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Abstract—High performance is a crucial consideration when
executing a complex analytic query on a massive semantic graph.
In a semantic graph, vertices and edges carry attributes of various
types. Analytic queries on semantic graphs typically depend on
the values of these attributes; thus, the computation must view the
graph through a filter that passes only those individual vertices
and edges of interest.

Knowledge Discovery Toolbox (KDT), a Python library for
parallel graph computations, is customizable in two ways. First,
the user can write custom graph algorithms by specifying oper-
ations between edges and vertices. These programmer-specified
operations are called semiring operations due to KDT’s underly-
ing linear-algebraic abstractions. Second, the user can customize
existing graph algorithms by writing filters that return true for
those vertices and edges the user wants to retain during algorithm
execution. For high productivity, both semiring operations and
filters are written in a high-level language, resulting in relatively
low performance due to the bottleneck of having to call into the
Python virtual machine for each vertex and edge.

In this work, we use the Selective Embedded JIT Special-
ization (SEJITS) approach to automatically translate semiring
operations and filters defined by programmers into a lower-level
efficiency language, bypassing the upcall into Python. We eval-
uate our approach by comparing it with the high-performance
Combinatorial BLAS engine, and show our approach enables
users to write in high-level languages and still obtain the high
performance of low-level code. We also present a new roofline
model for graph traversals, and show that our high-performance
implementations do not significantly deviate from the roofline.
Overall, we demonstrate the first known solution to the problem
of obtaining high performance from a productivity language
when applying graph algorithms selectively on semantic graphs.

I. INTRODUCTION

Large-scale graph analytics is a central requirement of
bioinformatics, finance, social network analysis, national se-
curity, and many other fields that deal with “big data”. Going
beyond simple searches, analysts use high-performance com-
puting systems to execute complex graph algorithms on large
corpora of data. Often, a large semantic graph is built up over
time, with the graph vertices representing entities of interest
and the edges representing relationships of various kinds—for
example, social network connections, financial transactions, or
interpersonal contacts.
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Fig. 1. Overview of the high-performance graph-analysis software architec-
ture described in this paper. KDT has graph abstractions and uses a very high-
level language. Combinatorial BLAS has sparse linear-algebra abstractions,
and geared towards performance.

In a semantic graph, edges and/or vertices are labeled with
attributes that may represent (for example) a timestamp, a type
of relationship, or a mode of communication. An analyst (i.e. a
user of graph analytics) may want to run a complex workflow
over a large graph, but wish to only use those graph edges
whose attributes pass a filter defined by the analyst.

The Knowledge Discovery Toolbox [23] is a flexible
Python-based open-source toolbox for implementing complex
graph algorithms and executing them on high-performance
parallel computers. KDT achieves high performance by in-
voking linear-algebraic computational primitives supplied by
a parallel C++/MPI backend, the Combinatorial BLAS [7].
Combinatorial BLAS uses broad definitions of matrix and
vector operations: the user can define custom callbacks to
override semiring scalar multiplications and additions that
correspond to operations between edges and vertices.

Filters act to enable or disable KDT’s action (the semiring
operations) based on the attributes that label individual edges
or vertices. The programmer’s ability to specify custom filters
and semirings directly in a high-level language like Python
is crucial to ensure high-productivity and customizability of
graph analysis software. This paper presents new work that
allows KDT users to define filters and semirings in Python,



without paying the performance penalty of upcalls to Python.
Filters raise performance issues for large-scale graph anal-

ysis. In many applications it is prohibitively expensive to run
a filter across an entire graph data corpus, and materialize the
filtered graph as a new object for analysis. In addition to the
obvious storage problems with materialization, the time spent
during materialization is typically not amortized by many
graph queries because the user modifies the query (or just
the filter) during interactive data analysis. The alternative is
to filter edges and vertices “on the fly” during execution of
the complex graph algorithm. A graph algorithms expert can
implement an efficient on-the-fly filter as a set of primitive
Combinatorial BLAS operations coded in C/C++, but filters
written at the KDT level, as predicate callbacks in Python,
incur a significant performance penalty.

Our solution to this challenge is to apply Selective Just-In-
Time Specialization techniques from the SEJITS approach [8].
We define two semantic-graph-specific domain-specific lan-
guages (DSL): one for filters and one for the user-defined
scalar semiring operations for flexibly implementing custom
graph algorithms. Both DSLs are subsets of Python, and they
use SEJITS to implement the specialization necessary for
filters and semirings written in that subset to execute efficiently
as low-level C++ code. Unlike writing a compiler for the full
Python language, implementing our DSLs requires much less
effort due to their domain-specificity and our use of existing
SEJITS infrastructure; on the other hand, unlike forcing users
to write C++code, we preserve the usability and high-level
nature of expressing computations in Python.

We demonstrate that SEJITS technology significantly accel-
erates Python graph analytics codes written in KDT, running
on clusters and multicore CPUs. An overview of our approach
is shown in Figure 1. SEJITS specialization allows our graph
analytics system to bridge the gap between the performance-
oriented Combinatorial BLAS and and usability-oriented KDT.

Throughout the paper, we will use a running example
query to show how different implementations of filters and
semiring operations express the query and compare their
performance executing it. We consider a graph whose vertices
are Twitter users, and whose edges represent two different
types of relationships between users. In the first type, one user
“follows” another; in the second type, one user “retweets”
another user’s tweet. Each retweet edge carries as attributes
a timestamp and a count. The example query is a breadth-
first search (BFS) through vertices reachable from a particular
user via the subgraph consisting only of “retweet” edges with
timestamps earlier than June 30.

The primary new contributions of this paper are:
1) A domain-specific language implementation that enables

flexible filtering and customization of graph algorithms
without sacrificing performance, using SEJITS selective
compilation techniques.

2) A new roofline performance model [28] for high-
performance graph exploration, suitable for evaluating
the performance of filtered semantic graph operations.

3) Experimental demonstration of excellent performance
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Fig. 2. Performance of a filtered BFS query, comparing three methods of
implementing custom semiring operations and on-the-fly filters. The vertical
axis is running time in seconds on a log scale; lower is better. From top to
bottom, the methods are: high-level Python filters and semiring operations
in KDT; high-level Python filters and semiring operations specialized at
runtime by KDT+SEJITS (this paper’s main contribution); low-level C++
filters implemented as customized semiring operations and compiled into
Combinatorial BLAS. The runs use 36 cores (4 sockets) of Intel Xeon E7-
8870 processors.

scaling to graphs with tens of millions of vertices and
hundreds of millions of edges.

4) Demonstration of the generality of our approach by
specializing two different graph algorithms: breadth-
first search (BFS) and maximal independent set (MIS).
In particular, the MIS algorithm requires multiple
programmer-defined semiring operations beyond the de-
faults that are provided by KDT.

Figure 2 summarizes the work implemented in this paper,
by comparing the performance of three on-the-fly filtering
implementations on a breadth-first search query in a graph with
4 million vertices and 64 million edges. The chart shows time
to perform the query as we synthetically increase the portion of
the graph that passes the filter on an input R-MAT [21] graph
of scale 22. The top, red, line is the method implemented in
the current release v0.2 of KDT [2], with filters and semiring
operations implemented as Python callbacks. The second,
blue, line is our new KDT+SEJITS implementation where
filters and semiring operations implemented in our DSLs are
specialized using SEJITS. This new implementation shows
minimal overhead and comes very close to the performance of
native Combinatorial BLAS, which is in the third, gold, line.

The rest of the paper is organized as follows. Section II gives
background on the graph-analytical systems our work targets
and builds upon. Section III is the technical heart of the paper,
which describes how we meet performance challenges by us-
ing selective, embedded, just-in-time specialization. Section IV
proposes a theoretical model that can be used to evaluate
the performance of our implementations, giving “roofline”
bounds on the performance of breadth-first search in terms
of architectural parameters of a parallel machine, and the
permeability of the filter (that is, the percentage of edges that
pass the filter). Section V gives details about the experimental
setting and Section VI presents our experimental results.
We survey related work in Section VII. Section VIII gives
our conclusions and some remarks on future directions and
problems.



A preliminary version of this paper appeared as a 2-page
abstract at PACT [6]. This version is substantially different
with a generalized specialization approach that works with
both semirings and filters. It includes the MIS algorithm for
which the bottleneck was the semiring translation, and a much
wider set of experiments.

II. BACKGROUND

A. Filters as scalar semiring operations

In this section, we show how a filter can be implemented
below the KDT level, as a user-specified semiring operation in
the C++/MPI Combinatorial BLAS library that underlies KDT.
This is a path to high performance at the cost of usability: the
analyst must translate the graph-attribute definition of the filter
into low-level C++ code for custom semiring scalar operations
in Combinatorial BLAS.

The Combinatorial BLAS (CombBLAS for short) views
graph computations as sparse matrix computations using vari-
ous algebraic semirings (such as the tropical (min,+) semiring
for shortest paths, or the real (+,*) semiring/field for numerical
computation). The expert user can define new semirings and
operations on them in C++ at the CombBLAS level, but most
KDT users do not have the expertise for this.

Two fundamental kernels in CombBLAS, sparse matrix-
vector multiplication (SpMV) and sparse matrix-matrix multi-
plication (SpGEMM), both explore the graph by expanding
existing frontier(s) by a single hop. The semiring scalar
multiply operation determines how the data on a sequence
of edges are combined to represent a path, and the semiring
scalar add operation determines how to combine two or more
parallel paths. In a similar framework, Pegasus [17], semiring
multiply is referred to as combine2 and semiring add is
referred to as combineAll, followed by an assign operation.
However, Pegasus’s operations lack the algebraic completeness
of CombBLAS’s semiring framework.

Filters written as semiring operations in C++ can have high
performance because the number of calls to the filter opera-
tions is asymptotically the same as the minimum necessary
calls to the semiring scalar multiply operation, and the filter
itself is a local operation that uses only the data on one edge.
The filtered multiply returns a “null” object (formally, the
semiring’s additive identity or SAID) if the predicate is not
satisfied.

For example, Figure 3 shows the scalar multiply operation
for our running example of BFS on a Twitter graph. The usual
semiring multiply for BFS is select2nd, which returns the
second value it is passed; the multiply operation is modified
to only return the second value if the filter succeeds. At the
lowest levels of SpMV, SpGEMM, and the other CombBLAS
primitive, the return value of the scalar multiply is checked
against SAID, the additive identity of the semiring (in this
example, the default constructed ParentType object is the
additive identity), and the returned object is retained only if it
doesn’t match the SAID.

ParentType multiply( const TwitterEdge & arg1,
const ParentType & arg2)

{
time_t end = stringtotime("2009/06/30");
if (arg1.isRetweet() && arg1.latest(end))

return arg2; // unfiltered multiply yields normal value
else

return ParentType(); // filtered multiply yields SAID
}

Fig. 3. An example of a filtered scalar semiring operation in Combinatorial
BLAS. This multiply operation only traverses edges that represent a retweet
before June 30.

B. KDT Filters in Python

This subsection describes the high-level filtering facility in
Version 0.2 of KDT, in which filters are specified as simple
Python predicates. This approach yields easy customization,
and scales to many queries from many analysts without
demanding correspondingly many graph programming experts;
however, it poses challenges to achieving high performance.

The Knowledge Discovery Toolbox [23], [24] is a flexible
open-source toolkit for complex graph algorithms on high-
performance parallel computers. KDT targets two classes of
users: domain-expert analysts who are not graph experts,
who use KDT by invoking existing routines from Python,
and graph-algorithm developers who write Python code that
invokes and composes KDT computational primitives. These
primitives are supplied by the Combinatorial BLAS [7].

Filter semantics: In KDT, any graph algorithm can be
performed in conjunction with an edge filter. A filter is a unary
predicate that returns true if the edge is to be considered, or
false if it should be ignored. KDT users write filter predicates
as Python functions or lambda expressions of one input that
return a boolean value; Figure 4 is an example.

Using a filter does not require any change in the code for
the graph algorithm. For example, KDT code for betweenness
centrality or for breadth-first search is the same whether or not
the input semantic graph is filtered. Instead, the filtering occurs
in the low-level primitives. Our design allows all current and
future KDT algorithms to support filters without additional
effort on the part of algorithm designers.

It is possible in KDT to add multiple filters to a graph. The
result is a nested filter whose predicate is a lazily-evaluated
“logical and” of the individual filter predicates. Filters are
evaluated in the order they are added. Multiple filter support
allows both end users and algorithm designers to use filters
for their own purposes.

Filtering approaches: KDT supports two approaches for
filtering semantic graphs:

• Materializing filter: When a filter is placed on a graph
(or matrix or vector), a copy is made that includes only
edges that pass the filter. We refer to this approach as
materializing the filtered graph.

• On-the-fly filter: No copy of the graph/matrix/vector is
made. Rather, every primitive operation (e.g. semiring
scalar multiply and add) applies the filter to its inputs
when called. Roughly speaking, every primitive operation



# G is a kdt.DiGraph
def earlyRetweetsOnly(e):

return e.isRetweet() and e.latest < str_to_date("2009/06/30")

G.addEFilter(earlyRetweetsOnly)
G.e.materializeFilter() # omit this line for on−the−fly filtering

# perform some operations or queries on G

G.delEFilter(earlyRetweetsOnly)

Fig. 4. Adding and removing an edge filter in KDT, with or without
materialization.

accesses the graph through the filter and behaves as if the
filtered-out edges were not present.

Both materializing and on-the-fly filters have their place;
neither is superior in every situation. For example, materi-
alization may be more efficient running many analyses on
a well-defined small subset of a large graph. On the other
hand, materialization may be impossible if the graph already
fills most of memory; and materialization may be much more
expensive than on-the-fly filtering for a query whose filter
restricts it to a localized neighborhood and thus does not even
touch most of the graph. Indeed, an analyst who needs to
modify and fine-tune a filter while exploring data may not be
willing to wait for materialization at every step.

A key focus of this paper is on-the-fly filtering and making it
more efficient. Our experiments demonstrate that materializing
the subgraph can take as much as 18 times the time of
performing a single BFS on the real twitter dataset, when using
36 cores of Intel Xeon E7-8870.

Implementation details: Filtering a semiring operation
requires the semiring scalar multiply to be able to return
“null”, in the sense that the result should be the same as if
the multiply never occurred. In semiring terms, the multiply
operation must return the semiring’s additive identity (SAID
for short). CombBLAS treats SAID the same as any other
value. However, CombBLAS uses a sparse data structure to
represent the graph as an adjacency matrix—and, formally
speaking, SAID is the implicit value of any matrix entry not
stored explicitly.

CombBLAS ensures that SAID is never stored as an explicit
value in a sparse structure. This corresponds to Matlab’s con-
vention that explicit zeros are never stored in sparse matrices
[13], and differs from the convention in the CSparse sparse
matrix package [9]. Note that SAID need not be “zero”:
for example, in the min-plus semiring used for shortest path
computations, SAID is ∞. Indeed, it is possible for a single
graph or matrix to be used with different underlying semirings
whose operations use different SAIDs.

We benchmarked several approaches to representing, ma-
nipulating, and returning SAID values from semiring scalar
operations. It is crucial for usability to allow filters to be
ignorant of the semiring they are applied to, therefore returning
a SAID needs to be an out-of-band signal. We pair each
basic semiring scalar operation with a returnedSAID()

KDT	  Algorithm	  

CombBLAS	  
Primi4ve	  

Filter	  (Py)	  

Python	  

C++	  

Semiring	  (Py)	  
KDT	  Algorithm	  

CombBLAS	  
Primi4ve	   Filter	  (C++)	  

Semiring	  (C++)	  

Standard	  KDT	   KDT+SEJITS	  

SEJITS	  	  	  	  Transla4on	  

Filter	  (Py)	  

Semiring	  (Py)	  

Fig. 5. Left: Calling process for filter and semiring operations in KDT.
For each edge, the C++ infrastructure must upcall into Python to execute the
callback. Right: Using our DSLs, the C++ infrastructure calls the translated
version of the operation, eliminating the upcall overhead.

predicate which is called after the scalar operation. We use
a predicate instead of a flag because the predicate can be
optimized out by the compiler for unfiltered operations.

The result is a clean implementation of on-the-fly filters: fil-
tering a semiring simply requires a shim in the multiply()
function that causes returnedSAID() to return true if the
value (edge) is filtered out; otherwise the semiring’s callback
is called and its value returned.

III. SEJITS TRANSLATION OF FILTERS AND SEMIRING
OPERATIONS

In order to mitigate the slowdown caused by defining
semirings and filters in Python, which results in a serialized
upcall into Python for each operation, we use the Selective
Embedded Just-In-Time Specialization (SEJITS) approach [8].
We define embedded DSLs for semiring and filter operations
which are subsets of Python. As shown in Figure 5, callbacks
written in these DSLs are translated at runtime to C++ to
eliminate performance penalties while still allowing users the
flexibility to specify filters and semirings in Python. We use
the Asp1 framework to implement our DSLs.

In the usual KDT case, semiring operations and filters
are written as simple Python functions. Since KDT uses
the Combinatorial BLAS at the low level to perform graph
operations, each operation at the Combinatorial BLAS level
(whether semiring operation or filtering) incurs one or more
upcalls into Python per each vertex or edge involved.

We allow users to write their filters and semirings in our
embedded DSLs. The languages are defined as proper subsets
of Python with normal Python syntax, but they restrict the
kinds of operations and constructs that users can utilize in
filters and semiring operations. At instantiation, source code
of filters and semirings is introspected to get the Abstract
Syntax Tree (AST), and then is translated into low-level
C++. Subsequent applications of the filter use this low-level
implementation, sidestepping the serialization and cost of
upcalling into Python.

Although KDT is our target platform in this work, our
specialization approach can be used to accelerate other graph
processing systems with similar performance challenges. In
the next sections, we define our domain-specific languages
and show several examples of using them from Python.

1Asp is SEJITS for Python, http://sejits.com



class MyFilter(PcbFilter):
def __init__(self, ts):

self.ts = ts
def __call__(self, e):

# if it is a retweet edge
if (e.isRetweet and

# and it is before our initialized timestamp
e.latest < self.ts):

return True
else:

return False

Fig. 6. Example of an edge filter that the translation system can convert
from Python into fast C++ code. Note that the timestamp in question is passed
in at filter instantiation time.

A. Python Syntax for the DSLs

We choose to implement two separate DSLs to clearly
express and restrict the kinds of computations that can be done
with each; for example, filters require boolean return values,
while semiring operations require return values that are one
of the vertex or edge types. Separating out the languages and
their forms allows us to more easily ensure correctness of each.

Consider the filter embedded DSL. Informally, we specify
the language by stating what a filter can do: namely, a
filter takes in one input (whose type is pre-defined), must
return a boolean, and is allowed to do comparisons, accesses,
and arithmetic on immediate values and edge/filter instance
variables. In addition, to facilitate translation, we require that
a filter be an object that inherits from the PcbFilter Python
class, and that the filter function itself use Python’s usual
interface for callable objects, requiring the class define a
function __call__.

Binary operations used in semirings and other operations
in KDT are similarly defined, but must inherit from the
PcbFunction class and must return one of the inputs
or a numeric value that corresponds to the KDT built-in
numeric type. Binary predicates resemble filters but accept two
arguments. Future work will extend this to allow creation of
new edge and vertex objects, but even with these restrictions
a large majority of KDT graph algorithms can be expressed
via our embedded DSL.

The example KDT filter from Figure 4 is presented in the
filter embedded DSL syntax in Figure 6. It defines a fully-valid
Python class that can be translated into C++ since it only uses
constructs that are part of our restricted subset of Python.

B. Translating User-Defined Filters and Semiring Operations

In the Asp framework for SEJITS embedded DSLs, the
most important mechanism for ensuring correct translations
is to create an intermediate representation, called the semantic
model, which defines the semantics of valid translatable ob-
jects. AST nodes from parsing Python are translated into this
intermediate form as a first step of translation, and most of
the logic for checking whether the definition is translatable is
executed in this first phase. To be clear, this representation is
not the syntax of a language, but rather is the intermediate state
that defines semantics based on user-supplied Python syntax.

UnaryPredicate(input=Identifier, body=BoolExpr)

Expr = Constant | Identifier | BinaryOp | BoolExpr

Identifier(name=types.StringType)

BoolExpr = BoolConstant | IfExp | Attribute | BoolReturn |
Compare | BoolOp

Compare(left=Expr, op=(ast.Eq | ast.NotEq | ast.Lt |
ast.LtE | ast.Gt | ast.GtE), right=Expr)

BoolOp(op=(ast.And | ast.Or | ast.Not), operands=BoolExpr*)
check assert len(self.operands)<=2

Constant(value = types.IntType | types.FloatType)

BinaryOp(left=Expr, op=(ast.Add | ast.Sub), right=Expr)

BoolConstant(value = types.BooleanType)

IfExp(test=BoolExpr, body=BoolExpr, orelse=BoolExpr)

# this if for a.b
Attribute(value=Identifier, attr=Identifier)

BoolReturn(value = BoolExpr)

Fig. 7. Semantic Model for KDT filters using SEJITS. The semantic model
for semiring operations is similar, but instead of enforcing boolean return
values, enforces that the returned data item be of one of the input return
types.

In filters and semirings, the user may wish to inspect
fields of the input data types, do comparisons, and perhaps
perform arithmetic with fields. Consequently our semantic
model allows these operations.

On the other hand, we want to (as much as possible)
prevent users from writing code that does not conform to our
assumptions; although we could use analysis for this, it is
much simpler to construct the languages in a manner that
prevents users from writing non-conformant code in either
embedded DSL. If the filter or semiring operation does not
fit into our language, we run it in the usual fashion, by
doing upcalls into pure Python, after outputting a warning.
Thus, if the user writes their code correctly, they achieve fast
performance, otherwise the user experience is no worse than
before— the code still runs, just not at fast speed.

The semantic model for filters is shown in Figure 7. We
have defined it to make it easy to write filters and operations
that are “correct-by-construction”; that is, if they fit into the
semantic model, they follow the restrictions of what can be
translated. For example, for filters, we require that the return
be provably a boolean (by forcing the BoolReturn node to have
a boolean body), and that there is a single input. The semantic
model for semiring operations (not shown for space reasons)
is similar, but instead of enforcing boolean return values, it
ensures the returned item is one of the inputs or an elemental
type understood by KDT.

We define tree transformations that dictate how Python AST
nodes are translated into semantic model nodes. For example,
the Python function definition for __call__ is translated
into a UnaryPredicate node in the case of the filter embedded



First Run Subsequent
Codegen 0.0545 s 0 s
Compile 4.21 s 0 s
Import 0.032 s 0.032 s

TABLE I
OVERHEADS OF USING THE FILTERING DSL.

DSL.
After the code is translated into instances of the semantic

model, the rest of the translation is straightforward, utilizing
Asp’s infrastructure for converting semantic models into back-
end code. For many of these transformations, defaults built
into Asp are sufficient; for example, we leverage the default
translation for constant numbers and therefore do not need to
define the transform. The end result of conversion is source
code containing the function in a private namespace plus some
glue code, described in the next section. This source is passed
to CodePy, which compiles it into a small dynamic link library
that is then automatically loaded into the running interpreter.

C. Implementation in C++

We modify the C++ portion of KDT’s callback mechanism
which is based on pointers to Python functions. We add an
additional function pointer that is checked before executing
the upcall to Python. This function pointer is set by our
translation machinery to point to the translated function in
C++. When executing a filter, the pointer is first checked,
and if non-null, directly calls the appropriate function. We
similarly modify KDT’s C++ function objects used for binary
operations, which are used to implement semirings. For both
kinds of objects, the functions or filters are type-specialized
using user-provided information. Future refinements will allow
inferred type-specialization.

Compared to Combinatorial BLAS, at runtime we have
additional sources of overhead relating to the null check and
function pointer call into a shared library, which usually is
more expensive than a plain function call. However, these
costs are trivial relative to the non-translated KDT machinery,
particularly compared to the penalty of upcalling into Python.

Overheads of code generation are shown in Table I for
36 processors on the Intel Xeon E7-8870. On first running
using a particular specialized operation, the DSL infrastructure
translates and compiles it in C++; most of the time here
is spent calling the external C++ compiler, which is not
optimized for speed. Subsequent calls only incur the penalty of
Python’s import statement, which loads the cached library
due to CodePy’s built-in caching support.

IV. A ROOFLINE MODEL OF BFS

In this section, we extend the Roofline model [28] to
quantify the performance bounds of BFS as a function of
optimization and filter success rate. The Roofline model is
a visually intuitive representation of the performance charac-
teristics of a kernel on a specific machine. It uses bound and
bottleneck analysis to delineate performance bounds arising

from bandwidth or compute limits. In the past, the Roofline
model has primarily been used for kernels found in high-
performance computing. These kernels tend to express perfor-
mance in floating-point operations per second and are typically
bound by the product of arithmetic intensity (flops per byte)
and STREAM [26] (long unit-stride) bandwidth. In the context
of graph analytics, none of these assumptions hold.

In order to model BFS performance, we decouple in-core
compute limits (filter and semiring performance as measured
in processed edges per second) from memory access perfor-
mance. The in-core filter performance limits were derived by
extracting the relevant CombBLAS, KDT, and SEJITS+KDT
versions of the kernels and targeting arrays that fit in each
core’s cache. We run the edge processing inner kernels 10000
times (as opposed to once) to amortize any memory system
related effects to get the in-core compute limits. We define
permeability as the percentage of edges that pass the filter. The
compute limit decreases with increasing permeability because
two operations need to be done for an edge that passes the
filter, as opposed to one operation for an edge that does not.

Analogous to arithmetic intensity, we can quantify the
average number of bytes we must transfer from DRAM per
edge we process — bytes per processed edge. In the following
analysis, the indices are 8 bytes and the edge payload is 16
bytes. BFS exhibits three memory access patterns. First, there
is a unit-stride streaming access pattern arising from access
of vertex pointers (this is amortized by degree) as well as the
creation of a sparse output vector that acts as the new frontier
(index, parent’s index). The latter incurs 32 bytes of traffic
per traversed edge in write-allocate caches assuming the edge
was not filtered. Second, access to the adjacency list follows
a stanza-like memory access pattern. That is, small blocks
(stanzas) of consecutive elements are fetched from effectively
random locations in memory. These stanzas are typically less
than the average degree. This corresponds to approximately
24 bytes (16 for payload and 8 for index) of DRAM traffic
per processed edge.

Finally, updates to the list of visited vertices and the
indirections when accessing the graph data structure exhibit
a memory access pattern in which effectively random 8 byte
elements are updated (assuming the edge was not filtered).
Similarly, each visited vertex generates 24 bytes of random
access traffic to follow indirections on the graph structure
before being able to access its edges. In order to quantify
these bandwidths, we wrote a custom micro-benchmark that
provides stanza-like memory access patterns (read or update)
with spatial locality varying from 8 bytes (random access) to
the size of the array (STREAM).

The memory bandwidth requirements depend on the number
of edges processed (examined), number of edges traversed
(that pass the filter), and the number of vertices in the frontier
over all iterations. For instance, an update to the list of visited
vertices only happens if the edge actually passes the filter.
Typically, the number of edges traversed is roughly equal
to the permeability of the filter times the number of edges
processed. To get a more accurate estimate, we collected



TABLE II
STATISTICS ABOUT THE FILTERED BFS RUNS ON THE R-MAT GRAPH OF

SCALE 23 (M: MILLION)

Filter Vertices Edges Edges
permeability visited traversed processed

1% 655,904 2.5 M 213 M
10% 2,204,599 25.8 M 250 M
25% 3,102,515 64.6 M 255 M

100% 4,607,907 258 M 258 M

TABLE III
BREAKDOWN OF THE VOLUME OF DATA MOVEMENT BY MEMORY ACCESS

PATTERN AND OPERATION.

Memory Vertices Edges Edges Bandwidth
access type visited traversed processed on Mirasol

Random 24 bytes 8 bytes 0 9.09 GB/s
Stanza 0 0 24 bytes 36.6 GB/s
Stream 8 bytes 32 bytes 0 106 GB/s

statistics from one of the synthetically generated R-MAT
graphs that are used in our experiments. These statistics are
summarized in Table II. Similarly, we quantify the volume
of data movement by operation and memory access type
(random, stanza-like, and streaming) noting the corresponding
bandwidth on Mirasol, our Intel Xeon E7-8870 test system
(see Section V), in Table III. Combining Tables II and III, we
calculate the average number of processed edges per second as
a function of filter permeability by summing data movement
time by type and inverting.

Figure 8 presents the resultant Roofline-inspired perfor-
mance model for Mirasol. The plots are upper bounds on
the best performance achievable, which also take into account
the caching of Python objects. The underlying implementation
might incur additional overheads. For example, it is common
to locally sort the discovered vertices to efficiently merge them
later in the incoming processor; an overhead we do not account
for as it is not an essential step of the algorithm. MPI buffers
are also not taken into account.

The Roofline model selects ceilings by optimization, and
bounds performance by their minimum. We select a filter
implementation (pure Python KDT, KDT+SEJITS, or Comb-
BLAS) and look for the minimum between that filter imple-
mentation’s limit and the weighted DRAM bandwidth limit.

We observe a pure Python KDT filter will be the bottleneck
in a BFS computation as it cannot sustain performance (edges
per second) at the rate the processor can move edges on-chip.
Conversely, the DRAM bandwidth performance limit is about
5× lower than the CombBLAS in-core performance limit.
Ultimately, the performance of a SEJITS specialized filter
is sufficiently fast to ensure a BFS implementation will be
bandwidth-bound. This is a crucial observation that explains
why KDT+SEJITS performance is so close to CombBLAS
performance in practice (as shown later in Section V) even
though its in-core performance is about 2.3× slower.
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Fig. 8. Roofline-inspired performance model for filtered BFS compu-
tations. Performance bounds arise from bandwidth, CombBLAS, KDT, or
KDT+SEJITS filter performance, and filter success rate.

V. EXPERIMENTAL DESIGN

This section describes graph algorithms used in our experi-
ments, the benchmark matrices we used to test the algorithms,
and the machines on which we ran our tests. KDT version 0.3
is enabled with the SEJITS techniques described in this paper,
and is freely available at http://kdt.sourceforge.net.

A. Algorithms Considered

Our first algorithm is a filtered graph traversal. Given a
vertex of interest, it determines the number of hops required
to reach each other vertex using only retweet edges times-
tamped earlier than a given date. The filter in this case is a
boolean predicate on edge attributes that defines the types and
timestamps of the edges to be used. The query is a breadth-
first search (BFS) in the graph that ignores edges that do not
pass the filter.

Our second query is to find the maximal independent set
(MIS) of this graph. MIS finds a subset of vertices such that
no two members of the subset are connected to each other and
all other vertices outside MIS are connected to at least one
member of the MIS. Since MIS is defined on an undirected
graph, we first ignore edge directions, then we execute Luby’s
randomized parallel algorithm [22] implemented in KDT. The
filter is the same as in the first query.

B. Test Data Sets

We experiment both with synthetically-generated graphs and
those that are based on real data sets. Our BFS runs using
the synthetic data are generated based on the R-MAT [21]
model that can generate graphs with a highly skewed degree
distribution. An R-MAT graph of scale N has 2N vertices
and approximately edgefactor ·2N edges. In our tests, our
edgefactor is 16, and our R-MAT seed parameters a, b, c,
and d are 0.59, 0.19, 0.19, 0.05 respectively. After generating

http://kdt.sourceforge.net


struct TwitterEdge {
bool follower;
time_t latest; // set if count>0
short count; // number of tweets

};

Fig. 9. The edge data structure used for the combined Twitter graph in C++

TABLE IV
SIZES (VERTEX AND EDGE COUNTS) OF DIFFERENT COMBINED TWITTER

GRAPHS.

Label Vertices Edges (millions)
(millions) Tweet Follow Tweet&follow

Small 0.5 0.7 65.3 0.3
Medium 4.2 14.2 386.5 4.8

Large 11.3 59.7 589.1 12.5
Huge 16.8 102.4 634.2 15.6

this non-semantic (boolean) graph, the edge payloads are
artificially introduced using a random number generator in
a way that ensures target filter permeability. The edge type
is the same as the Twitter edge type described in the next
paragraph, to be consistent between experiments on real and
synthetic data. Our MIS runs use Erdős-Rényi graphs [11]
with an edgefactor of 4 because MIS on R-MAT graphs
complete in very few steps due to high coupling, barring us
from performing meaningful performance analysis.

Our real data graphs are based on social network interac-
tions, using anonymized Twitter data [18], [29]. In our Twitter
graphs, edges can represent two different types of interactions.
The first interaction is the “following” relationship where an
edge from vi to vj means that vi is following vj (note that
these directions are consistent with the common authority-hub
definitions in the World Wide Web). The second interaction
encodes an abbreviated “retweet” relationship: an edge from
vi to vj means that vi has mentioned vj at least once in their
tweets. The edge also keeps the number of such tweets (count)
as well as the last tweet date if count is larger than one.

The tweets occurred in the period of June-December of
2009. To allow scaling studies, we created subsets of these
tweets, based on the date they occur. The small dataset
contains tweets from the first two weeks of June, the medium
dataset contains tweets that from June and July, the large
dataset contains tweets dated June-September, and finally the
huge dataset contains all the tweets from June to December.
These partial sets of tweets are then induced upon the graph
that represents the follower/followee relationship. If a person
tweeted someone or has been tweeted by someone, then the
vertex is retained in the tweet-induced combined graph.

More details for these four different (small-huge) combined
graphs are listed in Table IV. Unlike the synthetic data, the
real twitter data is directed and we only report BFS runs that
hit the largest strongly connected component of the filter-
induced graphs. More information on the statistics of the
largest strongly connected components of the graphs can be
found in Table V. Processed edge count includes both the

TABLE V
STATISTICS ABOUT THE LARGEST STRONGLY CONNECTED COMPONENTS

OF THE TWITTER GRAPHS

Vertices Edges traversed Edges processed
Small 78,397 147,873 29.4 million

Medium 55,872 93,601 54.1 million
Large 45,291 73,031 59.7 million
Huge 43,027 68,751 60.2 million

edges that pass the filter and the edges that are filtered out.

C. Architectures

To evaluate our methodology, we examine graph analysis
behavior on Mirasol, an Intel Nehalem-based machine, as
well as the Hopper Cray XE6 supercomputer. Mirasol is a
single node platform composed of four Intel Xeon E7-8870
processors. Each socket has ten cores running at 2.4 GHz,
and supports two-way simultaneous multithreading (20 thread
contexts per socket). The cores are connected to a very large
30 MB L3 cache via a ring architecture. The sustained stream
bandwidth is about 30 GB/s per socket. The machine has
256 GB 1067 MHz DDR3 RAM. We realize a flat MPI
programming modeling using OpenMPI 1.4.3 with GCC C++
compiler version 4.4.5, and Python 2.6.6.

Hopper is a Cray XE6 massively parallel processing (MPP)
system, built from dual-socket 12-core “Magny-Cours” Opter-
on compute nodes. In reality, each socket (multichip module)
has two 6-core chips, and so a node can be viewed as a four-
chip compute configuration with strong NUMA properties.
Each Opteron chip contains six super-scalar, out-of-order cores
capable of completing one (dual-slot) SIMD add and one
SIMD multiply per cycle. Additionally, each core has private
64 KB L1 and 512 KB low-latency L2 caches. The six cores
on a chip share a 6MB L3 cache and dual DDR3-1333 memory
controllers capable of providing an average STREAM[26]
bandwidth of 12GB/s per chip. Each pair of compute nodes
shares one Gemini network chip, which collectively form a
3D torus. We use Cray’s MPI implementation, which is based
on MPICH2, and compile our code with GCC C++ compiler
version 4.6.2 and Python 2.7. Complicating our experiments,
some compute nodes do not contain a compiler; we ensured
that a compute node with compilers available was used to
build the KDT+SEJITS filters, since the on-the-fly compilation
mechanism requires at least one MPI process be able to call
the compilation toolchain.

VI. EXPERIMENTAL RESULTS

In this section we use [semiring implementation]/[filter
implementation] notation to describe the various implementa-
tion combinations we compare. For example, Python/SEJITS
means that only the filter is specialized with SEJITS but the
semiring is in pure Python (not specialized).

A. Performance Effects of Permeability

Figure 10 shows the relative distributed-memory perfor-
mance of four methods in performing breadth-first search
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Fig. 10. Relative breadth-first search performance of four methods on
synthetic data (R-MAT scale 25). Both axes are in log scale. The experiments
are run using 24 nodes of Hopper, where each node has two 12-core AMD
processors.

on a graph with 32 million vertices and 512 million edges,
with varying filter permeability. The structure of the input
graph is an R-MAT of scale 25, and the edges are artificially
introduced so that the specified percentage of edges pass the
filter. These experiments are run on Hopper using 576 MPI
processes with one MPI process per core. The figure shows
that the SEJITS/SEJITS KDT implementation (blue line)
closely tracks CombBLAS performance (gold line), with the
gap between it and the Python/Python KDT implementation
(red line) shrinking as permeability increases. This is expected
because as the permeability increases, both implementations
approach the bandwidth bound regime as suggested by the
roofline model in Section IV.

A similar but more condensed figure, showing the perfor-
mance effects of permeability on Mirasol (Figure 2) exists in
the introduction. There, KDT+SEJITS is the same as SEJIT-
S/SEJITS. The effects of permeability on the MIS performance
is shown in Figure 11 and reflect the BFS findings.

Since low permeability (1-10%) cases incur less memory
traffic, Python overheads (KDT algorithms are implemented
in Python) as well as the function pointer chasing of the SE-
JITS approach leave a noticeable overhead over CombBLAS.
This is not the case for high-permeability filters where the
extra memory traffic largely eliminates CombBLAS’s edge,
as observable from the shrinking gap between the blue and
the gold lines in Figures 10 and 11 as permeability increases.

B. Performance Effects of Specialization

Since SEJITS specializes both the filter and the semiring
operations, we discuss the effects of each specialization sepa-
rately in this section.

All of the performance plots show that the performance
of SEJITS/SEJITS (where both the filter and the semiring
is specialized with SEJITS) is very close to the CombBLAS
performance, showing that our specialization approach suc-
cessfully bridges the performance gap between Python and the
low-level CombBLAS. The Python/SEJITS case is typically
slower than the SEJITS/SEJITS case, with the gap depending
on the permeability. More selective filters make semiring spe-
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Fig. 11. Relative maximal independent set performance of four methods on
synthetic data (Erdős-Rényi scale 22). y-axis uses a log scale. The runs use
36 cores of Intel Xeon E7-8870 processors.

cialization less relevant because as the permeability increases,
more edges pass the filter and more semiring operations are
performed, making Python based semiring operations the bot-
tleneck. In the BFS case, shown in Figure 12, Python/SEJITS
is 3 − 4× slower than SEJITS/SEJITS when permeability is
100% due to the high number of semiring operations, but only
20−30% slower when permeability is 1%. By going from 1%
(Figure 12(a)) to 100% (Figure 12(d)), the green line separates
from the other blue and gold lines and approaches the red line.

The performance of the MIS case, shown in Figure 13, is
more sensitive to semiring translation, even for low perme-
abilities. The semiring operation in the MIS application is
more computationally intensive, because each vertex needs
to find its neighbor with the minimum label as opposed to
just propagating its value as in the BFS case. Therefore,
specializing semirings becomes more important in MIS.

C. Parallel Scaling

Parallel scalability is key to enabling analysis of very large
graphs in a reasonable amount of time. The parallel scaling of
our approach is shown in Figures 12 and 13 for lower concur-
rencies on Mirasol. CombBLAS achieves remarkable scaling
with increasing process counts, while SEJITS translated filters
and semirings closely track its performance and scaling.

Parallel scaling studies of BFS at higher concurrencies is
run on Hopper, using the scale 25 synthetic R-MAT data
set. Figure 14 shows the comparative performance of KDT
on-the-fly filters (Python/Python), SEJITS filter translation
only (Python/SEJITS), SEJITS translation of both filters and
semirings (SEJITS/SEJITS), and CombBLAS, with 1% and
100% filter permeability. Good scaling to thousands of cores
makes it possible for domain scientists to utilize large-scale
clusters and supercomputers.

D. Performance on the Real Data Set

The filter used in the experiments with the Twitter data
set considers only edges whose latest retweeting interaction
happened before June 30, 2009, and is explained in detail
in Section V-A. Figure 15 shows the relative performance
of three systems in performing breadth-first search on real
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Fig. 12. Parallel ‘strong scaling’ results of filtered BFS on Mirasol, with
varying filter permeability on a synthetic data set (R-MAT scale 22). Both
axes are in log-scale, time is in seconds. Single core Python/Python and
Python/SEJITS runs did not finish in a reasonable time to report.
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Fig. 13. Parallel ‘strong scaling’ results of filtered MIS on Mirasol, with
varying filter permeability on a synthetic data set (Erdős-Rényi scale 22). Both
axes are in log-scale, time is in seconds.

graphs that represent the twitter interaction data on Mirasol.
We chose to present 16 core results because that is the
concurrency in which this application performs best, beyond
which synchronization costs start to dominate due to the large
diameter of the graph after the filter is applied. Since the filter
to semiring operations ratio is very high (on the order of 200
to 1000), SEJITS translation of the semiring operation does
not change the running time. Therefore, we only include a
single SEJITS line to avoid cluttering the plot. SEJITS/SEJITS
performance is identical to the performance of CombBLAS
in these data sets, showing that for real-world usage, our
approach is as fast as the underlying high-performance library
without forcing programmers to write low-level code.

Python/Python KDT Python/SEJITS KDT SEJITS/SEJITS KDT C++/C++ CombBLAS 
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Fig. 14. Parallel ‘strong scaling’ results of filtered BFS on Hopper, with
varying filter permeability on a synthetic data set (R-MAT scale 25). Both
axes are in log-scale, time is in seconds.

 0.1

 1

 10

small medium large huge

M
e
a
n
 B

F
S

 T
im

e
 (

s
e
c
o
n
d
s
, 
lo

g
 s

c
a
le

)

Twitter Input Graph

Python/Python KDT
SEJITS/SEJITS KDT
C++/C++ CombBLAS

Fig. 15. Relative filtered breadth-first search performance of three methods
on real Twitter data. The y-axis is in seconds on a log scale. The runs use 16
cores of Intel Xeon E7-8870 processors.

VII. RELATED WORK

Graph Algorithm Packages: Pegasus [17] is a graph-
analysis package that uses MapReduce [10] in a distributed-
computing setting. Pegasus uses a primitive called GIM-V,
much like KDT’s SpMV, to express vertex-centered computa-
tions that combine data from neighboring edges and vertices.
This style of programming is called “think like a vertex” in
Pregel [25], a distributed-computing graph API. Both Pegasus
and Pregel require the application to be written in a relative
low-level language (Java and C++, respectively) and neither
supports filtering.

Other libraries for high-performance computation on large-
scale graphs include the Parallel Boost Graph Library
(PBGL) [14], the Combinatorial BLAS [7], Georgia Tech’s
SNAP [4], and the Multithreaded Graph Library [5]. These
are all written in C/C++ and with the exception of the
PBGL do not include explicit filter support. The first two
support distributed memory as well as shared memory while
the latter two require a shared address space. PBGL also
supports a FilteredGraph concept. Since PBGL is written
in C++ with heavy use of template mechanisms, it is not
conceptually simple to use by domain scientists. By contrast,
our approach targets usability by specializing algorithms from
a high-productivity language.



SPARQL [27] is a query language for Resource Descrip-
tion Framework (RDF) [19], which supports semantic graph
database queries. The existing database engines that implement
SPARQL and RDF handle filtering based queries efficiently
but they are not as effective for running traversal based tightly-
coupled graph computations scalably in parallel environments.

The closest previous work is Green Marl [15], a domain
specific language (DSL) for small-world graph exploration
that runs on GPUs and multicore CPUs without support for
distributed machines (though such support is planned). Green
Marl supports a very different programming model than KDT.
In Green Marl, programmers iterate over nodes/edges or access
them in specific traversal orders; work can be accomplished
within a traversal or iteration step. KDT’s underlying linear
algebra abstraction allows graph algorithms to be implemented
by customizing generic high-performance primitives of Comb-
BLAS. In addition, the approach of Green Marl is to use an
external DSL that has a different syntax and compiler than the
rest of an application; KDT allows users to write their entire
application in Python.

JIT Compilation of DSLs: Embedded DSLs [12] for
domain-specific computations have a rich history, including
DSLs that are compiled instead of interpreted [20]. Abstract
Syntax Tree introspection for such DSLs has been used most
prominently for database queries in ActiveRecord [1], part of
the Ruby on Rails framework.

The approach applied here, which uses AST introspection
combined with templates, was first applied to stencil algo-
rithms and data parallel constructs [8], and subsequently to
a number of domains including linear algebra and Gaussian
mixture modeling [16].

Finally, general JIT approaches for Python such as PyPy [3]
does not offer the advantages of embedded DSLs such as
domain-specific optimizations and the lack of need to perform
detailed domain analysis.

VIII. CONCLUSION

The KDT graph analytics system achieves customizability
through user-defined filters, high performance through the
use of a scalable parallel library, and conceptual simplicity
through appropriate graph abstractions expressed in a high-
level language.

We have shown that the performance hit of expressing
filters in a high-level language can be mitigated by Selective
Embedded Just-in-Time Specialization. In particular, we have
shown that our embedded DSLs for filters and semirings
enable Python code to achieve comparable performance to
a pure C++ implementation. A roofline analysis shows that
specialization enables filtering to move from being compute-
bound to memory bandwidth- bound. We demonstrated our
approach on both real-world data and large synthetic datasets.
Our approach scales to graphs on the order of hundreds of
millions of edges, and machines with thousands of processors,
suggesting that our methodology can be applied to even more
computationally intensive graph analysis tasks in the future.

In future work we will further generalize our DSL to
support a larger subset of Python, as well as expand SEJITS
support beyond filtering and semiring operations to cover more
KDT primitives. An open question is whether CombBLAS
performance can be pushed closer to the bandwidth limit by
eliminating internal data structure overheads.
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