
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Learning Assembly Language Models for Security Applications

Permalink
https://escholarship.org/uc/item/0vf5756g

Author
Li, Xuezixiang

Publication Date
2024

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
ShareAlike License, available at https://creativecommons.org/licenses/by-sa/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0vf5756g
https://creativecommons.org/licenses/by-sa/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
RIVERSIDE

Learning Assembly Language Models for Security Applications

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Xuezixiang Li

December 2024

Dissertation Committee:

Dr. Heng Yin, Chairperson
Dr. Zhiyun Qian
Dr. Chinya V. Ravishankar
Dr. Chengyu Song

Copyright by
Xuezixiang Li

2024

The Dissertation of Xuezixiang Li is approved:

Committee Chairperson

University of California, Riverside

Acknowledgments

I would like to express my deepest gratitude to my advisor, Dr. Heng Yin, for his invaluable

guidance, mentorship, and unwavering support throughout my PhD journey. His expertise

and encouragement have been instrumental in shaping my research and academic growth.

I am also profoundly grateful to my committee members, Dr. Chengyu Song, Dr. Zhiyun

Qian, and Dr. Chinya Ravishankar, for their insightful feedback, constructive criticism, and

steadfast support. A special thanks goes to my colleagues, Jinghan Wang, Yue Duan, Wei

Song, Ju Chen, Jianlei Chi, Jie Hu, Zhenxiao Qi, Zhaoqi Xiao, Sheng Yu, and my friend

Mingjun Yin and Guoren Li, for their camaraderie, collaboration, and constant encourage-

ment. Sharing this journey with them has been an incredible experience, and I have learned

so much from each of them.

Finally, I would like to thank my parents Youxin Li and Zenghui Xue, for their

love, patience, and understanding throughout this process. Their unwavering belief in me

has been my greatest source of strength.

This dissertation includes previously published material entitled “PalmTree: Learn-

ing an Assembly Language Model for Instruction Embedding” published in the Proceedings

of the 2021 ACM SIGSAC Conference on Computer and Communications Security. And

two materials under submission entitled “On the Effectiveness of Custom Transformers for

Binary Analysis”, and “ALMOND: Learning an Assembly Language Model for 0-Shot Code

Obfuscation Detection”

iv

To my parents for all the support.

v

ABSTRACT OF THE DISSERTATION

Learning Assembly Language Models for Security Applications

by

Xuezixiang Li

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, December 2024

Dr. Heng Yin, Chairperson

Deep learning has proven its effectiveness in a wide range of binary analysis tasks, such as

function boundary detection, binary code search, function prototype inference, and value

set analysis. Deep learning-based assembly language models, in particular, have garnered

significant attention and delivered promising results. This dissertation presents approaches

and evaluations for training assembly language models tailored to diverse security applica-

tions.

Firstly, to enhance instruction representation and provide additional support for

Deep-learning approaches, we introduce PalmTree, a language model designed for generating

general-purpose, high-quality instruction embeddings, which can be used to improve the

downstream deep-learning models for various binary analysis applications.

Secondly, in light of more transformer-based assembly language models that have

been proposed targeting different security downstream applications, each featuring unique

architectural modifications and the introduction of novel pre-training tasks, we undertake

a comprehensive evaluation of transformer-based models, including PalmTree, and their

pre-training tasks in the context of four distinct security applications.

vi

Lastly, based on the insights gained from our evaluations, we outline our forthcom-

ing work, which focuses on a novel zero-shot learning approach for obfuscation detection.

This is achieved through the re-use of the pre-training task of the assembly language model,

with the expectation that it can deliver comparable performance to other supervised learn-

ing approaches.

vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Thesis Statement . 4

2 Background 6
2.1 Instruction Embedding . 6

2.1.1 Challenges in Learning-based Encoding 9
2.1.2 Summary of Existing Approaches . 13

2.2 Assembly Language Models . 13
2.2.1 Architecture . 14
2.2.2 Pre-training Tasks . 17
2.2.3 Downtream Tasks . 19

2.3 Code Obfuscation Detection . 22
2.3.1 Obfuscators . 23
2.3.2 Existing Obfuscation Detection Techniques 24
2.3.3 Challenges . 27

3 Learning an Assembly Language Model for Instruction Embedding 28
3.1 Introduction . 28
3.2 Design of PalmTree . 33

3.2.1 Overview . 33
3.2.2 Input Generation . 36
3.2.3 Tokenization . 37
3.2.4 Assembly Language Model . 37

3.3 Evaluation . 44
3.3.1 Evaluation Methodology . 45
3.3.2 Experimental Setup . 46
3.3.3 Intrinsic Evaluation . 48
3.3.4 Extrinsic Evaluation . 54

viii

3.3.5 Runtime Efficiency . 67
3.3.6 Hyperparameter Selection . 69

3.4 Related Work . 71
3.5 Discussion . 74
3.6 Conclusion . 75

4 Evaluating Custom Transformers for Binary Analysis 77
4.1 Introduction . 77
4.2 Evaluation Plan . 80

4.2.1 Models to be Evaluated . 80
4.2.2 Evaluation Setup . 82
4.2.3 Data Preparation . 83
4.2.4 Evaluating Pre-training Tasks . 84
4.2.5 Evaluating Downstream Tasks . 87

4.3 Evaluation Results . 94
4.3.1 Pre-training Tasks . 94
4.3.2 Downstream Tasks . 96

4.4 Discussion . 100
4.4.1 Our Suggestions . 102

4.5 Related Work . 102
4.6 Conclusion . 105

5 Learning an Assembly Language Model for Zero-Shot Obfuscation Detec-
tion 106
5.1 Introduction . 106
5.2 Design . 111

5.2.1 Pre-processing . 111
5.2.2 Architecture . 113
5.2.3 0-Shot Obfuscation Detection . 115
5.2.4 Further improvement on Obfuscation Detection 116

5.3 Evaluation . 122
5.3.1 Implementation . 123
5.3.2 Dataset Collection . 123
5.3.3 RQ1: How does ALMOND perform on known obfuscation methods? 126
5.3.4 RQ2: How does ALMOND perform on previously unseen obfuscation

methods? . 128
5.3.5 RQ3: How does ALMOND perform under different configurations? 129
5.3.6 RQ4: How does ALMOND perform on real-world cases 133
5.3.7 Efficiency . 137

5.4 Related Works . 138
5.4.1 Obfuscation Detection . 138
5.4.2 Language Model for Static Binary Analysis 139
5.4.3 Zero-shot Classification and Anomaly Detection 139

5.5 Discussion . 140
5.6 Conclusion . 141

ix

6 Conclusions 143
6.1 Future Work . 145

Bibliography 146

x

List of Figures

2.1 Architectural Differences among transformer models 14

2.2 Two types of pre-training tasks . 18

3.1 System design of PalmTree. 33

3.2 Input Representation . 38

3.3 Masked Language Model (MLM) . 39

3.4 Context Window Prediction (CWP) . 41

3.5 Def-Use Prediction (DUP) . 42

3.6 Accuracy of Opcode Outlier Detection . 52

3.7 Accuracy of Operands Outlier Detection . 53

3.8 ROC curves for Basic Block Search . 54

3.9 Instruction embedding models and the downstream model Gemini 55

3.10 ROC curves of Gemini . 57

3.11 Instruction embedding models and EKLAVYA 59

3.12 Loss value during training . 60

3.13 Accuracy during training . 61

xi

3.14 Accuracy of EKLAVYA . 62

3.15 Instruction embedding models and the downstream model DeepVSA 64

3.16 Loss value of DeepVSA during training . 65

4.1 MRR/Recall@1 on Function Similarity Search. Pool size = 10000. 95

4.2 Results of Algorithm Classification with (top) and without fine-tuining. . . 98

5.1 The Overview of ALMOND . 110

5.2 Comparison of probability between obfuscated and regular binaries 116

5.3 Comparison of probability with mispredictions only 117

5.4 Comparison of Distributions of Error-Perplexity with and without CEP . . 119

5.5 ROC curves on different metrics . 131

5.6 ROC curves on real-world binaries . 133

5.7 The heatmap of malware A . 135

5.9 The heatmap of malware B . 136

5.8 Assembly code snippet of malware A . 137

xii

List of Tables

2.1 Summary of Approaches . 12

3.1 Types of Opcodes . 49

3.2 Types of Operands . 50

3.3 Intrinsic Evaluation Results, Stdev. denotes the standard deviation 51

3.4 Attributes of Basic Blocks in Gemini [207] 56

3.5 AUC values of Gemini . 57

3.6 Accuracy and Standard Deviation of EKLAVYA 63

3.7 Results of DeepVSA . 66

3.8 Efficiency of PalmTree and baselines . 68

3.9 Embedding sizes . 70

3.10 Output layer configurations . 70

3.11 Context Window Sizes . 72

4.1 Evaluated Models . 81

4.2 Hyperparameters on different sized models 82

4.3 The types that are predicted as output . 90

xiii

4.4 The difference between Datasets . 91

4.5 Results of Pre-training Tasks . 95

4.6 Results of Type Inference (Opt-level=Mixed) 97

4.7 Results of Function Name Prediction . 100

5.1 Accuracy(Top-1) and Perplexity on BERT and GPT 114

5.2 Perplexity on correct predictions . 118

5.3 Avg. length of error predictions . 120

5.4 Obfuscators and Transformation Methods 124

5.5 Performance on known obfuscation methods 126

5.6 Performance on unseen obfuscation methods. 128

5.7 Performance of Different Metrics . 130

5.8 Hyperparameters on different sized models 131

5.9 Performance on different model sizes . 132

xiv

Chapter 1

Introduction

The widespread integration of software into modern society has revolutionized

countless aspects of life, delivering unparalleled convenience and innovation. However, this

advancement has also introduced significant security challenges, as increasingly complex

software systems provide opportunities for malicious actors to exploit vulnerabilities. In

the realm of binary security, assembly language—a low-level code that directly interfaces

with hardware—plays a pivotal role in developing secure software and identifying security

flaws. Its symbolic representation of machine code instructions makes it indispensable for

scenarios where source code is inaccessible, such as analyzing COTS (Commercial Off-The-

Shelf) software. Despite its importance, the highly specialized nature of assembly language

and the diversity of its syntax across architectures make it one of the most challenging

domains for security analysis. Consequently, research and analysis of assembly code have

long been a central focus in the field of binary static analysis.

1

Recent advances in machine learning, particularly in natural language processing

(NLP), have inspired novel approaches in cybersecurity by providing powerful tools to au-

tomate vulnerability detection and mitigation. Transformer-based language models, such

as BERT [49] and GPT [169], have achieved groundbreaking success in natural language

understanding and generation. These models leverage self-attention mechanisms to capture

contextual relationships in text more effectively than previous architectures like RNNs and

CNNs, enabling significant improvements in tasks such as sentiment analysis, machine trans-

lation, and question-answering. Their ability to understand and generate human language

has been transformative, setting new benchmarks across numerous NLP tasks.

The success of transformer-based models in NLP has sparked interest in applying

these techniques to programming and assembly languages for binary analysis, but signif-

icant challenges remain. Unlike natural language, which is rich in semantic context and

redundancy, assembly language is concise, rigid in syntax, and lacks high-level abstractions

such as variable names or comments, making it harder for models to infer context. Its

diversity across architectures (e.g., x86, ARM, MIPS) adds complexity, as each has unique

instruction sets and conventions. Additionally, the assembly code’s non-linear control flow,

driven by jumps and calls, contrasts with the linear structure of natural language sen-

tences, complicating sequence modeling. Dataset limitations, including scarcity and the

expertise required for annotation, further hinder model training. Despite these challenges,

the structured and deterministic nature of assembly code offers opportunities for models

to learn precise relationships between instructions and their effects, paving the way for

advancements in automated binary analysis.

2

Despite these challenges, assembly code offers unique advantages over natural lan-

guages. Unlike natural language, which is ambiguous and influenced by cultural or stylistic

factors, assembly language follows rigid, deterministic rules, providing consistent patterns

for models to learn. Its structured nature, including loops, jumps, and call instructions,

aligns well with transformers’ sequence-processing capabilities, allowing them to capture

program control flow and operational dependencies. These features make assembly lan-

guage analysis both challenging and promising for transformer-based models.

Leveraging these unique advantages, this dissertation explores the application of

transformer-based language models to assembly language and investigates their use in ad-

dressing binary static analysis problems. Specifically, this dissertation evaluates existing

transformer-based solutions on multiple downstream tasks, provides several recommenda-

tions for the design and training of assembly language models, and proposes methods for

instruction representation learning through assembly language models, as well as their inte-

gration into end-to-end systems. Furthermore, for the specific security task of obfuscation

detection, this work overcomes the limitations of existing supervised learning and fine-

tuning approaches by utilizing assembly language models and zero-shot learning, achieving

state-of-the-art performance. By advancing these capabilities, this work contributes to the

foundation of cybersecurity technology, supporting automatic vulnerability detection, mali-

cious code identification, and reverse engineering processes across various assembly language

contexts.

3

1.1 Thesis Statement

This work aims to advance assembly language models across multiple downstream

security tasks. Under this topic, we designed a novel language model tailored for assembly

code, developed innovative zero-shot techniques to overcome the limitations of the tra-

ditional pre-training fine-tuning paradigm, we also conducted comprehensive surveys and

evaluations for the existing assembly language model, and offered our insights and recom-

mendations.

Instruction Representation Learning. We proposed an assembly language model

called PalmTree for generating general-purpose instruction embeddings by conducting

self-supervised training on large-scale unlabeled binary corpora. PalmTree utilizes three

pre-training tasks to capture various characteristics of assembly language. These training

tasks overcome the problems in existing schemes, thus can help to generate high-quality rep-

resentations. We conduct both intrinsic and extrinsic evaluations and compare PalmTree

with other instruction embedding schemes. PalmTree has the best performance for intrin-

sic metrics, and outperforms the other instruction embedding schemes for all downstream

tasks.

Evaluation of Transformer-Based Models. We evaluate four custom Transformer-

based models (i.e. jTrans [202], PalmTree, StateFormer [159], and Trex [158]) and their

pre-training tasks on four downstream applications. According to our evaluation results,

we have the following surprising observations: aside from MLM (Masked Language Model),

many existing pre-training tasks seem either too noisy or too challenging for the Transformer

model to learn effectively; the vanilla BERT model is comparable or superior to these custom

4

Transformers in all the four downstream applications. Moreover, our evaluation suggests

that improvements in fine-tuning are generally more beneficial than introducing new pre-

training tasks or making architectural modifications. Consequently, we conclude that recent

architectural modifications and additional pre-training tasks for Transformer models may

offer limited impact that does not sufficiently justify their associated costs.

Zero-Shot Learning for Security Applications. we present ALMOND, a novel zero-

shot approach for detecting code obfuscation in binary executables. Unlike previous su-

pervised learning methods, ALMOND does not require labeled obfuscated samples for

training. Instead, it leverages a language model pre-trained only on unobfuscated assembly

code to identify the linguistic deviations introduced by obfuscation. The key innovation is

the use of ”error-perplexity” as a detection metric, which focuses on tokens the model fails

to predict. Continuous Error Perplexity further enhances this to capture consecutive pre-

diction errors characteristic of obfuscated sequences. Experiments show ALMOND achieves

96.3% accuracy on unseen obfuscation methods, outperforming supervised baselines. On

real-world malware samples, it demonstrates an AUC of 0.869 and significantly outperforms

the supervise-learning baseline.

5

Chapter 2

Background

2.1 Instruction Embedding

Instruction embedding, the process of transforming raw assembly instructions into

compact, informative numerical representations, has emerged as a pivotal technique for

bridging the gap between machine-readable code and human-interpretable semantic under-

standing. Based on the embedding generation process, existing approaches can be classified

into three categories: raw-byte encoding, manually-designed encoding, and learning-based

encoding.

Raw-byte Encoding

The most basic approach is to apply a simple encoding on the raw bytes of each

instruction, and then feed the encoded instructions into a deep neural network. One such

encoding is “one-hot encoding”, which converts each byte into a 256-dimensional vector.

One of these dimensions is 1 and the others are all 0. MalConv [173] and DeepVSA [77]

6

take this approach to classify malware and perform coarse-grained value set analysis, re-

spectively. One instruction may be several bytes long. To strengthen the sense of an

instruction, DeepVSA further concatenates the one-hot vectors of all the bytes belonging

to an instruction, and forms a vector for that instruction.

Shin et al. [185] take a slightly different approach to detect function boundaries.

Instead of a one-hot vector, they encode each byte as a 8-dimensional vector, in which each

dimension presents a corresponding digit in the binary representation of that byte. For

instance, the 0x90 will be encoded as

[1 0 0 1 0 0 0 0]

In general, this kind of approach is simple and efficient, because it does not require

disassembly, which can be computationally expensive. Its downside, however, is that it does

not provide any semantic level information about each instruction. For instance, we do not

even know what kind of instruction it is, and what operands it operates on. While the deep

neural networks can probably learn some of this information by itself, it seems very difficult

for the deep neural networks to completely understand all the instructions.

Manual Encoding of Disassembled Instructions

Knowing that disassembly carries more semantic information about an instruc-

tion, this approach first disassembles each instruction and encodes some features from the

disassembly.

Li et al. [122] proposed a very simple method, which only extracts opcode to

represent an instruction, and encodes each opcode as a one-hot vector. Unfortunately, this

7

method completely ignores the information from operands. Instruction2Vec [213] makes

use of both opcode and operand information. Registers, addresses, and offsets are encoded

in different ways, and then concatenated to form a vector representation. Each instruction

is encoded as a nine-dimensional feature vector. An instruction is divided into tokens,

and tokens are encoded as unique index numbers. While an opcode takes one token, a

memory operand takes up to four tokens, including base register, index register, scale, and

displacement.

While this approach is able to reveal more information about opcode and operands

for each instruction than raw-byte encoding, it does not carry higher-level semantic informa-

tion about each instruction. For instance, it treats each opcode instruction equally unique,

without knowing that add and sub are both arithmetic operations thus they are more sim-

ilar to each other than call, which is a control transfer operation. Although it is possible

to manually encode some of the higher-level semantic information about each instruction,

it requires tremendous expert knowledge, and it is hard to get it right.

Learning-based Encoding

Inspired by representation learning in other domains such as NLP (e.g., word2vec [144,

143]), we would like to automatically learn a representation for each instruction that carries

higher-level semantic information. Then this instruction-level representation can be used

for any downstream binary analysis tasks, achieving high analysis accuracy and generality.

Several attempts have been made to leverage word2vec [144] to automatically learn

instruction-level representations (or embeddings), for code similarity detection [224, 141]

and function type inference [34], respectively. The basic idea of this approach is to treat

8

each instruction as a word, and each function as a document. By applying a word2vec

algorithm (Skip-gram or CBOW [143, 144]) on the disassembly code in this way, we can

learn a continuous numeric vector for each instruction.

In order to detect similar functions in binary code, Asm2Vec [52] makes use of

the PV-DM model [115] to generate instruction embeddings and an embedding for the

function containing these instructions simultaneously. Unlike the above approach that treats

each instruction as a word, Asm2Vec treats each instruction as one opcode and up to two

operands and learns embeddings for opcodes and operands separately.

2.1.1 Challenges in Learning-based Encoding

While the learning-based encoding approach seems intriguing, there exist several

challenges.

Complex and Diverse Instruction Formats

Instructions (especially those in CISC architectures) are often in a variety of for-

mats, with additional complexities. Listing 2.1 gives several examples of instructions in

x86.

In x86, an instruction can have between 0 to 3 operands. An operand can be a CPU

register, an expression for a memory location, an immediate constant, or a string symbol.

A memory operand is calculated by an expression of “base+index×scale+displacement”.

While base and index are CPU registers, scale is a small constant number and displacement

can be either a constant number or a string symbol. All these fields are optional. As a re-

sult, memory expressions vary a lot. Some instructions have implicit operands. Arithmetic

9

instructions change EFLAGS implicitly, and conditional jump instructions take EFLAGS as an

implicit input.

Listing 2.1: Instructions are complex and diverse

; memory operand with complex expression

mov [ebp+eax*4-0x2c], edx

; three explicit operands , eflags as implicit operand

imul [edx], ebx , 100

; prefix , two implicit memory operands

rep movsb

; eflags as implicit input

jne 0x403a98

A good instruction-level representation must understand these internal details

about each instruction. Unfortunately, the existing learning-based encoding schemes do

not cope with these complexities very well. Word2vec, adopted by some previous ef-

forts [224, 141, 34], treats an entire instruction as one single word, totally ignoring these

internal details about each instruction.

Asm2Vec [52] looks into instructions to a very limited degree. It considers an

instruction having one opcode and up to two operands. In other words, each instruction

has up to three tokens, one for opcodes, and up to two for operands. A memory operand

with an expression will be treated as one token, and thus it does not understand how a

memory address is calculated. It does not take into account other complexities, such as

prefix, a third operand, implicit operands, EFLAGS, etc.

10

Listing 2.2: Instructions can be reordered

; prepare the third argument for function call

mov rdx , rbx

; prepare the second argument for function call

mov rsi , rbp

; prepare the first argument for function call

mov rdi , rax

; call memcpy () function

call memcpy

; test rbx register (this instruction is reordered)

test rbx , rbx

; store the return value of memcpy () into rcx register

mov rcx , rax

; conditional jump based on EFLAGS from test instruction

je 0x40adf0

Noisy Instruction Context

The context is defined as a small number of instructions before and after the target

instruction on the control-flow graph. These instructions within the context often have

certain relations with the target instruction, and thus can help infer the target instruction’s

semantics.

While this assumption might hold in general, compiler optimizations tend to break

this assumption to maximize instruction level parallelism. In particular, compiler optimiza-

11

Table 2.1: Summary of Approaches

Name Encoding
Internal

Structure

Context
Disassembly

Required

DeepVSA [77]
1-hot encoding

on raw-bytes

no no no

Instruction2Vec [213] manually designed yes no yes

InnerEye [224] word2vec no control flow yes

Asm2Vec [52] PV-DM partial control flow yes

PalmTree (this work) BERT yes
control flow

& data flow

yes

tions (e.g., “-fschedule-insns”, “-fmodulo-sched”, “-fdelayed-branch” in GCC) seek to avoid

stalls in the instruction execution pipeline by moving the load from a CPU register or a

memory location further away from its last store, and inserting irrelevant instructions in

between.

Listing 2.2 gives an example. The test instruction at Line 10 has no relation with

its surrounding call and mov instructions. The test instruction, which will store its results

into EFLAGS, is moved before the mov instruction by the compiler, such that it is further

away from the je instruction at Line 14, which will use (load) the EFLAGS computed by the

test instruction at Line 10. From this example, we can see that contextual relations on

the control flow can be noisy due to compiler optimizations.

12

Note that instructions also depend on each other via data flow (e.g., lines 8 and

12 in Listing 2.2). Existing approaches only work on control flow and ignore this important

information. On the other hand, it is worth noting that most existing PTMs cannot deal

with the sequence longer than 512 tokens [168] (PTMs that can process longer sequences,

such as Transformer XL [42], will require more GPU memory), as a result, even if we

directly train these PTMs on instruction sequences with MLM, it is hard for them capture

long range data dependencies which may happen among different basic blocks. Thus a new

pre-training task capturing data flow dependency is desirable.

2.1.2 Summary of Existing Approaches

Table 2.1 summarizes and compares the existing approaches, with respect to which

encoding scheme or algorithm is used, whether disassembly is required, whether instruction

internal structure is considered, and what context is considered for learning. In summary,

raw-byte encoding and manually-designed encoding approaches are too rigid and unable to

convey higher-level semantic information about instructions, whereas the existing learning-

based encoding approaches cannot address challenges in instruction internal structures and

noisy control flow.

2.2 Assembly Language Models

The Transformer model [197] revolutionized natural language processing (NLP)

and has been widely adopted in various domains. When applied to computer security and

binary analysis, researchers often modify the Transformer architecture and introduce addi-

13

Token Embeddings

Position Embeddings

Token Embeddings

Arch Embeddings

DataState Embeddings

Token Embeddings

Position Embeddings

Language Embeddings

NSP MLM MLM JTP

Token Embeddings

Position Embeddings

BERT Stateformer/TrexjTrans BinBert

GSM ELM SSM Multi-modal Learning

Token Embeddings

Position Embeddings

NeuDep

Segment Embeddings

Position Embeddings

Segment EmbeddingsSegment Embeddings

E[CLS]

Trm

E1 EN

Trm Trm

Trm Trm Trm

C T1 TN...

...

...

...E[CLS]

Trm

E1 EN

Trm Trm

Trm Trm Trm

C T1 TN...

...

...

...E[CLS]

Trm

E1 EN

Trm Trm

Trm Trm Trm

C T1 TN...

...

...

...

NAU 08 BA 00 FE

E T A

Self-Attn Conv

Fuse

Self-Attn

Conv

E[CLS]

Trm

E1 EN

Trm Trm

Trm Trm Trm

C T1 TN...

...

...

...E[CLS]

Trm

E1 EN

Trm Trm

Trm Trm Trm

C T1 TN...

...

...

...E[CLS]

Trm

E1 EN

Trm Trm

Trm Trm Trm

C T1 TN...

...

...

...E[CLS]

Trm

E1 EN

Trm Trm

Trm Trm Trm

C T1 TN...

...

...

... E[CLS]

Trm

E1 EN

Trm Trm

Trm Trm Trm

C T1 TN...

...

...

...E[CLS]

Trm

E1 EN

Trm Trm

Trm Trm Trm

C T1 TN...

...

...

...

8-byte value sequence

Share weights

bi-LSTM08 BA 00 FE

8-byte value sequence Trex State
Former

Figure 2.1: Architectural Differences among transformer models

tional pre-training tasks to better capture the unique characteristics of assembly languages.

In this section, we survey the use of Transformer models in different research papers, focus-

ing on architectural changes, new pre-training tasks, and downstream tasks.

2.2.1 Architecture

On the one hand, assembly languages are similar to natural languages, because

they have their own syntactic and grammatical rules. Consequently, language models like

the BERT model depicted in Figure 2.1 can be employed to tackle binary analysis tasks. On

the other hand, compared to natural languages, assembly languages are more strictly defined

and each instruction has a definite semantic meaning. Furthermore, arithmetic and logic

operations, which are rarely found in natural languages, are prevalent in assembly languages.

Given these distinctive characteristics of assembly languages, numerous research papers

have proposed architectural changes to language models to better capture the syntactic and

semantic features. Figure 2.1 depicts the architectures of several prominent Transformer-

based models.
14

StateFormer introduces a numerical representation module that incorporates the

Neural Arithmetic Nunit (NAU) [136], which has been proven to be beneficial for capturing

the semantics of numerical values involved in arithmetic operations. This module replaces

the conventional embedding layer and learns representations for numerical tokens. More

specifically, apart from token, position, and segment embeddings, StateFormer introduces

the architecture and DataState layers. The architecture layer is to differentiate instruction

set architectures (ISAs), as the model is trained for multiple platforms. The DataState layer

receives embeddings from the NAU. The embeddings of all five layers are then averaged and

fed into the Transformer layers.

Similar to StateFormer, Trex [158] uses the microtrace-based model to generate

function token embeddings, but proposed to use a Long Short-Term Memory (LSTM) [97]

network to model numerical values involved in arithmetic operations.

jTrans [202] introduces a modification to the positional embedding layer to model

the jump instructions and enable ALMs’ awareness of control flow information. For each

jump pair, its source token’s embedding, also called jump embedding, shares parameters

with its target token’s positional embedding. This design is based on the fact that the

source and target of jump instructions are not only as similar as two consecutive tokens,

but also have a strong contextual connection. It is worth noting that this architectural

modification is exclusive to help the training process. When the trained model is used for

inference, this modification is removed.

BinBert [10] concatenates two kinds of inputs: assembly codes and strand-symbolic

expressions. A [SEP] token is used to distinguish between assembly code and symbolic

15

expressions. A language embedding layer is also added to the model to differentiate the

assembly code and the strand-symbolic expressions. The expressions are generated by a

symbolic execution engine which is built on angr [186].

NeuDep [161] further revises the Transformer model. This model acquires the

ability to reason about approximate memory dependencies by leveraging the execution

behavior of generic binary code during pre-training. To achieve this goal, the authors

combined the self-attention layer with the per-byte convolution network by applying a fusion

module. The model takes three kinds of sequences as input: the instructions, traces, and

code addresses. Instructions are encoded by the self-attention layers, while traces and code

addresses are embedded by convolution layers. Subsequently, the fusion module is employed

to integrate three embeddings, and the resulting fused embeddings are then passed through

an additional self-attention layer for the final encoding. The output of this layer represents

the final embedding.

UniASM [74] introduces two pre-training tasks: Assembly Language Generation

(ALG) and Similar Function Prediction (SFP). In ALG, two functions compiled from the

same source code with different compilation options are treated as a single sentence input,

aiming to recover masked tokens based on the first function to teach the model instruc-

tion equivalency. SFP uses a batch-wise softmax layer to maximize the similarity between

positive pairs and minimize the similarity of negative pairs.

Yu et al. [216] employs four pre-training tasks to capture control flow graph fea-

tures. In addition to utilizing MLM to capture token-level features, the authors introduced

three additional tasks: Adjacency Node Prediction (ANP), Block Inside Graph (BIG), and

Graph Classification (GC).

16

In addition to the papers mentioned above, there exist numerous research papers

that combine Transformer-based models with other techniques or models. For instance,

BinShot [6] uses DeepSemantic [108] for instruction normalization to alleviate the out-of-

vocabulary (OOV) problem. SROBR [193] combines BERT with graph attention networks

(GATs) [199] to incorporate control flow features. CodeFormer [126] combines BERT with

graph neural networks (GNNs) to capture control flow features. However, they do not

introduce any architectural changes or new pre-training tasks to the Transformer model, so

they are not the main focus of this paper.

2.2.2 Pre-training Tasks

Pre-training tasks typically involve self-supervised learning on a large corpus which

helps a model learn syntactic and semantic information. These tasks can be generally cat-

egorized into token-level and sentence-level tasks. Token-level pre-training tasks (depicted

in Figure 2.2(a),) usually involve masking certain tokens and requiring the model to predict

the masked tokens based on their contextual information. Sentence-level pre-training tasks

(depicted in Figure 2.2(b)) employ a pooling mechanism to extract a representation for

the entire input. The sentence-level tasks also have a classification head, for training pur-

poses. BERT first introduces the Masked Language Model (MLM), a token-level task, and

Next Sentence Prediction (NSP), a sentence-level task, for pre-training. These tasks have

demonstrated strong performance in comprehending natural languages. However, assembly

languages have some unique characteristics. For instance, certain semantic meanings, such

as arithmetic operations and control transfer instructions, cannot be solely learned from

the corpus. Some information, such as instruction addresses and lengths, is neither explic-

17

itly provided nor inferable. These distinctions have prompted various research papers to

introduce novel pre-training tasks tailored to assembly languages, with some demonstrating

performance enhancements over the standard BERT model for specific tasks.

jTrans [202] introduces Jump Target Prediction (JTP) to help the model learn

control flow information. This task requires the model to predict jump targets of randomly

selected jump instructions. The nature of this task, which poses a significant challenge even

to human experts, requires the model to develop a deep understanding of the control flow,

resulting in improved performance.

StateFormer introduces Generative State Modeling (GSM) [159] to teach the model

the data and control flow behaviors. This approach involves training the model to predict

the changed values of registers and memories after the execution of each instruction. By

incorporating this pre-training task, StateFormer ensures that the model understands op-

erational semantics.

t1 t3 t5Input

t2 t6
Prediction

[CLS] [MSK] [SEP] [MSK] [SEP]

(a) Token Level

t1 t3 t5Input

Prediction

[CLS] [MSK] [SEP] [MSK] [SEP]

Pooling Layer

Class Label

(b) Sequence Level

Figure 2.2: Two types of pre-training tasks

In BinBERT [10], Execution Language Modeling (ELM) is introduced. This pre-

training task is similar to MLM. The ELM predicts not only assembly tokens but also tokens

in corresponding symbolic expressions. Strand-Symbolic Mapping (SSM) is the other pre-

training task proposed by BinBERT. In this task, an instruction strand and a symbolic

18

expression are provided as inputs, and the model is tasked with determining whether the

given symbolic expression belongs to the set of expressions representative of the strand.

PalmTree [119] introduces Context Window Prediction (CWP) and Def-Use Pre-

diction (DUP). CWP predicts whether two given instructions co-occur within a context

window to help the model capture implicit control dependencies. DUP focuses on learning

the def-use relations between instructions and implicit elements like EFLAGS. This pre-

training task is revised from Sentence Ordering Prediction, introduced by Lan et al. [113].

2.2.3 Downtream Tasks

In general, downstream tasks refer to real-world applications or problems that the

model is trained to solve, after being pre-trained on a large corpus of data. Downstream

tasks are good evaluation methods, enabling us to determine the efficacy of architectural

changes and custom pre-training tasks. They also provide insights into the generalizability

of these changes and additions.

Function Similarity Search. Function Similarity Search, a.k.a. Binary Code Similarity

Detection (BCSD) is one of the most extensively studied downstream tasks in binary analysis

and has been evaluated in jTrans [202]. It measures the similarity between a pair of functions

and is a building block of various critical research problems such as function name recovery,

vulnerability detection, and patch analysis. Similarities can be defined using numerous

distance metrics such as cosine distance and Euclidean distance or learned via machine

learning models [122]. In this paper, we use cosine distance to measure similarities and

consider two functions as similar if they are compiled from the same source code, irrespective

of different compilers and compilation options.

19

In order to learn “similarities”, different architectures and objective functions have

been proposed. The Siamese network takes function pairs as input and makes positive pairs

have the highest similarity while negative pairs have the lowest similarity. The max margin

contrastive loss [81] ensures that the distance between a negative function pair exceeds a

certain margin. The triplet loss [182] takes an anchor, a positive, and a negative function as

input and tries to maximize the distance between the positive and the negative pair. The

Normalized Temperature-scaled Cross-Entropy (NT-Xent) loss [187], on the other hand,

takes one positive pair and N negative pairs as input and tries to maximize the distance

between the positive pair and all negative pairs. In jTrans [202], the term “contrastive

learning” refers to the triplet loss. Nonetheless, in this paper, we use the NT-Xent loss for

fine-tuning the function similarity search task, as it has demonstrated superior performance

compared to other objective functions [32]. A variant of this downstream task is called

Algorithm Classification which is first proposed by TBCNN [150].

Type Inference. Type inference [159, 35, 87, 137] is the process of determining the source-

level data types, such as integers, structures, and arrays, that are associated with registers

or memory regions. This information is valuable for various binary analysis tasks, includ-

ing reverse engineering and vulnerability detection. On the other hand, type inference is

particularly challenging because the information about data types is lost during compila-

tion. Recovering such information requires a deep understanding of instruction semantics,

control flow, and other relevant factors. Consequently, type inference can serve as a metric

to measure how well the models understand assembly languages.

20

Function Name Prediction. As its name suggests, the task predicts function names

in stripped binaries. Function names often serve as summaries of function behaviors, and

thus are very valuable in various security applications such as reverse engineering and code

reuse detection. However, similar to type inference, this task presents significant challenges

due to the loss of high-level information during compilation. Constructing meaningful

function names requires the model to comprehend instruction behaviors. The function

name prediction task has been evaluated by Jin et al. [96].

Function Type Recovery. This is a semantic recovery task to predict the number and

primitive types of the arguments of a function. EKLAVYA, introduced by Chua et al. [36],

is the first neural network model for this task. Similar to type inference and function

name prediction, the lack of high-level information poses a significant challenge in function

argument recovery, making it a suitable evaluation metric for assessing the capabilities of

models.

Value Set Analysis. This is also a semantic recovery task aimed at identifying the memory

alias of assembly code. DEEPVSA by Guo et al. [78] is the first machine-learning approach

for this task, and it classifies each accessed memory region into one of the following: stack,

heap, or global. Unless the memory addresses have been explicitly specified, inferring

memory regions from instruction contexts requires a good understanding of instruction

semantics and common memory access patterns and is thus challenging and suitable as an

evaluation metric for the models.

Call Graph Recovery (Indirect Jump Prediction). Indirect jumps or calls are com-

monly used in object-oriented programming languages to enable dynamic function execution

21

during runtime. However, this practice introduces uncertainty in determining the callees

until the program is actually executed, thereby hindering the reconstruction of call graphs

(CGs) and applications that rely on CG, for example, binary code similarity detection and

data flow analysis. Unfortunately, the existing static and dynamic analysis approaches suf-

fer from low precision or recall. Recently, Zhu et al. [222] demonstrated that this problem

can be solved by deep neural networks (DNNs), making it a good candidate to evaluate the

models’ performance.

2.3 Code Obfuscation Detection

Code obfuscation, a common protection technique, transforms code to make it

more difficult to understand, analyze, or reverse-engineer without altering its functional-

ity [14, 212]. Obfuscation techniques transform the existing code and introduce redundant

or junk code to achieve these goals. Broadly, there are three types of obfuscation techniques:

data obfuscation, static code rewriting, and dynamic code rewriting [181].

Data Obfuscation modifies how data is represented or manipulated within the

program. Techniques such as encryption or encoding of data—strings, constants, or sensitive

variables, make it harder for attackers to reverse-engineer the actual values used during

program execution. However, this paper does not cover data obfuscation. Because this

type of obfuscation typically does not alter the overall logic of the code. Additionally, this

obfuscation does not persist in the binary after compilation, making it undetectable by

obfuscation detection tools that analyze binary code.

22

Static code rewriting is a type of obfuscation that modifies the syntax or control

flow structures of code without altering its semantics. Common techniques include control

flow obfuscation, string encryption, and code flattening. Strictly speaking, data obfuscation

is also a type of static rewriting, but the former primarily focuses on data, while static code

rewriting focuses on code. These two categories are also the main focus of this study.

Dynamic Code Rewriting tries to obfuscate the actual execution of the code

while still achieving the intended functionality. By doing so, dynamic obfuscation makes

it particularly difficult for debuggers or static analysis tools to analyze or trace execution

paths. Packers and virtual machine-based obfuscations belong to this category. Dynamic

obfuscation techniques are generally difficult for static analysis tools, such as disassemblers,

to analyze. This is because the obfuscated code is often only decoded or fully revealed

during runtime. Static tools lack the ability to capture the program’s runtime behavior,

making it hard to reconstruct the original code from a static snapshot. As a result, tech-

niques like dynamic code rewriting are not the primary focus of this paper, as the detection

and analysis of these methods require more advanced dynamic analysis approaches rather

than static inspection. However, most binaries that use dynamic obfuscation also employ

static obfuscation methods to protect their remaining logic. Therefore, static obfuscation

detection tools may still be able to detect samples using such techniques.

2.3.1 Obfuscators

An obfuscator is a tool that applies the aforementioned techniques to obfuscate

source code or binaries. Typically, an obfuscator offers various obfuscation techniques, al-

lowing developers to use one or combine multiple techniques as needed. Obfuscators can

23

be categorized into three types based on their target stage [135]: Source Code Obfuscation,

Bytecode Obfuscation (Compilation Stage), and Binary Obfuscation. Source code obfusca-

tors, such as Tigress, generate obfuscated source code. These tools can obfuscate not only

static languages like C/C++ but also dynamic languages like JavaScript. This paper will

focus exclusively on obfuscation detection techniques for C/C++ code. Bytecode obfusca-

tion, also known as compilation-time obfuscation, involves obfuscating intermediate code,

such as LLVM IR, during the source code compilation process. For example, OLLVM [99]

performs obfuscation at this stage. On the other hand, binary obfuscation tools, such as

Alcatraz1 apply obfuscation methods directly by rewriting the binaries.

2.3.2 Existing Obfuscation Detection Techniques

Obfuscation detection methods can generally be divided into three categories: rule-

based approaches, machine learning-based approaches, and deep learning-based approaches.

We will discuss each of these methods in detail.

Statistical approaches

As an essential step in obfuscation detection, early methods rely on predefined rules

or heuristics to identify patterns or anomalies in the code. Common techniques include the

analysis of statistical properties such as entropy, control flow graphs, or n-gram models. To

distinguish whether a binary has been packed or encrypted, Lyda et. al. [134] attempted

to use entropy as a statistical metric for obfuscation detection. The assumption is that

obfuscated binaries exhibit higher entropy than unobfuscated ones due to the randomness

1https://github.com/weak1337/Alcatraz

24

introduced by obfuscation techniques. Kanzaki et al. [100] proposed a new metric called

Code Artificiality to determine whether the target code has been obfuscated, which is

based on an n-gram model. The intuition is that normal code exhibits predictable patterns

of n-grams, while obfuscated code disrupts these patterns. Statistical-based methods are

straightforward but often limited in their ability to generalize across different obfuscation

techniques.

Machine learning based approaches

In subsequent research, researchers attempted to advance the field by using su-

pervised machine learning methods to classify the specific obfuscation methods applied to

binaries [191, 24, 178, 195]. The commonality among these methods is that they treat the

obfuscation detection task as a pattern recognition problem, employing machine learning

techniques such as Naive Bayes (NB), k-Nearest Neighbor (KNN), Decision Tree (DT),

and Random Forest (RF) for supervised training, while introducing innovations in the pre-

processing step, specifically in how features were extracted. For instance, Salem et. al. [178]

treated disassembly code as text and attempted to use Term Frequency-Inverse Document

Frequency (TF-IDF) to extract features. This process generated a feature vector for each

program, consisting of the TF-IDF values of the top 128 terms encountered across all dis-

assembly files. This 128-dimensional feature vector is then used as input for training and

inference with Naive Bayes (NB) and Decision Tree (DT) models. Tofighi-Shirazi et al. [195]

chose to apply static symbolic execution to retrieve the semantic representation of the dis-

assembly code. For feature extraction, they used the Bag of Words (BoW) [138] approach

to extract features from the semantic-based raw data for machine learning models. Greco

25

et al. [72] employed 19 handcrafted features to train machine learning models. By studying

the performance of these different features across various obfuscation methods, they aimed

to gain a comprehensive understanding of how obfuscation methods affect the properties

of target binaries. Last but not least, on the Android platform, AndrODet [149] uses ma-

chine learning models to detect three common types of obfuscation techniques in Android

applications: identifier renaming, string encryption, and control flow obfuscation.

Deep learning based approaches

With the increasing application of neural networks and deep learning in the secu-

rity domain, several works have emerged that train neural networks to classify obfuscation

methods. For instance, Bacci et al. [12] proposed an LSTM-RNN-based approach to de-

tect seven different Android obfuscation techniques. Zhao et al. [220] designed a composite

neural network model. They used a CNN to capture local characteristics and an LSTM

to identify the instruction sequence, thereby fully capturing the contextual semantic infor-

mation of the entire target program. Tian et al. [194] took the research a step further by

proposing the Reduced Shortest Path Extraction algorithm, which better samples instruc-

tion sequences as input for the neural network. They used a network called BiGRU-CNN for

classification, where a GRU is employed to extract features from each reduced shortest path,

and a CNN is used for aggregation. Compared to traditional machine learning methods,

deep learning approaches mostly utilize learned embeddings rather than manually designed

feature vectors. These embeddings not only enhance flexibility and learning efficiency but

also improve overall performance.

26

2.3.3 Challenges

Although the application of deep learning has not only improved the accuracy

of obfuscation detection, but learning-based embeddings have also brought flexibility and

learning efficiency, the fundamental issue of supervised learning models—generalizability—remains

unsolved. Due to the limitations of training data and labels, we can only base our samples

and annotations on the data collected. However, in the context of obfuscation detection, the

presence of non-public obfuscation tools means that obfuscation detectors must deal with

numerous samples obfuscated by unknown methods. Additionally, there is a significant dis-

parity in both the difficulty of obtaining and the number of unobfuscated samples compared

to obfuscated samples, leading to dataset imbalance. This poses a major challenge for the

training of supervised models.

27

Chapter 3

Learning an Assembly Language

Model for Instruction Embedding

3.1 Introduction

In this chapter, we introduce our first work, named PalmTree, which is a pre-

trained assembly language model designed to generate general-purpose instruction embed-

dings through self-supervised training on large-scale unlabeled binary corpora.

Recently, we have witnessed a surge of research efforts that leverage deep learning

to tackle various binary analysis tasks, including function boundary identification [185],

binary code similarity detection [207, 224, 124, 216, 158], function prototype inference [34],

value set analysis [77], malware classification [173], etc. Deep learning has shown noticeably

better performances over the traditional program analysis and machine learning methods.

28

When applying deep learning to these binary analysis tasks, the first design choice

that should be made is: what kind of input should be fed into the neural network model?

Generally speaking, there are three choices: we can either directly feed raw bytes into a

neural network (e.g., the work by Shin et al. [185], αDiff [124], DeepVSA [77], and Mal-

Conv [173]), or feed manually-designed features (e.g., Gemini [207] and Instruction2Vec [213]),

or automatically learn to generate a vector representation for each instruction using some

representation learning models such as word2vec (e.g., InnerEye [224] and EKLAVYA [34]),

and then feed the representations (embeddings) into the downstream models.

Compared to the first two choices, automatically learning

instruction-level representation is more attractive for two reasons: (1) it avoids manually

designing efforts, which require expert knowledge and may be tedious and error-prone; and

(2) it can learn higher-level features rather than pure syntactic features and thus provide

better support for downstream tasks. To learn instruction-level representations, researchers

adopt algorithms (e.g., word2vec [144] and PV-DM [115]) from Natural Language Process-

ing (NLP) domain, by treating binary assembly code as natural language documents.

Although recent progress in instruction representation learning (instruction em-

bedding) is encouraging, there are still some unsolved problems which may greatly influence

the quality of instruction embeddings and limit the quality of downstream models: First,

existing approaches ignore the complex internal formats of instructions. For instance, in x86

assembly code, the number of operands can vary from zero to three; an operand could be a

CPU register, an expression for a memory location, an immediate constant, or a string sym-

bol; some instructions even have implicit operands, etc. Existing approaches either ignore

29

this structural information by treating an entire instruction as a word (e.g., InnerEye [224]

and EKLAVYA [34]) or only consider a simple instruction format (e.g., Asm2Vec [52]).

Second, existing approaches use Control Flow Graph (CFG) to capture contextual infor-

mation between instructions (e.g., Asm2Vec [52], InnerEye [224], and the work by Yu et

al. [216]). However, the contextual information on control flow can be noisy due to compiler

optimizations, and cannot reflect the actual dependency relations between instructions.

Moreover, in recent years, pre-trained deep learning models [168] are increasingly

attracting attentions in different fields such as Computer Vision (CV) and Natural Lan-

guage Processing (NLP). The intuition of pre-training is that with the development of deep

learning, the numbers of model parameters are increasing rapidly. A much larger dataset is

needed to fully train model parameters and to prevent overfitting. Thus, pre-trained models

(PTMs) using large-scale unlabeled corpora and self-supervised training tasks have become

very popular in some fields such as NLP. Representative deep pre-trained language models

in NLP include BERT [49], GPT [171], RoBERTa [128], ALBERT [114], etc. Considering

the naturalness of programming languages [88, 7] including assembly language, it has great

potential to pre-train an assembly language model for different binary analysis tasks.

To solve the existing problems in instruction representation learning and capture

the underlying characteristics of instructions, in this paper, we propose a pre-trained as-

sembly language model called PalmTree1 for general-purpose instruction representation

learning. PalmTree is based on the BERT [50] model but pre-trained with newly designed

training tasks exploiting the inherent characteristics of assembly language.

1PalmTree stands for Pre-trained Assembly Language Model for InsTRuction EmbEdding

30

We are not the first to utilize the BERT model in binary analysis. For instance, Yu

et al. [216] proposed to take CFG as input and use BERT to pre-train the token embeddings

and block embeddings for the purpose of binary code similarity detection. Trex [158] uses

one of BERT’s pre-training tasks – Masked Language Model (MLM) to learn program

execution semantics from functions’ micro-traces (a form of under-constrained dynamic

traces) for binary code similarity detection.

Contrast to the existing approaches, our goal is to develop a pre-trained assem-

bly language model for general-purpose instruction representation learning. Instead of only

using MLM on control flow, PalmTree uses three training tasks to exploit special char-

acteristics of assembly language such as instruction reordering introduced by compiler op-

timizations and long range data dependencies. The three training tasks work at different

granularity levels to effectively train PalmTree to capture internal formats, contextual

control flow dependency, and data flow dependency of instructions.

We design a set of intrinsic and extrinsic evaluations to systematically evaluate

PalmTree and other instruction embedding models. In intrinsic evaluations, we conduct

outlier detection and basic block similarity search. In extrinsic evaluations, we use sev-

eral downstream binary analysis tasks, which are binary code similarity detection, function

type signatures analysis, and value set analysis, to evaluate PalmTree and the baseline

models. Experimental results show that PalmTree has the best performance in intrin-

sic evaluations compared with the existing models. In extrinsic evaluations, PalmTree

outperforms the other instruction embedding models and also significantly improves the

quality of the downstream applications. We conclude that PalmTree can effectively gen-

31

erate high-quality instruction embedding which is helpful for different downstream binary

analysis tasks.

Experimental results show that PalmTree can provide high-quality general-purpose

instruction embeddings. Downstream applications can directly use the generated embed-

dings in their models. A static embedding lookup table can be generated in advance for

common instructions. Such a pre-trained, general-purpose language model scheme is es-

pecially useful when computing resources are limited such as on lower-end or embedded

devices.

In summary, we have made the following contributions:

• We lay out several challenges in the existing schemes in instruction representation

learning.

• We pre-train an assembly language model called PalmTree to generate general-

purpose instruction embeddings and overcome the existing challenges.

• We propose to use three pre-training tasks for PalmTree embodying the character-

istics of assembly language such as reordering and long range data dependency.

• We conduct extensive empirical evaluations and demonstrate that PalmTree out-

performs the other instruction embedding models and also significantly improves the

accuracy of downstream binary analysis tasks.

• We plan to release the source code of PalmTree, the pre-trained model, and the

evaluation framework to facilitate the follow-up research in this area.

32

1: mov rbp, rdi
2: mov ebx, 0x1
3: mov rsi, rbp
4: mov rdx, rbx
5: call memcpy
6: mov [rcx+rbx], 0x0
7: mov rcx, rax
8: mov [rax], 0x2e

1 3

2 6
Instruction Pair

Sampling

mov rdx, rbx mov [rcx+rbx], 0x0

[CLS] mov rdx rbx [SEP] mov

[rcx + rbx] 0x0 [SEP]

Raw Instructions

DFG

Instruction

Tokens

Instruction Pair Sampling Tokenization

Assembly

Language Model

2

4

5

7 8

1

3 6

E[CLS]

Trm

E1 EN

Trm Trm

Trm Trm Trm

C T1 TN...

...

...

...

MLM: internal formats

Masked Language Model

E[CLS]

Trm

E1 EN

Trm Trm

Trm Trm Trm

C T1 TN...

...

...

...

CWP: contextual dependency

E[CLS]

Trm

E2 EN

Trm Trm

Trm Trm Trm

C T2 TN...

...

...

...

Def-Use Prediction

DUP: data flow dependency

Context

Window

Data

Flow

Pairs

2 4

4 6

Control

Flow

Pairs

Context Window Prediction

Tokenization

Another node

not in the segment

Figure 3.1: System design of PalmTree.

To facilitate further research, we have made the source code and pre-trained

PalmTree model publicly available at https://github.com/palmtreemodel/PalmTree.

3.2 Design of PalmTree

3.2.1 Overview

To meet the challenges summarized in Section 2.1, we propose PalmTree, a novel

instruction embedding scheme that automatically learns a language model for assembly

code. PalmTree is based on BERT [50], and incorporates the following important design

considerations.

33

https://github.com/palmtreemodel/PalmTree

First of all, to capture the complex internal formats of instructions, we use a fine-

grained strategy to decompose instructions: we consider each instruction as a sentence and

decompose it into basic tokens.

Then, in order to train the deep neural network to understand the internal struc-

tures of instructions, we make use of a recently proposed training task in NLP to train the

model: Masked Language Model (MLM) [50]. This task trains a language model to predict

the masked (missing) tokens within instructions.

Moreover, we would like to train this language model to capture the relationships

between instructions. To do so, we design a training task, inspired by word2vec [144] and

Asm2Vec [52], which attempts to infer the word/instruction semantics by predicting two

instructions’ co-occurrence within a sliding window in control flow. We call this training task

Context Window Prediction (CWP), which is based on Next Sentence Prediction (NSP) [50]

in BERT. Essentially, if two instructions i and j fall within a sliding window in control flow

and i appears before j, we say i and j have a contextual relation. Note that this relation

is more relaxed than NSP, where two sentences have to be next to each other. We make

this design decision based on our observation described in Section 2.1.1: instructions may

be reordered by compiler optimizations, so adjacent instructions might not be semantically

related.

34

Furthermore, unlike natural language, instruction semantics are clearly docu-

mented. For instance, the source and destination operands for each instruction are clearly

stated. Therefore, the data dependency (or def-use relation) between instructions is clearly

specified and will not be tampered by compiler optimizations. Based on these facts, we de-

sign another training task called Def-Use Prediction (DUP) to further improve our assembly

language model. Essentially, we train this language model to predict if two instructions have

a def-use relation.

Figure 3.1 presents the design of PalmTree. It consists of three components:

Instruction Pair Sampling, Tokenization, and Language Model Training. The main com-

ponent (Assembly Language Model) of the system is based on the BERT model [50]. Trm

is the transformer encoder unit, C is the hidden state of the first token of the sequence

(classification token), Tn (n = 1 . . . N) are hidden states of other tokens of the sequence.

After the training process, we use mean pooling of the hidden states of the second last layer

of the BERT model as instruction embedding. The Instruction Pair Sampling component

is responsible for sampling instruction pairs from binaries based on control flow and def-use

relations.

Then, in the second component, the instruction pair is split into tokens. Tokens

can be opcode, registers, intermediate numbers, strings, symbols, etc. Special tokens such

as strings and memory offsets are encoded and compressed in this step. After that, as in-

troduced earlier, we train the BERT model using the following three tasks: MLM (Masked

Language Model), CWP (Context Window Prediction), and Def-Use Prediction (DUP).

After the model has been trained, we use the trained language model for instruction em-

35

bedding generation. In general, the tokenization strategy and MLM will help us address

the first challenge in Section 2.1.1, and CWP and DUP can help us address the second

challenge.

In Section 3.2.2, we introduce how we construct two kinds of instruction pairs. In

Section 3.2.3, we introduce our tokenization process. Then, we introduce how we design

different training tasks to pre-train a comprehensive assembly language model for instruction

embedding in Section 3.2.4.

3.2.2 Input Generation

We generate two kinds of inputs for PalmTree. First, we disassemble binaries

and extract def-use relations. We use Binary Ninja2 in our implementation, but other disas-

semblers should work too. With the help of Binary Ninja, we consider dependencies among

registers, memory locations, and function call arguments, as well as implicit dependencies

introduced by EFLAGS. For each instruction, we retrieve data dependencies of each operand,

and identify def-use relations between the instruction and its dependent instructions. Sec-

ond, we sample instruction pairs from control flow sequences, and also sample instruction

pairs based on def-use relations. Instruction pairs from control flow are needed by CWP,

while instruction pairs from def-use relations are needed by DUP. MLM can take both kinds

of instruction pairs.

2https://binary.ninja/

36

3.2.3 Tokenization

As introduced earlier, unlike Asm2Vec [52] which splits an instruction into opcode

and up to two operands, we apply a more fine-grained strategy. For instance, given an

instruction “mov rax, qword [rsp+0x58]”, we divide it into “mov”, “rax”, “qword”, “[”,

“rsp”, “+”, “0x58”, and “]”. In other words, we consider each instruction as a sentence

and decompose the operands into more basic elements.

We use the following normalization strategy to alleviate the Out-Of-Vocabulary

problem caused by strings and constant numbers. For strings, we use a special token [str]

to replace them. For constant numbers, if the constants are large (at least five digits in

hexadecimal), the exact value is not that useful, so we normalize it with a special token

[addr]. If the constants are relatively small (less than four digits in hexadecimal), these

constants may carry crucial information about which local variables, function arguments,

and data structure fields that are accessed. Therefore we keep them as tokens, and encode

them as one-hot vectors.

3.2.4 Assembly Language Model

In this section we introduce how we apply the BERT model to our assembly

language model for instruction embedding, and how we pre-train the model and adopt the

model to downstream tasks.

PalmTree model

Our model is based on BERT [50], the state-of-the-art PTM in many NLP tasks.

The proposed model is a multi-layer bidirectional transformer encoder. Transformer, firstly

37

introduced in 2017 [197], is a neural network architecture solely based on multi-head self

attention mechanism. In PalmTree, transformer units are connected bidirectionally and

stacked into multiple layers.

mov[CLS] ebx 0x1 [SEP] mov rdx rbx [SEP]Input

ES1ES1 ES1 ES1 ES1 ES2 ES2 ES2 ES2Segment

movE0 ebx 0x1 [SEP] mov rdx rbx [SEP]Position

EmovE[CLS] Eebx 0x1 [SEP] mov rdx rbx [SEP]Token

E8E7E6E5E4E3E2E1

[SEP]rbxrdxmov[SEP]0x1 E[SEP]ErbxErdxEmovE[SEP]E0x1

Figure 3.2: Input Representation

We treat each instruction as a sentence and each token as a word. Instructions

from control flow and data flow sequences are concatenated and then fed into the BERT

model. As shown in Figure 3.2, the first token of this concatenated input is a special token

– [CLS], which is used to identify the start of a sequence. Secondly, we use another to-

ken [SEP] to separate concatenated instructions. Furthermore, we add position embedding

and segment embedding to token embedding, and use this mixed vector as the input of

the bi-directional transformer network, as shown in Figure 3.2. Position embedding repre-

sents different positions in the input sequence, while segment embedding distinguishes the

first and second instructions. Position embedding and segment embedding will be trained

along with token embeddings. These two embeddings can help dynamically adjust token

embeddings according to their locations.

38

Training task 1: Masked Language Model

The first task we use to pre-train PalmTree is Masked Language Model (MLM),

which was firstly introduced in BERT [50]. Here is an example shown in Figure 3.3. As-

suming that ti denotes a token and instruction I = t1, t2, t3, ..., tn consists of a sequence

of tokens. For a given input instruction I, we first randomly select 15% of the tokens to

replace. For the chosen tokens, 80% are masked by [MASK] (mask-out tokens), 10% are

replaced with another token in the vocabulary (corrupted tokens), and 10% of the chosen

tokens are unchanged. Then, the transformer encoder learns to predict the masked-out and

corrupted tokens, and outputs a probability for predicting a particular token ti = [MASK]

with a softmax layer located on the top of the transformer network:

p(t̂i|I) =
exp(wiΘ(I)i)∑K

k=1 exp(wkΘ(I)i)
(3.1)

where t̂i denotes the prediction of ti. Θ(I)i is the ith hidden vector of the transformer

network Θ in the last layer, when having I as input. and wi is weight of label i. K is the

number of possible labels of token ti. The model is trained with the Cross Entropy loss

function:

LMLM = −
∑

ti∈m(I)

log p(t̂|I) (3.2)

where m(I) denotes the set of tokens that are masked.

mov[CLS] [MASK] 0x1 [SEP] mov rdx jz [SEP]

ebx rbx

Input

Prediction

Figure 3.3: Masked Language Model (MLM)

39

Figure 3.3 shows an example. Given an instruction pair “mov ebx, 0x1; mov

rdx, rbx”, we first add special tokens [CLS] and [SEP]. Then we randomly select some

tokens for replacement. Here we select ebx and rbx. The token ebx is replaced by the

[MASK] token (the yellow box). The token rbx is replaced by the token jz (another token

in the vocabulary, the red box). Next, we feed this modified instruction pair into the

PalmTree model. The model will make a prediction for each token. Here we care about

the predictions of the yellow and red boxes, which are the green boxes in Figure 3.3. Only

the predictions of those two special tokens are considered in calculating the loss function.

Training task 2: Context Window Prediction

We use this training task to capture control flow information. Many downstream

tasks [207, 77, 224, 34] rely on the understanding of contextual relations of code sequences

in functions or basic blocks. Instead of predicting the whole following sentence (instruction)

[192, 106], we perform a binary classification to predict whether the two given instructions

co-occur within a context window or not, which makes it a much easier task compared to

the whole sentence prediction. However, unlike natural language, control flows do not have

strict dependencies and ordering. As a result, strict Next Sentence Prediction (NSP), firstly

proposed by BERT [50], may not be suitable for capturing contextual information of control

flow. To tackle this issue, we extend the context window, i.e., we treat each instruction w

steps before and w steps after the target instruction in the same basic block as contextually

related. w is the context windows size. In Section 3.3.6, we evaluate the performance

of different context window sizes, and pick w = 2 accordingly. Given an instruction I

and a candidate instruction Icand as input, the candidate instruction can be located in

40

the contextual window of I, or a negative sample randomly selected from the dataset. ŷ

denotes the prediction of this model. The probability that the candidate instruction Icand

is a context instruction of I is defined as

p(ŷ|I, Icand) =
1

1 + exp(Θ(I ∥ Icand)cls)
(3.3)

where Icand ∈ C, and C is the candidate set including negative and positive samples. Θcls is

the first output of the transformer network in the last layer. And “∥” means a concatenation

of two instructions. Suppose all instructions belongs to the training set D, then the loss

function is:

LCWP = −
∑
I∈D

log p(ŷ|I, Icand) (3.4)

mov[CLS] ebx 0x1 [SEP] mov rdx rbx [SEP]Input

Prediction IsContext

Figure 3.4: Context Window Prediction (CWP)

Here is an example in Figure 3.4. We use the input mentioned above. We feed the

unchanged instruction pairs into the PalmTree model and pick the first output vector.

We use this vector to predict whether the input are located in the same context window

or not. In this case, the two instructions are next to each other. Therefore the correct

prediction would be “true”.

41

Training task 3: Def-Use Prediction

To further improve the quality of our instruction embedding, we need not only

control flow information but also data dependency information across instructions.

Sentence Ordering Prediction (SOP), first introduced by Lan et al. [114], is a very

suitable choice. This task can help the PalmTree model to understand the data relation

through DFGs, and we call it Def-Use Prediction (DUP).

Given an instruction pair I1 and I2 as input. And we feed I1 ∥ I2 as a positive

sample and I2 ∥ I1 as a negative sample. ŷ denotes the prediction of this model. The

probability that the instruction pair is swapped or not is defined as

p(ŷ|I1, I2) =
1

1 + exp(Θ(I1 ∥ I2)cls)
(3.5)

where Θcls is the first output of the transformer network in the last layer. The Cross

Entropy loss function is:

LDUP = −
∑
I∈D

p(ŷ|I1, I2) (3.6)

[CLS] mov rdx rbx [SEP] mov ebx 0x1 [SEP]Input

Prediction IsSwapped

Figure 3.5: Def-Use Prediction (DUP)

We show an example in Figure 3.5. We still use the instruction pair discussed

in Figure 3.4, but here we swap the two instructions. So the sequence is “[CLS] mov

42

rdx rbx [SEP] mov ebx 0x1 [SEP]”. We feed it into PalmTree and use the first output

vector to predict whether this instruction pair remains unswapped or not. In this case, it

should be predicted as “false” (which means this pair is swapped).

The loss function of PalmTree is the combination of three loss functions:

L = LMLM + LCWP + LDUP (3.7)

Instruction Representation

The transformer encoder produces a sequence of hidden states as output. There are

multiple ways to generate instruction embeddings from the output. For instance, applying

a max/mean pooling. We use mean pooling of the hidden states of the second last layer to

represent the whole instruction. This design choice has the following considerations. First,

the transformer encoder encodes all the input information into the hidden states. A pooling

layer is a good way to utilize the information encoded by transformer. Second, results in

BERT [50] also suggest that hidden states of previous layers before the last layer have offer

more generalizability than the last layer for some downstream tasks. We evaluated different

layer configurations and reported the results in section 3.3.6.

Deployment of the model

There are two ways of deploying PalmTree for downstream applications: instruc-

tion embedding generation, where the pre-trained parameters are frozen, and fine-tuning,

where the pre-trained parameters can be further adjusted.

In the first way (instruction embedding generation), PalmTree is used as an

off-the-shelf assembly language model to generate high-quality instruction embeddings.

43

Downstream applications can directly use the generated embeddings in their models. Our

evaluation results show that PalmTree without fine-tuning can still outperform existing

instruction embedding models such as word2vec and Asm2Vec. This scheme is also very

useful when computing resources are limited such as on a lower-end or embedded devices. In

this scenario, we can further improve the efficiency by generating a static embedding lookup

table in advance. This lookup table contains the embeddings of most common instructions.

A trade-off should be made between the model accuracy and the available resources when

choosing the lookup table size. A larger lookup table will consume more space but can

alleviate the OOV problem (happens when the encountered instruction is not in the table)

and improve the accuracy.

In the second way (fine-tuning), PalmTree is fine-tuned and trained together

with the downstream model. This scheme will usually provide extra benefits when enough

computing resources and training budget are available. There are several fine-tuning strate-

gies [168], e.g., two-stage fine-tuning, multi-task fine-tuning.

3.3 Evaluation

Previous binary analysis studies usually evaluate their approaches by designing

specific experiments in an end-to-end manner, since their instruction embeddings are only

for individual tasks. In this paper, we focus on evaluating different instruction embedding

schemes. To this end, we have designed and implemented an extensive evaluation framework

to evaluate PalmTree and the baseline approaches. Evaluations can be classified into two

categories: intrinsic evaluation and extrinsic evaluation. In the remainder of this section,

44

we first introduce our evaluation framework and experimental configurations, then report

and discuss the experimental results.

3.3.1 Evaluation Methodology

Intrinsic Evaluation. In NLP domain, intrinsic evaluation refers to the evaluations that

compare the generated embeddings with human assessments [13]. Hence, for each intrinsic

metric, manually organized datasets are needed. This kind of dataset could be collected

either in laboratory on a limited number of examinees or through crowd-sourcing [129]

by using web platforms or offline survey [13]. Unlike the evaluations in NLP domain,

programming languages including assembly language (instructions) do not necessarily rely

on human assessments. Instead, each opcode and operand in instructions has clear semantic

meanings, which can be extracted from instruction reference manuals. Furthermore, debug

information generated by different compilers and compiler options can also indicate whether

two pieces of code are semantically equivalent. More specifically, we design two intrinsic

evaluations: instruction outlier detection based on the knowledge of semantic meanings of

opcodes and operands from instruction manuals, and basic block search by leveraging the

debug information associated with source code.

Extrinsic Evaluation. Extrinsic evaluation aims to evaluate the quality of an embedding

scheme along with a downstream machine learning model in an end-to-end manner [13].

So if a downstream model is more accurate when integrated with instruction embedding

scheme A than the one with scheme B, then A is considered better than B. In this paper,

we choose three different binary analysis tasks for extrinsic evaluation, i.e., Gemini [207] for

45

binary code similarity detection, EKLAVYA [34] for function type signatures inference, and

DeepVSA [77] for value set analysis. We obtained the original implementations of these

downstream tasks for this evaluation. All of the downstream applications are implemented

based on TensorFlow3. Therefore we choose the first way of deploying PalmTree in ex-

trinsic evaluations (see Section 3.2.4). We encoded all the instructions in the corresponding

training and testing datasets and then fed the embeddings into downstream applications.

3.3.2 Experimental Setup

Baseline Schemes and PalmTree Configurations. We choose Instruction2Vec, word2vec,

and Asm2Vec as baseline schemes. For fair comparison, we set the embedding dimension

as 128 for each model. We performed the same normalization method as PalmTree on

word2vec and Asm2Vec. We did not set any limitation on the vocabulary size of Asm2Vec

and word2vec. We implemented these baseline embedding models and PalmTree us-

ing PyTorch [157]. PalmTree is based on BERT but has fewer parameters. While in

BERT #Layers = 12, Head = 12 and Hidden dimension = 768, we set #Layers = 12,

Head = 8, Hidden dimension = 128 in PalmTree, for the sake of efficiency and training

costs. The ratio between the positive and negative pairs in both CWP and DUP is 1:1.

Furthermore, to evaluate the contributions of three training tasks of PalmTree,

we set up three configurations:

3https://www.tensorflow.org/

46

• PalmTree-M: PalmTree trained with MLM only

• PalmTree-MC: PalmTree trained with MLM and CWP

• PalmTree: PalmTree trained with MLM, CWP, and DUP

Datasets.

To pre-train PalmTree and evaluate its transferability and generalizability, and

evaluate baseline schemes in different downstream applications, we used different binaries

from different compilers. The pre-training dataset contains different versions of Binutils4,

Coreutils5, Diffutils6, and Findutils7 on x86-64 platform and compiled with Clang8 and

GCC9 with different optimization levels. The whole pre-training dataset contains 3,266

binaries and 2.25 billion instructions in total. There are about 2.36 billion positive and

negative sample pairs during training. To make sure that training and testing datasets do

not have much code in common in extrinsic evaluations, we selected completely different

testing dataset from different binary families and compiled by different compilers. Please

refer to the following sections for more details about dataset settings.

Hardware Configuration. All the experiments were conducted on a dedicated server

with a Ryzen 3900X CPU@3.80GHz×12, one GTX 2080Ti GPU, 64 GB memory, and 500

GB SSD.

4https://www.gnu.org/software/binutils/
5https://www.gnu.org/software/coreutils/
6https://www.gnu.org/software/diffutils/
7https://www.gnu.org/software/findutils/
8https://clang.llvm.org/
9https://gcc.gnu.org/

47

3.3.3 Intrinsic Evaluation

Outlier Detection

In this intrinsic evaluation, we randomly create a set of instructions, one of which is

an outlier. That is, this instruction is obviously different from the rest of the instructions in

this set. To detect this outlier, we calculate the cosine distance between any two instructions’

vector representations (i.e., embeddings), and pick whichever is most distant from the rest.

We designed two outlier detection experiments, one for opcode outlier detection, and one

for operand, to evaluate whether the instruction embeddings are good enough to distinguish

different types of opcodes and operands respectively.

We classify instructions into 12 categories based on their opcode, according to the

x86 Assembly Language Reference Manual [154].Table 3.1 shows how we categorize different

opcodes by referring to [154]. Table 3.2 shows how we categorize different operand types.

The first column shows the type of operands combination. “none” means the instruction

has no operand, such as retn. “tri” means the instruction has three operands. The other

ones are instructions that have two operands. For instance, “reg-reg” means both operands

are registers. The type of each operand has been listed in the second and third columns.

We prepared 50,000 instruction sets. Each set consists of four instructions from

the same opcode category and one instruction from a different category.

Similarly, we classify instructions based on their operands. Table 3.2 in the Ap-

pendix provides details about this process. Essentially, we classify operand lists, according

to the number of operands as well as the operand types. We created another 50,000 sets of

48

Table 3.1: Types of Opcodes

Types Opcodes

Data Movement mov, push, pop, cwtl, cltq, cqto, cqtd

Unary Operations inc, dec, neg, not

Binary Operations lea, leaq, add, sub,imul, xor, or, and

Shift Operations sal, sar, shr, shl

Special Arithmetic Operations imulq, mulq, idivq, divq

Comparison and Test Instructions cmp, test

Conditional Set Instructions sete, setz, setne, setnz, sets, setns, setg,

setnle,setge, setnl, setl, setnge,setle, setng, seta,

setnbe, setae, setnb, setbe, setna

Jump Instructions jmp, je, jz, jne, jnz, js, jns, jg, jnle, jge, jnl, jl

jnge, jle, jng, ja, jnbe, jae, jnb, jb, jnae, jbe, jna

Conditional Move Instructions cmove, cmovz, cmovne, cmovenz, cmovs, cmovns,

cmovg, cmovnle, cmovge, cmovnl, cmovnge,

cmovle, cmovng, cmova, cmovnbe, cmovae,

cmovnb, cmovb, cmovnae, cmovbe, cmovna

Procedure Call Instructions call, leave, ret, retn

String Instructions cmps, cmpsb, cmpsl, cmpsw, lods, lodsb, lodsl,

lodsw,mov, movsb, movsl, movsw

Floating Point Arithmetic fabs, fadd, faddp, fchs, fdiv, fdivp, fdivr, fdi-

vrp, fiadd, fidivr, fimul, fisub, fisubr, fmul, fmulp,

fprem, fpreml,frndint, fscale, fsqrt, fsub,fsubp,

fsubr, fsubrp, fxtract

49

Table 3.2: Types of Operands

Type Operand 1 Operand 2 # of Operands

none - - 0

addr address - 1

ref
memory

reference

- 1

reg-reg register register 2

reg-addr register register 2

reg-cnst register
constant

value

2

reg-ref register
memory

reference

2

ref-cnst
memory

reference

constant

value

2

ref-reg
memory

reference

register 2

tri - - 3

50

Table 3.3: Intrinsic Evaluation Results, Stdev. denotes the standard deviation

opcode outlier operand outlier basicblock sim searchModel

Average Stdev. Average Stdev. AUC

Instruction2Vec 0.863 0.0529 0.860 0.0363 0.871

word2vec 0.269 0.0863 0.256 0.0874 0.842

Asm2Vec 0.865 0.0426 0.542 0.0238 0.894

PalmTree-M 0.855 0.0333 0.785 0.0656 0.910

PalmTree-MC 0.870 0.0449 0.808 0.0435 0.913

PalmTree 0.871 0.0440 0.944 0.0343 0.922

instructions covering 10 categories, and each set contains four instructions coming from the

same category, and one from a different category.

The first and second columns of Table 3.3 present the accuracy distributions for

opcode outlier detection and operand outlier detection respectively. We can make the fol-

lowing observations: (1) word2vec performs poorly in both experiments, because it does not

take into account the instruction internal structures; (2) Instruction2Vec, as a manually-

designed embedding, performs generally well in both experiments, because this manual de-

sign indeed takes different opcodes and operands into consideration; (3) Asm2Vec performs

slightly better than Instruction2Vec in opcode outlier detection, but considerably worse in

operand outlier detection, because its modeling for operands is not fine-grained enough;

(4) Even though PalmTree-M and PalmTree-MC do not show obvious advantages over

Asm2Vec and Instruction2Vec, PalmTree has the best accuracy in both experiments,

51

Inst
ruct

ion2
Vec

wor
d2v

ec
Asm

2Ve
c

Pᴀʟ
ᴍTʀ

ᴇᴇ-M

Pᴀʟ
ᴍTʀ

ᴇᴇ-M
C

Pᴀʟ
ᴍTʀ

ᴇᴇ

0.2

0.4

0.6

0.8

1.0

Ac
cu
ra
cy

Figure 3.6: Accuracy of Opcode Outlier Detection

which demonstrate that this automatically learned representation can sufficiently capture

semantic differences in both opcodes and operands; and (5) All the three pre-training tasks

contribute positively to PalmTree in both outlier detection experiments. Particularly, the

DUP training task considerably boots the accuracy in both experiments, demonstrating

that the def-use relations between instructions indeed help learn the assembly language

model. A complete result of outlier detection can be found in Figure 3.6 and Figure 3.7.

Basic Block Search

In this intrinsic evaluation, we compute an embedding for each basic block (a

sequence of instructions with only one entry and one exit), by averaging the instruction em-

beddings in it. Given one basic block, we use its embedding to find semantically equivalent

basic blocks based on the cosine distance between two basic block embeddings.

52

Inst
ruct

ion2
Vec

wor
d2v

ec
Asm

2Ve
c

Pᴀʟ
ᴍTʀ

ᴇᴇ-M

Pᴀʟ
ᴍTʀ

ᴇᴇ-M
C

Pᴀʟ
ᴍTʀ

ᴇᴇ

0.2

0.4

0.6

0.8

1.0

Ac
cu
ra
cy

Figure 3.7: Accuracy of Operands Outlier Detection

We use openssl-1.1.0h and glibc-2.29.1 as the testing set, which is not in-

cluded in our training set. We compile them with O1, O2, and O3 optimization levels. We

use the same method used in DeepBinDiff [55], which relies on the debug information from

the program source code as the ground truth.

Figure 3.8 shows the ROC curves of Instruction2Vec, word2vec, Asm2Vec, and

PalmTree for basic block search. Table 3.3 further lists the AUC (Area Under the Curve)

score for each embedding scheme. We can observe that (1) word2vec, once again, has the

worst performance; (2) the manually-designed embedding scheme, Instruction2Vec, is even

better than word2vec, an automatically learned embedding scheme; (3) Asm2Vec performs

reasonably well, but still worse than three configurations of PalmTree; and (4) The three

PalmTree configurations have better AUC than other baselines, while consecutive perfor-

mance improvements are observed.

53

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ue

 p
os

iti
ve

 ra
te

Instruction2Vec
word2vec
Asm2Vec
PᴀʟᴍTʀᴇᴇ-M
PᴀʟᴍTʀᴇᴇ-MC
PᴀʟᴍTʀᴇᴇ

Figure 3.8: ROC curves for Basic Block Search

PalmTree ranks the first in all intrinsic evaluation experiments, demonstrating the

strength of the automatically learned assembly language model. And the performance

improvements between different PalmTree configurations show positive contributions

of individual training tasks.

3.3.4 Extrinsic Evaluation

An extrinsic evaluation reflects the ability of an instruction embedding model to

be used as an input of downstream machine learning algorithms for one or several specific

tasks [13]. As introduced earlier, we select three downstream tasks in binary analysis field,

which are binary code similarity detection, function type signature analysis, and value set

analysis.

54

PALMTREE and other

Instruction Embedding Models
mov rbp, rdi

Instruction Embeddings

Output: Binary function

embeddings for similarity search

Mean Pooling

Structure2Vec

Manually Designed Vector

Gemini Structure2Vec

Original Model

Figure 3.9: Instruction embedding models and the downstream model Gemini

Binary Code Similarity Detection

Gemini [207] is a neural network-based approach for cross-platform binary code

similarity detection. The model is based on Structure2Vec [40] and takes ACFG (Attributed

Control Flow Graph) as input. In an ACFG, each node is a manually formed feature vector

for each basic block. Table 3.4 shows the attributes (i.e., features) of a basic block in the

original implementation.

In this experiment, we evaluate the performance of Gemini, when having Instruc-

tion2Vec, word2vec, Asm2Vec, PalmTree-M, PalmTree-MC, and PalmTree as input,

respectively. Moreover, we also used one-hot vectors with an embedding layer as a kind of

instruction embedding (denoted as “one-hot”) as another baseline. The embedding layer

will be trained along with Gemini. Figure 3.9 shows how we adopt different instruction em-

bedding models to Gemini. Since Gemini takes a feature vector for each basic block, we use

55

Table 3.4: Attributes of Basic Blocks in Gemini [207]

Type Attribute name

Block-level attributes

String Constants, Numeric Constants,

No. of Transfer Instructions, No. of Calls,

No. of Instructions,No. of Arithmetic Instructions

Inter-block attributes No. of offspring, Betweenness

mean pooling to generate basic block embeddings based on embeddings of the instructions

in the corresponding basic block. The architectures of our modified model and the original

model are both shown in Figure 3.9. We also included its original basic block features as

an additional baseline (denoted as “Gemini”) for comparison.

The accuracy of the original Gemini is reported to be very high (with an AUC of

0.971). However, this might be due to overfitting, since the training and testing sets are

from OpenSSL compiled by the same compiler Clang. To really evaluate the generalizability

(i.e., the ability to adapt to previously unseen data) of the trained models under different

inputs, we use binutils-2.26, binutils-2.30, and coreutils-8.30 compiled by Clang

as training set (237 binaries in total), and used openssl-1.1.0h, openssl-1.0.1, and

glibc-2.29.1 compiled by GCC as testing set (14 binaries). In other words, the training

and testing sets are completely different and the compilers are different too.

56

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.2

0.4

0.6

0.8

1.0
Tr

ue
 p

os
iti

ve
 ra

te

one-hot
Instruction2Vec
word2vec
Asm2Vec
PᴀʟᴍTʀᴇᴇ-M
PᴀʟᴍTʀᴇᴇ-MC
PᴀʟᴍTʀᴇᴇ
Gemini

Figure 3.10: ROC curves of Gemini

Table 3.5: AUC values of Gemini

Model AUC Model AUC

one-hot 0.745 Gemini 0.866

Instruction2Vec 0.738 PalmTree-M 0.864

word2vec 0.826 PalmTree-MC 0.866

Asm2Vec 0.823 PalmTree 0.921

57

Table 3.5 gives the AUC values of Gemini when different models are used to

generate its input. Figure 3.10 shows the ROC curves of Gemini when different instruction

embedding models are used. Based on Table 3.5, we can make the following observations:

(1) Although the original paper [207] reported very encouraging performance of Gem-

ini, we can observe that the original Gemini model does not generalize very well to

completely new testing data.

(2) The manually designed embedding schemes, Instruction2Vec and one-hot vector, per-

form poorly, signifying that manually selected features might be only suitable for

specific tasks.

(3) Despite that the testing set is considerably different from the training set, PalmTree

can still perform reasonably well and beat the remaining schemes, demonstrating that

PalmTree can substantially boost the generalizability of downstream tasks.

(4) All the three pre-training tasks contribute to the final model (PalmTree) for Gem-

ini. However, both PalmTree-M and PalmTree-MC do not show obvious advan-

tages over other baselines, signifying that only the complete PalmTree with the

three training tasks can generate better embeddings than previous approaches in this

downstream task.

Function Type Signature Inference

Function type signature inference is a task of inferring the number and primitive

types of the arguments of a function. To evaluate the quality of instruction embeddings in

58

PALMTREE and other

Instruction Embedding Models
mov rbp, rdi

Output: Function type signitures

word2vec

GRU GRU GRU

Figure 3.11: Instruction embedding models and EKLAVYA

this task, we select EKLAVYA, an approach proposed by Chua et al. [34]. It is based on

a multi-layer GRU (Gated Recurrent Unit) network and uses word2vec as the instruction

embedding method. According to the original paper, word2vec was pre-trained with the

whole training dataset. Then, they trained a GRU network to infer function type signatures.

In this evaluation, we test the performances of different types of embeddings using

EKLAVYA as the downstream application. Since the original model is not an end-to-

end model, we do not need an embedding layer between instruction embeddings and the

GRU network. We replaced the original word2vec in EKLAVYA with one-hot encoding,

Instruction2Vec, Asm2Vec, PalmTree-M, PalmTree-MC, and PalmTree, as shown in

Figure 3.11.

59

Similarly, in order to evaluate the generalizability of the trained downstream mod-

els, we used very different training and testing sets (the same datasets described in Sec-

tion 3.3.4).

0 200 400 600 800 1000
Iterations

0.0

0.5

1.0

1.5

2.0

2.5

Lo
ss

 v
al

ue

one-hot
Instruction2Vec
word2vec
Asm2Vec
PᴀʟᴍTʀᴇᴇ-M
PᴀʟᴍTʀᴇᴇ-MC
PᴀʟᴍTʀᴇᴇ

Figure 3.12: Loss value during training

Table 3.6 and Figure 3.14 presents the accuracy of EKLAVYA on the testing

dataset. Figure 3.12, and Figure 3.13 shows the loss value and accuracy of EKLAVYA

during training and testing. From the results we can make the following observations:

(1) PalmTree and Asm2Vec can achieve higher accuracy than word2vec, which is the

original choice of EKLAVYA.

60

0 200 400 600 800 1000
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

A
cc
ur
ac
y

one-hot
Instruction2Vec
word2vec
Asm2Vec
PᴀʟᴍTʀᴇᴇ-M
PᴀʟᴍTʀᴇᴇ-MC
PᴀʟᴍTʀᴇᴇ

Figure 3.13: Accuracy during training

(2) PalmTree has the best accuracy on the testing dataset, demonstrating that EKLAVYA

when fed with PalmTree as instruction embeddings can achieve the best generaliz-

ability. Moreover, CWP contributes more (see PalmTree-MC), which implies that

control-flow information plays a more significant role in EKLAVYA.

(3) Instruction2Vec performs very poorly in this evaluation, signifying that, when not

done correctly, manual feature selection may disturb and mislead a downstream model.

(4) The poor results of one-hot encoding show that a good instruction embedding model

is indeed necessary. At least in this task, it is very difficult for the deep neural network

to learn instruction semantic through end-to-end training.

61

one
-hot

Inst
ruct

ion2
Vec

wor
d2v

ec
Asm

2Ve
c

Pᴀʟ
ᴍTʀ

ᴇᴇ-M

Pᴀʟ
ᴍTʀ

ᴇᴇ-M
C
Pᴀʟ

ᴍTʀ
ᴇᴇ

0.4

0.6

0.8

1.0

A
cc
ur
ac
y

Figure 3.14: Accuracy of EKLAVYA

Value Set Analysis

DeepVSA [77] makes use of a hierarchical LSTM network to conduct a coarse-

grained value set analysis, which characterizes memory references into regions like global,

heap, stack, and other. It feeds instruction raw bytes as input into a multi-layer LSTM

network to generate instruction embeddings. It then feeds the generated instruction rep-

resentations into another multi-layer bi-directional LSTM network, which is supposed to

capture the dependency between instructions and eventually predict the memory access

regions.

In our experiment, we use different kinds of instruction embeddings to replace the

original instruction embedding generation model in DeepVSA. We use the original training

62

Table 3.6: Accuracy and Standard Deviation of EKLAVYA

Model Accuracy Standard Deviation

one-hot 0.309 0.0338

Instruction2Vec 0.311 0.0407

word2vec 0.856 0.0884

Asm2Vec 0.904 0.0686

PalmTree-M 0.929 0.0554

PalmTree-MC 0.943 0.0476

PalmTree 0.946 0.0475

and testing datasets of DeepVSA and compare prediction accuracy of different kinds of

embeddings. The original datasets contain raw bytes only, thus we need to disassemble

these raw bytes. After that we tokenize and encode these disassembled instructions for

training and testing. We add an embedding layer before the LSTM network to further

adjust instruction embeddings, as shown in Figure 3.15.

We use part of the dataset provided by the authors of DeepVSA. The whole dataset

provided by the authors has 13.8 million instructions for training and 10.1 million for testing.

Our dataset has 9.6 million instructions for training and 4.8 million for testing, due to the

disassembly time costs. As explained in their paper [77], their dataset also used Clang and

GCC as compilers and had no overlapping instructions between the training and testing

datasets.

63

PALMTREE and other

Instruction Embedding Models
mov rbp, rdi

Instruction Embeddings

Embedding Layer

Embedding Layer LSTM LSTM LSTM

LSTM LTSM LTSMLSTM LTSM LTSM

Figure 3.15: Instruction embedding models and the downstream model DeepVSA

64

0 25 50 75 100 125 150
Iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Lo

ss
 v

al
ue

one-hot
Instruction2Vec
word2vec
Asm2Vec
PᴀʟᴍTʀᴇᴇ-M
PᴀʟᴍTʀᴇᴇ-MC
PᴀʟᴍTʀᴇᴇ
DeepVSA

Figure 3.16: Loss value of DeepVSA during training

Table 3.7 lists the experimental results. We use Precision (P), Recall (R), and F1

scores to measure the performance. Figure 3.16 depicts the loss values of DeepVSA during

training, when different instruction embedding schemes are used as its input. From these

results, we have the following observations:

(1) PalmTree has visibly better results than the original DeepVSA and the other base-

lines in Global and Heap, and has slightly better results in Stack and Other since

other baselines also have scores greater than 0.9.

(2) The three training tasks of PalmTree indeed contribute to the final result. It in-

dicates that PalmTree indeed captures the data flows between instructions. In

65

T
ab

le
3.

7:
R

es
u

lt
s

of
D

ee
p

V
S

A

E
m
b
e
d
d
in
g
s

G
lo
b
a
l

H
e
a
p

S
ta

ck
O
th

e
r

P
R

F
1

P
R

F
1

P
R

F
1

P
R

F
1

o
n

e-
h

ot
0
.4

53
0
.6

70
0.

54
0

0.
50

7
0
.7
1
6

0.
59

4
0.

95
9

0.
86

6
0.

91
0

0.
95

3
0.

96
5

0.
95

9

In
st

ru
ct

io
n

2
V

ec
0
.5

95
0
.7

26
0.

65
4

0.
51

2
0.

63
3

0.
56

6
0.

93
2

0.
89

8
0.

91
4

0.
94

8
0.

94
6

0.
94

7

w
or

d
2
ve

c
0
.1

47
0
.5

35
0.

23
0

0.
43

5
0.

59
5

0.
50

3
0.

80
2

0.
42

0
0.

77
6

0.
88

9
0.

86
3

0.
87

6

A
sm

2V
ec

0
.4

82
0
.5

57
0.

51
7

0.
41

0
0.

32
0

0.
35

9
0.

92
8

0.
89

4
0.

91
1

0.
93

3
0.

96
4

0.
94

8

D
ee

p
V

S
A

0
.9
6
1

0.
73

8
0.

83
5

0.
58

9
0.

58
0

0.
58

4
0.

97
4

0.
91

7
0.

94
4

0.
94

3
0.

97
6

0.
95

9

P
a
l
m
T
r
e
e

-M
0
.8

45
0
.7

32
0.

78
4

0.
57

2
0.

62
5

0.
59

7
0.

96
3

0.
90

9
0.

93
5

0.
95

6
0.

96
9

0.
96

2

P
a
l
m
T
r
e
e

-M
C

0
.9

10
0
.7

55
0.

82
5

0
.7
5
8

0.
67

5
0.

71
4

0.
96

5
0.

89
7

0.
92

9
0.

95
8

0
.9
8
8

0
.9
7
2

P
a
l
m
T
r
e
e

0
.9

12
0
.8
0
5

0
.8
5
5

0.
75

5
0.

67
8

0
.7
1
4

0
.9
7
4

0
.9
2
9

0
.9
5
0

0
.9
5
9

0.
98

3
0.

97
1

66

comparison, the other instruction embedding models are unable to capture data de-

pendency information very well.

(3) PalmTree converged faster than original DeepVSA (see Figure 3.16), indicating that

instruction embedding model can accelerate the training phase of downstream tasks.

PalmTree outperforms the other instruction embedding approaches in each extrinsic

evaluation. Also, PalmTree can speed up training and further improve downstream

models by providing high-quality instruction embeddings. In contrast, word2vec and

Instruction2Vec perform poorly in all the three downstream tasks, showing that the

poor quality of an instruction embedding will adversely affect the overall performance

of downstream applications.

3.3.5 Runtime Efficiency

In this section, we conduct an experiment to evaluate runtime efficiencies of

PalmTree and baseline approaches. First, we test the runtime efficiencies of different

instruction embedding approaches. Second, we test the runtime efficiency of PalmTree

when having different embedding sizes. We use 64, 128, 256, and 512 as embedding sizes,

while 128 is the default setting. In the transformer encoder of PalmTree, the width of

each feed-forward hidden layer is fixed and related to the size of the final output layer,

which is 4 times of the embedding size [114]. We use Coreutils-8.30 as the dataset. It

includes 107 binaries and 1,006,169 instructions. We disassembled the binaries with Binary

Ninja and feed them into the baseline models. Due to the limitation of GPU memory, we

treated 5,000 instructions as a batch.

67

Table 3.8: Efficiency of PalmTree and baselines

embedding size encoding time throughput (number of instructions/sec)

Instruction2vec 6.684 150,538

word2vec 0.421 2,386,881

Asm2Vec 17.250 58,328

PalmTree-64 41.682 24,138

PalmTree-128 70.202 14,332

PalmTree-256 135.233 7,440

PalmTree-512 253.355 3,971

Table 3.8 shows the encoding time and throughput of different models when encod-

ing the 107 binaries in Coreutils-8.30. From the results, we can make several observations.

First, PalmTree is much slower than previous embedding approaches such as word2vec

and Asm2Vec. This is expected, since PalmTree has a deep transformer network. How-

ever, with the acceleration of the GPU, PalmTree can finish encoding the 107 binaries

in about 70 seconds, which is acceptable. Furthermore, as an instruction level embedding

approach, PalmTree can have an embedding lookup table as well to store some frequently

used embeddings. This lookup table works as fast as word2vec and can further boost the

efficiency of PalmTree. Last but not least, from the results we observed that it would be

1.7 to 1.9 times slower when doubling the embedding size.

68

3.3.6 Hyperparameter Selection

To further study the influences of different hyperparameter configurations of PalmTree,

we trained PalmTree with different embedding sizes (64, 128, 256, and 512) and different

context window sizes (1, 2, 3, and 4). We also evaluated different output layer configurations

when generating instruction embeddings.

Embedding sizes

In this experiment, we evaluate the performance of PalmTree with different

embedding sizes. Here we use 64, 128, 256, and 512 as instruction sizes, which is the same

as the previous experiment. We test these 4 models on our intrinsic evaluation tasks.

Table 3.9 shows all of the results of intrinsic evaluation when having different

embedding sizes. From the results, we can observe that there is a clear trend that the per-

formance becomes better when increasing the embedding size. The largest embedding size

has the best performance in all three metrics. However, considering efficiency, we recom-

mend having a suitable embedding size configuration according to the hardware capacities.

For example, we only have a single GPU (GTX 2080Ti) in our server, thus we chose 128 as

the embedding size.

Output layer configurations

In this experiment, we evaluate the performance of PalmTree with different

output layer configurations. It means that we select a different layer of the transformer

model as the output of PalmTree. By default, PalmTree uses the second-last layer

69

Table 3.9: Embedding sizes

opcode outlier

detection

operand outlier

detecion

basicblock

sim search
Embedding

Sizes
Avg. Stdev. Avg. Stdev. AUC

64 0.836 0.0588 0.940 0.0387 0.917

128 0.871 0.0440 0.944 0.0343 0.922

256 0.848 0.0560 0.954 0.0343 0.929

512 0.878 0.0525 0.957 0.0335 0.929

as the output layer. And we evaluate five different settings, which are the last layer, the

second-last layer, the third-last layer, and the fourth-last layer, on our intrinsic evaluation

tasks. The embedding size in this experiment is set as 128.

Table 3.10: Output layer configurations

Layers

opcode outlier

detection

operand outlier

detecion

basicblock

sim search

Avg. Stdev. Avg. Stdev. AUC

last 0.862 0.0460 0.982 0.0140 0.915

2nd-last 0.871 0.0440 0.944 0.0343 0.922

3rd-last 0.868 0.0391 0.956 0.0287 0.918

4th-last 0.866 0.0395 0.961 0.0248 0.913

Table 3.10 shows all of the results of the intrinsic metrics when having a different

layer as the output layer. There is no obvious advantage to choose any layer as the output

70

layer. However, the second-last layer has the best results in opcode outlier detection and

basicblock similarity search. Thus we chose the second-last layer as the output layer in this

paper.

Context window for CWP

In this experiment, we evaluate the performance of PalmTree with different

context window sizes in the CWP task. For instance, if the context window size is 2, it

means that we consider n− 2, n− 1, n + 1 and n + 2 as contextual instruction when given

instruction n as a sample. We evaluate 1, 2, 3, and 4 as four different context window sizes

in this experiment. Table 3.11 shows all of the results of the intrinsic metrics when training

PalmTree with different context window configurations. We can observe that context

window size 1 and 2 have similar performance on the three intrinsic evaluation metrics,

but context window size 2 has the best performance on the downstream task EKLAVYA.

Further increasing the context window size to 3 and 4 will lead to worse results. Based on

these results, we choose the context window size to be 2.

3.4 Related Work

Representation Learning in NLP. Over the past several years, representation learning

techniques have made significant impacts in NLP domain. Neural Network Language Model

(NNLM) [22] is the first work that used neural networks to model natural language and

learn distributed representations for words. In 2013, Mikolov et al. introduced word2vec

and proposed Skip-gram and Continuous Bag-Of-Words (CBOW) models [144]. The lim-

71

Table 3.11: Context Window Sizes

opcode

outlier

operand

outlier

bb sim

search

EKLAVYA

Sizes

Avg. Stdev. Avg. Stdev. AUC Avg. Stdev.

1 0.864 0.0467 0.962 0.0168 0.923 0.930 0.0548

2 0.871 0.0440 0.944 0.0343 0.922 0.945 0.0476

3 0.849 0.0444 0.873 0.0514 0.916 0.908 0.0633

4 0.864 0.0440 0.957 0.0238 0.914 0.916 0.0548

itation of word2vec is that its embedding is frozen once trained, while words might have

different meanings in different contexts. To address this issue, Peters et al. introduced

ELMo [165], which is a deep bidirectional language model. In this model, word embeddings

are generated from the entire input sentence, which means that the embeddings can be

dynamically adjusted according to different contextual information.

In 2017, Vaswani et al. introduced transformer [197] to replace the RNN net-

works (e.g., LSTM). Devlin et al. proposed BERT [50] in 2019, which is a bi-directional

transformer encoder. They designed the transformer network using a full connected archi-

tecture, so that the model can leverage both forward and backward information. Clark et

al. [38] proposed ELECTRA and further improved BERT by using a more sample-efficient

pre-training task called Replaced Token Detection. This task is an adversarial learning

process [70].

72

Representation Learning for Instructions. Programming languages, including low

level assembly instructions, have clear grammar and syntax, thus can be treated as natural

language and be processed by NLP models.

Instruction representation plays a significant role in binary analysis tasks. Many

techniques have been proposed in previous studies. Instruction2Vec [213] is a manually

designed instruction representation approach. InnerEye [224] uses Skip-gram, which is one

of the two models of word2vec [144], to encode instructions for code similarity search.

Each instruction is treated as a word while a code snippet as a document. Massarelli

et al. [141] introduced an approach for function-level representation learning, which also

leveraged word2vec to generate instruction embeddings. DeepBindiff [55] also used word2vec

to generate representations for instructions with the purpose of matching basic blocks in

different binaries. Unlike InnerEye, they used word2vec to learn token embeddings and

generate instruction embeddings by concatenating vectors of opcode and operands.

Although word2vec has been widely used in instruction representation learning. It

has the following shortcommings: first, using word2vec at the instruction level embedding

will lose internal information of instructions; on the other hand, using word2vec at the token

level may fail to capture instruction level semantics. Second, the model has to handle the

OOV problem. InnerEye [224] and DeepBindiff [55] provided good practices by applying

normalization. However, normalization also results in losing some important information.

Asm2Vec [52] generates embeddings for instructions and functions simultaneously by using

the PV-DM model [115]. Unlike previous word2vec based approaches, Asm2Vec exploits

a token level language model for training and did not have the problem of breaking the

73

boundaries of instructions, which is a problem of token level word2vec models. Coda [65]

is a neural program decompiler based on a Tree-LSTM autoencoder network. It is an end-

to-end deep learning model which was specifically designed for decompilation. It cannot

generate generic representations for instructions, thus cannot meet our goals.

Representation Learning for Programming Languages. NLP techniques are also

widely used to learn representations for programming languages. Harer et al. [82] used

word2vec to generate token embeddings of C/C++ programs for vulnerability prediction.

The generated embeddings are fed into a TextCNN network for classification. Li et al. [121]

introduced a bug detection technique using word2vec to learn token (node) embedding from

Abstract Syntax Tree (AST). Ben-Nun et al. [19] introduced a new representation learning

approach for LLVM IR in 2018. They generated conteXtual Flow Graph (XFG) for this IR,

which leverages both data dependency and control flow. Karampatsis et al. [101] proposed

a new method to reduce vocabulary size of huge source code dataset. They introduced

word splitting, subword splitting with Byte Pair Encoding (BPE) [184] cache, and dynamic

adaptation to solve the OOV problem in source code embedding.

3.5 Discussion

In this paper, we focus on training an assembly language model for one instruction

set or one architecture. We particularly evaluated x86. The technique described here can

be applied to other instruction sets as well, such as ARM and MIPS.

However, in this paper, we do not intend to learn a language model across mul-

tiple CPU architectures. Cross-architecture means that semantically similar instructions

74

from different architectures can be mapped to near regions in the embedded space. Cross-

architecture assembly language model can be very useful for cross-architecture vulnerabili-

ty/bug search. We leave it as a future work.

It is worth noting that instead of feeding a pair of instructions into PalmTree, we

can also feed code segment pairs or even basic block and function pairs, which may better

capture long-term relations between instructions (currently we use sampling in the context

window and data flow graph to capture long-term relations) and has a potential to further

improve the performance of PalmTree. We leave this as a future work.

3.6 Conclusion

In this paper, we have summarized the unsolved problems and existing challenges

in instruction representation learning. To solve the existing problems and capture the

underlying characteristics of instruction, we have proposed a pre-trained assembly language

model called PalmTree for generating general-purpose instruction embeddings.

PalmTree can be pre-trained by performing self-supervised training on large-scale

unlabeled binary corpora. PalmTree is based on the BERT model but pre-trained with

newly designed training tasks exploiting the inherent characteristics of assembly language.

More specifically, we have used the following three pre-training tasks to train PalmTree:

MLM (Masked Language Model), CWP (Context Window Prediction), and DUP (Def-Use

Prediction). We have designed a set of intrinsic and extrinsic evaluations to systemati-

cally evaluate PalmTree and other instruction embedding models. Experimental results

show that PalmTree has the best performance in intrinsic evaluations compared with

75

the existing models. In extrinsic evaluations that involve several downstream applications,

PalmTree outperforms all the baseline models and also significantly improves downstream

applications’ performance. We conclude that PalmTree can effectively generate high-

quality instruction embedding which is helpful for different downstream binary analysis

tasks.

76

Chapter 4

Evaluating Custom Transformers

for Binary Analysis

4.1 Introduction

Inspired by the remarkable progress in large language models (LLMs), also, with

the publication of PalmTree, recent research has demonstrated the efficacy of Transformer-

based language models [197], language models have gained popularity in the field of binary

code analysis. An increasing number of works are now using language models and at-

tempting to customize them to make the models more suitable for specific downstream

tasks [216, 10, 119, 202, 159, 96], owing to the shared characteristics of programming lan-

guages (PL) including assembly language and natural languages (NL). And this chapter

presents a systematic evaluation of our customized assembly language model tailored for

these specific tasks.

77

Almost all these Transformer-based assembly language models (ALMs) have pro-

posed custom pre-training tasks with the purpose of improving the model’s understanding

on program semantics. For instance, some works [119, 202, 216] employ topological features

of binary programs, and design pre-training tasks to capture control flow information, while

others [159, 96, 10] aim to capture the operational semantics of assembly code. The majority

of them also performed modifications on the model architecture along with their pre-training

tasks. For example, jTrans [202] models jump relationships by modifying positional em-

beddings and predicts jump targets to enable the model to understand jump instructions

and the structural connections between basic blocks. StateFormer [159] captures def-use

relations and value changes over registers by incorporating new layers of embedding to rep-

resent numerical values and applying Neural Arithmetic Unit (NAU) [136] to handle those

numerical values.

Despite substantial progress in this area, several questions remain unanswered.

First, while existing research papers demonstrate that the proposed architectural modifica-

tions are suitable for individual tasks, their generalizability to other tasks remains unclear.

For instance, jTrans [202] is designed for function similarity search, and its evaluation was

limited to this single task using different baseline models. StateFormer [159] focuses on

fine-grained type inference, yet does not assess its approach on other downstream tasks, de-

spite the potential benefits of understanding data changes over execution traces for various

binary analysis tasks. An exception is PalmTree [119], which has been evaluated on sev-

eral downstream tasks, but its focus was solely on instruction-level representation learning,

leaving its performance at the function level unexplored. Second, some existing works lack

78

a systematic and extensive comparison with pre-trained LLMs such as BERT [49] and AL-

BERT [113]. While jTrans includes a limited ablation study on BERT, it does not provide

a comprehensive comparison across all evaluations. Similarly, StateFormer did not compare

its model with a pre-trained BERT model, instead evaluating a Transformer model without

pre-training as one of its baselines.

To better understand the contributions of these ALMs, we aim to address a fun-

damental question in this paper: how do these existing designs affect downstream tasks in

binary analysis? This question can be broken down into several sub-questions. First, we

seek to determine which pre-training tasks are beneficial for multiple downstream tasks.

While some pre-training tasks have proven effective for specific downstream tasks, it is un-

clear whether these tasks can also benefit others or if they might be counterproductive.

Second, we aim to evaluate the effectiveness of various architectural modifications.

To address these questions, we conducted multiple evaluations. We selected four

ALMs from the binary analysis domain and assessed their performance on four different

downstream tasks. Two of these tasks, binary code similarity detection and function type

inference, are the original tasks for the models. The third task, algorithm classification, is

novel to all the models. The fourth task, Function Name Prediction, was recently introduced

by SymLM [96]. Additionally, we applied the pre-training tasks specifically designed for

these ALMs to the standard BERT model, which served as our baseline.

From our evaluation results, we have the following observations:

(1) Architectural changes have a limited impact on both pre-training and fine-tuning.

(2) After fine-tuning, the performance gaps between different models are small.

79

(3) The vanilla BERT models are comparable to or superior to the custom models in the

four downstream tasks we evaluated.

Consequently, we conclude that recent architectural modifications to Transformer

models, along with tailored pre-training tasks, appear to be unnecessary. Our research

suggests that enhancements in fine-tuning techniques might be a more effective way to

improve model performance.

We will release the source code of our evaluation framework and related training

and testing datasets upon acceptance for publication.

4.2 Evaluation Plan

In this section, we first introduce the models that are evaluated (subsection 4.2.1),

evaluation setup (subsection 4.2.2), and data preparation (subsection 4.2.3). Then the

evaluations of pre-training tasks are discussed in subsection 4.2.4 and the downstream eval-

uations are described in subsection 4.2.5.

4.2.1 Models to be Evaluated

Considering the multitude of Transformer-based approaches for various down-

stream tasks, it is infeasible to evaluate every single one. Therefore, we establish specific

criteria for selecting models to be evaluated. First, the pre-trained models must be pub-

licly available, as an official implementation or a pre-trained model shared by the author

ensures accurate reproduction of performance. We partially rewrite the source code from

certain works with open-source code to match our data format. Second, the papers must

80

be recently published at premier academic conferences in computer security, software engi-

neering, and machine learning. Third, the approaches must be purely Transformer-based,

as our target is to evaluate the customization of Transformer models. Composite models,

which require joint training with other models, are beyond our scope. The approaches

must include architectural modifications or special pre-training task designs and must be

designed for binary code rather than source code or intermediate representation (IR), due

to significant differences in semantic structure and preprocessing methods.

Table 4.1: Evaluated Models

Model Name Architectural Features Pre-training Tasks Downstream Tasks

BERT N/A MLM N/A

jTrans Embedding Layer MLM, JTP Function Sim Search

StateFormer NAU GSM Type Inference

Trex LSTM MLM, MTP Function Sim Search

PalmTree N/A MLM, CWP, DUP Intrinsic & Extrinsic

According to previous requirements, We collect models shown in Table 4.1 to

perform our evaluation. The source code of these models is publicly available. Furthermore,

the dataset of StateFormer is also available for multiple architectures, and the dataset is

large-scale. Hence, to simplify our work, we choose to use the pre-trained model provided

by the StateFomer and use the dataset to train other models.

In addition to the models mentioned above, we also employed the pre-training

tasks proposed by these models to train BERT models. Specifically, we trained BERT-JTP

81

using the jTrans pre-training task JTP, BERT-GSM using the StateFormer pre-training

task GSM, and BERT-CWP and BERT-DUP using the CWP and DUP pre-training tasks

proposed in PalmTree [119], respectively. To thoroughly evaluate the performance of these

pre-training tasks, we train models of different sizes. This is because some pre-training tasks

that may be too hard to train on a standard-sized model might be more feasible to train

on a larger model.

4.2.2 Evaluation Setup

We utilized the code provided by the authors of jTrans, StateFormer, Trex, and

PalmTree, making necessary modifications to match our data format. Additionally, we

implemented the BERT model ourselves as the baseline and pre-trained it on the same

configuration for a fair comparison. To make a fair evaluation for all the models, we refer to

the original papers of evaluated models and try to apply the most practical hyperparameter

configurations for all the standard-sized models. They were trained and fine-tuned with

the same number of epochs. We also trained two larger-sized models to validate the effects

of customization on larger-scale models, which we refer to as the “L” and “XL” models.

Detailed hyperparameter information for these three sizes is provided in Table 5.8.

Table 4.2: Hyperparameters on different sized models

Models Layers Dim # heads # param Models Layers Dim # heads # param

BERT 12 768 12 87M jTrans 12 768 12 88M

BERT-L 12 1024 16 156M jTrans-L 12 1024 16 156M

BERT-XL 24 1024 16 307M jTrans-XL 24 1024 16 308M

82

Due to the utilization of special tokens for unique pre-training tasks and archi-

tecture designs, we cannot use completely identical vocabularies across all models. For

instance, jTrans has jump target tokens that share weights with position tokens. State-

Former and Trex have value tokens that are used by the GSM task. Apart from this, we

have made every effort to use the same pipeline to ensure that the vocabulary remains as

consistent as possible, except for the model-specific special tokens mentioned above.

4.2.3 Data Preparation

We pre-trained all models on the same dataset, which comes from the StateFormer

paper. This dataset consists of the latest versions of 33 open-source software projects, in-

cluding widely used and large projects like OpenSSL, ImageMagick, and Coreutils. We

pre-trained the models on x86-64 binaries compiled by GCC-7.5 with four different opti-

mizations (O0-O3), and on three obfuscation strategies (bogus control flow [bcf], control

flow flattening [cff], and instruction substitution [sub]), which were implemented using

Hikari based on Clang-8. We used Ghidra to disassemble binaries, removed small functions

that have less than 10 instructions, and then randomly split the dataset to 80%-20% for

training and testing to avoid data contamination. Here, training includes the pre-training of

BERT, BERT-JTP, BERT-GSM, BERT-DUP, BERT-CWP and jTrans. It also includes the

fine-tuning for any pre-training evaluation and two of the downstream evaluations described

in subsection 4.2.4 and subsection 4.2.5. Testing means our evaluation or any validation

results we displayed during pre-training and fine-tuning.

For the evaluation of Algorithm Classification, we used a dataset specifically de-

signed for it. More details are included in section 4.2.5. For Function Name Prediction,

83

due to the need for fine-tuning with specialized labeled data, we performed fine-tuning and

evaluation using the dataset provided by SymLM [96]. Specific details can be found in

section 4.2.5.

4.2.4 Evaluating Pre-training Tasks

Intuitively, the most straightforward way to assess the effectiveness of a pre-

training task is to evaluate the model’s performance on this pre-training task directly. This

experiment explores the impact of additional pre-training tasks and architectural modifica-

tions by comparing the performance of different models on the pre-training tasks.

This research question comprises two sub-questions. Firstly, we investigate whether

a language model pre-trained solely through MLM can acquire the same knowledge as mod-

els designed for specific tasks and rapidly apply this knowledge through fine-tuning. For

example, if a vanilla BERT model, swiftly fine-tuned with a prediction head, can predict

jump targets similarly to jTrans, it suggests that JTP pre-training is ineffective.

Secondly, we aim to determine whether architectural modifications introduced

alongside pre-training tasks further improve training efficiency. For instance, if a BERT

model pre-trained with MLM and JTP achieves performance comparable to jTrans on the

JTP task, it indicates that specialized designs like jTrans’ embedding layer may be unnec-

essary.

For these two questions, we will compare three different models: vanilla BERT,

BERT with special pre-training tasks (BERT-JTP and BERT-GSM), and customized ALMs

(jTrans and Stateformer). To assess whether pre-training tasks and architectural modi-

fications enhance model performance, we connect pre-trained models with an untrained

84

prediction head and perform supervised fine-tuning. The fine-tuning task is the same as

the pre-training task that needs to be evaluated. Since models are pre-trained on the same

tasks, they should converge faster and outperform a vanilla BERT model. Below, we outline

the two pre-training tasks.

Generative State Modeling

Generative State Modeling (GSM) is a pre-training task proposed by StateFormer [159]

to capture value changes involved in arithmetic operations. In this pre-training task, State-

Former is required to predict the values of registers and memories after the execution of

each instruction. We consider StateFormer and BERT in this experiment. We try to apply

the GSM task on the vanilla BERT model without modifications to the architecture.

StateFormer uses NAU to encode values as input and utilizes a multi-layer Feedfor-

ward Network to predict values during pre-training. It minimizes the Mean Squared Error

(MSE) between the predicted 8-byte values and the ground-truth 8-byte values for only

masked tokens. Note that MSE treats the output byte tokens as numerical values. Since

the ground truth should be an integer between 0 and 255, and the loss is a float between

0 and 1, according to the design of the Stateformer [159], we will multiply the predicted

result by 256 and round it to calculate the specific predicted value. This is entirely consis-

tent with the evaluation method employed in the original work when probing stateformer

on real-world code.

To make the BERT model ready for this evaluation, we generally follow the design

of StateFormer and make necessary modifications. We add “mov” instructions before our

data sample to initialize registers with input values. For instance, if the register rax has

85

been assigned the value 0xf30f1efa at the beginning, we put mov rax, 0xf30f1efa before

the first instruction.

We first pre-train BERT with the default settings. The dataset for pre-training

is the same as StateFormer’s. Then, we pre-train BERT with MLM and GSM (denoted

as BERT-GSM) without modifying the architecture. Moreover, we keep all the constant

numbers since the model has to take numerical information to make predictions. Our

evaluation is on the byte level with the following formula,

MSE =
1

n

n∑
i=1

(xi − x̂i)
2 (4.1)

where xi is the ground truth and x̂i is the prediction value generated by the model. For

accuracy calculation, we transform the output values into integers before making a compar-

ison.

Jump Target Prediction

Jump Target Prediction (JTP) is a pre-training task proposed by jTrans [202] to

capture control transfer relations. In JTP, the jTrans model is trained to predict jump

targets of jump instructions. We conduct the same experiment to see whether the vanilla

BERT model can learn control transfer information without changing the architecture. To

accomplish this, we add a fully connected network to the pre-trained language model where

the masked jump targets are fed as inputs and the predicted jump locations are generated

as outputs.

86

We mask 70% of the jump targets for training, and compare two training strategies:

Using JTP as a fine-tuning task only (BERT), and using JTP in both pre-training (along

with the MLM task) and fine-tuning (denoted as BERT-JTP). We use accuracy as the

metric in this evaluation and compare BERT-JTP with BERT and jTrans.

4.2.5 Evaluating Downstream Tasks

Our downstream tasks are selected from previous works and include function simi-

larity search, function type inference, and algorithm classification. We chose tasks based on

the selected ALMs and their evaluated tasks. For all four tasks, we set BERT, BERT-CWP,

BERT-DUP, BERT-JTP, BERT-GSM, jTrans, and StateFormer as our candidate models.

BERT-CWP and BERT-DUP are included to further investigate how pre-training tasks

designed for instruction embedding influence function-level task performance. Meanwhile,

we have also evaluated larger-sized models across all downstream tasks.

To ensure the accuracy of our conclusions, we conducted rigorous statistical tests.

We performed t-tests on multiple instances to determine differences between experimen-

tal results. Since this work primarily investigates the superiority of customized models

over vanilla BERT models, we conducted t-tests between BERT and all other models and

calculated their p-values.

Function Similarity Search

Binary function similarity is a building block of many binary security applications

such as vulnerability and plagiarism detection. It takes two functions as input and produces

a numeric value that represents the similarity between the functions. We conduct this

87

evaluation to see how different models perform on this well-defined research problem and

whether the vanilla BERT model can achieve similar performance. We also follow the

function pool evaluation idea of jTrans [202] where each function is compared with every

function in the pool. The larger the pool size, the more challenging and realistic this

problem becomes.

Let there be a function pool F, and its corresponding ground-truth pool G. For

a given query f ∈ F, we try to find its target ground-truth pair fgt ∈ G. The retrieval

performance can be evaluated using the following two metrics, Where I denotes an indicator

function and is defined as below.

Recall@k =
1

F

∑
fi∈F

I(Rankgtfi ≤ k) I =

0, x = False

1, x = True

(4.2)

MRR =
1

F

∑
fi∈F

1

Rankgtfi

(4.3)

Since our models generate function-level embeddings via Transformer networks

and measure similarity using cosine distance, we consider two configurations: one with

fine-tuning and one without. Without fine-tuning, we utilize the bare model for generating

embeddings and employ cosine distance for measuring their dissimilarity. Conversely, with

fine-tuning, we apply contrastive learning to refine the comparison models. More specifically,

given a query function f , its ground-truth target fp, and negative samples fn1, fn2, ..., fni,

loss = −log
esim(f,fp)/τ∑i=1
N esim(f,fni)/τ

(4.4)

88

We divided our dataset into training and testing subsets. Additionally, we set the

pool size to 10,000 and then conducted 30 random samplings to obtain multiple values for

MRR and Recall.

Type Inference

This downstream task aims to map untyped low-level registers or memory regions,

specified by memory offsets, to their corresponding source-level types. We adopt the same

experimental design as StateFormer [159]. Specifically, given a sequence of assembly instruc-

tions, the model needs to predict the type labels for each operand token in the instructions.

It is a classification task, in which some tokens are predicted as the types of function ar-

guments, local, static, or global variables they are associated with, while other tokens do

not possess any types. We stack a classification head after different pre-trained models

and fine-tune them for type inference. The recovered source-level types can be of different

granularities across existing works [27], ranging from primitive types such as int and float

to more complex types like struct, array, and recursive types such as trees and lists. We

select the most fine-grained type labels from StateFormer [159], which contains 36 different

type labels. A detailed list of types can be found in Table 4.3.

As mentioned in StateFormer [159], the dataset for type inference is highly im-

balanced, because most of the tokens have the no-access label. Hence, we choose to use

the same metrics utilized by StateFormer (i.e., precision, recall, and F1 score) to measure

the actual performance. Let TP (True Positive) denote the number of correctly predicted

labels, FP (False Positive) denote the wrong ones, TN (True Negative) denote no-access

89

Table 4.3: The types that are predicted as output

Type Name

Placeholder no-access

Primitive

int, unsigned int, long, unsigned long, long long,

unsigned long long, short, unsigned short, char,

unsigned char, float, double, long double

Aggregate struct, union, enum, array

Pointer Aggregate *, Primitive *, void *

tokens which have been correctly predicted and FN (False Negative) denotes tokens with

other types being predicted as no-access. And we have Precesion = TP/(TP + FP),

Recall = TP/(TP + FN), F1 = 2 ∗ Precision∗Recall
Precision+Recall . We also conducted 10 random sam-

plings of the test set and repeated the experiments multiple times to avoid the randomness

of the results.

Algorithm Classification

This downstream task aims to differentiate algorithms used in different binaries.

In this task, the model needs to classify the assembly code according to its functionality.

Some works [150, 131] treat this task as a code clone detection task, which is similar to the

Function Similarity Search described in the previous sections.

We use the POJ-104 dataset [150] for this task. The POJ-104 dataset originates

from a pedagogical programming open judge (OJ) system [150] that automates the eval-

90

Table 4.4: The difference between Datasets

Dataset #Functions per binary Binary Sizes #Classes #Functions per class

POJ104 1-2 ∼50KB 50 ∼500

Function Sim Search more than 10 100KB-10MB pool size less than 10

uation of submitted source code for specific problems by executing the code. As depicted

in Table 4.4, the POJ-104 dataset significantly differs from the one utilized in Function

Similarity Search. Moreover, the fine-tuning scale is much smaller compared to Function

Similarity Search, which poses a greater challenge for the models to capture and learn the

features of this dataset effectively. In essence, this task resembles few-shot learning for the

models. Consequently, if a model gains more advantages from the customization of archi-

tectures and the pre-training tasks, it is expected to exhibit more pronounced benefits in

the obtained results.

To maintain as much similarity as possible with the configuration used for down-

stream evaluation, we also employed different optimization levels and three obfuscation

strategies. We trained and tested the model using a total of 56,439 binaries.

This task aims to retrieve R targets for a given binary from the fine-tuning/testing

sets, with the Mean Average Precision (MAP) as the evaluation metric, where R is the

number of other binaries in the same class. Each data sample is labeled with one of 104

programming problems (50 of which compile correctly). Some source files contain multiple

functions, which we address by concatenating all assembly code and removing compiler-

added helper functions. We employ 10-fold cross-validation, splitting the dataset by class

to avoid randomization bias. Training involves 40 classes (with 10 for validation), while

91

testing uses the remaining 10. The average training set comprises approximately 17,500

binaries, with the testing set containing around 4,200 binaries.

We use the Mean Average Precision (MAP) as the evaluation metric. MAP =

1
M

∑M
m=1AP (m) Where M is the number of query functions, AP (m) is the average precision

score when having query function m. We prepared two evaluations for this downstream task,

with and without fine-tuning. We use the same fine-tuning process proposed by [131]. Still,

we use the same models as Function Similarity Search in this evaluation.

Function Name Prediction

This downstream task aims to predict function names in stripped binaries. In this

task, the model needs to predict the name of a given function based on its semantics. Given

a function f, we define the function name prediction task as a multi-class and multi-label

classification problem. In detail, we first encode a function f using any transformer model

and generate a function embedding E. Then, we aim to train a decoding function R that

maps E to a function name set W, which consists of a set of tokens W = t1, t2, ..., ti. Here,

the function tokens ti can represent common English words, programmers’ commonly used

abbreviations, numbers, and so on. W belongs to a function name vocabulary V(V ⊇ W).

And we have W = R(E)

In this evaluation, we utilize the framework of SymLM [96], which provides an

open-source implementation. Furthermore, SymLM is implemented using the open-source

pre-trained model from Trex [158], which is also one of our evaluation targets. However,

we faced challenges in reproducing their fine-tuning process due to the absence of a pub-

licly available dataset (with only a dataset generation tool being provided by the author).

92

Additionally, the fine-tuning process proved to be excessively time-consuming, taking ap-

proximately 8 days to complete the fine-tuning of SymLM with the Trex model and an

MLP decoder. These limitations hindered our ability to replicate their experimental setup

precisely. Hence, we utilized the x86 dataset released along with the code of SymLM,

which has 43,436 function samples for training, 5,043 for validation, and 10,954 for testing

with mixed optimization levels. To evaluate different models, we choose to use the same

metrics as in Type Inference (precision, recall, and F1 score). More specifically, given the

ground truth function name set W = {w1, w2, w3, ..., wn}, and predicted function name

Ŵ = {ŵ1, ŵ2, ŵ3, ..., ŵm}, they define a membership function:

1(W, ŵ) =

1, ŵ ∈ W

0, ŵ /∈ W

(4.5)

which indicates whether the predicted token ŵm is in the ground truth set W . Based on

this indicator function, we then calculate the true positive, false positive, and false negative:

tp =
∑

ŵi∈Ŵ

1(W, ŵ), fp =
∥∥∥Ŵ∥∥∥− tp, fn = ∥W∥ − tp, (4.6)

where the ∥•∥ denotes the number of tokens in the name set. Subsequently, we get precision,

recall and F1-score using the formula described in section section 4.2.5. Similar to the

previous downstream evaluations, we also sampled the testing set 10 times and obtained

multiple results to mitigate the randomness.

93

4.3 Evaluation Results

4.3.1 Pre-training Tasks

Generative State Modeling

Table 4.5 shows the results of the Generative State Modeling task. We noticed

that the dataset contains a significant number of 0 values (attributable to the small values of

many constant numbers, which result in zero-padding in the high digits). Thus, we introduce

“Accuracy w/o 0” to evaluate the model’s accuracy on predicting non-zero values. We also

put an accuracy curve during training in the appendix.

The experimental results show that the prediction accuracy is quite low, which

is expected given the complexity of modeling data changes in assembly code through a

regression task. BERT-GSM shows faster learning in the early stages, but all models exhibit

high instability with fluctuating accuracy during training. Additionally, BERT-XL does not

perform better in this task, likely due to the inherent difficulty of GSM for language models.

Jump Target Prediction

As described in section 4.2.4, we choose BERT, BERT-JTP, and jTrans to evaluate

the Jump Target Prediction task. Table 4.5 presents the evaluation results.

We observe that after fine-tuning, jTrans only slightly outperforms BERT and

BERT-JTP. Analysis of the training process reveals that jTrans initially trains faster than

other models but is quickly caught up by BERT and BERT-JTP. Notably, the larger BERT-

XL consistently outperforms jTrans-XL.

94

Table 4.5: Results of Pre-training Tasks

Generative State Modeling Jump Target Prediction

Model Acc Acc w/o 0 Model Acc

BERT 0.141 0.063 BERT 0.780

BERT-GSM 0.179 0.092 BERT-JTP 0.797

BERT-XL 0.148 0.056 BERT-XL 0.903

Stateformer 0.129 0.053 jTrans 0.822

jTrans-XL 0.756

0.08

0.10

0.12

0.14

0.16

0.18
MRR, w/o finetune

0.08

0.10

0.12

0.14

0.16

Recall@1, w/o finetune

0.3

0.4

0.5

0.6

0.7

MRR, w finetune

0.2

0.3

0.4

0.5

0.6

Recall@1, w finetune

Stateformer
Trex

jTrans
BERT-JTP

BERT-CWP
BERT-DUP

BERT-GSM
BERT

Bert_l
Bert_xl

jTrans_l
jTrans_xl

Figure 4.1: MRR/Recall@1 on Function Similarity Search. Pool size = 10000.

Our evaluation of the pre-training task indicates that modifications to the model ar-

chitecture do not significantly improve the performance of the associated pre-training

tasks. For overly challenging Generative State Modeling, even the new component

NAU does not aid the model in learning the associated pre-training task better.

95

4.3.2 Downstream Tasks

Function Similarity Search

The results of the function similarity search experiments are presented in Fig-

ure 4.1. Before fine-tuning, the MRR and Recall of all the models are below 0.20. Among

these, the vanilla BERT’s performance is similar to most models, while jTrans, jTrans-L,

and jTrans-XL exhibit significantly lower performance than BERT in terms of MRR and

recall@1 (p-value ≤ 0.05). However, after fine-tuning, the performance of large-scale models

(BERT-L and BERT-XL) significantly outperforms other models, while the remaining mod-

els demonstrate similar performance. It is worth noting that no model exhibits a significant

advantage over the vanilla BERT model. jTrans does not outperform the BERT model as

originally reported [202], because the dominant influence is the application of contrastive

learning during the fine-tuning process. Based on this evaluation, we can conclude that

neither architectural changes nor custom pre-training tasks introduce any tangible benefits.

More advanced contrastive learning has a dominant effect.

Type Inference

Table 4.6 presents the results of the evaluated models on type inference. Precision,

recall, and F1-score are averaged from multiple samplings, with p-values calculated from

statistical analysis between F1 scores of other models and BERT. Notably, except for jTrans-

XL, the remaining models perform similarly, with BERT-L achieving the best performance.

96

This suggests that fine-tuned models do not show significant performance differ-

ences due to pre-training and architecture variations. However, jTrans-XL stands out, where

its customized embedding layers negatively impact performance.

Table 4.6: Results of Type Inference (Opt-level=Mixed)

Model Precision Recall F1-score P-value

BERT 0.903 0.904 0.904 -

BERT-JTP 0.887 0.888 0.888 3.9 × 10−9

BERT-CWP 0.888 0.888 0.888 6.9 × 10−9

BERT-DUP 0.901 0.900 0.901 2.8 × 10−1

BERT-GSM 0.901 0.902 0.902 6.2 × 10−3

BERT-XL 0.897 0.889 0.893 2.0 × 10−5

BERT-L 0.936 0.935 0.936 6.9 × 10−18

StateFormer 0.889 0.892 0.890 2.4 × 10−40

Trex 0.870 0.875 0.872 7.5 × 10−38

jTrans 0.907 0.908 0.908 2.5 × 10−8

jTrans-L 0.912 0.913 0.913 6.2 × 10−10

jTrans-XL 0.501 0.254 0.338 3.1 × 10−39

We can also see that additional pre-training tasks for BERT do not make any

benefits for this downstream application. In fact, these pre-training tasks appear to have

confused the BERT model, causing degradation to the performance of this downstream

task.

97

BERT
StFm Tre

x
jTra

ns

BERT-JT
P

BERT-C
WP

BERT-D
UP

BERT-G
SM
Bert_l

Bert_x
l
jTra

ns_l

jTra
ns_x

l

0.05

0.10

0.15

0.20

p-value - 0.06 0.04 0.05 0.29 0.85 0.68 0.95 0.76 0.94 0.04 0.01

BERT
StFm Tre

x
jTra

ns

BERT-JT
P

BERT-C
WP

BERT-D
UP

BERT-G
SM
Bert_l

Bert_x
l
jTra

ns_l

jTra
ns_x

l

0.2

0.4

0.6

p-value - 0.35 0.32 0.89 0.87 0.91 0.96 0.97 0.04 0.44 0.04 0.80

Figure 4.2: Results of Algorithm Classification with (top) and without fine-tuining.

Based on these observations, we are confident to conclude that the vanilla BERT

model, paying no effort on architectural modifications and extra costs for additional pre-

training tasks, is the most suitable and cost-effective choice for this task. On the contrary,

the specifically designed model, StateFormer, is actually incapable of improving its own

targeted task. It is worth noting that the authors of StateFormer did not conduct a head-

to-head comparison between StateFormer and Vanilla BERT but instead performed an

ablation study. Since StateFormer does not include the MLM task during its pre-training

phase, no model in the ablation study is equivalent to Vanilla BERT. Trex, which shares a

similar design, also fails to surpass the performance of BERT.

Algorithm Classification

Figure 4.2 lists the results of the evaluation on algorithm classification. The p-

value shows the T-test results between the target model and BERT. Here, StFm denotes

the StateFormer. We observe that without fine-tuning, BERT is among the best. However,

98

the differences between BERT and other models are not statistically significant, except for

Trex, jTrans, and jTrans-XL (i.e., with a p-value less than 0.05). After fine-tuning, the

differences between different models are even smaller, with even less statistical significance,

meaning the p-values are generally larger. In general, all models perform poorly on this

task. Therefore, we can see that customizations do not provide any benefits in this task.

Function Name Prediction

Table 4.7 shows the results of function name prediction. Similar to section 4.2.5,

precision, recall, and F1-score here represent the mean results obtained from multiple sam-

plings of the test set. The p-value is derived from the t-test between the F1-scores of other

models and those of the BERT model. We can see that larger models generally outperform

standard-sized models, with BERT-XL achieving the best F1 score. Among models of the

same size, all models exhibit similar performances. No model demonstrates a considerably

higher F1-score compared to Vanilla BERT.

Results of the Function Similarity Search task signify that the advanced contrastive

learning technique is very effective, whereas specially designed pre-training tasks and

architectural changes fail to introduce any tangible benefits. The vanilla BERT model

is comparable or superior to the specifically modified architectures in the Type Infer-

ence, Algorithm Classification, and Function Name Prediction.

99

Table 4.7: Results of Function Name Prediction

Model Precision Recall F1-score P-value

BERT 0.749 0.440 0.554 -

BERT-JTP 0.781 0.398 0.528 6.09 × 10−21

BERT-CWP 0.750 0.440 0.554 9.15 × 10−1

BERT-DUP 0.799 0.416 0.547 4.90 × 10−11

BERT-GSM 0.794 0.407 0.538 3.72 × 10−18

BERT-L 0.812 0.501 0.619 7.24 × 10−17

BERT-XL 0.807 0.503 0.619 3.62 × 10−20

Stateformer 0.711 0.497 0.585 8.42 × 10−20

Trex 0.711 0.496 0.584 7.28 × 10−19

jTrans 0.760 0.452 0.567 4.43 × 10−17

jTrans-L 0.798 0.466 0.588 1.32 × 10−19

jTrans-XL 0.796 0.459 0.582 5.82 × 10−17

4.4 Discussion

This research endeavors to evaluate the efficacy of existing pre-training tasks and

architectural changes for Transformer-based assembly language models. Nevertheless, it is

crucial to clarify that our conclusions do not negate the potential importance of all architec-

tural changes. Our evaluation indicates that the architectural modifications in Stateformer,

Trex, and jTrans do not provide sufficient advantages in downstream tasks to justify the

100

costs associated with modifying the model architecture. we did not evaluate other archi-

tectural changes proposed in other works due to limited access to their models. However,

our study sends a signal to the research community that architectural changes proposed in

future works must undertake a rigorous evaluation.

Likewise, our evaluation does not establish that the introduction of new pre-

training tasks is completely ineffective for ALMs. On the contrary, we posit that the level

of difficulty in pre-training tasks for ALMs and the interplay between different pre-training

tasks are crucial factors that limit the performance of ALMs. Based on the existing ex-

perimental findings, a good pre-training task should have an appropriate level of training

difficulty that constantly challenges the language model throughout the training process

and forces it to learn the desired features. Additionally, this task should not interfere with

other pre-training tasks. Besides, further investigation and experimentation are needed to

fully explore the potential of novel pre-training tasks in advancing the capabilities of ALMs.

Finally, our study highlights fine-tuning as the most straightforward and effective

technique, assuming readily available well-labeled datasets for training and testing, which

is often feasible in many binary analysis tasks. For example, diverse sets of binaries can

be generated by enumerating different compilers and options, with ground truth obtainable

from debug symbols. Consequently, fine-tuning proves highly effective. However, it is crucial

to recognize that sparse or low-quality labeled datasets for a specific downstream binary

analysis task may lead to different conclusions.

101

4.4.1 Our Suggestions

Based on the experimental findings and the aforementioned discussions, we offer

the following recommendations for future research:

• Always take the vanilla BERT or other vanilla transformer-based models into consid-

eration or provide a comprehensive ablation study.

• When proposing a specialized model for a specific downstream task, provide a rationale

for the model’s suitability solely to this task or to conduct evaluations towards multiple

tasks.

• Try to improve training efficiency, such as applying contrastive learning, before cus-

tomizing the model.

4.5 Related Work

Deep Learning Models in Program Analysis Tasks.. Program analysis is a long-

studied research area. In recent years, Transformer-based pre-trained language models have

been widely applied to numerous binary and source code analysis tasks, and our work only

covers a subset of these tasks. In the task of function similarity search [216, 74, 158, 10, 219],

apart from models we evaluate, there exist proprietary models that are not included in our

evaluation. OrderMatters [216] uses BERT to model sequential instruction sets from basic

blocks, and CNN to model the topological features. It concatenates the representations

and uses an MLP layer to generate embeddings for functions. COMBO [219] utilizes not

only assembly code but also source code and related comments for similarity search. Bin-

102

Bert [10] and Trex [158] benefit from dynamic information. BinBert [10] combines assembly

instructions with symbolic expressions and uses the BERT model to encode the concate-

nated inputs. This execution-aware Transformer model is proven to be able to benefit the

binary understanding. Trex [158] adopts an approach that is highly similar to StateFormer,

so it is not reevaluated in this work.

Transformer-based models are also utilized in various other tasks. XLIR [75] uses

the Transformer-based model to match binaries and source code at the intermediate rep-

resentation (IR) level. SymLM [96] focused on function name recovery. This approach

jointly models the execution behavior of the calling context and instructions with the com-

prehensive function semantics via a Transformer-based encoder. BinProv [85] uses BERT

to generate embeddings for provenance classification. VulHawk [133] uses a graph neural

network along with a Transformer language model to identify vulnerabilities across archi-

tectures. Like COMBO [219] and OrderMatters [216], VulHawk [133] also tries to merge

different kinds of features including imported functions, strings, and control-flow graphs.

There are many approaches that utilize other deep learning models to solve pro-

gram analysis problems. Several works [208, 55, 122, 216, 133, 217, 221, 140, 104] try to use

Graph Neural Network (GNN) to capture structural features of functions, while SAFE [141]

and InnerEye [223] using LSTM with attention mechanism to encode assembly code. The

GNN is usually used to encode control flow graphs [208, 55, 122, 216]. It has also been

used in disassembly. DeepDi [215] constructs a graph model called Instruction Flow Graph

to capture different instruction relations and use a Relational Graph Convolutional Net-

work (RGCN) to propagate instruction embeddings for accurate instruction classification.

103

However, these models fall outside the scope of this work, as they integrate other approaches,

such as Graph Neural Networks, which are not categorized as language models.

Evaluations on Neural Binary Analysis Approaches.. Benchmarks play an impor-

tant role in deep learning-based program analysis research. CodeXGLUE [131] provides a

benchmark for code intelligence problems including clone detection, Defect Detection, Cloze

test, Code completion, Text-to-code generation, etc. The work encourages the development

of language models that have the capability to address a wide range of program under-

standing and generation problems, with the goal of increasing the productivity of software

developers. We share the same viewpoint on this matter. However, this paper focuses only

on source code-based approaches and downstream tasks. The conclusions and insights de-

rived from this study cannot be directly applied to binary analysis evaluations, as well as

the metrics employed.

PalmTree [119] introduced an evaluation framework for instruction embeddings,

using intrinsic and extrinsic metrics, but it focused on instruction-level models, generating

embeddings for each instruction. In contrast, our work targets function-level embeddings.

The intrinsic evaluations by PalmTree may not align with the goals of function-level

models. PalmTree concluded that control-flow and data-flow information can help in-

struction representation learning. However, recent studies [216, 202, 158, 159, 96] have

shown that learning from longer sequences is more effective. Our evaluation also shows that

PalmTree’s pre-training tasks do not outperform the vanilla BERT model with function-

level sequences. Marcelli et al. [139] re-implemented and evaluated existing works on func-

tion similarity search, finding that many recent papers show similar accuracy levels when

104

evaluated on the same dataset, despite claiming state-of-the-art advancements. Our evalu-

ation reaches a similar conclusion. While Marcelli et al. focus on head-to-head comparisons

of a single downstream task, our work assesses the generalizability of models across multiple

downstream tasks.

4.6 Conclusion

In this work, we have evaluated custom Transformer-based models and their specif-

ically designed pre-training tasks by collecting, tailoring, implementing, and testing four

recent models including jTrans, PalmTree, StateFormer, and Trex, together with tailored

pre-training tasks. We have evaluated the vanilla BERT model and these models with four

major downstream tasks: Function Similarity Search, Type Inference, Algorithm Classifica-

tion, and Function Name Prediction. According to our evaluation, we have observed that:

certain pre-training tasks (e.g. GSM) are too challenging for the Transformer model to

learn effectively; Architectural changes do not bring tangible benefits for both pre-training

and fine-tuning. Moreover, improving fine-tuning (e.g., contrastive learning for Function

Similarity Search) is generally more beneficial than introducing new pre-training tasks or

making architectural modifications.

In light of our findings, our more comprehensive evaluation has revealed some

potential issues with recent modifications to model architectures and newly introduced

pre-training tasks. Our research indicates that the key to improving the performance of

Transformer-based models in downstream tasks lies primarily in fine-tuning. Other archi-

tecture changes and pre-training changes must be justified.

105

Chapter 5

Learning an Assembly Language

Model for Zero-Shot Obfuscation

Detection

5.1 Introduction

Building on the previous discussion, we recognize that vanilla language models,

when appropriately fine-tuned, can perform on par with or even surpass custom models

across various downstream tasks. However, our subsequent research highlights challenges

with supervised fine-tuning for certain specialized tasks, such as code obfuscation.

Code obfuscation is a technique used to deliberately make source code, binary

code, or program logic difficult to understand, interpret, or reverse-engineer. It alters the

code’s structure and syntax without changing its functionality. The main objectives are to

106

protect intellectual property, prevent unauthorized access, and hinder reverse engineering

by reducing code readability and analysis. However, obfuscation is also commonly exploited

for illegal purposes, including malware development [212], code plagiarism [107], and intel-

lectual property theft [205]. Detecting code obfuscation helps security professionals identify

hidden or malicious behaviors, making it a crucial element of modern cybersecurity strate-

gies.

Obfuscation techniques are mainly divided into data obfuscation, static code rewrit-

ing, and dynamic code rewriting [181]. Obfuscation detection for binaries mainly targets the

latter two, especially static code rewriting. Security researchers initially used certain statis-

tical features, such as entropy [134] and n-grams [100], to detect code obfuscation. However,

these approaches often only work well against specific obfuscation techniques. Some studies

have also attempted to use machine learning techniques [191, 24, 178, 195, 72], such as Näıve

Bayes (NB), k-Nearest Neighbor (KNN), and Decision Tree (DT), to detect obfuscated code.

In recent years, various deep learning models have been widely applied to the field

of binary static analysis at an astonishing speed and have quickly achieved state-of-the-art

performance in various tasks [210]. As one of the most important tasks at the forefront

of the reverse engineering workflow, obfuscation detection has also greatly benefited from

the application of deep learning. Researchers have attempted to use Convolutional Neural

Network (CNN) and Recurrent Neural Network (RNN) to encode assembly code [220, 194],

along with word2vec [143, 145] word embedding models, achieving better performance com-

pared to traditional machine learning methods.

107

Many learning-based approaches to obfuscation detection frame the problem as a

supervised classification task, relying on known obfuscation methods for training. While this

allows these models to perform well on familiar obfuscation techniques, it limits their ability

to generalize to novel or proprietary methods. Commercial software vendors and malware

authors, seeking to protect their binaries from reverse engineering, often employ non-public,

custom obfuscators. This lack of sample diversity in supervised learning can introduce data

bias, causing models to overlook features that, while insignificant in the training set, may

be critical for detecting previously unseen obfuscation techniques. Consequently, existing

learning-based obfuscation detection methods may face similar limitations, raising concerns

about their generalizability despite strong performance on standard evaluations. Indeed,

our evaluation in subsection 5.3.6 shows that supervised learning methods have very low

detection rates (∼ 0.04) for realworld malware samples, which are often protected by custom

obfuscators.

In this work, we address the challenge of detecting code obfuscation from the

perspective of assembly language modeling. Although both regular and obfuscated binary

code “speak” the same assembly language (adhering to its syntax and grammar), how they

speak differs significantly. We believe that the assembly language produced by regular

binary code is more straightforward, concise, and comprehensible, as it originates from

source code written by human developers following sound software engineering practices and

is compiled to maximize efficiency. In contrast, obfuscated binary code tends to “speak”

assembly in a more convoluted manner, deliberately designed to obscure its logic and hinder

analysis by human experts and reverse engineering tools.

108

Therefore, we propose to train an assembly language model, which can capture

how regular binary code “speaks” the assembly language. After training, this assembly

language model can detect obfuscated binary code, because its style significantly deviates

from that of the regular binary code in training. Specifically, we train a Transformer-based

language model using the causal language modeling (CLM) task on a large corpus of regular

binary code produced by different compilers and compiler options. Consequently, this model

captures the linguistic style of regular binary code. We then detect if a given binary code

is obfuscated by measuring how accurate this model predicts the next token in its assembly

code sequence. A common metric for this prediction is called “perplexity”. So when the

perplexity of a given binary code exceeds a predetermined threshold, this input binary is

deemed obfuscated. Evidently, the proposed obfuscation detector is a zero-shot detector

and is capable of detecting obfuscated code produced by custom and previously-unseen

obfuscators, because it is only trained on regular/unobfuscated code.

To further separate obfuscated code apart from regular code, we propose two

new metrics: Error Perplexity (EP) and Consecutive Error Perplexity (CEP). The error

perplexity metric sets focus on error predictions only, whereas consecutive error perplexity

further stresses on a sequence of mis-predicted tokens. Our evaluation shows that these

new metrics indeed improve the detection accuracy.

To evaluate the efficacy of the proposed approach, we implement a prototype called

ALMOND 1. Specifically, we train a GPT-1.0 model on unobfuscated assembly code with

a large dataset with 5200 ELF binaries and 3000 PE binaries over a wide variety of compil-

ers and configurations, using the causal language modeling (CLM) task. Using our newly

1ALMOND stands for Assembly Language Model for ObfuscatioN Detection.

109

Masked Self-Attention
Feed Forward Neural Network

Decoder Block

PUSH RBP MOV RBP RSP SUB RSP IMM

R15 MOV RBP RSP SUB EAX [MOV

Token/Position Embedding

Step3: Measurement

Step2: Inference

1: PUSH RBP
2: MOV RBP , RSP
3: SUB RSP , 0x20
4: MOV [RBP + - 0x14] , EDI
5: MOV [RBP + - 0x18] , ESI

... ...
n: CALL FUN_101258

Tokenization

Assembly code

SUB RSP <IMM>

SUB RSP 0x20 CALL FUN_101258

CALL <FUNC>

SUB, RSP 0x20; CALL, FUN_101258Raw Data

Tokenization

Normalization

MetricsAccuracy

MRRPerplexity

Step1: Pre-processing

Consecutive Error-
Prediction Penalty

Error-Perplexity Filtering

Metric improvements

One-class Classification

Step4: Prediction

Figure 5.1: The Overview of ALMOND

proposed CEP metric, ALMOND has an accuracy of 96.3% on binaries with unseen obfus-

cation methods which is much higher than machine learning and deep learning approaches,

and is also superior to the fine-tuned language model. In real-world evaluation, ALMOND

significantly outperforms the supervised fine-tuned language model ALMOND-S, demon-

strating its effectiveness with a 0.869 AUC score which significantly outperforms fine-tuned

language models. Our evaluations demonstrate that, although supervised learning-based

models can achieve excellent results on experimental datasets, in complex and unknown

real-world environments, an unsupervised, 0-shot model like ALMOND proves to be more

reliable.

110

5.2 Design

To meet the challenges, we propose ALMOND, a novel zero-shot approach for

detecting code obfuscation in binary executables, which does not rely on labeled training

data or supervised learning. Figure 5.1 illustrates the pipeline of ALMOND. We start by

training a language model using unobfuscated assembly code. Once training is complete,

we can directly use the model for anomaly detection on obfuscated code. We predict the

input tokens using the language model’s pre-training task, evaluate the prediction results

using metrics like error-perplexity, and classify them based on a set threshold. In the

following sections, we will provide a detailed explanation of the design for each step. In

subsection 5.2.1 and subsection 5.2.2, we will first introduce the preprocessing and pre-

training processes. In subsection 5.2.3, we will focus on how we achieve zero-shot detection

by reusing the pre-training task and utilizing the newly proposed error-perplexity metric

and the consecutive error-prediction penalty operator.

5.2.1 Pre-processing

In the pre-processing stage, we disassemble the binary and tokenize the assembly

code. Natural language models require a tokenizer to convert raw text into numerical vec-

tors, and tokenization methods generally fall into two categories: word-based and subword-

based. As the name implies, word-based tokenization treats each word as a separate token,

using spaces as delimiters along with some auxiliary rules. While this approach is simple,

it results in a large vocabulary size and introduces the issue of out-of-vocabulary (OOV)

words. For instance, “dog” and “dogs” would be considered entirely different tokens in a

word-based tokenizer.

111

To address the OOV problem, modern NLP models typically use subword-based

tokenizers, such as Byte Pair Encoding (BPE) [66] or WordPiece [206]. BPE iteratively

merges the most frequent pairs of bytes or characters until the target vocabulary size is

reached. Similarly, WordPiece constructs subwords iteratively by selecting token sequences

that maximize the likelihood of the text, based on subword frequency data learned during

training.

However, assembly language differs significantly from natural languages in terms

of structure, syntax, and vocabulary. Assembly code has a more rigid structure and a

much smaller vocabulary. For example, in x86-64 assembly, there are only around 1,000

unique mnemonics and 100 registers and symbols. As a result, word-based tokenizers do not

encounter the same challenges as they do with natural languages. In this context, subword-

based tokenizers offer little advantage. On the contrary, word-based tokenizers are more

efficient due to their simplicity and lack of training requirements. Consequently, previous

research [119, 202, 52] on assembly language models has commonly adopted the approach

of separating opcodes and operands based on spaces.

The application of word-based tokenization to assembly code is not without chal-

lenges. Assembly code contains many immediate values and addresses, which can still lead

to significant out-of-vocabulary (OOV) issues. Moreover, these tokens vary across different

binaries, even when compiled from the same source code, due to variations in compilers

and platforms. Immediate values and addresses will differ accordingly. Training a model

to predict these specific values reduces its accuracy on non-obfuscated code and increases

perplexity, thereby impairing the model’s ability to detect obfuscated code. This issue is

112

present for both subword-based and word-based tokenizers. To address this problem, we

implemented token normalization [52, 119]. Specifically, as shown in Figure 5.1, we replace

immediate numbers and string tokens within instructions with special tokens. This allows

the model to focus on the underlying semantics without being influenced by specific nu-

merical or address information, which are often subject to configuration changes. These

normalized tokens make it easier for the model to learn and make accurate predictions.

5.2.2 Architecture

For our language model architecture, we choose to utilize state-of-the-art Transformer-

based models. There are three main types of popular Transformer architectures: pure En-

coder models (e.g., BERT [49]), also known as auto-encoding Transformers; pure Decoder

models (e.g., GPT [170]), also known as auto-regressive Transformers; and Encoder-Decoder

models [204], which combine elements of both.

Encoder-only models, such as BERT, utilize a bi-directional attention mechanism

and are trained through Masked Language Modeling (MLM). However, this approach is

not well-suited for ALMOND. The obfuscation detection task is more akin to a stylo-

metric analysis problem, where the goal is to differentiate between the language styles of

typical compilers and obfuscators. BERT, being trained on MLM tasks, focuses primarily

on predicting masked tokens by leveraging the full context. As a result, it emphasizes se-

mantic and syntactic understanding, with little sensitivity to variations in language style.

This makes BERT less effective for obfuscation detection, as the model is likely to predict

masked tokens accurately, regardless of whether the code has been obfuscated, as long as it

understands the syntax and semantics of the input context.

113

In contrast, pure Decoder models like GPT use only the Decoder module of the

Transformer architecture. At each step, the attention layer can access only the preceding

words in the sequence, enabling the model to iteratively predict subsequent words based

on the context already generated. This approach is known as Causal Language Modeling

(CLM). When predicting the next tokens, the model must consider both fine-grained syntax

and semantics, as well as generate sequences that match the style of the preceding text.

As a result, if the GPT model has been pre-trained predominantly on unobfuscated code,

it will face greater difficulty in predicting sequences for obfuscated code, which exhibits a

distinct language style.

One of our experiments confirmed this hypothesis. Table 5.1 presents the accuracy

of GPT’s CLM task and BERT’s MLM task on both obfuscated and unobfuscated code (on

validation Dataset during pre-training). The results show that for the MLM task, the top-1

prediction accuracy and perplexity are similar for both types of sequences. This indicates

that BERT struggles to distinguish between the two styles. Consequently, for ALMOND,

GPT and the CLM approach are more appropriate design choices.

Table 5.1: Accuracy(Top-1) and Perplexity on BERT and GPT

Model Obfuscated Code Unobfuscated Code

BERT(MLM) Accuracy 0.877 0.895

GPT-1.0(CLM) Accuracy 0.725 0.856

BERT(MLM) perplexity 2.728 2.014

GPT-1.0(CLM) perplexity 4.045 2.225

114

We only use unobfuscated assembly code to train the GPT model. As previously

mentioned, this allows our GPT model to learn only the language style of unobfuscated

code, which will be used for subsequent obfuscation detection. We train the GPT model

using a causal language modeling (CLM) task. More specifically, Transformer architecture

is used to model the conditional probabilities P (wt | w1, w2, . . . , wt−1) The model is trained

to predict the next word in a sequence, given the previous words. The training objective is

Loss = −
T∑
t=1

logP (wt | w1, w2, . . . , wt−1) (5.1)

5.2.3 0-Shot Obfuscation Detection

After training, the pre-training task will be reused to perform obfuscation detec-

tion. When a query code snippet is fed into the GPT model, it will make predictions from

w2 to wn if the input length is n. Although obfuscated code functions the same as unob-

fuscated code, obfuscated instruction sequences create significant logical differences. For

a language model trained on unobfuscated code, predicting the logic of obfuscated code

becomes challenging. Therefore, in theory, we can evaluate the model’s predictions using

various metrics designed to assess language model predictions, and then classify the code

by setting a threshold. A common example of such a metric is perplexity. For a particular

token in a sequence, perplexity is calculated as:

Perplexity(wt) = exp (− logP (wt | w1, w2, . . . , wt−1)) (5.2)

For a sequence, perplexity is calculated as:

Perplexity(w1, w2, . . . , wT) = exp

(
− 1

T

T∑
t=1

logP (wt | w1, w2, . . . , wt−1)

)
(5.3)

115

Here, we can see that perplexity is essentially the exponential of the average loss

per token. If the perplexity exceeds the threshold, it indicates poor prediction results,

leading us to classify the input sample as obfuscated code.

0

0.5

1

(a) Probability of an obfuscated binary

0

0.5

1

(b) Probability of a regular binary

Figure 5.2: Comparison of probability between obfuscated and regular binaries

5.2.4 Further improvement on Obfuscation Detection

Table 5.1 shows that the perplexity predicted by the GPT model already exhibits

a significant difference between obfuscated and unobfuscated code. Therefore, perplexity is

an appropriate metric for zero-shot obfuscation detection. However, we found that there

is still room for improvement. The example in Figure 5.2 drove us to further investigate.

The figure shows the prediction probability on ground truth tokens of an obfuscated code

snippet, where each square represents the GPT model’s probability of predicting the ground

truth token at a specific position. Lighter colors indicate higher probabilities, while darker

colors not only reflect lower probabilities but also signal potentially incorrect predictions.

Compared to unobfuscated code in Figure 5.2(b), some interesting features were observed.

First, it is evident that for both obfuscated and unobfuscated code, the prediction

probability for most tokens is quite high, as supported by the data in Table 5.1. Both

116

obfuscated and unobfuscated code achieves over 70% accuracy. Our further tests reveal

that the perplexity of these correctly predicted tokens is very similar, as shown in Table 5.2.

Therefore, we can infer that these correctly predicted tokens do not significantly contribute

to obfuscation detection. However, the small subset of incorrectly predicted tokens plays a

crucial role, as low probabilities result in high perplexity.

0
0.1
0.2
0.3
0.4

(a) Probability of an obfuscated binary

0
0.1
0.2
0.3
0.4

(b) Probability of a regular binary

Figure 5.3: Comparison of probability with mispredictions only

Figure 5.3 presents a heatmap after masking all the correct predictions. It can be

observed that, although the number of dark squares in the obfuscated code is higher than

in the unobfuscated code, the unobfuscated code also contains many dark squares in terms

of color. However, the dark squares in the obfuscated code exhibit a clear consecutiveness,

while those in the unobfuscated code are more scattered and discrete(Only horizontally

connected tokens represent consecutive tokens.).

Error-perplexity

Based on the previous observation, we propose error-perplexity as the metric for

classification. Instead of using the perplexity of all tokens, we only consider the perplexity

of incorrectly predicted tokens as the evaluation factor. As mentioned earlier, in obfuscated

117

Table 5.2: Perplexity on correct predictions

Code Mean Max Min

Regular 1.12 4.00 1.00

Obfuscated 1.28 4.14 1.00

code, many tokens can still be predicted by the GPT model, and for these tokens, the per-

plexity will be low regardless of whether the code is obfuscated, introducing noise. However,

for tokens that the GPT model predicts incorrectly, obfuscated and unobfuscated codes fall

into different scenarios. For non-obfuscated code, incorrect predictions for a token are often

due to the presence of multiple possibilities within normal logic. For example, after a test

instruction, various jump instructions may reasonably follow, leading to potential errors in

prediction. As a result, the ground truth token is typically among these possible tokens,

leading to a relatively low perplexity value. On the other hand, incorrect predictions are

more frequent in obfuscated code than in non-obfuscated code. These errors often arise

because the language model cannot predict the obfuscated code’s unique logic based on the

previous tokens. In such cases, the predictions tend to be more random, and the ground

truth token’s probability is very low, resulting in a significantly higher perplexity value.

Error-perplexity uses Equation 5.4 as follows.

Error-Perplexity(w1, w2, . . . , wT) = exp

(
− 1

|M |
∑
t∈M

logP (wt | w1, w2, . . . , wt−1)

)
(5.4)

118

Where:

• M is the set of indices where the model made an incorrect prediction.

• |M | is the size of the set M , i.e., the number of mispredicted tokens.

0 500 1000 1500 2000
0

5

10

15

20

0 500 1000 1500 2000
0

5

10

15

20
Unobfuscated Obfuscated

(a) Distributions of error-perplexity

0 5k 10k 15k 20k
0

10

20

30

10k 20k 30k 40k 50k
0

10

20

Unobfuscated Obfuscated

(b) Distributions of error-perplexity with CEP

Figure 5.4: Comparison of Distributions of Error-Perplexity with and without CEP

We collected the distribution of error-perplexity for both unobfuscated and obfus-

cated code, which can be found in Figure 5.4(a). It can be observed that the obfuscated

code is primarily distributed in the region above 1000, while the unobfuscated code is con-

centrated in the range between 1 and 1000.

119

Table 5.3: Avg. length of error predictions

Code Regular Obfuscated

Avg. length of error predictions 1.519 2.335

Consecutive Error Perplexity

On top of error-perplexity, we introduced a new mechanism called Consecutive

Error prediction (CEP). Our investigation into language model predictions highlights two

key scenarios where prediction errors arise. First, the semantics are correct, but the model

faces multiple valid choices. In this case, the model usually predicts the opcode correctly and

can often predict the operands as well. Even if it fails to predict the operands, the perplexity

remains relatively low. Second, when an obfuscator rewrites a sequence of instructions rarely

seen in regular binaries, the language model tends to make errors in both the opcodes and

operands, and sometimes even in subsequent instructions. As a result, the occurrence of

consecutive prediction errors is significantly higher in obfuscated code than in regular code.

In Table 5.3, we present the average number of consecutive token prediction errors for both

obfuscated and unobfuscated code (This means that a single token prediction error has a

length of 1, two consecutive token prediction errors have a length of 2, and so on, with the

average being taken.). It can be observed that the average length of prediction errors for

obfuscated code exceeds 2.

Therefore, when calculating error-perplexity, we introduce the Consecutive Error

Prediction (CEP) mechanism. This method is inspired by the joint probability of indepen-

120

dent events. Since the GPT model already has access to the entire target sequence during

training, it can compute predictions for all positions at once. This is because the training

data includes both the full input and target sequences (by shifting the target sequence to

the right by one position, multiple training samples are created). As a result, the model’s

prediction for each position is treated as an independent event. Therefore, for an input

sequence that has consecutively mispredicted tokens, the CEP is defined as follows:

CEP(w1, w2, . . . , wT) = exp

− 1

|S|
∑
Si∈S

logP (Si | w1, . . . , wt1−1)

 (5.5)

Where:

• S is the set of sequences of consecutive mispredicted tokens.

• |S| is the number of sequences in S.

• P (Si | w1, . . . , wt1−1) represents the joint probability of the sequence Si, conditioned

on the preceding tokens w1, w2, . . . , wt1−1.

Then P (Si | w1, . . . , wt1−1) on the sequence Si = (wt1 , wt2 , . . . , w|Si|) can be ex-

panded as:

P (Si | w1, . . . , wt1−1) =

|Si|∏
j=1

P (wtj | w1, w2, . . . , wtj−1)

Substituting this expanded form into the original CEP equation, we get:

CEP(w1, w2, . . . , wT) = exp

− 1

|S|
∑
Si∈S

log

|Si|∏
j=1

P (wtj | w1, w2, . . . , wtj−1)

Using the logarithmic property log

∏
=
∑

log, the equation simplifies to:

121

CEP(w1, w2, . . . , wT) = exp

− 1

|S|
∑
Si∈S

|Si|∑
j=1

logP (wtj | w1, w2, . . . , wtj−1)

 (5.6)

Where:

• S is the set of sequences of consecutive mispredicted tokens.

• |S| is the number of sequences in S.

By simplifying the summary process, the formula becomes:

CEP(w1, w2, . . . , wT) = exp

(
− 1

|S|
∑
t∈M

logP (wt | w1, w2, . . . , wt−1)

)
(5.7)

According to Equation 5.7, it can be observed that the value of CEP depends on

the value of |S|. With a fixed number of incorrect predictions, if the consecutive incorrect

predictions increase, the number of error sequences |S| decreases, leading to a higher CEP.

Furthermore, compared to Equation 5.4, We can observe that, for the same sequence, the

value of error-perplexity is the simple average of all individual predictions. CEP changes

based on the number of consecutive error sequences. If all error predictions are consecutive,

then |S| = 1 and CEP reaches its maximum. Conversely, if all error predictions are non-

consecutive, CEP reduces to error-perplexity.

5.3 Evaluation

In this evaluation, we aim to answer the following research questions:

1. RQ1: How does ALMOND’s performance compare to that of a supervised fine-tuned

classifier when applied to known obfuscation methods?

122

2. RQ2: How does ALMOND perform compared to a supervised fine-tuned classifier on

previously unseen obfuscation methods?

3. RQ3: How does ALMOND perform under different configurations (e.g., metrics and

model sizes)?

4. RQ4: How does ALMOND perform on real-world cases?

5.3.1 Implementation

We employed the GPT-1.0 as our model architecture, which is considered small

by contemporary standards. It consists of 12 transformer layers, each with 12 heads. It has

an output dimension of 768 and an intermediate layer dimension of 3072. We implemented

the GPT model using Hugging Face’s framework and conducted pre-training on a server

with a single A100 40GB GPU.

5.3.2 Dataset Collection

Obfuscators. We collect four obfuscators for evaluation: OLLVM [99]2, Hikari 3, Tigress 4,

and Alcatraz 5. OLLVM, a modification of LLVM, integrates obfuscation into the compi-

lation process and provides three main obfuscation algorithms: Instructions Substitution,

Control Flow Flattening, and Bogus Control Flow. Hikari builds upon OLLVM, offering five

additional obfuscation methods: AntiClassDump, FunctionCallObfuscate, FunctionWrap-

per, IndirectBranching, and StringEncryption. Tigress, in contrast, is a source-to-source

2https://github.com/obfuscator-llvm/obfuscator
3https://github.com/HikariObfuscator/Hikari
4https://tigress.wtf/index.html
5https://github.com/weak1337/Alcatraz

123

Table 5.4: Obfuscators and Transformation Methods

Obfuscators Transformations

OLLVM Instruction Substitution, Bogus Control Flow Control, Flow Flattening

Hikari
Anti-Class Dump, Function Wrapper, Function Call Obfuscate

Indirect Branching, String Encryption

Tigress Add Opaque, Flatten Functions Split Fucntions, Merge Functions

Alcatraz
Obfuscation of Immediate Moves, Control Flow Flattening,

ADD Mutation, Lea obfuscation

transformer designed for the C language. Unlike OLLVM and Hikari, which operate dur-

ing compilation, Tigress takes a C source program as input and outputs an obfuscated C

program. For this evaluation, we selected the AddOpaque, Split, Merge, and Flatten ob-

fuscation techniques from Tigress to obfuscate the source code and then compiled it into

binary form.

It is important to note that we used the O0 optimization level during compilation

for both OLLVM and Tigress. For source-to-source obfuscators like Tigress, subsequent

compiler optimizations could remove or reduce the effectiveness of the obfuscation tech-

niques. Thus, using the O0 optimization level ensures that the original obfuscation algo-

rithms are preserved as much as possible. Table 5.4 summarizes the obfuscators and the

respective transformations used in our training and testing datasets.

124

Alcatraz represents obfuscators that directly modify binaries. This tool works on

x64 PE binaries, which is the only platform supported by Alcatraz. It provides powerful

obfuscation features including obfuscation of immediate moves, control flow flattening, ADD

mutation, and LEA obfuscation. Since it targets PE binaries and is not derived from

OLLVM, its implementation differs significantly from OLLVM and Hikari, which were used

in pre-training. Alcatraz also includes many dynamic encryption features such as entry

point obfuscation and anti-disassembly. However, since these two obfuscation techniques

are outside the scope of our research, we modified the Alcatraz source code and recompiled

it to disable these methods.

Pre-training Data. In evaluation of StateFormer [159], the authors collected 33 open-

source projects in their latest versions, including well-known and large projects such as

OpenSSL, ImageMagic, and Coreutils. These projects were compiled for four instruction

set architectures including x86, x64, MIPS, and ARM, each with four different optimizations

using GCC-7.5. We used the x64 portion of the StateFormer training set. Additionally, the

Stateformer dataset includes obfuscated code generated using Hikari and OLLVM, we did

not use these obfuscated binaries to pre-train ALMOND.

It is worth noting that our language-based baseline models also used a portion of

this dataset set for fine-tuning. To further enhance data diversity, we additionally collected

3,000 PE binaries from Windows systems for pre-training, with the goal of increasing the

variety of binaries across different platforms and compilers.

Testing Data. For testing, we selected binaries that were entirely distinct from those

used in pre-training. Specifically, we used the POJ-104 dataset, which originates from a

125

Table 5.5: Performance on known obfuscation methods

Model Accuracy Precision Recall F1

Näıve Bayes 0.942 0.911 0.975 0.958

BiGRU-CNN 0.933 0.936 0.932 0.934

ALMOND-S 0.988 0.988 0.984 0.985

ALMOND 0.962 0.953 0.975 0.963

pedagogical programming open judge (OJ) system[150] designed to automate the evaluation

of submitted source code for specific problems. For our test set, we compiled over 14,000

POJ-104 binaries, encompassing more than 25,000 functions.

Real-world dataset. For evaluations on real-world cases, we collect 5000 Real-world

binaries from Linux Distributions and Windows PE files. Similarly, we selected 5000 binaries

labeled as malware from VirusTotal feedings. These binaries were compiled for different

platforms using various compilers, and the malware likely employed various obfuscators or

packers, resulting in significant diversity.

5.3.3 RQ1: How does ALMOND perform on known obfuscation meth-

ods?

In this experiment, we investigate the performance gap between ALMOND and

supervised classifiers when dealing with known obfuscation methods. To provide a basis

for comparison, we established the following baselines. First, we replicated the method

proposed by Salem et al. [179] as the baseline for traditional machine learning. This method

126

encodes assembly code using TF-IDF [189] and utilizes Multinomial Näıve Bayes (MNB)

as the classifier. MNB is a variant of the Näıve Bayes algorithm specifically designed for

classification tasks involving discrete features and is commonly used in text classification

problems [102]. At the same time, it can also be effectively combined with TF-IDF. We

refer to this approach as Näıve Bayes.

Second, we implemented Tian et. al.’s OBOB [194] as the deep learning baseline.

In this approach, code sequences are sampled from the control flow graph using a shortest

path algorithm. A Bi-directional GRU network is then used to encode the sequences,

followed by a CNN for further dimensionality reduction. Finally, classification is performed

using a softmax classifier. For clarity, we refer to this model as BiGRU-CNN.

Finally, we utilized the pre-trained ALMOND model, attached it to a classifier

with a Multi-Layer Perceptron (MLP) network [176], and conducted fine-tuning. This model

is referred to as ALMOND-S, in which S stands for Supervised Learning. For ALMOND,

we determined the optimal threshold using a set of labeled data from the Stateformer

dataset (which contains unobfuscated code and obfuscated code with Hikari and OLLVM),

and we applied a fixed threshold value for the evaluation of RQ1 and RQ2. However,

different training sets may result in different thresholds. Due to ALMOND’s flexibility,

the threshold can be adjusted at any time based on the data.

It is worth noting that there is no overlap between the obfuscated binaries used

during training and fine-tuning and those used in the test set during evaluation.

Table 5.5 presents the results of different models on a test set containing known

obfuscation methods. We observe that, after 18 hours of fine-tuning, ALMOND-S is the

127

Table 5.6: Performance on unseen obfuscation methods.

Models
Tigress Alcatraz

A P R F1 A P R F1

Näıve Bayes 0.563 0.943 0.103 0.185 0.522 0.945 0.106 0.190

BiGRU-CNN 0.862 0.866 0.862 0.863 0.566 0.884 0.247 0.247

ALMOND-S 0.966 0.966 0.957 0.961 0.622 0.793 0.452 0.576

ALMOND 0.963 0.952 0.969 0.961 0.967 0.964 0.958 0.961

best performer, achieving an accuracy of 0.988 and an F1-score of 0.985. Notably, without

any fine-tuning or supervision, ALMOND achieves an accuracy of 0.962 and an F1-score

of 0.963, demonstrating that in a zero-shot setting, ALMOND still delivers performance

comparable to fine-tuned models with the same architecture.

Although Näıve Bayes and BiGRU-CNN perform slightly worse than ALMOND,

they still achieve accuracy and F1-scores above 0.93, indicating that both supervised learn-

ing and zero-shot learning approaches can effectively detect known obfuscation methods.

5.3.4 RQ2: How does ALMOND perform on previously unseen obfusca-

tion methods?

This experiment examines the performance gap between ALMOND and super-

vised classifiers when dealing with unseen obfuscation methods. To ensure precise control

over the unseen dataset, we trained Näıve Bayes, BiGRU-CNN, and fine-tuned the lan-

guage model using only the binaries obfuscated with OLLVM. For testing, we used binaries

128

obfuscated with Tigress and Alcatraz, ensuring that the obfuscation methods employed in

Tigress were not present in the OLLVM-based training data.

The experimental results are presented in Table 5.6.BiGRU-CNN and ALMOND-

S demonstrated relatively better generalizability on Tigress binaries. However, there was a

significant performance drop on Alcatraz binaries. ALMOND-S achieved the best results

among the baselines, showcasing the advantage of language models in semantic modeling.

In contrast, ALMOND remained unaffected when applied to previously unseen

obfuscation methods and significantly outperformed all other baselines. For binary-based

obfuscation methods with completely different implementations, ALMOND showed higher

perplexity and reduced token prediction accuracy. In comparison, supervised methods of-

ten classified these obfuscated binaries as benign, resulting in false negatives. This also

confirms our earlier assertion that, in an environment with unknown obfuscation methods,

the generalizability of unsupervised training is superior to that of supervised training.

5.3.5 RQ3: How does ALMOND perform under different configurations?

In this experiment, we examined how different metrics and model sizes affect the

performance of ALMOND.

Performance of Different Metrics

Table 5.7 presents the results of five different metrics applied to both unobfuscated

and obfuscated binaries, using various obfuscation methods. The goal is to highlight the

numerical differences between regular and obfuscated binaries. The results show that, for

129

Table 5.7: Performance of Different Metrics

Method Accuracy MRR Perplexity Error-Perplexity CEP

regular 0.750 0.836 9.434 570.481 4.53k

sub 0.715 0.801 22.657 2002.313 15.37k

fla 0.811 0.859 11.002 1801.224 24.28k

bcf 0.647 0.724 25.615 1816.941 22.25k

tigress 0.623 0.812 18.494 2295.242 38.80k

accuracy (Acc) and Mean Reciprocal Rank (MRR), there is no significant difference between

unobfuscated and obfuscated binaries. In some cases, binaries obfuscated with control

flow flattening (FLA) even achieve higher accuracy and MRR than their unobfuscated

counterparts. This suggests that using accuracy or MRR as a classification metric could

result in false negatives, where obfuscated binaries—particularly those obfuscated using

control flow flattening—are incorrectly classified as unobfuscated.

In contrast, for perplexity-based metrics (i.e., original perplexity (PPL), error

perplexity (EP), and consecutive error perplexity (CEP)), we can observe wide numeric

gaps between regular and obfuscated binaries.

To further evaluate how these metrics affect ALMOND’s performance, we plot

their ROC curves in Figure 5.5 and compute the Area Under the Curve (AUC). We can

observe that the original perplexity achieves reasonable performance with an AUC of 0.947,

whereas error perplexity outperforms it by a big margin with an AUC of 0.978, and con-

secutive error perplexity further beats error perplexity with an AUC of 0.992.

130

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

Tr
u
e
 P

o
s
it

iv
e
 R

a
te

Figure 5.5: ROC curves on different metrics

Table 5.8: Hyperparameters on different sized models

Models Layers Dimensions Heads Parameters

Small 6 768 4 14M

Standard 12 768 12 87M

Large 24 768 12 172M

131

Table 5.9: Performance on different model sizes

Models Recall Precision F1-score AUC

Small 0.944 0.927 0.935 0.982

Standard 0.963 0.958 0.960 0.991

Large 0.939 0.894 0.915 0.977

In summary, this experiment demonstrates that both the proposed error-perplexity

and the Consecutive Error Perplexity (CEP) significantly enhance the performance of AL-

MOND.

Performance of Different Model Sizes

In this subsection, we will examine the model’s performance under different sizes.

We adjusted the model size by varying the number of layers and self-attention heads. In-

cluding the default size, we trained a total of three different model sizes, labeled as AL-

MOND-small, ALMOND, and ALMOND-large. Table 5.8 provides detailed parameters

for each of these models.

Table 5.9 shows the precision, recall F1-score and AUC scores of ALMOND on

different sizes. We observed that in the zero-shot setting, a larger model size does not always

lead to better performance; instead, there is a sweet spot. As we scale from ALMOND-

small to ALMOND, performance improves with the increase in layers. However, further

increasing the model size results in a performance drop. This is because our model relies

on its understanding of the semantics of unobfuscated code to distinguish obfuscated code.

132

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Metrics

ALMOND (AUC = 0.869)

ALMOND-S (AUC=0.582)

False Positive Rate

T
r
u
e
 P

o
s
it

iv
e
 R

a
t
e

Figure 5.6: ROC curves on real-world binaries

If the model is too small, it lacks the capacity to fully grasp the semantics of assembly

code, leading to excessively high perplexity values on unobfuscated code. Conversely, if

the model is too large, its understanding of the assembly code semantics becomes too

strong, and its generalization ability too high. As a result, it predicts low perplexity for

obfuscated code. Therefore, there is a sweet spot in the model size of ALMOND, where

it can adequately understand the semantics of assembly code without losing its ability to

distinguish obfuscated code through error-perplexity due to overgeneralization.

5.3.6 RQ4: How does ALMOND perform on real-world cases

This experiment evaluates the performance of ALMOND on large-scale, real-

world programs, including both commercial off-the-shelf (COTS) and open-source software.

133

In practice, binaries are typically unobfuscated, so even a low false positive rate can under-

mine ALMOND’s effectiveness due to the high volume of binaries. Additionally, real-world

binaries are compiled with various compilers and configurations and may include scientific

computation libraries. These libraries often contain extensive mathematical operations that

can resemble the logic used by obfuscators. As a result, such operations could be mistakenly

identified as obfuscated, leading to false positives. The experiment aims to determine AL-

MOND’s applicability in a real-world malware detection environment. The purpose of the

experiment is not to suggest that we should use ALMOND alone for malware detection.

Instead, it offers a new perspective on zero-day detection. This is based on a previously

discussed assumption that malware will inevitably use some form of obfuscator or packer to

obfuscate the source code in order to evade anti-virus detection. Hence, ALMOND can be

employed to identify potential zero-day malware, serving as an initial filter. Once an alert

is triggered, slower but more comprehensive program analysis tools and reverse engineering

techniques can be used to investigate and confirm the nature of the suspected malware.

Unlike the previous experiments, this experiment requires classification at the

binary level, so we adjusted the calculation method for the metrics accordingly. Instead of

calculating CEP at the function level, we now compute CEP for the entire binary. Therefore,

in this experiment, we plotted ROC curves using different thresholds.

Figure 5.6 shows ALMOND’s performance on real-world binaries. We observed

that ALMOND achieved an AUC of 0.869 and an F-1 score of 0.803 on this dataset,

indicating that ALMOND can also achieve high accuracy in real-world malware detection

tasks. Overall, as an initial filter in a comprehensive malware detection system, ALMOND

is fully capable of fulfilling this role.

134

0

50

Figure 5.7: The heatmap of malware A

On the contrary, the classification accuracy of ALMOND-S dropped significantly.

As a classifier utilizing a language model, ALMOND-S possesses strong language modeling

and feature extraction capabilities, as demonstrated in RQ1. However, as a supervised

model, ALMOND-S is unable to handle such tasks in real-world environments.

Real case: Packers

Case 1 Figure 5.7 presents a heatmap of the perplexity with CEP on a malware

sample. In the heatmap, some distinct highlighted lines can be observed. We extracted one

segment in Figure 5.8 for analysis. This segment originates from the function at address

0x40161b. This function appears to be part of an encryption/decryption or decompression

routine, containing complex operations such as multiplications, bit shifts and rotations, and

bitwise comparisons along with conditional jumps. It also makes use of bitwise instructions

like LZCNT, SWAP, NEG, etc. It is known to all, that some packers typically decrypt

or unpack compressed executable data on the fly, so we believe this function might be

responsible for part of that process—transforming the packed data into executable code

just before it is executed. It is worth mentioning that we also studied the implementation

of encryption algorithms in OpenSSL. However, we found that the encryption algorithms

135

0

20

40

60

80

100

120

Figure 5.9: The heatmap of malware B

used in network communications are not the same as the function in this case. Taking

the x86 aes encrypt function as an example, this function primarily uses a combination

of MOVZX, XOR, SHR, and similar instructions, mainly performing logical and bitshift

operations. However, the case function mainly involves various specialized instructions

with arithmetic and bit manipulation. Since OpenSSL-related functions are included in

ALMOND’s pre-training dataset, the language model can also accurately predict these

operations.

Furthermore, we believe this segment was either manually crafted by the author

or generated using a specialized obfuscation tool, which is completely different from the

obfuscated segments observed in other experiments. Hence, ALMOND made consecutive

prediction errors in this segment. Besides this, we also observed a few similar segments in

the binary. For the rest of the program, ALMOND exhibited lower perplexity.

136

Figure 5.8: Assembly code snippet

of malware A

IMUL EAX , EBX

BSF EBX , param_2

LZCNT EAX , EBX

BSWAP EAX

CMP AL , param_2

IMUL EAX , EBX

NEG AL

MOVSX EAX , param_2

SAR AL , 0x67

CMP AL , param_2

SWAP EAX

XCHG BL, AL

BSWAP EAX

JMP 0x401668

Case 2 Figure 5.9 presents the heatmap of

another malware sample. Information from Virus-

Total indicates that this program likely used some

VM-based techniques to protect and encrypt its logic.

However, there are still some functions that can be

fully disassembled. The heatmap reveals that one

part of the binary has higher perplexity compared to

other sections. Upon further investigation, this func-

tion appears to be a part of a process injection rou-

tine, leveraging various Windows API functions to

inject code (likely a DLL or shellcode) into another

process and execute it remotely. It achieves this by

creating a new process or accessing an existing one,

allocating memory in that process, writing the pay-

load to the allocated memory, and finally creating a

remote thread to execute the injected payload. ALMOND exhibited clear anomalies when

dealing with process injection operations, as such operations are rarely found in typical

programs. This resulted in very high perplexity and consecutive prediction errors during

inference.

5.3.7 Efficiency

In this experiment, we evaluated the efficiency of ALMOND. We found that

on an A100 40G GPU, with a batch size of 32, ALMOND can achieve a throughput of

137

173.808 inferences or 88989 tokens per second, and with a batch size of 64, it can achieve a

throughput of 220.324 inferences or 112640 tokens per second.

5.4 Related Works

5.4.1 Obfuscation Detection

As discussed in subsection 2.3.2, prior research on obfuscation detection primarily

aimed to facilitate reverse engineering, employing rule-based, machine learning-based, and

deep learning-based methods. The approach proposed in this paper builds on deep learning

methods while also leveraging metrics used in rule-based detection. Previous deep learning

approaches, such as those by Zhao et al. [220] and Tian et al. [194], utilized CNNs and

LSTMs for supervised learning. However, with the application of language models in binary

analysis, the use of language models and the pre-training, fine-tuning paradigm has become

a superior solution. To our knowledge, this paper is the first to use a language model for

obfuscation detection. The connections and distinctions between this work and other studies

that apply language models to static binary analysis will be discussed in. After modeling

assembly language with a language model, this paper introduces a novel language model-

based metric, error perplexity, to detect obfuscated code. This approach is analogous to

using rule-based metrics like entropy [134] or n-gram models [100] for obfuscation detection,

but with a key difference: the proposed metric is designed to assess the predictions of the

language model rather than directly targeting assembly code or raw bytes.

138

5.4.2 Language Model for Static Binary Analysis

In recent years, numerous studies have explored the use of language models for

static binary analysis. PalmTree [119], for example, proposed using language models to

generate instruction embeddings, which can be applied to various downstream tasks. Most

of these studies have focused on leveraging language models by introducing specialized pre-

training tasks or innovative model architectures to target specific tasks, such as similarity

detection [202, 158, 126, 95, 6, 141, 216], type inference [159], function name recovery [96,

17], and value set analysis [79]. These tasks are typically accomplished through fine-tuning

or by introducing special pre-training tasks.

The key distinction between this work and those studies is that our approach does

not involve any additional pre-training tasks or fine-tuning. Instead, it relies solely on the

default pre-training of GPT, enabling obfuscation detection to be performed in a zero-shot

manner.

5.4.3 Zero-shot Classification and Anomaly Detection

Zero-shot classification involves predicting a class the model has never encountered

during training, often requiring it to perform tasks not explicitly learned. A notable example

is GPT-2, tested on downstream tasks like machine translation without fine-tuning [172].

In this context, the model classifies input text into unseen labels. Two primary approaches

exist: Puri et al.[167] utilize generative capabilities of models like GPT by prompting the

model with task descriptions and candidate labels, while Zhang et al. [218] map both labels

and documents into a high-dimensional space to predict labels using cosine similarity. Unlike

139

Zhang et al. [218], ALMOND focuses on One-Class Classification, avoiding the need for

label mapping. Similarly, in anomaly detection (AD), the task is to identify data instances

that deviate from the norm [175], with applications in security, such as detecting DDoS

attacks or monitoring system logs [91, 90, 117, 54]. Zero-shot anomaly detection employs

two approaches: one utilizes large-scale data and powerful models through meta-learning

or in-context learning, as seen with Liu et al. [127] and RAGLog [156]. The second, more

computationally efficient approach studies sample features and applies scoring methods for

evaluation, enabling zero-shot detection in tasks like pixel-level anomaly detection [118, 183,

53]. This feature analysis method is the focus of this paper.

5.5 Discussion

This paper proposes a zero-shot obfuscation detection method based on a pre-

trained language model, achieving results comparable to fine-tuned models with significantly

less training data. However, there are limitations to this work. Firstly, the paper only

explores binary classification using error-perplexity. In reality, the information predicted by

the language model could be used for more detailed classification tasks, such as identifying

specific obfuscation methods, all without requiring fine-tuning. We believe that building on

this work, incorporating few-shot learning algorithms such as Generalized Learning Vector

Quantization [180] could enable the prediction of obfuscation methods.

140

Secondly, this paper presents only a prototype of classification based on error-

perplexity and does not thoroughly investigate combining multiple metrics to further en-

hance performance. However, we have already observed that combining perplexity and

error-perplexity outperforms using either metric alone.

Lastly, this paper does not include experiments to thoroughly examine the poten-

tial vulnerabilities of ALMOND to evasion or adversarial attacks, which will be discussed

here. First, adversarial learning methods targeting binary classifiers must ensure that the

modified binary can both mislead the machine learning classifier and maintain functional

integrity [188]. Consequently, these methods typically avoid altering the original assembly

code and instead insert data or code between the assembly instructions to deceive the clas-

sifier. However, the classification method based on error-perplexity proposed in this paper

focuses solely on the language model’s incorrect predictions. As a result, for an obfuscated

binary, it would be challenging to deceive ALMOND by simply inserting unobfuscated

code. However, this does not imply that ALMOND is entirely immune to evasion. Attack-

ers would need to design obfuscation methods that more closely resemble regular code to

reduce the error-perplexity value, which inherently means a reduction in the effectiveness of

the obfuscation itself. Therefore, we have reason to believe that ALMOND offers stronger

resistance to adversarial attacks compared to other supervised-learning-based approaches.

5.6 Conclusion

We present ALMOND, a zero-shot obfuscation detector based on a transformer

language model. We employed a metric-based classification technique along with an anomaly

141

detection approach and proposed the error-perplexity and Continuous Error-prediction

Penalty to further enhance detection capabilities. Our evaluation demonstrates that AL-

MOND achieves an accuracy of 96.3% on binaries with previously unseen obfuscation meth-

ods, surpassing traditional machine learning and deep learning approaches. Moreover, in a

real-world malware detection task, ALMOND achieved a false negative rate of less than

0.001, while maintaining a false positive rate of just 0.269. ALMOND has proven that ob-

fuscation detection can be achieved in a zero-shot setting solely through metric evaluation of

the language model. It has also demonstrated that, when faced with complex and unknown

real-world environments, it is more reliable than supervised learning-based models.

142

Chapter 6

Conclusions

In conclusion, this dissertation has made significant contributions to the develop-

ment and evaluation of assembly language models for security applications. By emphasizing

the strengths of fine-tuning, showcasing the potential of zero-shot learning, and providing

actionable insights, it lays a solid foundation for advancing instruction representation learn-

ing. These findings pave the way for more effective and reliable models in the domain of

binary static analysis. We conclude our key contributions include the following:

To address unresolved challenges in instruction representation, we introduced

PalmTree, a pre-trained assembly language model specifically designed to generate high-

quality instruction embeddings. PalmTree employs self-supervised training on large-scale

unlabeled binary corpora and incorporates newly designed tasks which are CWP (Context

Window Prediction), and DUP (Def-Use Prediction). Experimental results demonstrate

that PalmTree significantly outperforms existing models in intrinsic evaluations and down-

143

stream applications, such as function similarity search type inference, and value set analysis.

These results underscore its utility in advancing binary analysis tasks.

Building on this foundation, we conducted a systematic evaluation of custom

Transformer-based models and their associated pre-training tasks, including PalmTree,

jTrans, StateFormer, and Trex, alongside the baseline BERT model. These models were

assessed on four major downstream tasks: Function Similarity Search, Type Inference, Al-

gorithm Classification, and Function Name Prediction. Our findings reveal that certain

pre-training tasks, such as GSM, are excessively complex for effective learning, and archi-

tectural modifications alone do not provide substantial improvements. However, fine-tuning

enhancements, like contrastive learning for Function Similarity Search, demonstrated more

promising results, suggesting that focusing on fine-tuning strategies is often more impactful

than introducing new pre-training tasks or altering model architectures.

Leveraging insights from PalmTree and other pre-trained models, we developed

ALMOND, a zero-shot obfuscation detector powered by a transformer language model. AL-

MOND employs a metric-based classification technique augmented with innovative metrics

like Error-Perplexity and Continuous Error-Prediction Penalty, achieving state-of-the-art

performance. It demonstrated 96.3% accuracy on binaries with unseen obfuscation meth-

ods and excelled in real-world malware detection tasks, achieving a false negative rate of

less than 0.001 and a false positive rate of just 0.269. These results highlight ALMOND’s

effectiveness in addressing obfuscation challenges, particularly in complex and previously

unencountered scenarios.

144

6.1 Future Work

While this research has made substantial contributions to the field, it also high-

lights opportunities for future exploration. Adapting models to different assembly languages

and architectures, applying transfer learning for cross-context performance, and collaborat-

ing with industry to refine real-world deployments are key directions. Additionally, leverag-

ing large language model (LLM) techniques could significantly advance binary analysis. For

example, instruction-tuned LLMs and in-context learning could enable more flexible work-

flows, while chain-of-thought prompting and causal reasoning could improve interpretability

in tasks like vulnerability detection or control flow analysis. Integrating domain-specific

knowledge and retrieval-augmented generation (RAG) techniques could further enhance

model accuracy and applicability in areas such as malware detection and reverse engineer-

ing. By pursuing these directions, future research can unlock the full potential of LLMs in

binary analysis.

145

Bibliography

[1] DeepVSA. https://github.com/Henrygwb/deepvsa/, 2019.

[2] EKLAVYA. https://github.com/shensq04/EKLAVYA, 2019.

[3] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow:
a system for large-scale machine learning. In OSDI, volume 16, pages 265–283, 2016.

[4] Christopher R Aberger. Recommender: An analysis of collaborative filtering tech-
niques, 2016.

[5] Amr Ahmed, Nino Shervashidze, Shravan Narayanamurthy, Vanja Josifovski, and
Alexander J Smola. Distributed large-scale natural graph factorization. In Proceedings
of the 22nd international conference on World Wide Web, pages 37–48. ACM, 2013.

[6] Sunwoo Ahn, Seonggwan Ahn, Hyungjoon Koo, and Yunheung Paek. Practical binary
code similarity detection with bert-based transferable similarity learning. In Proceed-
ings of the 38th Annual Computer Security Applications Conference, pages 361–374,
2022.

[7] Miltiadis Allamanis, Earl T Barr, Premkumar Devanbu, and Charles Sutton. A survey
of machine learning for big code and naturalness. ACM Computing Surveys (CSUR),
51(4):1–37, 2018.

[8] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. code2vec: Learning dis-
tributed representations of code. Proceedings of the ACM on Programming Languages,
3(POPL):1–29, 2019.

[9] Dennis Andriesse, Asia Slowinska, and Herbert Bos. Compiler-agnostic function de-
tection in binaries. In 2017 IEEE European Symposium on Security and Privacy
(EuroS&P), pages 177–189. IEEE, 2017.

[10] Fiorella Artuso, Marco Mormando, Giuseppe A Di Luna, and Leonardo Querzoni.
Binbert: Binary code understanding with a fine-tunable and execution-aware trans-
former. arXiv preprint arXiv:2208.06692, 2022.

146

https://github.com/Henrygwb/deepvsa/
https://github.com/shensq04/EKLAVYA

[11] Thanassis Avgerinos, Sang Kil Cha, Brent Lim Tze Hao, and David Brumley. Aeg:
Automatic exploit generation. 2011.

[12] Alessandro Bacci, Alberto Bartoli, Fabio Martinelli, Eric Medvet, and Francesco Mer-
caldo. Detection of obfuscation techniques in android applications. In Proceedings of
the 13th International Conference on Availability, Reliability and Security, ARES ’18,
New York, NY, USA, 2018. Association for Computing Machinery.

[13] Amir Bakarov. A survey of word embeddings evaluation methods. CoRR,
abs/1801.09536, 2018.

[14] Arini Balakrishnan and Chloe Schulze. Code obfuscation literature survey. CS701
Construction of compilers, 19:31, 2005.

[15] Roberto Baldoni, Giuseppe Antonio Di Luna, Luca Massarelli, Fabio Petroni, and
Leonardo Querzoni. Unsupervised features extraction for binary similarity using graph
embedding neural networks. arXiv preprint arXiv:1810.09683, 2018.

[16] Imon Banerjee, Sriraman Madhavan, Roger Eric Goldman, and Daniel L Rubin. Intel-
ligent word embeddings of free-text radiology reports. In AMIA Annual Symposium
Proceedings, volume 2017, page 411. American Medical Informatics Association, 2017.

[17] Pratyay Banerjee, Kuntal Kumar Pal, Fish Wang, and Chitta Baral. Variable name
recovery in decompiled binary code using constrained masked language modeling.
arXiv preprint arXiv:2103.12801, 2021.

[18] Erick Bauman, Zhiqiang Lin, Kevin W Hamlen, et al. Superset disassembly: Statically
rewriting x86 binaries without heuristics. In NDSS, 2018.

[19] Tal Ben-Nun, Alice Shoshana Jakobovits, and Torsten Hoefler. Neural code compre-
hension: a learnable representation of code semantics. In Proceedings of the 32nd In-
ternational Conference on Neural Information Processing Systems, pages 3589–3601,
2018.

[20] Tal Ben-Nun, Alice Shoshana Jakobovits, and Torsten Hoefler. Neural code compre-
hension: A learnable representation of code semantics. Advances in neural information
processing systems, 31, 2018.

[21] Yoshua Bengio, Aaron C Courville, and Pascal Vincent. Unsupervised feature learning
and deep learning: A review and new perspectives. CoRR, abs/1206.5538, 1:2012,
2012.

[22] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A neural
probabilistic language model. Journal of machine learning research, 3(Feb):1137–
1155, 2003.

[23] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curricu-
lum learning. In Proceedings of the 26th annual international conference on machine
learning, pages 41–48, 2009.

147

[24] Fabrizio Biondi, Michael A. Enescu, Thomas Given-Wilson, Axel Legay, Lamine
Noureddine, and Vivek Verma. Effective, efficient, and robust packing detection and
classification. Computers & Security, 85:436–451, 2019.

[25] Martial Bourquin, Andy King, and Edward Robbins. Binslayer: accurate comparison
of binary executables. In Proceedings of the 2nd ACM SIGPLAN Program Protection
and Reverse Engineering Workshop, page 4. ACM, 2013.

[26] Juan Caballero, Noah M Johnson, Stephen McCamant, and Dawn Song. Binary
code extraction and interface identification for security applications. Technical report,
CALIFORNIA UNIV BERKELEY DEPT OF ELECTRICAL ENGINEERING AND
COMPUTER SCIENCE, 2009.

[27] Juan Caballero and Zhiqiang Lin. Type inference on executables. ACM Computing
Surveys (CSUR), 48(4):1–35, 2016.

[28] Hongyun Cai, Vincent W Zheng, and Kevin Chang. A comprehensive survey of graph
embedding: problems, techniques and applications. IEEE Transactions on Knowledge
and Data Engineering, 2018.

[29] Shaosheng Cao, Wei Lu, and Qiongkai Xu. Grarep: Learning graph representations
with global structural information. In Proceedings of the 24th ACM International on
Conference on Information and Knowledge Management, pages 891–900. ACM, 2015.

[30] Shaosheng Cao, Wei Lu, and Qiongkai Xu. Deep neural networks for learning graph
representations. In AAAI, pages 1145–1152, 2016.

[31] Mahinthan Chandramohan, Yinxing Xue, Zhengzi Xu, Yang Liu, Chia Yuan Cho,
and Hee Beng Kuan Tan. Bingo: Cross-architecture cross-os binary search. In Pro-
ceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, pages 678–689. ACM, 2016.

[32] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple
framework for contrastive learning of visual representations. In International confer-
ence on machine learning, pages 1597–1607. PMLR, 2020.

[33] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple
framework for contrastive learning of visual representations. In International confer-
ence on machine learning, pages 1597–1607. PMLR, 2020.

[34] Zheng Leong Chua, Shiqi Shen, Prateek Saxena, and Zhenkai Liang. Neural nets can
learn function type signatures from binaries. In 26th {USENIX} Security Symposium
({USENIX} Security 17), pages 99–116, 2017.

[35] Zheng Leong Chua, Shiqi Shen, Prateek Saxena, and Zhenkai Liang. Neural nets
can learn function type signatures from binaries. In 26th USENIX Security Sympo-
sium (USENIX Security 17), pages 99–116, Vancouver, BC, August 2017. USENIX
Association.

148

[36] Zheng Leong Chua, Shiqi Shen, Prateek Saxena, and Zhenkai Liang. Neural nets can
learn function type signatures from binaries. In USENIX Security Symposium, pages
99–116, 2017.

[37] Matteo Ciniselli, Nathan Cooper, Luca Pascarella, Denys Poshyvanyk, Massimiliano
Di Penta, and Gabriele Bavota. An empirical study on the usage of bert models
for code completion. In 2021 IEEE/ACM 18th International Conference on Mining
Software Repositories (MSR), pages 108–119. IEEE, 2021.

[38] Kevin Clark, Minh-Thang Luong, Quoc V Le, and Christopher D Manning. Electra:
Pre-training text encoders as discriminators rather than generators. In International
Conference on Learning Representations, 2019.

[39] Keith Cooper and Linda Torczon. Engineering a compiler. Elsevier, 2011.

[40] Hanjun Dai, Bo Dai, and Le Song. Discriminative embeddings of latent variable mod-
els for structured data. In Proceedings of the 33rd International Conference on Inter-
national Conference on Machine Learning - Volume 48, ICML’16, page 2702–2711.
JMLR.org, 2016.

[41] Hanjun Dai, Bo Dai, and Le Song. Discriminative embeddings of latent variable
models for structured data. In International Conference on Machine Learning, pages
2702–2711, 2016.

[42] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G Carbonell, Quoc Le, and Ruslan
Salakhutdinov. Transformer-xl: Attentive language models beyond a fixed-length
context. In Proceedings of the 57th Annual Meeting of the Association for Computa-
tional Linguistics, pages 2978–2988, 2019.

[43] Yaniv David, Nimrod Partush, and Eran Yahav. Statistical similarity of binaries.
ACM SIGPLAN Notices, 51(6):266–280, 2016.

[44] Yaniv David, Nimrod Partush, and Eran Yahav. Similarity of binaries through re-
optimization. In ACM SIGPLAN Notices, volume 52, pages 79–94. ACM, 2017.

[45] Yaniv David, Nimrod Partush, and Eran Yahav. Firmup: Precise static detection of
common vulnerabilities in firmware. In ACM SIGPLAN Notices, volume 53, pages
392–404. ACM, 2018.

[46] Yaniv David and Eran Yahav. Tracelet-based code search in executables. Acm Sigplan
Notices, 49(6):349–360, 2014.

[47] Franck De Goër, Sanjay Rawat, Dennis Andriesse, Herbert Bos, and Roland Groz.
Now you see me: Real-time dynamic function call detection. In Proceedings of the
34th Annual Computer Security Applications Conference, pages 618–628. ACM, 2018.

[48] Scott Deerwester, Susan T. Dumais, George W. Furnas, Thomas K. Landauer, and
Richard Harshman. Indexing by latent semantic analysis. JOURNAL OF THE
AMERICAN SOCIETY FOR INFORMATION SCIENCE, 41(6):391–407, 1990.

149

[49] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

[50] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. In Proceedings
of the 2019 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, Volume 1 (Long and Short
Papers), pages 4171–4186, 2019.

[51] Tom Dietterich. Overfitting and undercomputing in machine learning. ACM comput-
ing surveys, 27(3):326–327, 1995.

[52] Steven HH Ding, Benjamin CM Fung, and Philippe Charland. Asm2vec: Boosting
static representation robustness for binary clone search against code obfuscation and
compiler optimization. In 2019 IEEE Symposium on Security and Privacy (SP), pages
472–489. IEEE, 2019.

[53] Marius Drăgoi, Elena Burceanu, Emanuela Haller, Andrei Manolache, and Florin
Brad. Anoshift: A distribution shift benchmark for unsupervised anomaly detection.
Neural Information Processing Systems NeurIPS, Datasets and Benchmarks Track,
2022.

[54] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. Deeplog: Anomaly detection
and diagnosis from system logs through deep learning. In Proceedings of the 2017
ACM SIGSAC conference on computer and communications security, pages 1285–
1298, 2017.

[55] Yue Duan, Xuezixiang Li, Jinghan Wang, and Heng Yin. Deepbindiff: Learning
program-wide code representations for binary diffing. In Network and distributed
system security symposium, 2020.

[56] Yue Duan, Mu Zhang, Abhishek Vasisht Bhaskar, Heng Yin, Xiaorui Pan, Tongxin
Li, Xueqiang Wang, and XiaoFeng Wang. Things you may not know about android
(un) packers: A systematic study based on whole-system emulation. In NDSS, 2018.

[57] Thomas Dullein and Rolf Rolles. Graph-based comparison of executable objects. In
Proceedings of the Symposium sur la Securite des Technologies de L’information et
des communications, 2005.

[58] Manuel Egele, Maverick Woo, Peter Chapman, and David Brumley. Blanket exe-
cution: Dynamic similarity testing for program binaries and components. In 23rd
USENIX Security Symposium (USENIX Security). USENIX Association, 2014.

[59] Sebastian Eschweiler, Khaled Yakdan, and Elmar Gerhards-Padilla. discovre: Effi-
cient cross-architecture identification of bugs in binary code. In NDSS, 2016.

150

[60] Mohammad Reza Farhadi, Benjamin CM Fung, Philippe Charland, and Mourad Deb-
babi. Binclone: Detecting code clones in malware. In Software Security and Reliability
(SERE), 2014 Eighth International Conference on, pages 78–87. IEEE, 2014.

[61] Qian Feng, Rundong Zhou, Chengcheng Xu, Yao Cheng, Brian Testa, and Heng Yin.
Scalable graph-based bug search for firmware images. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security, pages 480–
491. ACM, 2016.

[62] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. Codebert: A pre-trained model
for programming and natural languages. arXiv preprint arXiv:2002.08155, 2020.

[63] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. Codebert: A pre-
trained model for programming and natural languages. In Trevor Cohn, Yulan He,
and Yang Liu, editors, Findings of the Association for Computational Linguistics:
EMNLP 2020, Online Event, 16-20 November 2020, volume EMNLP 2020 of Findings
of ACL, pages 1536–1547. Association for Computational Linguistics, 2020.

[64] F. Fouss, A. Pirotte, J. Renders, and M. Saerens. Random-walk computation of sim-
ilarities between nodes of a graph with application to collaborative recommendation.
IEEE Transactions on Knowledge and Data Engineering, 19(3):355–369, March 2007.

[65] Cheng Fu, Huili Chen, Haolan Liu, Xinyun Chen, Yuandong Tian, Farinaz Koushan-
far, and Jishen Zhao. Coda: An end-to-end neural program decompiler. In Advances
in Neural Information Processing Systems, pages 3703–3714, 2019.

[66] Philip Gage. A new algorithm for data compression. The C Users Journal, 12(2):23–
38, 1994.

[67] Debin Gao, Michael K Reiter, and Dawn Song. Binhunt: Automatically finding
semantic differences in binary programs. In International Conference on Information
and Communications Security, pages 238–255. Springer, 2008.

[68] Lian Gao, Yu Qu, Sheng Yu, Yue Duan, and Heng Yin. Sigmadiff: Semantics-aware
deep graph matching for pseudocode diffing. Proceedings 2024 Network and Dis-
tributed System Security Symposium, 2024.

[69] Tianyu Gao, Xingcheng Yao, and Danqi Chen. Simcse: Simple contrastive learning
of sentence embeddings. arXiv preprint arXiv:2104.08821, 2021.

[70] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In
Advances in neural information processing systems, pages 2672–2680, 2014.

[71] Palash Goyal and Emilio Ferrara. Graph embedding techniques, applications, and
performance: A survey. Knowledge-Based Systems, 151:78–94, 2018.

151

[72] Claudia Greco, Michele Ianni, Antonella Guzzo, and Giancarlo Fortino. Enabling
obfuscation detection in binary software through explainable ai. IEEE Transactions
on Emerging Topics in Computing, 2024.

[73] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks.
In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 855–864. ACM, 2016.

[74] Yeming Gu, Hui Shu, and Fan Hu. Uniasm: Binary code similarity detection without
fine-tuning. arXiv preprint arXiv:2211.01144, 2022.

[75] Yi Gui, Yao Wan, Hongyu Zhang, Huifang Huang, Yulei Sui, Guandong Xu, Zhiyuan
Shao, and Hai Jin. Cross-language binary-source code matching with intermediate
representations. In 2022 IEEE International Conference on Software Analysis, Evo-
lution and Reengineering (SANER), pages 601–612. IEEE, 2022.

[76] Yi Gui, Yao Wan, Hongyu Zhang, Huifang Huang, Yulei Sui, Guandong Xu, Zhiyuan
Shao, and Hai Jin. Cross-language binary-source code matching with intermediate
representations. In 2022 IEEE International Conference on Software Analysis, Evo-
lution and Reengineering (SANER), pages 601–612, 2022.

[77] Wenbo Guo, Dongliang Mu, Xinyu Xing, Min Du, and Dawn Song. {DEEPVSA}:
Facilitating value-set analysis with deep learning for postmortem program analysis.
In 28th {USENIX} Security Symposium ({USENIX} Security 19), pages 1787–1804,
2019.

[78] Wenbo Guo, Dongliang Mu, Xinyu Xing, Min Du, and Dawn Song. Deepvsa: Fa-
cilitating value-set analysis with deep learning for postmortem program analysis. In
USENIX Security Symposium, pages 1787–1804, 2019.

[79] Wenbo Guo, Dongliang Mu, Xinyu Xing, Min Du, and Dawn Song. DEEPVSA:
Facilitating value-set analysis with deep learning for postmortem program analysis.
In 28th USENIX Security Symposium (USENIX Security 19), pages 1787–1804, Santa
Clara, CA, August 2019. USENIX Association.

[80] Leonardo Gutiérrez-Gómez and Jean-Charles Delvenne. Unsupervised network em-
beddings with node identity awareness. Applied Network Science, 4(1):1–21, 2019.

[81] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction by learning
an invariant mapping. In 2006 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’06), volume 2, pages 1735–1742. IEEE, 2006.

[82] Jacob A Harer, Louis Y Kim, Rebecca L Russell, Onur Ozdemir, Leonard R Kosta,
Akshay Rangamani, Lei H Hamilton, Gabriel I Centeno, Jonathan R Key, Paul M
Ellingwood, et al. Automated software vulnerability detection with machine learning.
arXiv preprint arXiv:1803.04497, 2018.

152

[83] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick.
Masked autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 16000–16009, 2022.

[84] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.

[85] Xu He, Shu Wang, Yunlong Xing, Pengbin Feng, Haining Wang, Qi Li, Songqing Chen,
and Kun Sun. Binprov: Binary code provenance identification without disassembly. In
Proceedings of the 25th International Symposium on Research in Attacks, Intrusions
and Defenses, pages 350–363, 2022.

[86] Mark Heimann, Haoming Shen, Tara Safavi, and Danai Koutra. Regal: Representa-
tion learning-based graph alignment. In Proceedings of the 27th ACM International
Conference on Information and Knowledge Management, pages 117–126. ACM, 2018.

[87] Vincent J Hellendoorn, Christian Bird, Earl T Barr, and Miltiadis Allamanis. Deep
learning type inference. In Proceedings of the 2018 26th acm joint meeting on euro-
pean software engineering conference and symposium on the foundations of software
engineering, pages 152–162, 2018.

[88] Abram Hindle, Earl T Barr, Zhendong Su, Mark Gabel, and Premkumar Devanbu.
On the naturalness of software. In 2012 34th International Conference on Software
Engineering (ICSE), pages 837–847. IEEE, 2012.

[89] He Huang, Amr M Youssef, and Mourad Debbabi. Binsequence: fast, accurate and
scalable binary code reuse detection. In Proceedings of the 2017 ACM on Asia Con-
ference on Computer and Communications Security, pages 155–166. ACM, 2017.

[90] Ren-Hung Hwang, Min-Chun Peng, Chien-Wei Huang, Po-Ching Lin, and Van-Linh
Nguyen. An unsupervised deep learning model for early network traffic anomaly
detection. IEEE Access, 8:30387–30399, 2020.

[91] Félix Iglesias and Tanja Zseby. Analysis of network traffic features for anomaly de-
tection. Machine Learning, 101:59–84, 2015.

[92] Maliheh Izadi, Roberta Gismondi, and Georgios Gousios. Codefill: Multi-token code
completion by jointly learning from structure and naming sequences. In Proceedings
of the 44th International Conference on Software Engineering, pages 401–412, 2022.

[93] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-
softmax, 2016.

[94] Ling Jiang, Junwen An, Huihui Huang, Qiyi Tang, Sen Nie, Shi Wu, and Yuqun
Zhang. Binaryai: Binary software composition analysis via intelligent binary source
code matching. In Proceedings of the IEEE/ACM 46th International Conference on
Software Engineering, pages 1–13, 2024.

153

[95] Shuai Jiang, Cai Fu, Yekui Qian, Shuai He, Jianqiang Lv, and Lansheng Han. Ifattn:
Binary code similarity analysis based on interpretable features with attention. Com-
puters & Security, 120:102804, 2022.

[96] Xin Jin, Kexin Pei, Jun Yeon Won, and Zhiqiang Lin. Symlm: Predicting function
names in stripped binaries via context-sensitive execution-aware code embeddings. In
Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications
Security, pages 1631–1645, 2022.

[97] Yu Jin and Joseph F. JáJá. Learning graph-level representations with gated recurrent
neural networks. CoRR, abs/1805.07683, 2018.

[98] Ian Jolliffe. Principal component analysis. In International encyclopedia of statistical
science, pages 1094–1096. Springer, 2011.

[99] Pascal Junod, Julien Rinaldini, Johan Wehrli, and Julie Michielin. Obfuscator-LLVM
– software protection for the masses. In Brecht Wyseur, editor, Proceedings of the
IEEE/ACM 1st International Workshop on Software Protection, SPRO’15, Firenze,
Italy, May 19th, 2015, pages 3–9. IEEE, 2015.

[100] Yuichiro Kanzaki, Akito Monden, and Christian Collberg. Code artificiality: A metric
for the code stealth based on an n-gram model. In 2015 IEEE/ACM 1st International
Workshop on Software Protection, pages 31–37, 2015.

[101] Rafael-Michael Karampatsis, Hlib Babii, Romain Robbes, Charles Sutton, and Andrea
Janes. Big code!= big vocabulary: Open-vocabulary models for source code. In 2020
IEEE/ACM 42nd International Conference on Software Engineering (ICSE), pages
1073–1085. IEEE, 2020.

[102] Ashraf M Kibriya, Eibe Frank, Bernhard Pfahringer, and Geoffrey Holmes. Multino-
mial naive bayes for text categorization revisited. In AI 2004: Advances in Artificial
Intelligence: 17th Australian Joint Conference on Artificial Intelligence, Cairns, Aus-
tralia, December 4-6, 2004. Proceedings 17, pages 488–499. Springer, 2005.

[103] Dongkwan Kim, Eunsoo Kim, Sang Kil Cha, Sooel Son, and Yongdae Kim. Revisiting
binary code similarity analysis using interpretable feature engineering and lessons
learned. IEEE Transactions on Software Engineering, 49(4):1661–1682, 2022.

[104] Geunwoo Kim, Sanghyun Hong, Michael Franz, and Dokyung Song. Improving cross-
platform binary analysis using representation learning via graph alignment. In Pro-
ceedings of the 31st ACM SIGSOFT International Symposium on Software Testing
and Analysis, pages 151–163, 2022.

[105] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolu-
tional networks. arXiv preprint arXiv:1609.02907, 2016.

[106] Ryan Kiros, Yukun Zhu, Russ R Salakhutdinov, Richard Zemel, Raquel Urtasun,
Antonio Torralba, and Sanja Fidler. Skip-thought vectors. Advances in neural infor-
mation processing systems, 28:3294–3302, 2015.

154

[107] Sangjun Ko, Jusop Choi, and Hyoungshick Kim. Coat: Code obfuscation tool to
evaluate the performance of code plagiarism detection tools. In 2017 International
conference on software security and assurance (ICSSA), pages 32–37. IEEE, 2017.

[108] Hyungjoon Koo, Soyeon Park, Daejin Choi, and Taesoo Kim. Semantic-aware binary
code representation with bert. arXiv preprint arXiv:2106.05478, 2021.

[109] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for
recommender systems. Computer, (8):30–37, 2009.

[110] Harold W Kuhn. The hungarian method for the assignment problem. Naval Research
Logistics (NRL), 2(1-2):83–97, 1955.

[111] Nathaniel Lageman, Eric D Kilmer, Robert J Walls, and Patrick D McDaniel. Bindnn:
Resilient function matching using deep learning. In International Conference on Se-
curity and Privacy in Communication Systems, pages 517–537. Springer, 2016.

[112] Nathaniel Lageman, Eric D. Kilmer, Robert J. Walls, and Patrick Drew McDaniel.
Bindnn: Resilient function matching using deep learning. In Robert Deng, Vinod Yeg-
neswaran, Jian Weng, and Kui Ren, editors, Security and Privacy in Communication
Networks -12th International Conference, SecureComm 2016, Proceedings, Lecture
Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunica-
tions Engineering, LNICST, pages 517–537, Germany, 1 2017. Springer Verlag.

[113] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma,
and Radu Soricut. Albert: A lite bert for self-supervised learning of language repre-
sentations. In International Conference on Learning Representations, 2020.

[114] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma,
and Radu Soricut. Albert: A lite bert for self-supervised learning of language repre-
sentations. In International Conference on Learning Representations, 2020.

[115] Quoc Le and Tomas Mikolov. Distributed representations of sentences and documents.
In International Conference on Machine Learning, pages 1188–1196, 2014.

[116] Quoc Le and Tomas Mikolov. Distributed representations of sentences and documents.
In International conference on machine learning, pages 1188–1196, 2014.

[117] Van-Hoang Le and Hongyu Zhang. Log-based anomaly detection with deep learning:
How far are we? In Proceedings of the 44th international conference on software
engineering, pages 1356–1367, 2022.

[118] Aodong Li, Chen Qiu, Marius Kloft, Padhraic Smyth, Maja Rudolph, and Stephan
Mandt. Zero-shot anomaly detection via batch normalization. Neural Information
Processing Systems NeurIPS, 36, 2024.

[119] Xuezixiang Li, Yu Qu, and Heng Yin. Palmtree: Learning an assembly language model
for instruction embedding. In Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security, pages 3236–3251, 2021.

155

[120] Yao Li, Weiyang Xu, Yong Tang, Xianya Mi, and Baosheng Wang. Semhunt: Iden-
tifying vulnerability type with double validation in binary code. In SEKE, pages
491–494, 2017.

[121] Yi Li, Shaohua Wang, Tien N Nguyen, and Son Van Nguyen. Improving bug detection
via context-based code representation learning and attention-based neural networks.
Proceedings of the ACM on Programming Languages, 3(OOPSLA):1–30, 2019.

[122] Yujia Li, Chenjie Gu, Thomas Dullien, Oriol Vinyals, and Pushmeet Kohli. Graph
matching networks for learning the similarity of graph structured objects. In Inter-
national conference on machine learning, pages 3835–3845. PMLR, 2019.

[123] Bang Liu, Ting Zhang, Di Niu, Jinghong Lin, Kunfeng Lai, and Yu Xu. Matching long
text documents via graph convolutional networks. arXiv preprint arXiv:1802.07459,
2018.

[124] Bingchang Liu, Wei Huo, Chao Zhang, Wenchao Li, Feng Li, Aihua Piao, and Wei
Zou. αDiff: Cross-version binary code similarity detection with dnn. In Proceedings of
the 33rd ACM/IEEE International Conference on Automated Software Engineering,
ASE 2018, 2018.

[125] Bingchang Liu, Wei Huo, Chao Zhang, Wenchao Li, Feng Li, Aihua Piao, and Wei
Zou. αdiff: cross-version binary code similarity detection with dnn. In Proceedings of
the 33rd ACM/IEEE International Conference on Automated Software Engineering,
pages 667–678. ACM, 2018.

[126] Guangming Liu, Xin Zhou, Jianmin Pang, Feng Yue, Wenfu Liu, and Junchao Wang.
Codeformer: A gnn-nested transformer model for binary code similarity detection.
Electronics, 12(7):1722, 2023.

[127] Yilun Liu, Shimin Tao, Weibin Meng, Feiyu Yao, Xiaofeng Zhao, and Hao Yang.
Logprompt: Prompt engineering towards zero-shot and interpretable log analysis.
In Proceedings of the 2024 IEEE/ACM 46th International Conference on Software
Engineering: Companion Proceedings, pages 364–365, 2024.

[128] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly
optimized bert pretraining approach. arXiv preprint arXiv:1907.11692, 2019.

[129] Farhana Ferdousi Liza and Marek Grześ. An improved crowdsourcing based evalua-
tion technique for word embedding methods. In Proceedings of the 1st Workshop on
Evaluating Vector-Space Representations for NLP, pages 55–61, 2016.

[130] Lajanugen Logeswaran and Honglak Lee. An efficient framework for learning sentence
representations. CoRR, abs/1803.02893, 2018.

[131] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco,
Colin Clement, Dawn Drain, Daxin Jiang, Duyu Tang, et al. Codexglue: A ma-
chine learning benchmark dataset for code understanding and generation. CoRR,
abs/2102.04664, 2021.

156

[132] Lannan Luo, Jiang Ming, Dinghao Wu, Peng Liu, and Sencun Zhu. Semantics-based
obfuscation-resilient binary code similarity comparison with applications to software
plagiarism detection. In Proceedings of the 22nd ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering, pages 389–400. ACM, 2014.

[133] Zhenhao Luo, Pengfei Wang, Baosheng Wang, Yong Tang, Wei Xie, Xu Zhou, Danjun
Liu, and Kai Lu. Vulhawk: Cross-architecture vulnerability detection with entropy-
based binary code search. The Network and Distributed System Security Symposium
(NDSS), 2023.

[134] Robert Lyda and James Hamrock. Using entropy analysis to find encrypted and
packed malware. IEEE Security & Privacy, 5(2):40–45, 2007.

[135] Matias Madou, Bertrand Anckaert, Bruno De Bus, Koen De Bosschere, Jan Cappaert,
and Bart Preneel. On the effectiveness of source code transformations for binary
obfuscation. In Proceedings of the International Conference on Software Engineering
Research and Practice (SERP06), pages 527–533. CSREA Press, 2006.

[136] Andreas Madsen and Alexander Rosenberg Johansen. Neural arithmetic units. In
International Conference on Learning Representations, 2020.

[137] Alwin Maier, Hugo Gascon, Christian Wressnegger, and Konrad Rieck. Typeminer:
Recovering types in binary programs using machine learning. In Detection of In-
trusions and Malware, and Vulnerability Assessment: 16th International Conference,
DIMVA 2019, Gothenburg, Sweden, June 19–20, 2019, Proceedings 16, pages 288–308.
Springer, 2019.

[138] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to
Information Retrieval. Cambridge University Press, Cambridge, UK, 2008.

[139] Andrea Marcelli, Mariano Graziano, Xabier Ugarte-Pedrero, Yanick Fratantonio, Mo-
hamad Mansouri, and Davide Balzarotti. How machine learning is solving the binary
function similarity problem. In 31st USENIX Security Symposium (USENIX Security
22), pages 2099–2116, 2022.

[140] Luca Massarelli, Giuseppe A Di Luna, Fabio Petroni, Leonardo Querzoni, and Roberto
Baldoni. Investigating graph embedding neural networks with unsupervised features
extraction for binary analysis. In Proceedings of the 2nd Workshop on Binary Analysis
Research (BAR), pages 1–11, 2019.

[141] Luca Massarelli, Giuseppe Antonio Di Luna, Fabio Petroni, Roberto Baldoni, and
Leonardo Querzoni. Safe: Self-attentive function embeddings for binary similarity. In
International Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment, pages 309–329. Springer, 2019.

[142] Michael Matz, Jan Hubicka, Andreas Jaeger, and Mark Mitchell. System v application
binary interface. AMD64 Architecture Processor Supplement, Draft v0, 99, 2013.

157

[143] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of
word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[144] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed
representations of words and phrases and their compositionality. In Advances in neural
information processing systems, pages 3111–3119. 2013.

[145] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed
representations of words and phrases and their compositionality. In Advances in neural
information processing systems, pages 3111–3119, 2013.

[146] Jiang Ming, Meng Pan, and Debin Gao. ibinhunt: Binary hunting with inter-
procedural control flow. In International Conference on Information Security and
Cryptology, pages 92–109. Springer, 2012.

[147] Jiang Ming, Dongpeng Xu, Yufei Jiang, and Dinghao Wu. Binsim: Trace-based
semantic binary diffing via system call sliced segment equivalence checking. In Pro-
ceedings of the 26th USENIX Security Symposium, 2017.

[148] Jiang Ming, Dongpeng Xu, and Dinghao Wu. Memoized semantics-based binary diff-
ing with application to malware lineage inference. In IFIP International Information
Security Conference, pages 416–430. Springer, 2015.

[149] O. Mirzaei, J.M. de Fuentes, J. Tapiador, and L. Gonzalez-Manzano. Androdet: An
adaptive android obfuscation detector. Future Generation Computer Systems, 90:240–
261, 2019.

[150] Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. Convolutional neural networks
over tree structures for programming language processing. In Proceedings of the AAAI
conference on artificial intelligence, volume 30, 2016.

[151] Eugene W Myers. Ano (nd) difference algorithm and its variations. Algorithmica,
1(1-4):251–266, 1986.

[152] Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavyweight dy-
namic binary instrumentation. In ACM Sigplan notices, volume 42, pages 89–100.
ACM, 2007.

[153] Changan Niu, Chuanyi Li, Vincent Ng, David Lo, and Bin Luo. Fair: Flow type-
aware pre-training of compiler intermediate representations. In Proceedings of the 46th
IEEE/ACM International Conference on Software Engineering, pages 1–12, 2024.

[154] ORACLE. x86 Assembly Language Reference Manual. https://docs.oracle.com/

cd/E26502_01/html/E28388/ennbz.html, 2019.

[155] Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. Asymmetric tran-
sitivity preserving graph embedding. In Proceedings of the 22nd ACM SIGKDD in-
ternational conference on Knowledge discovery and data mining, pages 1105–1114.
ACM, 2016.

158

https://docs.oracle.com/cd/E26502_01/html/E28388/ennbz.html
https://docs.oracle.com/cd/E26502_01/html/E28388/ennbz.html

[156] Jonathan Pan, Wong Swee Liang, and Yuan Yidi. Raglog: Log anomaly detection
using retrieval augmented generation. In 2024 IEEE World Forum on Public Safety
Technology (WFPST), pages 169–174. IEEE, 2024.

[157] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch:
An imperative style, high-performance deep learning library. In Advances in neural
information processing systems, pages 8026–8037, 2019.

[158] K. Pei, Z. Xuan, J. Yang, S. Jana, and B. Ray. Learning approximate execution
semantics from traces for binary function similarity. IEEE Transactions on Software
Engineering, 49(04):2776–2790, apr 2023.

[159] Kexin Pei, Jonas Guan, Matthew Broughton, Zhongtian Chen, Songchen Yao, David
Williams-King, Vikas Ummadisetty, Junfeng Yang, Baishakhi Ray, and Suman Jana.
Stateformer: Fine-grained type recovery from binaries using generative state model-
ing. In Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, pages 690–
702, 2021.

[160] Kexin Pei, Jonas Guan, David Williams King, Junfeng Yang, and Suman Jana. Xda:
Accurate, robust disassembly with transfer learning. In Proceedings of the 2021 Net-
work and Distributed System Security Symposium (NDSS), 2021.

[161] Kexin Pei, Dongdong She, Michael Wang, Scott Geng, Zhou Xuan, Yaniv David,
Junfeng Yang, Suman Jana, and Baishakhi Ray. Neudep: neural binary memory
dependence analysis. In Proceedings of the 30th ACM Joint European Software En-
gineering Conference and Symposium on the Foundations of Software Engineering,
pages 747–759, 2022.

[162] Dinglan Peng, Shuxin Zheng, Yatao Li, Guolin Ke, Di He, and Tie-Yan Liu. How
could neural networks understand programs? In International Conference on Machine
Learning, pages 8476–8486. PMLR, 2021.

[163] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social
representations. In Proceedings of the 20th ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 701–710. ACM, 2014.

[164] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social
representations. In Proceedings of the 20th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’14, pages 701–710, New York, NY,
USA, 2014. ACM.

[165] Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark,
Kenton Lee, and Luke Zettlemoyer. Deep contextualized word representations. In
Proceedings of NAACL-HLT, pages 2227–2237, 2018.

159

[166] Jannik Pewny, Behrad Garmany, Robert Gawlik, Christian Rossow, and Thorsten
Holz. Cross-architecture bug search in binary executables. In Security and Privacy
(SP), 2015 IEEE Symposium on, pages 709–724. IEEE, 2015.

[167] Raul Puri and Bryan Catanzaro. Zero-shot text classification with generative language
models. arXiv preprint arXiv:1912.10165, 2019.

[168] Xipeng Qiu, Tianxiang Sun, Yige Xu, Yunfan Shao, Ning Dai, and Xuanjing Huang.
Pre-trained models for natural language processing: A survey. volume 63, pages
1872–1897, 2020.

[169] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improv-
ing language understanding by generative pre-training. URL https://s3-us-west-
2. amazonaws. com/openai-assets/researchcovers/languageunsupervised/language un-
derstanding paper. pdf, 2018.

[170] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever.
Improving language understanding by generative pre-training (2018).
URL http://openai-assets.s3.amazonaws.com/research-covers/language-
unsupervised/language understanding paper.pdf, 2018.

[171] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,
et al. Language models are unsupervised multitask learners. OpenAI blog, 1(8):9,
2019.

[172] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,
et al. Language models are unsupervised multitask learners. OpenAI blog, 1(8):9,
2019.

[173] Edward Raff, Jon Barker, Jared Sylvester, Robert Brandon, Bryan Catanzaro, and
Charles Nicholas. Malware Detection by Eating a Whole EXE. In AAAI-2018 Work-
shop on Artificial Intelligence for Cyber Security, 2018.

[174] Kaspar Riesen and Horst Bunke. Approximate graph edit distance computation by
means of bipartite graph matching. Image and Vision computing, 27(7):950–959,
2009.

[175] Lukas Ruff, Jacob R Kauffmann, Robert A Vandermeulen, Grégoire Montavon, Wo-
jciech Samek, Marius Kloft, Thomas G Dietterich, and Klaus-Robert Müller. A
unifying review of deep and shallow anomaly detection. Proceedings of the IEEE,
109(5):756–795, 2021.

[176] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning represen-
tations by back-propagating errors. nature, 323(6088):533–536, 1986.

[177] Andreas Sæbjørnsen, Jeremiah Willcock, Thomas Panas, Daniel Quinlan, and Zhen-
dong Su. Detecting code clones in binary executables. In Proceedings of the eighteenth
international symposium on Software testing and analysis, pages 117–128. ACM, 2009.

160

[178] Aleieldin Salem and Sebastian Banescu. Metadata recovery from obfuscated pro-
grams using machine learning. In Proceedings of the 6th Workshop on Software Secu-
rity, Protection, and Reverse Engineering, SSPREW ’16, New York, NY, USA, 2016.
Association for Computing Machinery.

[179] Aleieldin Salem and Sebastian Banescu. Metadata recovery from obfuscated pro-
grams using machine learning. In Proceedings of the 6th Workshop on Software Secu-
rity, Protection, and Reverse Engineering, SSPREW ’16, New York, NY, USA, 2016.
Association for Computing Machinery.

[180] Atsushi Sato and Keiji Yamada. Generalized learning vector quantization. Advances
in neural information processing systems, 8, 1995.

[181] Sebastian Schrittwieser, Stefan Katzenbeisser, Johannes Kinder, Georg Merzdovnik,
and Edgar Weippl. Protecting software through obfuscation: Can it keep pace with
progress in code analysis? Acm computing surveys (csur), 49(1):1–37, 2016.

[182] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embed-
ding for face recognition and clustering. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 815–823, 2015.

[183] Eli Schwartz, Assaf Arbelle, Leonid Karlinsky, Sivan Harary, Florian Scheidegger,
Sivan Doveh, and Raja Giryes. Maeday: Mae for few-and zero-shot anomaly-detection.
Computer Vision and Image Understanding, 241:103958, 2024.

[184] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of
rare words with subword units. In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pages 1715–
1725, 2016.

[185] Eui Chul Richard Shin, Dawn Song, and Reza Moazzezi. Recognizing functions in
binaries with neural networks. In 24th {USENIX} Security Symposium ({USENIX}
Security 15), pages 611–626, 2015.

[186] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario Polino,
Audrey Dutcher, Jessie Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel,
and Giovanni Vigna. Sok: (state of) the art of war: Offensive techniques in binary
analysis. 2016.

[187] Kihyuk Sohn. Improved deep metric learning with multi-class n-pair loss objective.
Advances in neural information processing systems, 29, 2016.

[188] Wei Song, Xuezixiang Li, Sadia Afroz, Deepali Garg, Dmitry Kuznetsov, and Heng
Yin. Mab-malware: A reinforcement learning framework for attacking static malware
classifiers. arXiv preprint arXiv:2003.03100, 2020.

[189] Karen Sparck Jones. A statistical interpretation of term specificity and its application
in retrieval. Journal of documentation, 28(1):11–21, 1972.

161

[190] Jianlin Su. Simbert: Integrating retrieval and generation into bert. Technical report,
2020.

[191] Li Sun, Steven Versteeg, Serdar Boztaş, and Trevor Yann. Pattern recognition tech-
niques for the classification of malware packers. In Ron Steinfeld and Philip Hawkes,
editors, Information Security and Privacy, pages 370–390, Berlin, Heidelberg, 2010.
Springer Berlin Heidelberg.

[192] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with
neural networks. Advances in neural information processing systems, 27:3104–3112,
2014.

[193] Ke Tang, Zheng Shan, Fudong Liu, Yizhao Huang, Rongbo Sun, Meng Qiao, Chunyan
Zhang, Jue Wang, and Hairen Gui. Srobr: Semantic representation of obfuscation-
resilient binary code. Wireless Communications and Mobile Computing, 2022, 2022.

[194] Zhenzhou Tian, Hengchao Mao, Yaqian Huang, Jie Tian, and Jinrui Li. Fine-grained
obfuscation scheme recognition on binary code. In Pavel Gladyshev, Sanjay Goel,
Joshua James, George Markowsky, and Daryl Johnson, editors, Digital Forensics and
Cyber Crime, pages 215–228, Cham, 2022. Springer International Publishing.

[195] Ramtine Tofighi-Shirazi, Irina Măriuca Asăvoae, and Philippe Elbaz-Vincent. Fine-
grained static detection of obfuscation transforms using ensemble-learning and seman-
tic reasoning. In Proceedings of the 9th Workshop on Software Security, Protection,
and Reverse Engineering, SSPREW9 ’19, New York, NY, USA, 2019. Association for
Computing Machinery.

[196] Xabier Ugarte-Pedrero, Davide Balzarotti, Igor Santos, and Pablo G Bringas. Sok:
Deep packer inspection: A longitudinal study of the complexity of run-time packers.
In 2015 IEEE Symposium on Security and Privacy, pages 659–673. IEEE, 2015.

[197] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in
neural information processing systems, 30, 2017.

[198] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proceed-
ings of the 31st International Conference on Neural Information Processing Systems,
NIPS’17, page 6000–6010, Red Hook, NY, USA, 2017. Curran Associates Inc.

[199] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio,
and Yoshua Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903,
2017.

[200] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R.
Bowman. GLUE: A multi-task benchmark and analysis platform for natural language
understanding. In International Conference on Learning Representations, 2019.

162

[201] Daixin Wang, Peng Cui, and Wenwu Zhu. Structural deep network embedding. In
Proceedings of the 22nd ACM SIGKDD international conference on Knowledge dis-
covery and data mining, pages 1225–1234. ACM, 2016.

[202] Hao Wang, Wenjie Qu, Gilad Katz, Wenyu Zhu, Zeyu Gao, Han Qiu, Jianwei Zhuge,
and Chao Zhang. jtrans: jump-aware transformer for binary code similarity detection.
In Proceedings of the 31st ACM SIGSOFT International Symposium on Software
Testing and Analysis, pages 1–13, 2022.

[203] Shuai Wang and Dinghao Wu. In-memory fuzzing for binary code similarity analy-
sis. In Proceedings of the 32nd IEEE/ACM International Conference on Automated
Software Engineering, pages 319–330. IEEE Press, 2017.

[204] Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH Hoi. Codet5: Identifier-aware
unified pre-trained encoder-decoder models for code understanding and generation.
arXiv preprint arXiv:2109.00859, 2021.

[205] Dominik Wermke, Nicolas Huaman, Yasemin Acar, Bradley Reaves, Patrick Traynor,
and Sascha Fahl. A large scale investigation of obfuscation use in google play. In
Proceedings of the 34th annual computer security applications conference, pages 222–
235, 2018.

[206] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolf-
gang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s
neural machine translation system: Bridging the gap between human and machine
translation. arXiv preprint arXiv:1609.08144, 2016.

[207] Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song, and Dawn Song. Neural
network-based graph embedding for cross-platform binary code similarity detection. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, pages 363–376, 2017.

[208] Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song, and Dawn Song. Neural
network-based graph embedding for cross-platform binary code similarity detection. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, pages 363–376. ACM, 2017.

[209] Zhengzi Xu, Bihuan Chen, Mahinthan Chandramohan, Yang Liu, and Fu Song. Spain:
security patch analysis for binaries towards understanding the pain and pills. In
Proceedings of the 39th International Conference on Software Engineering, pages 462–
472. IEEE Press, 2017.

[210] Hongfa Xue, Shaowen Sun, Guru Venkataramani, and Tian Lan. Machine learning-
based analysis of program binaries: A comprehensive study. IEEE Access, 7:65889–
65912, 2019.

[211] Cheng Yang, Zhiyuan Liu, Deli Zhao, Maosong Sun, and Edward Y Chang. Network
representation learning with rich text information. In IJCAI, pages 2111–2117, 2015.

163

[212] Ilsun You and Kangbin Yim. Malware obfuscation techniques: A brief survey. In
2010 International conference on broadband, wireless computing, communication and
applications, pages 297–300. IEEE, 2010.

[213] Lee Young Jun, Choi Sang-Hoon, Kim Chulwoo, Lim Seung-Ho, and Park Ki-Woong.
Learning binary code with deep learning to detect software weakness. In KSII The
9th International Conference on Internet (ICONI) 2017 Symposium, 2017.

[214] Hsiang-Fu Yu, Cho-Jui Hsieh, Si Si, and Inderjit S Dhillon. Parallel matrix factoriza-
tion for recommender systems. Knowledge and Information Systems, 41(3):793–819,
2014.

[215] Sheng Yu, Yu Qu, Xunchao Hu, and Heng Yin. Deepdi: Learning a relational graph
convolutional network model on instructions for fast and accurate disassembly. In
31st USENIX Security Symposium (USENIX Security 22), pages 2709–2725, 2022.

[216] Zeping Yu, Rui Cao, Qiyi Tang, Sen Nie, Junzhou Huang, and Shi Wu. Order matters:
Semantic-aware neural networks for binary code similarity detection. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 34, pages 1145–1152, 2020.

[217] Zeping Yu, Wenxin Zheng, Jiaqi Wang, Qiyi Tang, Sen Nie, and Shi Wu. Codecmr:
Cross-modal retrieval for function-level binary source code matching. Advances in
Neural Information Processing Systems, 33:3872–3883, 2020.

[218] Jingqing Zhang, Piyawat Lertvittayakumjorn, and Yike Guo. Integrating semantic
knowledge to tackle zero-shot text classification. arXiv preprint arXiv:1903.12626,
2019.

[219] Yifan Zhang, Chen Huang, Yueke Zhang, Kevin Cao, Scott Thomas Andersen, Huajie
Shao, Kevin Leach, and Yu Huang. Combo: Pre-training representations of binary
code using contrastive learning. arXiv preprint arXiv:2210.05102, 2022.

[220] Yujie Zhao, Zhanyong Tang, Guixin Ye, Dongxu Peng, Dingyi Fang, Xiaojiang Chen,
and Zheng Wang. Semantics-aware obfuscation scheme prediction for binary. Com-
puters & Security, 99:102072, 2020.

[221] Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du, and Yang Liu. Devign:
Effective vulnerability identification by learning comprehensive program semantics
via graph neural networks. Advances in neural information processing systems, 32,
2019.

[222] W. Zhu, Z. Feng, Z. Zhang, J. Chen, Z. Ou, M. Yang, and C. Zhang. Callee: Recover-
ing call graphs for binaries with transfer and contrastive learning. In 2023 2023 IEEE
Symposium on Security and Privacy (SP) (SP), pages 2357–2374, Los Alamitos, CA,
USA, may 2023. IEEE Computer Society.

[223] Fei Zuo, Xiaopeng Li, Patrick Young, Lannan Luo, Qiang Zeng, and Zhexin Zhang.
Neural machine translation inspired binary code similarity comparison beyond func-
tion pairs. In 26th Annual Network and Distributed System Security Symposium,

164

NDSS 2019, San Diego, California, USA, February 24-27, 2019. The Internet Soci-
ety, 2019.

[224] Fei Zuo, Xiaopeng Li, Zhexin Zhang, Patrick Young, Lannan Luo, and Qiang Zeng.
Neural machine translation inspired binary code similarity comparison beyond func-
tion pairs. In NDSS, 2019.

165

	List of Figures
	List of Tables
	Introduction
	Thesis Statement

	Background
	Instruction Embedding
	Challenges in Learning-based Encoding
	Summary of Existing Approaches

	Assembly Language Models
	Architecture
	Pre-training Tasks
	Downtream Tasks

	Code Obfuscation Detection
	Obfuscators
	Existing Obfuscation Detection Techniques
	Challenges

	 Learning an Assembly Language Model for Instruction Embedding
	Introduction
	Design of PalmTree
	Overview
	Input Generation
	Tokenization
	Assembly Language Model

	Evaluation
	Evaluation Methodology
	Experimental Setup
	Intrinsic Evaluation
	Extrinsic Evaluation
	Runtime Efficiency
	Hyperparameter Selection

	Related Work
	Discussion
	Conclusion

	Evaluating Custom Transformers for Binary Analysis
	Introduction
	Evaluation Plan
	Models to be Evaluated
	Evaluation Setup
	Data Preparation
	Evaluating Pre-training Tasks
	Evaluating Downstream Tasks

	Evaluation Results
	Pre-training Tasks
	Downstream Tasks

	Discussion
	Our Suggestions

	Related Work
	Conclusion

	Learning an Assembly Language Model for Zero-Shot Obfuscation Detection
	Introduction
	Design
	Pre-processing
	Architecture
	0-Shot Obfuscation Detection
	Further improvement on Obfuscation Detection

	Evaluation
	Implementation
	Dataset Collection
	RQ1: How does ALMOND perform on known obfuscation methods?
	RQ2: How does ALMOND perform on previously unseen obfuscation methods?
	RQ3: How does ALMOND perform under different configurations?
	RQ4: How does ALMOND perform on real-world cases
	Efficiency

	Related Works
	Obfuscation Detection
	Language Model for Static Binary Analysis
	Zero-shot Classification and Anomaly Detection

	Discussion
	Conclusion

	Conclusions
	Future Work

	Bibliography

