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Abstract

Interactive Prediction and Planning for Autonomous Driving: from Algorithms to
Fundamental Aspects

by

Wei Zhan

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Masayoshi Tomizuka, Chair

Inevitably, autonomous vehicles need to interact with other road participants in a variety
of highly complex or critical driving scenarios. It is still an extremely challenging task even
for the forefront companies or institutes to enable autonomous vehicles to interactively pre-
dict the behavior of others, and plan safe and high-quality motions accordingly. The major
obstacles are not just originated from prediction and planning algorithms with insufficient
performances. Several fundamental problems in the fields of interactive prediction and plan-
ning still remain open, such as formulation, representation and evaluation of interactive
prediction methods, motion dataset with densely interactive driving behavior, as well as
interface of interactive prediction and planning algorithms.

The aforementioned fundamental aspects of interactive prediction and planning are addressed
in this dissertation along with various kinds of algorithms. First, generic environmental
representation for various scenarios with topological decomposition is constructed, and a
corresponding planning algorithm is designed by combining graph search and optimization.
Hard constraints in optimization-based planners are also incorporated into the training loss
of imitation learning so that the policy net can generate safe and feasible motions in highly
constrained scenarios. Unified problem formulation and motion representation are designed
for different paradigms of interactive predictors such as planning-based prediction (inverse
reinforcement learning), as well as probabilistic graphical models (hidden Markov model)
and deep neural networks (mixture density network), which are utilized for the predic-
tion/planning interface design and prediction benchmark. A framework combing decision
network and graph-search/optimization/sample-based planner is proposed to achieve a driv-
ing strategy which is defensive to potential violations of others, but not overly conservatively
to threats of low probabilities. Such driving strategy is achieved via experiments based on
the aforementioned interactive prediction and planning algorithms with proper interface
designed. These predictors are also evaluated from closed loop perspective considering plan-
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ning fatality when using the prediction results instead of pure data approximation metrics.
Finally, INTERACTION (INTERnational, Adversarial and Cooperative moTION) dataset
with highly interactive driving scenarios and behavior from international locations is con-
structed with interaction density metric defined to compare different datasets. The dataset
has been utilized for various behavior-related research areas such as prediction, planning,
imitation learning and behavior modeling, and is inspiring new research fields such as rep-
resentation learning, interaction extraction and scenario generation.
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Chapter 1

Introduction

1.1 Background and Challenges

Tremendous amount of research and implementation efforts has been devoted to au-
tonomous vehicles in the past decade. Successful demos or applications can be found in
specific scenarios. However, it is still an extremely challenging task for autonomous vehi-
cles to navigate themselves in dense urban scenarios with highly interactive behavior, even
for leading companies or research institutes in this field. In such scenarios, autonomous
vehicles need to accurately predict potential behavior of other road participants for each
possible future motion of themselves, and plan safe and high-quality motions accordingly.
Such interactive prediction and planning problem is one of the major blocks to enable fully
autonomy. In order to decompose the key components and aspects to support interactive
prediction and planning algorithms, we provide a block diagram in Fig. 1.1 (a) to illustrate
what we need to explore.

The lower part in Fig. 1.1 (a) corresponds to prediction. We need a motion dataset
with highly interactive scenarios and behavior, based on which the prediction algorithms
can be trained or designed. Then appropriate simplification of environmental and motion
representation are required to construct the input and output of the prediction algorithms,
as well as the ground truth from the motion dataset. Also, the problem formulation of the
prediction algorithms depends on which entities’ motions are contained in the input and
output. Then appropriate metrics are required to compare the ground truth and predicted
distribution and provide predictor evaluation. Moreover, we need to incorporate various
kinds of prior knowledge such as high-definition (HD) map, traffic rules and vehicle models,
to facilitate representation, evaluation and algorithm design.

The upper part in Fig. 1.1 (a) corresponds to planning. Similar to the prediction coun-
terparts, we need environmental representation to construct the safety constraints and cost
of the planning algorithms, as well as metrics for planner evaluation. More importantly, ap-
propriate interface for interactive prediction and planning is needed. The predictor should
be aware of potential planned motions, while the planner needs to obtain the level of threat
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Figure 1.1: Fundamental aspects for interactive prediction and planning.

and probabilities of potential future cases.
Comparing to lots of prediction and planning algorithm proposed, the aforementioned

fundamental aspects shown in Fig. 1.1 (b) are under-explored by researchers. In this dis-
sertation, therefore, we would like to provide our answers to the following fundamental
questions.

• What kind of motion data is required for interactive prediction and planning? How
do we construct a highly interactive motion dataset? How do we measure interaction
density in a motion dataset?

• What is the problem formulation to construct a unified framework for different paradigms
of interactive prediction algorithms, such as planning-based prediction, as well as pre-
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dictors based on probabilistic graphical models and neural networks?

• What are the appropriate motion representation for the ground truth of predictor eval-
uation? Is there a generic environmental representation for different kinds of scenarios
by decomposing the topological elements of interaction?

• What are appropriate metrics for predictor evaluation? Is there any difference when
evaluating predictors from data approximation perspective and potential fatality per-
spective?

• Is there an interface for interactive prediction and planning, which can incorporate
different paradigms of predictors, as well as decision-maker and planner under uncer-
tainty? If so, how to design the interface and the framework for decision and planning?

1.2 Dissertation Structure and Contributions

In order to answer the questions listed above, we need several building blocks, including
deterministic planning, as well as decision and planning under uncertainty. Then in-depth
discussions on the aforementioned fundamental problems will be provided. We will briefly
introduce the dissertation structure in this section, see Fig. 1.2.

Part I Deterministic Planning

Deterministic motion planning is the most basic but essential part. It generates motions
for an autonomous vehicle given deterministic future trajectories of other road participants.
Regardless of the complexity of the prediction and planning problems, it is always necessary
to have a planner which can generate safe and high-quality motions in various scenarios with
relatively long horizon in real time. In this part, we will answer the following two questions.

• What is a generic environmental representation for various scenarios and how to utilize
the representation to construct a planner with fast computation, long horizon and
guarantees on safety and feasibility?

• How do we incorporate hard constraints in an optimization-based planner into the
training of imitation learning, so that the trained policy can generate safe and feasible
motions in highly constrained scenarios?

Chapter 2

Conventional layered planning architecture temporally partitions the spatiotemporal mo-
tion planning by the path and speed, which is not suitable for lane change and overtaking
scenarios with moving obstacles. In this chapter, we propose to spatially partition the motion
planning by longitudinal and lateral motions along the rough reference path in the Frenét
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Figure 1.2: Structure of the dissertation.

Frame, which makes it possible to create linearized safety constraints for each layer in a
variety of on-road driving scenarios. A generic environmental representation methodology
is proposed with three topological elements and corresponding longitudinal constraints to
compose all driving scenarios mentioned in this chapter according to the overlap between the
potential path of the autonomous vehicle and predicted path of other road users. Planners
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combining A* search and quadratic programming (QP) are designed to plan both rough
long-term longitudinal motions and short-term trajectories to exploit the advantages of both
search-based and optimization-based methods. Limits of vehicle kinematics and dynamics
are considered in the planners to handle extreme cases. Simulation results show that the pro-
posed framework can plan collision-free motions with high driving quality under complicated
scenarios and emergency situations.

Chapter 3

Imitation learning has great potential to learn sophisticated driving policy under compli-
cated interaction between human drivers. However, it is hard for policy networks to satisfy
safety and feasibility constraints, which is not a challenging task for conventional motion
generation methods, such as optimization-based approach. In this chapter, we propose Con-
strained Policy Net (CPN), which can learn safe and feasible driving policy from arbitrary
inequality-constrained optimization-based expert planners. Instead of supervised learning
with L2 norm as the loss, we incorporate the domain knowledge of the expert planner di-
rectly into the training loss of the policy net by applying barrier functions to the safety and
feasibility constraints of the optimization problem. An exemplar scenario with obstacles on
both sides is used to implement the proposed CPN. Test results demonstrate that the policy
net can learn to generate motions near boundaries of safety and feasibility constraints to
achieve high driving quality as the baseline optimization while the constraints are satisfied.

Part II Decision and Planning under Uncertainty

With satisfactory deterministic planners in Part I, we go one step further to design
decision making and motion planning framework and algorithms under uncertainty from
perception and prediction modules. Practically, the information we obtain perception and
prediction modules are probabilistic with uncertainties. We need to design appropriate
decision and planning framework to handle such uncertainties. We will answer the following
question in this part.

• How do we design a decision and planning framework to achieve a driving strategy,
which is defensive to potential violations of ours, but not overcautious to fake threats
with low probability?

Chapter 4

From the driving strategy point of view, a major challenge for autonomous vehicles in
urban environment is to behave defensively to potential dangers, yet to not overreact to
threats with low probability. As it is overwhelming to program the action rules case-by-
case, a unified planning framework under uncertainty is proposed in this chapter, which
achieves a non-conservatively defensive strategy (NCDS) in various kinds of scenarios for
urban autonomous driving. First, uncertainties in urban scenarios are simplified to two
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probabilistic cases, namely passing and yielding. Two-way-stop intersection is used as an
exemplar scenario to illustrate the derivation of probabilities for different intentions of others
via a logistic regression model. Then a deterministic planner is designed as the baseline.
Also, a safe set is defined, which considers both current and preview safety. The planning
framework under uncertainty is then proposed, in which safety is guaranteed and overcautious
behavior is prevented. Finally, the proposed planning framework is tested by simulation in
the exemplar scenario, which demonstrates that an NCDS can be realistically achieved by
employing the proposed framework.

Chapter 5

In this chapter, we first illustrate the essence of the proposed non-conservatively defensive
strategy (NCDS), which is a combination of decision network and arbitrary motion planner
with cost and constraints. Then we provide the geometrical intuition of the proposed NCDS
via showing how the cost maps are changed by the probabilities in the space of augmented
decision variables. Then the NCDS is extended to incorporate graph-search-based planner
and sample-based planner so that real-time computation can be achieved. We also utilize
a dynamic Bayesian network (DBN) to provide predictions and corresponding probabilities.
Experiments on real vehicles with both of the planners are conducted with driving scenarios
and vehicle motions from real world, showing the effectiveness of the proposed strategy in
the integrated decision and planning framework.

Part III Interactive Prediction and Planning

Based on the efforts on deterministic planning in Part I, as well as decision and planning
under uncertainty in Part II, we dive into interactive prediction and planning in this part.
The core of this part is to answer “what if the planner takes a specific action” in the prediction
module, and enable the planner to generate desirable motions accordingly in an interactive
way. The following problems are addressed in this part.

• What are the problem formulations for prediction algorithms, and how to unify the for-
mulation for different paradigms of interactive prediction algorithms, such as planning-
based prediction, as well as prediction based on probabilistic graphical models and
neural networks?

• What are the simplified motion representations for prediction, and which of them can
be considered as the ground truth?

• How do we design the interface to incorporate all the aforementioned paradigms of in-
teractive prediction algorithms, as well as interactive decision and planning framework
based on the NCDS we proposed?
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Chapter 6

Accurate interactive, probabilistic prediction for intention and motion of road users is
a key prerequisite to achieve safe and high-quality decision-making and motion planning
for autonomous driving. The evaluation of probabilistic prediction and its utilization for
planning highly rely on the problem formulation variation and motion representation simpli-
fication, both of which lack a formal foundation in a comprehensive framework. To address
such concerns, we provide a survey, and address the omitted but crucial problems of two
under-explored aspects of probabilistic prediction: problem formulation and representation
simplification. We also discuss the reasons why “intention” is not suitable to serve as a
motion indicator in highly interactive scenarios. Then we choose the representation and pro-
vide the transformation between reaction prediction and situation prediction to construct a
unified framework for different paradigms of interactive prediction methods in Chapter 7.

Chapter 7

Reactive predictions are necessary in highly interactive driving scenarios to answer “what
if I take this action in the future” for autonomous vehicles. Many recently proposed meth-
ods based on probabilistic graphical models (PGM), neural networks (NN) and inverse re-
inforcement learning (IRL) have great potential to solve the problem. In this Chapter, the
aforementioned three paradigms of interactive prediction algorithms are briefly introduced
with the unified formulation and representation proposed in Chapter 8. Then we propose an
interface of interactive prediction and planning. With such interface, we can incorporate all
the three paradigms of interactive prediction algorithms, as well as an integrated decision
and planning framework with NCDS and a sample-based planner. Results in highly interac-
tive driving scenarios show the effectiveness of the proposed framework and corresponding
methodologies.

Part IV Prediction Benchmark and Dataset

With the unified formulation and representation of interactive prediction in Part III, we
dive into evaluation of prediction algorithms in this part. Prediction evaluation should take
into account not only the data approximation performance, but also the consequences of the
decision and planning when the prediction results are adopted, as inspired by Part III. Also,
a motion dataset with highly interactive scenarios and behavior is one of the most essential
assets for all behavior-related research areas, such as prediction, planning, imitation learning,
behavior modeling and representation learning. In this part, we will answer the following
questions.

• What are evaluation metrics for probabilistic prediction, and how do we evaluate differ-
ent paradigms of interactive prediction algorithms considering both data approximation
and fatality when adopting the prediction results?
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• What kind of motion data is required for various behavior-related research areas? How
do we construct the dataset and how do we measure the interaction density of the
dataset?

Chapter 8

How to evaluate probabilistic prediction is always one of the most significant problems
in behavior-related research areas. In this chapter, we first provide a survey of the ex-
isting metrics considering not only the data approximation but also prior knowledge and
decision-related perspective. Then we utilize the unified framework proposed in Chapter
6 to homogenize the problem formulation and representation simplification of the three
paradigms of interactive prediction methods in Chapter 7 in order to provide benchmark
for these methods. We propose to use Brier score as the baseline metric for data approxi-
mation evaluation. In order to reveal the fatality of the consequences when the predictions
are adopted by decision-making and planning, we propose a fatality-aware metric, which is a
weighted Brier score based on the criticality of the trajectory pairs of the interacting entities.
Conservatism and non-defensiveness are defined from the weighted Brier score to indicate
the consequences caused by inaccurate predictions. Modified methods based on PGM, NN
and IRL are provided to generate probabilistic reaction predictions in an exemplar scenario
of nudging from a highway ramp. The results are evaluated by the baseline and proposed
metrics to construct a mini benchmark. Analysis on the properties of each method is also
provided by comparing the baseline and proposed metric scores.

Chapter 9

Interactive motion datasets of road participants are vital to the research and development
of autonomous vehicles in both industry and academia. Research areas such as motion pre-
diction, motion planning, representation learning, imitation learning, behavior modeling, be-
havior generation, and algorithm testing, require support from high-quality motion datasets
containing interactive driving scenarios with different driving cultures. In this chapter, we
present an INTERnational, Adversarial and Cooperative moTION dataset (INTERACTION
dataset) in interactive driving scenarios with semantic maps. Five features of the dataset are
highlighted. 1) The interactive driving scenarios are diverse, including urban/highway/ramp
merging and lane changes, roundabouts with yield/stop signs, signalized intersections, inter-
sections with one/two/all-way stops, and so on. 2) Motion data from different countries and
different continents are collected so that driving preferences and styles in different cultures
are naturally included. 3) The driving behavior is highly interactive and complex with adver-
sarial and cooperative motions of various traffic participants. Highly complex behavior such
as negotiations, aggressive/irrational decisions and traffic rule violations are densely con-
tained in the dataset, while regular behavior can also be found from cautious car-following,
stop, left/right/U-turn to rational lane-change and cycling and pedestrian crossing, and so
on. 4) The levels of criticality span wide topics, from regular safe operations to danger-
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ous, near-collision maneuvers. Real collision, although relatively slight, is also included. 5)
Maps with complete semantic information are provided with physical layers, reference lines,
lanelet connections and traffic rules. The data is recorded from drones and traffic cameras,
and the processing pipelines for both are briefly described. Statistics of the dataset in terms
of number of entities and interaction density are also provided, along with some utilization
examples in the areas of motion prediction, imitation learning, decision-making and plan-
ning, representation learning, interaction extraction and social behavior generation. The
dataset can be downloaded via https://interaction-dataset.com.

https://interaction-dataset.com
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Part I

Deterministic Planning
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Chapter 2

Generic Representation and Planner

2.1 Introduction

Motion planning is one of the most challenging areas in autonomous driving, which should
comprehensively consider the following factors:

1. driving qualities such as comfort and time-efficiency;

2. soft traffic rules such as speed limit and lane keeping;

3. hard traffic rules such stop sign and traffic signal;

4. avoiding collisions with all obstacles;

5. vehicle kinematics feasibility such as path curvature;

6. vehicle dynamics feasibility such as tire friction circle and engine traction limits.

For on-road driving in urban areas or on highway, the planner need to optimize 1) and
2), and guarantee 3) to 6) in a variety of driving scenarios with different types of roadway
geometries and various kinds of road participants as moving obstacles.

There has been a considerable amount of research efforts devoted to motion planning of
autonomous vehicles [90][37][57]. Some of the work were focused on designing a planner in
a spatiotemporal framework. For example, a state-lattice-based spatiotemporal representa-
tion and search algorithm was proposed in [83] for motion planning of highway driving. A
trajectory planner based on a single spatiotemporal optimization was proposed in [145]. The
approach was applicable to various kinds of scenarios, but it still needed an ad hoc process
for specific situations. The initial value of the numerical optimization significantly affected
the final result due to the existence of local optima. Also, the runtime was not desirable for
time-critical replanning.

It is computationally intractable to include all factors in 1)-6) precisely in a single spa-
tiotemporal framework to handle various kinds of scenarios. For search-based methods,
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Path 1 Path 2

(b)

(c)

pedestrian
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Figure 2.1: Three typical categories of driving scenarios.

wasteful explorations exist in the search space of trajectories. For optimization-based ap-
proaches, the complicated expressions of feasibility and safety constraints result in unde-
sirable runtime. Therefore, a layered planning architecture temporally partitions the spa-
tiotemporal planning by the path and speed profile planning, which significantly reduces
computational complexity.

An elastic-band-based path planner and a speed-constraint-based temporal planner were
proposed in [43] to generate trajectories in complicated scenarios for urban driving. Multiple
on-road driving scenarios were handled in [97] by interpolating piecewise-linear paths with
quintic Bézier curve, and designing a velocity planner based on model predictive control. A
driving strategy planning method via A* search was proposed in [52] by providing a long-
term rough speed profile on a predefined lane. The predefined lane acted as the planned
path and [52] essentially followed the conventional temporally-partitioned architecture.

Three typical categories of driving scenarios are shown in Fig. 2.1. The path of the host
vehicle (red car) does not depend on the speed profile in: (a) scenarios with static obstacles
(blue car) and moving obstacles crossing the path (pedestrian, green car), and (b) scenarios
with merging obstacles (purple car in roundabout and green car at T-intersection). The
path depends on the speed profile for (c) lane change or overtaking scenarios with moving
obstacles (all other cars).
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Temporally-partitioned architecture is suitable for scenarios in Fig. 2.1 (a) and (b), in
which path and speed profile can be well decoupled. However, for scenarios in Fig. 2.1 (c),
the temporally-partitioned architecture is not applicable. Normally, scenarios in Fig. 2.1 (a),
(b) and (c) may appear simultaneously in one planning horizon for on-road driving, thus our
primary motivation is as follows:

Motivation 1 : propose a novel planning architecture instead of the temporally-partitioned
one, to handle on-road driving scenarios which include, but are not limited to scenarios in
Fig. 2.1.

The combinatorial aspect of planning was considered in [11] based on the planner in [145].
Difficulties still existed in generating generic constraints. A behavioral planner was proposed
in [125] with spatiotemporal candidate strategies and reaction prediction of surroundings.
Adaptive cruise control and lateral control were required to achieve the desirable strategy.
Safety constraints was only in the behavioral strategy level, and the final trajectory generated
by the controllers may be unsafe in highly constrained environments. Thus our second
motivation is:

Motivation 2 : create generic environmental representation for each planning layer to
generate safety constraints so that the final trajectory is guaranteed to be collision-free.

Besides the normal scenarios in Fig. 2.1, extreme scenarios may exist to push the au-
tonomous vehicles to the boundaries of the vehicle kinematics and dynamics. A planner was
proposed in [31] for highly constrained environments such as narrow roads with sharp turns.
Planners for emergency maneuvers were designed in [58] and [106]. These planners targeted
at desirable performance for specific extreme scenarios, but lack the portability for normal
on-road driving scenarios. Extreme scenarios may appear simultaneously with normal ones,
thus our third motivation is:

Motivation 3 : include factors in 5) and 6) in the planning framework to deal with situa-
tions pushing the vehicle to the kinematics boundary such as U-turn, or dynamics boundary
such as emergency maneuvers.

To the best of our knowledge, this work is the first to propose spatially-partitioned
environmental representation and planning architecture, which are generic for all types of
aforementioned on-road driving scenarios (see in Fig. 2.1). The planning framework com-
prehensively takes into account factors 1) to 6), which can also deal with extreme cases with
guaranteed safety and feasibility.

The remainder of the chapter is organized as follows. Section 2.2 provides the architecture
of the proposed planning framework and Section 6.4 discusses generic representation of the
environment for a variety of scenarios; the generic planning framework based on the proposed
environmental representation is discussed in Section 2.4; simulation results are provided in
Section 2.5; and Section 9.7 concludes the chapter.
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2.2 Overview of the Architecture

The motion planning module is presented in Fig. 2.2 from the viewpoint of the overall
system architecture. The motion planning module receives the traffic-free reference path and
desirable speed from the routing and reference planning module, as well as the driving task
from the task planning module. At the final stage, the motion planning module outputs a
trajectory satisfying factors 1)-6) described in Section 9.1 for the control module to execute.
The perception and localization module provides the necessary inputs to all three stages of
planning and control.

rough longitudinal motion

lateral motion and trajectory smoothing

task planning 

module

motion planning module 

reference pathdriving task

control module

trajectory to execute

routing and reference 

planning module

desirable speed

perception 

and 

localization 

module

Figure 2.2: Overview of the architecture

The processing of the routing and reference planning module can be completed partially
offline, and will be further discussed in Section 2.3. The task planning module determines
the combinatorial aspect of planning in long term, such as following or overtaking a bicyclist,
changing or keeping the lane, etc. Receiving a driving task does not mean that the final
decision has been made. The task planning module may compare the costs of potential
choices and select the best choice to execute, or plan ambiguous next-step motions with
several potential decisions according to the intention probabilities of other road participants
[134].

This chapter is focused on the design of the motion planning module. Instead of adopting
the temporally-partitioned architecture, we propose a novel spatially-partitioned planning
architecture since the information associated with the temporal dimension is extremely im-
portant for any potential layer to deal with moving obstacles. Due to the nonholonomic
motion constraints of the vehicle, longitudinal motion plays a more significant role than the
lateral motion given the reference. Longitudinal constraints are often associated with higher
priority, such as traffic signal, stop sign, car following, speed limit, turning speed on curvy
road, yielding those who hold the right-of-way, etc. Also, when lane change and overtaking
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scenarios with moving obstacles (shown in Fig. 2.1 (c)) are involved, longitudinal motion is
more influential in deciding the trajectory.

Therefore, we propose to spatially partition the spatiotemporal planning by the longitu-
dinal and lateral motions along the reference. Such architecture also makes it possible to
linearize the safety constraints for each layer. We suggest that the planning framework should
first plan long-term (at least 10 s) rough longitudinal motions according to the driving task
and longitudinal constraints on safety and feasibility. Given the rough longitudinal motions,
the rough short-term lateral motions are determined and smooth trajectories are further
planned by considering both lateral and longitudinal constraints on safety and feasibility.

2.3 Generic Environmental Representation

In order to design a generic motion planning framework, we need a simplified and general
representation of the environment to represent the longitudinal constraints for the long-term
longitudinal motion planning. The methodology of generic environmental representation is
proposed in this section, which is applicable for all types of scenarios mentioned in Section
9.1. .

Representation in Frenét Frame

The lane centerline is a baseline as the traffic-free reference path (refer to [42] for com-
fortable and human-like improvement). A Frenét Frame can be defined on the reference
path (shown in Fig. 2.3), in which the motion in Cartesian coordinates (x (t) , y (t)) can be
represented with the longitudinal position along the path s (t), and lateral deviation to the
path d (t).

current step

lane center

reference path
lane marking

pseudo path

Figure 2.3: Representation within Frenét Frame

Note that when changing the lanes, the reference path is switched. In order to keep the
scale consistency of s (t), a pseudo path is created on the target lane at the current time step
for the horizon if a lane-change task is received (as shown in Fig. 2.3). The real reference
path starts at the point where the lane change should be completed, and the decision on
when to start and complete the lane change is left to the motion planning module.
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Suppose vlimit (s) is the speed limit introduced by traffic law, and κ (s) is the curvature
of the reference path in cartesian coordinate. The desirable speed vd can be written as

vd (s) = min
{
vlimit (s) ,

√
adeslat /κ (s)

}
, where adeslat is the desirable lateral acceleration.

Boundaries and indicators

To guarantee safety, an autonomous vehicle needs to create the longitudinal boundaries at
each time step for longitudinal motion planning. There are three categories of the boundaries
according to the topological overlap of the reference path and the prediction of the obstacles.

Suppose si (t) is the predicted longitudinal position (along the reference path of the host
vehicle) of the i-th obstacle (can also be a stop bar for stop sign or traffic signal) which may
affect the trajectory of the host vehicle. v (t) and vi (t) are the speeds of the host vehicle
and the i-th obstacle along the reference path, respectively. Then the safety factors can be
represented by the following boundaries, as well as activeness indicators.

An obstacle can generate two kinds of boundaries. One is front bound blocking the
host vehicle, which is written as fi (s (t) , v (t) , si (t) , vi (t)) ≤ 0; The other is rear bound
forcing the host vehicle to pass, which is written as gi (s (t) , v (t) , si (t) , vi (t)) ≤ 0. More
explanations on the boundaries can be found in Section 2.3.

The change of the lateral positions of the host vehicle and obstacles can make the afore-
mentioned longitudinal boundaries ineffective. Also, when lane change or overtaking is com-
pleted, the original target vehicle will be behind the host vehicle and the rear bound is no
longer considered. Moreover, after a full stop near the stop sign, the boundary created by
the stop bar can be discarded if the intersection is clear. Therefore, an indicator function
is needed to indicate the activeness of the boundary. The boundaries of each obstacle have
corresponding indicator functions Iactfi (t) and Iactgi (t), indicating whether the boundary is
active, potentially active or inactive at each time step.

The active range of the boundary fi or gi can be written as
[
tsfi, t

e
fi

]
or
[
tsgi, t

e
gi

]
with start

and ending time. If an obstacle only creates one boundary, it can be written as [tsi, t
e
i ].

Topological elements

Given the reference path and motion prediction of the obstacles (including traffic signal
phase, stop sign, static and moving obstacles), the topological relationship between the
potential paths of the host vehicle and the predicted path of the obstacle can be decomposed
to three basic topological elements (shown in Fig. 2.4), in which red solid lines represent the
potential path of the host autonomous vehicle and blue dashed lines corresponds to predicted
path of the obstacles.

(a) Point-overlap corresponds to scenarios with crossing traffic (see scenarios in Fig. 2.1
(a) as examples), traffic signal or stop sign. When the prediction of the i-th obstacle crosses
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(a) point-overlap (b) line-overlap (c) undecided-overlap

Figure 2.4: Topological elements to represent the relationship of the potential path of the host
autonomous vehicle and predicted path of the obstacles.

the reference path, it forms a front bound or a rear bound, that is,

fi (t) = s (t) + ∆s− si (t) ≤ 0, (2.1)

gi (t) = si (t) + ∆s− s (t) ≤ 0, (2.2)

where ∆s is a safe margin containing the geometry of the obstacle. The active range of the
boundary can be obtained from prediction of crossing traffic occupying the reference path, or
the red-light phase of traffic signal. For motions at a stop sign, the boundary is not inactive
until a full stop v = 0 appears in a position range before the stop bar.

(b) Line-overlap corresponds to scenarios of merging and car following (see scenarios in
Fig. 2.1 (b) as examples), including mergings at roundabout, highway ramp, intersections,
etc. These scenarios have fixed merging or demerging point, which forms a line-overlap
between the prediction and reference path.

If the obstacle is the front obstacle to follow, then it is a front bound

fi (t) = s (t) +
v (t)2

2
∣∣amin

long

∣∣ + ∆s− si (t)−
vi (t)

2

2 |amin
i |
≤ 0, (2.3)

where amin
long and amin

i are the maximum deceleration of the host vehicle and the i-th obstacle,
respectively. The active range starts when the obstacle reaches the fixed merging point, and
ends when it reaches the fixed demerging point.

If the obstacle follows the host vehicle, then it is a rear bound

gi (t) = si (t) +
vi (t)

2

2 |amin
i |

+ ∆s− s (t)− v (t)2

2
∣∣amin

long

∣∣ ≤ 0, (2.4)

The active range starts when the host vehicle reaches the fixed merging point, and ends after
a specific time range when the obstacle is regarded as a vehicle to follow the host.

(c) Undecided-overlap corresponds to lane change and overtaking scenarios with moving
obstacles (see scenarios in Fig. 2.1 (c) as examples). These scenarios do not have fixed
merging or demerging point since the desirable path depends on the speed profile. It is
undecided where the overlap of the prediction and the reference path starts or end.



CHAPTER 2. GENERIC REPRESENTATION AND PLANNER 18

For obstacles to follow on the original lane or the target lane, (2.3) can be used as a
potentially active boundary. When the host vehicle leaves the original lane and reaches the
target lane, the boundary corresponds to the obstacle to follow on the original lane is inactive
and that of the target lane is active.

When the host vehicle plans to cut in front of an obstacle, (2.4) can be used as a potentially
active boundary. When the host vehicle reaches the target lane, the boundary becomes
active. Then the boundary is inactive when the obstacle follows the host.

For an oncoming vehicle on the lane used temporarily by the host vehicle to accomplish
the overtaking maneuver, (2.1) can be used as a potentially active boundary. When the host
vehicle reaches the lane of the oncoming vehicle, the boundary is active. When the host
vehicle completely leaves the lane of the oncoming vehicle, the boundary is inactive.

2.4 Motion Planning Framework

In this section, planners for long-term longitudinal motion, short-term lateral motion and
trajectory smoothing are designed. Optimization-based methods perform well in providing
motions with high driving quality, but they are inefficient in dealing with nonlinear and
nonconvex terms. Search-based approaches are efficient in handling complex terms, but hard
to provide smooth motions. In this section, search-based and optimization-based methods are
combined to find desirable motions for the long-term rough speed and short-term trajectory.
We first use A* search to find a rough reference, then formulate a quadratic programming
(QP) optimization problem which can be solved extremely fast with global minimum.

Long-term longitudinal motions

The generic representation described in Section 6.4 is used to plan long-term rough speed
via A* search, as is inspired by [52]. The state of this problem is defined as z = [s, v, t, Iact]

T
,

where t is the time stamp which will increase by ∆tl once an action is applied, and Iact is a
vector containing all relevant activeness indicators within the horizon.

The action is discretized as a set of accelerations a = [−2,−1, 0, 1] m/s2. Such discretiza-
tion was used in [52] which well covered normal actions. When no sequence of action can be
found within the action set to obtain a collision-free speed profile, the planner will calculate
the minimum constant acceleration or deceleration to avoid collision, which corresponds to
an emergency situation. s and v are updated by applying a constant acceleration in a period
of sampling time ∆tl. Since actions are discretized and the sampling time is fixed, there will
be lots of repeated states. Thus graph search is applied instead of tree search to prevent
revisiting visited states.

The cost function of A* search basically includes penalty for accelerations and deviation
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from the desired speed, which is expressed as

min
a

Tl/∆tl∑
k=1

w1a (k)2 + w2

∣∣v (k)− vd (s (k))
∣∣+ Ic (z (k)) ,

where Ic is a function indicating whether any of the constraints related to driving task and
collision avoidance is violated. At each step, if the boundary is active, the collision avoidance
conditions are checked directly. A large cost will be added to Ic if there is a violation to the
boundary. During forward expansion of the nodes, if the boundary is potentially active, the
planner will check if the switch conditions are satisfied. When the algorithm expands a node
satisfying the switch condition of a boundary, the indicator will be set as active or inactive
at the current step. Inevitable Collision States (ICS) in the sense of all active boundaries
are used as a heuristic.

To smooth the reference rough speed profile in the short-term horizon and reduce the
sampling time, we formulate an optimization problem. Suppose sl (t) is the position provided
by the long-term rough speed planning layer with sampling time ∆tl, and s (t) is the position
provided by the short-term speed smoothing layer with sampling time ∆ts, where ∆tl = n∆ts.
Then the optimization problem can be written as the QP form,

min
s

Ts∑
t=∆ts

w1s̈ (t)2 + w2
...
s (t)2 +

Ts∑
t=∆tl

w3 (sl (t)− s (t))2 ,

s.t. Ass ≤ bs,

where Ts is the short-term preview horizon, s̈ and
...
s are longitudinal acceleration and jerk,

corresponding to the driving comfort. As and bs are constructed via linear hard constraints,
such as longitudinal acceleration amin ≤ s̈ (t) ≤ amax, and collision avoidance for (2.1)-(2.4)
by setting v = vi. An alternative for designing the longitudinal motion planner can be found
in [79].

Short-term lateral motions

A simple illustration of the trajectory planner is shown in Fig. 2.5. Given the longitudinal
positions from the smoothed speed profile, we can project them on the reference path, and
create points with the same longitudinal positions in a Frenét Frame with lateral sample
interval h. Then an A* search algorithm is designed with constraints on collision avoidance
to lateral obstacles and feasibility according to the vehicle kinematics and dynamics.

Suppose qr (t) is the position of the rear axle center of the vehicle in A* search. e (t)
represents the edge connecting the points qr (t) and qr (t−∆ts). The cost for A* search is
set as

min
qr

Ts∑
t=∆ts

w1 ‖e (t)‖+ w2 |d (t)|+ Icolli (e (t)) ,
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where Icolli is a function to set the cost to be a large value when lateral collision exists.
Then heuristic is “holonomic-with-obstacles” distance used in [27], which can be calculated
by dynamic programming. The admissibility can be easily proved and the optimality can be
guaranteed.

current step

next step
reference path

turning circle

Figure 2.5: Illustration of the A*-based trajectory planner with tight turns.

When the vehicle is making a tight turn such as a U-turn, it is possible that the minimum
cost node under forward expansion is out of the kinematics boundary of the vehicle. If so, the
A* algorithm will also check the point on the kinematics boundary, as is shown in Fig. 2.5.
The turning circle corresponds to the maximum curvature κmax. When expanding the nodes
of the next step, the point with the minimal cost may be out of the kinematics boundary.
Then the A* algorithm will check the red point on the kinematics boundary, and it may have
the lowest cost. Then the point on the boundary will be expanded so that the autonomous
vehicle can plan a trajectory with a maximal steering angle. Bicycle model can also be used
as the kinematic model when lateral acceleration is low [95].

(a) (b)

Figure 2.6: G-G diagram and its linearized approximation.

Since time stamps are associated with the each point, we can also check whether vehicle
dynamics limits are satisfied. G-G diagram (shown in Fig. 2.6 (a)) is widely used for the
high-level control of racing cars [33] to push the vehicle dynamics to the limits. The circle
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corresponds to tire friction circle, and the blue line which bounds the maximum longitudinal
acceleration corresponds to the engine traction limit. When expanding the node, longitudinal
and lateral acceleration can be obtained and we can check the dynamics feasibility with
emergency maneuvers according to the G-G diagram. More detailed discussions on kinematic
and dynamic vehicle model near limits can be found in [4].

Trajectory smoothing

Finally, the trajectory smoothing for the autonomous vehicles can be formulated as a QP
problem. The motion representation can be found in Figure 2.7 (a). q (t) = [x (t) y (t)]T

is the position vector of the rear axle center of the vehicle at time step t. The velocity,
acceleration and jerk q̇, q̈ and

...
q can be obtained via backward differences, and yaw angle

φ (t) = arctan ẏ (t)/ẋ (t).

(a) (b)

Figure 2.7: Motion representation of the QP problem and linearization of lateral obstacle avoidance
constraints.

By taking into account the driving comfort and position error to the rough trajectory as
the objective of optimization, the QP problem can be written as

min
q

Ts∑
t=∆ts

w1‖q̈ (t)‖2 + w2‖
...
q (t)‖2 + w3 ‖qr (t)− q (t)‖2 ,

s.t. Aq ≤ b,

where A and b are constructed via linear hard constraints. The linearized constraints can
be found in Section 2.4 for longitudinal obstacles and in Fig. 2.7 (b) for lateral obstacles.
The rough trajectory obtained from A* provides the rough position and yaw angle at each
time step, from which we draw the rough vehicle body represented by a rectangle. We first
draw two lines (red dashed lines) which are perpendicular to the rough direction with specific
margin to the vehicle body. Then obstacles in the area between the two lines are considered
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as lateral obstacles at the current time step. Then the boundary line (blue solid line), which
is parallel to the direction, is pushed as far as possible until it hits the obstacle. Then the
boundary line can be used as a linearized safety constraints for lateral obstacles. Moreover,
given the rough direction of the vehicle, boundaries for vehicle dynamics can be constructed
with linearized G-G diagram shown in Fig. 2.6 (b).

2.5 Illustrative Examples

In this section, exemplar use cases are shown to illustrate the performance of the pro-
posed generic representation and motion planning framework. Scenario 0 is not necessarily
practical in real world, but involves all the three topological elements in one planning horizon
to explain how the generic environmental representation works (without planning results).
Scenario 1 is a practical lane change scenario with a pedestrian to yield, which contains two
topological elements to test the planning capability of the proposed framework. Scenario 2
is an extreme case to test the capability of the proposed framework to handle emergency
situations. When running the algorithm in python on a laptop with Intel Core i7-6600U
2.6 GHz CPU, the runtime corresponding to the worst case can be bounded within 0.2 s
with Tl = 10 s, and 0.1 s with Tl = 9 s. Particularly, the A* search for rough speed profile
dominated the runtime.

Scenario 0

An exemplar scenario in Fig. 2.8 to explain how the environmental representation works.
The task of the host autonomous vehicle V0 (red) is to overtake V1 (blue) in front, return to
the original lane to avoid the oncoming V2 (purple) in the opposite lane, and then to follow
the V3 (green) that is merging into the lane from a ramp junction. V0 does not have to yield
to the pedestrian P4 since it is relatively far away from the crosswalk.

The environmental representation in the position-time domain is shown in Fig. 2.9, in
which Tl is the long-term planning horizon. Note that in order to represent the boundaries
in Eq. (2.3) and (2.4) in the position-time domain, the speed of the host vehicle in Eq. (2.3)
and (2.4) is set to be v = vi. Note that it is not the real speed of the host vehicle.

Figure 2.8: A complicated exemplar scenario.
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Figure 2.9: Environmental representation in position-time domain.

The activeness indicators of the boundaries corresponding to P4 (point-overlap) and V3

(line-overlap), namely Iact4 and Iact3 , are active within specific time periods (represented
by solid lines). The indicators of the boundaries corresponding to V1 and V2 (undecided-
overlap), Iactf1 , Iactg1 and Iact2 , are potentially active (represented by dashed lines). Given a
rough speed profile of V0 (speed profile candidates in search-based algorithms), the active
range of boundaries of V1 and V2 can be determined. Before tef1, V0 follows V1 and Iactf1 is
active. Between tef1 and tsg1, V1 should be on the right side of V0, and V1 can be regarded
as a lateral obstacle. After tsg1, V0 merges into the original lane, and V1 can be regarded as
a longitudinal obstacle behind. Iactg1 is active to achieve a safe and courteous cut-in, and it
should be inactive after V0 is completely on the target lane (teg1). Between tef1 and teg1, I

act
f2

is active since V0 is on the lane of V2, which decides ts2 and te2.

Scenario 1

The first practical scenario that we used for the proposed planning framework was a
challenging lane change with pedestrian yielding shown in Fig. 2.10. The task planner
required the host autonomous vehicle (V0) to merge to the target lane on the left ahead of
a vehicle on that lane (V1), which is relatively slow (5 m/s). Before completing the lane
change, V0 had to follow a vehicle on its lane (V2), which is quite slow (3 m/s). Also, a
pedestrian (P3) approached the crosswalk to cross the street, and V0 had to yield to the
pedestrian.

The parameter settings were as follows. The long-term preview horizon for rough speed
profile planning was Tl = 10 s, and the sampling time was ∆tl = 1 s. The short-term preview
horizon for speed profile smoothing and trajectory planning was Ts = 5 s, and the sampling



CHAPTER 2. GENERIC REPRESENTATION AND PLANNER 24

time was ∆ts = 1/3 s. Lateral position sample interval h = 0.25 m. A rectangle was used to
represent the vehicle body. vlimit = 10 m/s and κmax = 0.2 m−1.

Figure 2.10: Scenarios 1 illustration.

Fig. 2.11 reveals the boundaries for rough speed profile planning and the distance traveled
by V0 over time with the planned rough speed profile. The activeness indicators of the
boundaries corresponding to P3 (point-overlap), Iact3 , was active within specific time periods
(represented by solid cyan lines). When the rough speed profile of V0 is not planned, the
indicators of the boundaries corresponding to V1 and V2 (undecided-overlap), Iact1 and Iact2 ,
are potentially active (represented by blue and green dashed lines, respectively).

We used the planning framework described in Section and 2.4 to plan a rough speed
profile for V0 (the solid red curve), and the active range of boundaries of V1 and V2 can be
determined. At first, the boundary for following V2, f2 ≤ 0, remained active. V0 accelerated
to reach the boundary for overtaking V1, namely, g1 ≤ 0. When V0 reached the potentially
active boundary, Iact1 is active. When the range was enough for V0 to accomplish a relatively
courteous cut-in, V1 can be regarded as a longitudinal obstacle behind and Iact1 is inactive.
Moreover, when approaching the crosswalk, V0 tended to make a relatively sharp brake first
and accelerate when the pedestrian had not completely left the conflict zone. The reason
was that such maneuver maximized the time-efficiency of V0 so that it could maintain higher
speed which was closer to the desirable speed.
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Figure 2.11: Rough speed profile and boundaries.

The rough speed profile helped the trajectory planner determine whether an obstacle
should be a longitudinal or lateral obstacle at each time step. When Iact1 is active, V1 was
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regarded as a longitudinal obstacle behind V0. Before that, V1 was a lateral obstacle on
the left; after that, V1 was no longer considered. When Iact2 is active, V2 was a longitudinal
obstacle to follow. After that, V2 was a lateral obstacle on the right.
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Figure 2.12: Planned trajectories.

Given the long-term speed profile, the A* search obtained a rough trajectory, and QP
smoothened it to get the final trajectory. The trajectories obtained by A* and QP at time
t = 5 s for a short-term horizon Ts = 5 s were compared in Fig. 2.12. As is demonstrated by
the figure, the rough trajectory generated by A* provided a fairly good reference, and QP
locally smoothened the trajectory to make it comfortable. Fig. 2.12 also demonstrated the
relationship of the motions of V0, V1 and V2 within the preview horizon. The three vehicles
were marked with the same color at three representative time steps (yellow for t = 6.66 s,
purple for t = 7.66, and cyan for t = 9 s). During t = 6.66 − 9 s, the boundary of V1 is
active, which means that V0 reached the target lane at t = 6.66 s, and became the front
vehicle of V1 at t = 9 s.

Scenario 2

The second practical scenario considered an emergency maneuver at a two-way-stop in-
tersection as is shown in Fig. 2.13. The host autonomous vehicle V0 (red) was passing a
two-way-stop intersection, following V1 (green) and holding the right of way against any ve-
hicle from the perpendicular cross street controlled by a stop sign. Deep blue cars, including
V3, were all static obstacles. V2 (blue) was violating the stop sign with a relatively high
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speed. Since the parked cars blocked the view of V0, it cannot see V2 until it was too late
to apply emergency braking. V0 had to accelerate to avoid being hit by V2. However, V3

temporarily blocked the lane and V1 had to slow down and come to a stop. Also, there were
oncoming vehicles V4 and V5. Hence, V0 had to swerve to the parking lane on the right side
to maneuver around. When reaching the parking lane, it had to slow down immediately to
come a stop after escaping the conflict with V2.

The parameter settings were the same as Section 2.5, and acceleration limits were amax =
2.5 m/s2 and amin = −7 m/s2.

Figure 2.13: Illustration of the second exemplar scenario.
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Figure 2.14: Rough speed profile and boundaries.

When applying the method in Section 2.4, no feasible solution can be found within the set
of acceleration. Therefore, the rough speed planner resorted to plan a course of collision-free
motions with a combination of constant acceleration and deceleration within amax and amin.
Fig. 2.14 reveals that it is impossible to apply emergency stop to make the distance under
the lower blue bound created by V2. Therefore, it has to accelerate to pass the upper blue
bound. Fig. 2.15 demonstrates the trajectories generated by A* and QP, which reveals the
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Figure 2.15: Planned trajectories.

performance of the planner to generate safe and feasible trajectories under an emergency
situation. The three vehicles were marked with the same color at representative time steps
(yellow for t = 1.33 s and cyan for t = 2.33 s).

2.6 Chapter Summary

A spatially-partitioned environmental representation and planning architecture was pro-
posed for on-road autonomous driving in this chapter, which can generate safe and feasible
trajectories with high driving qualities when dealing with a variety of complicated driving
scenarios. The planning framework spatially partitioned longitudinal and lateral motions
instead of path and speed in the temporally-partitioned architecture. Three topological
elements and corresponding longitudinal boundaries were proposed to compose the repre-
sentation of all types of on-road driving scenarios discussed in this chapter. A* search plus
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quadratic programming (QP) planners were designed for long-term longitudinal motions and
short-term trajectory to leverage the advantages of each method, and the linearization of
safety and feasibility constraints obtained from the proposed methodology. As was demon-
strated in the simulation results, the proposed planning framework can generate high-quality
and collision-free trajectories in the long term in complicated driving scenarios and emer-
gency situations.
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Chapter 3

Imitation Learning with Constraints

3.1 Introduction

Autonomous vehicles need to plan trajectories with desirable driving qualities while avoid-
ing collisions with obstacles on the road. Moreover, the motion of other vehicles should be
predicted within a specific horizon. Motions generated by planning and prediction module
of an autonomous vehicle should be 1) safe to avoid collisions, 2) feasible according to the
vehicle kinematics and dynamics, 3) human-like with high driving quality and 4) real-time
with low computational load.

Conventional motion generation methods are usually based on techniques such as search,
optimization and optimal control. A representative work is the spatiotemporal nonlinear
programming [145] implemented in the demonstration of Mercedes-Benz autonomous car.
An optimization problem was formulated by comprehensively considering comfort, speed,
road structure, as well as safety and feasibility constraints to achieve smooth and collision-
free trajectory planning. Inequality constraints were employed for satisfying safety and
feasibility. [5] proposed a planning method based on model predictive control (MPC) near
the boundaries of safety and feasibility with a relatively simple dynamic model. For more
critical situations in the sense of dynamics feasibility, a new concept of critical instability
region for steering maneuver was proposed in [75], which explicitly provided the theoretical
upper bound of vehicle stability and promisingly expanded the vehicle stability control region.

Conventional methods are capable of satisfying safety and feasibility with hard constraints
and achieving high driving quality with comprehensive cost functions. However, they lack the
flexibility to learn the human-like behavior from data. Also, the computational complexity
increases significantly when the environment is complicated. For instance, the runtime of the
algorithm in [145] is 0.5 s, which is not desirable for replanning of the vehicle, especially in
emergency situations. On the contrary, neural-net-based methods have powerful capability
to learn driving policies from human. The computational load can be extremely low when
the size of the net is small. However, it is hard to make the net learn how to push the vehicle
near the safety and feasibility boundaries to achieve high-quality and human-like motions
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with satisfied constraints.
A typical neural-net-based method is the end-to-end paradigm utilized in [15], [129],

[132] and [35], which learns the driving policy of human drivers via convolutional neural
networks (CNN) with front-view images as the input and steering maneuver as the output.
The end-to-end paradigm is effective for lateral maneuvers under relatively simple tasks. It
becomes challenging for the paradigm in complicated scenarios, especially when combinato-
rial predictions and planning are involved, and the obstacles or road structures are beyond
the field of view. Also, [112] demonstrated that such paradigm requires exponentially larger
training samples than those required by modular paradigm with semantically meaningful
components.

Instead of providing steering maneuvers, neural-net-based methods were brought forward
to generate sequences of motions with better interpretability. [113] proposed a reinforcement
learning architecture based on recurrent neural network (RNN) to plan long-term longitudi-
nal motions of the host vehicle via predicting short-term motion of other vehicles to handle
challenging scenarios such as roundabout merging. However, safety and feasibility were not
addressed for the autonomous vehicle on a 2-dimensional plane.

In order to satisfy safety and feasibility constraints of the vehicle, conventional and
learning-based methods were combined to exploit their advantages. [117] proposed an inte-
grated planning and control framework to learn the planning policy from a long-term MPC
planner with imitation learning, and a low-level control layer guaranteed short-term safety
and feasibility. [111] brought forward an architecture to learn the desire of the autonomous
vehicle via reinforcement learning, and safety constraints were satisfied via a subsequent
short-term optimization. [21] utilized CNN for the detection of other vehicles and localiza-
tion of the host vehicle to provide key indicators for a rule-based controller. [134] employed a
logistic regression model to learn the intention probabilities of other road users, and proposed
an integrated decision-making and planning framework to continuously adjust the motions
of the host vehicle according to the probability of the threat, while safety and feasibility
constraints were satisfied in the worst case.

The aforementioned works combined conventional and learning-based methods hierar-
chically to achieve the learning flexibility, and to satisfy safety and feasibility. It is also
worth exploring to extend the capabilities of learning-based models to satisfy the safety and
feasibility constraints by incorporating the domain knowledge from conventional methods.
[56] addressed safety-critical issues for collision avoidance problem of drones with policies
based on neural networks. The loss function for the policy training contains not only the
Kullback-Leibler (KL) divergence between the expert output and the policy net, but also
the cost function of the expert MPC-based planner, so that the number of collisions are
significantly reduced. The distance-based cost function could make the robot conservative
to keep in the middle of several obstacles and get rid of the safe area near the obstacles
for high-quality motions. [91] proposed a constrained CNN which can incorporate linear
constraints to the loss function for classification problems. However, the motion generation
of autonomous vehicles is a regression problem with nonlinear hard constraints on safety and
feasibility.
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In this chapter, Constrained Policy Net (CPN) is proposed to incorporate the domain
knowledge of an optimization-based expert planner into the training of the net so that
inequality constraints on safety and feasibility can be satisfied. The CPN can be directly
trained to generate safe and feasible motions for autonomous vehicles. We address the
problem of training a policy net to approximate inequality-constrained receding horizon
trajectory optimization so that the trajectories can be generated near the boundaries of
the constraints to achieve high-quality and human-like motions, while safety and feasibility
constraints can be satisfied.

The remainder of the chapter is organized as follows. Section 3.2 provides the concept of
the proposed CPN and Section III discusses an exemplar scenario to apply CPN; results are
provided in Section IV; and Section V concludes the chapter.

3.2 Concept of Constrained Policy Net (CPN)

Our task is to train a policy net to generate safe and feasible motions which can mimic
the output of an optimization-based expert planner in similar situations. The input of the
net is a set of features describing the states of the host vehicle and the environment. The
output is a sequence of motions of the autonomous vehicle, which can be executed by the
lower-level layer. The design of the optimization-based expert planner employs lots of domain
knowledge on driving quality as well as safety and feasibility. Our goal is to incorporate the
domain knowledge of the expert planner into the policy so that the motions generated by
the policy satisfy safety and feasibility constraints.

An intuitive solution is supervised learning (SL) shown in Fig. 4.3(a), to train a policy
net via minimizing the loss function with L2 norm of the difference between expert motions
q̂ and motions generated by the policy net q. However, SL using L2 norm as the training
loss cannot satisfy safety and feasibility constraints. We can take the motion generation for
billiards as examples. [32] used L2 norm as the loss to train a deep net to predict the motion
of billiards. The motion patterns were learned correctly, while oscillation violating laws of
physics still existed. In [82], sharp predicted images of billiard motions were generated via
training a generative adversarial network (GAN). A possible reason why SL using L2 norm
is not appropriate for motion generation was explained in [82]. If the distribution has two
equally likely modes, the average of the two modes minimizes the L2 loss over the data,
even if the average has very low probability. Therefore, using L2 norm as the loss averages
generated motions among several possible modes and the average may be a sequence of
motion which is unsafe or infeasible.

Instead of training a discriminator of GAN, we resort to a training framework which can
directly incorporate the objective and constraints of the expert planner as the loss function
to eliminate unsafe and infeasible motions. The challenge is how we can obtain a policy net
generating motions near the boundaries of the hard constraints without violation. Motions
violating constraints should be abandoned, while safe and feasible motions are retained.
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Figure 3.1: Training architecture of typical supervised learning and Constrained Policy Net

The safety and feasibility constraints for the motion generation of autonomous vehicles
can be expressed as inequalities on collision avoidance as well as vehicle kinematics and
dynamics, such as the curvature constraints used in [145] and G-G diagram used in [139].
Therefore, the expert planner can be written as the following generalized form, which is an
inequality-constrained optimization problem.

min
q

f0 (q) ,

s.t. fi (q) ≤ 0, i = 1, ..., n, (3.1)

where q is a sequence of vehicle motions.
In the context of solving an inequality-constrained optimization problem, hard constraints

are often transformed into the objective via a barrier function, which grows extremely fast
when the corresponding constraint is violated and remains to be zero when the constraint
is satisfied. For instance, [135] employed an exponential function to transform constraints
into the objective in the iterative linear quadratic regulator for trajectory planning. For the
aforementioned inequality-constrained optimization problem, a differentiable barrier function
I [f (x)] can be used to construct an unconstrained form of optimization problem, that is,

min
q

f0 (q) + I [fi (q)] . (3.2)



CHAPTER 3. IMITATION LEARNING WITH CONSTRAINTS 33

infeasible set

infeasible set

(a)

(b)

Figure 3.2: Comparison of costs near the boundaries of infeasible sets for different loss functions.

Suppose an infeasible set is composed by motions which are not safe in the sense of
collision avoidance, or not feasible according to vehicle kinematics and dynamics. A com-
parison of costs near the boundaries of infeasible sets is provided in Fig. 3.2 for different loss
functions, namely, the L2 norm (Fig. 3.2 (a)) and the cost function of the unconstrained
optimization (Fig. 3.2 (b)). For L2 norm loss function, the cost just follows a quadratic
function regardless of safety and feasibility of the motion. On the contrary, the cost func-
tion of the unconstrained optimization generates extremely large penalties in the infeasible
set. The penalty decreases rapidly near the boundary of the infeasible set, which forces the
trained policy to be safe and feasible.

We can use the cost function with differentiable barrier functions to incorporate the
domain knowledge in the expert planner to train our policy net πθ to approximate the
performance of the expert planner and not to output motions which are infeasible or unsafe.
Suppose θ is the a set of weight of the policy net, q(θ) is the output of the policy net πθ,
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then the policy optimization problem to solve is

min
θ

∑
D

f0 (q(θ)) + I [fi (q(θ))] , (3.3)

where D is the generated dataset for training.
The training architecture is shown in Figure 4.3(b). The process can be briefly described

as follows.

1 Large amounts of cases are generated as training set D. The input features of each case
are randomly generated within a specific range so that a safe and feasible trajectory
exists in the case.

2 The policy net outputs sequences of motions q corresponding to each case.

3 The motions are evaluated by the loss function we designed according to the uncon-
strained form of the expert planner.

4 The gradients are calculated via backpropagation to minimize the loss function.

5 Update the parameters in the policy net.

2-5 are repeated to solve the problem (6.5) until the change of the loss is small enough
between iterations.

Note that there is no restriction to the form of the inequality-constrained optimization
problem. It can be a complicated nonlinear and nonconvex optimization problem as long
as all terms are differentiable. Therefore, CPN provides us a powerful tool with super fast
online computation capability to learn the policy of a complicated optimization-based expert
planner, which can hardly be implemented onboard in real time. The trained policy net can
learn the ability of the expert planner to satisfy safety and feasibility constraints with high
driving quality. The net also has the flexibility to be trained by data collected from human
drivers to learn human-like behaviors.

3.3 An Exemplar Scenario

In this section, we use an exemplar scenario (shown in Fig. 4.2) with two-dimensional
motion of the host autonomous vehicle to apply the proposed Constrained Policy Net (CPN).
The host autonomous vehicle (red car) needs to plan the path to avoid static lateral obstacles
(blue and yellow car).

Fig. 4.4 shows how we represent the motions of the host vehicle in a 2D space. The
x-axis is the forward direction along the road and the y-axis is perpendicular to the forward
direction. The rectangle represents the host vehicle at each step. The yellow dots are the
rear axle centers of the vehicle. h is the sampling distance and φ is the yaw angle. We can
use the constraints of the lateral obstacles on left (upper) and right (lower) sides of the host



CHAPTER 3. IMITATION LEARNING WITH CONSTRAINTS 35

Figure 3.3: An exemplar scenario.

vehicle as the input features to describe the environment. In Fig. 4.4, ui and li are the
upper (blue dots) and lower (red dots) bounds at the ith step, respectively, which are used
to formulate safety constraints.

− −

(x−1, y−1)

− −

(x0, y0)

(xi−1, yi−1)

(xi, yi)

θi

Figure 3.4: Motion in a 2D space.

Note that we predefine the rear axle center positions of the vehicle at the first two steps:
(x−1, y−1) and (x0, y0) and let y−1 = y0 = 0. The reason is that we want to set (x0, y0) as
our starting point and make sure that the starting position has a curvature equal to zero to
represent the normal driving direction of the vehicle. Since the current forward direction of
the vehicle is determined by connecting the previous rear axle center with current rear axle
center, we need to place the previous rear axle center on the x-axis.

For the exemplar scenario, two aspects need to be considered for the driving quality. On
one hand, the vehicle should follow the reference, which is the x-axis. Thus the deviation from
the reference is penalized. On the other hand, we penalize curvature to enhance comfort.

Suppose qi = [xi yi]
T , q =

[
qT1 , q

T
2 , . . . , q

T
N

]T
, then the cost function can be written as

f0(q) = w1

N∑
i=1

y2i + w2

N∑
i=1

κ2i , (3.4)
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where yi is the deviation from the reference and

κi =
ẋiÿi − ẏiẍi
(ẋ2i + ẏ2i )

3/2

is the curvature at the ith step.
For the feasibility constraints, the curvature of the vehicle needs to be bounded at each

time step, that is, |κi| ≤ κmax. Then the inequality constraints can be written as

f1(qi) = κi − κmax ≤ 0,

f2(qi) = −κi − κmax ≤ 0.

For the safety constraints, the vehicle body should be within the range of upper and
lower bounds defined by the lateral obstacles. The inequality constraints can be expressed
as

f3(qi) = yi + b− ui ≤ 0,

f4(qi) = −yi + b+ li ≤ 0,

f5(qi) = yi + h tanφi + b− ui+1 ≤ 0,

f6(qi) = −yi − h tanφi + b+ li+1 ≤ 0,

where b is a predefined safety distance composed by a half of the vehicle body width and the
safety margin. At the ith step, f3(qi) and f4(qi) bound the rear axle center, and f5(qi) and
f6(qi) bound the front part of the vehicle body corresponding to the upper and lower bound
of the next step. Thus we can formulate an inequality-constrained optimization problem
with the form in (6.3).

In order to transform the inequality-constrained form in (6.3) to the unconstrained form
in (6.4), we use a rectified linear unit (ReLU) as the barrier function. It is a linear function
when there is a violation in f1-f6, and is set to be 0 when the constraint is satisfied. Other
kinds of barrier functions, such as exponential barrier function, are also implemented, but
the final performance is worse. A possible reason is that for the near-limit violations the
exponential function decays much slower than ReLU function which can have much larger
slope. Thus the violation cannot be sufficiently penalized.

Then the optimization problem of CPN can be written as follows to obtain desirable
policy πθ.

min
θ

∑
D

[
f0(q(θ)) +

N∑
i=1

6∑
j=1

cj max {0, fj(qi(θ))}
]
,

where cj are the slopes of each constraint in the ReLU function. The input of the CPN is a
set of upper and lower bounds ui and li at each step, and the output is a sequence of lateral
positions yi at each step to compose the path.
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Note that the path planning problem in the exemplar scenario can also be regarded as
a trajectory planning problem if the spatial steps are regarded as temporal steps, and an
assumption is made that the host vehicle will keep its speed along the x-axis. Then the
lateral obstacles can be static or moving obstacles. For moving obstacles, their predicted
motions in the preview horizon of the host vehicle should be provided, which is a reasonable
assumption. Then the worst case boundaries at each time step can be obtained, which are
the bounds on left (upper) and right (lower) sides of the host vehicle as the input feature to
describe the environment.

3.4 Results

In this section, we apply the proposed approach to train a Constrained Policy Net (CPN)
for the exemplar scenario, and test the performance by challenging cases in comparison with
the baseline optimization, as well as supervised learning (SL).

In order to train a widely applicable policy net to generate safe and feasible motions in
the exemplar scenario, the input features of the training cases should be diversified. To avoid
overfitting in the training process, the input lateral bounds should cover different patterns
via random generation.

The training dataset contains two parts. The first part was generated based on random
feasible paths. We first randomly generated a large number of feasible paths in the 2D
space under feasibility constraints on curvature. Then the area covered by the vehicle body
according to the feasible paths were used to generate upper and lower bounds. The bounds
were randomly generated within proper range above or below the area. For the second part,
we generated large amounts of cases with 25 manually designed patterns, which are common
in real-world scenarios. Specifically, we generated obstacles of various shapes at different
positions of the road, and the sizes of obstacles in each case were randomly generated within
a proper range. In the training dataset, the ratio of the cases generated from feasible path
and manual design was 1:3, which led to the desirable performance according to our attempts.
The total number of cases in the training set was 10000.

The test dataset was generated from manual design, and it was designed with two levels:
easy and hard. The lateral bounds in the easy level had similar shapes to those in the hard
level but with simpler obstacles and smaller curvatures. No same cases can be found in
training and test dataset. The total number of cases in the test set is 5000 for each level.

The model of the CPN was a fully connected net with one hidden layer of 600 nodes
with ReLU nonlinearity. We set N = 10 steps as our horizon. Then the input size was
20 with upper and lower bounds, and the output size was 10 with lateral positions at each
step. CPN needed much more effort to enable the backpropagation process since the barrier
functions with nonlinear constraints were incorporated into the loss function. The gradients
of parameters θ needed to be calculated in sequence with respect to each output node. We
trained 2000 iterations to obtain the parameters. The ratio of the weights of the cost function
in (6.1) was set as w1:w2 = 1:1000.
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Figure 3.5: Numbers of rear upper constraint violations over training iterations.
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Baseline optimization Constrained Policy Net (CPN) Supervised learning (SL)

Figure 3.6: Visualized motions.

We recorded the weights θ of the CPN at every 100 iterations of the training process,
and tested the performance via the test dataset with the two levels of difficulty. The results
of constraint violation numbers over iterations with the test data of easy and hard level can
be found in Fig. 4.5 (a) and (b), respectively. The violation number with training data
is shown in Fig. 4.5 (c). Fig. 4.5 (a) demonstrates that the number of violations rapidly
decreased to zero, which means that it was relatively easy to train a net to satisfy constraints
for such difficulty level of cases. In Fig. 4.5 (b), the number of violations also became zero,
but several hundreds of more iterations were needed to achieve such performance due to the
more difficult cases to handle. For both easy and hard test sets, the violation number of
SL remained large. An intuitive reason was that SL only tried to minimize the distances to
the expert outputs. For cases in which the expert motion was near the boundaries of the
constraints, the policy net trained via SL would not receive enough penalty when the output
violates the constraints. On the contrary, CPN was sufficiently penalized for such cases with
the barrier function.

The visualized generated motions can be found in Fig. 4.6, in which the performance
of the policy nets trained by CPN and SL were compared. We also provided the results
from the baseline optimization by directly solving the problem in (6.3). Four cases were
used to test the performance. The first two cases were easy, while the last two were hard.
As demonstrated in Fig. 4.6, the policy net trained by SL led to violations near the safety
boundaries. It tended to generate the “mean” of possible motions of various kinds of cases.
By contrast, CPN generated motions which were very similar to the baseline optimization
with much less computation time. More importantly, there was no violation to the safety
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and feasibility constraints, even in complicated cases such as the third one.

3.5 Chapter Summary

In this chapter, Constrained Policy Net (CPN) was proposed to learn a driving policy
to generate safe and feasible motions for autonomous vehicles. An exemplar scenario with
lateral obstacles was used to apply the idea of CPN. We first designed an baseline expert
planner with receding horizon optimization, which included driving quality as objectives, and
safety and feasibility as hard constraints. Then a differentiable barrier function was used
to transform the inequality-constrained optimization problem into an unconstrained form to
formulate the policy optimization problem, which can incorporate the domain knowledge in
the expert planner directly. The test results with challenging cases demonstrated that the
CPN was able to learn a driving policy to generate motions which are safe to avoid collisions
and feasible according to vehicle kinematics with similar desirable driving quality to the
baseline optimization.
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Part II

Decision and Planning under
Uncertainty
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Chapter 4

Non-Conservatively Defensive
Strategy (NCDS)

4.1 Introduction

Urban autonomous driving is very challenging since the host vehicle has to handle various
kinds of scenarios and the behaviors of other road participants are highly unpredictable.
Variations in intentions of others [76][120] and uncertainties in subsequent motions [71] may
lead to different decisions and resultant motions taken by the host autonomous vehicles.
Typically, the relationship between decision-making and motion planning is hierachical [144].
However, for autonomous vehicles in dynamic environment, taking an immediate action does
not mean that it has to immediately make a final decision among possible future actions.
Tentative actions are commonly seen in human driving, which is ambiguous and allows the
diversification of possible subsequent actions that can be transitioned smoothly in the future.
The following challenging urban driving scenarios are provided to illustrate why decision-
making for ambiguous intentions of others can be incorporated in motion planning by taking
actions tentatively, which enables a non-conservatively defensive strategy (NCDS).

Scenario 1: Avoiding violation vehicles at intersections. Careless drivers may violate
stop signs or red lights and cause fatal accidents [107]. In order to be defensive to red light
runners, Google programmed a short pause after light turning green before its car proceeds
into the intersection [121]. Also, stop sign violation is not an extremely rare behavior in real
world traffic. Google self-driving car was crashed by a car violating stop sign in February
2015 [38]. When observing a vehicle that may run the stop sign or red light with high speed
and low deceleration, an autonomous vehicle should be prepared to avoid a possible crash.
However, it does not mean that the autonomous vehicle should slow down prematurely to
make a yielding decision. If the violation probability is relatively low, it can maintain its
speed as long as its braking capability can allow it to stop timely before reaching the conflict
region.

Scenario 2: Roundabout entering. When an autonomous vehicle is entering a roundabout,
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some vehicles in the roundabout may act aggressively to deter the host vehicle from merging
but other non-aggressive vehicles may slow down and yield to the host vehicle [113]. It
was observed in the test in Parma [18] that the VisLab autonomous car, when entering
a roundabout, acted conservatively so that there were long pauses and unnecessary stops
before proceeding even though the other vehicle in the roundabout had already started to
turn into other road branches. Therefore, in planning to enter the roundabout given the
uncertainties above, an autonomous vehicle does not have to decide immediately whether to
merge before or after the other vehicle in the roundabout coming to its entrance point. It can
just keep a proper speed and further observe the motion of the vehicle in the roundabout,
and make final decisions when it has to.

Scenario 3: Four-way-stop intersection entering. At a busy four-way-stop intersection,
an autonomous vehicle can hardly move forward if it strictly obeys the rule and behave
cautiously, waiting behind the stop bar for its turn. This case was observed in a demonstrated
situation that the Google self-driving car faced. Google decided to enable the car to move
forward a little to show its determination to go. In fact, the principle behind such human-like
behavior can be explained as follows. It is possible that all vehicles from other approaches
of the intersection may yield. Hence the host vehicle can start to accelerate and show its
intention to go first. However, to stop again and yield to others is still possible in case any
of them shows stronger determination so that the host vehicle has to yield.

Scenario 4: Lane change. When an autonomous vehicle is changing lane, other vehicle
may speed up to prevent it from cutting in. Drivers of large vehicles on the target lane tend
to assume that the autonomous vehicle would not risk to cut in closely, so that they just
maintain the speed anyway. That was how the accident happened on the Google car on
February 2016 [39]. Moreover, another vehicle may be merging into the same lane from the
other side at the same time [78]. Therefore, an autonomous vehicle should be prepared to
change back to its original lane when such threats appear. Starting the movement to change
lane is also a tentative motion and the final decision does not need to be made at that point.

In all the aforementioned scenarios, autonomous vehicles should execute a defensive driv-
ing strategy to avoid possible collisions when potential threats exist. However, the current
demonstrated design of autonomous vehicles is often overly cautious and sometimes behaves
unhuman-like in real world scenarios in order to guarantee safety. Such conservative be-
haviors will degrade the driving quality and may still jeopardize safety when the behaviors
are not expected by other road participants. To address this problem, we propose that au-
tonomous vehicles need a unified planning framework to handle uncertainties in various kinds
of urban driving scenarios when the decision and action are tentative, so that the driving
strategy is defensive enough to guarantee safety even when others are violating traffic rules,
and yet not too conservative to degrade driving quality.

In literature, partially observable Markov decision process (POMDP) was used exten-
sively in autonomous driving for decision making and planning under uncertainty [16][10].
However, there is no guarantee for the planned trajectories to be collision-free within a spe-
cific preview horizon regarding each possible intention of the others. In this chapter, we
emphasize on the guarantees of the safety of the autonomous vehicle even when the others
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choose the worst case behavior.
The rest of this chapter is organized as follows. Section II models the behavior of oth-

ers via simplifying the uncertainty quantification and providing the model in an exemplar
scenario. A non-conservatively defensive strategy (NCDS) is detailed in Section III. A deter-
ministic planner is designed as a baseline. Then a safe set is defined, and a unified planning
framework under uncertainty is proposed. Then Section IV gives illustrative examples, and
Section V concludes the chapter.

4.2 Behavioral Modelling

In this section, we model the behavior of other road participants via calculating the
probabilities of the cases that lead to passing and yielding decision of the host autonomous
vehicle. A logistic regression model is then provided for an exemplar scenario to get the
probabilities of other vehicles to violate the stop sign or not.

Simplified uncertainty quantification

In order to define the boundary for moving obstacles at each future time step, the behav-
iors of other road participants within the preview horizon should be predicted, which are full
of uncertainties in urban driving scenarios. In fact, it is beyond the scope of this chapter to
model all uncertainties in object detection, intention recognition and motion prediction in
various kinds of urban driving scenarios. In the following we will discuss how the uncertainty
quantification can be simplified to facilitate decision-making and motion planning.

Although a road participant may exhibit varying intentions and there can be uncertainties
in recognizing the object, an autonomous vehicle typically has just two choices in the current
preview horizon – passing or yielding. This simplified description is applicable to various
kinds of urban driving scenarios, such as merging into a roundabout, passing through an
intersection, changing into another lane, or yielding to crossing pedestrians. The significance
of solving the problem with two cases is not reduced by the fact that multiple moving objects
may exist and possible decisions may not be limited to just two cases. Usually, they can be
clustered and two best decisions can be created for the proposed framework to plan motions.
Also, the accidents and overly conservative behaviors of autonomous vehicles mentioned in
Section I were all caused by inappropriate motions with two ambiguous decisions. Moreover,
the framework has the potential to be extended to handle more than two cases.

Uncertainties originating from different causes can be combined. For instance, uncer-
tainties from both perception and intention recognition systems may co-exist on whether
an object is a pedestrian and whether the pedestrian intends to cross the street. For the
yielding case, the motion planner only considers the probability of the event that the object
is a pedestrian and the intention of the pedestrian is to cross the street. The passing case
then encompasses the remaining possibilities.
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For the potential threats beyond the field of view, prior knowledge is used to obtain
the probabilities. The probabilities are constant over time until the view reveals the sus-
pected region. When more information becomes available, then the probability assessment
is updated.

In summary, by observing the motions of other road participants with contextual infor-
mation, the probabilities for an autonomous vehicle to pass and yield are obtained, which
are denoted as P (pass) and P (yield), respectively. Then under each case, the worst possible
boundaries generated by the motion are constructed as the predicted motion. Although it is
possible for weird behaviors to happen, the bounds we introduced are meaningful as 1) they
are reasonable assumptions anticipated by human drivers; and 2) they cover cases with low
probability.

Specific models and learning methods based on different approaches can be adopted to
quantify the uncertainties and create constraint boundaries for different road participants un-
der various conditions. In the next subsection, a possible method to model the uncertainties
in an exemplar scenario is shown as an example.

An exemplar scenario

The exemplar scenario we use is a two-way-stop intersection, which is shown in Fig.
4.1. The autonomous vehicle V1 (red car) holds the right of way, and the other vehicle V2
approaching the stop sign (orange car) is expected to stop. We model the behavior of V2 to
calculate the violation probability.

STOP

STOP

Figure 4.1: A two-way-stop intersection.

We carried out a field observation effort at a real-world intersection to collect motion data
of vehicles approaching stop bars. Features including distance to the stop bar dstop, velocity
ḋstop and acceleration d̈stop are chosen to represent the motions. Sample data is illustrated
in Fig. 4.2.

Among the V2 motions observed from the field data, slight rolling stop motions are
frequently observed, which are labeled and grouped together with the full-stop motions as



CHAPTER 4. NON-CONSERVATIVELY DEFENSIVE STRATEGY (NCDS) 46

25

Distance to the stop bar (m)

20

15

10

5

00

2

4

Velocity (m/s)

6

8

10

-10

-8

-6

-4

-2

2

0

12

A
c
c
e
le

ra
ti
o
n
 (

m
/s

2
)

Stop
Violation

Figure 4.2: Visualized 3D taining data

“stop cases” in Fig. 4.2. The reason we regard slight rollings as cases that V1 can pass is
that drivers of those slight rolling vehicles are likely paying attention to the cross traffic and
are ready to stop if a vehicle holding the right of way appears [88].

A logistic regression model is employed to obtain the probabilities to quantify the uncer-
tainty based on the motion features of V2, which can be written as

P (pass|z) =
e−β

T z

1 + e−βT z
,

P (yield|z) = 1− P (pass|z) ,

where

z =
[
dstop ḋstop d̈stop 1

]T
,

the passing case corresponds to stop of V2 and yielding case corresponds to violation of V2.
The vector β is obtained by maximizing the log likelihood based on the Newton-Raphson
method.

For the passing case, no blocking line is created. For the yielding case, blocking lines are
created for V1 in a time period from the earliest possible time for V2 to enter the conflict
region to the latest possible time for V2 to leave the conflict region.
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4.3 Non-Conservatively Defensive Strategy

In this section, a non-conservatively defensive driving strategy (NCDS) is proposed for
urban autonomous driving scenarios, which is defensive to deal with potential threats to
guarantee safety, but not overly conservative to degrade driving quality.

Deterministic planner

In this section, a spatiotemporal trajectory planner in deterministic environments is
designed by adopting a modified receding horizon optimization framework [145], which is
solved by sequential quadratic programming. qi = [xi yi]

T is the position vector of the
autonomous vehicle at time step i, where xi and yi depicts the position of the center of
the vehicle rear axle. Suppose Tp is the whole planning time horizon, t is the current time
step. Typically, the planner optimizes the motion within the whole time horizon qt+1:t+Tp =[
qTt+1, q

T
t+2, . . . , q

T
t+Tp

]T
.

Note that the position vector qt is not the full state of the vehicle at time step t. The
full state st of the vehicle should contain at least two more position vectors backward,

that is st =
[
qTt−2, q

T
t−1, q

T
t

]T
. Then velocity and acceleration can be obtained via backward

differences. For the optimization at each time step t, st is used as the initial value so that
the velocity, acceleration, yaw angle, as well as jerk and yaw rate at t+ 1 can be calculated.

The objectives contain five aspects to enhance driving quality and follow traffic rules.
Taking into account factors such as comfort, smoothness and fuel consumption, we penalize
accelerations, jerks, and yaw rates in J1, J2, and J3, respectively. The expressions can be
found in [145]. Position errors relative to the desirable traffic-free reference path are penalized
as

J4
[
qt+1:t+Tp

]
=

t+Tp∑
i=t+1

d (qi)
2 ,

where d (qi) is the distance from the position at the ith time step to the desirable traffic-
free reference path. In order to enhance time efficiency and avoid overspeed, velocity errors
relative to the desirable traffic-free reference velocity are penalized as

J5
[
qt+1:t+Tp

]
=

t+Tp∑
i=t+1

‖vlimitV (qi)− q̇i‖2 ,

where V (qi) is the unit tangent vector of the reference path for qi. After defining the five
aspects above, we can express the cost function of the optimization as a weighted sum, that
is,

J
[
qt+1:t+Tp

]
=

5∑
j=1

wjJj
[
qt+1:t+Tp

]
.
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In order to guarantee the feasibility of the planned trajectory according to the vehicle
kinematics and dynamics, we constrain curvatures and accelerations of the vehicle. The
curvature constraints can be written as

|κi| ≤ κmax, i = t+ 1, ..., t+ Tp. (4.1)

For dynamics constraints, [145] used a tire friction circle as the acceleration constraints, which
is shown in Fig. 4.3(a). Such constraints miss a key element of vehicle dynamics, which is
the limitation of engine traction when accelerating the vehicle. In fact, maximum traction
acceleration a+max is much smaller than the absolute value of maximum brake deceleration
a−max typically. Therefore, a better approximation of the vehicle dynamics constraints is
proposed in this chapter, which is shown in Fig. 4.3(b). In the forward-rearward direction,
the maximum acceleration is a+max, and the maximum deceleration is a−max. Therefore, the
radius of the acceleration circle is ra = (a+max + a−max) /2, and the distance from the origin to
the center of the circle is ca = (a−max − a+max) /2. Then the acceleration constraint circles can
be written as

‖q̈i + caV (qi)‖2 ≤ r2a, i = t+ 1, ..., t+ Tp. (4.2)

a
x

a
y

a
x

a
y

a
max

+

a
max

−

V q
i( )

(a) (b)

Figure 4.3: Acceleration circles

Collision avoidance for moving and static obstacles is another aspect of hard constraints
to consider in order to guarantee driving safety and traffic rule adherence. We will not dive
into the details since it is not the core scope of this chapter. Instead, we will only give a brief
description here. We use the bounds of moving obstacles obtained in the Section II, as well
as information on road structure and static obstacles to create lines for collision avoidance
checking. A vehicle body can be represented into several circles, and the created lines are
used to bound the centers of the circles. Therefore, the constraints can be expressed as

gk [cj (qi)] ≤ 0, i = t+ 1, ..., t+ Tp, j = 1, ..., ncir, (4.3)

where cj (qi) =
[
xcj(qi) ycj(qi)

]T
is the center of the jth circle at the ith time step, and gk [c]

is a linear combination of xc and yc with bias representing the kth line created.
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After defining all constraints and objectives, the planning problem in deterministic envi-
ronments can be written as

min
q

J
[
qt+1:t+Tp

]
,

s.t. Constraints (4.1)-(4.3).

Safety assessment under uncertainty

Safety is the top priority in autonomous driving, which should be guaranteed. How-
ever, conservative definitions of safety may lead to overcautious behaviors. In this chapter,
we exploit the feasibility of vehicle kinematics and dynamics to extend the safe set of an
autonomous vehicle, so that NCDS can be achieved.

The definition of safety should contain current safety and preview safety. Current safety
means that the current state is collision-free. Preview safety means that given the current
state as the initial state, a sequence of motion exists, which is feasible and collision-free for
a specific length of preview horizon T .

Suppose st is the current state of the autonomous vehicle, and E ∈ {pass, yield} repre-
sents the case. We first define current safe set under each case, that is,

Scurr
E = {st| qt satisfies (4.3)E} ,

where Constraints (4.3)E are the collision avoidance constraints constructed under the pass-
ing or yielding case. Next the preview safe set under each case is defined in terms of preview
horizon T , that is,

Sprev
E (T ) = {st|∃ qt+1:t+T s.t. (4.1), (4.2), and (4.3)E} .

Since the collision avoidance constraints do not need to be considered when the probabil-
ity of the case goes to zero, the overall safe set in terms of T under each case can be written
as

SE (T ) =

{
Scurr
E ∩ Sprev

E (T ) , P (E) > 0

U , P (E) = 0

where U is the whole state space.
Finally, the overall safe set (zone) of the autonomous vehicle in terms of T can be defined

as

S (T ) = Spass (T ) ∩ Syield (T ) .

Then st ∈ S (T ) can be interpreted as that safety is guaranteed within the preview horizon
T with state st.
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Planning framework under uncertainty

Next we will illustrate how the probability of each case, namely P (pass) and P (yield), can
be utilized in a unified trajectory planning framework under uncertainty so that NCDS can
be achieved. In the receding horizon optimization framework, although the vehicle trajectory
is planned in a relatively long preview horizon, the autonomous vehicle only executes the
first (few) motion(s) planned. To be ready to deal with varying cases in the future, different
long-term motions should be planned, but the short-term motion should be consistent for
different future cases since the motion executed at the next time step should be determined.

Therefore, the following position vector is created, which contains short-term motion
with horizon T1, as well as long-term motions for each case with preview horizon Tp. The
vector can be expressed as

q =

[
qTt+1:t+T1

,
(
qpasst+T1+1:t+Tp

)T
,
(
qyieldt+T1+1:t+Tp

)T]T
,

which is the position vector to be optimized in our planning framework under uncertainty.
Then for each case the position vector for the whole preview horizon is

qEt+1:t+Tp =

[
qTt+1:t+T1

,
(
qEt+T1+1:t+Tp

)T]T
,

in which E ∈ {pass, yield}.
Then the optimization problem can be formulated as

min
q

∑
E∈{pass, yield}

P (E) J
[
qEt+1:t+Tp

]
s.t.

(4.1) and (4.2) for qEt+1:t+Tp , ∀E ∈ {pass, yield} ,
(4.3)E for qEt+1:t+Tp , ∀E ∈ {pass, yield} .

to minimize the expected cost. The position vector for each case should satisfy feasibility
constraints, as well as the collision avoidance constraints for each case, respectively.

It can be easily proved that with preview horizon Tp, by executing the next position vector
qt+1 obtained, the state of next time step is in the safe set with Tp− 1 preview horizon, that
is,

st+1 ∈ S (Tp − 1) .

Therefore, the driving strategy based on the proposed planning framework is defensive if
potential threats exist.

Moreover, the driving strategy will not overreact to potential threats with low probability

since the cost for yielding case J
[
qyieldt+1:t+Tp

]
only minimally influence the total cost. In fact,

the long-term motions under each case are voting as part of the cost function to decide the
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short-term motion to execute at the next time step. The voting outcome depends on the
probability of each case. Decision-making is incorporated in the planning framework, and
the final decision is not made immediately until it needs to be. This is the reason why the
strategy is not conservative.

4.4 Illustrative Examples

In this section, examples are shown to illustrate the capability of the proposed planning
framework to achieve NCDS. We used the two-way-stop scenario in Fig. 4.1 to show how
the probabilistic threats were handled. The logistic regression model described in Section II
B and trained by the empirical data was used to obtain P (pass) and P (yield), which was
updated at every time step. We also created static obstacles invading the travel lane of the
host vehicle to test the collision avoidance capability and smoothness with lateral motions.

The sampling time of the receding horizon optimization is h = 0.25 s. The horizon of
planning at each time step is Tp = 4 s. The short-term horizon is T1 = 0.5 s. Rectangle was
used to represent the vehicle body. vlimit = 10 m/s, κmax = 0.2 m−1, a+max = 4 m/s2 and
a−max = 8 m/s2.

First a sequence of violation motions in our dataset was used to test the defensive ca-
pability of the planning framework and corresponding results are shown in Fig. 4.4. When
the violating vehicle was relatively far away from the stop bar, P (pass) was still as high as
0.9806. However, as the distance becomes smaller but the velocity was still high and there
was hardly any deceleration, P (pass) went down rapidly at each sample point as

[0.8496, 0.3801, 0.0594, 0.0049, 0.0003, 0, 0, ...] .

The planned motions and velocity profiles at the first four time steps are shown in Fig. 4.4
with corresponding timestamps and probabilities. The final executed motions and velocity
profiles are shown in Fig. 4.6(a).

The results proved several aspects of capabilities of the planning framework. First, the
trajectory was very smooth even with lateral motions, and the speed did not exceed the
speed limit. Also, collision avoidance and feasibility were guaranteed within the preview
horizon. Moreover, the vehicle tried to keep at the center of its lane.

By comparing the planning results with different probabilities, we can explain the prin-
ciple of our planning framework intuitively. In the velocity profiles, the black lines are the
short-term motions which will be executed for the next time step. The blue line represents
the long-term motion under the passing case and the red line corresponds to the yielding
case. When P (pass) is close to 1, the planner tends to keep the current speed which increases
the cost under the yielding case. When P (pass) becomes smaller, the planner tends to slow
down and the deceleration is higher which increases the cost under the passing case.

Next a sequence of stop motions in our dataset was used to test the non-conservative
capability of the planning framework. The probabilities at sample points were

[0.9696, 0.9992, 0.9999, 0.9998, 1, 1, ...] .
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(a) t=0, P(pass)=0.9806

(b) t=0.25 s, P(pass)=0.8496

(c) t=0.5 s, P(pass)=0.3801

(d) t=0.75 s, P(pass)=0.0594

Figure 4.4: Planned motions and velocity profiles at the first four time steps under yield case
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t=0.5 s, P(pass)=0.9992

Figure 4.5: Planned motions and velocity profiles at one step under pass case

When the vehicle was relatively far away from the stop bar, the high speed made P (pass)
a little smaller than 1, which imitated the threat with low probability. As it started to
decelerate, the probability went to 1. The planned motions and velocity profiles at one
step are shown in Fig. 4.5. with corresponding timestamp and probability. The final
executed motions and velocity profiles are shown in Fig. 4.6(b). In the results we can see
that the potential threat with very low probabilities does not influence the speed of the
vehicle meaningfully, which makes the strategy non-conservative. However, safety is always
guaranteed since the long-term motion under yielding case ensures safety at each time step.

(a) Yielding case (b) Passing case

Figure 4.6: Executed motions under each case
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4.5 Chapter Summary

A unified planning framework under uncertainty was proposed in this chapter for urban
autonomous driving, which can achieve NCDS for various kinds of scenarios. Based on the
deterministic planner designed, as well as the probability under each possible case obtained
by behavioral modelling, trajectories were planned to avoid overcautious behavior and to
guarantee safety via defensive behavior. Two-way-stop intersection was used as an exemplar
scenario to show the capabilities of the proposed planning framework. The results demon-
strated that based on the proposed planner, the autonomous vehicle can guarantee safety
even when others are violating traffic rules, and the host vehicle does not overreact to threats
with low probabilities. For future studies, various urban driving scenarios will be used to
test the capabilities of the proposed planning framework to achieve a driving strategy which
is defensive, but not overly conservative.
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Chapter 5

NCDS Intuitions, Extensions and
Experiments

5.1 Integrated Decision and Planning Framework

The proposed non-conservatively defensive strategy (NCDS) is an integrated decision
and planning framework under uncertainty, instead of a hierarchical architecture making a
definite decision first then planning the motion accordingly. As shown in Fig. 5.1, NCDS
combines a decision network and a motion planner with hard constraints.

A decision network maximizes the expected utility over the decision a, that is,

max
a

∑
E

P (E|z)U [a,E],

where z is the observed feature of the environment, E is the future case, and U [a,E] is the
utility function. The conditional probability of a future case given the observed feature,
P (E|z), can be obtained from the prediction or perception models.

An arbitrary motion planner with cost function J [q] and feasibility constraints f(q) ≤ 0
and safety constraints g(q) ≤ 0, that is,

min
q

J [q] ,

s.t.
f(q) ≤ 0 (feasibility)

g(q) ≤ 0 (safety).

can be incorporated into the framework with the decision network. We provided an ex-
ample of optimization-based motion planner in Chapter 4 and its integration with a deci-
sion network. However, such framework can incorporate different motion planners such as
search-based or sample-based planners. In this chapter, experimental results are provided
by combining decision networks and search-based or sample-based planners.
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    (decision)

      (case)

      (feature)

      (utility)

Decision network Motion planner

+

Figure 5.1: An integrated decision and planning framework under uncertainty.

Moreover, a more general formulation of the framework is provided to illustrate the geo-
metrical intuition. Suppose qs denotes the short-term planned motions for the autonomous
vehicle, while qly and qlp correspond to the long-term planned motions for “yield” and “pass”
cases, respectively. Then the optimization problem can be formulated as

min
qaug

P (pass|z) J [qpass] + P (yield|z) J [qyield]

s.t.

f(qpass) ≤ 0

f(qyield) ≤ 0

gpass(qpass) ≤ 0, if P (pass|z) > ε

gyield(qyield) ≤ 0, if P (yield|z) > ε,

where

qaug =
[
qTs , q

T
ly, q

T
lp

]T
is the augmented decision variable, and

qpass =
[
qTs , q

T
lp

]T
,

qyield =
[
qTs , q

T
ly

]T
.

5.2 Geometrical Intuition

The cost function J can be non-convex, and the inequality constraints f(q) ≤ 0 and
g(q) ≤ 0 can be highly nonlinear and non-convex according to our design in Chapter 4 to
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Figure 5.2: Geometrical intuition for NCDS with a unified and convex cost function.

take into account practical factors. However, we would like to provide intuitive explanations
from geometrical perspectives on how the probabilities obtained from the perception or
prediction modules can reshape the cost function and the short term planned motions to be
executed for the next few time steps. Therefore, we simplify the cost function to be convex
and the constraints to be linear. Also, the subspaces for qs, qlp and qly are one-dimensional
so that they can be easily visualized.

In Fig. 5.2 (a), the cost J [q] in (qs, ql) space is visualized with contours. The grey line
represents the safety boundary for the yielding case, and the feasible set is on the right-hand
side. We simplify the cost function to be quadratic and the boundary to be linear for easier
representation.
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If NCDS is not introduced, the potential threat (infeasible set) will be considered as a
deterministic infeasible set. The deterministic motion planner will directly find the local op-
tima as the optimal motion for yielding case in Fig. 5.2 (a), which is a relatively conservative
option (slow down immediately).

On the other hand, if the integrated decision and planning framework with NCDS is
introduced, an augmented space (qs, qly, qlp) is constructed. We assume that both of the
subspaces (qs, qly) and (qs, qlp) share the same cost function, which is compatible with what
we have illustrated in Chapter 4. The safety boundary is active only for subspace (qs, qly),
and in subspace (qs, qlp) there is no such threat.

Then two cost functions can be obtained for cost J [qs] as shown in Fig. 5.2 (b). We
can project the cross section of the cost and safety boundary plane onto the (J, qs) plane, so
that a yielding cost (grey curve) can be formed, as shown in Fig. 5.2 (b). It represents the
optimal cost obtained given a specific qs in the feasible set. Then without considering the
safety boundary for the passing case, we can obtain the passing cost (green curve) in Fig.
5.2 (b), which is the optimal cost obtained given a specific qs.

Finally, the probabilities from the prediction or perception modules are utilized to reshape
the cost function into an expected cost (black curve) in Fig. 5.2 (b), which is a weighted
sum of the passing and yielding cost. When the probability (weight) of the yielding case is
much higher than that of the passing case, the optima in terms of the expected cost will
be very close to the optima in terms of the yielding cost, which is relatively conservative.
On the other hand, if the risk (probability/weight of the yielding case) is extremely low, the
short-term planned motions will be very similar to the planned motions of the passing case
to avoid over-cautious behavior. Most importantly, the obtained q∗s will always guarantee
that we can find a q∗ly within the feasible set so that collision can be avoided.

Similar intuition can also be achieve for non-unified and locally convex cost with non-
convex feasible set as shown in Fig. 5.3. We also provided several toy examples on how two
quadratic functions are reshaped by probabilities (weights) to form an overall (expected)
cost in Fig. 5.4.

5.3 Experimental Setup

Vehicle platform

We utilized the test vehicle of Berkeley DeepDrive to conduct experiments. The test
vehicle is shown in Fig. 5.5. We implemented an extended Kalman filter to estimate the
states of the vehicle by fusing the information from DGPS and IMU. A model predictive
controller was designed for the lateral control, and we used the PID controller integrated in
the vehicle system for longitudinal control. Then the decision and planning framework we
designed can be implemented on the vehicle platform.
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Figure 5.3: Geometrical intuition for NCDS with separated and locally convex cost function.

Predictor

We utilized the predictor proposed in [109]. It is a prediction framework based on dynamic
Bayesian network incorporating vehicle kinematics and driver model without relying on data.
The model is relatively stable and highly generalizable in different scenarios.

Experiment field and scenario

We used the test field in Richmond Field Station for our experiments. The vehicle ignored
the road structure and objects in the real test field and was placed on a virtual map from
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Figure 5.4: How probabilities reshape the cost functions.

Figure 5.5: Test vehicle.

real-world scenario, which is from the INTERACTION dataset [137]. The scenario is shown
in Fig. 5.6. It is a roundabout with several entrance. The test vehicle came from the very left
branch in the figure, and interact with a vehicle in the roundabout holding the right-of-way.

5.4 Extension to Graph-Search-Based and

Sample-based Planners

As stated in Section 5.1, the proposed NCDS can take into account an arbitrary motion
planner with cost and constraints. Optimization-based planner used in Chapter 4 is not
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Figure 5.6: Real-world roundabout scenario for experimental test.
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Figure 5.7: Computation time statistics of the NCDS with graph-search-based planner.

a desirable solution to achieve real-time computation for autonomous vehicles. Therefore,
we combined a graph-search-based planner proposed in Chapter 2, as well the sample-based
planner in [43] with decision network to achieve NCDS in real time.
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Passing caseVelocity Profile

Yielding case

t = 9.94s, P(yield|z) = 0

Figure 5.8: Planned motions at one time step when the probability of the case for the autonomous
vehicle to yield is 0.

Graph-search-based planner

The planning horizon was 5 s with passing and yielding cases considered. The statistics of
computation time is shown in Fig. 5.7. The upper and lower bound of the computation time
were 20.9 and 2.1 ms, while the average was 3.6 ms. The proposed integrated decision and
planning framework with the A* search planner is highly efficient for online computation.

The planned motions with corresponding probabilities can be found in Fig. 5.8-5.11.
In Fig. 5.8 and 5.9, we can see that when the predictor provided deterministic prediction
results for future cases, the planned motions were just the same as a deterministic planner
designed in Chapter 2.

When the probability was larger than our risk tolerance, but smaller than 1, as shown
in Fig. 5.10 and 5.11, there were one short-term trajectory with two long-term trajectories
planned. By minimizing the expected cost weighted by the corresponding probabilities,
the desirable short-term motion tended to form a long-term motion which is similar to the
optimal long-term motion of the case with higher probabilities. When the probability of the
yield case is relatively high in Fig. 5.10, the desirable short-term motion with the yielding
long-term motion formed a smooth speed profile. When the probability gets lower in Fig.
5.11, the corresponding speed profile became relatively jerky.
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Passing caseVelocity Profile

Yielding case

t = 9.94s, P(yield|z) = 1

Figure 5.9: Planned motions at one time step when the probability of the case for the autonomous
vehicle to yield is 1.

Sample-based planner

The trajectory candidates of a sample-based planner with NCDS is provided in Fig. 5.12.
The best long-term candidates for pass and yield cases are selected and the expected cost
of the short-term motion is then calculated. Finally, the short-term motion with the most
desirable expected cost is selected as the one to be executed for the next time step. The
planned motions at one time step with the sample-based planner can be found in Fig. 5.13.
The desirable short-term motion was relatively smooth when connecting with the long-term
motion of the yielding case since P (yield|z) was relatively high.

5.5 Chapter Summary

In this Chapter, the intuition of the integrated decision and planning framework was
provided. It was combined with graph-search-based and sample-based planners, and imple-
mented on a real vehicle with real-world scenarios and motions of other vehicles with non-
conservatively defensive strategy achieved. Highly efficient computation time was achieved
based these methods.



CHAPTER 5. NCDS INTUITIONS, EXTENSIONS AND EXPERIMENTS 64

Passing caseVelocity Profile

Yielding case

t = 10.07s, P(yield|z) = 0.5155

Figure 5.10: Planned motions at one time step when the probability of the case for the autonomous
vehicle to yield is 0.5155.

Passing caseVelocity Profile

Yielding case

t = 11.55s, P(yield|z) = 0.2934

Figure 5.11: Planned motions at one time step when the probability of the case for the autonomous
vehicle to yield is 0.2934.
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Figure 5.12: Trajectory candidates of a sample-based planner with NCDS.

Passing caseVelocity Profile

Yielding case

t = 3.95s, P(yield|z) = 0.6388

Figure 5.13: Planned motions at one time step with a sample-based planner.
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Part III

Interactive Prediction and Planning
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Chapter 6

Formulation and Representation for
Prediction

6.1 Introduction

The behavior of traffic participants is full of uncertainties in the real world. Autonomous
vehicles need to well estimate such uncertainties to increase driving quality (time-efficiency,
comfort, etc.) and safety level for the decision-making and motion planning. To drive safely,
autonomous vehicles should predict possible intentions and motions of other road partic-
ipants, and avoid collisions accordingly. To enhance driving quality, autonomous vehicles
should take threats of high probability seriously, yet not overreact to threats of low proba-
bility. Therefore, probabilistic intention and motion predictions are inevitable for safe and
high-quality decision-making and motion planning for autonomous vehicles.

Most of the research efforts on probabilistic prediction [71] were focused on prediction
algorithm design for specific scenarios. Some recent works addressed incorporating prior
knowledge to construct prediction frameworks which can deal with a variety of scenarios
[108][36]. Solutions for problem formulation and motion representation simplification were
often arbitrarily adopted, which lacks sufficient investigation and solid foundation.

Problem formulation

The variation of the assumptions and settings for the input and output of the prediction
algorithm can significantly change the forms of the input and output of prediction algorithms.
It is hard to compare algorithms with different problem formulations due to the viewpoint
and interaction-involvement of the input, as well as the number of predicted entities and
motion representation of the output. Such variation can also completely change the problem
complexity, as well as model practicability for decision-making and planning of the host
vehicle.

Many probabilistic prediction methods have been proposed based on neural networks
(NN) [93][86][51], as well as probabilistic graphical models (PGM) [28] such as particle filter
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[47][73] and Bayes net [108]. All the aforementioned literatures formulated the prediction
problem to predict the distribution of future motions of an entity given the historical mo-
tions of relevant participants in the scene. However, solving such a problem cannot provide
sufficient and accurate predictions for highly interactive driving scenarios. When several
entities are closely interacting with each other in a specific scenario, the future motion of
the host autonomous vehicle can significantly impact the motion of its surrounding entities.
Therefore, like human drivers, autonomous vehicles should always ask “what if I take this
action” during interactions. Recently, prediction methods based on inverse reinforcement
learning (IRL) [105] were proposed to tackle reaction prediction problems. However, only
optimal motions were provided in IRL, which makes it deterministic. Therefore, the main
stream paradigms for prediction, such as NN, PGM and IRL, should be modified to solve
probabilistic reaction prediction problems for highly interactive driving scenarios. For meth-
ods except for IRL, approximating the (situational) joint distribution [74][50] [63][70] of the
motions of several entities is typically much easier than approximating the reaction distribu-
tion. Therefore, we should also provide the transformation between situation and reaction
predictions.

Motion representation simplification

Indicators are commonly used to simplify the motion representation to enable the proba-
bilistic description of the predictions since the original space of trajectories can be extremely
high with continuous variables. The representation of future motions should be homogenized
so that same indicators are used for comparing the predicted distribution and the ground
truth to make the evaluation metric meaningful. Motion patterns such as route [62] and pass-
yield [28] patterns, as well as spatiotemporal representations such as prototype trajectory
[67] and reachable set [6], were used as indicators, which need to be summarized.

Intention is one of the most common indicators for simplification. However, the meaning
of “intention” can be twofold, namely, original desire and executed motion pattern. In highly
interactive scenarios, an entity may not be able to achieve its original desire due to the motion
of others. In fact, the decision and planning module checks the potential collision with others
according to their possible motions to execute, but not the original desire. Moreover, the
original desire cannot be labeled as the ground truth in datasets. Instead, only the executed
motion patterns can be labeled. Therefore, the difference between pattern and desire should
be clarified.

6.2 Survey on Problem Formulation

Suppose xi is an input observation in Figure ??, which contains the extracted features
from historical motions in the dataset with map context. ŷi denotes a representation of the
future motion of the predicted entity in the prediction algorithm corresponding to xi. yi is
the ground truth of the future motion from dataset homogenized to the same form of ŷi. X



CHAPTER 6. FORMULATION AND REPRESENTATION FOR PREDICTION 69

and Y are the corresponding random variables. Then the problem is to design prediction
algorithms so that the predicted distribution p(Y |X) can best approximate the distribution
in the dataset q(Y |X). Note that typically q(Y |X) can only be obtained or represented by
ground truth data points (xi, yi). There are several variations of the original problem by
changing the input and output of the model.

Input variation 1: viewpoint

An important variation of the observation input is the viewpoint. The main distinction
for different viewpoints lies in occlusions, such as whether the surroundings of the predicted
entity is occluded to the prediction module, and whether the predicted entity itself is oc-
cluded.

Bird’s-eye view (host prediction)

The viewpoint is a bird’s-eye view when the surroundings of a predicted entity are fully
observable. An algorithm designed with such viewpoint is actually predicting the motion of
a host vehicle (first-person viewpoint), since all the adjacent entities can be assumed to be
fully observable from the viewpoint of the host vehicle. The most representative bird’s-eye
view vehicle motion dataset is the NGSIM dataset, which was utilized by many recent works
on probabilistic prediction [72][93][28][86].

Local view (surrounding prediction)

The viewpoint is a local view when the surroundings of a predicted object are partially
observable due to occlusions. An algorithm designed with such viewpoint can be used to
predict the motion of a surrounding vehicle (third-person viewpoint). Although the data
used in many existing works were collected in local view, probabilistic prediction with partial
occlusion has not been sufficiently investigated by researchers yet. It is possible to take into
account the uncertainty caused by occlusion via using the raw sensor data as the input [69]
or constructing noisy measurement input [73].

Blind view (occluded entity prediction)

The predicted entity can also be partially or fully occluded by vehicles or buildings, which
leads to a blind view. Algorithms designed with such viewpoint can provide prediction for
blind corner decision-making [48][85][133] or occluded object tracking [34].

Input variation 2: interaction

Another input variation is interaction. The main distinction lies in whether the behavior
of the predicted vehicle is influenced by the surrounding entities. Another distinction is
whether there is a decision-maker asking “what if my motion is like this in the future”.
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Independent prediction

The “maneuver-based” prediction model was defined in [71] as the behavior of the pre-
dicted vehicle is independent from others. Since the word “maneuver” was used in some
literatures for behaviors influenced by others, we use independent prediction to describe the
same problem.

Interdependent prediction

The “interaction-aware” prediction model was defined in [71] when the behavior of the
predicted entity is influenced by others. In this chapter we emphasize whether the behav-
ior is impacted by historical or future motions of the surroundings. When only historical
surrounding motions are used as the input, the problem can be defined as interdependent
prediction, namely, the motions of the entities are only historically interactive.

Reactive prediction

From the host vehicle decision-making and planning perspective, the most desirable pre-
diction for a highly interactive scenario is an algorithm that can answer the question “what if
my motion is like this in the future”. Therefore, we define reactive prediction as the problem
to obtain the algorithm whose input can take into account the future motion of a host vehi-
cle or a pattern (simplification) of the motion, and provide the distribution of the predicted
entity accordingly.

Output variation 1: number of predicted entities

The number of predicted entities as the output can change the formulation of the pre-
diction problem.

Single-entity prediction

Most of the recent works are focused on single-entity prediction, where the future behavior
of only one entity is provided.

Situation prediction

The combinatorial decision and planning [11] of the host vehicle may strongly depend
on the possible behavior of several entities as a group in complicated scenarios. However, it
is hard to directly combine the predictions of single entities since the future motions may
be exclusive. Instead, situation prediction [63][70] can provide the joint distribution of the
motions of surroundings.
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Output variation 2: motion representation

The original and intuitive representation of predicted motion is to use continuous tra-
jectories. However, due to the high dimension and difficulty in describing the distribution
for continuous random variables, the motion representation is often simplified in order to
describe the probability distribution for complicated scenarios. Detailed discussion on rep-
resentation simplification is provided in Section 6.3.

6.3 Survey on Representation Simplification for

Prediction

As discussed in Section 6.2, the representation of long-term motions is usually simplified
by indicators since it is intractable to directly use continuous trajectories to describe the dis-
tribution of predicted motions in complicated scenarios. In this section, the most commonly
used indicators are categorized as continuous motions, motion patterns or spatiotemporal
indicators. We also categorize motion patterns according to the hierarchy from decision
and planning perspective. Moreover, the spatiotemporal indicators are discussed based on
whether motion patterns are considered.

Continuous motions

A sequence of positions and yaw angles [130], as well as velocities [28] and accelerations
[86][72] are typically used as the continuous motions. Such representation is relatively more
applicable in car following [86][128][123] and ramp merging [72] [28][29] scenarios, where
only longitudinal motions need to be considered. When the preview horizon is relatively
long, it is intractable for a model to directly output the distribution of long-term motions.
Instead, the models can output the distribution for one step look ahead, then structures
such as Bayesian filtering [73][130][120] and long short-term memory (LSTM) [86][3] can be
employed to propagate the motion to the long-term future.

Motion patterns with hierarchical categorization

For decision-making and planning of the host vehicle, the destination to reach is the
first to be considered. A corresponding route can be planned offline, which is typically
independent from the situation encountered in real time. Then the local decision-making
and planning module can deal with the specific situation, such as whether to pass a conflict
region before or after another entity. Such a hierarchical architecture can also be applied for
prediction, namely, the route pattern and pass-yield pattern are hierarchical. One example
for such hierarchy is predicting potential right turn with pedestrian yielding at an intersection
[76], in which route patterns were turn right and go straight, and the pass-yield patterns were
go and stop for straight, and turn and yield for turn right. Another example is predicting
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routes and right-of-way at a four-way-stop intersection [127]. The route patterns were turn
left/right and go straight, and the pass-yield pattern was the right-of-way at intersections.

Moreover, there are also subtle motion patterns which cannot be defined as route or
pass-yield patterns, such as slow down, go as expected, accelerate, etc. A comprehensive
example for the hierarchy of route, pass-yield and subtle patterns is predicting potential
left turn with proceeding and oncoming vehicles at an intersection [64]. The route patterns
were go straight and turn left. The pass-yield patterns were go in front and yield for the
oncoming vehicle when turning left. The subtle patterns were free drive and influenced for
the proceeding vehicle, and full stop and slow down for yielding oncoming vehicle when
turning left.

Route pattern

Route pattern (intention) denotes the discrete pattern shaped by the spatial road struc-
ture, such as road branches, lanes and parking lots. It depicts which parking lot the entity
wants to occupy, or which branch of road it wants to take at nodes such as intersections,
roundabouts, exit ramp, etc. Dedicated lanes (left/right turn only) at these nodes are deci-
sive in estimating the intention. Route pattern were estimated for vehicle [93] and cyclists
[96] with probabilistic models. Also, probabilistic models for route patterns of vehicles at
intersections were also proposed along with other motion patterns [76][64][62][127].

Pass-yield pattern

Pass-yield pattern depicts which entity occupies the conflict region first when the po-
tential routes of two entities have an overlap (conflict). Similar concept was also used in
cooperative driving as homotopy class [40]. Such pattern was predicted for ramp merging
[28], pedestrian yielding [76], oncoming vehicle yielding for left turn [64], four-way-stop right-
of-way [127], gap selection for lane change [51] etc. The patterns such as pass or stop during
yellow light, red-light violation or stop [54], and stop or violate the stop sign [26][134] can
also be categorized as pass-yield pattern.

Subtle pattern

Subtle pattern denotes the motion patterns which cannot be explicitly categorized via
spatial road structure or conflict region for two entities. For example, there can be sev-
eral motion patterns for vehicles near stop signs such as conservative/normal stop and
rolling/moderate/severe violation [26], which can be clustered via unsupervised learning.
The longitudinal motions of vehicles can be simplified as acceleration, deceleration and ex-
pected behavior pattern [63]. In [64], the motion of the predicted vehicle impacted by the
proceeding one was simplified as free drive and influenced, and the left-turn motion yielding
the oncoming vehicle was simplified as full stop and slow down.
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Spatiotemporal indicators

Motion patterns can be incorporated in the spatiotemporal domain by two kinds of
indicators, namely, prototype trajectory and reachable set. The spatiotemporal domain can
also be represented without considering any motion patterns and semantic meaning by using
occupancy grid.

Prototype trajectory

The terminology “prototype trajectory” was defined in [71] for one or a set of trajectories
which can represent a motion pattern. It was employed in [127][55][67] to represent possible
motions.

Reachable set

Reachable set is a widely used motion representation describing the area which may be
occupied by the body of an entity. Stochastic reachable set [6] can represent the probabilistic
prediction and take into account information from motion patterns. It is also more direct to
indicate drivable area for the planning module.

Occupancy grid

Occupancy grid divides the spatial domain [60][41], or other domains of motion variables
such as velocity [41][62], into discrete grids evenly. It can provide a uniform representation
of the environment regardless of the number of entities in the scene, which is favorable for
learning models such as deep neural networks [60][41], and for complex scenarios with a
number of entities interacting with each other.

Finally, we provide Fig. 6.1 as a summary of the survey on problem formulation and
representation simplification.

6.4 Representation Simplification for Prediction

It is intractable to approximate the distribution of long-term trajectories, which are
continuous random vectors of motions with high dimensions. Therefore, the representation
of future motions is typically simplified by using discrete indicators. In this section, we
first clarify the distinction between desires in human mind and executed motion patterns.
The clarification explains why “intention” is not suitable to be the simplification indicator.
Then we illustrate how to construct the spatiotemporal representation of potential motion
patterns.
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Figure 6.1: Brief summary of the formulation and representation survey.

Clarification of desire and pattern

In literatures, terminologies such as “intention”, “maneuver” and “behavior” are often
used for motion clusters. However, the meaning of motion clusters can be twofold. One is
“motion pattern”, which clusters the motions executed by the entities, and it can be observed
or labeled in the motion data to serve as the ground truth. The other is “motion desire”,
which is the motivation inside the mind of humans, and it cannot be fully observed or labeled
in the motion data. In fact, the desire in the human minds can rapidly change from time to
time with the dynamic behavior of surroundings.

In previous works, using the terminologies such as “intention” is ambiguous to express
the distinctions between pattern and desire. It is acceptable to mix pattern and desire
for route since the final desire of the entity related to route is typically not influenced by
surroundings so that the desire in the data can be time-invariant. However, for pass-yield
and subtle patterns, the corresponding desires may jump from one to another rapidly, and
the surroundings may restrict the predicted entity to achieve its desire, especially in highly
interactive scenarios. Therefore, the ground truth cannot be labeled for such desires in the
data, and only motion patterns can be labeled. We will use the following example of ramp
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Figure 6.2: Trajectories of the merging (red), target (blue) and front (cyan) vehicles in a ramp
merging scenario.
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Figure 6.3: longitudinal positions over time of the merging (red), target (blue) and front (cyan)
vehicles in a ramp merging scenario.

merging on I-80 in NGSIM dataset [61] to explain.
Figure 6.2 illustrates the trajectories of a ramp merging scene with a preceding and a

following target vehicle on the target lane, as well as a merging vehicle on the ramp. The
merging vehicle tried to merge into the gap between the preceding and target vehicle, but
the target vehicle refused to yield to create a gap. The merging and target vehicles were
driven side by side in parallel for a long period. After an adversarial interaction procedure
for around 20 seconds, the target vehicle enlarged the gap to enable the merging vehicle to
cut in successfully. The procedure in spatiotemporal domain can be found in Figure 6.3 with
the longitudinal positions of each vehicle at each time step.

In fact, it is impossible to obtain the ground truth of the desires in the human mind at
each time step. For instance, the gap became larger during 5-7 s and went back to a small
one during 7-9 s. The desire in the mind of the target vehicle driver on whether to yield
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the merging vehicle can change from time to time. Also, it is unclear whether the driver of
the merging vehicle hesitated or even decided to give up and merge into the gap behind the
target vehicle around 20-22 s since it was approaching the end of the ramp.

In conclusion, we can only observe the executed motion (pattern) in the dataset as the
ground truth for highly interactive scenarios. “Intention” representing desires in human
mind is not an appropriate indicator to simplify the representation since there is no ground
truth to compare. Therefore, we use executed motion patterns in this chapter to simplify
the representation.

Motion pattern in a spatiotemporal domain

As was reviewed and summarized in [138], motion patterns can be categorized hierar-
chically into route, pass-yield and subtle patterns in various kinds of scenarios. In different
driving scenarios with different situations of the entities, the choice of the patterns at each
level can be completely different. In general, we suppose there are M possible motion pat-
terns for the predicted entity in a specific highly interactive driving scenario. ŝij represents
the jth future motion pattern of the ith entity. Then the distribution to be approximated
can be written as

P (ŝ1j |q0:N , ŝ0), j = 1, 2, ...,M. (6.1)

In [138], two spatiotemporal representations were summarized, namely, prototype tra-
jectory and reachable set, which can incorporate the generated motion patterns. In this
chapter, we adopt prototype trajectory as the spatiotemporal representation. The main
purpose is to make it convenient for the methods and algorithms in Section 7.1 to obtain the
corresponding probabilities since the outputs of those algorithms are trajectories. Suppose
the generated prototype trajectory corresponding to motion pattern ŝij is expressed as q̂ij.
Then we can use the normalized probabilities of

p(q̂1j |q0:N , q̂0), j = 1, 2, ...,M. (6.2)

obtained from the distribution generated by learning methods to calculate (6.1).
For a given motion pattern, we modify the motion planning approach proposed in Chap-

ter 2 to generate trajectories. The framework proposed in Chapter 2 can deal with various
kinds of driving scenarios, and generate smooth, feasible and collision-free (if necessary)
trajectories. The computation is extremely fast since only simple A* search and quadratic
programming (QP) are involved. The approach is suitable for both online prediction genera-
tion, as well as offline evaluation of trajectories for which a large set of predicted trajectories
need to be generated.
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6.5 Unified Problem Formulation for Interactive

Prediction

In this section, the problem to be solved by probabilistic reaction prediction is formulated.
Suppose qi and q̂i represent the historical and (predicted) future motions of the ith entity,
respectively. The host vehicle corresponds to i = 0, and the predicted entity corresponds to
i = 1. Suppose there are N entities to be considered around the host vehicle in the scene
at the current time step. Then the original problem which is typically tackled in existing
literatures is to obtain desirable models to approximate the conditional probability density
function (PDF)

p(q̂1|q0:N). (6.3)

However, what is required by the prediction in highly interactive scenarios is far beyond
perfectly solving the original problem. When the driving scenarios are highly interactive,
the host autonomous vehicle cares about not just the future motion of the predicted entity
condition on the historical motions of all relevant entities. The reaction of the predicted
entity given different future motions of the host vehicle should also be taken into account.
Then the conditional PDF to be approximated for reaction prediction can be written as

p(q̂1|q0:N , q̂0), (6.4)

where q̂0 is the future motion of the host autonomous vehicle.
From the perspective of designing learning algorithms, approximating the reaction dis-

tribution (6.4) is much harder than approximating a situational joint distribution of the
interaction pair. A situation distribution to be approximated can be written as

p(q̂0, q̂1|q0:N), (6.5)

and it is easy to transform (6.5) to (6.4) since

p(q̂1|q0:N , q̂0) =
p(q̂0, q̂1, q0:N)

p(q0:N)p(q̂0|q0:N)
=

p(q̂0, q̂1|q0:N)∫
q̂1
p(q̂0, q̂1|q0:N)

.

It means that we can design learning algorithms to learn how to predict the joint distribution
of the motions of the predicted entity and the host vehicle. Then we can transform it into
reaction predictions.

6.6 Chapter Summary

In this chapter, problem formulation and motion representation of probabilistic prediction
methods were reviewed. Based on the review, it was found that different paradigms of
probabilistic prediction methods can be more suitable for the formulation of either reaction
prediction or situation prediction. Then the mathematical transformation between the two
formulations are provided so that a unified framework can be provided for the formulation
of various paradigms of probabilistic prediction algorithms.
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Chapter 7

Interactive Prediction and Planning
Methods and Interface

With the unified framework of formulation and representation constructed in Chapter 6,
different paradigms of probabilistic prediction methods are utilized to provide the predicted
distribution for the design of interface for interactive prediction and planning in this chapter,
as well as a fatality-aware benchmark in Chapter 8.

7.1 Methodologies

In this section, the methodologies to generate probabilistic reaction prediction results are
briefly introduced, including hidden Markov model (HMM) as probabilistic graphical model,
mixture density network (MDN) as deep neural network, and inverse reinforcement learning
(IRL) as planning-based prediction.

Hidden Markov model (HMM)

A hierarchical motion prediction framework is employed. It is essentially a cascade of a
situation inference module based on a group of hidden Markov model (HMM), and a motion
prediction module based on a group of Gaussian mixture model (GMM) corresponding to
each interaction outcome. The labeled trajectories of each potential situation are used to
train a HMM individually with the Baum-Welch algorithm, which is a variant of Expectation-
Maximization (EM) algorithm. The GMM is used to obtain the conditional distribution of
the actions of multiple interactive entities given the current state information.

At the inference stage, given a sequence of historical motion, we can obtain the likelihood
of the observation sequences for each HMM by the forward algorithm. Then the likelihood
values are normalized to obtain the posterior probability of each situation, which can be
written as pk

′
, where k′ = 1, ..., K, and K is the number of possible situations according

to the combination of pass-yield motion patterns [138]. For each GMM, we can obtain the
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probabilistic density for the jth prototype trajectory, denoted as fkj . Then the probability
of the jth prototype trajectory can be obtained by

P (ŝ1j |q0:N , ŝ0) =

K∑
k′=1

pk
′
fk

′

j

M∑
j′=1

K∑
k′=1

pk
′
fk

′

j′

. (7.1)

Mixture density network (MDN)

We use the mixture density network (MDN) [13] to obtain the joint PDF of the host
vehicle and other entities. Instead of learning a single output value using neural networks,
MDN is capable of predicting an entire probability distribution for the output using a Gaus-
sian Mixture Model (GMM). Given a set of input states and output actions of multiple
traffic participants, MDN can generate necessary parameters to formulate the conditional
probability of actions given states.

Given a sequence of prototype trajectory, the performed actions by the vehicle between
each state can be obtained. Then at each time step, we can forward the current state into
the MDN network and use the conditional distribution to get the likelihood of the action at
the given state. For each motion pattern and its corresponding trajectory sequence, we can
then multiply the obtained likelihood over the entire horizon and perform a normalization
to get the posterior probability for each situation.

Then the approximated distribution for the jth future motion pattern can be formulated
as:

P (ŝ1j |q0:N , ŝ0) =

Nm∑
n=1

wnφn(q̂1j |q0:N , q̂0)

M∑
j′=1

Nm∑
n=1

wnφn(q̂1j′ |q0:N , q̂0)
, (7.2)

where Nm denotes the total number of mixture components, wn is the mixing coefficient and
φ(q̂|q) is the kernel function.

Inverse reinforcement learning (IRL)

Inverse reinforcement learning allows us to learn the cost functions of human by observing
their behavior. We assume that all predicted agents are rational, and their cost function
along a motion trajectory q can be linearly parametrized as C(θ, q)=θT f(q) where f(q) are
features. We also assume that trajectories with lower cost are exponentially more probable
based on the principle of maximum entropy [143]:

P (q|θ) ∝ e−C(θ,q) (7.3)
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In the training phase, the goal of IRL is to find the optimal θ∗ that best explains the observed
demonstrations in terms of a set of selected features f(q). Mathematically, we need to solve
the following optimization problem:

θ∗(Q) = arg max
θ

∏
q̃∈Q

e−C(θ,q)∫
e−C(θ,q̃)dq̃

. (7.4)

where Q represents the set of demonstrated trajectories.
With θ∗, an exponential distribution family is established to approximate the distribution

of future trajectories. Different from approaches based on probabilistic graphical models and
neural networks, IRL directly generates the conditional probability defined in (6.4) instead
of generating the joint distribution over trajectories of the two interacting entities.

In the test phase, given a set of sampled motion patterns S, we can evaluate the normal-
ized probability of each motion pattern ŝ1j∈S via:

P (ŝ1j |q0:N , ŝ0) =
e−C(θ,ŝ1j |q0:N ,ŝ0)∑

s̃1∈S

e−C(θ,s̃1|q0:N ,ŝ0)
. (7.5)

More details on IRL-based probabilistic prediction can be found in [116].

7.2 Interface for Interactive Prediction and Planning

In Section 7.1, unified output of three paradigms of interactive prediction algorithms,
namely P (ŝ1j |q0:N , ŝ0) can be obtained, which is the distribution of reaction prediction. It
means that given the historical motions of all the relevant entities, as well as the future
motion of the host autonomous vehicle, we can obtain the probabilities of possible future
motions of the predicted entity.

In order to utilize such powerful tools for interactive prediction, we also need to design
the decision and planning framework correspondingly. The integrated decision and planning
framework with non-conservatively defensive strategy (NCDS) proposed in Part II has been
proved to be effective to deal with uncertainties from prediction modules. In this Section, we
will combine the three aforementioned paradigms of interactive prediction algorithms with
our decision and planning framework via a properly designed interface.

First, we need to choose the appropriate deterministic planner for the interface. The
future motion of the host autonomous vehicle should be provided as an input for the afore-
mentioned prediction algorithms. Then sample-based planner is the most proper choice since
the future motions of the host vehicle are already trajectory candidates generated.

We first generated several candidates for the short-term future motion of the host vehicle.
The k-th short-term motion candidate ŝ0,shortk has many future candidates. Then the future
motion candidates of the predicted entity are also generated, where the j-th candidate is
represented by ŝ1j .
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Figure 7.1: Driving simulator for human-in-loop test.

By calculating all the pairs of long-term motion candidates for a specific short-term
motion candidate with proper normalization, we can obtain P (ŝ1j |q0:N , ŝ0,shortk ). These prob-

abilities can serve as the weights for in the expected costs of ŝ0,shortk . Then we can choose
the best ŝ0,short according to the comparison of the expected cost, and execute it at the next
time step.

7.3 Experiments

We utilized a driving simulator shown in Fig. 7.1 to include a human driver in the loop so
that an interactive experiment can be conducted. The roundabout scenario in Fig. 5.6 in the
INTERACTION dataset [137] was used to construct the test scenario. The host autonomous
vehicle came from the very left branch in Fig. 5.6 and interactive with a vehicle driven by
the human driver using the simulator. Interaction pairs from the dataset were manually
selected as the training dataset for the aforementioned three prediction algorithms, namely,
MDN, HMM and IRL.

A screenshot of one time step of the interaction is shown in Fig. 7.2. The host autonomous
vehicle was entering the roundabout in the simulator running the interactive prediction
and planning algorithms. In this figure, MDN was used to generate predicted distribution.
The corresponding sampled speed profile is shown in Fig. 7.3. For the ego autonomous
vehicle, one desirable short-term future trajectory candidate corresponded to five long-term
candidates generated. There were also five long-term candidates generated for the obstacle
vehicle in the roundabout. Since the obstacle vehicle in the roundabout decelerated, the ego
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Figure 7.2: Scenarios to test interactive prediction and planning.

Figure 7.3: Sampled speed profile.

autonomous vehicle tended to keep the current speed to achieve efficient motion.
Another case is shown in Fig. 7.4 and 7.5 with an IRL predictor. The ego vehicle

accelerated since the obstacle vehicle decelerated. The long-term sample of the ego car in
Fig. 7.5 colored black served as a safety guarantee to make sure that the ego vehicle can
avoid a collision in case that the obstacle vehicle finally chose to accelerate.

The computational efficiency of the whole pipeline was relatively high. We were able to
guarantee 5 Hz with MDN and 10 Hz with HMM and IRL in the experiments.
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Figure 7.4: Scenarios to test interactive prediction and planning.

Figure 7.5: Sampled speed profile.

7.4 Chapter Summary

In this chapter, three paradigms of interactive prediction algorithms were introduced with
unified output for reaction prediction by utilizing the problem formulation transformation
proposed in Chapter 6. Then an interface was designed for interactive prediction and plan-
ning, which can incorporate all the different paradigms of predictors, as well as an integrated
decision and planning framework with non-conservatively defensive strategy. Human-in-loop
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experiments were conducted using a real-world scenario. The predictors were trained using
motion data from real world in the same scenario. Results showed the effectiveness of the
proposed interface.
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Part IV

Prediction Benchmark and Dataset
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Chapter 8

Fatality-Aware Prediction Benchmark

8.1 Introduction

Accurate prediction of the future motions of surrounding entities is a prerequisite for
autonomous vehicles to make decisions and plan motions under uncertainties [53][110][22]
that are safe with high driving quality. Probabilistic prediction is necessary since the human
behavior is full of uncertainties. The accuracy of generated prediction probabilities can
significantly impact the safety and driving quality of autonomous vehicles. As was stated
in [134], a desirable driving strategy of autonomous vehicles should be defensive to real
threats, but not conservative to threats of low probability. A fatal accident may happen if
the prediction algorithm ignores a real threat by mistaking its probability as zero, which
makes the driving strategy non-defensive. On the other hand, the decisions and motions
of autonomous vehicles can be very conservative if the prediction algorithm overestimates
the probability of a threat and generates false alarms. Therefore, accurate probabilistic
prediction is a key building block for safe and high-quality autonomous driving.

Evaluation metrics are required to measure the performance of predictions. Distance-
based trajectory similarity metrics were investigated and employed in [8][45][142][25]. Com-
prehensive reviews on distance-based metrics were provided and novel measures were pro-
posed in [12][98]. Distance-based metrics are well applicable to evaluate deterministic pre-
dictions. However, the evaluation of probabilistic prediction cannot be provided by using
distance-based metrics directly.

A variety of learning metrics were used to evaluate the performance of probabilistic
prediction models on whether the distribution in the dataset is well approximated, such as
area under the curve (AUC) [64], root mean square error (RMSE) [72], likelihood [93], and
Kullback-Leibler (KL) divergence [126]. Each of the metrics has its own limitations which
may lead to difficulties or misinterpretations to measure the performance of probabilistic
prediction. We need to choose a proper metric to measure the performance of prediction
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algorithms to approximate the data distribution.
The executed motion of a vehicle typically satisfies planning constraints on feasibility

(vehicle model) and safety (collision avoidance). However, small perturbations making a
trajectory infeasible or unsafe, can hardly make a large difference for learning and distance-
based metrics. The aforementioned problem has not been sufficiently addressed for evalua-
tion. It is also a concern for the decision and planning module whether accurate prediction
is provided timely with a sufficient preview horizon. Neither the learning nor distance-based
metrics can take into account these aspects.

Moreover, the purpose of probabilistic prediction is not limited to approximate the data
distribution. The prediction results are used online for decision-making and planning mod-
ules. Safe and high-quality motions are expected by adopting the prediction outputs. There-
fore, the evaluation metric should reveal the decision consequence due to the inaccurate pre-
diction, such as how non-defensive or conservative the planned motion would be, and what is
the fatality of the consequence. A fatality-aware metric for prediction is expected, which has
not been addressed in existing works. Also, when evaluating predicted motions of surround-
ing entities, we should also take into account prior knowledge such as vehicle kinematics and
dynamics, as well as rare collision in the real world. In fact, satisfying feasibility and safety
requirements is hard to achieve for many existing methods.

The main contribution of this chapter is to propose a fatality-aware evaluation metric
for probabilistic reaction prediction in extremely challenging driving scenarios with inter-
action. The proposed metric can reveal the fatality of prediction errors by considering the
criticality of the corresponding motion pair. Moreover, we utilize the unified framework with
homogenized problem formulation and motion representation proposed in Chapter 6, which
can facilitate the evaluation of different types of methods such as PGM, NN and IRL. We
implement these methods in highly interactive ramp merging scenarios, and evaluate the pre-
diction performances with the proposed metrics with analysis. We also provide a summary
of learning metrics, and address the crucial but omitted aspects on prediction evaluation
from the perspective of decision-making and planning, so that novel metrics can be inspired.

8.2 Survey on Evaluation Metrics

In many recent works, probabilistic prediction was regarded as a pure machine learning
problem, that is, to find a learning model which can best represent the distribution in the
dataset in the sense of some training metrics. However, distribution learned from data alone
for prediction is not sufficient to support high-quality and safe decision-making and planning.
In this section, the most commonly used learning metrics are summarized. Also, we discuss
potential metrics based on prior knowledge on planning constraints, and aspects of metric
construction which are crucial for decision-making and planning.
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Learning metrics

Typical classification and regression metrics are widely used to evaluate the performance
of learning models for probabilistic prediction. Despite the most intuitive metric, accuracy,
the following metrics are also widely used for evaluation of probabilistic predictions.

Receiver operating characteristic (ROC) curve

ROC curve is typically used to illustrate the performance of a binary classifier with
different thresholds of discrimination. The area under the curve (AUC) is often used as a
quantitive metric. ROC and AUC were employed to evaluate the classification performance
of intention estimation, such lane change [9] and intersection maneuvers [64][76], as well as
situation prediction [63].

Root mean square error (RMSE)

RMSE is one of the most widely used metric for regression evaluation. Some variations in
different literatures evaluate the performance from similar perspective, such as root-weighted
square error (RWSE) [86][72][126], mean absolute error (MAE) [9][60], Mean Error (ME) [96].
RMSE is mostly used to represent the errors of continuous motions between the (sampled)
prediction and ground truth, such as acceleration [128][1], velocity [86][72][126][62], as well
as position and distance [9][126][62]. A special implementation of RMSE is for evaluating
the error of discretized probability weighted by the corresponding occupancy grid distance
[60].

Likelihood

Likelihood is commonly used metric for training probabilistic models [86][72][60][28][68][120],
although it is not used as widely to evaluate the performance of the trained models since
the likelihood values are not well interpretable. Likelihood is used as an evaluation metric
in [96][126][93].

Kullback-Leibler (KL) divergence

KL divergence is a widely-used metric in machine learning field to measure discrepancies
between two probability distributions. It is used as an evaluation metric for probabilistic
prediction in [86][126]. KL divergence is also employed in [122] to assess the similarity of
data observation and provide the value of additional motion data.

Prior metrics

The decision-making and planning module of the host vehicle need to take into account
feasibility constraints according to vehicle kinematics and dynamics, as well as safety con-
straints for collision avoidance and hard traffic rules. The predicted motions have similar
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requirements as planned motions, although the requirements are not as strict. A small
perturbation of a trajectory may change it from a safe and feasible one to an unsafe or in-
feasible one, especially when the trajectory is near the constraint boundary. However, such
perturbation may not make a large difference on learning metrics or other distance-based
metrics. Therefore, in order to achieve a comprehensive evaluation of predicted motion dis-
tribution, prior metrics based on planning constraints should also be considered, which is
rarely mentioned in existing works.

Feasibility violation

Some prediction methods or frameworks can inherently guarantee feasibility. For in-
stance, [7] incorporated Rapidly-exploring Random Tree (RRT) into the prediction frame-
works so that the generated motions can be dynamically feasible. [81] incorporated kinematic
bicycle model into the recurrent network structure, which guarantees that the output of the
predictor satisfies hard constraints on vehicle kinematics. It is an ideal case if the generated
motions are sampled from obtained distributions via approaches with feasibility guarantee.
Otherwise, violation verification and evaluation are necessary, except for rare cases when one
can recognize a driver completely losing control of the vehicle.

Safety violation

The requirements on safety are different for prediction and planning. The planned mo-
tions for the host vehicle need to consider safety as the top priority, and try its best to
guarantee safety if possible. On the contrary, the most important aspect for prediction is
to be human-like. Violations to hard traffic rule (red light, stop sign, etc.) and collisions
between road users are not common in realistic human driving, but is not extremely rare.
Therefore, it is not appropriate to forbid all unsafe motions in predictions, but some obvi-
ously unrealistic collisions or violations should not be generated. Values of negative distance
headway and negative speed were employed in [86] to evaluate unrealistic motions generated.
Collision rate and average distances between the host and the closet merging cars are used
as the metric for safety violation and margin of the predicted motions in [28].

Decision-related metrics

The learning and prior metrics can help us evaluate how human-like the generated predic-
tion is. There are still several aspects to be considered to evaluate predictions according to
the consequences when the prediction is adopted by decision-making and planning modules.

Fatality

The consequential fatalities of different inaccurate or incorrect predictions can be com-
pletely different when they are adopted by the decision and planning module. The inaccuracy
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and incorrectness should not be treated equally in the metric. Fatality and criticality dif-
ferences should be revealed. It is also related to the safety concerns in Section 8.2, but in a
more comprehensive way.

It is crucial for the safety and driving quality of the host autonomous vehicle to survive
in the worst case (defensive driving strategy), yet not overreact to threats of low or zero
probability (non-conservative strategy) [134]. In order to achieve such a non-conservatively
defensive driving strategy, the decision and planning module requires the prediction module
to acquire the following two capabilities. One is to enhance defensiveness, namely, to provide
all possible future motions (completeness), including possible violations to the traffic rules,
and possible careless or dangerous behaviors, so that the host vehicle can drive defensively
to potential threats. On the other hand, conservatism should be reduced, that is, to provide
zero probability (or a safe to pass indicator) when the corresponding motion is impossible,
so that the host vehicle can proceed without hesitation. Similar evaluations were also [70]
as miss detection rate corresponding to defensiveness and false alarm rate corresponding to
conservatism.

Timeliness and preview horizon

Decision and planning module expect correct and accurate predictions to be provided
timely, especially for those causing potential fatal accidents. Correct and accurate predic-
tions are meaningless if such motion has already been completed or an accident is inevitable.
Therefore, time-to-event (TTE) [96] and time-to-intersections (TTI) [64] variables were used
as the horizontal axis with learning metrics as the vertical axis, so that the timeliness of ac-
curate predictions can be revealed. Distance-to-event variables were also employed in [127],
in which specific quantile, mean and standard deviation of distance until correct classifi-
cation (DCC) were used as metrics. [70] also addressed timeliness from threat estimation
perspective as time-to-collision when dangerous situation is correctly classified.

The length of the preview horizon is crucial for a motion planning module. Long-term
horizon is preferred for safety and driving quality. Accordingly, the predicted motion should
have the same horizon as required by the planning module. Therefore, the ideal case is to
provide the distribution of the predicted motion within a long-term horizon, and compare
the accuracy over the horizon length, as was illustrated in [36][9].

Computational cost

When a probabilistic method serves as an online prediction module, the host vehicle
requires it to provide results in real time. The computational cost should be considered as
a metric, especially when the size of the model is relatively large. Computational time was
provided in a few recent works [65] for comparison.
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8.3 Fatality-Aware Evaluation Metric

In this section, we address three aspects to obtain appropriate evaluation metrics. The
first is on whether the predicted motions satisfy safety and feasibility requirements based on
prior knowledge. Next is to select an appropriate baseline metric. Finally, we propose the
fatality-aware metric based on the baseline.

Prior knowledge

Based on our prior knowledge, the predicted motion of vehicles should at least satisfy a
simple kinematic model, and collisions should be extremely rare according to the statistics
of real-world driving. In other words, safety and feasibility should also be checked when
evaluating the prediction performance. However, it is a difficult task for algorithms based
on pure neural networks or probabilistic graphical models to satisfy feasibility and safety
constraints.

Since we are using the prototype trajectories generated in Section 6.4 to represent possible
motion patterns, it is relatively easy to make the generated trajectories satisfy the require-
ments on safety and feasibility. It can alleviate the requirements on safety and feasibility for
learning-based models, and additional verifications are not necessary.

Baseline metric

Existing works typically use metrics such as area under the curve (AUC), likelihood, root
mean square error (RMSE), and Kullback-Leibler (KL) divergence to evaluate probabilistic
predictions. In this subsection, we briefly discuss the deficiencies of each metric when it is
employed for evaluation of probabilistic predictions.

AUC is a metric which is typically used for binary classification, which is not inherently
designed to reveal the accuracy of the probabilistic distributions. Likelihood sufficiently
measures accuracy of the predicted probabilities or distribution for the ground truth data
points. However, it is not possible to indicate how bad the prediction is if high density is
generated for motions with low or zero probability.

RMSE measures the error between the ground truth and sampled trajectories from the
predicted distribution in Euclidean space. However, the Euclidean distance can be very small
between collision-free, critical and colliding trajectories, or between feasible and infeasible
trajectories. A small perturbation of the trajectory in Euclidean space can make it completely
different on whether or not the trajectory is collision-free or feasible. Also, RSME fails to
reveal the approximation performance for multimodal data [101].

KL divergence requires the description of the ground truth distribution, which is ex-
tremely hard to obtain in a high dimensional space. Estimation or approximation of the
distribution of the test data may not be executable with limited data points in the high
dimensional space of the motions.
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Therefore, we need an appropriate metric without the aforementioned deficiencies. Brier
score [17] is a metric measuring the accuracy of probabilistic predictions, which is widely used
in research fields requiring evaluation of probabilistic predictions, such as weather forecast. It
can evaluate the prediction performance directly from the ground truth data points without
estimated distribution of the test set. Also, the score can both reward high probability for
ground truth patterns and penalize overestimation of other patterns. By properly generating
motion patterns, the score can also avoid the problem introduced by using Euclidean space.

Suppose ŝ0g(k, Th) and ŝ1g(k, Th) are the ground truth motion pattern of the host and
predicted vehicle future motion with preview horizon Th for the kth sample in the test set
of data. The total number of samples is Ns. We define

Pj(k, Th) = P (ŝ1j(k, Th)|q0:N , ŝ0g(k, Th)).

We also define

Oj(k, Th) = O(ŝ1j(k, Th)|q0:N , ŝ0g(k, Th))

to represent the actual outcome (0 or 1) on whether the jth motion pattern corresponds
to the ground truth. According to the definition of Brier score, the baseline metric for
probabilistic prediction can be written as

B(Th) =
1

NsM

Ns∑
k=1

M∑
j=1

[Pj(k, Th)−Oj(k, Th)]
2. (8.1)

Fatality-aware metric

The baseline metric (8.1) equally weights each probability error (P − O)2. However,
each error may have different impact to the prediction accuracy due to the difference of the
criticality of each motion pairs.

Suppose Crj1,j0(k, Th) denotes a score of the criticality for the motion pair of the predicted
entity ŝ1j1(k, Th) and host vehicle ŝ0j0(k, Th). It can be the inverse of time-to-collision (TTC)
or other scores which represents how critical motion pair is for a potential collision. Since
only the ground truth motion pattern of the host vehicle is used for evaluation, we use
Crj(k, Th) for the motion pair of the predicted entity ŝ1j(k, Th) and host vehicle ground truth
ŝ0g(k, Th)

Then we can sort the predicted motion patterns according to the criticality from low to
high as

{
ŝ11:m, ŝ

1
g, ŝ

1
m+2:M

}
. Motion patterns ŝ11:m are less aggressive than the ground truth,

while ŝ1m+2:M are more aggressive. Crg(k, Th) is the criticality of motion pair ŝ0g(k, Th) and
ŝ1g(k, Th).

An intuitive illustration is provided in Figure 8.1 to explain how we can use the values of
criticality to achieve better evaluation of probabilistic predictions. There are two predicted
distributions with similar Brier scores and similar probability outputs for ground truth (sim-
ilar likelihood). The distribution colored blue assigns high probabilities to motions which
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Figure 8.1: An intuitive illustration of conservatism and non-defensiveness by using two distribu-
tions with similar probability outputs for ground truth and similar Brier scores.

are much more critical than the ground truth. Such inaccurate predictions overestimate
the threats and generate false alarms. It can lead to conservative decisions and motions of
the host autonomous vehicle. By contrast, the distribution colored red provides high prob-
abilities to motions which are much less critical than the ground truth. Such inaccurate
predictions underestimate the real threat (ground truth) and generate miss detections. It
can lead to non-defensive decisions and motions of the host autonomous vehicle, and may
cause fatal accidents.

Therefore, the inherent distinction of the consequences (conservative and non-defensive)
by adopting the predicted distribution should be revealed in the evaluation metric. Also, the
more the criticality deviates from the ground truth, the more penalty should be received by
the corresponding predicted probability. We propose to separate the baseline metric (8.1)
into three parts to achieve such purpose.

The first part contains the prediction errors of ground truth reaction. which can be
written as

G(Th) =
Ns∑
k=1

1

NsM
[Pj(k, Th)− 1]2. (8.2)

The weights remain the same as the baseline metric (8.1).
For all motion patterns which are more aggressive than the ground truth, the probability

errors (Pm+2:M−0)2 correspond to false alarms on more dangerous reactions than what really
happened. In other words, the prediction algorithm overestimates the aggressiveness of the
reaction of the others. It makes the decision of the host autonomous vehicle conservative
to false threats. Therefore, we denote a score to measure conservatism of the prediction
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algorithm based on the baseline metric (8.1), that is

C(Th) =
Ns∑
k=1

M∑
j=mk+2

Crj(k, Th)− Crg(k, Th)

S
Pj(k, Th)

2, (8.3)

in which S is the summation of all weights other than those for the ground truth. We use S
to normalize the weights.

For all motion patterns which are less aggressive than the ground truth, the probability
errors (P1:m − 0)2 correspond to miss detections. In other words, the prediction algorithm
fails to predict a more aggressive reaction, which is the ground truth. It makes the decision
of the host autonomous vehicle less defensive to real threats. Therefore, we denote a score
to measure non-defensiveness of the prediction algorithm based on the baseline metric (8.1),
that is

D(Th) =
Ns∑
k=1

mk∑
j=1

Crg(k, Th)− Crj(k, Th)

S
Pj(k, Th)

2, (8.4)

Then the fatality-aware weighted metric can be written as follows, which contains the
aforementioned three aspects.

Bc(Th) = D(Th) + G(Th) + C(Th). (8.5)

8.4 Case Study

In this section, the metrics in Section 8.3 are employed to evaluate the performances of
the algorithms in Section 7.1. We use an exemplar scenario to provide a mini benchmark
for the three methodologies. Highway ramp merging is a highly interactive driving scenario.
It can be extremely challenging when the traffic flow is relatively slow, where the merging
vehicles have to nudge into a gap on the target lane. The gaps are often very small so that
the merging vehicle have to interact with a target vehicle to force it to enlarge the gap. The
merging may fail and the merging vehicle have to resort to the next gap behind the target
vehicle.

The ramp merging cases in NGSIM dataset were used for the training and evaluation
of the algorithms. The cases were manually selected to be highly interactive ones. In each
case, we only chose the frames in which the merging vehicle has not merge into the target
lane successfully and it is still interacting with the target vehicle. 7102 data samples were
used for training, and 708 data samples were used for evaluation.

The merging and target vehicle was treated as the host and predicted vehicle, respectively.
The preview horizon Th = 3 s. The number of motion patterns of the reaction of the target
vehicle was set as M = 4. An illustrative example of prototype trajectories represented by
longitudinal positions over time was provided in Figure 8.2. It was a segment in the ramp
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Figure 8.2: An illustrative example of prototype trajectories represented by longitudinal positions
over time.

merging case shown in Figure 6.3. The current time step is 23 s. The target actually started
to yield the merging vehicle. Motion pattern 1 was less aggressive than the ground truth
motion pattern. Motion patterns 3 and 4 were trying to keep the small gap, which were
more aggressive than the ground truth.

The criticality score Crj was defined as the inverse of time-to-collision (TTC) for the front
end of the target vehicle to hit the (potential) merging point of the merging vehicle [141].
Merging point was defined as the longitudinal position of the rear end of the merging vehicle
when its (potential) vehicle body overlaps with the potential path of the target vehicle.

The performance scores according to the aforementioned metrics are shown in Table 9.2
for hidden Markov model (HMM), mixture density networks (MDN) and inverse reinforce-
ment learning (IRL). If we use the baseline Brier score as the metric, HMM and MDN
outperformed IRL since the score of IRL was much higher than those of the other two. How-
ever, if we partition the score G for the error at the ground truth data points, we can find
that G had great impact to raise B. It revealed that methods approximating the distribution
directly trained with log likelihood, such as HMM and MDN, can easily outperform IRL if
we only care about assigning high probabilities at ground truth data points.

For conservatism C and non-defensiveness D, the scores of IRL were much lower than
those of the other two methods. It demonstrated that IRL tended to produce relatively
high probabilities for prototype trajectories with similar criticality as the ground truth. The
reason may come from the nature of IRL to approximate the reward/cost function other than
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Table 8.1: Performance scores of each method

HMM MDN IRL
B 0.1403 0.1099 0.1821
G 0.0710 0.0564 0.1117
C 0.0476 0.0493 0.0178
D 0.1365 0.1303 0.0698
Bc 0.2551 0.2361 0.2053

the data distribution, which makes the motions generated by IRL more interpretable. Such
properties can help the host autonomous vehicle to avoid conservative behaviors by reducing
the probabilities of potential reactions which are much more critical than the ground truth.
More importantly, the autonomous vehicle can behave defensively to avoid underestimating
real threat. The advantage of such property was also reflected in the criticality-aware metric
Bc. The score of IRL became lower than those of the other two.

Note that what we discussed in this Section analyzed the specific methods we imple-
mented. It does not necessarily conclude that one paradigm or one type of methodologies is
better than others in those aspects. By properly modifying the methods, tuning parameters
or redesigning the framework, better performances can be achieved.

8.5 Chapter Summary

In this chapter we proposed a fatality-aware metric to evaluate the performance of prob-
abilistic reaction prediction in highly interactive driving scenarios. We utilized the three
methods based on probabilistic graphical model (PGM), neural network (NN) and inverse
reinforcement learning (IRL) mentioned in Chapter 7 with unified homogenized problem
formulation and representation simplification proposed in Chapter 6. By using prototype
trajectories with designated motion patterns as the simplified representation, the require-
ments on collision avoidance and feasibility can be satisfied. We employed Brier score as the
baseline metric to overcome the deficiencies of the existing metrics. We proposed a weighted
Brier score based on the criticality of the interactive motion pairs. The proposed evalua-
tion metric emphasized the fatality of the consequences when corresponding predictions are
adopted. Conservatism and non-defensiveness were also defined based on the proposed met-
ric for analyzing the performance of the prediction algorithms. Analysis on the implemented
methods was provided by comparing the baseline and proposed metric scores of each method.
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Chapter 9

INTERACTION Dataset

9.1 Introduction

In order to enable fully autonomous driving in complex scenarios, comprehensive un-
derstanding and accurate prediction of the behavior and motion of other road users are
required. Moreover, autonomous vehicles need to behave like vehicles with human drivers
to make themselves more predictable to others and thus, facilitate cooperation. These are
two of the major challenges in the field of autonomous driving. To overcome these chal-
lenges, considerable amount of research efforts have been devoted to: i) predicting the future
intention and motion of other road users [71, 104, 138], ii) modeling and analyzing driv-
ing behavior [89, 30], iii) clustering the motion and finding representation of the motion
primitives [77, 124], iv) cloning and imitating human and expert behavior [59, 102], and v)
generating human-like and social behavior and motion [118, 44, 87].

All the aforementioned research areas require interactive vehicle motion data from real-
world driving scenarios, which is the most fundamental and indispensable asset. NGSIM
dataset [2] is the most popular one used in the aforementioned areas, such as prediction
[116, 140, 3], behavior modeling [30], social behavior generation and planning [118], and
representation learning [77], since it is publicly available with decent scale and quality. The
recently released highD dataset [66] also greatly assists behavior-related research such as
prediction [84]. Public motion datasets such as NGSIM and highD facilitated, but also re-
stricted behavior-related research due to limited diversity, complexity and criticality of the
scenarios and behavior. Also, the importance of map information and completeness of inter-
action entities were under-addressed in most of the existing datasets. However, these missing
points are crucial for behavior-related research, which will be discussed in the following.

1) Diversity of interactive driving scenarios: Recent behavior-related research using pub-
lic datasets was mostly restricted to highway scenarios due to the data availability. There
are many more highly interactive driving scenarios to explore, such as roundabouts with
yield/stop signs, (unsignalized) one/two/all-way stop intersections (shown in Fig. 9.1), sig-
nalized intersections with unprotected left turn, zipper merge in cities, etc.
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Figure 9.1: Examples of the detection and tracking results in highly interactive driving scenarios
in the dataset.

2) International diving cultures: Most of the existing datasets only contain driving data in
one specific country. However, driving cultures in different countries and different continents
can be distinct for very similar scenarios. Without motion data in similar scenarios from
different countries, it is not possible to incorporate the impact of driving cultures in different
countries, such as driving styles, preferences, risk tolerance, understanding of traffic rules,
etc., for behavior modeling and analysis as well as the design of adaptive prediction and
planning algorithms in different countries.

3) Complexity of the scenarios and behavior: Most of the scenarios in the existing public
datasets are relatively simple and structured with explicit right-of-way. The behavior of the
drivers is only occasionally impacted by others. There is very little social pressure (such
as several vehicles waiting behind and even honking) on the drivers, so that their behavior
is cautious without aggressive and irrational decisions. A motion dataset with much more
complex and interactive behavior and scenarios is expected to facilitate the research tackling
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real and challenging problems.
4) Criticality of the situations: Critical situations (such as near-collision cases) are much

more challenging and valuable than others for behavior-related research areas. For instance,
[140] proposed a fatality-aware prediction benchmark emphasizing prediction inaccuracies in
critical situations. However, critical situations are too sparse in existing motion datasets,
and can hardly be identified. Therefore, a motion dataset with denser critical situations is
necessary to facilitate the research efforts on those difficult problems.

5) Map information: Map information with references and semantics such as lanelet
connections and traffic rules, are crucial for behavior-related research areas such as motion
planning and prediction. It provides key information on input (features), such as route and
goal point [102], distance to the merging point [116, 140], lateral position within the lane
[118], etc., and makes the algorithms generalizable to other scenarios. Such semantic maps
are currently missing for most of the existing public motion datasets.

6) Completeness of interaction entities: In order to accurately model, predict and imitate
the interactive vehicle behavior, it is crucial to provide motions of all surrounding entities
which may impact their behavior in the dataset. This requirement was often overlooked when
using motion data collected by onboard sensors due to occlusions and limited field of view
of the sensors. Although existing motion datasets collected from onboard sensors contain
data collected from a wide range of areas for long time periods, complete and meaningful
interaction pairs are relatively sparse.

In this chapter, we will emphasize all the aforementioned aspects to construct an inter-
national motion dataset collected by drones and traffic cameras.

• Diverse and international: It contains a variety of highly interactive driving scenarios
from different countries, such as roundabouts, signalized/unsignalized intersections, as
well as highway/urban merging and lane change.

• Complex and critical: Part of the scenarios are relatively unstructured with inexplicit
right-of-way. The driving behavior in the dataset are highly impacted by other drivers,
whose behavior can be aggressive or irrational due to the social pressure. Near-collision
or slight-collision scenes are contained in the dataset to facilitate the research for critical
situations.

• Semantic map and complete information: HD maps with semantics are provided to
generated key features in the context. Motions of all entities which may influence the
driving behavior are included in the dataset.

The proposed dataset can significantly facilitate behavior-related research such as motion
prediction, imitation learning, decision-making and planning, representation learning, inter-
action extraction and social behavior generation. Results from exemplar methods in all these
areas are provided utilizing the proposed dataset.
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Table 9.1: Scenario comparison with existing motion datasets

highly interactive
scenarios

complexity of
scenarios

NGSIM [2]
ramp merging,

(double) lane change
structured roads,

explicit right-of-way

highD [66] lane change
structured roads,

explicit right-of-way

Argoverse [20]
unsignalized intersections,

pedestrian crossing
unstructured roads,

inexplicit right-of-way

INTERACTION
roundabouts, ramp merging,

double lane change
unsignalized intersections

unstructured roads,
inexplicit right-of-way

Table 9.2: Comparison with existing motion datasets

density of
aggressive
behavior

near-collision
situations

and collisions

HD maps
with semantics

completeness of
interaction entities

& viewpoint

NGSIM [2] low
very few

near-collision
no

yes, bird’s-eye-view
from a building

highD [66] low
very few

near-collision
no

yes, bird’s-eye-view
from a drone

Argoverse [20] low no
yes,

but partially
only for the ego

data-collection vehicle

INTERACTION high yes yes
yes, bird’s-eye-view

from a drone

9.2 Related Work

Datasets from Bird’s Eye View

As mentioned in Section 9.1, NGSIM dataset [2] is the most popular vehicle motion
dataset among the behavior-related research communities. The raw data was collected by
cameras mounted on buildings and processed automatically [61]. The accuracy of the dataset
is mostly acceptable. However, there may be steady errors, and the image projection can
significantly enlarge the size of the vehicles. Researchers proposed methods [24] to rectify
the errors, but it can only improve the quality of a small part of the dataset. In view of
the problems in NGSIM, highD dataset [66] was constructed by using a drone with more
accurate vehicle motions and larger amount of high way driving data than NGSIM. Other
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datasets [131, 103] from bird’s eye view are more focused on pedestrian behavior without
strong vehicle interactions.

The driving scenarios presented in NGSIM and highD are quite limited. NGSIM contains
highway driving (including ramp merging and double lane change) and signalized intersection
scenarios. In fact, signalized intersections are mostly controlled by the traffic lights and
interactions are very rare and slight. A small amount of lane changes are interactive, but
most of them are neither interactive nor critical. Ramp merging and double lane change can
be highly interactive when the traffic is relatively dense, but the amount of interaction is
still relatively limited in NGSIM. HighD only contains highway driving scenarios with car
following and lane change. Urban scenarios which contain densely and highly interactive
behavior, such as roundabouts and unsignalized intersections are not included in either of
the two public datasets of vehicle motions.

Datasets from Onboard Sensors

In addition to the bird’s-eye-view motion datasets, two types of onboard-sensor-based
ones are also publicly available. One includes motion data of surrounding entities from
onboard LiDARs and front-view cameras, such as Argoverse [20] and HDD dataset [99]. The
other only contains motions of many data-collection vehicles from onboard GPS, such as
100-car study [88].

There are two major advantages for datasets from onboard sensors. One is that a variety
of driving scenarios with relatively long data recording time are usually included in those
datasets, such as urban driving at signalized/unsignalized intersections and highway driving
with ramp merging, etc. The other is that the occlusions of LiDARs and cameras are recorded
so that the actual occlusions from perspective of the ego vehicle can be partially recovered.

Completeness of interaction entities is a major problem when using datasets from onboard
sensors for behavior-related research. For motion datasets with GPS-based fleets, it is hard to
determine whether the vehicles in an ”interactive” motion segment was actually interacting
with each other since there is no motion recording of other surrounding vehicles (or even
pedestrians) without GPS devices installed. For motion datasets constructed from onboard
LiDARs and cameras, it is hard to guarantee that all the surrounding objects impacting the
behavior of other vehicles are included in the dataset when predicting the motions of others.
Therefore, complete interactions are relatively sparse in such kind of datasets. If the sensors
cannot cover the full field of view, it will be even impossible to guarantee the completeness
of information for the surrounding entities of the ego data collection vehicle.

Also, the data collected in a large area may lead to very few repetitions at the same
location. It is hard to learn multi-modal driving behavior for prediction or planning since
only one sequence of motions can be found with similar features at the same location.

Map information is also missing in most of the motion datasets. To the best of our
knowledge, Argoverse is the only motion dataset providing relatively rich map information.
Physical layer (locations of curbs, road markings, etc.) is contained and semantic information
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(lane bounds and turn directions, etc.) required by prediction and planning is partially
included.

Table 9.2 provides a comparison of the three most useful public vehicle motion datasets as
well as the one presented in this article. The proposed dataset contains much more diverse,
complex and critical scenarios and vehicle motions comparing to the other three. In addition,
HD maps with full semantic information are provided, and the completeness of interaction
entities is superior to datasets from onboard sensors.

9.3 Features of the Dataset

In this section, we will illustrate the features of the proposed dataset by highlighting the
diversity, internationality, complexity, criticality, and semantic map.

Diversity

Fig. 9.2 illustrates a variety of highly interactive driving scenarios from traffic cameras
and drones in our dataset, including zipper merging in a city (Fig. 9.2 (a)), ramp merging
and lane change on a highway (Fig. 9.2 (b)), five roundabouts with yield and stop signs
(Fig. 9.2 (c) - (g)), several unsignalized intersections with one/two/all-way stops (Fig. 9.2
(h) - (j)), and unprotected left turn at a signalized intersection (Fig. 9.2 (k)). In Fig. 9.2,
the first two letters of the names represent the sources of the data (drone as DR and traffic
camera as TC ), while next three letters represent the corresponding country and the last
two represent the scenario code in the dataset. The numbers in circles denote the branch ID
for each scenario.

Fig. 9.2 (b) contains several subscenarios. The subscenario with the upper two lanes
(that merge into one finally) is a zipper merging which is similar to the urban counterpart
in Fig. 9.2 (a), where vehicles strongly interact with each other. It is also a ramp for the
middle two lanes. The subscenario with the lower three lanes (that merge into two finally)
is a forced merging and vehicles have to change their lanes.

The roundabout in Fig. 9.2 (f) is an extremely busy 7-way roundabout with one “yield”
branch and six “stop” branches. Lots of vehicles enter the roundabout at the same time
with intensive interactions and relatively high speeds. The branches of the roundabouts in
Fig. 9.2 (c)-(e) are controlled by yield signs, while all branches of the roundabout in Fig. 9.2
(g) are controlled by stop signs.

Figure 9.2 (i) shows an extremely busy all-way-stop intersection with 9 lanes controlled
by stop signs. Multiple vehicles are interactively inching to compete. The scenario shown
in Fig. 9.2 (j) contains three branches (Branch 1, 2, 5) controlled by stop signs, while
vehicles from Branch 3 and 6 have the right-of-way (RoW). Lots of vehicles are entering the
intersections from all branches (except Branch 4), and vehicles holding RoW on the straight
road are with relatively high speed. A busy all-way-stop T-intersection is shown in Fig. 9.2
(h), while three other branches (Branch 4-6) are also controlled by stop signs.
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(b) DR_CHN_Merging_ZS
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Figure 9.2: A variety of highly interactive driving scenarios recorded by drones in the dataset,
including: (a) urban merging, (b) highway ramp merging and lane change, (c)-(g) five roundabouts,
and (h)-(j) unsignalized intersections, and (k) unprotected left turn at a signalized intersection.
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Internationality

The motion data was collected from three continents (North America, Asia and Europe).
Motion data collected by drones are from four countries, namely, the US, China, Germany
and Bulgaria, as indicated in the names of the scenarios (USA/CHN/DEU/BGR). Vehicles
in all these countries are driven on the right-hand side of the road. However, driving culture
in these countries is with remarkable distinctions.

We provide motion data from three roundabouts with similar traffic rules, namely, SR
from the US, OF from Germany and LN from China. All the three roundabouts do not
have stop signs, and the nominal traffic rule is that the vehicles entering the roundabout
should yield the ones which is already in the roundabout.

We also provide motion data from two zipper merging scenarios, those are, MT from
Germany and ZS from China (the upper two lanes in Fig. 9.2 (b)). Although MT is urban
road and ZS is the entrance of highway, the “zipper” rule remains the same, and the speeds
are similar when the traffic is heavy.

Complexity

In addition to regular driving behavior such as car-following, lane change, stop and
left/right/U-turn, our dataset emphasizes highly interactive and complex driving behavior
with cooperative and adversarial motions of the vehicles. By carefully choosing the locations
and corresponding rush hours for the data collection, we were able to gather large amounts of
strong interactions within relative short period of time. Strongly interactive pairs of vehicles
can even appear every few seconds from time to time for scenarios such as the ramp in ZS,
the entrance branches in FT, the all-way-stop intersections in EP and MA as well as the
two-way-stop intersection in GL.

V0

V1 V1 V1

V0 V0

Figure 9.3: A sequence of images of a violation for the right-of-way in a roundabout in the proposed
dataset.

Moreover, aggressive or irrational behavior can often be found due to inexplicit nominal
or practical RoW. Vehicles may arrive at the stop bars almost at the same time and drivers
may negotiate with each other by inching or even accelerating in MA and EP. The traffic in
FT and GL can be very busy and it may take even minutes for the vehicle without nominal
RoW to enter and pass, making the driver impatient. Also, there may be a queue of vehicles
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waiting behind and even honking to put social pressures to the one in the front of queue.
Although there are explicit traffic rules on who goes first for roundabouts or 2-way-stop
intersections, vehicles without nominal RoW may be aggressive, and vehicles with nominal
RoW are mostly aware of such potential violations and are ready to react. For example,
V0 in Fig. 9.3 was entering the roundabout in FT from Branch 3, while V1 was in the
roundabout holding the RoW. However, V0 violated the rule and forced V1 to stop and
yield.

Those factors significantly increase the complexity of the motions in the dataset and
bring forward lots of challenging but valuable research topics for the community.

Criticality

As discussed in Section 9.3, vehicles holding the nominal RoW (in the roundabout of FT
or on the straight road of GL) may often encounter slight violations from vehicles without
nominal RoW (entering the roundabout or intersection from branches controlled by stop
signs). Moreover, the vehicles holding the RoW may have relatively high speed (40 km/h
or even higher). Therefore, critical situations can be observed in the dataset where time-to-
collision-point (TTCP) can be extremely low. A slight collision can even be found in the
dataset.

V0V1

V0
V0

V1
V1

Figure 9.4: A sequence of images of a near-collision case in the proposed dataset.

Fig. 9.4 shows a near-collision case in GL. V0 was making a left turn from Branch 5
(with a stop sign) to Branch 6, while V1 (with the RoW) was going straight forward from
Branch 6 to Branch 3 with a relatively high speed. V1 had to execute emergency swerve to
avoid the collision with V0, which was very dangerous.

Semantic Map

Map information is crucial for behavior-related research areas. The information required
is twofold. The basic requirement is the physical layer containing a set of points or curves
representing curbs, road markings (lane markings, stop bars, etc.) and other key features. In
addition to the physical layer, semantic information is also necessary, which includes but is
not limited to, 1) reference paths, 2) lanelets as well as their connections and turn directions,
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3) traffic rules and RoW associated, etc. Moreover, such information needs to be organized
with consistent format and toolkit to facilitate the users when utilizing the map. All the
aforementioned requirements are met in our dataset, and more detailed information on map
construction can be found in Section 9.4.

9.4 Construction of Motion Data and Maps

In this section, we will discuss the pipeline for constructing the motion data from both
drones and traffic cameras, as well as the corresponding semantic maps.

Motions from Drone Data

We used drones such as DJI Mavic 2 and DJI Phantom 4 to collect the raw video data.
The raw videos were 4K (3840x2160) by 30 Hz. We downsampled the video to 10 Hz and
process the data. The processed results are partially illustrated in Fig. 9.1. The bounding
boxes are very accurate and the paths are smooth after going through out processing pipeline
with the following three steps.

• Video stabilization and alignment: Due to gradual or sudden drift and rotation of
drones, the collected videos need to be stabilized via video stabilization algorithms
with transformation estimator. Also, similarity transformation is applied to project all
the frames to the first one and aligned with the map.

• Detection: In order to obtain accurate bounding boxes of the moving obstacles, Faster
R-CNN [100] is applied. The boxes are highly accurate, and very few inaccurate
detections are rectified manually.

• Data association, tracking and smoothing: Kalman filter is applied for data association
and tracking. To obtain smooth motions of the vehicles, a Rauch-Tung-Striebel (RTS)
smoother [115] is also incorporated.

Motions from Traffic Camera Data

The data processing pipeline for motions from traffic camera data mainly contains the
following steps, and more details, including the camera parameter estimation, can be found
in [23].

• Detection: To detect vehicles and pedestrians in each frame, we use a state-of-the-art
object detector [46], which provides detections with 2D bounding box, instance mask
and instance type.
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Table 9.3: Summary of the dataset.
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Figure 9.5: An exemplary physical layer of a lanelet2 map [94].

• Data association: Detections are grouped into tracks using a combination of an Intersection-
over-Union [14] tracker which associates detections with high mask overlap in successive
frames, and a visual tracker [80] to compensate for miss detections.

• Tracking and smoothing: Once detections are grouped into tracks, trajectories on the
ground plane are estimated using a RTS smoother. For the observation model, we use
a pin-hole camera model [19]. This allows to incorporate measurements and uncer-
tainty directly in pixels, capturing the uncertainty due to the resolution, position and
orientation of the camera. For vehicles, the RTS smoother uses a bicycle model [95] as
process model, allowing to capture the kinematics constraints of vehicles.

Construction of the High Definition Maps

As public roads are structured environments, the particular road layout of a certain
area strongly affects the motion of all traffic participants. The structure for vehicles mostly
starts by subdividing the road into lanes, and later combining them to create junctions,
roundabouts, on ramps and so on. Further, movement within this structured area is guided
by traffic rules, such as speed limits or prioritizing one road over another. In order to model
such coherence, simply mapping center-lines of all lanes is not sufficient anymore.

Thus, in order to allow for a thorough analysis of the recorded trajectories, we provide
centimeter-accurate high definition maps in the lanelet2 format [94]. Within lanelet2, the
physical layer of the road network, such as road borders, lane markings and traffic signs is
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stored. An exemplary physical layer is visualized in Figure 9.5. From this layer, atomic lane
elements, called lanelets, are created. They describe the course of the lane and form the
basis for so called regulatory elements, which determine traffic regulations such as the right
of way or the speed limit.

When used alongside the recorded trajectories, these lanelet2 maps facilitate the reason-
ing about why some vehicles decelerate while approaching a junction, or why others do not,
depending on the right of way but also on the presence of other traffic participants that
potentially interact.

9.5 Statistics of the Dataset

Scenarios and Vehicle Density

The dataset contains motion data collected in four categories of scenarios: roundabout,
unsignalized intersection, signalized intersection, merging and lane change, as shown in
Fig. 9.2. A detailed summary of the dataset is listed in Table 9.3. In the roundabout scenar-
ios, 10479 trajectories of vehicles from five different locations were recorded for around 365
minutes. Similarly, in the unsignalized intersection scenarios, three locations were included
and 14867 trajectories were collected for around 433 minutes. In the merging and lane change
scenarios, 10933 trajectories were recorded at two locations for around 133 minutes. Finally,
one location was selected for the signalized intersection, which provided 3775 trajectories for
around 60 minutes.

Metrics for Interactive Behavior Identification

To represent the density of the interactive behavior of the proposed dataset, we use the
metric - number of interaction pairs per vehicle (IPV) as in proposed in [136]. To calculate
the IPV, a set of rules were proposed in [136] to extract the interactive behavior under
different spatial representations of vehicle paths. The set of rules and metric are briefly
reviewed below.

1. Minimum time-to-conflict-point difference (4TTCPmin): 4TTCPmin is a metric to
describe the relative states of two moving vehicles in a scenario where the paths of the
two vehicles share a conflict point but without any forced stop. As shown in Fig. 9.6,
such vehicle paths include two categories: (1) paths with static crossing or merging
points such as intersections (Fig. 9.6 (a)-(b)), and (2) paths with dynamic crossing or
merging points such as ramping and lane-changing, as shown in Fig. 9.6 (c)-(d). In such
scenarios, merging can happen anywhere in the shaded area. We define 4TTCPmin as

4TTCPmin = min
t∈[Tstart,Tend]

4TTCP t

= min
t∈[Tstart,Tend]

(TTCP t
1 − TTCP t

2) (9.1)
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where TTCP t
i = 4dti/vti , i = 1, 2 is the traveling time to the conflict point of each

vehicle in the interactive pairs. vti and4dti are, respectively, the speed of the i-th vehicle
and its distance to the conflict point along the path at time t. For the scenarios with
dynamic merging points, we use the actual merging points of the vehicle trajectories
as the conflict points. In (9.1), Tstart and Tend are set to be long enough to cover the
interaction period between vehicles. If TTCPmin ≤3 s, then it is defined that interaction
exists.

2. Waiting Period (WP): WP is a metric for vehicles with forced stops along their paths.
In [136], the default waiting period at stops was set as 3 s, and the behavior deviation
from the default one was used as an indicator of the interactivity, i.e., interaction exists
when WP >3 s.

(a) static crossing/merging points

(b) dynamic crossing/merging points

Figure 9.6: Geometry of different interactive paths. In (a), the crossing/merging points between
two paths are static and fixed, while in (b), the crossing/merging points are dynamic.

Distribution of Interactivity

Based on the set of rules, there are 13375 interactive pairs of vehicles in the proposed
dataset. We compare the interactivity among three datasets: the proposed INTERACTION
dataset, the highD dataset, and the NGSIM dataset. Results are shown in Fig. 9.7, where
the x-axis represents the length of 4TTCPmin in seconds, and the y-axis are the number of
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Figure 9.7: Distribution of the 4TTCPmin in three vehicle motion datasets: the proposed INTER-
ACTION dataset, the HighD dataset and the NGSIM dataset.

vehicles (Fig. 9.7 (a)) and the density of vehicles1 (Fig. 9.7 (b)), respectively. We can see that
the INTERACTION dataset contains more intensive interactions with 4TTCPmin ≤ 1s.

We also summarized the distributions of4TTCPmin and WP of all vehicles in the dataset
over different driving scenarios. The results are shown in Fig. 9.8. Similarly, the x-axis
represents the length of 4TTCPmin and WP in seconds, and the y-axis is the density of
vehicles in each scenario. We can see that the dataset contains highly interactive trajectories
with a high density of 4TTCPmin ≤1 s, and WP greater than 3 s.

9.6 Utilization Examples

The proposed dataset is intended to facilitate researches related to driving behavior,
as mentioned in Section 9.1. In this section, we provide several utilization examples of
the proposed dataset, including motion/trajectory prediction, imitation learning, motion
planning and validation, motion clustering and representation, interaction extraction and
human-like behavior generation.

Motion Prediction and Behavior Analysis

Motion/trajectory prediction is of vital importance for autonomous vehicles, particularly
in situations where intensive interaction happens. To obtain an accurate probabilistic pre-
diction model of vehicle motion, both learning- and planning-based approaches have been
extensively explored. By providing high-density interactive trajectories along with HD se-
mantic maps, the proposed dataset can be used for both approaches.

For instance, [81] proposed a deep latent variable model based on Wasserstein auto-
encoder (WAE) to improve the interpretability. It incorporated the structure of recurrent

1The density is given by:

density =
number of vehicles with particular 4TTCPmin

total number of vehicles in the dataset
.
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Figure 9.8: Distribution of the 4TTCPmin, and WP across different locations and scenarios in the
dataset.
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Table 9.4: Comparisons of prediction accuracy from [81].

Methods features RMSE MAE

WAE-based
approach

x 0.013/0.011 0.046/0.035
y 0.006/0.014 0.019/0.041
ψ 0.006/0.008 0.018/0.042

VAE
x 0.018/0.016 0.25/0.22
y 0.006/0.003 0.14/0.22
ψ 0.006/0.008 0.13/0.21

Auto-encoder
x 0.315/0.044 1.026/0.315
y 0.057/0.141 0.182/0.479
ψ 0.011/0.066 0.037/0.078

GAN
x 0.024/0.020 0.324/0.273
y 0.007/0.017 0.188/0.241
ψ 0.005/0.048 0.107/0.286

neural network with vehicle kinematic model such that the output can be constrained. The
motion data in FT was utilized to train and test the model in comparison with other state-
of-the-art models such as variational auto-encoder (VAE), auto-encoder, and generative ad-
versarial network (GAN). Quantitative results shown in Section 9.6 demonstrated that the
proposed WAE-based method can outperform other state-of-the-art models, when compar-
ing the root mean square error (RMSE) and mean absolute error (MAE) of the prediction
for position and yaw angle.

On the other hand, [49] took advantage of the HD semantic maps and combined the
learning-based and the planning-based prediction methods. A deep learning model based
on conditional variational auto-encoder (CVAE) and an optimal planning framework based
on inverse reinforcement learning are dynamically combined to predict both irrational and
rational behavior of the vehicles. Benefiting from the the HD semantic information, features
for the deep learning model were defined in Frenet frame, which generated much better pre-
diction performance in terms of generalization. Some exemplar results are given in Fig. 9.9.

Imitation Learning

The driving behavior in the proposed dataset can also be used for imitation learning
which directly imitates how human drive in complicated scenarios. We extended the fast
integrated learning and control framework proposed in [117] in the FT roundabout scenario.
As shown in Fig. 9.10, both the semantic HD map information and the states of surrounding
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collision_rate = 0.3collision_rate = 0.7

collision_rate = 0.7

(c) pure learning-based method (d) the new method

(b) satisfied samples(a) original samples

Figure 9.9: Some exemplar prediction results from [49].

vehicles (the red boxes) were included as the features. The grey box represents the current
position of the ego vehicle. The green boxes and blue boxes, respectively, are the ground
truth future positions and generated future positions of the ego vehicle via the imitation
network.

(a) (b)

Figure 9.10: Two examples of the imitation learning results by employing the method in [117].
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Validation of Decision and Planning

Besides motion prediction and imitation, the motion data and maps in the dataset can
also be used for testing different decision making and motion planning algorithms. The data-
replay motions in the dataset are more suitable to test the performances of the decision-maker
and planner when the motions of surrounding entities are independent of the ego motions.
For example, the motion of the ego vehicle may not effect others when it does not have the
RoW, or it has the RoW but others violate the rules or ignore the ego motion. We have
shown several examples of decision and planning validation in Chapter 5 and Chapter 7.

Motion Clustering and Representation Learning

The X-means algorithm [92] was employed to cluster the trajectories and obtain motion
patterns with results shown in Fig. 9.11. We constructed a feature space with vehicle
motions in Frenét Frame based on map information. Fig. 9.11 (a) shows the clustered
trajectory segments in different colors with the map. Fig. 9.11 (b) and (d) demonstrate
the cluster results with longitudinal positions and speeds of the two interacting vehicles as
the coordinates. The clustering results with the first and second components of principle
component analysis (PCA) for the feature space are shown in Fig. 9.11 (c). In the figures
we can see that different interactive motions are separated and similar ones are clustered,
which are desirable results to obtain motion patterns.

Extraction of Interactive Agents and Trajectories.

The proposed dataset can also be used to learn the interaction relationships between
agents. We implemented the learning method and network structure proposed in [114] to
extract the interaction frames of two agents. Some example results are given in Fig. 9.12,
where Fig. 9.12 (a) and (b) provide one exemplar pair of interacting cars in the FT scenario,
while Fig. 9.12 (c) and (d) represent another pair. In Fig. 9.12 (a) and (c), the paths of
both of the interacting cars are provided, and in Fig. 9.12 (b) and (d), the trajectories along
longitudinal directions are shown. We can see that the extracted interaction frames (purple
circle) align quite well with the ground truth frames (blue star).

Human-like Decision and Behavior Generation

We can also learn decision-making models that generate human-like decisions and be-
haviors with the proposed dataset. In [119], an interpretable human behavior model was
proposed based on the cumulative prospect theory (CPT). As a non-expected utility the-
ory, CPT can well explain some systematically biased or “irrational” behavior/decisions of
human that cannot be explained by the expected utility theory. Parameters of three dif-
ferent models were learned and tested using the data in the FT roundabout scenario: a
predefined model based on time-to-collision-point (TTCP), a learning-based model based on
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(a) (b)

(c) (d)

Figure 9.11: Results of X-means [92] motion clustering using the proposed dataset.

neural networks, and the proposed CPT-based model. The results (Fig. 9.13) showed that
the CPT-based model outperformed the TTCP model and achieved similar performance as
the learning-based model with much less training data and better interpretability.

9.7 Chapter Summary

In this chapter, we presented a motion dataset in a variety of highly interactive driving
scenarios from the US, Germany, China and other countries, including signalized/unsignalized
intersections, roundabouts, ramp merging and lane change from cities and highway. Complex
interactive motions were captured, featuring inexplicit right-of-way, relatively unstructured
roads, as well as aggressive and irrational behavior caused by impatience and social pressure.
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(a) Paths of two interacting cars (b) trajectories along longitudinal directions

(c) Paths of two interacting cars (d) trajectories along longitudinal directions

Figure 9.12: Two examples of the extracted interaction pairs by implementing the learning method
and network structure in [114].

Critical (near-collision and slight-collision) situations can be found in the dataset. We also in-
cluded high-definition (HD) maps with semantic information for all scenarios in our dataset.
The data was recorded from drones and traffic cameras and the data processing pipeline
was briefly described. Our map-aided dataset with diversity, internationality, complexity
and criticality of scenarios and behavior can significantly facilitate driving-behavior-related
research such as motion prediction, imitation learning, decision-making and planning, repre-
sentation learning, interaction extraction, and human-like behavior generation, etc. Results
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Figure 9.13: Results of interpretable human behavior model based on the cumulative prospect
theory (CPT) [119] using the proposed dataset.

from various kinds of methods of these research areas were demonstrated utilizing the pro-
posed dataset.
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Chapter 10

Conclusions

This dissertation addressed the fundamental aspects as well as corresponding algorithms
for interactive prediction and planning, including deterministic planning algorithms (Part
I), design of decision and planning under uncertainty (Part II), unified formulation and rep-
resentation of various interactive prediction algorithms and their interface with the decision
and planning algorithms designed (Part III), and fatality-aware prediction evaluation as well
as the motion dataset with highly interactive scenarios and behavior (Part IV).

• Generic environmental representation for various scenarios was constructed by spatially
partitioning the spatiotemporal domain and decomposing them into three topological
elements. Then the corresponding planning algorithm was designed by combining A*
search and quadratic programming given deterministic predictions of a number of other
road participants (Chapter 2). Deterministic planners based on imitation learning
were also designed by incorporating the hard constraints on safety and feasibility of an
optimization-based planner into the training loss of the policy. The policy was able to
generate safe and feasible trajectories in highly constrained scenarios (Chapter 3).

• An integrated decision and planning framework under uncertainty from prediction and
perception modules was proposed by combining decision network and an arbitrary plan-
ner with cost and constraints. A non-conservatively defensive driving strategy (NCDS)
was achieved with an optimization-based planner, which is defensive to even potential
violations of others, but not overcautious to threats of low probabilities (Chapter 4).
The geometrical intuition of the proposed NCDS was provided. Experiments were con-
ducted on real vehicles with real-world scenarios and motions for the proposed NCDS
with graph-search-based and sample-based planners in real time (Chapter 5).

• A unified framework for the formulation and representation of interactive prediction
was proposed, which can take into account different paradigms of prediction methods
such as planning-based prediction (e.g. inverse reinforcement learning), as well as
prediction based on probabilistic graphical model and deep neural networks (Chapter
6). Then the aforementioned three paradigms of interactive prediction methods were



CHAPTER 10. CONCLUSIONS 120

introduced, and integrated with a proposed interface for interactive prediction and
planning, with NCDS and sample-based planner (Chapter 7).

• By utilizing the proposed unified framework for interactive prediction, a fatality-aware
benchmark for the aforementioned three paradigms of predictors was proposed by
considering the consequence of using the prediction results. Predictor based on neural
network outperformed others in terms of data approximation metrics, while planning-
based predictor achieved the best performance when fatality was introduced into the
metrics (Chapter 8). Finally, a motion dataset with highly interactive driving scenarios
and behavior from several countries was constructed, and density of interaction was
defined and calculated to compare different datasets. The dataset has been utilized by
various behavior-related research fields such as prediction, planning, imitation learning
and behavior modeling, and is inspiring new research fields such as representation
learning, interaction extraction, scenario generation, and so on (Chapter 9).
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