, Fisher z-transform test). Furthermore, since loss of modifica-
tion in this reconstruction occurs independently at M436, 759, and [®1290+®1415],
we expect negative correlation changes between these pairs relative to wild type, and
this is what we observe (Fig. , p-value=3.5e-08, Brown’s method). These signifi-
cant changes in correlations between long range modifications demonstrate clear and

accurate partitioning of known subpopulations of differentially modified rRNA.

4.3.3 Correlated modification at distant sites on rRNA from wild type

yeast

Previous studies have shown that alternatively modified yeast rRNA leads
to changes in translational patterns of specific mRNAs [143], 148, O08]. Analysis of
the modification status of the ensemble of wild type rRNAs reveal positions that are
nearly completely modified as well as others that are only partly modified (Supple-
mental Table S3). For most annotated positions, our estimates largely agree with
previous efforts to quantify percent modification in total yeast rRNA (Supplemental
Fig. [4.13A-B) [14], 107, 163, 188]. Examination of the relationship between extent of
modification and location in the ribosome shows that positions around the functional
centers (decoding site, PTC, and intersubunit bridge) of the ribosome are overall less
modified than those that lie in the periphery (Supplemental Fig. 4.14/A). However,
our analysis also shows a number of positions in the functional centers that are less

than 95% modified (Supplemental Fig. |4.14B-D, Supplemental Table S3) suggesting
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their modification status could have a larger impact on control of ribosome function.

To evaluate patterns of heterogeneity in the modification status of normal
yeast ribosomes, we searched for subpopulations of TRNA in wild type yeast that
might carry distinct modification profiles not expected by chance. Hierarchical clus-
tering of wild type reads shows that there are no large and distinct classes of differently
modified ribosomes in wild type cells, however some smaller (j10% of total) subpopu-
lations appear to cluster on the basis of correlated unmodified status between pairs of
positions (Fig. and Supplemental Fig. 4.15A). To identify correlated modifica-
tion status at pairs of positions we applied our correlation change method by compar-
ing wild type to IVT (See section . As seen in Fig. and Supplemental Fig.
[4.15B, wild type ribosomes have significant correlation changes in modification at dis-
tant positions in rRNA. One pair of significantly correlated positions in 18S, $632 and
$766, are guided by the same snoRNA (snR161, p-value=1.3e-04, Fisher z-transform
test), possibly explaining the basis for this correlation. We also observe a significant
correlation between Am100 and Am436 (p-value=3.1e-04, Fisher z-transform test) as
well as between Cm1639 and ac4C1773 in 18S (p-value=4.5e-06, Fisher z-transform
test, Fig. 4.2[F). None of these sites share a snoRNA or modification enzyme that
could account for these correlations, however the correlated pairs lie close to each
other (15-22A) in three-dimensional structure of the mature ribosome (Fig. 4.2G),
suggesting a structural or functional basis for their coordinated modification status.
In 255, consistent with our observations in the depletion experiment, 25S positions

Cm1437, Am1449 and Gm1450 are all significantly more correlated with each other
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than expected (Supplemental Fig [4.15] p-value=1.0e-44, Brown’s method). Several
of the significant long range correlations in wild type show up at significant levels
in many other experiments (see below), indicating that the concerted modification

status relationships at those positions are features of normal yeast ribosomes.

4.3.4 Loss of different RN A helicase-related functions results in distinct

subpopulations of differently modified rRINA molecules

Previous studies have connected helicase activity required for ribosome bio-
genesis with changes in 2’0 methylation at single positions in ensembles of TRNA
molecules[2]. To explore how RNA helicases may affect correlated patterns of rRNA
modification, we profiled cells compromised for Dbp3 or Prp43 helicase functions,
both known to contribute to ribosome biogenesis[32] [88] 179]. Using a Dbp3 knock-
out strain (dbp3A) or a cold-sensitive Prp43 Q423N mutant (prp43-cs) grown at
nonpermissive temperature (see section , we observed loss of 2’0 methylation at
specific locations in 18S and 25S rRNAs (Fig. and Supplemental Fig. [4.16]A)
consistent with previous ensemble studies (Supplemental Figure [4.13C-D)[2]. Despite
the numerous locations at which modification is compromised, hierarchical clustering
of 25S rRNA single molecule profiles reveals that just 2-3 distinct but related sets
of modification profiles describe the vast majority of ribosomes in both experiments.
The triad of 2’0 methylations guided by the snoRNA U24 at 25S positions 1437,
1449 and 1450 are often left unmodified in a highly concerted manner (Fig. [£.3B), as

observed in wild type 25S (Supplemental Fig4.15), and the snoRNP depletion experi-
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ments (Fig . The pairwise correlations within this triad are significantly higher in
both the dbp3A and the prp43-cs mutants relative to wild type (Fig4, Supplemental
Fig. [4.17D-E, dbp3A p-value = 3.6e-68, prp43-cs 3.5e-11), Brown’s method). To con-
firm the pattern seen in the probability clustering of the U24 positions, we clustered
the underlying raw signal event means from the dbp3A and prp43-cs mutants (see
section [41]). As seen in Supplemental Fig. [4.18] there are two clear subpop-
ulations of reads distinguished by the signal means at positions Cm1437, Am1449,
Gm1450 in both the dbp3A and prp43-cs mutants, supporting the profile clustering
results generated using the trained model. This suggests that if the U24 snoRNP is
unable to guide modification of any of these positions, then all 3 positions are very
likely to be left unmodified in a concerted fashion.

Prp43 interacts with a number of G-patch proteins that direct it to either
the ribosome or the spliceosome [67, 124, 109 161l 168, 27]. Two of these, Pxrl
and Sgsl, are important for correct pre-rRNA processing[124, 5, [63]. To test how
the loss of Pxrl or Sgsl might affect ribosome modification profiles, we sequenced
libraries from strains deleted for each. Although deletion of Sqsl had little effect on
modification (Fig. , loss of Pxrl produced an extreme alteration in modification
profiles resembling the more mild pattern produced by the prp43-cs mutant (Fig.
). All modifications affected by prp43-cs and all but two 18S 2’0 methylations
affected by dbp3A (Supplemental Fig. [4.16/A) are also observed in pxrlA. This
suggests that loss of Prp43 activity guided by Pxrl, but not that guided by Sqgsl, is

responsible for the concerted changes in modification pattern observed in the prp43-cs
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strain.

Despite the similarities in modification patterns in the different mutants
(Fig. , Supplemental Fig. , they are not identical. For example in 25S, po-
sitions Am817 and Gm908 (both guided by snR60) and Gm2619 and Um2724 (both
guided by snR67) are significantly more correlated in dbp3A relative to wild type
(817-908 p-value = 2.4e-33, 2619-2724 p-value = 3.5e-22, Fisher z-transform tests,
Supplemental Fig. |4.17ID), however, these positions are not significantly more corre-
lated in the prp43-cs mutant relative to wild type (817-908 p-value=0.34, 2619-2724
p-value=0.919, Fisher z-transform test). Pxrl and (more significantly) Dbp3 appear
to promote efficient modification of positions guided by snR60 and snR67, however
the contribution of Prp43 is less clear. It is possible that the conditional Prp43 muta-
tion is not severe enough to produce a strong block to modification at those sites, or
alternatively that Pxrl has functions that do not require Prp43. Together our data
show that loss of Dbp3 and Prp43 activity leads to loss of an overlapping but not
identical set of rRNA modifications that create distinct classes of ribosomes in the
cell in these mutants.

We have summarized the network of correlation changes observed in each
mutant relative to wild type, displaying nucleotide positions as nodes and correlation
changes as edges (Fig . In addition to the overlapping changes described above,
this analysis highlights the connected nature of these modifications as well as their
association with the functional centers of the ribosome. For example, loss of Prp43

and Pxrl induce a concerted loss of modification of a set of nucleotides in the decoding

136



site of the small subunit (Fig [4.4B). Loss of Pxrl leads to concerted loss of a set of
modifications in the peptidyl transfer center of the large subunit Fig [£.4A. And all
three mutants create a complex set of correlated modification changes in the triad
Cm1437, Am1449, and Gm1450 near the protein exit tunnel of the large subunit
(Fig ) Concerted modification of this triad is observed in wild type ribosomes
(Supplemental Fig as well as in the snoRNP depletion experiments (Fig .
As discussed above, a shared snoRNP (e. g. snR60, snR67) may explain part of the
concerted modification phenomenon, however in the majority of cases the elements

that underlie concerted modification are not obvious.

4.3.5 Resilience of rRN A modification profiles to other genetic mutations

and environmental treatments

Prp43 has a separate function in the disassembly of spliceosomes [109]. In
addition some snoRNAs are encoded within introns and their synthesis can be com-
promised by mutations that affect splicing [173], 127, [125] 11§]. To disentangle effects
on modification by factors like Prp43 and intronic snoRNAs that arise from regulatory
crosstalk between ribosome biogenesis and RNA splicing in yeast, we acquired single
profile modification profiles for ribosomes from additional yeast mutants. Spp382
(also called Ntrl) is a G-patch protein that specifically mediates Prp43 interactions
with the spliceosome [168] 161, 31, 52 119]. In addition we employed a cold sensitive
mutant of Prpl6 (prp16-302) that accumulates splicing intermediates, as well as a

deletion of Dbrl that prevents debranching of the intron lariat [24] 169, 82, [47], a
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reaction that promotes processing of some intronic snoRNAs; in particular U24 [I1§].

Using the threshold of ;10% change in modification relative to wild type es-
tablished above (Fig. and Supplemental Fig. |4.11]), we examined splicing-related
perturbations for effects on rRNA modification that might be mediated through loss
of one or more intronic snoRNAs (Fig . We observe a 36.8% reduction in mod-
ification for 18S W106 (guided by snR44 from intron 2 of RPS22B) and an 11.0%
reduction in modification frequency for 185 Am974 (guided by snR54 from intron 1
of IMD4). Although these are the only modification changes that pass the threshold,
modification of the nucleotides in the 25S triad Cm1437, Am1449, and Gm1450 (all
guided by U24 from ASC1) is detectably reduced, as is modification of ¥2258 and
U2250 (both guided by snRN191 from intron 1 of NOG2). There are alternative
snoRNA maturation pathways that are independent of splicing, for example via Rnt1
[62] and partially processed U24 still can guide modifications at its corresponding
locations [118| 2], 125], consistent with our observation that loss of function in splic-
ing is not sufficient to greatly impact rRNA modification through either Prp43 or
by virtue of the intronic origin of some snoRNAs. Only one modification event, the
pseudouridylation of 18S U106 by snR44, seems substantially affected by the loss of
Dbrl (Fig[4.5).

To test whether single molecule modification profiles were altered by envi-
ronmental and growth conditions known to affect ribosome function and biogenesis[58),
176], we isolated and acquired profiles of rRNA isolated from cells at stationary phase

[75], after a 1 hour shift to potassium acetate to induce starvation, treated with ra-
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pamycin (TOR kinase inhibitor) for 1 h to block nutrient signalling [131), 22} [64], 68],
treated with cycloheximide to block translational elongation [I17] and create ribo-
some collisions [I51], or after cold shock. In none of these treatments did we detect
substantial changes in modification profile (Fig Supplemental Tables S1 and S2).
These observations indicate that in general the annotated modification patterns on
rRNA are refractory to rapid alterations by dramatic changes in the physiological
conditions we tested. At this time there are no known enzymes that would reverse
either pseudouridylation or 2’0 methylation of ribose in RNA, as would be required if
modifications added during ribosome biogenesis were removed as part of a regulatory

response to changes in the environment.

4.4 Discussion

A central goal of this research was to capture single molecule modification
profiles of S. cerevisiae 18S and 25S rRNA, in order to understand the coordination
of modification across the ribosome during ribosome biogenesis, and to discover re-
lationships and dependencies between distant modifications. Using a catastrophic
disruption of modification by depletion of the two main classes of snoRNPs responsi-
ble for the bulk of ribosome pseudouridylation and 2’0 methylation, we validate the
framework for our method and find that to a large extent these two classes of mod-
ification are not dependent on each other (Fig . Using a mixture of rRNA from

wild type cells and cells deleted for different individual snoRNAs, we show we can
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resolve populations of ribosomes that differ by a single modification, and apply this
to characterize modification heterogeneity and identify instances of concerted modifi-
cation of sets of nucleotides in the wild type ribosome population (Fig . We then
characterized the single molecule modification profiles that result from loss of two
distinct helicase activities provided by Dbp3 and Prp43, finding that a complex set of
concerted effects on modification arise from these disruptions, with implications for
ribosome biogenesis and the important functional centers of the ribosome (Figs
and . Finally, we examine the effect of other mutations, changes in physiological
conditions, or inhibitors of ribosome function on the annotated modifications across
the ribosome and find that they are refractory to change (Fig |4.5). These results
provide a new perspective on ribosome heterogeneity as represented by RNA modi-
fication patterns, and open a path to whole molecule analysis of RNA modification
for other classes of RNA.

rRNA modifications are thought to fine-tune and regulate rRNA folding and
ribosome function [I53]. Many rRNA modifications cluster around the functional
centers of the ribosome and recent studies have illuminated the role that different
individual modifications play during translation of specific sets of mRNAs under dif-
ferent physiological conditions [143, 148, 08]. Our results reveal a number of instances
where RNA modifications in the functional domains of wild type ribosome are het-
erogeneous, and their presence or absence occurs in a concerted manner.

During protein synthesis, the nascent polypeptide chain moves from the PTC

and exits the ribosome through the polypeptide exit tunnel (PET). Numerous studies
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have shown that interactions between the nascent polypeptide chain and the PET can
lead to ribosome pausing/stalling resulting in regulation of translation and protein
folding [29]. Our work reveals distinct clusters of 25S TRNAs missing 2’0O-methyl
modifications at positions Cm1437, Am1449, and Gm1450 in Pxrl, Prp43, and Dbp3
mutants (Fig. 4.4]). Importantly, we also observe correlation and clustering of
rRNAs that do not contain these modifications in wild type cells (Supplemental Fig.
suggesting a potential regulatory mechanism. Cm1437, Am1449, and Gm1450
all line the PET of the 60S subunit and appear to interact with conserved internal
loops of ribosomal proteins L4 and L17[8]. These loops insert into the PET to form the
constriction site and is thought to act as an “exit gate” by interacting with the nascent
polypeptide chain during translation (Fig. and [183] 191), 113]). Furthermore,
these three positions are in domain 0 of ribosomal rRNA, which acts as a central
hub around which the other six 25S rRNA domains fold [126]. Regulation of these
modifications could impact how each domain of rRNA folds upon each other during
ribosome biogenesis and exit tunnel formation. Thus, in the absence of Cm1437,
Am1449, and Gm1450, the rRNA and the loops of L4 and L17 may not be properly
positioned, affecting the structure and chemistry of the PET, translation, and protein
folding.

We also observe a number of correlated modifications in wild type 18S rRNA
within the decoding center and the intersubunit bridge of the 40S subunit. Cm1639
(snR70) in the P-site exhibits correlation with $999 (snR31, E-site), ac4C1280 (Kre33),

and ac4C1773 (Kre33, intersubunit bridge) (Fig. [4.2)). Furthermore, ac4C1773 and
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m26A1782 (Dim1, intersubunit bridge) are correlated. Together, our correlation data
using single-molecule profiling suggests a functional relationship among groups of
modifications in wild type ribosomes that could impact how these functional regions
form as well as their activity during translation.

Recent work from [2] demonstrated the role that RNA helicases play in regu-
lating the dynamics of snoRNPs during rRNA modification and ribosome biogenesis.
Their data suggests a model in which Dbp3 and Prp43 function by releasing snoRNAs
from the pre-ribosome to allow subsequent modification of adjacent sites that are oth-
erwise occluded due to overlapping basepairing positions of adjacent snoRNPs. Here,
by profiling full-length rRNAs, we extend this model by revealing concerted changes
in modifications over long distances when the activity of Dbp3 or Prp43 is compro-
mised. Furthermore, our work shows that Pxrl, but not Sqgsl, is the main G-patch
protein important for Prp43 function during rRNA modification.

In the absence of these helicases we observe a large set of overlapping but
not identical changes in modified positions for each of the mutants tested. Analysis
of pairs of nucleotides that change in a concerted fashion in each mutant, across the
entire length of the rRNA, reveals distinct hubs of correlated modifications, many
of which reside in the functional centers of the ribosome. These hubs of correlated
positions might reflect critical points in ribosome biogenesis and function such that
each This suggests a dependency among them during ribosome biogenesis or ribosome
function (Fig. [4.4]).

We developed a hidden Markov model-based approach that allows 1) single
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molecule profiling and clustering of RNAs to visualize high-level relationships within
a population, 2) the ability to test for changes in correlations between any given
pair of modifications on the same molecule, and 3) a way to estimate the fraction of
modification of each site. The model training paradigm we have developed to profile
modifications can easily be applied to other nucleic acids of interest such as other
non-coding RNAs and messenger RNAs, provided unmodified molecules (IVT) and
fully modified molecules are available as reference for training. Here we used wild
type TRNA as our fully modified training example, with the clear understanding that
not all wild type molecules are fully modified. In several instances we confirmed that
this had little or no effect on performance of the model (Supplemental Fig. . A
second limitation arises when the training samples do not have enough information to
learn to resolve dense clusters of modifications. In cases where this was a concern, we
were able to validate the predictions of our model by clustering the raw signal means
and showing that closely spaced modifications that shared overlapping k-mers were
called correctly (Supplemental Fig. . While there is some evidence that unknown
modified kmer distributions can be estimated using known kmer distributions [40],
generating more specific modification training data sets that contain all combinations
of partially modified closely spaced clusters of nucleotides may be required to produce
more accurate and general modification detection algorithms. This is especially true

if de-novo detection of modifications within complex sequences is the goal[I08, [89].
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4.5 Methods

4.5.1 Growth of yeast strains

Yeast strains GAL-NOP58 and GAL-CBF5 are described in (Lafontaine and
Tollervey 1999)(Lafontaine et al. 1998). Cells were grown at 30 °C in YEPgal liquid
medium (2% galactose, 2% peptone, 1% yeast extract) or shifted to liquid YEPD (2%
dextrose, 2% peptone, 1% yeast extract) to mid-log phase (OD600 = 0.25-0.5) for 16
hours to repress expression of Nop58 or Cbfb. Cells were harvested by centrifugation
and RNA was isolated. Unless indicated, all other strains were grown in YEPD at 30
°C to mid-log phase. Cells exposed to various environmental conditions were treated
as follows: 1% KOAc (1 hr, 30 °C), cycloheximide (1 ug/ml for 1 hour), rapamycin
(200 ng/ml for 1 or 5 hours), and pladienolide B (5 uM for 1 hour). Stationary phase
cells were grown to an OD600 = 10. Strains carrying prpl16-302 [105] and prp43
Q423N [88] mutations, and wild type [142] were grown to mid log phase at 30 °C
and shifted to 18 °C for 1 hour by addition of an equal volume of 6 °C YEPD. The
spp382-1 strain is described in [119]). The strains deleted for the SNR80 (YWD448a),
SNR83 (YWD451a) or SNR87 (YWD452a) genes are described in [142]. Yeast strains
deleted for the SNR4 and SNR45 genes are described in [I21]. All yeast strains and

genotypes can be found in Supplemental Table S4.
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4.5.2 RNA isolation

RNA was extracted from approximately five total OD600 of cells (usually
10 ml culture at OD600 = 0.5 for mid log cells, 0.5 ml of stationary cells at OD600

= 10) using a hot phenol protocol 1 described in [3].

4.5.3 In vitro synthesis of 18S and 25S rRNA

Unmodified yeast 18S and 25S rRNAs were transcribed in vitro from plas-
mids encoding T7-18S and T7-25S sequences using T7 RNA polymerase. PCR prod-
ucts encoding 18S and 25S rDNA were amplified from the plasmid pWL155 which
contains the RDN1-1 gene fused with the GAL promoter at the 5" end ([95] a kind
gift from Jelena Jakovlievic) and cloned into a T7 promoter-containing plasmid di-
gested with EcoRI and HindIII using Gibson Assembly (NEB). The resulting plasmids
were then digested with HindIII and run-off transcription was performed using the
MEGAscript T7 kit (Invitrogen) following the manufacturer’s instructions. T7-18S
and -25S in vitro transcription reactions were evaluated by gel electrophoresis for
bands of correct size that correspond to 18S and 25S rRNAs. Transcription reac-
tions were extracted and purified with phenol:chloroform:isoamyl alcohol (25:24:1),
ethanol precipitated and resuspended in nuclease-free H20. Purified T7-18S and -25S
rRNA transcripts were then quantified on a NanoDrop spectrophotometer and pooled
in equimolar ratios for sequencing library preparation. The T7 run-off transcription
reactions terminate in a 3’ end generated by HindIII digestion and thus include an

additional AAGCU sequence not present in endogenous 18S and 25S rRNAs. There-
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fore, T7-18S and T7-25S splint oligonucleotides were used to capture the 3’ end of T7

transcribed rRNAs (see below, Supplemental Table S5).

4.5.4 Sequencing library preparation

Direct RNA sequencing libraries were constructed using the SQK-RNA002
(Oxford Nanopore Technologies) kit following the manufacturer’s protocol with the
following modifications. Briefly, 750 ng of total yeast RNA was used as input material.
To facilitate ligation of sequencing adapters to endogenous yeast 18S and 25S rRNA,
1 ul of 10 pmol/ul custom oligonucleotide duplexes complementary to the 3’ ends of
18S and 25S rRNA and the 5’ end of the ONT RMX sequencing adapter were used
instead of the kit provided RTA adapter (Supplemental Table S5). To create duplexes,
100 pmol of either 18S or 258 splint oligo was incubated with 100 pmol of sequencing
adapter and nuclease free H20 in a total volume of 10 ul. Reactions were heated to 95
°C for 2 minutes and gradually cooled at 65 °C for 10 minutes, 48 °C for 10 minutes,
room temperature for 10 minutes and then placed on ice. Annealed oligonucleotide
duplexes targeting 18S and 25S rRNAs were then pooled in equimolar ratio and 1
ul of the pool was used for sequencing library preparation. In the case of T7 rRNA
sequencing libraries, T7-18S splint and T7-25S splint oligos were used to capture
the 3’ end generated by HindIII digestion and run-off transcription. To enhance
ligation efficiency during library preparation, the first and second ligation steps were
increased from 10 minutes to 15 minutes and performed at room temperature. Reverse

transcription was omitted. Sequencing-adapted libraries were eluted in 21 ul of elution
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buffer.

4.5.5 Nanopore sequencing

RNAs extracted from GAL-NOP58 and GAL-CBF5 strains, and in vitro
transcribed RNA were sequenced on the MinlON Mk1B sequencer using MinlON
FLO-MIN106D R9.4.1 flow cells (Oxford Nanopore Technologies) following the man-
ufacturer’s instructions. 20 ul of Sequencing libraries was mixed with 17.5 ul of H20
and 37.5 ul of RRB buffer. 75 ul of the prepared sequencing library was loaded onto a
flushed and primed flow cell and sequenced for 12-48 hour depending on the lifetime
of active pores. RNAs extracted from all other strains and growth conditions were
sequenced on the MinlON Mk1B sequencer using Flongle FLO-FLGO001 R9.4.1 flow
cells. Flongle flow cells were flushed and primed with 120 ul of flush buffer mix (117
ul FLB and 3 ul FLT). 30 ul of prepared sequencing library (described above) was
loaded onto the flow cell and sequenced for 8-24 hours. Sequencing experiments were

controlled using the MinKNOW software (Oxford Nanopore Technologies).

4.5.6 Data preprocessing

The following preprocessing steps were applied to all of the sequencing exper-
iments. Basecalling was done by Guppy v3.1.54+781ed57. In order to analyze specific
subsets of reads more efficiently, we split the multi-fastb reads into individual reads
using the multi_to_single_fasth command from https://github.com/nanoporetec

h/ont fast5 api. We then created an index file matching a fastb to a fastq entry us-
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ing nanopolish index from https://github.com/jts/nanopolish (Simpson et al. 2017).
The reference sequence for the S. cerevisiae 185 and 25S rRNA came from (Engel
et al. 2014). Initial basecalled sequence to reference alignment was done via min-
imap2 version 2.17-r943-dirty from https://github.com/1h3/minimap2 using the
~MD flag which speeds up processing of signalAlign[92]. Alignment files were sorted
and filtered using samtools version 1.9 by flag -F 2308 which filters out unmapped
reads, non-primary alignment reads and supplemental alignment reads [03]. Given
that nanopore sequencing with RNA is 3’-5°, in order to filter for ‘full length’ reads
we used samtools view to select for reads that covered the first 15 bases of both 18S
and 255 rRNAs[93]. Read information and quality control metrics in Supplemental

Table S6 were gathered using pycoQC version v2.5.0.23 [90].

4.5.7 SignalAlign Pipeline
Model Definition

We initialized the transition probabilities from previous signalAlign r9.4
models. The initialized kmer distributions were defined in r9.4_180mv_70bps_5mer_ RNA
from ONT https://github.com/nanoporetech/kmer models. Unlike previ-
ous kmer model modification detection algorithms, we chose to model modifications
independently from other modifications of the same class in order to maintain the
same informational inputs to each modification position. So, we iteratively rede-
fined shared kmers with unused kmers from the model until all modifications were

covered by unique kmers (see Code availability). For all kmers outside of mod-
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ification branch points, we used the default RNA kmer distributions from ONT

(r9.4.180mv_70bps_5mer_RNA).

Training Configuration

SignalAlign uses a variable-order hidden Markov model (HMM) which allows
the number of paths through the HMM to be correctly constructed when ambiguous
positions are defined [135]. Recent updates to signalAlign allow for relatively easy
model definition and variant site selection which allows a user to define modifications,
set prediction site locations and train a model. We defined all positions in the IVT
sample as canonical and all positions in the wild type as modified. The locations of
ambiguous positions are determined by the presence of ambiguous characters in the
reference sequence[163]. In this experiment, ambiguous characters represent two pos-
sible nucleotides, a canonical nucleotide and the most prevalent modified nucleotide.
The ambiguous characters were defined in a small model file. The annotated modified
nucleotides in 18S and 25S S. cerevisiae rRNA were defined as ambiguous during all
inference steps. For supervised training using IVT and wild type sequencing data,
all potential ambiguous positions were defined as either canonical or modified respec-
tively. We used 500 18S and 25S wild type reads and 500 18S and 25S IVT reads
and ran 30 rounds of training. For each round of training, we generated alignments
between events and the reference sequence. Then, we generated new event Gaussian
distributions for all kmers covering modified positions. The mean of the Gaussian

distribution was defined as the median of the empirical kmer distribution and the
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standard deviation was defined as the median absolute deviation of the empirical dis-
tribution. Similar to another study, we have seen that the median is less susceptible
to being influenced by outliers[41]. To train the model, we used trainModels.py from

signal Align.

Inference and Accuracy Metrics

In order to validate our results, we used ‘runSignalAlign.py’ and a trained
model to predict modification status on all positions of 500 hold out IVT reads and
500 hold out wild type reads. We placed ambiguous characters at modified posi-
tions in the reference for both IVT and wild type reads and signalAlign produced the
posterior probability of event to kmer alignments given the trained model. We use
embed_main sa2bed to decode the posterior probabilities from the signalAlign output
into the probability of a position being modified (Rand et al. 2017). These probabili-
ties are used for the receiver operating characteristic curve, precision-recall curve, and
calibration curve of Supplemental Fig[4.8f A probability cutoff of 0.5 is used for the
confusion matrix as well as the quantification of percent modified for any position.
We also compared accuracy on our test set to several snoRNA knockouts. Again,
assuming snoRNA knockouts completely ablate target modifications and modifica-
tions are 100% present at all other positions, the average balanced accuracy over the
snoRNA knockout positions is 82.8% and the expected balanced accuracy is 87.1%
(Supplemental Table S2-3). Average balanced accuracy is calculated by getting the

average of all balanced accuracies across all snoRNA knockout positions. Balanced
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accuracy for one position is calculated by adding the specificity to the sensitivity and

dividing by two.

Percent Modification Change

For every experiment and each modification position, we perform a chi-
square two sample test comparing the wild type’s modification frequency to the ex-
periment’s modification frequency[122]. We then correct for multiple tests using the
Benjamani-Hochberg procedure [9]. We also control for batch effects by filtering out
reads which fall below the maximum change in modification frequency between the
replicates of the snR48 KO. Percent modified, chi-square two sample test between
wild type and all other samples p-value, Benjamani-Hochberg corrected p-value can

be found in Supplemental Table S2.

4.5.8 Hierarchical Clustering Analysis
Dendrogram creation procedure

In order to determine any subclusters of reads based on a modification pro-
file, we used hierarchical clustering on the per-read per-site modification probabilities
we generated from the inference step [177, [123]. We generated the dendrogram using
Ward’s method as the hierarchical clustering method and euclidean distance as the
distance metric [I75]. UMAP dimension reduction was done using the umap python
package and visualization using matplotlib [110, [72]. Before clustering analysis, we

filter out reads which do not cover every modification site.
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Cluster Partitioning

To determine the number of reads in a set of N clusters we simply cut the
dendrogram to create N subclusters and calculated the fraction of reads within each

branch.

4.5.9 Modification Correlations

To calculate correlations between modified positions, we first filter out reads
which did not cover all modifications and select the set of probabilities associated with
each position. We then calculate the Spearman correlation between all pairwise com-
binations of modification positions on the same molecule. P-values were calculated
using a two sided t-test and multiple tests corrected via the Benjamani-Hochberg
procedure[159, [9].

To compare correlations between experiments, we used Fisher’s z-transformation
to convert correlations into z-scores and then performed a z-test to obtain p-values[50),
48, 49, 190]. We then correct for multiple tests using the Benjamani-Hochberg pro-
cedure [9]. These p-values represent the confidence that, between two samples, there
is a significant difference between the two correlations. All correlation plots have
stars for positions which are both significantly different from a comparison experi-
ment (wild type or IVT) and are significantly different from zero (p-value j 0.05). To
account for variation in experimental repeats, we plot the minimum difference and
highest corrected p-value for all pairwise comparisons between experimental repeats

and wild type repeats.
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For higher order claims which require aggregating information from several
hypothesis tests we use Empirical Brown’s method [129, 21]. The Empirical Brown’s
method uses empirical data to calculate the covariance matrix which is used to ex-
tended Fisher’s method to the dependent case by using a re-scaled x? distribution (see
Code availability). Spearman correlation values, original two sided t-test p-values,
corrected two sided t-test p-values, Fisher z-transform test comparison p-values, and

corrected Fisher z-transform tests p-values can be found in Supplemental Table S1.

4.5.10 Event Cluster Visualization

Using almost the exact same procedure outlined in a previous study[41], we
gather the kmer to reference mapping generated from signalAlign and extract the
most probable event to kmer alignment path using the maximum expected accuracy
alignment [135, [45]. For each read, we standardize the raw signal and calculate event
means. Prior to clustering and visualization, we combine all reads together and stan-
dardize events by column. We generate the dendrogram using the same procedure as
hierarchical clustering of modification profiles, Ward’s method and euclidean distance
[175].

For kmer distributions seen in Supplemental Figure [4.11] we plot the kernel
density estimate of all events aligning to the corresponding kmer with a probability
greater than 0.5. We then simply plot the corresponding kmer distributions from the

final trained kmer model.
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4.5.11 Sample Compare Site Detection
Tombo Pipeline

Using Tombo version 1.5.1, initial embedding of fastq data into the raw
fasths was done with the tombo preprocess annotate raw_with_fastqs and signal to
reference alignment with tombo resquiggle [108]. Finally, tombo detect_modifications
level sample_compare was used to generate windowed means of individual position
Kolmogorov—Smirnov tests comparing the IVT sample position signal distributions
to the wild type sample (WT_YPD) position signal distributions [I08]. For a given

Sitidi

position i, the windowed mean D-statistic is w; = =5*— where d is the D-statistic

for a given position and w is the final reported statistic plotted in Supplemental Fig.

4.7

Accuracy of Modification Site Prediction

In order to get a general view of how all of the modifications are affecting
the current signal we analyzed the signal shift between in vitro transcribed (IVT)
and one wild type sample (WT_YPD) using Tombo [108]. The signal difference of
18S and 25S strands using Tombo is shown in Supplemental Fig. and
respectively. There is a clear correlation between annotated modified positions and
signal deviation but in order to quantify the relative accuracy of both approaches, we
naively labeled the per-position deviations with the corresponding windowed mean

D-statistic. As shown in Supplemental Fig. S1C-D, the per-position modification
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calling detection AUROC (Area Under the Receiver Operating Characteristic) was
0.924 for 18S and 0.934 for 25S. However, if a canonical position is directly next to
a modified position, it is very likely the underlying current is going to be shifted for
that position. Also, the uncertainty of which specific nucleotide in the pore gives
rise to the most significant signal shift makes site selection for kmer based sample
compare frameworks very difficult [41, 89, [I08]. Therefore, instead of evaluating
Tombo on the per-position modification calling accuracy, we used a less stringent
metric of modification window calling accuracy. We looked to see if a peak was
within a window of a specific modification and disregarded large differences in signal
in the neighboring 2 bases of a modification. Specifically, for each modification, we
took the maximum corresponding statistic value of a window of 5 positions covering
that modification. For example, if pos 20 was modified, the corresponding statistic
for position 20 was the maximum value for positions 18, 19, 20, 21 and 22. Then, we
removed the 2 upstream and downstream values from being classified. So, positions
18, 19, 21 and 22 will not be classified as true negatives or false positives. This
approach allows for uncertainty of where the modification is within a small window of
5 positions and greatly reduces the false positive rate. As seen in Supplemental Fig.
and [4.7D, by decreasing the stringency of our accuracy metric we see a marked
improvement of modification detection to an AUROC of 0.984 for 18S and 0.986 for

258S.
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4.5.12 Modification Labels and Frequency

Underlying labels for modification and frequency for the S. cerevisiae 185
and 25S rRNA came from Taoka et al [I63]. Expected changes in modification fre-
quency in the Dbp3 deletion experiment came from Aquino et al [2]. SnoRNA modifi-
cation sites on yeast rRNA come from the UMASS Amherst Yeast snoRNA database

127,

4.5.13 Data availability

Fastq files from all direct RNA sequencing runs and signalAlign modifica-
tion calls are publicly available in NCBI’s Gene Expression Omnibus (GEO) and are
accessible through GEO Series accession number GSE186634 https://www.ncbi.n
lm.nih.gov/geo/query/acc.cgi?acc=GSE186634. Fast) files for all direct RNA
sequencing are available in the European Nucleotide Archive (ENA) at EMBL-EBI
under accession number PRJEB48183 https://www.ebi.ac.uk/ena/browser/view
/PRJEB48183. A detailed description of the datasets used and sequenced in this work
with their corresponding ENA, GEO, and SRA IDs can be found in Supplementary

Table S7.

4.5.14 Code availability

Documentation, install requirements, and analysis scripts can be found at ht
tps://github.com/adbailey4/yeast_rrna modification detection. SignalAlign

can be found at https://github.com/UCSC-nanopore-cgl/signalAlign and
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embed fastb can be found https://github.com/adbailey4/embed fastb.
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