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HIGHLIGHTS

Bayesian inference is applied to

simple photovoltaic electrical

measurements

This inference is able to uncover

underlying materials properties in

a PV cell

Properties are inferred

significantly faster than they

would be measured separately

This fast inference is enabled by

high-performance computing
High-performance computing can greatly improve the workflow of

experimentalists in energy materials, through the use of Bayesian inference. This

allows us to solve the inverse problem of extracting underlying materials

properties through the measurement of the electrical behavior of completed

devices. Cheaper, faster measurements can be substituted for longer direct

measurements of individual properties, without sacrificing accuracy or precision.

We provide a general framework to apply this to other materials systems and

devices.
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Article
Rapid Photovoltaic Device Characterization
through Bayesian Parameter Estimation
Riley E. Brandt,1,5,* Rachel C. Kurchin,1 Vera Steinmann,1 Daniil Kitchaev,1 Chris Roat,2

Sergiu Levcenco,3 Gerbrand Ceder,1,4 Thomas Unold,3 and Tonio Buonassisi1
Context & Scale

Photovoltaic (PV) research has

historically taken decades to bring

new materials to market, as the

pace of development is often

limited by our ability to identify

the causes of underperformance.

There are many ways to make an

underperforming PV cell, and

their signatures on device

efficiency alone are not unique.

This uncertainty plagues other
SUMMARY

In photovoltaic (PV) materials development, the complex relationship between

device performance and underlying materials parameters obfuscates experi-

mental feedback from current-voltage (J-V) characteristics alone. Here, we

address this complexity by adding temperature and injection dependence and

applying a Bayesian inference approach to extract multiple device-relevant ma-

terials parameters simultaneously. Our approach is an order of magnitude faster

than the cumulative time of multiple individual spectroscopy techniques, with

added advantages of using device-relevant materials stacks and interface con-

ditions. We posit that this approach could be broadly applied to other semicon-

ductor- and energy-device problems of similar complexity, accelerating the

pace of experimental research.
energy-storage or -conversion

devices with similarly complex

combinations of materials but may

be used to our advantage. By

probing or biasing a PV cell in

different operating conditions,

the signature of underlying

material properties becomes

more unique. This connection

between the operating

conditions, the material

properties, and the PV cell output

may be solved through Bayesian

inference algorithms. While

computationally expensive, high-

performance computing can

enable such inference as a tool for

experimentalists, a tool that could

become increasingly valuable for

accelerating the pace of materials

research in PV and related fields.
INTRODUCTION

Historically, new photovoltaic (PV) materials have taken several years (halide perov-

skites) or decades (silicon or cadmium telluride) to advance from single-digit effi-

ciencies to industrially relevant values in excess of 10%.1,2 This slow progress is

typical of novel materials development in many other fields, where the average

time from discovery to commercial success is approximately a decade.3 These

long development times are in direct conflict with more urgent, competing time-

lines: the rapid pace of climate change, the short investment time horizon of venture

capital, and the increasingly high speed of computational materials discovery. With

the long materials development timeline as the weakest link, it is clear that experi-

mentalists must take steps to improve the rate at which we discover and develop

promising candidate materials.

There are several reasons for this protracted development timeline. The first is

that experimental cycles of fabrication and characterization of devices are often

slow and resource intensive, which is illustrated well by PVs. These difficulties are

in large part due to the complex relationships between observable PV device

performance and the underlying materials parameters. Experimental observations

of PV device behavior may be consistent with many underlying causes, which re-

sults in uncertainty, necessitates extensive experimentation, and increases the

importance of scientists’ intuition and experience. At the same time, the market

pull for new materials is very weak until they have demonstrated promising per-

formance, which means resources are limited for early-stage development.4

These limited resources compound the difficulty of executing a large number

of experimental cycles and training enough experts to guide experiments. The

result is a long development period for most semiconductors and poor return

on investment.5
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In the present work, we demonstrate how a Bayesian parameter estimation (BPE) or

inference approach can be used to address this challenge directly, by both

decreasing the cost of experiments and more accurately identifying root causes of

PV efficiency losses. We apply existing BPE frameworks6–8 to pinpoint underper-

forming device-relevant materials parameters in thin-film solar-cell materials on a

timescale of <24 hr in device-relevant geometries and fabrication conditions. This

approach of imbuing the experimental intuition into an inference algorithm can

help dramatically shorten a typical experiment cycle and free scientists to develop

PV materials more quickly.

We discuss the theoretical framework for BPE to solve this problem over a discre-

tized parameter space. We validate the approach with a numerical device model

of gallium arsenide (GaAs), a well-known PV material. We then apply the approach

to an earlier-stage PV material, tin monosulfide (SnS), to fit materials and interface

properties, including surface recombination velocity (Seff), mobility (m), minority

carrier lifetime (t), and conduction band offset (DEC), using automated cell

electrical measurements. Measurement of these properties would typically require

fabrication of multiple separate samples and many person-hours of effort on

specialized equipment, as illustrated in Figure 1B.We validate the approach through

parallel spectroscopic measurements of each property and demonstrate compara-

ble accuracy and precision with an order of magnitude faster approach. We note

that several spectroscopic techniques have recently been developed to extract

more in situ or in operando materials properties,9–11 but a BPE approach may be

considered complementary to these techniques and can be applied to any measure-

ments of device performance.

To extract device-relevant materials parameters from experimental results, we

simulate and analyze large experimental datasets using high-performance

computing (HPC). Moore’s Law, and the resulting rise of HPC, has revolutionized

the scope and accuracy of predictions that theorists can make about the natural

world through computational simulation. However, despite the exponentially

decreasing costs of computation (as well as increasing costs to conduct increas-

ingly sophisticated experiments), experimental scientists have been slower to

embrace HPC. This BPE framework applied to empirical materials development of-

fers an opportunity for experimentalists to leverage the growing benefits of HPC.12

It also offers a route for the tremendous advances in machine learning and infer-

ence to be applied to a practical problem in a field that has not yet fully embraced

these breakthroughs.13

Given the advantages of speed, accuracy, and device-relevant form factor, a

Bayesian inference approach such as the one presented here is broadly appli-

cable to other complex optimization problems in semiconductor and energy-con-

version materials and may help to accelerate the development of these materials

as well.

Photovoltaic Device Fabrication and Characterization

A PV device consists of a stack of thin-film layers, each of which serves an important

purpose in the process of using photons to excite, separate, and collect electrical

charge that can do useful work. Several dozen materials properties in each layer,

as well as the interfaces between them, determine the performance of the overall de-

vice. This interplay is illustrated by a typical early-stage PV material, tin monosulfide

(SnS). Over a decade of research has led to PV conversion efficiencies in excess of

4%,14 due to advances in SnS fabrication techniques,15,16 control of SnS doping
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Figure 1. SnS PV Device and Sample Construction

(A) PV device stack for SnS, showing the composition of each layer and their relative thicknesses.

(B) Flowchart of different workflows comparing (top) the sample layer stack(s) and time required to extract a variety of different materials properties, and

(bottom) the device stack and hours required in a BPE approach. Times are specific to the tool setup herein and vary depending upon the tools and

materials.
and transport properties,17,18 control of interfaces,19,20 optimization of contact ma-

terials,19,21 and a tremendous investment in fundamental understanding of other

related PV materials.

Figure 1A shows the device stack of a state-of-the-art SnS heterojunction, thin-film

solar cell measured in this study, including materials, thicknesses, and deposition

techniques for each layer. First, a molybdenum back contact is sputtered onto a

Si/SiO2 substrate. Next, the active semiconducting absorber layer is formed

through thermal evaporation of SnS powder (Sigma-Aldrich, >99.99% purity), which

is subsequently annealed in an H2S atmosphere to improve the film morphology.15

The heterojunction is formed by the deposition of n-type Zn(O,S) and ZnO layers

through atomic layer deposition.14,19 Indium tin oxide, a transparent conductor, is

sputtered to form the front contact, and finally, silver grid fingers are deposited

via evaporative deposition. Further details on each step are found in prior

work.15–17 This cell architecture holds record efficiencies for both thermally evapo-

rated and chemical vapor-deposited SnS cells.14,16

With six active layers in this device stack, and five corresponding interfaces between

them, there are dozens of potential materials and interface properties that may influ-

ence electrical performance. In an exhaustive effort to identify which of these prop-

erties may be the limiting factor, many of these properties must be independently

measured and modeled.14,18,19,21

Typically, characterization of each property involves a study of a sample of one or

a few of these layers in isolation. This requires that separate samples be fabri-

cated for each measurement, taking additional time (see Figure 1B), and as these

materials are not measured in the context of the device in which they will operate,
Joule 1, 843–856, December 20, 2017 845



Figure 2. Flowchart of the Bayesian Parameter Estimation Approach

Combining measurements and a forward model of the PV device produces a posterior probability

distribution of parameters. The posterior distribution can be iteratively refined with additional

observed data by serving as the new prior distribution in subsequent cycles of the method. Bias

conditions include voltage (V), temperature (T), and illumination intensity (F), while materials

constants include properties such as bandgaps (EG), absorption coefficients (a), and intrinsic carrier

concentrations (ni). Unknown parameters (which will be fit) are contained inQ. Current density is the

output of both experiment (Jobs) and the PV cell model (J).
the measurements may not be truly representative of how they will perform after

complete processing and during operation. In the example shown in Figure 1B,

four device-relevant materials parameters are extracted from four discrete mea-

surements: inverse photoemission spectroscopy determines conduction band

offset (DEC) with three or more custom test structures; single-photon time-

resolved photoluminescence (1P-TRPL) determines minority carrier lifetime (t);

Hall-effect measurements estimate majority carrier mobility (mmaj) with two

custom test structures; and two-photon TRPL (2P-TRPL) determines surface

recombination velocity (Seff). The test structures are not always representative

of realistic device conditions; for example, a thin film grown on an electrically

insulating substrate to perform Hall measurements will have a different grain

structure, and hence electrical properties, than a thin film grown on a conductive

metal back contact in a PV device.22 These Hall measurements assess majority

carrier mobility and are commonly dominated by grain boundaries as carriers

travel laterally through the film, while solar cells are limited by minority carriers,

traveling out of the film.

In contrast to this complexity, a Bayesian inference approach attempts to simulta-

neously extract multiple underlying materials and interface properties in a single de-

vice measurement, which allows for a significantly faster experimental feedback from

more representative device-relevant conditions. To solve such an inverse problem

requires construction of an appropriate model of the device, development of a

Bayesian framework for applying it, and access to HPC resources to perform the sim-

ulations and inference calculations.
Device Model and Bayes Theorem

As shown in Figure 2, BPE requires three steps: cell electrical measurements, an op-

toelectronic model connecting materials properties to cell behavior, and a Bayesian

inference algorithm.

First, cell electrical measurements require the ability to probe a solar-cell output cur-

rent over a range of bias conditions, including voltage (V), temperature (T), and illu-

mination (F). The measurement suite for performing these measurements is often
846 Joule 1, 843–856, December 20, 2017



referred to as a JVTi measurement, and has been described in prior work.23–26 Our

specific experimental setup is further described in Chakraborty et al.27

Next, the PV cell optoelectronic model is accomplished by finite-element solutions

to a set of partial differential equations, which describe the transport and recombi-

nation of electrons and holes in the semiconductor device. These equations include

(1) transport of carriers under electrochemical potential gradients (Poisson and con-

tinuity equations); (2) generation of carriers by thermal and/or optical means; and (3)

recombination of free carriers through radiative, Auger, and defect-assisted recom-

bination events.

These partial differential equations (PDEs) are solved by knowing: (1) materials con-

stants of each material in the cell stack, such as densities of states, bandgaps, and

absorption coefficients; (2) the bias conditions such as voltage, temperature, and

illumination intensity; and (3) cell-specific materials properties such as m, NA

(acceptor density), and ND (donor density), and the recombination rate constants.

Of the several dozen input parameters into this model, 5–10 may be unknown and

depend upon fabrication conditions. This feature vector of unknown parameters,

Q, is of interest for the experimentalist to fit in order to understand the device’s

performance.

The software SCAPS-1D is used here to solve this system of differential equations us-

ing a finite-difference approach,28 as it is particularly accurate for thin-film, hetero-

junction solar cells. It is important to choose a model and PDE solver that captures

the physics relevant to the problem at hand. The Supplemental Information includes

code for controlling SCAPS through Python or MATLAB, as well as more information

on the cell model used.

Finally, now that the forward problem is well defined, we may solve the ‘‘inverse

problem’’ using either classical statistics algorithms or Bayesian inference. As the

forward problem requires a numerical solution to a set of PDEs, there is no way

to directly invert the problem as with an analytical model. For numerical solutions,

classical parameter estimation/optimization algorithms generally assume that

there is one true value for the underlying parameter, and to find it they seek the

model parameter(s) that minimize a statistical estimator such as the root-mean-

squared error. However, where many equivalently good fits exist, this approach

is insufficient.

A discretized Bayesian framework is instead able to assign a posterior probability to

every combination of parameters. This probability represents the belief that a given

set of discrete parameter values is the true set of material properties and is repre-

sented by a multivariate probability distribution over all possible combinations of

model fit parameters. This probability is modified every time one observes new

data, based on belief in the new data and its uncertainty. In that way, a BPE routine

answers the question: ‘‘what is the probability that a hypothesis is true, given some

new evidence that has been discovered?’’

A non-parametric, discretized BPE approach performs well when multiple sets of pa-

rameters provide an equivalently good fit to the data or when the solution space is a

complex multivariate distribution of parameters. BPE can also continuously accom-

modate new observations, allowing beliefs to change with every subsequent mea-

surement.29 BPE can also handle different uncertainty in the observed data, with

the resulting probability distributions, including the noise distribution of the data,
Joule 1, 843–856, December 20, 2017 847



handling both random noise related to the precision of an instrument and systematic

uncertainty arising from uncertain calibrations of tools.

In our BPE framework, every set of possible model parameters, Q, may be consid-

ered as a unique hypothesis, H. Each new piece of evidence may be referred to as

E. Bayes’ Rule, the underpinning of all Bayesian methods, states

PðHjEÞ=PðHÞPðEjHÞ
PðEÞ (Equation 1)

P(H) is the prior probability distribution, or how strongly one believes in each hypoth-

esis in Q before doing any experiments. P(HjE), our goal, is the posterior probability

distribution that follows after each piece of evidence, or the updated probability dis-

tribution given the results of an experiment. P(EjH) is the likelihood, specifically the

likelihood that the observed evidence would have occurred if the parameters hy-

pothesized were true (e.g., if the set of hypotheses would have produced a very

different value fromwhat was observed, the likelihood P(EjH) would be small). Lastly,

P(E) is a normalizing constant; it is the sum of P(H)P(EjH) over all the possible hypoth-

eses. This normalization reflects the fact that certainty in any one hypothesis is not

only related to the likelihood for that particular hypothesis it is dampened by the like-

lihoods of all competing hypotheses.

BPE is an iterative process, where Equation (1) is applied repeatedly after each

observation. One may continue to make progressive observations and increasingly

gain certainty by performing this inference step every time.

In the case of PV device parameter fitting, our evidence is the observation of an

output current from our experimental setup. The hypotheses are a vector of discrete

values of the underlying parameters (Q) that we would like to fit, for example, the mi-

nority carrier lifetime, t. BPE poses the question: what is the credibility or probability

distribution of the carrier lifetime, given that we observe a particular current value

(Jobs) under certain bias conditions:

PðqjJobsÞ=PðqÞPðJobsjqÞ
PðJobsÞ : (Equation 2)

These probabilities must typically be determined numerically, as closed-form analyt-

ical solutions for BPE only exist for particular probability distributions. The process

for evaluating Equation 2 numerically requires determining prior knowledge about

the problem, gathering data, and then computing the posterior probability distribu-

tion. HPC enables these calculations (and in particular the most expensive one,

computing the likelihood) to be performed within hours, instead of days or months.

Specifying the prior probability distribution is a subjective step. The simplest assump-

tion we make here is that the prior probability is uniformly distributed over a particular

interval, e.g., the conduction band offset may be anywhere from �0.5 eV to +0.5 eV.

This distribution assumes that values within the interval are equally likely, but values

outside of it are impossible. These ranges are conservatively large bounds from the liter-

ature on the material in question. The uniform distribution over a limited set of values

constrains the results but simplifies the discretized solution approach.

For N parameters in Q, and M discrete values for each parameter, the hypotheses

may be represented as anN3M dimensional matrix. A uniform probability distribu-

tion over all M divisions in N dimensions results in a probability of 1/MN for each

hypothesis.
848 Joule 1, 843–856, December 20, 2017



Next, to compute the likelihood P(JobsjQ), one must know what current density to

expect for every combination of discrete parameters in Q and every discrete bias

condition. This calculation requires evaluating the device electrical model at every

hypothesis in Q, and at every bias condition. The number of simulations required

for M discrete divisions for all N model parameters scales with MN, multiplied by

the number of operating conditions. This scale highlights the central role that HPC

plays in enabling BPE for materials science. For just two different temperatures

and light intensities, with M = 10 discrete divisions over four dimensions (N = 4) in

Q, a grid BPE search would require 40,000 total simulations. Where this could

take several days on a single computer, HPC offers the possibility of massively par-

allelizing the computation to make it tractable in timescales of only hours.

Computing the likelihood of observing an output current, given Q, requires knowl-

edge about the uncertainty of a measurement due to random noise or error in the

measurement apparatus. We may assume that the measured current, Jobs, is distrib-

uted around the ‘‘true’’ value, Jreal, with a normal distribution, with an SD of sJ.

Therefore, the likelihood of observing any current (Jobs) at a particular set of param-

eters Q is simply its probability of occurring, or

PðJobsjQÞ= 1

sJ

ffiffiffiffiffiffi
2p

p exp

 
� ðJobs � JðQÞÞ2

2s2
J

!
: (Equation 3)

The uncertainty in current is determined throughmeasuring uncertainties in T, V, and

F, which propagate through as

sJ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
vJ

vV

�2

s2
V +

�
vJ

vT

�2

s2
T +

�
vJ

vF

�2

s2
F

s
: (Equation 4)

The voltage uncertainty sV is measured to be very small (10 mV). Uncertainty due to

temperature sT may be relatively larger (1 K) due to the thermal resistance between

the sensor and sample, and fluctuations in temperature due to ohmic heating during

measurements. Note, however, that J is exponentially dependent upon V and T, so

the partial derivative terms can become quite large, particularly at positive voltage

biases. The final source of error, illumination variance sf, is by far the largest. With

the class ABB solar simulator used here, the light intensity of the lamp is rated for

a temporal stability range of G3%. For the typical current densities measured in

the present work, the variation in illumination corresponds to a typical variability

in current density sJ of between 0.5 and 1.0 mA/cm2. To calculate the impact of

these uncertainties on sJ, we first compute the partial derivatives at all bias condi-

tions. Fortunately, as J is exponential with V and T, the partial derivatives are simply

proportional to J and do not need to be calculated for every bias condition. Note

that this uncertainty is not a model uncertainty; we have assumed that our model cer-

tainty is high or that the general 1D partial differential equation model is an accurate

description of the physics of thin-film solar cells.

The likelihood may now be computed element-wise for every set of parameters inQ,

and then multiplied by the prior probability distribution during each iterative obser-

vation step (as per Equations 3 and 1). Further details may be found in the Supple-

mental Information.
Applying Bayesian Parameter Estimation to PV Devices

To validate our approach, we begin with a well-controlled test case of a simulated

GaAs PV device. We model a high-performing GaAs solar cell with arbitrary layer

thicknesses and doping densities. ‘‘Observation’’ data on this cell are produced
Joule 1, 843–856, December 20, 2017 849



by setting all discrete input parameters and running the forward PDE model at

several bias conditions. Then, the observation data are fed into the BPE algorithm

and used to infer the underlying parameter values (Q) of the GaAs cell. We verify

that the inferred parameters include the original forward simulation parameters to

prove the accuracy of the approach. We can also observe where the precision of

the inference is low, or where the device performance is not sensitive to the under-

lying material parameter. See Supplemental Information for more details on this

process.

Next, the BPE approach is applied to real SnS devices. JVTi data were collected on a

baseline SnS solar cell (room temperature data originally published in Steinmann

et al.30) using the method described in Chakraborty et al.27 Then, particular J-V

sweeps were selected from these data at 1.08-Sun and 0.31-Sun illumination inten-

sity and temperatures of 280 K, 300 K, and 320 K (see full dataset in Supplemental

Information).

The cell model was built for SnS, using parameters outlined in prior work21 with ac-

curate layer thicknesses, doping levels, and optical constants (including front surface

reflectance) based on prior measurements. Four parameters that govern efficiency

are chosen for fitting: the minority carrier mobility in SnS, the minority carrier lifetime

in SnS, the conduction band offset between SnS and Zn(O,S), and the effective sur-

face recombination velocity at the SnS/Zn(O,S) interface. We assume that over our

bias conditions, these parameters are constant. Uniform prior probability distribu-

tions were assigned to each of these parameters, and simulations were run over a

4D grid (N = 4) of discrete values (M = 16–20) in this parameter space at every

bias condition, resulting in 96,000 3 2 illumination intensities 3 3 temperatures =

576,000 discrete device simulations. At 10 s per simulation, that would require

1,600 core-hours of HPC time, which is tractable in approximately 1 day with a small

HPC cluster of 60 cores. Depending upon the operating system and simulation

setup, SCAPS simulations may vary from 2 to 15 s each, which results in a different

number of cores necessary to perform the simulation in <24 hr.

Each observation is then fed into the BPE algorithm as current density values at each

bias condition. The likelihood of observing this output current is then computed for

all possible hypotheses, as per Equation 3, followed by computing the posterior us-

ing Equation 1. This short-circuit condition constrains the joint distribution of minor-

ity carrier lifetime and mobility, but for this SnS device does not constrain interface

properties; these retain fairly uninformed distributions, indicating that the informa-

tion content for these parameters is low at applied voltages near 0 V. Moving further

into forward bias, the nature of the interface recombination begins to appear; either

the device must have a small cliff offset and a large Seff or vice versa. This is reflected

by a line of constant probability in Q space (see Movie S1 for an animated version of

Figure 3).

To constrain the distributions further, we vary illumination and temperature. Full J-V

curves at 280 K, 300 K, and 320 K are fed in as observations, and the resulting

posterior probability distribution is plotted in Figure 3. While the minority carrier

mobility still exhibits a relatively uniform probability, the minority carrier lifetime and

interface properties are well constrained. The 95% confidence interval for t is between

21 and 70 ps, for DEC is �0.21 G 0.03 eV, and for Seff is 1,000–1,800 cm/s. While the

confidence interval for m is not well constrained by this series of measurements, the joint

distribution of m and t is well constrained. This is a feature of BPE in its ability to uncover

non-parametric co-varying distributions like these. In the case of PV materials, the mt
850 Joule 1, 843–856, December 20, 2017



Figure 3. Probability Distribution of Fit Parameters after all Observations

For each pair of parameters in Q, single variable distributions are shown on the diagonal in four

different colors, and multivariate distributions are shown off the diagonal. The scale bar for the

multivariate distribution colormaps only is shown at top. These are the final probabilities after all

observations, however the animated evolution may be seen in Supplemental Information. The

probability distributions are constrained to a narrow range of values for lifetime (yellow), band

offset (purple), and surface recombination velocity (green) but not for mobility (red).
product is proportional to the characteristic transport length of free carriers; here, the mt

product is tightly constrained around 1.5 3 10�9 cm2/V. Note that the gaps or discon-

tinuities visible in the distributions are largely artifacts of the gridded sampling and

disappear with higher-resolution sampling.

Remarkably, these inferred values are consistent with lifetimes measured in the

range of 20–40 ps in Jaramillo et al.,18 and conduction band offsets measured to

be in the range of �0.38 G 0.2 eV in Mangan et al.21 extracted here with an all

electrical measurement. Their precision is also promising, particularly for

parameters that may vary over several orders of magnitude such as t. In particular,

the conduction band offset is inferred with higher precision than previous spectro-

scopic measurements (30 mV versus 200 mV). Furthermore, we are capable of ex-

tracting an estimate for Seff, which was not previously possible to do for the

completed heterojunction interface.

To further understand how each measurement shapes our beliefs about the under-

lying parameters, we may calculate the increase in information content (or decrease

in entropy) of the distribution, normalized by the number of discrete hypotheses

(MN) as

s=
PðqÞlogðPðqÞÞ

log
�
no: of hypotheses

� : (Equation 5)

In Figure 4, the entropy of each parameter’s probability distribution is tracked as a

function of the observation sequence, sweeping from 0 V (short circuit) to open-cir-

cuit conditions at each light intensity and each temperature. The entropies map well

to what we might expect from device physics. For the bulk transport properties, the

lifetime is not well constrained until we observe short-circuit conditions at multiple

light intensities. Afterward, the entropy does not further decrease by additional ob-

servations, as the short-circuit current density is no longer providing any new
Joule 1, 843–856, December 20, 2017 851



Figure 4. Entropy of the Probability Distributions Evolving with Each Observation

The axis labels represent measurement temperature (in Kelvin) and illumination intensity (% of

1 Sun). On the x axis, over each temperature and illumination, the bias voltage is varied between 0 V

(short-circuit current or JSC) and open-circuit voltage (VOC) in discrete voltage steps.
information or sufficiently useful information. Across all observations, there is insuf-

ficient information to constrain the minority carrier mobility further. The interface

properties are well constrained generally only when we move close to open-circuit

conditions at higher light intensities. This is first observed strongly at the VOC point

at 280 K and again further at 300 K and 320 K. In addition, the entropy may rise

locally, likely where observations carry noise or systemic deviations that would

implicate a different parameter set. This lack of a monotonic decrease is a reflection

that different observations offer slightly conflicting evidence. Tracking the entropy

of the probability distribution suggests when measurements may be complete

and highlights which parameters deserve more attention and further dedicated

measurement.
DISCUSSION

In under 24 hr of device measurement and concurrent BPE computation, we show

that it is possible to infer four underlying materials properties of a SnS device. These

parameter fits revealed comparable accuracy, and in some cases higher precision,

with what was measured through more expensive and time-intensive spectroscopic

techniques. The significance of this result is that BPE enabled by HPC has offered a

first example of how the empirical cycle of PV materials development may be greatly

accelerated.

SnS and other low-efficiency materials offer a great opportunity with BPE, as the

Bayesian approach works best in identifying underperforming material properties;

the more impact a parameter has on device performance, the more information con-

tent we will have about that parameter. Once the parameter exceeds a critical

threshold, wherein device performance is not affected by it, it is difficult to infer its

precise value from device performance, as seen in the case of GaAs.

Where performance losses are uncertain, the BPE techniquemay be applied tomany

other PV materials, such as the lead halide perovskites. The Supplemental Informa-

tion contains generalized code for plugging in any cell model and measurements to
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begin inferring multiple unknown material or interface properties. For the lead

halide perovskites in particular, this technique will require two things. The first is sta-

ble devices, as the properties of the device must remain constant over the course of

measuring. The second requirement is a representative model that accurately cap-

tures the underlying physics. Lead halide perovskite performance, for example, is

affected by ion diffusion to interfaces,31 and this effect is typically not modeled

into common device solving software. To increase parameter certainty, model un-

certainty must be removed.

Building upon this initial proof of concept, there are many ways in which the BPE

approach may be improved upon and generalized more broadly.

Firstly, this mesh or grid approach to BPE can be improved. Not only does the cur-

rent method sample discretely, andmay thereforemiss important regions of solution

space if the mesh is chosen too sparsely, but it also spends significant time sampling

and computing likelihoods in regions ofQ space that have a very low probability. The

simplest strategy to avoid this is to begin with sparse sampling of Q space and then

use the initial results to sample the relevant parts of Q space more densely. A more

robust and automated method to refine the sampling numerically is a Markov Chain

Monte Carlo algorithm.32 In this approach, the choice of where to run simulations is

combined with the process of computing the likelihood and posterior, meaning that

sampling is much more efficient and produces higher-resolution data only in the re-

gions of interest.

Another important improvement is increased automation of the observations them-

selves through active learning.33 This class of machine learning techniques allows

the BPE algorithm to actively advise on what data it would like to be fed, selecting

bias conditions most likely to provide high information content and reduce the en-

tropy of the probability distribution over Q more efficiently.

The reliability of BPE depends strongly on the choice of noise model, the choice of

prior probabilities, and the quality of the device model used. Regarding the noise

model, we have constructed this through direct measurement of the noise in bias

conditions, and may therefore compute the expected noise in measured current

based on a simple error propagation analysis. Regarding the choice of priors, here

we selected uniform priors with upper and lower bounds outside of the values we

have characteristically seen for early-stage PV absorbers. One may reduce the risk

of error by allowing for the possibility of non-zero probabilities outside of this range,

but this makes the ability to discretize our parameter space very difficult. To make

BPE tractable, we make assumptions that must be rigorously tested later on; for

example, checking to ensure that our inferred probability distribution does not sit

at the boundary of our prior.

The fit accuracy and precision may also be influenced by assumptions made about

other inputs into the model; where these are uncertain, they should be included

as fit parameters. One relevant example of this is our decision to assume tempera-

ture- and injection-independence of parameters over the bias conditions. Bias-

dependent parameters can be easily accommodated if the functional form of the

dependence is included, but this increases the number of fit parameters accordingly.

For example, series resistance is expected to vary with temperature. Here, we have

fixed series and shunt resistances in our model and restricted measurements to a

narrower temperature and voltage range, but this assumption may influence our

estimated parameters and residual entropy of their distributions.
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The BPE approach can in principle also account for systematic errors in the obser-

vation conditions, distinct from the random errors described earlier. For example,

the device temperature may consistently be 2 K warmer than the temperature

sensor reads due to a probe miscalibration, or the light intensity may consistently

be 5% weaker than anticipated due to a damaged optic element. These ‘‘nuisance

parameters’’ can also be accounted for in BPE29 by assuming that they do exist as

non-zero values and treating them as input parameters in Q with their own prior

probability distributions. After running BPE, the parameters of interest will have

joint probability distributions with the nuisance parameters. In other words, the mi-

nority carrier lifetime will co-vary with the expected lamp-power offset, for

example. Integrating over the nuisance parameter’s probability distribution mar-

ginalizes it and results in an adjusted distribution for the parameters of interest.

This new distribution can now fully account for the possibility of systematic errors

in the measurement.

Lastly, all parameter estimation is only as good as the model built to describe the

PV cell. The present model has been verified for SnS thin-film PV cells through

prior work,11,17 and its underlying parameters are described further in Supple-

mental Information. It is difficult to provide an absolute quantification of how

good the chosen model is, beyond qualitative observations of the goodness of

fit (see Supplemental Information). However, one may quantify the relative accu-

racy of different competing models by treating each model as a different hypoth-

esis and thereby comparing the probability of observing the evidence under each

different model.
Conclusion

With increasing demands upon the field of materials science to discover and

develop materials at a faster rate, it is important for materials scientists to identify

areas where HPC may be leveraged to complement and improve upon classical

experimental techniques. In complex optoelectronic and energy devices, materials

and interface properties represent the largest unknown and the primary focus of sci-

entific research.

In the present work, we have demonstrated that a BPE approach may help address

the uncertainties of empirical materials characterization and development by greatly

accelerating the experimental feedback loop compared with slower techniques such

as spectroscopy. This BPE framework was used to pinpoint underperforming mate-

rials parameters in a solar-cell material, SnS, with 103 faster throughput than tradi-

tional spectroscopy techniques, measuring material and interface parameters in a

device-relevant form factor. It also identified cross-correlated parameters and their

joint probability distributions, which are difficult to extract using classical statistical

techniques without prior knowledge of their functional forms.

The implications of this proof of concept are broad. Through a similar BPE approach,

substituting the physical system model for those of batteries, thermoelectrics, tran-

sistors, and many other complex devices, we propose that experimentalists may be

able to significantly improve their rate of learning and development. As the 21st cen-

tury demands faster materials development, HPC tools such as BPE will enable this

across a variety of fields.
EXPERIMENTAL PROCEDURES

Full experimental procedures are provided in the Supplemental Information.
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SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures, two

figures, two tables, and one movie and can be found with this article online at

https://doi.org/10.1016/j.joule.2017.10.001.
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