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Abstract

Standard model four-top quark production in the all-hadronic final state in

proton-proton collisions at 13 TeV with the CMS experiment

by

Melissa Kathryn Quinnan

Standard model (SM) four-top quark production, pp → tt̄tt̄, is a rare process with

great potential to reveal new physics. Measurement of the cross section is not only a di-

rect probe of the top quark Yukawa coupling with the Higgs, but an enhancement of this

cross section is predicted by several beyond the standard model (BSM) theories. This

process is studied in fully-hadronic proton-proton collision events collected during Run II

of the CERN LHC by the CMS detector, which corresponded to an integrated luminosity

of 137 fb1 and a center of mass energy of 13 TeV. In order to optimize signal sensitivity

with respect to significant and challenging backgrounds, several novel machine-learning

based tools are applied in a multi-step and data-driven approach. Boosted decision

tree (BDT) and deep neural net (DNN) based hadronic top taggers are used to identify

hadronically decaying top quark candidates with moderate and high transverse momenta,

respectively, in order to suppress backgrounds and categorize events by the multiplicity

of reconstructed top tags, and an event-level kinematic BDT distribution is subsequently

used to extract the signal. Control regions inspired by the “ABCD” method are used to

obtain a data-driven estimate of the background, and data distributions in these control

regions are given as inputs to a DNN in order to estimate the event-level BDT discrim-

inant distributions of the major backgrounds. The observed signal strength µ, defined

as the ratio of the observed four-top production rate to the standard model expectation,

is measured to be µ = 5.1+2.3
−2.0. The corresponding observed (expected) significance and

viii



limit times the SM cross section are 2.25 (0.43) σ and 8.39 (4.88) respectively. A combi-

nation of this result with multiple final states is in progress as of the writing of this thesis,

and future BSM interpretations to investigate this larger-than-expected signal strength

are planned.
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Chapter 1

Introduction

This thesis summarizes an analysis of standard model four-top production (pp → tt̄tt̄)

in the fully-hadronic final state. Four-top quark production (tttt) is a rare process that

serves as an important probe of both standard model (SM) and beyond the standard

model (BSM) physics. Representative leading-order (LO) Feynman diagrams for tttt

production are shown in Fig. 1.1. The predicted cross section for SM tttt production

is 12.0+2.2
−2.5 fb at next-to-leading order (NLO) [1], which is very small compared to for

example the tt SM cross section of about 832+55
−64 pb [2]. It is sensitive to the Yukawa

coupling of the top quark to the Higgs boson, but is also independent of the Higgs boson

decay, making it an ideal process to reveal any deviations from SM predictions of the

top quark Yukawa coupling [3]. Deviations of the four-top production cross section

from SM predictions can also be caused by undiscovered heavy scalar (or pseudo-scalar)

bosons decaying to top quarks, which are predicted in many simple extensions of the SM

including two-Higgs doublet models (2HDM) [4].

Top quarks decay into a bottom quark and a W boson. The W then decays either

hadronically, into quarks, or leptonically, producing a lepton and a neutrino. A CMS

search targeting the same-sign dilepton and multi-lepton final states [5], which consti-
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Introduction Chapter 1

Figure 1.1: Representative LO Feynman diagrams for SM tttt production.

tute a combined branching ratio of roughly 10%, observed a significance of 2.7 standard

deviations for SM tttt production using the Run II data set. The single-lepton and

opposite-sign dilepton final states have also previously been explored with the CMS 2016

dataset [6]. The final state with four fully-hadronic top quark decays constitutes about

20% of all four-top quark events, and was studied for the first time in the analysis pre-

sented by this thesis.

Significant backgrounds from top quark pair (tt) and QCD multijet production

make the tttt search in the all-hadronic final state particularly challenging. Special-

ized machine-learning based hadronic top quark tagging tools to target the all-hadronic

tttt decay mode are therefore exploited. Top quarks in the “boosted” (high-pT) regime,

characterized by collimated jets originating from the hadronization of top quark decay

products, are identified with the DeepAK8 boosted object tagger [7]. Those in the ”re-

solved” regime with moderate pT, in which the hadronization of the top quark decay

products results in distinct jets, are identified with a dedicated BDT-based resolved top

tagger that was developed for this analysis. The search strategy relies on the classifi-

cation of events into distinct categories based on the number of reconstructed tops and

HT (the scalar sum of jet pT). An event-level BDT based on kinematic variables is then

used for the extraction of tttt signal relative to background. Data-driven techniques are

used to predict the main backgrounds in this search, which originate from tt and QCD

2



Introduction Chapter 1

multijet production.

1.1 Permissions and Attributions

The analysis discussed in this thesis is the product of a collaboration between the

author, Valentina Dutta and Joseph Incandela of UCSB, and Suyong Choi, Chang Whan

Jung, Hayong Oh, and Jae Hyeok Yoo of Korea University. It is also part of a larger

multi-channel four-top combination that involves Ulrich Heintz, Daniel Li, Meenakshi

Narain, Nikolas Pervan, Sinan Sagir, Emanuele Usai, and Wenyu Zhang of Brown Uni-

versity, Steve Wimpenny, Bob Clare, and Nick Manganelli of the University of California

Riverside, Freya Blekman of Vrije Universiteit Brussel/DESY, and Norraphat Srimanob-

has and Vichayanun Wachirapusitanand of Chulalongkorn University.
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Chapter 2

An Overview of Standard Model

Physics

This section introduces the Standard Model (SM) and physics related to tttt production

and particle collisions in general. It gives a brief overview of fundamental particles

and their interactions as well as an introduction to relevant Beyond-the-Standard-Model

(BSM) concepts. This chapter was written with reference to [8], [9], and [10].

2.1 An Introduction to Matter and Interactions

Particle physics aims to understand the nature and behavior of the tiniest irreducible

building blocks of the universe. The current theory used to describe the fundamental

particles that constitute matter and the way they interact is the Standard Model (SM). It

is a consistent, finite gauge quantum field theory that describes particles and interactions

in terms of quantized fields. While it has reliably predicted practically all experimental

results to date, it cannot be a complete description of nature. It does not, for example,

justify why neutrinos have mass, or provide an explanation for dark matter. As such,

4



An Overview of Standard Model Physics Chapter 2

much of particle physics research is dedicated to searching for new physics that could

reveal a broader, more fundamental theory.

Figure 2.1 represents the SM in terms of the particles it predicts. Matter is made

up of fundamental, point-like, massive spin 1/2 particles called fermions. These fermions

interact (and experience forces) via the exchange of spin 1 force mediating bosons. Such

interactions explain fundamental forces except gravity, which is extremely weak on sub-

atomic scales.

The weakest force in the SM is, fittingly, the weak force. All fermions experience

the weak force and so can interact via the exchange of neutral Z or charged W bosons.

The electromagnetic force, well known for its generation of the electric fields and charges

found in modern electronic devices, is mediated by the photon. All fermions that are

electrically charged can interact via electromagnetism. Finally, the aptly named strong

force is the strongest of these fundamental forces, and is (for example) the force that binds

together atomic nuclei. Fermions affected by the strong force interact via the exchange of

gluons as force mediators. The fundamental forces, their relative strengths, and relevant

bosons are summarized in Table 1.1. The Higgs Boson is not a force mediator. It is a

scalar boson with a mass of approximately 125 GeV [11] and a spin of 0, and is only

subject to weak and self interactions. It is a part of the mechanism in electroweak theory

by which particles, namely the W and Z bosons, acquire mass, as detailed later in this

chapter.

Fermions can be subcategorized into quarks and leptons. Quarks can be ”up-type”,

having a positive electrical charge of +2/3 times the charge of an electron e (the up,

charm and top quarks) or ”down-type” with a negative electrical charge of −1/3 e (the

down, strange and bottom quarks). Given their electric charges, quarks interact elec-

tromagnetically, and like all fermions they participate in weak interactions. Quarks are

also subject to the strong interaction, and so also have color charges (”red”, ”green” or

5



An Overview of Standard Model Physics Chapter 2

Figure 2.1: Particles of the Standard Model. The symbol, name, electrical charge,
spin and mass of each particle is shown. Bosons and fermions are indicated by solid
gray lines, and further categorized by dashed blue lines into force mediators and
quarks/leptons, respectively. Particles that interact with the Brout-Englert-Higgs
Field (and thus have mass) are contained within the yellow shaded box. Likewise,
particles that interact with the strong, electromagnetic, and weak forces via the ex-
change of gluons, photons, and W/Z bosons are indicated with blue, red, and orange
shaded boxes respectively. Fermions also have corresponding antiparticles with oppo-
site quantum numbers (not shown).

”blue” as described by Quantum Chromodynamics, or QCD). Quarks form bound states

of color neutral hadrons of two or more quarks. Most commonly these are bound states

of a quark-antiquark pair (”mesons”) or of three valence quarks (”baryons”). The top

quark is unique in that it is the only quark with a short enough lifetime (about 5×10−25

seconds) [11] to decay before hadronization can occur, and so is not part of any bound

state. It is also the heaviest particle in the SM, with a mass of 174 GeV [11]. These

properties make the top quark an interesting probe of Higgs interactions (which couple

6
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Table 1.1: Forces of the Standard Model. The four known fundamental forces and their
associated force mediating bosons are shown. Interaction strengths are given as

approximate values corresponding to two particles separated by the distance of roughly
the radius of a proton ( 10−15m [11]). Gravity’s theoretical force carrier, the graviton,
is shown, however gravity is only detectable at much larger scales and so no evidence of

the graviton has yet been proven. Due to its extremely weak nature compared to the
other forces, gravity is not relevant on the scale of subatomic particles.

more strongly to heavier particles) as well as an opportunity to study an independent

quark outside of a bound state. Another curiosity in the quark sector is the fact that the

down quark is heavier than the up quark. In other generations the ”up-type” quarks are

heavier than their ”down-type” partners. The reversal of this mass hierarchy SM pattern

for first generation quarks is as of yet unexplained.

Leptons are another class of fermions, of which there are three generations of elec-

trically charged leptons and neutral neutrinos. Charged leptons (electrons, muons, and

taus) are impacted by weak and electromagnetic forces, and have electrical charges of

−1e. Of these, the electron is the only stable lepton, although the relatively long lifetime

of the muon (about 2 × 10−6 seconds [11]) means that at high energies it can be con-

sidered stable in an experimental context. The tau has a much shorter lifetime of about

3× 10−13 seconds, and a mass larger than that of the lightest charged hadron, the pion

( 140 MeV) [12]. This means that taus, unlike other charged leptons, can also decay

into hadrons via charged weak interactions involving the W boson.

Neutrinos are neutral leptons that have been observed to have very small masses (on

the scale of a few eV [11]), despite the fact that the SM does not explicitly predict them

7
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to be massive particles. This fact can be considered to be an observed deviation from

SM expectations. There are three generations of neutrinos (the electron, muon and tau

neutrinos) that correspond to their charged lepton partners. Neutrinos do not have color

or electrical charges, and so only interact weakly.

Matter as we experience it is mostly made up of first generation particles (as opposed

to antiparticles). The dominance of first generation matter is explained by the decays of

more massive 2nd or 3rd generation fermions to their lighter 1st generation counterparts.

However, it is not understood why (or indeed if) there are exactly three generations

of fermions. The dominance of matter over antimatter in the known universe is also

unexplained by the SM, which predicts by symmetry that both should have been initially

produced in equal amounts in the big bang.

The SM can be represented mathematically as a quantum field theory using a La-

grangian density LSM , which is a function that summarizes fields and dynamics in a

system. The SM Lagrangian LSM obeys the gauge symmetry

SU(3)× SU(2)× U(1) (2.1)

Here SU(3) is the symmetry group for QCD describing strong interactions and

SU(2) × U(1) corresponds to electroweak theory, which unifies the weak and electro-

magnetic interactions. The SM Lagrangian can be written in the condensed form

LSM = −1

4
FµνF

µν + iψ̄γµD
µψ + (yijψ̄iψjφ+ h.c.) + |Dµφ|2 − V (φ) (2.2)

The first term, −1
4
FµνF

µν is the scalar product of the field strength tensor Fµν for a

gauge field Aµ with Lorentz indices µ and ν representing spacetime coordinates.

F a
µν = ∂µA

a
ν − ∂νAaµ + gfabcAbµA

c
ν (2.3)

8
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This term leads to the existence of force mediating boson fields and their interactions

(including self-interactions) and is formulated to be invariant under gauge transforma-

tions. Feynman diagrams for basic interaction vertices that follow from this term and

others are summarized in Figure 2.2.

In the second term (iψ̄γµD
µψ), ψ is the field of a fermion, ψ̄ refers to its transposed

complex conjugate, γ are the gamma matrices, and D is the covariant derivative, which

preserves gauge invariance:

Figure 2.2: Interactions in the the standard model are shown according to their
description as part of equation (2). Here g, γ, Z, and W± indicate force mediating
bosons, H refers to the higgs boson, q to quarks (u,d,c,s,t,b), l to charged leptons
(e, µ, τ), and νl to neutrinos. Charges and antiparticles are shown where necessary.
Conjugates of each listed vertex (reversing the direction of arrows) is allowed.

9
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Dµ = ∂µ − igAaµta (2.4)

Here ta is the group generator in the chosen representation. This term describes

interactions between force mediating bosons and matter particles (fermions).

The third term (yijψ̄iψjφ + h.c.) decribes how fermions ψ couple with the Brout-

Englert-Higgs (BEH) field, φ, and thus obtain mass. Here yij is the Yukawa matrix of

couplings to the BEH field, which are directly related to particle masses. In this term h.c.

refers to the hermitian conjugate of yijψ̄iψjφ, which describes the interactions between

force mediators and antifermions.

The fourth term (|Dµφ|2) describes force mediators that couple to the BEH field (and

thus are massive), which only applies to the W and Z bosons. Finally, the fifth and last

term, −V (φ), describes the BEH potential and Higgs boson self-interactions. The Higgs

boson itself is a quantized excitation of this field.

As the heaviest particle in the SM, the top quark also has the largest coupling to

the BEH field. This makes processes containing top quarks ideal for measuring such

couplings, namely the top-Higgs Yukawa coupling. More details on this coupling and the

mechanics of Higgs physics is described in the next section.

2.1.1 Electroweak Theory and Spontaneous Symmetry Break-

ing

Electroweak (EW) theory unifies the description of electromagnetic and weak interac-

tions and demonstrates how fermions and massive bosons (the W and Z bosons) acquire

mass through spontaneous symmetry breaking. The EW Lagrangian can be written as

LEW = Lsym + LH + LY . (2.5)

10
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Here Lsym is the symmetric part describing EW gauge and fermion fields, LH is the

Higgs Lagrangian contribution that leads to the W and Z mass terms through sponta-

neous symmetry breaking (SSM), and LY is the Yukawa term that describes interactions

between the BEH field and fermions by which fermions acquire mass. As noted in equa-

tion (1), this Lagrangian is the product of two symmetry groups SU(2)×U(1), and thus

has two coupling constants and two sets of generators. The generator of the U(1) group

is the the weak hypercharge operator Y , and the generators of the SU(2) group are the

weak isospin operators T1, T2, and T3. Quantum numbers for fermions are defined by

eigenstates of these operators and satisfy the relation Q = T 3 + Y
2

.

EW theory is a chiral theory where fermion fields are split into left and right-handed

components such that left-handed fermions and right-handed antifermions form weak

isospin doublets with (T ,T3) eigenvalues of (1/2,±1/2) and right-handed fermions form

weak isospin singlets with an eigenvalue of T = 0. This leads to the absence of right-

handed neutrinos or left-handed antineutrinos in the SM. The symmetric term of the

electroweak Lagrangian is

Lsym =
∑
j

iψ̄jLγµD
µ
Lψ

j
L +

∑
k

iψ̄kRγµD
µ
Rψ

k
R −

1

4

3∑
a=1

W a
µνW

µν
a −

1

4
BµνB

µν , (2.6)

where W a
µν , and Bµν can be written in terms of the gauge fields of SU(2) and U(Y) (W a

µ

and Bµ, respectively), and Dµ
L, and Dµ

R are the covariant derivatives for the left and

right-handed field components and can be written in terms of the Y and T generators

and the two SU(2) and U(1) coupling constants (g and g′, respectively):

W a
µν = ∂µB

a
ν − ∂νBa

µ − gεabcW b
µW

b
ν , (2.7)

11
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Bµν = ∂µBν − ∂νBµ, (2.8)

DL
µ = ∂µ + ig

3∑
a=1

T aLW
a
µ + ig′

YL
2
Bµ, (2.9)

DR
µ = ∂µ + ig′

YR
2
Bµ (2.10)

The gauge fields W a
µ and Bµ lead to the definition of the physical bosons of EW

interactions, namely the photon (γ), the W boson (W ), and the Z boson (Z). They can

be written using a SU(2) representation using the Pauli matrices such that Ta = σa/2.

The W boson can be defined as a mixture of these gauge fields, requiring the electrical

charge of Q = ±1e and the weak hypercharge of Y = 0:

W±
µ =

1√
2

(W 1
µ ± iW 2

µ) (2.11)

Likewise, the photon and Z fields can be described by the orthogonal, normalized

mixture of Bµ and W 3
µ as a function of the weak mixing angle θW given by tan(θW ) = g′/g:

Aµ
Zµ

 =

 cos(θW ) sin(θW )

−sin(θW ) cos(θW )

 .

Bµ

W 3
µ

 (2.12)

While the symmetric term of the EW Lagrangian Lsym describes electroweak inter-

actions and the physical photon, W and Z bosons, it does not indicate that fermions or

any gauge bosons have mass. This contradicts observations that quarks and leptons and

the W and Z bosons are massive. The mass terms for these gauge bosons (excepting

the massless photon) arise from the Higgs Lagrangian LH and ”spontaneous symmetry

breaking” (SSB).

12
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Figure 2.3: An illustration of the Higgs potential V (φ). Choosing any point at the
potential’s minimum (visualized by the purple sphere moving from the ’sombrero’ top
to the lower point) has the effect of breaking the symmetry. [13]

The Higgs Lagrangian is defined as:

LH = (Dµφ)†(Dµφ)− V (φ)Dµ = ∂µ + i
g

2

3∑
a=1

(σaW
a
µ ) + i

g′

2
Bµ (2.13)

Where V (φ) is the Higgs potential:

V (φ) = −µ
2

2
φ†φ+

λ

4
(φ†φ)2 (2.14)

Here µ2 and λ are positive constants and φ represents non vanishing scalar fields. As

visualized in Figure 2.3, the symmetrical shape of this potential is spontaneously broken

(hence SSB) when the fields φ are at a minimum, which occurs when

φ =
1√
2

0

v

 v =
2µ√
λ

(2.15)

Here v is the vacuum expectation value. After perturbative expansions about v the

scalar fields and Higgs potential can be written in terms of the real Higgs field H:

φ =
1√
2

 0

v +H

V (H) = µ2H2 +
µ2

v
H3 +

µ2

4v2H
4 (2.16)

13



An Overview of Standard Model Physics Chapter 2

Here the mass of the Higgs boson can be identified as mH =
√

2µ2 and the triple

and quadruple Higgs vertices are (m2
H/v and m2

H/v
2). While the mass of the Higgs is

established here, the first part of the Higgs Lagrangian ((Dµφ)†(Dµφ)) post-symmetry-

breaking is what leads to the masses of the Z and W bosons being defined as:

mZ =
1

2

√
g2 + g′2v (2.17)

mW =
1

2
gv = cos(θW )mZ (2.18)

This leaves the last part of the Lagrangian that leads to fermion masses through

interactions with the scalar Higgs field: the Yukawa Lagrangian LY . This can be written

in terms of left-handed weak isospin doublets (ψL) and right handed singlets (ψR) and

M , the non-diagonal fermion mass matrix generated by the coupling to the Higgs field.

This is discussed in terms of quarks here but leptons behave similarly.

LY = −ψ̄LMψR − ψ̄RM †ψL − ψ̄L
M

v
ψRH − ψ̄R

M †

v
ψLH (2.19)

After diagonalizing the mass matrix M and transforming the doublets and sin-

glets, this leads to a mixing of mass eigenstates between left handed fermion doublets

and charged gauge fields (represented as amplitudes |Vij|) by the Cabibbo-Kobayashi-

Maskawa (CKM) matrix:

VCKM =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 (2.20)

While the matrix shown here is for quark flavor mixing, an analogous matrix exists
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for leptons.

As an example, the emergence of fermion masses can be demonstrated more clearly

for top and bottom quarks in particular while neglecting flavor mixing. Here, given the

left-handed weak isospin doublets and right handed singlets of top and bottom quarks,

the Yukawa coupling strengths λt,b, and a modified Higgs doublet ψu for up-type quarks

ψu = iσ2ψ∗ the Yukawa Lagrangian can be written as

LY,t/b = −λt(ψ̄tL, ψbL)φuψ
t
R − λb(ψ̄tL, ψbL)φψbR (2.21)

Notably, the modified Higgs doublet ψu is replaced by two separate doublets in many

extentions of the SM, including in the minimal supersymmetric SM (MSSM) and other

“two-higgs-doublet-models“ (2HDM) [4].

Applying instead the SSB Higgs doublet reveals the mass terms of the top and bottom

quarks mt and mb as a function of the vaccuum expectation value v and the top and

bottom Yukawa couplings λt and λb.

LY,t/b = − 1√
2

(λtψ̄
tψt + λbψ̄

bψb)(v +H) (2.22)

= −λt
v√
2
ψ̄tψt − λb

v√
2
ψ̄bψb − λt

1√
2
ψ̄tψtH − λb

1√
2
ψ̄bψbH (2.23)

= −mtψ̄
tψt −mbψ̄

bψb − λt
mt

v
ψ̄tψtH − λb

mb

v
ψ̄bψbH (2.24)

Here it can be seen that the mass terms are proportional to the Yukawa couplings

mt/b = λt/b
v√
2
. With the largest mass in the SM, this is why the top quark is such a

powerful experimental tool for probing the top-Higgs Yukawa coupling and testing and

measuring the mechanics of the SM.
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2.1.2 Quantum Chromodynamics and the Fine Structure Con-

stant

While EW theory gives rise to most of the particles predicted by the SM, it is missing

a description of the strong force that leads to interactions between quarks in order to form

bound hadronic states. The mathematical formulation of strong interactions in quantum

field theory is called Quantum Chromodynamics (QCD). Like EW theory, QCD involves

generators following from a symmetry group, but in this case the group is a non-abeliean

unitary group SU(3)C that unlike EW theory with a single electric charge, has three

analogous color charges named ”red”, ”green”, and ”blue”. This leads to eight generators

TC expressed by noncommuting Gell-Mann matrices λC as TC = λC/2.

For a particular quark with color charge c and mass m the QCD Lagrangian LQCD is

LQCD = ψ̄c(iγ
µDµ −m)ψc −

1

4
Gc
µνG

µν
c (2.25)

Where Dµ = ∂µ − igsTCG
C
µ is the covariant derivative, GC

µν = ∂µG
C
ν − ∂νG

C
µ −

gsf
C
abG

a
µG

b
ν are the eight masslass gluon fields, fCab are the antisymmetric SU(3)C struc-

ture constants, and gs is the strong coupling constant. The first part of this Lagrangian

(ψ̄c(iγ
µDµ−m)ψc) leads to quark and gluon propagators and the gluon-quark-antiquark

(gq̄q) vertex. The second part (−1
4
Gc
µνG

µν
c ) leads to gluon self-couplings and correspond-

ing triple and quadruple gluon vertices.

The intrinsic strength of the strong coupling constant compared to that of electro-

magnetism or the weak force is usually reported in terms of a dimensionless coupling

strength α. Thus interaction probabilities include a single α per interaction vertex and

the value of α independent of units used. For electromagnetism, this coupling strength is

the fine structure constant α = e2/(4πεo~c) = 1/137 [8]. The strong force has a greater

coupling strength of approximately α = 1 at low energies. The weak force actually has a
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greater coupling strength than electromagnetism (about α = 1/30) but the large mass of

the W boson means that at low energy scales the weak interaction is much weaker than

electromagnetic interactions.

Perturbation theory is required to derive physics predictions for interactions at high

energy scales (high momentum transfer Q2 at short distances) for QCD, due to the nature

of the SU(3)C symmetry and the gluon self-couplings. This means that calculations

require regularization and normalization and therefore an arbitrary mass scale µR. In

practice this means that at high energy scales the effective ”running” coupling strength

decreases with increasing energy scales Q2, as αs is proportional to 1/ln(Q2). This is

commonly referred to as ”asymptotic freedom”. At lower energies on the other hand,

where perturbation theory is not available, the coupling strength is so large that the

amount of energy needed to create bound quark pairs is lower than that needed to

escape the QCD potential. This leads to the lack of free quarks observed in nature and is

referred to as color-confinement. It also means that at in high energy particle collisions

like those that take place at the LHC, quarks are initially produced in quasi-free states

near primary proton-proton collision vertices (PV) but within a short space and time

they transition from a high-energy state of asymptotic freedom to a low-energy bound

state of color confinement as they hadronize within particle detectors.

2.2 Beyond the Standard Model

This section gives a brief introduction to Beyond the Standard Model (BSM) physics

that is interesting in the context of four-top production. Previous sections already hinted

that considering two Higgs doublets rather than one is the basis of the MSSM and 2HDMs.

This will be discussed briefly here.

As mentioned earlier in this chapter, the SM offers no explanation of a few notable
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phenomena. The concepts of dark matter and energy, for example, arise from astro-

nomical observations that roughly 85% of the mass in the universe is matter or energy

that cannot be directly observed [8]. As of yet, no explanation for this extra mass has

been proven. Another curiosity unexplained by the SM is the fact that neutrinos have

mass [8]. The observation of neutrino oscillations necessitates that contradictory to

SM predictions, neutrinos must be massive, albeit with only small masses. There are

other inelegant aspects of the SM, for example its failure to incorporate gravity, and SM

parameters need to be ”fine-tuned” in order to be consistent with the cutoff at which

gravity becomes relevant and the SM no longer holds (the Planck scale at 1019GeV [8]).

As a result, measurements that test the limits of the SM or probe for new physics are of

particular interest in particle physics.

Supersymmetry (SUSY) [14] is one proposed solution to many of these problems.

It supposes there is a symmetry between fermions and bosons, and thus that every SM

particle has a corresponding superpartner with a spin differing by 1/2 between fermions

and bosons. The existence of such particles would to some extent address the issue of

fine-tuning and may also provide dark matter candidates.

The simplest supersymmetric extension of the SM is the MSSM, which requires two

Higgs doublets as an example of a 2HDM [4]. Because in supersymmetric theories scalars

and their complex conjugates belong to chiral multiplets of opposite chirality that cannot

couple together in the Lagrangian, a single Higgs doublet would not be able to give mass

to up and down type quarks simultaneously and so an additional Higgs doublet would be

required. This would result in five Higgs-like scalar or pseudoscalar bosons rather than

one, which may have not yet been detected at current energy scales probed by particle

accelerators. However, if these extra bosons decay into other particles, for example into

multiple top quarks, an excess of signal in relevant SM processes could provide evidence

for their existence. An excess of four-tops beyond SM expectations, for example, could
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suggest the validity of such 2HDMs and so is a common BSM physics objective of four-

top production measurements. The scope of this thesis, however, will focus on four-top

production in the context of the SM.

19



Chapter 3

The LHC and the Compact Muon

Solenoid

This chapter introduces the CMS (Compact Muon Solenoid) experiment and its collection

of particle collision data, including the functionalities and responsibilities of its various

subdetectors and reconstruction capabilities.

3.1 The Physics of Hadron Colliders and the LHC

Particle colliders like the Large Hadron Collider (LHC) collide particles within de-

tectors in order to study the products of these collisions. These collisions are typically

induced by two beams of charged particles that are accelerated in opposite directions

until they reach a desired kinetic energy, at which point they are allowed to cross at

the desired collision point within particle detectors. The LHC, specifically, is a circular

collider that accelerates bunches of protons through the use of magnets that accelerate

and focus the beams. These bunches contain billions of protons each that are accelerated

along a 27 kilometer ring and cross each other in detectors at rates of up to 40 million
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times per second [15]. The LHC is the largest and highest-energy particle accelerator in

the world, and is located at CERN (the European Center for Nuclear Research) on the

border between France and Switzerland. Data taking during Run II of the LHC, which

is relevant for this thesis, took place between 2015 and 2018 with a center of mass energy

of
√
s = 13TeV .

A core quantity in accelerator physics is the concept of the cross section of a given

process. Qualitatively, it can be thought of as essentially a measurement of the probability

that a certain process will occur, reported as a quantity that is independant of the

energy or intensity of particle beams and so can be compared for a given process across

experiments [16], [17]. Processes that are more likely to occur in particle collisions

therefore have larger cross sections compared to those less likely to occur. The units

of cross sections are in area (barns). When referring to a cross section most often it

is the total cross section that is refered to, or the sum over all possibilities for a given

process, including all scattering angles and other variables. A differential cross section,

on the other hand, is a cross section measurement that is given as a differential limit for

a particular final state variable such as a particular energy or scattering angle.

The luminosity of a particle accelerator is a quantity that measures an accelerator’s

ability to produce the required number of particle interactions. It is, in other words, the

proportionality factor between the interaction rate (the number of events per second, or

dNprocess
dt

) and the cross section of a given process (σprocess) and can be written as follows

[18]:

dNprocess

dt
= L · σprocess (3.1)

As hinted by this formula, luminosity as a quantity is a function of area and time,

with the luminosity of LHC beams on the order of 10−34cm2 · s−1 [15].This can also be
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written in terms of barns, which are a unit of area defined as 1 barn (b) = 10−24cm2. In

these terms, the LHC has a design luminosity on the order of 100fb−1 · s−1.

The quantity (L) is sometimes specified as the instantaneous luminosity rather than

just ”luminosity” to distinguish it from the total luminosity aquired over time, which is

instead called the integrated luminosity Lint. Its formula is the integral of the instanta-

neous luminosity over time:

Lint =

∫
L · dt (3.2)

It follows, then, that units of integrated luminosity are often given in inverse barns

b−1. This is a useful quantity for calculating the number of events of a given process

(Nprocess) that can be expected in particle collisions:

Nprocess = Lint · σprocess (3.3)

Figure 3.1 shows the integrated luminosity vs. time collected by the LHC and the

CMS detector during Run II. This thesis focuses on data taken by the CMS experiment

between 2016 and 2018, which corresponds to an integrated luminosity of 137fb−1.

3.2 The Compact Muon Solenoid

The Compact Muon Solenoid (CMS) experiment is one of two general purpose detec-

tors at the LHC (the other being the ATLAS detector) specialized to detect high energy

collisions at the LHC. It involves one of the largest scientific collaborations in the world,

which includes over 5000 scientists and engineers from about 200 institutes and nearly

50 countries [20]. The detector itself is pictured in Figure 3.2. It is located about 100

meters underground at a point on the LHC near Cessy, France. It is cylindrical in shape,
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Figure 3.1: Integrated Luminosity recorded in Run II (2015-2018) vs. time recorded
by the LHC (blue) and by the CMS experiment (yellow). Gaps indicate shutdowns
during which no data was taken. [19]

with a length of 21.6 meters and a diameter of 14.6 meters and a weight of roughly 14

thousand tons [20], [21]. The detector is designed to measure the energies and trajec-

tories of particles resulting from LHC collisions within dedicated subdetectors that are

arranged radially around the beam pipe and which are designed to identify particle types

and properties. The functionality of each of these subdetectors will be discussed briefly

in the following subsections. The CMS technical design report [20], [21] was used as a

reference for these sections.

3.2.1 The Solenoid Magnet

One of the main design features of CMS is its 3.8T superconducting solenoid magnet,

which is the largest of its kind in the world. The ”compact” aspect of CMS refers to

the fact that many of the subdetectors (like the tracker and calorimeters) are contained
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Figure 3.2: Schematic diagram of the CMS detector with labeled subdetectors. [20]

within this magnet, which bends the trajectories of charged particles in order to gain

information about their charges and momenta. It has the shape of a hollow cylinder of

length 12.5 meters and a diameter of 6.0 meters, and is formed out of a superconducting

niobium-titanium coil to generate the magnetic field. This is surrounded by three layers

of iron return yoke layers to better contain the magnetic flux within the detector volume.

The coils must be kept at a chilly 4.7K temperature in order to maintain their zero-

resistance superconducting electrical properties [20], [21].

24



The LHC and the Compact Muon Solenoid Chapter 3

3.2.2 The Silicon Tracking System

The first subdetector encountered by particles produced in LHC collisions within the

CMS detector is the tracking system. It operates based on the formation of electron-hole

pairs in silicon semiconductors that form when charged particles pass through. Currents

from these electron-hole pairs are digitized by readout electronics, allowing for the algo-

rithmic reconstruction of the the precise location and direction of charged particle tracks

and vertices. As it is so close to the interaction point where LHC beams collide, this

system must cope not only with very high particle fluxes and therefore complex track

reconstruction requirements, but also with large doses of radiation experienced during

long operation periods. As such, the silicon detectors are designed to have high resolu-

tion and efficiency and to be radiation hard, which is achieved in part by cooling silicon

detector components to -10 degrees Celsius.

The subdetector is itself made up of several parts as shown in Figure 3.3. The

innermost part of the tracking system is the pixel detector. This included two endcap

disk layers and three inner layers between transverse cylindrical radii of 4.4 and 10.2 cm

until 2017, when they were replaced by three endcap layers and four inner layers between

transverse cylindrical radii of 3.0cm and 16.0cm for better resolution. As the closest

detector to the interaction point of colliding LHC beams, the pixel detector requires

very high granularity in order to resolve the large number of simultaneously transversing

particles into reconstructable tracks and vertices. To accomplish this, this innermost

subdetetector is made up of 66 · 106 tiny silicon pixels of size 100 · 150µm2. All together,

these pixels form a total active area of about a square meter.

The outer part of the tracking system surrounding the pixel detector is made up of

silicon microstrips rather than pixels. It includes four parts: the tracker inner barrel

(TIB) encapsuling the pixel detector, the tracker outer barrel (TOB) around that, and
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on either side the inner disks (TID) followed by the endcaps (TEC). These subdetectors

still require enough resolution to reconstruct particle tracks and vertices coming from the

nearby beam line but do not encounter particle fluxes as high as the inner pixel detector,

hence the use of strips rather than pixels. These strips number a total of 9.3 · 106 and

cover an active area of roughly 198 square meters. The TIB has four layers and is about

130m long. Just outside of it (radially) is the 6 layer TOB. In the forward regions, the

TID has three layers and the TOB nine. All together the CMS tracking system has an

active area of about 200 square meters and forms a cylinder that is about 5.4m long with

a diameter of about 2.4m, making it the largest silicon device ever constructed.

Figure 3.3: Diagram of the CMS tracker, including pixel detector, inner barrel (TIB)
and inner disk detectors (TID), the outer barrel (TOB), and endcap trackers (TEC-
and TEC+). Note that the endcaps exist on both sides (TEC+ is not shown). The
gray line in the center represents the beam pipe [22].
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3.2.3 The Electromagnetic Calorimeter

Just outside the tracking system and also enclosed by the solenoid magnet is the

electromagnetic calorimeter (ECAL). This subdetector is made up of nearly 70 thousand

lead tungstate (PbWO4) clear scintillating crystals of size 2.86 · 2.86 · 22.0 cm2 in the

endcap region and 2.2 · 2.2 · 23.0 cm2 in the barrel region of the ECAL. When charged

particles pass through these crystals they give off scintillation light with a brightness

corresponding to the energy of the particle. The very dense crystals also seek to slow and

eventually absorb the particles. When the light is amplified by photodiodes/phototriodes

and digitized this allows for an electronic readout of the location and energy of charged

particle deposits. The small Moliere radius of electromagnetic showers (about 2.2 cm)

and the small radiation length of lead tungstate (0.85 cm, or about 25 per crystal) means

that electromagnetic showers are often longitudinally contained within a single layer of

crystals and transversally contained within a single crystal. This enables high resolution

and efficiency in detecting charged particles, especially photons and electrons.

3.2.4 The Hadronic Calorimeter

The next subdetector, sandwiched mostly between the solenoid and the ECAL, is the

hadronic calorimeter. This subdetector is designed to absorb and meaure the energy of

strongly interating particles, both charged and uncharged. It is a sampling calorimeter

orginized into four regions: the barrel calorimeter (HB), the endcap calorimeter (HE), the

outer calorimeter (HO) and forward calorimeter (HF). All of these regions except the HF

are made up of alternating layers of brass absorbers and plastic scintillators. Particles

create hadronic showers in the brass absorber layers which in turn cause scintillation

light in the plastic scintillator layers which is detected and read out in order to detect

the location and energy deposit of hadronic showers. The HF, which is located on both
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sides of the detector outside of the solenoid and muon endcaps, is made of steel and quartz

fibers and is designed to produce narrow hadronic showers in the forward regions along

the axis of the beam line. The HO is the only other part of the HCAL situated outside

of the solenoid magnet and is tasked with detecting the tails of any hadronic showers

that entend beyond the solenoid. The HB and HF detect hadronic showers inside of the

solenoid magnet, and are situated around the radial area just outside of the ECAL (HB)

as well as capping both ends of the cylinder outside of the ECAL endcap.

3.2.5 The Muon Chambers

The muon chambers are located outside of the solenoid and are the outermost subde-

tector of CMS. They are designed to detect the charge and momenta of muon tracks that

can be matched up to information from the tracker. The chambers detect muons using

three different types of gaseous detectors, which output electrical signals when charged

particles (namely muons) pass through and ionize the gas. These are the drift tubes

(DTs) in the barrel region, cathode strip chambers (CSCs) in the endcaps, and resistive

plate chambers (RPCs) in both the barrel and endcap regions.

There are four layers of DTs in the barrel, arranged in concentric cylinders and made

up of a total of 250 individual chambers. They use an ionizing gas mixture of argon (Ar)

and carbon dioxide (CO2) and detect ionization using gold plated steel wires. These wires

alternate in direction to be perpendicular or parallel to the beam line in order to localize

muon signals in that plane as they traverse the different radial detector layers. The DT

layers are interspersed with five RPC layers, which are simple gaseous detectors involving

a potential and two parallel metal plates. While not as good at spatial resolution as the

DTs and CSCs, these RPCs provide excellent time resolution on the order of a few

nanoseconds.
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There are a total of 486 CSC detectors on the endcaps, which deliver excellent spatial

resolution (on the order of 100 µm) of charged muons traveling in the direction of the

beamline. These are gaseous chambers containing 6 anode wire layers alternated with

7 cathode strip panels in each. The 5 layers of CSCs on each side are also interspersed

with 3 RPC layers for better timing resolution.

3.2.6 The Trigger System

Coping with data rates in CMS is a daunting task. It would be impossible to store

information from every collision within CMS: with about one billion proton-proton col-

lisions occuring per second, this would mean about 1000 terabytes of data per second

[21], [20], [23]. The CMS trigger system is therefore tasked with filtering out less in-

teresting events in order to reduce this data rate by a factor of 10 million to about 100

megabytes per second. It employs two tiers: a level-1 (L1) hardware trigger and a more

sophisticated high-level-trigger (HLT).

The L1 trigger is based on FPGAs and calculates basic momentum and position

information for objects such as muons, electrons, jets, and energy sums in order to make

quick decisions to keep or reject events. Its goal is to reduce data rates by a factor of

about a million to a rate of about 100 kHz or less. To do this the L1 trigger hardware

makes decisions in less than 1 µs [21].

Once passing the L1 trigger, events are passed to the HLT trigger, which uses more

precise and complex trigger decisions that involve partial event reconstruction and infor-

mation from the inner tracker. This is a software trigger that runs on a computer farm

close to the detector. The goal of the HLT is to reduce data rates to less than one kHz.

Events that pass the HLT trigger are subsequently passed to data storage and processing

for reconstruction and analysis.
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3.3 Reconstruction and Definitions of Physics Ob-

jects

The raw output of the CMS experiment involves data events filtered by the L1 and

HLT triggers and containing particle locations (”hits”) and energy deposits from the

various subdetectors. This information must be reconstructed to form a hypothesis of the

particle types, momenta, energies, and tragectories within an event. This is done using

reconstruction algorithms, namely the Particle Flow (PF) algorithm. This algorithm

reconstructs the primary interaction vertex (PV) of proton-proton collisions, the sum

of the present and missing transverse momenta (MET) in an event, as well as analysis

objects such as electrons, photons, muons, hadronically decaying taus, and jets. Other

more complex analysis objects, such as hadronically decaying bottom and top quarks,

are reconstructed using other higher-level algorithms.

The PF algorithm is described in detail in reference [24]. It first collects and groups

information from the various subdetectors into preprocessed PF objects, including tracks

of charged particles from the tracker, clusters of energy deposits in the ECAL and HCAL,

and tracks within the muon chambers. It then uses an algorithm to spatially link this

information, before deriving reconstructions of analysis objects, for example particles,

primary verticess, and jets.

3.3.1 Primary Vertices (PVs)

The primary vertex (PV) refers to the reconstructed location of the proton-proton

collision of an event of interest. In order to reconstruct these vertices, first tracks in

a given event are identified and selected by a track finding algorithm based on their

goodness of fit and the number of hits in the tracker. Tracks are then clustered and
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matched to the closest collision vertices along the beam line. The PV is identified as

the vertex that, when fit to these clustered tracks, yields the highest sum of associated

scalar transverse momenta. Other unimportant proton-proton interaction vertices are

discarded, along with their associated particles and tracks.

3.3.2 Muons

Muons are distinctive particles with long-lived charged particle tracks that curve

within the magnetic field from the solenoid magnet and often travel through the entire

detector volume. They are reconstructed using information from the tracking system

and the muon chambers using two different reconstruction techniques. The first type of

PF muon is the tracker muon. These must have charged particle tracks in the silicon

tracking system that are identified as likely muon candidates that can be matched to

tracks in the muon system. The second type are global muons. Rather than starting

with the tracker and matching to tracks in the muon chambers, these start with tracks

in the muon chambers that are extrapolated back to tracks in the tracker previously

unidentified as muons. Additional selections are subsequently applied to suppress fakes.

Using these two definitions, PF is able to reconstruct 99% of the muons that pass through

the CMS detector.

3.3.3 Electrons and Photons

Electrons often appear as tracks that bend in the magnetic field according to their

charge in the tracking system before decaying into energy clusters in the ECAL. Photons,

similarly, appear as charged particle energy clusters in the ECAL, but as neutral particles

they lack charged particle tracks in the tracker. Both particles involve the reconstruction

of energy clusters in the ECAL, which start from cells with higher-energy deposits that are
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grouped with neighboring cells into clusters of energy deposits. These clusters are further

grouped together to form larger ”superclusters” (SCs). PF then evaluates the likelihood

of these SCs as coming from electrons vs. photons or charged hadrons by matching

them to tracks in the tracker and corresponding clusters in the HCAL. Unlike muons,

which have clear tracks and their own dedicated muon detectors, the reconstruction of

energy deposits in the ECAL and potential overlap with other particles make electron and

photon reconstruction more challenging (and less efficient) than muon reconstruction.

3.3.4 Jets

Jets are hadronic collimated clusters of energy deposits reconstructed from hits in the

HCAL. These can be associated with charged or neutral hadrons, which in the charged

case can be associated with tracks and possibly showers in the tracker and ECAL respec-

tively. Jets are identified by PF using the anti-kT algorithm [24], [25], [26] implemented

using FastJet [27]. As a cluster algorithm this works, in essence, by defining a distance

between hits and using it to iteratively group clusters of hits until the resulting clusters

are far enough apart from each other. The optimal HCAL hit clusters are then defined

as jet candidates [28].

Jets are defined using a distance parameter R related to the thickness of the jet.

Objects referred to as ”jets” have a distance parameter of R = 0.4, whereas in this thesis

”fat jets” refer to objects with a distance parameter of R = 0.8. Jet reconstruction

efficiencies are limited by the accuracy of the clustering algorithm and jet reconstruction,

due in part to the difficulty of disentangling jet overlap.

3.3.5 Missing transverse energy (MET)

MET is an important quantity measured in proton-proton collisions that offers infor-
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mation about particles that are not detected, which can include for example neutrinos

(which are very light and only interact weakly) and potential BSM particles. Assuming

the momenta of reconstructed final state particles are balanced in the transverse (not

along the beamline) plane, any missing transverse momentum is indicative of undetected

particles. This is heavily reliant on reconstruction efficiencies and therefore the PF al-

gorithm. Mathematically, MET, or pmissT , is defined as the magnitude of the negative

vectorial sum of all reconstructed particle momenta MET= | −
∑particles

i pT,i|.

3.3.6 b-tagging

Jets coming from bottom quarks (b-jets) are distinct in that after being produced

at a primary vertex, they can travel for a relatively large distance (on the order of

centimeters for energies on the order of a hundred GeV) in the detector before decaying

at a secondary vertex, as visualized in Figure 3.4. This characteristic is very useful in

the identification of b-jets by identification (”b-tagging”) algorithms. While there are

several b-tagging algorithms used by CMS analyses, this thesis uses ”DeepJet” [29] with

a medium working point that corresponds to a 1% mistidentification rate of b-jets in

QCD multijet simulated events. DeepJet is based on a deep neural network (DNN) that

inputs low-level PF inputs (pre-complex reconstruction) from as many jet constituents

as possible, unlike other algorithms that use fewer, higher-level jet inputs. It performs

better than the next-best algorithm (DeepCSV) both compared to c-flavored and lighter

flavored jets as demonstrated in Figure 3.5. This algorithm was chosen due to this gain

in performance.
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Figure 3.4: Schematic of a reconstructed b-jet, showing the primary and secondary
vertices that result from their relatively long lifetime compared to lighter jets. This
characteristic is often exploited in b-jet identification algorithms along with other
kinematic information. [30]

3.4 Other Important Physical Concepts and Defini-

tions

This section briefly describes some key concepts used in the analysis described by this

thesis.

In order to describe the position and trajectories of measured particles and objects

CMS uses a coordinate system with its origin at the center of the detector, the z axis

along the beamline in the counterclockwise direction, the y axis upwards and the x axis

towards the center of the LHC ring. The transverse angle φ is defined between the x

and y axes, and the polar angle θ is defined between the z and y. However, rather than

using θ, the Lorentz-invariant psuedorapidity η is used. This is defined in terms of the

the absolute momentum of a particle p and the z component of this momentum pz:

η = −ln(tan(
θ

2
)) = −1

2
ln(

p+ pz
p− pz

) = arctanh(
pz
p

) (3.4)
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Figure 3.5: Performance of DeepJet vs. DeepCSV in simulated tt events in various
pT ranges and shown vs. light jets (udsg) and charm jets (c). For reference, the
analysis in this thesis uses a working point of a 1% mistag rate, which corresponds
to tagging efficiencies of between 40 and 60 % depending on the flavor and pT range.
[29]

This coordinate system is shown in Figure 3.6. The transverse plane in this system

is the x-y plane that is not in the direction of the beamline. The quantity pT is the

transverse component of the absolute particle momentum p, and HT is the scalar sum

of all transverse momenta in an event. If particle momenta are evenly distributed in

all directions in the x-y plane, HT can be expected to be low compared to if there was

more momentum in a particular direction. The latter tends to happen when there is a

heavier particle (such as a top quark) produced in an event, and so HT can serve as a

good discriminating variable when looking for heavy hadronic signatures.

As revealed in future chapters, the modeling of proton-proton collisions is complex
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Figure 3.6: The coordinate system used by the CMS detector. [31]

and requires many effects and uncertainties to be taken into account. One such effect is

the ”underlying event” (UE). In a proton-proton collision, ”leftover” partons that do not

engage in the hard scattering process also hadronize and decay into the detector. The

resultant extra hits and tracks are the UE. Another important consideration is pileup

(PU). It is possible (and indeed likely, at high luminosities corresponding to high rates of

rare events) for multiple hard scattering events to occur in one bunch crossing, leading

to multiple events with large momentum transfer that overlap and interfere with each

other. Both the UE and PU must be taken into account when simulating collision events

in CMS and when considering systematic and experimental uncertainties.
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Chapter 4

Statistical Methods

This section describes important concepts used to describe statistical results in this anal-

ysis. To summarize, a binned maximum likelihood fit is performed simultaneously in

signal region (SR) categories and using systematic uncertainties as nuisance parameters

in order to extract a signal strength based on a profile likelihood method. This closely

follows standard CMS statistical recommendations and uses standard statistical software

packages [32], [33], [34], [35].

4.1 Statistical Overview

In particle physics, the properties of signal processes (like four-top production) are

based on probabilistic models of how theoretical calculations manifest under experimen-

tal conditions. Statistical analysis, in a general sense, allows for the evaluation and

validation of these probabilistic models given experimental data. There are two schools

of thought when it comes to statistical inference: frequentist statistics and Bayesian

statistics [36]. Both frequentist and Bayesian interpretations motivate useful tools to

quantify the validity of a signal model and to describe statistical results in a particle
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physics analysis. Frequentist statistics interprets probability as the frequency of a given

outcome in a repeated experiment. Bayesian statistics adds subjectivity to the concept of

probability, in that Bayesian methods describe the probabilities of not only the measured

outcomes, but also of the original hypothesis. This is demonstrated by Bayes’ theorem,

which states that the conditional probability of observing some model m given data D is

equal to the conditional probability of observing the data D given the model m multiplied

by the probability of m divided by the probability of D:

P (m|D) =
P (D|m)P (m)

P (D)
(4.1)

In particle physics, this is perhaps more usefully written as:

P (theory|data) ∝ P (data|theory)P (theory) (4.2)

Where ”theory” is the theoretical model of a given signal and ”data” is the observed

data collected by the experiment. Here P (theory) reflects the subjective probability of

the experimental hypothesis prior to the experiment and P (data|theory) is the ”like-

lihood”, or the probability to have measured that data given that particular theory.

The likelihood is an important metric in quantifying the reliability of the theoretical

model and assumptions made in the experimental setup. This version of Bayes theorem

is reported as a proportionality relation because it must be summed over all possible

hypotheses.

In particle physics analyses, the theoretical model is made up of a set of parameters,

including the parameter of interest that describes the result (usually the signal strength),

and other ”nuisance” parameters, which typically describe the ”error” of statistical or

systematic uncertainties in the analysis. The signal strength, often represented by µ,

refers to how much signal is observed compared to what was predicted by theoretical
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models and simulation (µobs/µSM). The set of nuisance parameters is represented by θ.

This section has introduced three concepts core to statistical analysis: the likelihood

P (data|theory), the signal strength µ, and nuisance parameters θ. The next section

describes how a likelihood is constructed in practice, in terms of a toy ”counting experi-

ment”.

4.2 Constructing the Likelihood

A counting experiment can help to elucidate how to quantify and mathematically

define likelihoods which, in the context of particle physics, can be thought of as the

probability to get observed data given a theoretical model and experimental setup. The

likelihood depends on the parameter of interest µ and nuisance parameters θ. In a

counting experiment, the probability of counting some number of events x can be written

following a Poisson distribution with an expected total event yield λ:

Poisson(x|λ) =
λx

x!
e−λ (4.3)

In practice, distributions of observed variables in an experiment are binned in his-

tograms, for example in individual histogram and analysis category bins i over a total

of N bins. The probability of measuring x events given a statistical model λ that follow

this Poisson distribution (in other words the likelihood of x given λ) is:

p(x|λ) =
N∏
i

Poisson(xi|λi) (4.4)

This model λ describes all assumptions and uncertainties in the experiment, includ-

ing experimental detector uncertainties and efficiencies, uncertainties related to the the-

oretical modeling of signal and background events in simulation, and other systematic
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uncertainties. In practice, it is useful to express the number of expected events λi per

histogram and category bin i as the signal strength µ times the number of signal events

in that bin given nuisances si(θ) plus the number of background events in that bin given

nuisances:

λi = µ · si(θ) + bi(θ) (4.5)

The likelihood itself can be written in terms of a given measurement (“data”) as a

function of the signal strength µ and nuisance parameters θ over N histogram bins :

L(data|µ, θ) =
N∏

bin=i

Poisson(datai|λi) =
N∏

bin=i

(µ · si(θ) + bi(θ))
datai

datai!
e−(µ·si(θ)+bi(θ)) (4.6)

Here datai is the number of data events observed in bin i. An important note is that

nuisance parameters θ may depend on a given histogram bin i, not just on a given process

(signal or background). For example, for background, the number of events is equal to

the sum over background processes of the nominal expected number of background events

for that process in that bin, times the set of probabilities for each bin and process and

nuisance parameter (n) for the background:

bi(θ) =

processes∑
p

bp,i ·
dim(θ)∏
n

Pn,p,i(θn) (4.7)

The probability distributions for all nuisances Pn,p,i(θn) can be dependent or constant

per nuisance n, process p and bin i. This leads to different types of nuisance parameter

probability distributions and different corresponding correlations between them. In this

analysis, nuisances encountered are ”rate-based”, ”shape-based”, or ”statistical”. If a

nuisance affects the normalization of one or more processes in some or all bins (thus
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impacting the number of events or scale of some observable variable distribution rather

than its shape) this nuisance is described as a ”rate” or ”normalization” uncertainty, and

varying that nuisance parameter can change the number of events but not the shape of

distributions. If, on the other hand, observable distributions are affected, this nuisance

is a ”shape” uncertainty. Nuisances can also impact both the shape and normalization of

a given distribution. Lastly, in order to describe the statistics of simulated or predicted

events that infer the yield of a given process in a given bin, an additional nuisance

parameter per bin is assigned to account for statistical uncertainties [34], [35]. All of

these nuisances can be correlated or uncorrelated between processes or bins depending

on experimental and theoretical assumptions, and so must also be treated accordingly.

In particle physics, when searching for the presence or absence of a physical pro-

cess (signal) it is customary to discuss two likelihood models in an experiment: the

background-only (or ”null”) hypothesis such that µ = 0, and the signal hypothesis such

that µ > 0. Generally speaking, a signal process is ”discovered” when measured data is

found to be incompatible with the background only hypothesis. The next section will

define additional concepts that help to describe and quantify such results.

4.3 Profile likelihood ratios and other important sta-

tistical definitions

A profile likelihood ratio is a powerful quantity when it comes to comparing two

competing likelihoods. It can be written in terms of the parameter of interest (in this

case the signal strength µ) as

λ(µ) =
L(µ, θ̂(µ))

L(µ̂, θ̂)
(4.8)
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Here the ”hat” symbol denotes particular variables that maximize the likelihood L.

In other words, this equation reads that the profile likelihood is equal to the likelihood

at the value of θ = θ̂(µ) for which the likelihood is maximized for some µ, divided by the

likelihood at the value of µ and θ for which it is maximized. This constructed so as to

be independent of the nuisance parameters θ, allowing the likelihood to be a function of

the signal strength alone.

Maximizing the likelihood can often be more usefully written as minimizing the neg-

ative log likelihood −ln(L). This and the profile likelihood definition form the basis of

a central definition in statistics [37], [38] which defines a test statistic q̃(µ) that asymp-

totically converges towards a non-central χ2 distribution with one degree of freedom:

q̃(µ) =


−2lnλ̃(µ), µ̂ ≤ µ

0, µ̂ > µ

In other words, when the signal strength µ is less than or equal to the value of µ

that maximizes the profile likelihood µ̂, this test statistic is equal to a nonzero quantity

−2lnλ̃(µ). Otherwise, this test statistic is zero. q̃(µ) is therefore a quantity that dif-

ferentiates between the signal vs. background-only hypotheses in a way independent of

nuisances θ given a sufficiently large sample size. As visualized in Figure 4.1, any one

measurement leads to one observed value of q̃(µ) = q̃obs. A set of possible measurements,

for example sampled as toys from a statistical model or from an Asimov dataset (an

approximate dataset with free parameters set to expected values), allows for the deter-

mination of the probability f(q̃(µ)|µ) of getting an observed test statistic q̃obs given µ

. These quantities ultimately allow for the useful frequentist definition of upper limits

CLS.
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Upper limits express the compatibility of a statistical model with the signal strength

µ given an observed test statistic q̃(µ). The upper limit of the full S+B model CLS+B, for

example, is CLS+B =
∫
f(q̃(µ)|µ) · dq̃(µ). If one assumes the background-only case where

there is no signal (and so µ = 0) this upper limit becomes CLB =
∫
f(q̃(µ)|0) · dq̃(µ).

Most interesting is the measurement of the upper limit of the signal strength alone. This

can be expressed as CLS =
CLS+B
CLB

and is shown schematically in Figure 4.2. Upper

limits allow signal strengths to be quantified based on observation, and therefore are

commonly used as a measure of sensitivity. For example, the observed upper frequentist

limit on the value of µ above which the signal strength is excluded by the measurement

q̃obs with 95% confidence is calculated by setting CLS = 0.05. The ”expected” limit can

also be calculated by sampling q̃exp from a statistical model assuming no signal µ = 0. If

CLS(exp) > 1 in this case would mean that the background-only model would be expected

to explain the measurement as a gauge of the sensitivity of a blinded analysis.

Figure 4.1: Visualization of a measurement of an example test statistic q̃obs as a
probing of the distribution q(µ) at some value µ̃. Note that q(µ) approaches zero
at a certain µ = µ̂ that mamimizes the profile log likelihood, corresponding to the
minimum on the curve q(µ). Example lines are also shown for one and two standard
deviations from this maximum profile log likelihood.

The ”discovery” of a physical process can be defined using similar quantities in order

to construct the significance of an observation. Qualitatively, this is the statistical fluc-

tuation in a background-only probability distribution f(q̃(µ)|0) required to explain some
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Figure 4.2: Schematic visualizing the definition of CLS+B and CLB as the upper
limits of the signal+background and background-only hypotheses as a function of the
signal strength µ, defined as integrals over probability distributions f(q̃(µ)|µ). An
example line for q̃obs is shown, as well as the integrals L and R that make up the
signal-only frequentist upper limit CLS .

observation q̃(0). The significance is thus often expressed in terms of Gaussian standard

deviations σ. Mathematically, this means that q̃(0) is defined for the background-only

case as:

q̃(0) =


−2lnλ̃(µ), µ̂ > 0

0, µ̂ ≤ 0

and the probability of observing q̃(0) given µ = 0 is then

p(q̃(0)|0) =

∫
f(q̃(0)|0) · dq̃(0) (4.11)

In terms of Gaussian standard distributions this can be written as the following and

solved for the significance s:

p(q̃(0)|0) =

∫
s

1√
2π
e−x

2
/2 · dx (4.12)
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In particle physics a significance s > 3σ is often quoted as the threshold for ”evidence”

of a given physical process, and a significance s > 5σ is often quoted as the threshold for

a ”discovery”.

One final important statistical definition is the concept of ”pull”. Until now the deter-

mination of the parameter of interest (the signal strength µ) was discussed in the context

of finding the ”best fit” value µ̂ that maximizes the profile likelihood (or, equivalently,

minimizes the negative profile log likelihood). Physics analyses also often seek to quantify

the nuisance parameters that maximize the profile log likelihood σ̂(µ̂). This is done by

temporarily considering each nuisance parameter the parameter of interest and finding

its best fit value (with other nuisances held constant such that the fit is independent of

them). This can be done before (”pre-fit”) and after (”post-fit”) the observation q̃obs that

finds the observed signal strength µ. Pulls refer to the change of values and probability

distribution widths ∆θ of nuisance parameters before and after the fit in order to gauge

whether underlying assumptions about individual nuisances in the statistical model make

sense.

pull(θ) =
θpost − θpre

∆θpre
(4.13)
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Chapter 5

Analysis Technologies

This chapter gives brief overviews of some important technological and computational

tools used in this analysis. This includes machine learning algorithms used to discrimi-

nate between signal and background processes, simulation technologies used to simulate

particle physics processes in the CMS detector, data formats and structures for data

sample management, and statistical packages for performing profile maximum likelihood

fits in order to obtain sensitivity results.

5.1 Introduction to Multivariate Analysis and Ma-

chine Learning

Generally, multivariate analysis (MVA) involves a function that given a set of input

features (or multiple variables), makes a prediction about that input based on example

data. Machine Learning (ML) refers to computer models that construct the mathemati-

cal functions that perform these mappings from inputs to predictions. These models are

often extremely complex, involving many mathematical operations and parameters that

can be optimized to organize complex datasets based on patterns often unrecognizable
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by the human eye. ML algorithms can be supervised (trained on labeled training data),

unsupervised (training data is not labeled), or semi-supervised (some training data is

labeled). In supervised algorithms, optimization involves ”training” the model by mini-

mizing an objective loss function that compares predicted and ”true” expected outputs.

This involves a ”training” set of data that contains both inputs and true categoriza-

tion information. Supervised learning can be classification or regression, depending on

whether an algorithm is predicting discrete quantities, or a function of continuous val-

ues, respectively. In particle physics ML is commonly used for classification tasks, where

events are classified as signal or background based on their characteristics (for example

kinematic information). In these cases, the training set often takes the form of a sim-

ulated dataset containing generator-level ”truth” information regarding whether events

are actually coming from signal or background. The performance of ML algorithms is

often checked using another set of ”testing” data that the algorithm has not encountered

before, in order to evaluate performance and the need for further optimization. This

section will briefly discuss ML algorithms relevant to this analysis, including boosted

decision trees and neural networks. Sources [39], [40], were used as a reference for this

information, and contain more details and examples of other types of algorithms.

5.1.1 Boosted Decision Trees

A decision tree is a supervised ML model that works by iteratively partitioning data

in a flowchart-like (or branch-like) fashion (see figure 5.1). Decision trees can be used

for both classification and regression. A problem with decision trees is that they tend to

overfit data: they become very good at correctly labeling the training set but are not able

to generalize well to the test set. Boosted decision trees (or BDTs) help remedy this, by

sequentially training several decision trees that learn from the mistakes of the previous
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trees via a loss function. Models can be added sequentially until no further improvements

are made. A further innovation is gradient boosting, where each decision tree takes

into account and predicts the errors of previous trees, and the combination of the new

prediction and the prediction from the previous tree is what is propagated forward to

the final prediction. This technique uses gradient descent as the loss function. XGBoost

[41] is a common, powerful, and easily implementable gradient boosting agorithm that is

used in this analysis for a top-tagging algorithm, as described in Chapter 7.

Another BDT algorithm used in this analysis (in the event-level BDT described in

Chapter 9) is the CatBoost algorithm [42]. While also a gradient boosting algorithm,

this has the innovation of allowing what is called ”one-hot-encoding” in classification

problems. In simple terms, this allows for the algorithm to be egalitarian when treating

different categories rather than ranking them. In practice this means labeling categories

in a binary fashion as ”001”, ”010”, and ”100” rather than as ”1”, ”2”, and ”3”. When

doing this, the CatBoost algorithm also permutes the training set in random order, so

that each time it assembles a tree the labels are not necessarily the same. The effect

of this is often a reduction of overfitting. While older and simpler than many other

ML algorithms, decision trees are still relevant as very powerful algorithms that can

often achieve very similar performance with less computation time than more complex

techniques like neural networks. Of course, problems and datasets tend to lend themselves

to specific algorithms and optimization strategies, so an important part of building an

algorithm is the choice of one that is best suited to the problem at hand.

5.1.2 Neural Networks and Normalizing Flows

Like decision trees, neural networks (NNs, or deep neural networks, ”DNNs”) are

machine learning algorithms that are good at modeling data that has nonlinear relation-
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Figure 5.1: Schematic comparing the structure of a BDT (left) vs. a NN (right)
given inputs x and outputs y. Note that these are just example structures and that x
and y can be vectors of multiple inputs and outputs.

ships between features. Rather than categorizing data like branches on a tree, neural

networks are structured like a circuit of neurons, with multiple layers of ”nodes” linked

by complex connections. As such, they can be thought of as similar, but more complex

algorithms. They can be supervised or unsupervised, and supervised models can be used

for classification or regression.

On a fundamental level, a neuron processes one or several inputs in order to pro-

duce a single output. Inputs are weighted, combined, and passed through an activation

function (in order to ensure output is in a predictible, bounded form). Mathematically,

for example, a neuron could take two inputs x1 and x2, apply a bias b and weights w1

and w2, and apply an activation function F in order to get output y. If the inputs and

weights are written as vectors x and w, this is:

y = F (w1 · x1 + w2 · x2 + b), (5.1)
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y = F (w · x+ b). (5.2)

When neurons are connected together into layers, such that the outputs of neurons

in one layer become the inputs of neurons in another, the result is a NN (see Figure

5.1). Any layer of neurons between the input and output layers is a ”hidden” layer,

and the depth of a neural network refers to the number of hidden layers (and thus the

complexity of the network). Like BDTs, neural networks also optimize their performance

using loss functions. During training, a NN seeks to minimize its loss function evaluated

by comparing its outputs to truth-level output information from training data. There

are several types of loss function that can be chosen based on the data and problem

encountered. Negative log likelihood as described in Chapter 4, for example, can be used

as a loss function. A loss function that is used in this analysis is the Maximum Mean

Discrepancy (MMD) loss [43], [44], which computes the differential between the feature

means of a predicted distribution (generated by a network) and an observed distribution

(of data within a mini-batch, or small subset of the training data). In practice this loss

function is typically applied using the formula:

L(x, y) =
N∑
i=1

N∑
j=1

k(yi, yj)− 2
N∑
i=1

N∑
j=1

k(yi, xi) +
N∑
i=1

N∑
j=1

k(xi, xj) (5.3)

Where x and y are the true and predicted outputs, N is the number of outputs in

the x and y vectors, and k is the gaussian distribution with standard deviation σ given

by k(a, b) = e
−(a−b)2

σ .

The loss is minimized by calculating its partial derivative (in terms of the weights w

and the bias b for example) and using that to update the variables. For example, given

a learning rate η and stochastic gradient descent as an optimization function, after one

execution of a neural network weights w would be updated according to the loss function
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L such that

wnew = wold − η
∂L

∂w
. (5.4)

The optimization function in used in this analysis is the common ”Adam” optimizer

[45] which is based on higher-order stochastic gradient descent. After updating the

weights and bias, the NN has completed one epoch. It will continue training to minimize

the loss for a set number of epochs, or until performance has reached some desired

threshold.

A type of neural network relevant to this thesis is neural autoregressive flow (NAF)

[46]. This is an autoregressive NN that inputs information not just from the current

epoch, but also training information from previous epochs as additional inputs to the

model. A NAF learns an invertible, bijective function that expresses a transformation

between variables, namely sets of input and output variables x and y. It is therefore able

to predict distributions based on a complex set of input variables, which makes it handy

for predicting data-driven distributions as described in Chapter 10.

5.2 Monte Carlo simulation

Monte Carlo simulation, in simple terms, is a computerized way of modeling pos-

sible outcomes given the probability of each of those outcomes occuring. It calculates

possible results by sampling from input probability distributions in order to produce dis-

tributions of possible outcome variables. In the context of particle physics, Monte Carlo

(MC) generators simulate the results of particle collisions given theoretical calculations

and detector conditions from the initial collision event to the readout of ”data” in various

subdetectors [12], [47]. These generated events depend on theoretical probability distri-
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butions (for example related to parton distribution functions (PDFs), factorization and

renormalization scales, and the order of perturbative calculations), as well as detector

conditions (including for example detection and reconstruction efficiencies and the effects

of pileup). Therefore, simulated events are subject to various corrections to ensure they

behave in the same way as real data and systematic uncertainties related to the setup

of the MC generators used. These corrections and uncertainties are described in later

chapters.

5.3 Data format and organization

The size and storage of real and simulated CMS datasets is an important consideration

in CMS analyses, as processing time and storage requirements are often what slows down

or prevents an analysis from moving forward. In order to reduce file size and processing

time as well as to promote ease of use, a compact data format called ”NanoAOD” [48]

stores event information in numpy array format [49] at the expense of some information

loss, especially computationally expensive generator-level MC simulation information.

This analysis was specifically designed to be compatible with NanoAOD datasets.

5.4 Statistical packages

In order to apply the statistical methods discussed in Chapter 4 and to stay true

to standard CMS recommendations and procedures in the calculation of results, the

”combine” tool was used [32], [33], [34], [35]. This is a software package developed by

the CMS experiment to perform statistical computations, and is very commonly used in

CMS analyses.
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Chapter 6

The Physics of Four-Top Production

So far, a general overview of the physics, methods, and technologies of CMS particle

physics analyses have been presented, including how different particle signatures can be

detected and signal strength measurements can be extracted from collision data. This

section now focuses on the particular process that is the main topic of this thesis, SM

tttt production in the all-hadronic final state. An overview of tttt final states and

backgrounds are discussed, as well as previous tttt results.

6.1 Standard Model Four-Top Production

Four-top production is a rare SM process that can occur in proton-proton collisions

through gluon fusion or (rarely) quark-antiquark annihilation. This can be mediated

via gluons (QCD), photons (electromagnetism), Z bosons (weakly), or a Higgs boson, as

shown in Figure 1.1. The predicted cross section for SM tttt production is 12.0+2.2
−2.5 fb

at next-to-leading order (NLO) [1], which thousands of times smaller compared to for

example the tt SM cross section of about 832+55
−64 pb [2]. Each of the four tops in four-top

production decay into a W boson and a bottom quark. The bottom quark hadronizes
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and may manifest as a b-jet in the CMS detector, and the W boson further decays either

hadronically, into a quark-antiquark pair that can hadronize into jets in the detector,

or leptonically, into a lepton and its partner neutrino. The neutrino passes through the

detector and can only be reconstructed as MET. If the lepton is a muon or electron, it

can produce tracks or showers respectively, but taus pose a challenge as they can also

decay hadronically and are difficult to reconstruct. For this reason, tau final states are

often unpopular final states in four-top analyses, and ”leptons” in the context of four-top

analyses refer only to muons or electrons.

Depending on how all four tops decay, there are various possible final states (or

”channels”) in four-top production, as outlined in Figure 6.1. Four-top analyses seek to

find evidence of a particular final state signature relative to backgrounds. Each of the

channels has its own likelihood of occurring and thus anticipates a given number of events,

and they each have backgrounds that have signatures like that of signal and thus must

be measured and discriminated against. In order for a given tttt signal to be detected

it must have enough events that are statistically significant with respect to backgrounds.

A major background in all channels, due to its close resemblance to signal, is tt, or top-

antitop pair production. While its signature is different from signal in that it contains

half the number of expected top quarks, discrimination is complicated by reconstruction

efficiencies, the potential radiation of extra jets or overlap with pileup. The most sensitive

four-top channels are those that most reduce this background, namely signatures where

two or more of the four tops, of which two are (anti)tops, decay leptonically into at least

two leptons of the same sign (so two (anti)electrons, two (anti)muons, or an (anti)muon-

(anti)electron pair). Because leptonic tt would always decay into two opposite-sign

leptons (a lepton and an antilepton), this eliminates tt as a background except in the

case of lepton sign misreconstruction, making such ”same-sign dilepton and multilepton”

final states the most sensitive despite not having the largest branching ratios. To date,
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this is also the only final state published for full Run II data in CMS, as shown in

Figure 6.2. This analysis observed a signal significance of 2.6σ compared to an expected

significance of 2.7σ in this channel [50]. This comes close to the 3σ threshold often

quoted as ”evidence” of the existence of a process. The most recent Run II ATLAS

results included several final states and reported an observed significance of 4.7 sigma,

close to the 5 sigma discovery threshold, compared to an expected significance of 2.6

sigma [51]. The analysis central to this thesis is part of an effort by CMS to study

tttt production in Run II data for multiple final states, in order to better compare

against ATLAS’s result and to be the first to study tttt production with an expected

significance of more than 3σ. This effort will add three additional final states to the

same-sign-dilepton result [50] in order to combine four analyses in total.

Two of these analyses are an improvement and extention of a 2016 result involving

the opposite-sign-dilepton and single-lepton final states [52]. These channels have to

contend with tt as a major background without the advantage of using lepton signs as a

discriminatory tool. The third addition, the all-hadronic channel, is the subject of this

thesis. This final state is absent of leptons and thus its tttt signature involves only jets.

It therefore not only has to contend with hadronic tt as a major background, but also

with QCD multi-jet backgrounds resembling signal. Lepton-containing signatures greatly

reduce these QCD backgrounds, which have enormous cross sections relative to signal

(1·1020 times that of signal) and are difficult to simulate: the large cross section means the

rates of rare QCD events are on the same scale as the tttt signal. The computational

power required to produce enough of these rare events to effectively simulate QCD is

so immense as to be impossible, and so these backgrounds need to be estimated using

alternative data-driven means. This makes all-hadronic tttt a very challenging final

state when it comes to achieving signal sensitivity. The remaining sections of this thesis

describe an analysis that seeks to do just that as the first all-hadronic tttt final state
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measurement. The results will be a part of the aforementioned upcoming CMS Run II

multichannel paper, which is likely to be published in 2022.

The all-hadronic tttt analysis described here is significant in that it is the first analy-

sis of its kind that achieves sensitivity using novel analysis techniques that are potentially

applicable to other hadronic analyses. It is also important as part of a combined effort to

find and measure 3σ evidence of tttt production, and to compare with the unexpectedly

large signal significance seen in the similar ATLAS result [51]. As mentioned in Section

2, a measured excess of tttt signal could be evidence of BSM physics, and final states

involving tops are well-poised to measuring the top-Higgs Yukawa coupling. The mea-

surement of the cross section of SM four-top production is therefore an important test

of the SM, both in terms of measuring SM parameters, and probing for hints of physics

beyond it.

Figure 6.1: Branching ratios of various SM tttt final states. Possible final states and
their likelihood of occuring are shown as percentages.
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Figure 6.2: Summary of previous tttt results in ATLAS and CMS.
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Chapter 7

Object Selection

This chapter defines objects used in the all-hadronic tttt analysis that is the topic of this

thesis. Events are defined so as to contain no leptons and according to quality preselection

requirements for jets and vertices. In addition to PF reconstructed objects, additional

objects are defined, including b-tagged jets and hadronically decaying top quarks. These

definitions are discussed in the following sections, with particular attention paid to top

tagging as a new algorithm that was developed for this analysis.

7.1 Vertex selection

As is typically recommended in CMS analyses, the following standard selection criteria

are applied to interaction vertices reconstructed in an event:

• The vertices must come from fits to trajectories of reconstructed particle tracks

with positive χ2 values.

• There are at least 5 degrees of freedom in the vertex fit.
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• The distance, in absolute z, along the beam line from the nominal center of the

detector is less than 24 cm.

• The transverse displacement, ρ, from the beam line is less than 2 cm.

Selected events are required to have at least one vertex fulfilling these requirements. The

vertex which satisfies these criteria and has the highest
∑
p2

T of tracks associated to it is

taken to be the primary vertex (PV) from which the physics objects used in this analysis

originate.

7.2 Leptons

As this is an all-hadronic final state, leptons (muons and electrons) must be identified

in order to remove (“veto”) events containing leptons from consideration. Standard CMS

criteria are used to identify electron and muon candidates. Events with electron or muon

candidates identified with these criteria are vetoed from the analysis. The EGamma

POG “Fall17-noIso-v2” MVA with a “loose” working point [53] is used to select electron

candidates with pT > 15 GeV, |η| < 2.5 (excluding those in the barrel-endcap transition

region with 1.442 < |η| < 1.566). The “loose” muon definition recommended by the Muon

POG [54] is used to select muon candidates with pT > 15 GeV, |η| < 2.5. Both electron

and muon candidates are required to be isolated from hadronic activity by requiring

their relative “mini-isolation” quantity to be less than 0.4. The muon and electron

selections were chosen to be orthogonal to the single-lepton tttt channel, in order to

ease combination with this final state that is also mostly hadronic and so has the highest

potential for overlap.
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7.3 Jets

The jets selected for use in this analysis are PF jets clustered with the anti-kT al-

gorithm [55] with a distance parameter of 0.4, and using standard jet energy correction

and pileup correction procedures [56]. These corrections are applied in order to translate

jet energy measured in the detector to the true particle or parton energy. For quality

control, selected jets are also required to have pT > 35 GeV and to be within the tracker

volume (|η| < 2.4). Jets must also satisfy loose PF Jet identification criteria for data

collected in 2016 and tight PF Jet identification criteria for data collected in 2017 and

2018 as recommended by the JetMET POG [57],

7.3.1 b-tagging

As noted in Chapter 3, b-tagged jets are identified using the DeepJet algorithm [58].

The medium working point is used, corresponding to thresholds of 0.3093, 0.3033, and

0.2770 for 2016, 2017, and 2018, respectively.

7.3.2 Top- and W-tagging

The reconstruction of hadronically decaying top quarks involves reconstructing decay

products that result from b-quarks and other lighter quarks coming from W bosons from

jets in the hadronic calorimeter. As shown in Figure 7.1, at lower energies (below about

400GeV ) jets resulting from top decays are seperately reconstructable, or ”resolved”,

but at higher energies these decay products become columnated into larger boosted ”fat-

jet” objects. As indicated in Figure 7.2, most tops are expected to be in the resolved

regime in the tttt all-hadronic channel, however some sensitivity can be gained by also

reconstructing boosted tops as many leading and subleading tops are expected to be

boosted. For this reason, this analysis employs both boosted and resolved top tagging
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algorithms.

Figure 7.1: Illustration of resolved vs. boosted hadronic top decay.

The decay products of boosted top quarks with pT > 400 GeV, or of W bosons with

pT > 200 GeV, are expected to be contained within a ∆R radius of 0.8. The DeepAK8

algorithm is applied to jets clustered with the anti-kT algorithm using a distance param-

eter (R) of 0.8, i.e. twice the value used for the standard CMS jet collection, to identify

boosted hadronically decaying top quark and W boson candidates, within |η| < 2.4. This

algorithm was chosen because it is broadly and easily usable and has excellent perfor-
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Figure 7.2: pT distribution of gen-level simulated all-hadronic four-top events. The
pT of each of the four tops in the event is shown.

mance. This algorithm uses boosted top and W candiates passing a medium working

point corresponding to a 1% mistag rate in simulation. Boosted top quark and W boson

candidates are required to be separated by ∆R of at least 0.8 from the resolved top quark

candidates identified as described below to prevent overlap.

A dedicated BDT was developed for this search to identify moderately boosted top

quarks, whose decay products can be resolved into separate anti-kT R = 0.4 jets, and is

based on a resolved top quark tagger that was originally developed for a search for super-

symmetric partners to the top quark in the all-hadronic final state [59]. This algorithm

was developed to be compatible with centrally-produced reduced-data-format NanoAOD

samples (as opposed to larger MiniAOD samples) in order to significantly reduce time

and space needed for computing. It is the first resolved top tagger compatible with these

centrally-produced samples. It was also updated compared to the original algorithm to
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use DeepJet b-tag information. Three-jet resolved top candidates are formed starting

from one of up to four jets in the selected R = 0.4 jet collection with the highest DeepJet

b-tag values, which is designated the “b” jet candidate. Two additional jets are identified

from all unique two-jet combinations in the collection, excluding the already identified

b subjet, and are designated the “W” subjets. To reduce the combinatorial background

before making any tight selections, the choice of the two W subjets is subject to the loose

conditions that the mass of the system formed by the W subjets is within 40 GeV of the

true W boson mass and the mass of the combined three-jet system is within 80 GeV of

the true top quark mass. These three-jet combinations are candidates for the reconstruc-

tion of resolved top quarks. A lower energy threshold of 100GeV is also applied because

of reduced tagging efficiency in that region. The following variables form the inputs to

the BDT:

• The mass of the jet designated as the b constituent jet

• The pairwise invariant masses of the b jet with each of the W subjets.

• The mass of the top candidate (the top candidate four-vector is the sum of the

four-vectors of the constituent jets).

• The mass of the W candidate (the W candidate four-vector is the sum of the

four-vectors of the jets designated as the W subjets).

• The product of the top candidate pT and ∆R between the b jet and the W candi-

date.

• The product of the W candidate pT and ∆R between the W subjets.

• The “soft-drop condition” from the soft-drop declustering algorithm [60] reinter-

preted as a variable over the two W subjets: min(pT1,pT2)
pT1+pT2

∆R−2
j1,j2

. This measure tends
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to reject relatively soft collinear jets.

• The DeepJet b-tag scores of all three constituent jets.

• The DeepJet c-tag scores of the W subjets.

• The quark-gluon likelihood scores of the W subjets [61].

• The jet constituent multiplicities of the W subjets.

Input variables were chosen based on the original algorithm, and modified and opti-

mized to achieve best performance given NanoAOD compatability. The resultant BDT

is trained using the “XGBoost” package, with genuine and fake hadronic top candi-

dates taken from single-lepton and di-lepton tt simulation samples respectively, using

≈ 100, 000 simulated 2016 events from each sample. Resolved top candidates for the

analysis are selected using a medium working point, corresponding to BDT thresholds

of 0.9988, 0.9992, and 0.9994 for 2016, 2017, and 2018, respectively. This working point

corresponds to a misidentification rate of roughly 10% for jets from QCD multi-jet pro-

duction, as shown in Fig. 7.3. The candidates are required to have a pT > 100 GeV and

|η| < 2.4. If candidates overlap with one another within a ∆R of 0.4, the lower scoring

candidate is rejected.

Control regions are used to derive scale factors to correct the efficiencies and misiden-

tification rates in simulation to match data. These correction factors are parameterized

in the candidate pT, and uncertainties on measured scale factors are propagated as un-

certainties in the simulation-based estimates.

A zero-lepton, Nb = 1 region is used to derive the correction factors for the misidenti-

fication rate. The misidentification scale factor region was selected to be enriched in QCD

multijet events, and is orthogonal to the signal region via an exclusively 1-b-tagged jet

requirement. The strategy and selections used are modeled after those used to measure
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Figure 7.3: Resolved top candidate efficiency vs misidentification rate calculated for
tttt signal vs QCD multijet, all-hadronic tt, and single-lepton tt simulated events
for 2016 (left), 2017 (center), and 2018 (right). The working point in each year
(corresponding to a roughly 10% mistag rate in QCD) is indicated by a yellow line.

correction factors for the original version of the tagger. Events in this region are selected

with pure HT triggers, with further requirements of Nb = 1, Nj ≥ 6, and HT > 1200 GeV.

In this region, simulation is first renormalized to data. Figures 7.4-7.5 show the compo-

sition of events in this region. We correct for the estimated contamination from genuine

tops by subtracting the number of candidates matched to top quarks at the generator

level in simulation. Then, mistag rates are measured as a function of resolved top can-

didate pT by calculating the fraction of 3-jet candidates passing the resolved top tagger

working point. The scale factors are calculated as the ratio of the mistag rates measured

in data (after the subtraction of the estimated contamination from genuinely tagged

tops), and in simulation for candidates not matched to genuine tops. The scale factors

binned in candidate pT are shown in Fig. 7.6.

A single-muon control region is used to derive the correction factors for the tagging

efficiency. This region was selected to be enriched in semi-leptonic tt events, with similar

kinematics to the SR. The contamination from tttt signal is negligible in this region

(< 0.05% of all candidates). The strategy used to measure these scale factors was inspired

by the method used to measure scale factors for the DeepAK8 algorithm [62]. Events

in this region are selected with single-muon triggers, with further requirements of Nb ≥
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Figure 7.4: Distributions of resolved top candidate pT in data and simulation for
candidates passing the top tagger working point (upper row) and for all candidates
(lower row) for 2016 (left), 2017 (middle), and 2018 (right), in the region used to derive
the mistag rate scale factors. Contributions from different processes as estimated
from simulation are shown in the stacked histograms. The event yield in simulation
is scaled to match data inclusively in this region, prior to the application of the top
tagger working point.

2, Nj ≥ 4, pmiss
T > 75 GeV, and muon pT > 50 GeV. Jets are cleaned against leptons

and top candidates against muons (using ∆R of 0.4). The lepton selections used for

the single-lepton control region are the same as those used in the single-lepton tttt

search [63].The scale factors are calculated using a template fit of the top candidate

mass distribution to data in this region, for candidates passing and failing the top tagger

working point. As in the mistag scale factor region, simulation is first normalized to

data. The mistag scale factors described above are applied to candidates passing the

working point but that are not matched to top quarks at the generator level. Candidates

are split into three pT regions: low (100 − 300 GeV), medium (300 − 500 GeV), and

high (> 500 GeV). Two templates of simulated candidates binned in candidate mass
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Figure 7.5: Distributions of resolved top candidate pT in data and simulation for
candidates passing the top tagger working point (upper row) and for all candidates
(lower row) for 2016 (left), 2017 (middle), and 2018 (right), in the region used to
derive the mistag rate scale factors. Contributions from candidates matched and not
matched to top quarks at the generator level in simulation are shown in the stacked
histograms. The event yield in simulation is scaled to match data inclusively in this
region, prior to the application of the top tagger working point.

Figure 7.6: Mistag rates measured in data and simulation after subtracting the
estimated contribution from genuine tops (ε = number of candidates passing the
working point / total number of candidates) binned in candidate pT. Mistag scale
factors are defined as the ratio εdata/εMC.
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corresponding to candidates matched and unmatched to top quarks are fit to the data.

The fit is performed simultaneously for candidates passing and failing the resolved top

tagger working point. Scale factors are defined as SFeff = εdata/εpost-fit MC where ε is

the number of candidates passing the working point divided by the total number of

candidates and the post-fit simulation efficiency used for the efficiency scale factor is the

one corresponding to matched candidates. Candidate mass is used for the fit distributions

because it is independent of candidate pT. Figures 7.7-7.8 show the composition of events

in the region used to derive the scale factors. Figure 7.10 shows the results of the scale

factor derivation from the simultaneous fit.

Figure 7.7: Distributions of resolved top candidate pT in data and simulation for
candidates passing the top tagger working point (upper row) and for all candidates
(lower row) for 2016 (left), 2017 (middle), and 2018 (right), in the region used to
derive the efficiency scale factors. Contributions from different processes as estimated
from simulation are shown in the stacked histograms. The event yield in simulation
is scaled to match data inclusively in this region, prior to the application of the top
tagger working point.
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Figure 7.8: Distributions of resolved top candidate pT in data and simulation for
candidates passing the top tagger working point (upper row) and for all candidates
(lower row) for 2016 (left), 2017 (middle), and 2018 (right), in the region used to
derive the efficiency scale factors. Contributions from candidates matched and not
matched to top quarks at the generator level in simulation are shown in the stacked
histograms. The event yield in simulation is scaled to match data inclusively in this
region, prior to the application of the top tagger working point.

7.4 Missing transverse energy

The raw PF pmiss
T is computed as the negative vectorial sum of the transverse mo-

menta of all PF candidates. Standard corrections [64] provided and recommended by the

JetMET POG are applied to the pmiss
T . These corrections propogate jet energy corrections

to pmiss
T .
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Figure 7.9: Data vs pre- and post-fit distributions in candidate mass for top candi-
dates passing the working point in years 2016 (upper row), 2017 (middle row), and
2018 (lower row) for low (left column), medium (middle column), and high (right
column) pT ranges. Solid lines correspond to post-fit distributions and dashed lines
to pre-fit distributions. Candidates matched to generator-level tops are shown in red,
and the scale factor extracted from the fit is shown. Candidates unmatched to gen-
erator-level tops and total candidates are shown in green and blue respectively. The
ratio of data to the total pre- and post-fit simulation is shown in the ratio panels.
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Figure 7.10: Data vs pre- and post-fit distributions in candidate mass for top candi-
dates failing the working point in years 2016 (upper row), 2017 (middle row), and 2018
(lower row) for low (left column), medium (middle column), and high (right column)
pT ranges. Solid lines correspond to post-fit distributions and dashed lines to pre-fit
distributions. Candidates matched to generator-level tops are shown in red, and the
scale factors extracted from this fit are the same as in 7.9. Candidates unmatched
to generator-level tops and total candidates are shown in green and blue respectively.
The ratio of data to the total pre- and post-fit simulation is shown in the ratio panels.
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Chapter 8

Triggers and datasets

This chapter gives an overview of the triggers, datasets, and simulated events used in

the all-hadronic tttt analysis. Triggers are typically selected based on their likelihood

of containing the process of interest while still efficiently representing the overall data

collected in CMS. Datasets are the ensemble of experimental events selected given these

triggers. Simulated events are used to model backgrounds and signal, and those utilized

in this analysis are also discussed.

The data for this search are recorded using a suite of cross-triggers requiring the

presence of ≥ 6 jets, ≥ 1 or ≥ 2 b-tagged jets, and large HT. For part of the 2017

run, a 4-jet, 3-b jet, high HT trigger is included as well in order to maximize the trigger

efficiency. The HLT paths of the triggers used for the 2016, 2017, and 2018 data-taking

periods are listed in Table 8.1. These triggers were selected to cater to the large HT, and

jet and b-tagged jet multiplicites expected for tttt signal in the all-hadronic final state.

Trigger efficiencies measured in data were computed and applied as corrections to

simulated events in order to correctly represent detector performance. The efficiency

of the triggers used in this analysis was measured in an independent sample selected

with a single muon trigger (HLT IsoMu24 or HLT IsoMu27). The efficiency is measured
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Table 8.1: HLT paths corresponding to the triggers used for the search in 2016, 2017,
and 2018.

Data-taking period HLT path
2*2016 HLT PFHT400 SixJet30 DoubleBTagCSV p056

HLT PFHT450 SixJet40 BTagCSV p056
5*2017 HLT PFHT380 SixJet32 DoubleBTagCSV p075

HLT PFHT430 SixJet40 BTagCSV p080
HLT PFHT380 SixPFJet32 DoublePFBTagCSV 2p2
HLT PFHT430 SixPFJet40 PFBTagCSV 1p5

4*2018 HLT PFHT380 SixPFJet32 DoublePFBTagDeepCSV 2p2
HLT PFHT430 SixPFJet40 PFBTagDeepCSV 1p5
HLT PFHT400 SixPFJet32 DoublePFBTagDeepCSV 2p94
HLT PFHT450 SixPFJet36 PFBTagDeepCSV 1p59

in the 2D plane of Nb (number of b-jets) and Nj (number of jets) in the region where

the efficiency of HT leg is 100%. For each Nb and Nj bin in Nj ≥ 7, Nb ≥ 2, and

HT > 900 GeV, the trigger efficiency was computed as follows:

ε(Nj, Nb) =
Number of events passing OR of triggers and denominator selection

Number of events that passed HLT IsoMu24 or HLT IsoMu27
.

(8.1)
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Figure 8.1: Efficiency measured for search triggers as a function of Nj and Nb for
2016 (left), 2017 (middle), and 2018 (right) data. The Nj = 6 region used for the
validation test is shown as well. Plots by Chang Hwan Jung and Jae Hyeok Yoo.

Figure 8.1 shows the measured efficiency in the Nj and Nb plane for each year. The

dependence on Nb and Nj justifies the necessity of applying Nj and Nb dependant correc-
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tions to simulated events in order to reflect trigger efficiencies in data. The bottom row

corresponds to Nj = 6 and shows low efficiencies due to the requirement of Nj ≥ 6 in the

trigger paths. This region is used only for the validation of the background estimation

methods, as discussed in Section 10.3.
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Figure 8.2: Trigger turn-on vs HT before (top) and after (bottom) correcting for
efficiencies measured as function of Nj and Nb for 2016 (left), 2017 (middle), and
2018 (right) data. Plots by Chang Hwan Jung and Jae Hyeok Yoo.

Figure 8.2 shows the HT turn-on for each year before and after applying the Nj- and

Nb-dependent corrections. Before the corrections, the efficiency in the plateau region

(HT > 900 GeV) deviates from unity. After the corrections are applied, the plateau

efficiency is close to 1. A correction for the residual inefficiency in the 700 < HT <

900 GeV region is also applied. Trigger studies for this analysis were done by Chang

Hwan Jung and Jae Hyeok Yoo.

Datasets used in this analysis are listed in Table 8.2. The simulated Monte Carlo

(MC) samples used to model background processes and tttt signal are listed in Tables
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8.3-8.5. The NanoAODv6 data format is used for all datasets. Some samples, such as

simulated tt and QCD datasets, are exclusively used for testing and validation.

The following corrections are applied to simulated samples in order to reduce dis-

crepancies between data and simulation: b-tagging scale factors (calculated using the

iterative fit method 1(d)) along with Nj and HT dependent reweighting as described

in Appendix C, reweighting of pileup distributions, trigger efficiency corrections, scale

factors to correct the efficiencies for boosted W and top tagging using the DeepAK8

algorithm, and scale factors to correct the efficiency and misidentification rate for the re-

solved top tagger as described in Section 7.3.2. Scale factors to account for discrepancies

in lepton veto efficiencies were found to be so close to 1 as to have a negligible effect.

Table 8.2: Datasets used in the analysis.
Year Dataset

7*2016 (35.9 fb−1) /JetHT/Run2016B ver2-Nano25Oct2019 ver2-v1

/JetHT/Run2016C-Nano25Oct2019-v1

/JetHT/Run2016D-Nano25Oct2019-v1

/JetHT/Run2016E-Nano25Oct2019-v1

/JetHT/Run2016F-Nano25Oct2019-v1

/JetHT/Run2016G-Nano25Oct2019-v1

/JetHT/Run2016H-Nano25Oct2019-v1

5*2017 (41.5 fb−1) /JetHT/Run2018B-Nano25Oct2019-v1

/JetHT/Run2018C-Nano25Oct2019-v1

/JetHT/Run2018D-Nano25Oct2019-v1

/JetHT/Run2018E-Nano25Oct2019-v1

/JetHT/Run2018F-Nano25Oct2019-v1

4*2018 (59.7 fb−1) /JetHT/Run2018A-Nano25Oct2019-v1

/JetHT/Run2018B-Nano25Oct2019-v1

/JetHT/Run2018C-Nano25Oct2019-v2

/JetHT/Run2018D-Nano25Oct2019-ver2-v1
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Table 8.3: Simulated samples used for the analy-
sis of 2016 data. The datasets used are from the RunIISummer16NanoAODv6 campaign.

Category Sample name Cross section [pb]
tttt TTTT PSWeights TuneCUETP8M2T4 13TeV-amcatnlo-pythia8 0.012
tt TT TuneCUETP8M2T4 13TeV-powheg-pythia8 831.76
QCD multi-jet QCD HT200to300 TuneCUETP8M1 13TeV-madgraphMLM-pythia8 1710000

QCD HT300to500 TuneCUETP8M1 13TeV-madgraphMLM-pythia8 348000
QCD HT500to700 TuneCUETP8M1 13TeV-madgraphMLM-pythia8 32100
QCD HT700to1000 TuneCUETP8M1 13TeV-madgraphMLM-pythia8 6830
QCD HT1000to1500 TuneCUETP8M1 13TeV-madgraphMLM-pythia8 1210
QCD HT1500to2000 TuneCUETP8M1 13TeV-madgraphMLM-pythia8 120
QCD HT2000toInf TuneCUETP8M1 13TeV-madgraphMLM-pythia8 25.3

ttX (X=W,Z,H) TTWJetsToLNu TuneCUETP8M1 13TeV-amcatnloFXFX-madspin-pythia8 0.2043
TTWJetsToQQ TuneCUETP8M1 13TeV-amcatnloFXFX-madspin-pythia8 0.5297
TTZToLLNuNu M-10 TuneCUETP8M1 13TeV-amcatnlo-pythia8 0.2529
TTZToQQ TuneCUETP8M1 13TeV-amcatnlo-pythia8 0.5297
ttHTobb M125 TuneCP5 13TeV-powheg-pythia8 0.2934
ttHToNonbb M125 TuneCP5 13TeV-powheg-pythia8 0.2151
TTGJets TuneCUETP8M1 13TeV-amcatnloFXFX-madspin-pythia8 3.697

tZq tZq ll 4f 13TeV-amcatnlo-pythia8 0.0758
tZq nunu 4f 13TeV-amcatnlo-pythia8 TuneCUETP8M1 0.1379

Single-top ST s-channel 4f InclusiveDecays 13TeV-amcatnlo-pythia8 10.32
ST tW antitop 5f inclusiveDecays 13TeV-powheg-pythia8 TuneCUETP8M1 35.85
ST tW top 5f inclusiveDecays 13TeV-powheg-pythia8 TuneCUETP8M1 35.85
ST t-channel top 4f inclusiveDecays 13TeV-powhegV2-madspin-pythia8 TuneCUETP8M1 136.02
ST t-channel antitop 4f inclusiveDecays 13TeV-powhegV2-madspin-pythia8 TuneCUETP8M1 80.95

Other backgrounds WJetsToQQ HT400to600 qc19 3j TuneCUETP8M1 13TeV-madgraphMLM-pythia8 270
WJetsToQQ HT600to800 qc19 3j TuneCUETP8M1 13TeV-madgraphMLM-pythia8 59.1
WJetsToQQ HT-800toInf qc19 3j TuneCUETP8M1 13TeV-madgraphMLM-pythia8 30.5
WJetsToLNu HT-400To600 TuneCUETP8M1 13TeV-madgraphMLM-pythia8 49.1
WJetsToLNu HT-600To800 TuneCUETP8M1 13TeV-madgraphMLM-pythia8 12.1
WJetsToLNu HT-800To1200 TuneCUETP8M1 13TeV-madgraphMLM-pythia8 5.47
WJetsToLNu HT-1200To2500 TuneCUETP8M1 13TeV-madgraphMLM-pythia8 1.33
WJetsToLNu HT-2500ToInf TuneCUETP8M1 13TeV-madgraphMLM-pythia8 0.032
ZJetsToQQ HT400to600 qc19 4j TuneCUETP8M1 13TeV-madgraphMLM-pythia8 115
ZJetsToQQ HT600to800 qc19 4j TuneCUETP8M1 13TeV-madgraphMLM-pythia8 27.5
ZJetsToQQ HT-800toInf qc19 4j TuneCUETP8M1 13TeV-madgraphMLM-pythia8 14.8
ZJetsToNuNu HT-400To600 13TeV-madgraph 3.59
ZJetsToNuNu HT-600To800 13TeV-madgraph 0.857
ZJetsToNuNu HT-800To1200 13TeV-madgraph 0.394
ZJetsToNuNu HT-1200To2500 13TeV-madgraph 0.096
ZJetsToNuNu HT-2500ToInf 13TeV-madgraph 0.002
WW TuneCUETP8M1 13TeV-pythia8 110.8
WZ TuneCUETP8M1 13TeV-pythia8 47.13
ZZ TuneCUETP8M1 13TeV-pythia8 16.523
DYJetsToLL M-50 TuneCUETP8M1 13TeV-amcatnloFXFX-pythia8 6077
DYJetsToLL M-10to50 TuneCUETP8M1 13TeV-amcatnloFXFX-pythia8 18610
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Table 8.4: Simulated samples used for the
analysis of 2017 data. The datasets used are from the RunIIFall17NanoAODv6 campaign.

Category Sample name Cross section [pb]
tttt TTTT TuneCP5 13TeV-amcatnlo-pythia8 0.012
tt TTToHadronic TuneCP5 13TeV-powheg-pythia8 377.96

TTToSemiLeptonic TuneCP5 13TeV-powheg-pythia8 365.34
TTTo2L2Nu TuneCP5 13TeV-powheg-pythia8 88.29

QCD multi-jet QCD HT200to300 TuneCP5 13TeV-madgraphMLM-pythia8 1550000
QCD HT300to500 TuneCP5 13TeV-madgraphMLM-pythia8 323000
QCD HT500to700 TuneCP5 13TeV-madgraphMLM-pythia8 30100
QCD HT700to1000 TuneCP5 13TeV-madgraphMLM-pythia8 6330
QCD HT1000to1500 TuneCP5 13TeV-madgraphMLM-pythia8 1090
QCD HT1500to2000 TuneCP5 13TeV-madgraphMLM-pythia8 99.1
QCD HT2000toInf TuneCP5 13TeV-madgraphMLM-pythia8 20.2

ttX (X=W,Z,H) TTWJetsToLNu TuneCP5 13TeV-amcatnloFXFX-madspin-pythia8 0.2043
TTWJetsToQQ TuneCP5 13TeV-amcatnloFXFX-madspin-pythia8 0.4062
TTZToLLNuNu M-10 TuneCP5 13TeV-amcatnlo-pythia8 0.2519
TTZToQQ TuneCP5 13TeV-amcatnlo-pythia8 0.5297
ttHTobb M125 TuneCP5 13TeV-powheg-pythia8 0.2934
ttHToNonbb M125 TuneCP5 13TeV-powheg-pythia8 0.2151
TTGJets TuneCP5 13TeV-amcatnloFXFX-madspin-pythia8 3.697

Single-top ST s-channel 4f leptonDecays TuneCP5 13TeV-amcatnlo-pythia8 3.36
ST s-channel 4f hadronicDecays TuneCP5 13TeV-amcatnlo-pythia8 6.96
ST tW antitop 5f inclusiveDecays TuneCP5 13TeV-powheg-pythia8 35.85
ST tW top 5f inclusiveDecays TuneCP5 13TeV-powheg-pythia8 35.85
ST t-channel top 4f inclusiveDecays TuneCP5 13TeV-powhegV2-madspin-pythia8 136.02
ST t-channel antitop 4f inclusiveDecays TuneCP5 13TeV-powhegV2-madspin-pythia8 80.95

Other backgrounds WJetsToQQ HT400to600 qc19 3j TuneCP5 13TeV-madgraphMLM-pythia8 316
WJetsToQQ HT600to800 qc19 3j TuneCP5 13TeV-madgraphMLM-pythia8 68.7
WJetsToQQ HT-800toInf qc19 3j TuneCP5 13TeV-madgraphMLM-pythia8 34.7
WJetsToLNu HT-400To600 TuneCP5 13TeV-madgraphMLM-pythia8 58
WJetsToLNu HT-600To800 TuneCP5 13TeV-madgraphMLM-pythia8 13.1
WJetsToLNu HT-800To1200 TuneCP5 13TeV-madgraphMLM-pythia8 5.4
WJetsToLNu HT-1200To2500 TuneCP5 13TeV-madgraphMLM-pythia8 1.07
WJetsToLNu HT-2500ToInf TuneCP5 13TeV-madgraphMLM-pythia8 0.008
ZJetsToQQ HT400to600 qc19 4j TuneCP5 13TeV-madgraphMLM-pythia8 145
ZJetsToQQ HT600to800 qc19 4j TuneCP5 13TeV-madgraphMLM-pythia8 34.4
ZJetsToQQ HT-800toInf qc19 4j TuneCP5 13TeV-madgraphMLM-pythia8 18.5
ZJetsToNuNu HT-400To600 13TeV-madgraph 13.1
ZJetsToNuNu HT-600To800 13TeV-madgraph 3.26
ZJetsToNuNu HT-800To1200 13TeV-madgraph 1.5
ZJetsToNuNu HT-1200To2500 13TeV-madgraph 0.342
ZJetsToNuNu HT-2500ToInf 13TeV-madgraph 0.005
WW TuneCP5 13TeV-pythia8 110.8
WZ TuneCP5 13TeV-pythia8 47.13
ZZ TuneCP5 13TeV-pythia8 16.523
DYJetsToLL M-50 TuneCP5 13TeV-amcatnloFXFX-pythia8 6077
DYJetsToLL M-10to50 TuneCP5 13TeV-madgraphMLM-pythia8 18610
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Table 8.5: Simulated samples used for the analy-
sis of 2018 data. The datasets used are from the RunIIAutumn18NanoAODv6 campaign.

Category Sample name Cross section [pb]
tttt TTTT TuneCP5 13TeV-amcatnlo-pythia8 0.012
tt TTToHadronic TuneCP5 13TeV-powheg-pythia8 377.96

TTToSemiLeptonic TuneCP5 13TeV-powheg-pythia8 365.34
TTTo2L2Nu TuneCP5 13TeV-powheg-pythia8 88.29

QCD multi-jet QCD HT200to300 TuneCP5 13TeV-madgraphMLM-pythia8 1550000
QCD HT300to500 TuneCP5 13TeV-madgraphMLM-pythia8 323000
QCD HT500to700 TuneCP5 13TeV-madgraphMLM-pythia8 30100
QCD HT700to1000 TuneCP5 13TeV-madgraphMLM-pythia8 6330
QCD HT1000to1500 TuneCP5 13TeV-madgraphMLM-pythia8 1090
QCD HT1500to2000 TuneCP5 13TeV-madgraphMLM-pythia8 99.1
QCD HT2000toInf TuneCP5 13TeV-madgraphMLM-pythia8 20.2

ttX (X=W,Z,H) TTWJetsToLNu TuneCP5 13TeV-amcatnloFXFX-madspin-pythia8 0.2043
TTWJetsToQQ TuneCP5 13TeV-amcatnloFXFX-madspin-pythia8 0.4062
TTZToLLNuNu M-10 TuneCP5 13TeV-amcatnlo-pythia8 0.2529
TTZToQQ TuneCP5 13TeV-amcatnlo-pythia8 0.5297
ttHTobb M125 TuneCP5 13TeV-powheg-pythia8 0.2934
ttHToNonbb M125 TuneCP5 13TeV-powheg-pythia8 0.2151
TTGJets TuneCP5 13TeV-amcatnloFXFX-madspin-pythia8 3.697

Single-top ST s-channel 4f leptonDecays TuneCP5 13TeV-amcatnlo-pythia8 3.36
ST s-channel 4f hadronicDecays TuneCP5 13TeV-amcatnlo-pythia8 6.96
ST tW antitop 5f inclusiveDecays TuneCP5 13TeV-powheg-pythia8 35.85
ST tW top 5f inclusiveDecays TuneCP5 13TeV-powheg-pythia8 35.85
ST t-channel top 4f inclusiveDecays TuneCP5 13TeV-powheg-madspin-pythia8 136.02
ST t-channel antitop 4f inclusiveDecays TuneCP5 13TeV-powheg-madspin-pythia8 80.95

Other backgrounds WJetsToQQ HT400to600 qc19 3j TuneCP5 13TeV-madgraphMLM-pythia8 316
WJetsToQQ HT600to800 qc19 3j TuneCP5 13TeV-madgraphMLM-pythia8 68.8
WJetsToQQ HT-800toInf qc19 3j TuneCP5 13TeV-madgraphMLM-pythia8 34.4
WJetsToLNu HT-400To600 TuneCP5 13TeV-madgraphMLM-pythia8 57.9
WJetsToLNu HT-600To800 TuneCP5 13TeV-madgraphMLM-pythia8 13
WJetsToLNu HT-800To1200 TuneCP5 13TeV-madgraphMLM-pythia8 5.56
WJetsToLNu HT-1200To2500 TuneCP5 13TeV-madgraphMLM-pythia8 1.09
WJetsToLNu HT-2500ToInf TuneCP5 13TeV-madgraphMLM-pythia8 0.008
ZJetsToQQ HT400to600 qc19 4j TuneCP5 13TeV-madgraphMLM-pythia8 145
ZJetsToQQ HT600to800 qc19 4j TuneCP5 13TeV-madgraphMLM-pythia8 33.8
ZJetsToQQ HT-800toInf qc19 4j TuneCP5 13TeV-madgraphMLM-pythia8 18.7
ZJetsToNuNu HT-400To600 13TeV-madgraph 13.1
ZJetsToNuNu HT-600To800 13TeV-madgraph 3.26
ZJetsToNuNu HT-800To1200 13TeV-madgraph 1.5
ZJetsToNuNu HT-1200To2500 13TeV-madgraph 0.349
ZJetsToNuNu HT-2500ToInf 13TeV-madgraph 0.005
WW TuneCP5 13TeV-pythia8 110.8
WZ TuneCP5 13TeV-pythia8 47.13
ZZ TuneCP5 13TeV-pythia8 16.523
DYJetsToLL M-50 TuneCP5 13TeV-amcatnloFXFX-pythia8 6077
DYJetsToLL M-10to50 TuneCP5 13TeV-madgraphMLM-pythia8 18610
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Chapter 9

Event Selection

This chapter describes criteria used in this analysis to target a signal rich selection of data

events. In order to isolate signal-like events in a statistically significant way, a general

baseline selection is first applied to reduce background and ensure quality of data. This

baseline selection is split into smaller ”signal region” (SR) categories with stricter (more

signal-like) selection requirements. These SR categories include both statistics rich but

signal reduced categories and lower statistics but signal enhanced ”sensitive” categories.

Finally, within those SR categories, an event-level BDT is used to define a variable

(BDT discriminant) that separates signal-like and background-like events by assigning

each event a score between 0 (”background-like”) and 1 (”signal-like”). The shape of this

variable within SR categories is used in a profile maximum likelihood analysis to test the

hypothesis of the presence of entirely hadronic four-top signal events vs. a background-

only hypothesis. The baseline selection, SR categories, and BDT algorithm are defined

and described in detail in this section.
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9.1 Baseline and signal region selection

The baseline selection used in this analysis was chosen to target hadronic four-top

events. This selection is applied to events passing the triggers described in in Chapter 8

and uses criteria and definitions described in Chapter 7 including requiring zero leptons.

In order to reduce tt backgrounds, a high number of jets (at least 9) are required, at

least 3 of which are b-tagged. A high HT cut (HT ≥ 700 GeV) is additionally applied to

reduce QCD backgrounds, as heavy flavor decays (like the decay of top quarks) can be

expected to have higher HT compared to the light-flavor decays that largely dominate

QCD events.

The signal region (SR) is defined using this baseline with the additional requirement of

at least one tagged resolved top. Events in the SR are then subdivided into 12 categories

based on the number of tagged resolved tops (NRT), the number of tagged boosted tops

(NBT), and HT. Table 9.1 defines these categories. These categories were optimized in

order to maintain adequate statistics while maximizing signal sensitivity.

Table 9.1: Definitions of the SR categories based on the number of resolved tops (NRT),
number of boosted tops (NBT), and HT.

Top tags HT [GeV]
NRT = 1, NBT = 0 700–800 800–900 900–1000 1000–1100 1100–1200 1200–1300 1300–1500 >1500
NRT = 1, NBT ≥ 1 700–1400 >1400
NRT ≥ 2 700–1100 >1100

9.2 Event-level BDT

An event-level BDT, implemented using the “CatBoost” library [65], is used to further

discriminate between signal and background in each SR category. The BDT is trained

to discriminate tttt simulated events against simulated background events from tt and

QCD multijet production after the baseline selection. The categorical features among
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the input variables are treated using one-hot encoder in CatBoost. 2016 simulation

samples are used for training. Several different algorithms were tested, but the CatBoost

BDT algorithm was found to have the best performance compared to BDTs using the

XGBoost package and neural net (NN) implementations. Additionally, training against a

background composition including both tt and QCD multijet events was found to provide

better discrimination than training against tt events alone.

Input variables for this BDT algorithm were chosen to take advantage of different

kinematic properties of tttt signal compared to major (tt and QCD) backgrounds. The

kinematics of jets, b-tagged jets and associated variables were tested as inputs for the

BDT in order to take advantage of differing jet multiplicities and kinematics between

signal and backgrounds. Variables similar to those used in the MVA developed for the

CMS single-lepton tttt analysis with 2016 data [66] were tested. The number of boosted

W candidates and the pT of the leading resolved top candidates and b-tagged jets were

also tested as inputs to help distinguish signal from QCD multijet and tt background

events, which tend to have fewer boosted, heavy flavour, or high pT objects. Furthermore,

variables were tested in order to take advantage of differing signal and background event

topologies. HT variables were tested in order to distinguish tttt from QCD multijet

events based on heavier vs. lighter flavor compositions as previously discussed. Hadronic

tttt events should also differ from hadronic tt background events in that jets from tt

events should have a less isotropic distribution due to their recoil from sources such as

initial-state radiation (ISR). Event shape variables were thus also tested to potentially

take advantage of this characteristic.

The number of resolved tops and boosted tops were not included as inputs in BDT

training in order to use them as (somewhat) independent variables for binning events in

SR categories. Resolved and boosted top discriminants were also disregarded as inputs

to the BDT in order to avoid introducing a stronger dependence on the shapes of these
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discriminants, which could potentially increase systematic uncertainties. In the end,

inputs to the BDT were narrowed down to the following optimized set of variables:

• The number of jets present in the event, Nj

• The number of b-tagged jets present in the event, Nb

• The number of boosted W candidates

• The sum of the masses of R = 0.8 jets

• The missing transverse energy, pmiss
T

• The scalar sum of pT of jets, HT

• The scalar sum of pT of b-tagged jets

• The pmiss
T divided by square root of HT

• The pT of the leading b jet

• The pT of the leading resolved top candidate

• The η difference between the leading and sub-leading jets

• The η difference between the leading and sub-leading b-tagged jets

• The absolute φ difference between the leading and sub-leading jets

• The absolute φ difference between the leading and sub-leading b-tagged jets

• The mean of the DeepJet b-tag scores of the b jets in the event

• The HT of the six highest-pT jets divided by the total HT in the event

• The transverse momenta of the jet with the seventh-largest pT in the event
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• Hadronic centrality (C), defined as the value of HT divided by the sum of the

energies of all jets in the event

• Event sphericity (S), calculated from all of the jets in the event in terms of the

tensor Sαβ =
∑

i p
α
i p

β
i /

∑
i |~pi|

2, where α and β refer to the three-components of

the momentum of the ı-th jet. The sphericity is then S = (3/2)(λ2 + λ3), where λ2

and λ3 are the two smallest eigenvalues of Sαβ.

• Event aplanarity (A), defined as A = (3/2)(λ3)

Tests were performed to validate and check the performance of this event-level BDT.

Comparisons between input variable distributions for signal and background are shown

in Fig. B.1 in Appendix B, although these comparisons use simulated QCD samples

rather than data-driven QCD distributions like those used in this analysis. Additionally,

as shown in Fig. 9.1, training and validation samples show similar distributions of BDT

discriminant values. In Fig. 9.2, ROC curves of BDT discriminant values for events

passing the baseline selection (left) and SR selection (right) using 2016 simulation samples

are plotted. These demonstrate that the BDT has the ability to distinguish between

signal the background even after the additional SR requirement of at least one resolved

top relative to the baseline. The BDT discriminant distribution for simulated vs. data

events is shown in Fig. 9.3 in a validation region requiring no resolved tops. ROC curves

showing similar performance in all 3 years (2016, 2017 and 2018) can be found in Fig. B.2

in Appendix B. BDT studies were done as a collaborative effort between the author and

Hayoung Oh of Korea University.
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Figure 9.1: The discriminator distributions for the BDT classifier for signal and
background in training and validation samples. Plot by Hayoung Oh.

Figure 9.2: ROC curves of the BDT discriminant value for events passing the baseline
selection (left) and SR selection (right). Plots by Hayoung Oh.
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Figure 9.3: BDT discriminant distribution for 2016 data and simulation events for
a 0-resolved top validation region, defined by requiring that events pass the baseline
selection and do not have a resolved top candidate. Only statistical uncertainties are
shown. Plot by Hayoung Oh.
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Chapter 10

Background estimation

As noted in Chapter 6 QCD multijet and hadronic tt are the most important back-

grounds in the four-top all-hadronic final state, largely due to their relatively large cross

sections and similarity to signal (as visually demonstrated in Figure 10.1). Other po-

tential backgrounds include hadronic tt +(H, W, Z, or gluons), single-top production,

dibosons (WW, WZ or ZZ), W or Z +jets, or Drell-Yan. A chart representing the rough

contribution of these backgrounds after baseline selection can be found in Figure 10.2.

These backgrounds share many characteristics with tttt signal, in that they are largely

made up of handronic activity and contain objects (tops, W hadrons, b-jets) that can be

misreconstructed to look like tops or other objects. With the added complication of ISR

and FSR jets many of these backgrounds can potentially very closely resemble signal. In

the case of the dominant QCD multijet and hadronic tt backgrounds, the use of Monte

Carlo (MC) simulation is problematic due to large uncertainties from next-to-leading or-

der (NLO) calculations in strong interactions and limited statistics. Indeed, it was found

that a MC simulation-based approach was unable to robustly predict QCD multijet and

tt +jets backgrounds in signal-like high jet and b jet multiplicity regions. This problem

most acutely impacts the QCD multijet background but it was found that the tt +jets
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background could also greatly benefit from better modeling and statistics as the back-

ground most difficult to separate from tttt signal. Therefore, data-driven methods are

used en lieu of simulation to predict both of these dominant backgrounds, while other,

more minor, backgrounds are predicted with the simulated samples listed in Chapter 8.

Two data-driven techniques are used to estimate 1)the absolute rate and 2)the shape of

the data-driven QCD multijet and hadronic tt backgrounds (the ”DD” backgrounds).

Both methods are inspired by the common ”ABCD” method, which identifies three or-

thogonal control regions (CRs) similar to the signal region (SR) and uses proportionality

relations between those regions to make a prediction about the background in the SR

given the background in the CRs. These methods are described in the following sec-

tions. Suyong Choi and Hayoung Oh were heavily involved in the development of these

techniques.

10.1 The extended ABCD relation

Data-driven background estimation methods typically extrapolate information from

at least one signal-depleted CR in order to predict backgrounds in the SR. By definition

these CRs are distinct from the SR in that they are orthogonal in at least one variable

but otherwise are very similar in order to justify this extrapolation. In this analysis, CRs

are defined to be orthogonal to the SR in two variables: the number of jets Nj and the

number of b-jets Nb . Selections are otherwise identical to the baseline selection. In the

”usual” ABCD method of extrapolation, the phase space is divided into four regions, one

of which is the SR and the remaining three CRs. The CRs are defined to have one fewer

number of jets or b-jets than the SR. The information from the 3 sidebands, the A, B,

and C CRs, is used to estimate the number of background events in the signal region,

D through proportionality (see Fig. 10.3). In order for this to be the case, it is assumed
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Figure 10.1: Schematic of expected final signatures of tttt signal vs. dominant
backgrounds. Note these signatures, in practice, are impacted by detection and re-
construction efficiencies and ISR/FSR among other effects, making these signatures
difficult to distinguish from one another. Furthermore, hadronic tt and QCD multijet
backgrounds have cross sections roughly 70 thousand and 80 million times that of
tttt, respectively.

that the Nj and Nb distributions are mostly factorizable, that signal in the CRs is small

compared to the SR, and that CRs are similar to the SR in terms of background shape

and composition. Formally, the estimate of the number of background events in region

D, Dpred, can be obtained by the following relation between the CRs: Dpred = B·C
A

.

It was found that the accuracy of the background yield estimates can be improved

by expanding this proportionality relation to include two additional CRs [67]. This

means that 5 CRs are used instead of the usual 3, by adding two CRs at lower jet

multiplicity. The newly added control regions are labeled X and Y as shown in Fig 10.3.
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Figure 10.2: Approximate makeup of background by percent contribution, post-base-
line selection (zero leptons, HT ≥ 700 GeV, Nj ≥ 9, Nb ≥ 3)

The estimate for ND, N̂D can be expressed by the following relation between control

regions : Dpred = (B·C
A

) · (C·X
A·Y ). In other words, it can be thought of as the usual ABCD

method proportionality term multiplied by a higher-order term. This method is referred

to as the ”extended” ABCD method, and is used in this analysis to predict the yields of

data-driven backgrounds.

To verify that this works, a closure test is performed using simulated event yields.

Simulated 2016 tt events requiring zero loose leptons and HT > 700 GeV are used. In

other words, using tt yields in CRs, the tt yield in region D is predicted and compared

to the true tt yield in D. The signal region is taken to be Nj ≥ 9 and Nb ≥ 3. CRs

are defined by Nj = 7, 8,≥ 9, and Nb = 2,≥ 3, and are orthogonal to the SR. Table

10.1 shows that the predicted yield agrees within 7% of the actual simulated event yield,

whereas the prediction from the standard ABCD method is off by 18%. This example

justifies the use of the extended method over the ”normal” ABCD relation.

In practice, in order to predict the yield of the QCD and hadronic tt backgrounds

using this method, the number of data events in each CR minus the number of simulated
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Figure 10.3: The control regions (A, B, and C) for the ABCD method and the added
adjacent control regions (X and Y) for the extended ABCD method. For our method,
the x axis corresponds to Nj, and the y axis to Nb .

Table 10.1: Event yields predicted by the extended ABCD method vs. traditional
ABCD method and true event yields in 2016 simulation with baseline selection applied

(0 leptons, Nj ≥ 9, Nb ≥ 3, and HT > 700 GeV). Only statistical uncertainties are
shown. Table by Hayoung Oh.

Extended ABCD ABCD True

2042 ± 31.52 1684 ± 17.88 2202 ± 21.17

minor background events are propagated through the extABCD formula in order to

predict the number of background events in the SR.
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10.2 The ABCDnn method

The extended ABCD method proportionality relation discussed in section 10.1 can

predict absolute rates of data-driven backgrounds, but does not address the shape of

these backgrounds. Thus, another technique, the ”ABCDnn” is introduced [68]. This

uses the same five CRs defined in Section 10.1, but in this case uses the full DD back-

ground BDT discriminant distributions (data - minor MC contributions) rather than the

event yields within those CRs. A deep neural network (DNN) is trained to transform

input distributions (in this case, simulated tt distributions) to match these DD BDT dis-

tributions in each consecutive CR. The transformation is applied to an input distribution

and morphs it to match the BDT distribution by translating, stretching, or squeezing of

the phase space for the condition defined with control variables. After training to morph

these tt input BDT distributions to match the DD background shape in the CR, the

NN then predicts the shape of the DD background in the SR. These predicted distri-

butions are then normalized to the yields derived in Section 10.1. Technically speaking,

the NN used is a NAF [46], and transformations between the distributions of feature

variables under different conditions are constructed as an invertible bijective function

that is learned during training. The training proceeds in the direction of minimizing

the maximum-mean-discrepancy [69] between the distributions of source (the input sim-

ulated tt distributions) and the target (the DD background BDT predictions). After

training, the learned transformation between the source and the target is applied to the

distribution of the tt simulation in the SR, which is subsequently morphed to predict the

shape of the tt +QCD multijet DD BDT. Figure 10.4 represents the schematics of this

method. This technique is powerful in that it can take into account complex correlations

between feature variables in order to predict complicated multi-dimensional distributions

(like a BDT discriminant).
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Figure 10.4: Method schematic for ABCDnn used in this study. Both simulation
and real data are divided into 5 CRs and SR with control variables of jet multiplicity
and b jet multiplicity. The transformation between data and simulation in the same
condition, ~c, is learned during training. The simulated and data events in the SR
are not used in the training. Instead, the transformation under the SR condition is
obtained from the training and applied to the distribution of simulation in the SR,
which is morphed to predict the distribution of data in the SR. Figure by Suyong
Choi.

A closure test was performed prior to applying this approach in data by morphing

input simulated tt BDT distributions to predict ttX distributions and comparing these

distributions to ”true” simulated ttX distributions. Here simulated ttX and tt events for

2018 were used with a selection of of 0 loose leptons, HT > 700 GeV and 1 or more resolved

tops. The signal region was defined as having Nj ≥ 9 and Nb ≥ 3. For the ABCDnn

training, the control regions are defined to exclude the SR with Nj = 7, 8, or ≥ 9 and

Nb = 2, or ≥ 3. To predict the shape of the BDT discriminant in SR bins, the simulated

ttX and tt events are separated into NRT and NBT categories, and the ABCDnn is applied

to each. The HT and BDT discriminant shapes of ttX and simulated tt in the CRs are

used as inputs, and their distributions in the SR for ttX are predicted. The predicted

HT distribution is used to split the predicted BDT shape into bins corresponding to the
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SR HT binning in each top-tag category. Figure 10.5 shows the distributions of the BDT

discriminants for tt events before and after morphing to predict the distribution of ttX

events using ABCDnn, as well as the actual distributions of ttX events, in the SR bins.

Although the BDT distributions of the source and target are fairly different, the method

is able to predict the target shape relatively well.
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Figure 10.5: BDT discriminant shape for tt events before morphing (gray), after
morphing (blue) and for ttX events (black) in the SR bins. The tt BDT discriminant
shapes before and after morphing are normalized to the yields from ttX. The lower
panel shows the ratio of the predictions to their true values. The tt distributions are
morphed to predict the shape of the ttX distribution using ABCDnn. The error bars
indicate the statistical uncertainty. Plots by Hayoung Oh.
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10.3 Validation of the background estimation meth-

ods

The background estimation strategy is validated in a validation region (VR) defined

with the requirement of Nj = 8, Nb ≥ 3 ( 10.6). The corresponding CRs used to estimate

the tt and QCD multijet background normalization and BDT shapes are defined by

Nj and Nb for Nj = 6, 7, 8, and Nb = 2,≥ 3, but excluding the Nj = 8, Nb ≥ 3 VR,

which becomes the region ”D” in the VR case. Figures 10.7-10.9 show predicted BDT

discriminant distributions vs. data in NRT, NBT, and HT VR categories corresponding to

those defined for the SR (Table 9.1). The shapes of the tt and QCD multijet background

BDT distributions are predicted using the ABCDnn technique and normalized to the

predicted yields obtained by applying the extended ABCD formula in each category.

Other processes are estimated from simulation.

Figure 10.6: Schematic of VR vs. SR selections.
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Figure 10.7: 2016 BDT shape predictions vs data corresponding to the SR bins de-
fined by NRT, NBT, and HT, for the 8-jet validation region. The tt and QCD multijet
background BDT discriminant shape is predicted by the ABCDnn and normalized to
the yields predicted by the extended ABCD method. Estimates for tttt signal and
other minor backgrounds are shown using simulated samples. The error bands shown
include only statistical uncertainties.
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Figure 10.8: 2017 BDT shape predictions vs data corresponding to the SR bins de-
fined by NRT, NBT, and HT, for the 8-jet validation region. The tt and QCD multijet
background BDT discriminant shape is predicted by the ABCDnn and normalized to
the yields predicted by the extended ABCD method. Estimates for tttt signal and
other minor backgrounds are shown using simulated samples. The error bands shown
include only statistical uncertainties.

96



Figure 10.9: 2018 BDT shape predictions vs data corresponding to the SR bins de-
fined by NRT, NBT, and HT, for the 8-jet validation region. The tt and QCD multijet
background BDT discriminant shape is predicted by the ABCDnn and normalized to
the yields predicted by the extended ABCD method. Estimates for tttt signal and
other minor backgrounds are shown using simulated samples. The error bands shown
include only statistical uncertainties.
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Chapter 11

Systematic Uncertainties

As discussed in Chapter 4, the overall goal of this analysis is to search for four-top

production using a likelihood analysis that is a function of the measured data as well

as nuisance parameters. These nuisances come from systematic uncertainties derived

from theoretical, experimental, or statistical sources that affect individual processes,

SR categories, or BDT distribution histogram bins differently and so must be treated

accordingly. This chapter introduces relevant systematic uncertainties in this analysis,

and discusses their treatment and importance.

11.1 Uncertainties of Data-Driven Backgrounds

As described in the previous section, tt and QCD multijet backrounds are data-driven,

with the number of background events predicted by the extended ABCD formula, and the

shape of BDT distributions predicted using the ABCDnn. This background estimation

strategy is therefore subject to the following uncertainties:

• The statistical uncertainties of the estimated QCD multijet + tt yields in each CR,

propagated through the extended ABCD formula.
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• The statistical uncertainty of the simulated tt events transformed to form each

predicted BDT discriminant distribution.

• The statistical uncertainties from the trigger efficiency corrections, parameterized

in Nb and Nj.

• A normalization uncertainty derived from the 8-jet validation region in order to

account for any disagreement between the BDT prediction and data in each SR

category. This is based on the level of disagreement observed between the data and

predicted background in the VRs (Fig. 10.7-10.9). This uncertainty is calculated

in each VR category as the sum in quadrature of two quantities: the deviation

of the weighted mean (average) of events in that VR category from 1, and the

weighted RMS of events in that VR category. The weighted mean 〈f〉 is defined as

〈f〉 = (
∑

i fiwi)/(
∑

iwi), for each discriminant histogram bin i in the VR top-tag

and HT category of interest, where the weight wi is the number of events in that his-

togram bin and fi is the ratio of observed events to predicted events (Ndata/Npred)

in that histogram bin. Thus, the mean is weighted to reflect the distribution of

events in the histogram, and the deviation of this weighted mean from 1 (1− 〈f〉)

reflects the overall offset in normalization between the prediction and the data.

Likewise, the weighted RMS is defined as
√
〈f 2〉 − 〈f〉2, and reflects the spread of

the disagreement between the prediction and the data in the histogram bins. This

method of quantifying the data-prediction discrepancy is based on recommenda-

tions from the CMS Statistics Committee. These uncertainties are derived from

the VR region and applied to the SR.

• A shape uncertainty derived from the 8-jet validation region in order to account for

any disagreement between the BDT prediction and data in each SR category based

on the level of disagreement observed between the data and predicted background
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in the VRs (Fig. 10.7-10.9). This uncertainty is calculated in each VR category

as the percent shift in BDT discriminant values (up and down, for example for a

variation of 2 percent this would correspond to BDT*1.02 for an up variation and

BDT*0.98 for a down variation) required to account for any discrepancies between

the data and prediction such that all data points agree with uncertainties in the

VR in high BDT regions. These percent shifts were found to range between 1 and

3 percent, and a minimum shift of 1 percent is always applied. Once calculated

in each VR category, the determined percent shift in BDT shape is applied to the

corresponding SR category. These are taken to be correlated across SR categories.

Additional tests and results of uncorrelating these uncertainties can be found in

Appendix A.

11.2 Uncertainties of Simulated Processes

Monte Carlo simulated samples are used for the tttt signal predictions and for other

minor backgrounds and so are subject to various systematic uncertainties related to the

modeling of the experiment, particle kinematics, and theoretical models. The relevant

sources of uncertainty affecting these processes are discussed below.

• Statistical uncertainties of the simulated samples.

• Uncertainties related to the boosted top and W tagging correction factors used to

correct the performance of the DeepJet algorithm in simulation to match data.Two

uncertainties are included: boosted top and boosted W uncertainties related to the

non-mass-decorrelated scale factors. These uncertainties are correlated (simultane-

ous variations) between processes but uncorrelated between years [58].

• Tagging and misidentification uncertainties related to resolved top tagging correc-
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tion factors used to correct the performance of the resolved top tagging algorithm

in simulation to match data, as described in Chapter 7. Two uncertainties for both

tagging efficiency and mistagging rate scale factors are considered, and uncertain-

ties in these stem from statistical uncertainties that arise in calculating the scale

factors. These are correlated between processes and uncorrelated between years.

• Uncertainties related to correction factors used to correct for the performance of

the DeepJet b-tagging algorithm in simulation with respect to data. The DeepJet

iterative fit/shape scale factors are used. Scale factors per event are calculated as

the product of the scale factors for all jets in a given event passing pre-selection.

The uncertainties are split into several sources, including those affecting HF (heavy-

flavor) or LF (light-flavor) jets, uncertainties from charm jets (cferr1 and cferr2),

and linear and quadratic statistical fluctuations (LFstats1, LFstats2, HFstats1, HF-

stats2). These are all considered as separate systematic variations, with statistical

variations correlated between processes and uncorrelated between years (LFstats1,

LFstats2, HFstats1, HFstats2) and others correlated between both processes and

years (HF, LF, cferr1 and cferr2). Combined jet energy scale (JES) variations in

the btagging scale factors are used when considering jet energy scale systematic

uncertainties as described below [7].

• Statistical uncertainties in trigger efficiencies calculated in data and applied to

simulation.

• Uncertainties associated to the pileup reweighting correction factor.

• Jet energy scale (JES) and resolution (JER) uncertainties impacting the recon-

struction of jets, including R = 0.4 and R = 0.8 jets, pmiss
T , and tagged top, W,

and b candidates and their correction factors. The JES systematic uncertainty is
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currently applied using the combined JES uncertainty, which is the sum of all 20+

JES uncertainty sources added in quadrature. The JES and JER are varied up and

down by their systematic uncertainties and propagate the effects through all anal-

ysis objects and selections. For example, for the ”jerUp” variation the R = 0.4 and

R = 0.8 collections obtained with the +1 standard deviation variation of the JER

are used, and all relevant quantities using those variations are recalculated, includ-

ing selecting jets and boosted objects and re-propagating the varied jets through

the resolved top algorithm. For JES variations, the b-tagging scale factors with the

jesUp/jesDown are also varied accordingly. JER and JES variations are correlated

between processes but not between years.

• Uncertainties related to lepton selection correction factors applied to simulation to

account for differences in lepton veto efficiencies between data and simulation.

• Uncertainties assigned to the integrated luminosity measured by the CMS exper-

iment for the 2016 [70], 2017 [71] and 2018 [72] data-taking periods that affect

simulation-based predictions.

• Theoretical uncertainties related to changes in renormalization (µR) and factor-

ization (µF ) scales, PDF, and strong coupling strength (αS) predictions affect all

simulated samples, but are most relevant for tttt signal predictions. The effect of

µR and µF on predicted event counts are estimated by varying µR and µF up and

down by a factor of 2 independently (i.e. just µR or just µF ) and simultaneously

(i.e. both µR and µF ) and assigning an uncertainty envelope based on the upper

and lower bounds of these uncertainty variations [73]. In calculating these vari-

ations, variations are first renormalized to the nominal sample. The uncertainty

related to PDF choice and αS is obtained from variations of the pdf sets stored in

each NanoAOD sample, as recommended in [74]. These weights are renormalized to

102



the nominal sample. For these, the standard deviation of the renormalized weight

variations is taken as the size of the uncertainty. The value of αS in parton showers

also leads to uncertainties related to the intial-state (ISR) and final-state radia-

tion (FSR) emissions in QCD events. These uncertainties are handled by varying

the renormalization scale of QCD (therefore αS) up and down by a factor of two in

both the ISR and FSR scales, using the variations stored as PSWeights in dedicated

NanoAOD samples. These are varied independently, (for example varying ISR up

and down and holding FSR constant). Overall, four separate theoretical uncertain-

ties are considered: pdf, µR/µF (also referred to as ME for matrix element), ISR,

and FSR. ME, ISR, and FSR variations are varied separately (uncorrelated) for

both ttX (when PSWeight samples are available) and tttt processes but correlated

between years. PDF variations are correlated between years and processes. Top

mass uncertainties are not expected to be a significant source of uncertainty and

are not considered.

• All of 2017 and some of 2016 data were affected by the L1 ECAL prefiring issue,

especially in jet-heavy analyses. The effect of the prefiring probability in the signal

region for 2016 and 2017 was investigated and a correction weight and uncertainty

to address this for tttt signal and ttX processes (X=W,Z,H) was assigned.

• Uncertainties in the theoretical cross sections used to normalize ttX backgrounds

are considered. These impact the number of ttX events in each SR bin. For

ttX processes (X=W,Z,H), an uncertainty of 26% is assigned based on the largest

deviation of the signal strength observed by CMS for any of these processes (relative

to the SM prediction), which corresponds to the observation of ttH [75] (albeit

with large uncertainties).

A summary of these uncertainties and their correlations and effects can be found
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in Table 11.1. The most significant systematics in this analysis are the VR-derived

shape and normalization uncertainties and those related to statistical uncertainties of the

dominant hadronic tt and QCD multijet data-driven backgrounds. These backgrounds

are most responsible for limiting the overall sensitivity of this analysis.

Table 11.1: Summary of systematic uncertainties and the ranges of their effects on
signal and background yields. The uncertainty type (shape vs normalization only),

affected processes, correlations (between processes and/or years), and effects on signal
and background yields as % are shown. Systematic uncertainties are considered for all

years unless otherwise indicated.
Name Type Processes Correlations tttt Signal Uncertainty (%) Background Uncertainty (%)
Statistics of data-driven backgrounds shape QCD+tt - - 5-30
Statistics of transformed samples shape QCD+tt - - 10
Statistics of simulated samples shape tttt, ttX, other - 0-20 0-20
Data-prediction normalization lnN QCD+tt - - 7-37
Data-prediction shape shape QCD+tt - - n/a
DeepJet b-tag SF (HF, LF, cferr) shape tttt, ttX, other processes+years 0-10 0-10
DeepJet b-tag SF (stats) shape tttt, ttX, other processes 0-10 0-10
Resolved top efficiency SF shape tttt, ttX, other processes 0-5 0-5
Resolved top mistag SF shape tttt, ttX, other processes 0-10 0-10
DeepJet boosted top SF shape tttt, ttX, other processes 0-5 0-5
DeepJet boosted W SF shape tttt, ttX, other processes 0-10 0-5
JER shape tttt, ttX, other processes 0-20 0-20
JES shape tttt, ttX, other processes 5-20 5-20
Pileup shape tttt, ttX, other processes 0-5 0-5
Trigger efficiency shape tttt, ttX, other processes 0-5 0-5
Lepton veto lnN tttt, ttX processes 0-5 0-5
Luminosity lnN tttt, ttX, other processes 2.3-2.5 2.3-2.5
PDF shape tttt, ttX processes+years 0-10 0-10
ISR shape tttt, ttX years 0-5 0-5
FSR shape tttt, ttX years 0-20 0-20
µR, µF shape tttt, ttX years 0-20 0-20
Cross section lnN ttX processes+years - 26
Prefire lnN tttt, ttX (2016, 2017) processes < 1 < 1
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Chapter 12

Results and interpretation

This chapter discusses the search for four-top signal in the all-hadronic tttt channel,

given a SR separated into categories of resolved and boosted top multiplicity and HT, and

using event-level BDT discriminant distributions in order to perform a profile maximum

likelihood fit. Four processes and their systematic uncertainties over the data taking

period of 2016-2018 are considered: tttt signal, the data-driven dominant tt and QCD

multijet backgrounds, the ttX background, and other minor backgrounds.

A binned likelihood analysis is carried out in the SR categories split by boosted and

resolved top multiplicity and HT as defined in Table 9.1. The systematic uncertainties

described in Chapter 11 are incorporated as nuisance parameters. The BDT discriminant

shapes for tttt signal, the tt and QCD multijet background predicted from data, and

ttX and other minor backgrounds estimated from simulation are provided as inputs for

each SR category. Up and down variations of the BDT discriminant shapes are likewise

provided as inputs for each nuisance parameter corresponding to shape-based systematic

variations (as listed in Table 11.1), while uncertainties affecting only the normalizations

of processes are implemented using log normally distributed constraints on the simulation

rates in each data-taking period. BDT discriminant shapes for the data-driven QCD and
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tt background prediction, and other backgrounds are estimated from simulation in each

SR category that are used as inputs for the combined fit are shown in Figs. 12.1-12.3.

Figure 12.1: 2016 BDT prefit shape predictions in the 12 SR bins defined by NRT,
NBT, and HT, for the signal region. The tt and QCD multijet background BDT
discriminant shape is predicted by the ABCDnn and normalized to the yields pre-
dicted by the extended ABCD method. Estimates for tttt signal and other minor
backgrounds are shown using simulated samples. The error bands shown include sta-
tistical uncertainties and uncertainties derived from the weighted mean and RMS to
account for discrepancies between data and the data-driven background estimate ob-
served in the VRs, as described in Section 11. Also shown are the up (blue) and down
(green) shape uncertainty variations described in the VR, also described in Section
11.

After unblinding, the observed tttt signal significance relative to the background-only

hypothesis and measured tttt cross section were calculated from a profile maximum-

likelihood fit with the cross section taken as the parameter of interest. A 95% confidence
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Figure 12.2: 2017 BDT prefit shape predictions shown in the 12 SR bins defined
by NRT, NBT, and HT, for the signal region. The tt and QCD multijet background
BDT discriminant shape is predicted by the ABCDnn and normalized to the yields
predicted by the extended ABCD method. Estimates for tttt signal and other minor
backgrounds are shown using simulated samples.The error bands shown include sta-
tistical uncertainties and uncertainties derived from the weighted mean and RMS to
account for discrepancies between data and the data-driven background estimate ob-
served in the VRs, as described in Section 11. Also shown are the up (blue) and down
(green) shape uncertainty variations described in the VR, also described in Section
11.

level (CL) upper limit will be set on the tttt cross section using the profile likelihood ratio

test statistic and asymptotic approximation and the modified frequentist approach [32,

76].

The signal strength (the ratio of the observed four-top production rate to the standard

model expectation) was measured to be µ = 5.1+2.3
−2.0 (68% CL). The expected significance
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Figure 12.3: 2018 BDT prefit shape predictions shown in the 12 SR bins defined
by NRT, NBT, and HT, for the signal region. The tt and QCD multijet background
BDT discriminant shape is predicted by the ABCDnn and normalized to the yields
predicted by the extended ABCD method. Estimates for tttt signal and other minor
backgrounds are shown using simulated samples.The error bands shown include sta-
tistical uncertainties and uncertainties derived from the weighted mean and RMS to
account for discrepancies between data and the data-driven background estimate ob-
served in the VRs, as described in Section 11. Also shown are the up (blue) and down
(green) shape uncertainty variations described in the VR, also described in Section
11.

for tttt production in the all-hadronic final state relative to the background-only hypoth-

esis is 0.43 standard deviations. The expected 95% CL upper limit on the cross section

from the all-hadronic channel alone is 4.88. The observed significance and 95% CL upper

limit are 2.25 standard deviations and 8.39, respectively. This corresponds to a mea-

sured cross section of 60± 24 fb. Table 12.1 lists the expected and observed upper limits
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Table 12.1: Expected and observed significances and limits times the standard model
tttt cross section for each year and for 2016, 2017, and 2018 combined (full Run 2).

obtained for each data-taking period. Postfit shape distributions (signal+background)

are shown in Figures 12.5- 12.7. Nuisance parameter impacts are shown in Fig. 12.4.

Statistical uncertainties are included both as normalization uncertainties on the total

rates in each category and bin-by-bin in the histograms of BDT distributions.

It can be noted that the fit to signal is larger than standard model expectations. While

a larger than expected signal strength was observed by ATLAS in multiple channels [51],

the most recent CMS Run II results (in the same-sign-dilepton channel) agreed with SM

expectations [50]. A CMS Run II SM combined result, including the all-hadronic, single-

lepton, and opposite-sign-dilepton channels combined with the already-published same-

sign-dilepton result, is still underway as of the writing of this thesis. Future analyses are

planned to explore potential BSM drivers of signal excesses.

The naming scheme for nuisance parameters in Figure 12.4 is as follows:

• RT#BT#htbin# - refers to the signal region bin. RT is for resolved tops and BT

is for boosted tops, and together they refer to the 1 resolved top, 0 boosted tops

(RT1BT0), 1 resolved top, 1 or more boosted tops (RT1BT1) and 2 resolved tops, 0
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or more boosted tops (RT2BTALL) bins. htbin refers to ht bin splitting. Nuisance

parameters with these labels refer to statistical uncertainties in the corresponding

signal region bins.

• prop binch# bin# - these are the bin-by-bin statistical uncertainties from autoM-

Cstats

• cross section - uncertainty on theoretical cross sections used to normalize ttX back-

grounds

• prefire - prefire uncertainty

• data-pred norm disagreement - normalization uncertainty to account for data to

background prediction discrepancy in 8-jet validation region

• data-pred shape disagreement - shape uncertainty to account for data to back-

ground prediction discrepancy in 8-jet validation region

• lumi - luminosity uncertainty

• elveto - electron veto systematics

• muveto - muon veto systematics

• pileup - pileup systematics

• trigger - trigger efficiency systematics

• jer - jet energy resolution, combined

• jes - jet energy scale, combined

• isr - initial state radiation uncertainty (from PSWeight variations)
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• fsr - final state radiation uncertainty (from PSWeight variations)

• ME - matrix element/ factorization and renormalization scale uncertainty (from

LHEScaleWeight variations)

• pdf - pdf uncertainty (from LHEPdfWeight variations)

• btagHF - DeepJet btagging scale factor uncertianty (heavy flavour)

• btagLF - DeepJet btagging scale factor uncertianty (light flavour)

• btagHFstats1 - DeepJet btagging scale factor uncertianty (heavy flavour stats1)

• btagLFstats1 - DeepJet btagging scale factor uncertianty (light flavour stats1)

• btagHFstats2 - DeepJet btagging scale factor uncertianty (heavy flavour stats2)

• btagLFstats2 - DeepJet btagging scale factor uncertianty (light flavour stats2)

• btagCFerr1 - DeepJet btagging scale factor uncertianty (CFerror1 uncertainties

from charm jets)

• btagCFerr2 - DeepJet btagging scale factor uncertianty (CFerror2 uncertainties

from charm jets)

• DeepJetTopSF - DeepJet boosted top SF systematics (not mass decorrelated)

• DeepJetWSF - DeepJet boosted W SF systematics (not mass decorrelated)

• ResTopEff - custom NanoAOD resolved top tagger SF efficiency systematics

• ResTopMiss - custom NanoAOD resolved top tagger SF mistag systematics
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Figure 12.4: Impacts for first 30 nuisance parameters. Note that the VR-derived
data-driven background uncertainties are the most important.
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Figure 12.5: 2016 BDT postfit shape predictions for signal+background shown in
the 12 SR bins defined by NRT, NBT, and HT.
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Figure 12.6: 2017 BDT postfit shape predictions for signal+background shown in
the 12 SR bins defined by NRT, NBT, and HT.
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Figure 12.7: 2018 BDT postfit shape predictions for signal+background shown in
the 12 SR bins defined by NRT, NBT, and HT.
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Chapter 13

Summary, Conclusions and Future

Results

This thesis gave an overview of an first all-hadronic four-top analysis using Run II data

with the CMS Experiment at the LHC. This analysis is significant as the first analysis

of its kind, in its use of novel machine learning tools such as the NN-based data-driven

background estimation and NanoAOD-based resolved top tagger, and as part of a larger

combination of four-top analyses in multiple final states with CMS that expect to see

evidence of four-top production corresponding to a significance of 3σ in a published result

expected in 2022. This combination is still going through the review process as of the

writing of this thesis. The all-hadronic analysis presented here observed a signal strength

larger than SM expectations, of about µ = 5.1+2.3
−2.0. The observed (expected) significance

and limit times the SM cross section were approximately 2.25 (0.43) σ and 8.39 (4.88)

respectively.

Given that an excess of four-top production compared to the SM could provide hints

of new BSM, for example evidence of heavy scalar or pseudo-scalar higgs-like bosons de-

caying to tops as predicted by many 2HDM and corresponding supersymmetric theories,
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this result as well as the upcoming combined result will likely motivate further BSM

searches for new physics. Future BSM interpretations in the all-hadronic final state and

other final states are planned. In addition, future four-top analyses after more data-

taking in CMS and ATLAS could ultimately lead to the discovery of four-top production

at an observed significance greater than 5σ. With more statistics, future four-top anal-

yses may also be sensitive to a precise measurement of the top-Higgs Yukawa coupling

compared to SM expectations. In the meantime the tools and techniques developed by

this analysis can be further developed and applied to other hadronic analyses to provide

improved sensitivity and insight.
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Appendix A

VR Data-Prediction Shape Based
Uncertainties

This appendix includes various tests regarding the inclusion of shape-based uncertain-
ties address data vs. prediction disagreements derived in the VR. As a reminder this
is a horizontal % shift in BDT discriminant value (value = value+value*% for the up
variation, for example), and shape variations are renormalized. The nominal version is
a shape variation correlated between SR categories within a single year and with a %
shift determined in the equivalent VR category such that, after applying the normal-
ization uncertainty derived in the VR, any remaining discrepancies in high BDT score
bins are accounted for. Distributions showing the % shift chosen and the corresponding
uncertainty bands can be found in Figs. A.2–A.4.
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Figure A.1: Summary of the VRnorm and VRshape uncertainties applied in each SR
category and year as derived in the VR. The VRnorm is derived using the weighted
mean and RMS of BDT histograms in the validation region, and is reported as a
percent error. The VRshape is derived as a horizonal percent shift in per-event BDT
values.
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Figure A.2: 2016 BDT shape predictions vs data corresponding to the SR bins
defined by NRT, NBT, and HT, for the 8-jet validation region. The tt and QCD
multijet background BDT discriminant shape is predicted by the ABCDnn and nor-
malized to the yields predicted by the extended ABCD method. Estimates for tttt
signal and other minor backgrounds are shown using simulated samples. The error
bands shown include statistical uncertainties as well as data-pred norm disagreement
and data-pred shape disagreement uncertainties to account for discrepancies between
data and the data-driven background estimate observed in the VRs as described in
Section 11 can be found in A.
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Figure A.3: 2017 BDT shape predictions vs data corresponding to the SR bins
defined by NRT, NBT, and HT, for the 8-jet validation region. The tt and QCD
multijet background BDT discriminant shape is predicted by the ABCDnn and nor-
malized to the yields predicted by the extended ABCD method. Estimates for tttt
signal and other minor backgrounds are shown using simulated samples. The error
bands shown include statistical uncertainties as well as data-pred norm disagreement
and data-pred shape disagreement uncertainties to account for discrepancies between
data and the data-driven background estimate observed in the VRs as described in
Section 11 can be found in A.
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Figure A.4: 2018 BDT shape predictions vs data corresponding to the SR bins
defined by NRT, NBT, and HT, for the 8-jet validation region. The tt and QCD
multijet background BDT discriminant shape is predicted by the ABCDnn and nor-
malized to the yields predicted by the extended ABCD method. Estimates for tttt
signal and other minor backgrounds are shown using simulated samples. The error
bands shown include statistical uncertainties as well as data-pred norm disagreement
and data-pred shape disagreement uncertainties to account for discrepancies between
data and the data-driven background estimate observed in the VRs as described in
Section 11 can be found in A.
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Figure A.5: Results including various schemes of including correlated shape uncer-
tainties, including the % variation needed to account for discrepancies in the VR, as
well as blanket 1%, 2%, 3%, and 4% variations are shown. Observed and expected
limits and significances for full Run II data in the less sensitive RT1BT0 categories are
shown. The normalization uncertainty addressing data vs. prediction disagreement is
included in all cases.
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Figure A.6: Results including no VR shape uncertainty, correlated VR shape un-
certainty and uncorrelated VR shape uncertainty. Observed and expected limits and
significances for full Run II data in the less sensitive RT1BT0 categories are shown.
The normalization uncertainty addressing data vs. prediction disagreement is included
in all cases.
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Figure A.7: 30 most important nuisance parameters for the case where shape uncer-
tainties are included and correlated between SR categories. This is the case that is
taken as nominal and used in Table 12.1 in the results section, although these impacts
represent results including the first 8 less sensitive SR categories only.

125



Figure A.8: 30 most important nuisance parameters for the case where shape uncer-
tainties are included and uncorrelated between SR categories. These impacts represent
results including the first 8 less sensitive SR categories only.
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Appendix B

Distributions of BDT inputs and
ROC curves
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Figure B.1: Distribution of BDT input variables using 16 MC after baseline selection.
The signal and backgrounds are normalized to 1. Plots by Hayoung Oh.

Figure B.2: ROC curves for event level BDT after SR selection for 2016 (left), 2017
(center) and 2018 (right). Plots by Hayoung Oh.
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Figure B.3: Distribution of BDT discriminants for simulated data after SR selection
for 2016 (left), 2017 (center) and 2018 (right). The lower inset shows signal divided
by square root of background bin by bin. Plots by Hayoung Oh.
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Appendix C

2D Nj/HT-dependent Corrections
for B-Tagging Scale Factors

Following recommendations during the object review, we have added Nj/HT-dependent
corrections to b-tagging scale factors. These correction factors are derived and applied
to tttt, ttX and minor background processes estimated from MC. For each of these
processes, the correction factors are derived as follows: two 2D distributions of event
yields for each simulated process passing the baseline with an inclusive selection Nb (at
least 9 jets, HT >700GeV, and no leptons) are filled as a function of Nj and HT. One
2D distribution has no b-tag scale factors applied (the numerator) and the other 2D
distribution has the b-tag scale factors applied (the denominator). The ratio of these
two distributions, binned in Nj and HT, corresponds to the correction factor for a given
process and year, as shown in Fig. C.1-C.9. This factor corrects for shape irregularities
as a function of Nj and HT as shown for example for tttt in Fig. C.10. These correction
factors are applied in tandem with the b-tagging scale factors per event and are varied
in turn with each of the separately considered b-tagging systematics (HF, LF, HFstats1,
LFstats1, HFstats2, LFstats2, CFerr1, CFerr2, and JEC). Bin sizes were chosen to ensure
adequate statistics.
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Figure C.1: 2D distributions of Nj and HT dependent corrections to B-tagging scale
factors for 2016 tttt.
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Figure C.2: 2D distributions of Nj and HT dependent corrections to B-tagging scale
factors for 2017 tttt.
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Figure C.3: 2D distributions of Nj and HT dependent corrections to B-tagging scale
factors for 2018 tttt.
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Figure C.4: 2D distributions of Nj and HT dependent corrections to B-tagging scale
factors for 2016 ttX.
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Figure C.5: 2D distributions of Nj and HT dependent corrections to B-tagging scale
factors for 2017 ttX.
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Figure C.6: 2D distributions of Nj and HT dependent corrections to B-tagging scale
factors for 2018 ttX.
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Figure C.7: 2D distributions of Nj and HT dependent corrections to B-tagging scale
factors for 2016 minor backgrounds.
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Figure C.8: 2D distributions of Nj and HT dependent corrections to B-tagging scale
factors for 2017 minor backgrounds.
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Figure C.9: 2D distributions of Nj and HT dependent corrections to B-tagging scale
factors for 2018 minor backgrounds.
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Figure C.10: Examples of b-tagging scale factors for 2016-2018 tttt 1D Nj and HT

distributions with and without corrections applied. Baseline selection with 1 or more
resolved tops applied.
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Appendix D

VR/SR Categorization Analysis

It was noted that for high HT and high top multiplicity (categories with 1 resolved top
and 1 or more boosted tops and 2 or more resolved tops) the 8-jet validation region
has significantly lower statistics than the SR. This is evident in Figure 10.7-10.9, and
impacts the data-prediction disagreement uncertainty propagated from VR to SR bins
as described in 11. The effects of combining the HT bins in the VR to better represent
the SR were considered, but ultimately it was decided to split the bins in the same way
as the SR for simplicity and because the overall sensitivity was not generally affected
by these variations, despite the possibility that the propagated uncertainties are slightly
too conservative. Effects of correlating or not correlating these uncertainties between
SR categories were also considered, and were found to have a minimal impact on the
sensitivity. We therefore decided to keep the uncertainty correlated between the different
SR categories, in order to reflect the possible correlation of effects as a function of HT

and top multiplicity. The following figures contain details of studies performed.

Figure D.1: Predicted QCD+tt yields for low HT, high HT, and combined HT bins in
relevant SR and VR categories. Note that the high HT bins (red) have more statistics
in the SR than the VR bins.
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Figure D.2: Data-prediction disagreement uncertainties for low HT, high HT, and
combined HT bins in relevant VR categories (and propagated to corresponding SR
categories).

Figure D.3: Senstitivity (expected limits and expected significance) for different
data-prediction discrepancy uncertainty scenarios related to splitting of VR HT bins.
”Both combined” and ”Both split” refer to combined low and high HT bins when
calculating the uncertainty in relevant VR categories. ”All correlated” and ”Not cor-
related” refer to whether the propagated uncertainties are correlated or not correlated
between SR categories in the datacards. The version used in 12 is ”All correlated”
”Both split”.
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Figure D.4: 2016 BDT shape predictions vs data corresponding to the SR bins de-
fined by NRT, NBT, and HT, for the 8-jet validation region, comparing split HT (left)
vs. combined HT bins (right) in the two relevant top multiplicity categories. The tt
and QCD multijet background BDT discriminant shape is predicted by the ABCDnn
and normalized to the yields predicted by the extended ABCD method. Estimates
for tttt signal and other minor backgrounds are shown using simulated samples. The
error bands shown include statistical uncertainties and uncertainties derived from the
weighted mean and RMS to account for discrepancies between data and the data–
driven background estimate observed in the VRs, as described in Section 11.
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Figure D.5: 2017 BDT shape predictions vs data corresponding to the SR bins de-
fined by NRT, NBT, and HT, for the 8-jet validation region, comparing split HT (left)
vs. combined HT bins (right) in the two relevant top multiplicity categories. The tt
and QCD multijet background BDT discriminant shape is predicted by the ABCDnn
and normalized to the yields predicted by the extended ABCD method. Estimates
for tttt signal and other minor backgrounds are shown using simulated samples. The
error bands shown include statistical uncertainties and uncertainties derived from the
weighted mean and RMS to account for discrepancies between data and the data–
driven background estimate observed in the VRs, as described in Section 11.
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Figure D.6: 2018 BDT shape predictions vs data corresponding to the SR bins de-
fined by NRT, NBT, and HT, for the 8-jet validation region, comparing split HT (left)
vs. combined HT bins (right) in the two relevant top multiplicity categories. The tt
and QCD multijet background BDT discriminant shape is predicted by the ABCDnn
and normalized to the yields predicted by the extended ABCD method. Estimates
for tttt signal and other minor backgrounds are shown using simulated samples. The
error bands shown include statistical uncertainties and uncertainties derived from the
weighted mean and RMS to account for discrepancies between data and the data–
driven background estimate observed in the VRs, as described in Section 11.
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R. Frühwirth, and et al., Jet energy scale and resolution in the cms experiment in
pp collisions at 8 tev, Journal of Instrumentation 12 (Feb, 2017) P02014–P02014.

[26] M. Cacciari, G. P. Salam, and G. Soyez, The anti-ktjet clustering algorithm,
Journal of High Energy Physics 2008 (Apr, 2008) 063–063.

149



[27] M. Cacciari, G. P. Salam, and G. Soyez, Fastjet user manual, The European
Physical Journal C 72 (Mar, 2012).

[28] D. P.-A. R. J. S. C. Coco, Victor and G. Soyez, Jets and jet algorithms, .

[29] E. Bols, J. Kieseler, M. Verzetti, M. Stoye, and A. Stakia, Jet flavour classification
using deepjet, Journal of Instrumentation 15 (Dec, 2020) P12012–P12012.

[30] CMS Collaboration Collaboration, Identification of b quark jets at the CMS
Experiment in the LHC Run 2, tech. rep., CERN, Geneva, 2016.

[31] I. Neutelings, Cms coordinate system, Oct, 2021.

[32] The ATLAS Collaboration, The CMS Collaboration, The LHC Higgs
Combination Group Collaboration, Procedure for the LHC Higgs boson search
combination in Summer 2011, tech. rep., CERN, Geneva, Aug, 2011.

[33] G. Cowan, K. Cranmer, E. Gross, and O. Vitells, Asymptotic formulae for
likelihood-based tests of new physics, The European Physical Journal C 71 (Feb,
2011).

[34] J. S. Conway, Incorporating nuisance parameters in likelihoods for multisource
spectra, 2011.

[35] R. Barlow and C. Beeston, Fitting using finite monte carlo samples, Computer
Physics Communications 77 (1993), no. 2 219–228.

[36] G. Cowan, C. Patrignani, et. al., Statistics, ch. 39 in particle data group, Chin.
Phys. C 40 (2016) 100001.

[37] S. S. Wilks, The large-sample distribution of the likelihood ratio for testing
composite hypotheses, The Annals of Mathematical Statistics 9 (1938), no. 1 60–62.

[38] A. Wald, Tests of statistical hypotheses concerning several parameters when the
number of observations is large, Transactions of the American Mathematical
Society 54 (1943), no. 3 426–482.

[39] A. Geron, Hands-on machine learning with Scikit-Learn and TensorFlow :
concepts, tools, and techniques to build intelligent systems. O’Reilly Media,
Sebastopol, CA, 2017.

[40] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[41] T. Chen and C. Guestrin, XGBoost: A scalable tree boosting system, in Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’16, (New York, NY, USA), pp. 785–794, ACM, 2016.

150

http://www.deeplearningbook.org


[42] A. V. Dorogush, V. Ershov, and A. Gulin, Catboost: gradient boosting with
categorical features support, CoRR abs/1810.11363 (2018) [arXiv:1810.1136].

[43] A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. J. Smola, A
kernel method for the two-sample problem, CoRR abs/0805.2368 (2008)
[arXiv:0805.2368].

[44] Y. Li, K. Swersky, and R. S. Zemel, Generative moment matching networks, CoRR
abs/1502.02761 (2015) [arXiv:1502.0276].

[45] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, in 3rd
International Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings (Y. Bengio and
Y. LeCun, eds.), 2015.

[46] C.-W. Huang, D. Krueger, A. Lacoste, and A. Courville, Neural Autoregressive
Flows, arXiv:1804.0077.

[47] M. A. Dobbs, S. Frixione, E. Laenen, K. Tollefson, H. Baer, E. Boos, B. Cox,
R. Engel, W. Giele, J. Huston, S. Ilyin, B. Kersevan, F. Krauss, Y. Kurihara,
L. Lonnblad, F. Maltoni, M. Mangano, S. Odaka, P. Richardson, A. Ryd,
T. Sjostrand, P. Skands, Z. Was, B. R. Webber, and D. Zeppenfeld, Les houches
guidebook to monte carlo generators for hadron collider physics, 2004.

[48] Rizzi, Andrea, Petrucciani, Giovanni, and Peruzzi, Marco, A further reduction in
cms event data for analysis: the nanoaod format, EPJ Web Conf. 214 (2019)
06021.

[49] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen,
D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus,
S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Ŕıo, M. Wiebe,
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