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Abstract. Span categories provide a framework for formalizing mathematical models of
open systems in classical mechanics. The categories appearing in classical mechanics do not
have pullbacks, which requires the use of generalized span categories. We introduce cate-
gories LagSy and HamSy that respectively provide a categorical framework for the Lagrangian
and Hamiltonian descriptions of open classical mechanical systems. The morphisms of LagSy
and HamSy correspond to such open systems, and composition of morphisms models the
construction of systems from subsystems. The Legendre transformation gives a functor from
LagSy to HamSy that translates from the Lagrangian to the Hamiltonian perspective.
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1. Introduction

Category theory provides a formalism for unifying ideas across a wide spectrum of disci-
plines. The last few decades have seen the emergence of applied category theory [17, 28].
One prominent program in this subject is to describe “open” systems—that is, systems

E-mail address: 1baez@math.ucr.edu, 2weisbart@math.ucr.edu, 3adam.yassine@aucegypt.edu.
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that can interact with their surroundings—as morphisms in appropriate categories, where
composition describes how open systems can be combined to form larger systems.

The idea of describing open systems as morphisms arose from extended topological quan-
tum field theory, where the manifold describing space can built up by composing cobordisms,
manifolds with boundary that describe smaller regions of space [3, 10, 20, 21]. It was later
applied in a more down-to-earth way to electrical circuits [5, 6], Markov processes [7], and a
wide variety of dynamical systems [8, 22, 26]. The morphisms in these categories are often
spans or cospans with extra structure, and there are now several formalisms for constructing
such categories [14].

Our goal here is to apply this idea to Lagrangian and Hamiltonian mechanics, and describe
the Legendre transformation as as a functor from a category with open Lagrangian systems as
morphisms to a similar category of open Hamiltonian systems. Since the study of classical
systems involves solving differential equations that describe paths on general Riemannian
and symplectic manifolds, it is in some ways more complicated than the examples treated
earlier. The current work investigates some previously unidentified structures that appear
critical to the study of open systems in classical mechanics.

The systems under consideration have a state space that is either the tangent bundle
to a Riemannian manifold in the Lagrangian description or a symplectic manifold in the
Hamiltonian description [2]. A path in the state space models the motion of the system. The
state space of any subsystem is a quotient space of that of the entire system. For Lagrangian
systems we require that the quotient maps be surjective Riemannian submersions. For
Hamiltonian systems, we require that they be surjective Poisson maps between symplectic
manifolds.

Figure 1. Three Masses Figure 2. Many Masses

A study of the combined spring-mass system of Figure 2 serves as a simple example.
Figure 1 represents a system with three point masses attached by springs, where all motion
is along the same line. Figure 2 represents the more complicated system formed by attaching
additional point masses and springs in series. View a pair of point masses attached by a
spring as a fundamental component, or subsystem, of one of these more complicated systems.
The spring-mass subsystems are open systems in the sense that both forces internal to the
subsystem and external forces of the larger system govern the dynamics of the subsystems.

Figure 3 depicts the composition of subsystems to form a larger system, where two spring-
mass systems combine by identifying the right mass of the system on the left with the left
mass of the system on the right. Diagram 1 depicts the state spaces of these systems from
a Hamiltonian perspective. Each of the maps in Diagram 1 is a canonical projection, and
a Poisson map between symplectic manifolds. At the lowest level in Figure 3 are the three
distinct masses. View each mass as moving along a line where the forces acting on each
mass are external to the system. Each system has T ∗

R, the cotangent bundle to R, as its
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state space. At the middle level, view the system as two spring-mass systems, each with a
state space given by T ∗

R
2 and with an external force acting on one of the masses. On the

top level, the total system consists of three masses interacting in series, where connecting
springs mediate the interaction of the masses. The state space for this total system is a
fibered product of two copies of the symplectic manifold T ∗

R
2 over the manifold T ∗

R.

Figure 3. Three Point Masses

T ∗
R

2 ×T ∗R T ∗
R

2

T ∗
R

2 T ∗
R

2

T ∗
RT ∗

RT ∗
R

Diagram 1. Corresponding Phase Space

The fibered product is a six dimensional symplectic manifold, whereas the cartesian prod-
uct of the state spaces is an eight dimensional symplectic manifold. While the fibered
product is an embedded submanifold of the product, it will not be a symplectic submanifold
when endowed with the symplectic structure that it requires to be the state space of the
given physical system. The Lagrangian setting is similar, but uses tangent bundles rather
than cotangent bundles as the state spaces. The fibered product together with its canon-
ical projections encapsulates the physical meaning of identifying the right mass of the left
spring-mass system with the left mass of the right spring-mass system. Both Dazord in [15]
and Marle in [24] had similar insights with respect to studying constrained systems, which
are similar to the systems given above in the sense that the masses that connect our systems
can be thought of as a geometric constraint. In fact, Dazord explicitly uses fibered products
to construct the configuration and state spaces for certain constrained systems.

Suppose that X , Y , and Z are sets and f and g are functions that respectively map X
and Y to the set Z. Henceforth denote by ρX and ρY the respective canonical projections

ρX : X × Y → X and ρY : X × Y → Y,

and denote by πX and πY the respective restrictions of ρX and ρY to the fibered product
X ×Z Y , which is the subset of X × Y consisting of all elements on which f is equal to g.
The fibered product in the category Set, whose objects are sets and whose morphisms are
functions, has certain universal properties recalled in Section 2. The connection between
these universal properties and the construction of span categories for modeling classical
mechanical systems is a central theme of the current investigation.

A span in the category Set is a pair of functions with the same source. The fibered product
together with the span (πX , πY ) gives a prescription for composing spans in Set. Bénabou
proved in [9] that if C is a category with pullbacks then there is a bicategory, Span(C ),
whose objects, morphisms, and 2-morphisms are the respective objects, spans, and maps of
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spans in C . To avoid unnecessary complications we view this bicategory as a category, a
span category, by ignoring the bicategory structure and taking isomorphism classes of spans
in C , to be defined in Section 2, as the morphisms. Fibered products define a composition
of isomorphism classes of certain spans in Set that seems strikingly similar to the way in
which classical mechanical systems compose.

We propose that open classical systems are morphisms in an appropriate span category,
where composition of morphisms using pullbacks describes the composition of physical sys-
tems. This formalization of classical mechanics should deepen our understanding of the
foundations of classical mechanics and may also offer a way to automate the modeling of
classical mechanical systems. Modeling open classical mechanical systems necessitates work-
ing with spans in categories other than Set, where the fibered product lacks the universal
properties that it has in Set.

It is natural to view a physical system as an isomorphism class of spans in the category of
Riemannian manifolds with surjective Riemannian submersions in the Lagrangian setting,
or as an isomorphism class of spans in the category of symplectic manifolds with surjective
Poisson maps in the Hamiltonian setting. However, Section 2 demonstrates that neither of
these categories has pullbacks. Thus, the work of Bénabou does not apply. For this same
reason, it does not appear that the work of Fong [18, 19] as corrected by Courser [4, 14] can
be straightforwardly modified from its cospan setting to a span setting that is useful to the
present discussion. Derived geometry [11, 27] would let us use homotopy pullbacks instead
of pullbacks, but in some sense this is overkill: the fibered products required for the current
paper will exist and be smooth manifolds; only the universality condition of a pullback fails.

Section 2 recalls previous work required for handling this problem. Suppose that C and
C ′ are categories and F is a functor from C to C ′. Weisbart and Yassine defined in [30] the
notion of an “F -pullback” of a cospan in C and the “span tightness” of the functor F . They
proved that if the functor F is span tight, then Span(C ,F) is a category, a “generalized span
category”, whose objects are the objects in C and whose morphisms are isomorphism classes
of spans in C . Composition in this generalized span category is defined using F -pullbacks.
Generalized span categories determine the kinematical properties of open classical systems
in the Hamiltonian setting and of “free” open systems in the Lagrangian setting—that is,
systems where all the energy is kinetic.

In Section 3 we introduce the notion of an “augmented” span, which allows us to intro-
duce nonzero Hamiltonians and add potentials to Lagrangians. In Section 4 we construct the
augmented generalized span categories HamSy and LagSy. In the Hamiltonian setting, the
augmentation determines the dynamical evolution of the system. In the Lagrangian setting,
the augmentation determines the potential for the physical system, hence its dynamics as
well. The categories LagSy and HamSy provide frameworks for studying open classical sys-
tems from the Lagrangian and Hamiltonian perspectives, respectively. Section 5 introduces
a functor L : LagSy → HamSy. This functor, a version of the Legendre transformation,
translates from the Lagrangian to the Hamiltonian perspective.

In future work we hope to compare the present approach to the theory of port-Hamiltonian
systems, an approach to open systems in classical mechanics widely used in engineering [29].
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2. Spans and Generalized Span Categories

2.1. Spans and Span Categories. Refer to [30] for further discussion of the material
presented in the following subsection. We review for the reader’s convenience some of the
definitions and basic results from [30] that the current discussion requires.

A span in a category C is a pair of morphisms in C with the same source and a cospan

in C is a pair of morphisms in C with the same target. For any span S in C , write

S = (sL, sR) ,

where SL, SR, and SA are objects in C ,

sL : SA → SL, and sR : SA → SR.

Utilize the same notation if S is a cospan, but where sL and sR respectively map SL and SR

to SA. For any span or cospan S in C , refer respectively to the objects SA, SL, and SR in
C as the apex, left foot, and right foot of S.

CL = SL CR = SR

SA

sL sR

CA

cL cR

Diagram 2. The Pairing of S with C

SL = QL SR = QR

SA

QA

sL sR

qL qR

Φ

Diagram 3. A Span Morphism from S to Q

Definition 2.1. A span S in C is paired with a cospan C in C if

CL = SL, CR = SR, and cL ◦ sL = cR ◦ sR.

The pairing of a span S with a cospan C has a diagrammatical interpretation, namely that
Diagram 2 is commutative.

Suppose that S and Q are spans in C with SL equal to QL and SR equal to QR. A span

morphism in C from S to Q is a morphism Φ (Diagram 3) in C from SA to QA with

sL = qL ◦ Φ and sR = qR ◦ Φ.

A span isomorphism in C from S to Q is a span morphism that is additionally an isomor-
phism.

Proposition 2.2. For any span isomorphism Φ, the inverse Φ−1 is also a span isomorphism.

Furthermore, any composite of span morphisms is again a span morphism.
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Definition 2.3. A span S in C is a pullback of a cospan C in C if it is paired with C and
if for any other span Q in C that is also paired with C there exists a unique span morphism
Φ in C from Q to S (Diagram 4).

Notice that the diagram formed by pairing a span S with a cospan C, where S is a pullback
of C, is a pullback diagram or a pullback square as often discussed in the literature.

Definition 2.4. A category C has pullbacks if for any cospan C in C there is a span S in
C that is a pullback of C and S is unique up to a span isomorphism in C .

Denote by Top the category whose objects are topological spaces and whose morphisms
are continuous functions. The categories Set and Top are examples of categories that have
pullbacks, as discussed in [30]. If C is a cospan in Set, then let ρL and ρR be the canonical
projections

ρL : CL × CR → CL and ρR : CL × CR → CR.

Denote by SA the fibered product

CL ×CA
CR := {(x, y) ∈ CL × CR : (cL ◦ ρL)(x, y) = (cR ◦ ρR)(x, y)}.

Take SL and SR to respectively equal CL and CR, and let sL and sR be the respective
restrictions of ρL and ρR to the set SA. The span (sL, sR) is a pullback of C. If C is a cospan
in Top, then S is again a pullback of C in Top, where the topology on SA is the subspace
topology induced by the product topology on SL × SR.

CL

SA CR

CA

QA

sR

sL cR

cL

∃!Φ

qL

qR

Diagram 4. Pullback Diagram

2.2. The Categories SympSurj and RiemSurj. Refer to [23] for further background on
Poisson geometry. A Poisson bracket on a smooth manifold M is an anticommutative,
bilinear function from C∞(M) × C∞(M) to C∞(M) that satisfies Leibniz’s rule and the
Jacobi identity. A Poisson manifold is the pair consisting of a smooth manifold M and a
Poisson bracket on M . Suppose that (M, {·, ·}M) and (N, {·, ·}N) are Poisson manifolds. For
each f in C∞(M), the Poisson vector field associated to f is the derivation vf given by

vf (·) = {·, f}M .
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A smooth map Φ from M to N is a Poisson map if for any f and g in C∞(N),

{f, g}N ◦ Φ = {f ◦ Φ, g ◦ Φ}M .

Symplectic manifolds are the primary objects of study in Hamiltonian mechanics. A symplec-

tic manifold is a pair (M,ωM) where M is a smooth (necessarily even dimensional) manifold
and ωM is a smooth, closed, nondegenerate 2-form on M , a symplectic 2-form. Suppose that
the dimension of M is 2m. For each x in M , there is a chart U containing x such that the
symplectic 2-form gives rise to Darboux coordinates (qi, pi)

m
i=1 on U , coordinates such that

ωM =

m∑

i=1

dqi ∧ dpi.

The symplectic 2-form naturally distinguishes position and momentum coordinates on M
and induces an isomorphism ΩM between the tangent and cotangent bundles. Given tangent
vectors v and w in the same fiber of TM , define by ΩM(v) the covector

ΩM (v) = ωM(·, v) : w 7→ ωM(w, v).

Since ωM is nondegenerate, the map ΩM is invertible. For each function f in C∞(M), denote
by Df the symplectic gradient of f , which is defined by

Df = Ω−1
M (df).

Every symplectic manifold has a Poisson structure that it inherits from its symplectic
structure in the following way. For any symplectic manifold (M,ωM), define a Poisson
bracket {·, ·}M on pairs (f, g) in C∞(M)× C∞(M) by

{f, g}M = ωM(Df , Dg) .

The symplectic gradient Df is the Poisson vector field vf associated to f , implying that

{f, g}M = ωM(vf , vg) .

The real valued function ΠM defined by

ΠM(df, dg) = {f, g}M

is a global section of (T ∗M ∧ T ∗M)∗. The Poisson bivector of (M, {·, ·}M) is the image of
the function ΠM under the canonical isomorphism that takes (T ∗M ∧ T ∗M)∗ to Λ2TM . To
simplify notation, denote henceforth by ΠM the Poisson bivector of (M, {·, ·}M). Refer to
[12, p. 30] for Proposition 2.5 and see [12, p. 44] for a proof of Proposition 2.6.

Proposition 2.5. A smooth map Φ from (M, {·, ·}M) to (N, {·, ·}N) is a Poisson map if and

only if

dΦ(ΠM) = ΠN .

Proposition 2.6. Suppose that (M, {·, ·}M) is a Poisson manifold and (N, ωN) symplectic

manifold. Every Poisson map from M to N is a submersion.
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Riemannian manifolds are the primary objects of study in Lagrangian mechanics. The
metric on the tangent bundle of a Riemannian manifold gives a kinetic energy associated to a
particle moving in the base manifold which is the configuration space for the system, [2, p.83-
84]. A Riemannian submersion Φ from a Riemannian manifold (M, gM) to a Riemannian
manifold (N, gN) is a smooth submersion with the property that if v and w are vector fields

tangent to the horizontal space (ker(dΦ))⊥, then

gM(v, w) = gN(dΦ(v) , dΦ(w)) .

Table 1 specifies the categories to be henceforth denoted by Diff, SurjSub, RiemSurj, and
SympSurj.

Category Name Objects Morphisms

Diff Smooth manifolds Smooth maps

SurjSub Smooth manifolds Surjective submersions

RiemSurj Riemannian manifolds Surjective Riemannian submersions

SympSurj Symplectic manifolds Surjective Poisson maps

Table 1

A example in [30] shows that the category SurjSub does not have pullbacks. Since this
example involves manifolds that have trivial Riemannian and symplectic structures and
mappings in the respective categories, the categories RiemSurj and SympSurj also do not
have pullbacks.

2.3. F-Pullbacks and Span Tight Functors. Assume henceforth that C and C ′ are
categories and that F is a functor from C to C ′. For any span S in C , denote by F(S) the
span (F(sL),F(sR)). For any cospan C in C , denote by F(C) the cospan (F(cL),F(cR)) in
C ′.

Definition 2.7. The category C has F-pullbacks in C
′ if for any cospan C in C , there is a

span S in C that is paired with C and the span F(S) is a pullback of the cospan F(C) in
C ′. In this case, the span S is an F-pullback of C.

Note that if C ′ is equal to C and F is the identity functor, then an F -pullback is simply
a pullback.

Definition 2.8. Suppose that C has F -pullbacks in C ′. The functor F is span tight if for
any F -pullbacks S and Q of the same cospan, the unique span isomorphism Φ from F(S)
to F(Q) is F(Ψ) for some span isomorphism Ψ from S to Q.

Definition 2.9. For any two spans S and Q in C such that SR is equal to QL and there
is a span P in C that is a pullback of the cospan (sR, qL), denote by S ◦P Q the span in C

8



given by
S ◦P Q = (sL ◦ pL, qR ◦ pR).

The span S ◦P Q is the composite of S and Q along P . If P is an F -pullback, then the span
S ◦P Q is an F-pullback composite of S and Q along P .

Identify the objects of Span(C ,F) to be the objects in C and the isomorphism classes of
spans in C to be the morphisms in Span(C ,F). If [S] is an isomorphism class of spans in
Span(C ,F), then identify SR and SL respectively to be the source and target of [S]. Define
composition of isomorphism classes of spans by

[
S1
]
◦
[
S2
]
=
[
S1 ◦P S2

]
,

where S1 ◦P S2 is an F -pullback composite of S1 and S2. For any object X in C , denote by
IdX the identity morphism from X to X . Define by [(IdX , IdX)] the identity morphism in
Span(C ,F) from X to X . The following theorem is the main result of [30].

Theorem 2.10. If F is a span tight functor from C to C ′, then Span(C ,F) is a category.

Suppose that X , Y , and Z are smooth manifolds. Suppose further that (f, g) is a cospan
in SurjSub where f and g have respective sources X and Y and mutual target Z. Again
denote by ρX and ρY the respective projections from X × Y to X and Y and let πX and πY

be their respective restrictions to the embedded submanifold X×Z Y . The article [30] proves
Proposition 2.11. Proposition 2.11 and Theorem 2.10 together imply that Span(SurjSub,F)
is a category, where F is the forgetful functor from SurjSub to Diff.

Proposition 2.11. The span (πX , πY ) is an F-pullback of (f, g) and so SurjSub has F-

pullbacks. Moreover, the functor F is span tight.

Since we will need to work in the categories SympSurj and RiemSurj, we will need to prove
a similar result for these categories. The following section will provide such a result.

3. Lagrangian and Hamiltonian Systems

The description of a Lagrangian or Hamiltonian system respectively requires not only the
identification of a Riemannian or Poisson span, but the additional information of a potential
or a Hamiltonian, both of which are augmentations.

3.1. Systems as Isomorphism Classes of Augmented Spans. We now introduce the
notion of an augmentation of a span and cospan, but in the restricted settings that are
significant to the current discussion. We will discuss augmentations in greater generality in
an upcoming paper.

Definition 3.1. An augmented manifold is a pair (M,FM ), where M is a smooth manifold
and FM is a smooth real valued function defined on M . The pair (M,FM) is an augmented

Riemannian (symplectic)manifold if M is a Riemannian (symplectic) manifold. Refer to
FM as a potential (or Hamiltonian) , denoting it by VM (or HM) if M is respectively a
Riemannian (or symplectic) manifold.

9



For sake of concision, denote by M any of the categories listed in Table 1.

Definition 3.2. An augmented (co)span in M is a pair (S, FS), where S is a (co)span in
M and FS is a triple (FSA

, FSL
, FSR

) of smooth real valued functions defined respectively
on SA, SL, and SR. If M is RiemSurj (or SympSurj), then the given augmented span is an
augmented Riemannian (co)span (or augmented Poisson (co)span). A physical (co)span is
an augmented (co)span that is either Riemannian or Poisson. If (S, FS) is an augmented
Riemannian (Poisson) span, then refer to FS as a potential (or Hamiltonian) and denote it
by VS (or HS).

The apex of a Poisson span determines the kinematical properties of the system and
the mapping of the apex to its feet determines the way in which the span composes with
other spans and, therefore, how components of systems compose to form more complicated
systems. The apex of a Riemannian span determines a free system and the augmentation
will be a potential that determines the interactions in the system. The fundamental object
of our study should be an isomorphism class of augmented spans rather than an augmented
span because composition using F -pullbacks is only determined up to isomorphism.

Definition 3.3. Suppose that physical spans (S, FS) and (Q,FQ) are either both Riemannian
or both Poisson and that

(SL, FSL
) = (QL, FQL

) and (SR, FSR
) = (QR, FQR

) .

A span morphism Φ from SA to QA is compatible with FS and FQ if FSA
is equal to FQA

◦Φ
and is, in this case, a morphism of physical spans. If Φ is additionally an isomorphism,
then Φ is an isomorphism of physical spans and (S, FS) and (Q,FQ) are isomorphic physical

spans.

The inverse of an isometry is again an isometry. The inverse of a Poisson diffeomorphism
is again a Poisson diffeomorphism, [16, p. 10]. Proposition 3.4 follows from these facts.

Proposition 3.4. The inverse of any Riemannian (or Poisson) span isomorphism from S
to Q is a Riemannian (or Poisson) span isomorphism from Q to S.

Denote by [S, FS] the set of all physical spans that are isomorphic to a physical span
(S, FS). Together with the fact that the composition of physical span isomorphisms is again
a physical span isomorphism, Proposition 3.4 implies that isomorphism of physical spans is
an equivalence relation, hence the set [S, FS] is an equivalence class.

Definition 3.5. A Lagrangian (or Hamiltonian) system is an isomorphism class of Riemann-
ian (or Poisson) spans. If [S, FS] is either a Hamiltonian system or a Lagrangian system,
then [S, FS] is a physical system. Physical systems [S, FS] and [Q,FQ] are of the same type

if they are both Hamiltonian systems or both Lagrangian systems.

3.2. Paths of Motion. Suppose that S is a Riemannian span, gSA
is the Riemannian metric

on SA, and VSA
is a potential associated to SA. Define by ρSA

the canonical projection from

10



TSA to SA. Define the Lagrangian of S on TSA to be the function LS, where

LS(ν) =
1

2
gSA

(ν, ν)− VSA
(ρSA

(ν)) with ν ∈ TSA.

Definition 3.6. A path in the Riemannian manifold (SA, gSA
) is a path of motion of S if it

minimizes the action integral of LS under smooth variations with fixed endpoints.

Define on each ν in TSA the function ♭SA
by

♭SA
(ν) = gSA

(ν, ·).

The nondegeneracy of the metric gSA
implies that the map ♭SA

is an invertible function from
TSA to T ∗SA. Define by ♯SA

the inverse of ♭SA
with

♯SA
: T ∗SA → TSA by θ 7→ ν, where θ = gSA

(ν, ·) and (θ, ν) ∈ T ∗SA × TSA.

Denote by gradSA
(VSA

) the vector field

gradSA
(VSA

) = ♯SA
(dVSA

).

Denote by ∇SA the Levi-Civita connection on the Riemannian manifold (SA, gSA
). A stan-

dard calculation shows that γ is a path of motion of the Riemannian span S if and only if it
satisfies

∇SA

γ′ γ
′ + gradSA

(VSA
)
∣∣
γ
= 0,(EL)

the Euler–Lagrange equations. See [13] for further explanation of the details in this section.

Definition 3.7. Suppose that S is a Poisson span. Denote by {·, ·}SA
the Poisson bracket

associated to the symplectic form ωSA
on the symplectic manifold SA. A path γ in SA is a

path of motion of S if it is an integral curve of the the vector field v where

v = {·, HSA
}
SA

.

Proposition 3.8. Suppose that (S, FS) and (Q,FQ) are physical spans of the same type and

Φ is an isomorphism of physical spans taking (S, FS) to (Q,FQ). If γ is a path of motion

of (S, FS), then Φ ◦ γ is a path of motion of (Q,FQ). Furthermore, every path of motion of

(Q,FQ) is the image of a path of motion of (S, FS).

Proof. If S and Q are Riemannian spans and Φ is an isomorphism from S to Q, then Φ is an
isometry from SA to QA and VSA

is equal to VQA
◦Φ. Denote by ∇SA and ∇QA the respective

Levi-Civita connections on SA and QA. Suppose that p is an element of SA and that X and
Y are tangent vector fields on SA. The map Φ is an isometry and so

dΦp

((
∇SA

X Y
)
(p)
)
= ∇QA

dΦ(X)dΦ(Y )(Φ (p)) and dΦ
(
gradSA

(VQA
◦ Φ)

)
= gradQA

(VQA
) .

If γ is a path of motion of (S, FS), then Φ ◦ γ is a curve in QA and

∇QA

(Φ◦γ)′
(Φ ◦ γ)′ + gradQA

(VQA
)
∣∣
Φ◦γ

= ∇QA

dΦ(γ′)(dΦ(γ
′)) + gradQA

(VQA
)
∣∣
Φ◦γ

= d
(
∇SA

γ′ (γ
′) + gradSA

(VSA
)
∣∣
γ

)

11



= d(0) = 0,

where the fact that γ satisfies (EL) in SA implies the penultimate equality. The path Φ ◦ γ
is therefore a path of motion of (Q,FQ).

If S and Q are Poisson spans and Φ is an isomorphism from S to Q, then Φ is a Poisson
diffeomorphism from SA to QA and HSA

is equal to HQA
◦Φ. The curve γ is path of motion

of (S, FS) if and only if it is an integral curve of the vector field {·, HSA
}. Suppose that α

and β are smooth functions on QA. Since Φ is Poisson,

dΦ
(
{·, α ◦ Φ}SA

)
(β) = {·, α ◦ Φ}SA

(β ◦ Φ) =
(
{β ◦ Φ, α ◦ Φ}SA

)
= {β, α}QA

and so

(Φ ◦ γ)′ = dΦ
∣∣
γ

(
{·, HSA

}
SA

)

= dΦ
∣∣
γ

(
{·, HQA

◦ Φ}
SA

)
= {·, HQA

}
QA

∣∣
Φ◦γ

.

The curve Φ ◦ γ is, therefore, a path of motion of (Q,FQ).
In both the Riemannian and Poisson settings, the map Φ−1 is also an isomorphism of

physical spans and so every path of motion of (Q,FQ) is the image of a path of motion of
(S, FS). �

3.3. F-Pullbacks of SympSurj and RiemSurj in Diff. Proposition 3.8 implies that an
isomorphism class of physical spans determines the dynamics of a physical system. Compos-
ing such isomorphism classes requires both the existence of F -pullbacks in these categories,
where F is an appropriate forgetful functor into Diff, as well as the span tightness of the
functor F .

Suppose X is a symplectic manifold. The Poisson bivector ΠX of X induces a map Π̃X

from T ∗X to TX that takes any η in T ∗X to the vector field Π̃X(η) with the property that
for any ν in T ∗X ,

ν
(
Π̃X(η)

)
= ΠX(η, ν).

Since X is symplectic, the map Π̃X is an isomorphism [12, p. 17]. This isomorphism gives a
way to pull back vector fields by surjective Poisson maps, a fact that, along with Proposi-
tion 2.6, is critical to the proof of Theorem 3.9. Theorem 3.9 establishes the existence of a
local splitting of the tangent space of a symplectic manifold by a local foliation given by the
inverse image of a surjective Poisson map.

Theorem 3.9. Suppose that X and Z are symplectic manifolds with respective dimensions

2ℓ and 2n and that f is a surjective Poisson map from X to Z. Given any z in Z and a

choice of Darboux coordinates (qZi , p
Z
i )

n
i=1 on a chart U containing z, and given any x in X

with f(x) equal to z, there exist Darboux coordinates (qXi , pXi )
ℓ
i=1 on a chart V containing x

such that for any i in {1, . . . , n},

qXi = qZi ◦ f and pXi = pZi ◦ f.
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Proof. Suppose that x0 is in X , that U is a chart containing f(x0), and that (qZi , p
Z
i )

n
i=1

is a Darboux coordinate system on U . Proposition 2.6 guarantees that f is a surjective
submersion, hence it is an open map and so there is a chart V ′ containing x0 with a Darboux
coordinate system (qXi , pXi )

ℓ
i=1 such that f(V ′) is an open subset of U . Denote by H the set

of all vector fields v on f(V ′) for which there is some α in C∞(f(V ′)) such that for any β in
C∞(f(V ′)),

v(β) = {β, α}Z.

Denote such a vector field by vα. Denote by f ∗(H) the set of all vector fields w on V ′ for
which there is an α in C∞(f(V ′)) such that for any h in C∞(V ′),

w(h) = {h, α ◦ f}X.

Denote such a vector field by wα. For any x in V ′ and any z in f(V ′), denote respectively
by f ∗(H)(x) and H(z) the set of all vector fields in f ∗(H) evaluated at x and the set of
all vector fields in H evaluated at z. The bilinearity of the bracket implies that H(z) and
f ∗(H)(x) are vectors spaces. Since

v−qZi
=

∂

∂pZi
and vpZi =

∂

∂qZi
,

for any z in f(V ′), the vector space H(z) spans Tz(U).
Let F be the function

F : H → f ∗(H) by F (vα) = wα.

The fact that f is Poisson implies that

df(wα)(β) = wα(β ◦ f)

= {β ◦ f, α ◦ f}X

= {β, α}Z = vα(β),

and so
df(F (vα)) = vα.

Similarly, for any wα in f ∗(H),

F (df(wα)) = F (vα) = wα.

The maps F and df |H are therefore inverses of each other and so for each x in V ′, the vector
spaces H(f(x)) and f ∗(H)(x) are isomorphic. Both of these vector spaces are of the same
dimension as Z.

For any wα and wα′ in f ∗(H), the Jacobi identity implies that

[wα, wα′]TX = wα(wα′(β))− wα′(wα(β))

= {wα′(β), α ◦ f}X − {wα(β), α
′ ◦ f}X

= {{β ◦ f, α′ ◦ f}X , α ◦ f}X − {{β ◦ f, α ◦ f}X , α
′ ◦ f}X

= {β, {α′ ◦ f, α ◦ f}X}X = w{α,α′}(β),
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and so the space of vector fields f ∗(H) is closed under the bracket [·, ·]TX on TX . Frobenius’
Theorem for involutive distributions implies that for any x in V ′ there is a submanifold W
of V ′ such that f ∗(H)(x) is the tangent space TxW . Since

f ∗(H)(x) ∩ ker(df
∣∣
x
) = {0},

the rank-nullity theorem implies that

TxV
′ = f ∗(H)(x)⊕ ker(df

∣∣
x
).

Define the function g from W to Z to be the restriction of f to the submanifold W . The
form g∗(ωZ) is a closed 2-form on W as the pullback of the closed 2-form ωZ restricted to
f(V ′). Suppose that there is a v in TW such that for all w in TW , g∗(ωZ)(v, w) is equal to
zero. In this case,

0 = g∗(ωZ)(v, w) = ωZ(dg(v), dg(w)),

and so
ωZ(dg(v), ·) = 0

since dg
∣∣
x
is surjective at each point x of W . Nondegeneracy of ωZ implies that dg(v) is

equal to zero and the injectivity of dg further implies that v is equal to zero. The form
g∗(ωZ) is, therefore, a symplectic form on W .

For any (η, ζ) in C∞(V ′)× C∞(V ′),

f ∗(ωZ)
∣∣
x
(wη, wζ) = ωZ(df(wη), df(wζ))|f(x)

= ωZ(vη, vζ)
∣∣
f(x)

= {η, ζ}Z
∣∣
f(x)

= {η ◦ f, ζ ◦ f}X
∣∣
x
= ωX(wη, wζ)

∣∣
x
,(1)

where the assumption that f is Poisson implies the penultimate equality. The pullback
f ∗(ωZ) is therefore the restriction of ωX to TW × TW . The manifold W is an embedded
symplectic submanifold of V ′ and so [25, p.124, Exercise 3.38] implies that there is an open
set V of V ′ that contains x0 and a Darboux coordinate system (qXi , pXi )

ℓ
i=1 on V such that

for any x in V and i strictly larger than n,

qXi (x) = pXi (x) = 0.

Define

ωA =
n∑

i=1

dqXi ∧ dpXi and ωB =
ℓ∑

i=n+1

dqXi ∧ dpXi ,

so that in the open set V , ωX is equal to the sum of ωA and ωB. The form ωB is the
restriction of ωX to (TW ×TW )∩ (TV ×TV ) and so (1) implies that ωB is equal to f ∗(ωX).
Furthermore, for any θ in C∞(U),

(f ∗(dqZi ))(wθ)|x = dqZi (df(wθ))
∣∣
x

= dqZi (vθ)
∣∣
f(x)
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= vθ(q
Z
i )
∣∣
f(x)

= {qZi , θ}Z
∣∣
f(x)

= {qZi ◦ f, θ ◦ f}X
∣∣
x
= d(qZi ◦ f)wθ

∣∣
x
.

Every element of TW is of the form wθ for some θ in C∞(U), implying that

(2) f ∗(dqZi ) = d(qZi ◦ f) and f ∗(dpZi ) = d(pZi ◦ f).

Use (2) together with the coordinate representation of ωZ to obtain the equality

f ∗(ωZ) =

n∑

i=1

d(qZi ◦ f) ∧ d(pZi ◦ f),

that implies that in the chart V ,

ωX =

n∑

i=1

d(qZi ◦ f) ∧ d(pZi ◦ f) +

ℓ∑

i=n+1

dqXi ∧ dpXi .

The coordinate system φ on V given by

φ = (qZ1 ◦ f, pZ1 ◦ f, . . . , qZn ◦ f, pZn ◦ f, qXn+1, p
X
n+1, . . . , q

X
ℓ , pXℓ )

is, therefore, a Darboux coordinate system on V . �

Denote by πZ the map

πZ = f ◦ πX = g ◦ πY ,

where πX and πY are the projections from X ×Z Y to Z. More generally, for any span Q
that is paired with a cospan (f, g), define by qM the map

qM = f ◦ qL = g ◦ qR.

Theorem 3.10. Suppose that (f, g) is a cospan in SympSurj with

f : X → Z and g : Y → Z,

with 2ℓ, 2m, 2n the respective dimensions of X, Y , and Z, and suppose that ωX , ωY , and ωZ

are the respective symplectic forms on X, Y , and Z. Suppose that Q is a span in SympSurj

that is paired with (f, g) and suppose that QA has dimension 2(ℓ+m−n). The 2-form ωQA
,

given by

ωQA
= q∗L(ωX) + q∗R(ωY )− q∗M(ωZ) ,

is the symplectic form on QA. Moreover, the 2-form ω, given by

ω = π∗
X(ωX) + π∗

Y (ωY )− π∗
Z(ωZ)

is the unique symplectic form on X×Z Y with the property that (πX , πY ) is paired with (f, g).
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Proof. Suppose that a is in QA. Since Z is a symplectic manifold, there is on some chart UZ

containing qM(a) a Darboux coordinate system ΨZ with

ΨZ =
(
qZk , p

Z
k

)
k∈{1,...,n}

: UZ → R
2n.

Since qM (a) is equal to f(qL(a)), Theorem 3.9 implies that there is a chart UX containing
qL(a) and a Darboux coordinate system ΨX on UX with

ΨX =
(
qXi , pXi , q

Z
k ◦ f, pZk ◦ f

)
i∈{1,...,ℓ−n}
k∈{1,...,n}

: UX → R
2ℓ.

Similarly, there is a chart UY containing qR(a) and a Darboux coordinate system ΨY on UY

with

ΨY =
(
qYj , p

Y
j , q

Z
k ◦ g, pZk ◦ g

)
j∈{1,...,m−n}
k∈{1,...,n}

: UY → R
2m.

For each k in {1, . . . , n}, the equality of f ◦ qL and g ◦ qR implies that

qZk ◦ f ◦ qL = qZk ◦ g ◦ qR = qZk ◦ qM and pZk ◦ f ◦ qL = pZk ◦ g ◦ qR = pZk ◦ qM .

Furthermore, there is a chart U containing a with the property that qL(U) and qR(U) are,
respectively, subsets of UX and UY . Denote respectively by q̃Xi , p̃Xi , q̃Yj , p̃Yj , q̃

Z
k , p̃

Z
k the

functions qXi ◦ qL, p
X
i ◦ qL, q

Y
j ◦ qR, p

Y
j ◦ qR, q

Z
k ◦ qM , and pZk ◦ qM acting on QA. The map Ψ

given by

Ψ =
(
q̃Xi , p̃Xi , q̃

Y
j , p̃

Y
j , q̃

Z
k , p̃

Z
k

)
i∈{1,...,ℓ−n}
j∈{1,...,m−n}
k∈{1,...,n}

: U → R
2(ℓ+m−n)

is a homeomorphism from U to an open subset of R2(ℓ+m−n) and hence a coordinate system
on U that is a Darboux coordinate system. The 2-form ωQA

is therefore the form

ωQA
=

ℓ−n∑

i=1

dq̃Xi ∧ dp̃Xi +

m−n∑

j=1

dq̃Yj ∧ dp̃Yj +

n∑

k=1

dq̃Zk ∧ dp̃Zk ,

proving that if there is a span Q with the given properties, then the symplectic form on QA

is determined by the cospan (f, g). It does not, however, prove that there is such a span.
Proposition 3.6 of [30] implies that X×Z Y is a smooth manifold of dimension 2(ℓ+m−n).

Suppose v is in Ta(X ×Z Y ) and for any w in Ta(X ×Z Y ), ω(v, w) is zero. There are
coefficients ai, bi, cj , ej, sk, tk such that, using Einstein summation convention,

v = ai∂q̃Xi + bi∂p̃Xi + cj∂q̃Yj + ej∂p̃Yj + sk∂q̃Zk + tk∂p̃Zk .

For a fixed i,

−ω(v, ∂q̃Xi ) = bi = 0.

A similar calculation shows that all of the given coefficients are zero, implying that v is equal
to zero and so ω is nondegenerate. The form ω is the sum of pullbacks of smooth closed
forms, and so smooth and closed itself, hence symplectic. The construction of ω ensures that
the smooth surjections πX and πY are Poisson maps on the symplectic manifold (X×Z Y, ω),
hence (πX , πY ) is paired with (f, g). �

16



Theorem 3.11. Suppose that (f, g) is a cospan in RiemSurj with

f : X → Z and g : Y → Z

and that gX , gY , and gZ are the metric tensors on X, Y , and Z, respectively. The tensor

gX×ZY , given by

gX×ZY = π∗
X(gX) + π∗

Y (gY )− π∗
Z(gZ) ,

is the unique metric tensor on X ×Z Y such that the span (πX , πY ) is paired with (f, g).

Proof. Since every surjective Riemannian submersion is a surjective submersion, the fibered
product X×Z Y is a smooth manifold. If gX×ZY is positive definite, then (X ×Z Y, gX×ZY ) is
a Riemannian manifold since gX×ZY is a symmetric tensor as a sum of pullbacks of symmetric
tensors. It suffices to show that gX×ZY is nondegenerate.

Follow the proof of Theorem 3.10, using the splitting of the tangent spaces

TX = (ker(df))⊥ ⊕ (ker(df)) and TY = (ker(dg))⊥ ⊕ (ker(dg))

rather than the previous appeal to Theorem 3.9 to obtain an expression for gX×ZY in local
coordinates. Together with this local coordinate representation of gX×ZY , the fact that
the maps πX , πY and πZ are surjective Riemannian submersions implies that gX×ZY is
nondegenerate. The proof is similar to the proof of Theorem 3.10 and so the details are left
to the reader to verify. �

Note that the symplectic form on X ×Z Y in Theorem 3.10 is not the pullback by the
inclusion map of the symplectic form on X×Y to the manifold X×Z Y . While the pullback
form is symplectic, the span (πX , πY ) will no longer be a span in SympSurj when X ×Z Y
is endowed instead with the pullback form. The analogous statements about the potential
choices for the metric tensor are true in the Riemannian setting.

Theorem 3.12. The forgetful functors from SympSurj to Diff and from RiemSurj to Diff are

span tight.

Proof. Suppose that F is the forgetful functor from SympSurj to Diff. Since every morphism
in SympSurj is a surjective submersion, the functor F maps SympSurj to the subcategory
SurjSub of Diff. If (f, g) is a cospan in SympSurj, and πX and πY are, as defined above,
the respective projections from X ×Z Y to X and Y , then Proposition 2.11 implies that
(F(πX) ,F(πY )) is a span in Diff that is a pullback of the cospan (F(f) ,F(g)). Therefore,
SympSurj has F -pullbacks in Diff. Suppose now that Q is a span in SympSurj that is also
an F -pullback of (f, g). In this case, the span F(Q) is a span in Diff that is a pullback of
(F(f) ,F(g)) and so there is a span diffeomorphism Φ from F(Q) to F(X ×Z Y ). Since Φ
is a span morphism,

(3) F(qL) ◦ Φ
−1 = F(πX), F(qR) ◦ Φ

−1 = F(πY ), and F(f) ◦ F(qL) ◦ Φ
−1 = F(πZ).

Denote respectively by ω, ωX , ωY , and ωZ the symplectic forms on X ×Z Y , X , Y , and Z.
The equalities of (3) imply that

ω = F(πX)
∗(ωX) + F(πY )

∗(ωY )− F(πZ)
∗(ωZ)
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=
(
F(qL) ◦ Φ

−1
)∗
(ωX) +

(
F(qR) ◦ Φ

−1
)∗
(ωY )−

(
F(f) ◦ F(qL) ◦ Φ

−1
)∗
(ωZ)

=
(
Φ−1

)∗ (
F(qL)

∗ (ωX) + F(qR)
∗(ωY )− (F(f) ◦ F(qL))

∗(ωZ)
)

=
(
Φ−1

)∗
(ωQA

) ,

where ωQA
is the unique 2-form on QA such that Q is paired with (f, g). Let Ψ be the map

from (QA, ωQA
) to (X ×Z Y, ω) that acts as Φ on the underlying manifolds. The map Ψ is,

therefore, a diffeomorphism and Ψ−1 is a symplectic map, hence Ψ is a symplectomorphism.
Since every symplectomorphism is a Poisson diffeomorphism, Ψ isomorphism in the category
SympSurj with F(Ψ) equal to Φ, [1, p. 195].

A similar argument proves the theorem in the case of RiemSurj. �

Corollary. If F is the forgetful functor from SympSurj to Diff (resp. RiemSurj to Diff ) , then
Span(SympSurj,F) (resp. Span(RiemSurj,F)) is a category.

While Theorems 2.10 and 3.12 imply that Span(SympSurj,F) and Span(RiemSurj,F) are
categories, where F is the appropriate forgetful functor into Diff, to show that physical
systems are morphisms of a category requires additional verifications. The next section
provides the necessary verifications.

4. Physical Systems as Morphisms

This section constructs the categories LagSy and HamSy, whose objects are respectively
augmented Riemannian manifolds or augmented symplectic manifolds and whose morphisms
are isomorphism classes of the physical spans appropriate to the given category.

4.1. The Categories HamSy and LagSy.

Definition 4.1. The physical system [S, FS] is composable with the physical system [Q,FQ]
if:

(1) both are physical systems of the same type;
(2) if (S, FS) and (Q,FQ) are respective representatives of the equivalence classes [S, FS]

and [Q,FQ], then (SR, FSR
) is equal to (QL, FQL

).

Assume below that the physical system [S, FS] is composable with [Q,FQ], and (S, FS)
and (Q,FQ) are, respectively, representatives of [S, FS] and [Q,FQ]. To simplify notation,
let

SA = X, SL = V, SR = QL = Z, QA = Y, and QR = W.

Again denote byX×ZY the fibered product and by πX , πY , and πZ the respective projections
to X , Y , and Z. Define by [S, FS] ◦ [Q,FQ] the augmented span given by

[S, FS] ◦ [Q,FQ] = [(sL ◦ πX , qR ◦ πY ) , FS◦Q] ,

where

FS◦Q = (FX ◦ πX + FY ◦ πY − FZ ◦ πZ , FV , FW ) .
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Theorem 4.2. The Hamiltonian systems are the morphisms in a category, HamSy, whose

objects are augmented symplectic manifolds. The Lagrangian systems are the morphisms in

a category, LagSy, whose objects are augmented Riemannian manifolds.

Proof. To prove the theorem, it suffices to show that: (1) composition of morphisms in HamSy

and in LagSy is well defined; (2) both HamSy and LagSy have left and right unit laws; and (3)
composition of morphisms in HamSy and in LagSy is associative. Since Span(RiemSurj,F)
and Span(SympSurj,F) are categories, to show that HamSy and LagSy are categories, it
suffices to show that the augmentations are compatible with the various span isomorphisms
that arise in defining the categories Span(RiemSurj,F) and Span(SympSurj,F). Suppose
that [S, FS] and [Q,FQ] are both morphisms in HamSy and denote by F the forgetful functor
from SympSurj to Diff.

(1) Suppose that [S ′, FS′] is equal to [S, FS] and that α is an isomorphism of augmented
spans with

α : X = SA → S ′
A.

Suppose that [Q′, FQ′] is equal to [Q,FQ] and that β is an isomorphism of augmented spans
with

β : Y = QA → Q′
A.

Since (Z, FZ) is the right foot of (S, FS) and the left foot of (Q,FQ),
(
S ′
R, FS′

R

)
=
(
Q′

L, FQ′

L

)
= (Z, FZ) .

If P is an F -pullback of (s′R, q
′
L), then there is a span isomorphism Φ in SympSurj with

Φ: X ×Z Y → PA.

The augmented span (S ′, FS′) ◦P (Q′, FQ′) is given by

(S ′, FS′) ◦P (Q′, FQ′) = ((s′L ◦ pL, q
′
R ◦ pR) , FS′◦PQ′) ,

where
FS′◦PQ′ =

(
FS′

A
◦ pL + FQ′

A
◦ pR − FZ ◦ s′R ◦ pL, FV , FW

)
.

Since α and β are isomorphisms of augmented spans,

FS′

A
◦ α = FX and FQ′

A
◦ β = FY .

The function Φ is a span isomorphism and so

pL ◦ Φ = α ◦ πX and pR ◦ Φ = β ◦ πY ,

hence
FS′

A
◦ pL ◦ Φ = FS′

A
◦ α ◦ πX = FX ◦ πX .

Similar arguments show that

FQ′

A
◦ pR ◦ Φ = FY ◦ πY and FZ ◦ s′R ◦ pL ◦ Φ = FZ ◦ πZ ,

and so

(4) FS◦Q = (FS′◦PQ′) ◦ Φ.
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Equality (4) implies that Φ is an augmented span isomorphism, hence the composition of
[S, FS] and [Q,FQ] is independent of representative. The composite [S, FS] ◦ [Q,FQ] is,
therefore, a well defined morphism from (QR, FQR

) to (SL, FSL
).

SL SR = QL

SA

sL sR

QR = TL

QA

qL qR

TR

TA

tL tR

P 1
A

p1L p1R
P 2
A

p2L p2R

P 3
A

p3L p3R
P 4
A

p4L

p4R

Φ

m4

m1

m3

m2

Diagram 5. Associativity of Augmented Span Composition

(2) Let [S, FS] be a morphism with source (SR, FSR
) and target (SL, FSL

). Let
(
ISR

, FISR

)

be a representative of the identity augmented span with source (SR, FSR
) and target (SR, FSR

).
The equality

[S] ◦ [ISR
] = [S]

follows from the fact that Span(SympSurj,F) is a category. Let the span P be an F -pullback
of (sR, ISR

), where

PL = PA = SA, PR = SR, pL = IdSA
, and pR = sR.

The equalities

FPA
= FSL

◦ pL + FSR
◦ sR − FSR

◦ sR ◦ pL

= FSL
◦ IdSA + FSR

◦ sR − FSR
◦ sR ◦ IdSA

= FSL

imply that there is an augmented span isomorphism from (S, FS) ◦ (ISR
, FSR

) to (S, FS), and
so

[S, FS] ◦ [ISR
, FSR

] = [S, FS] .

A similar argument shows that

[ISL
, FSL

] ◦ [S, FS] = [S, FS] .

Therefore, HamSy has left and right unit laws.
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(3) Refer to Diagram 5 for the naming of the maps below, where all spans paired with
a given cospan are augmented F -pullbacks of the given cospan and the diagram is commu-
tative. Let (P 3, FP 3) be an F -pullback of (p1R, p

2
L) and let (P 4, FP 4) be an F -pullback of

(qR ◦ p1R, tL).
To prove (3), show first that there is an augmented span isomorphism from the augmented

span
(
(S, FS) ◦(P 1,F

P1) (Q,FQ)
)
◦(P 4,F

P4) (T, FT ) to the augmented span (P, FP ) that is given

by the composite
(
(S, FS) ◦(P 1,F

P1) (Q,FQ)
)
◦(P 3,F

P3)

(
(Q,FQ) ◦(P 2,F

P2) (T, FT )
)
. A similar

argument will show that there is an augmented span isomorphism from the augmented span
(S, FS) ◦

(
(Q,FQ) ◦ (T, FT )

)
to (P, FP ) and the result follows by the fact that inverses and

compositions of augmented span isomorphisms are augmented span isomorphisms. Since
Lemma 5.3 of [30] proves the existence of a span isomorphism between the non-augmented
spans, it suffices to show that this span isomorphism is compatible with the augmentations
for the two composite spans.

The commutativity of Diagram 5 and the definition of the composition of augmented spans
together imply that

FP 4
A
= FP 1

A
◦ p4L + FTA

◦ p4R − FQR
◦m4

= FP 1
A
◦ p3L ◦ Φ+ FTA

◦ p2R ◦ p3R ◦ Φ− FQR
◦m2 ◦ p3R ◦ Φ.

=
(
FP 1

A
◦ p3L + FTA

◦ p2R ◦ p3R − FQR
◦m2 ◦ p3R

)
◦ Φ

=
(
FP 1

A
◦ p3L +

(
FTA

◦ p2R − FQR
◦m2

)
◦ p3R

)
◦ Φ

=
(
FP 1

A
◦ p3L +

(
FQA

◦ p2L − FQA
◦ p2L + FTA

◦ p2R − FQR
◦m2

)
◦ p3R

)
◦ Φ

=
(
FP 1

A
◦ p3L +

(
FQA

◦ p2L + FTA
◦ p2R − FQR

◦m2
)
◦ p3R − FQA

◦ p2L ◦ p3R

)
◦ Φ

=
(
FP 1

A
◦ p3L +

(
FQA

◦ p2L + FTA
◦ p2R − FQR

◦m2
)
◦ p3R − FQA

◦m3
)
◦ Φ

=
(
FP 1

A
◦ p3L + FP 2 ◦ p3R − FQA

◦m3
)
◦ Φ

= FP 3
A
◦ Φ.

Therefore, the span isomorphism Φ is compatible with the augmentations FP 4 and FP 3 .
The above arguments are independent of the morphisms being in HamSy. Repeat the

arguments above in the setting of LagSy to complete the proof of the theorem. �

4.2. Motivating Example. Suppose that the spring-mass system with three masses given
in Figure 3 has masses m1, m2, and m3 respectively as the left, middle, and right masses
of the system. Suppose further that the spring constants of the left and right springs are
respectively k1 and k2. The spring-mass system with three masses is a composite of two
spring-mass systems with two masses each. We now discuss a category theoretic construction
of a model for the composite system with its subsystems.
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Let [S, VS] be a Lagrangian system describing the left-spring mass system and [Q, VQ] be
a Lagrangian systems describing the right spring-mass system. Denote both SR and QL by
Z, since SR is equal to QL, and by VZ the augmentation on Z. Take a representative (S, VS)
of the Langrangian system [S, VS] to be the augmented Riemannian span with the manifold
SA equal to R

2 and the manifolds SL and Z equal to R. Let g1 be the standard Riemannian
metric on R. Let ρL and ρR be the canonical projections on R

2 with

ρL(q1, q2) = q1 and ρR(q1, q2) = q2.

Denote by g2 the standard Riemannian metric on R
2. Endow SL with the Riemannian metric

gSL
and Z with the Riemannian metric gZ , where gSL

and gZ are given by

gSL
= m1g1 and gZ = m2g1.

Define by gSA
the metric on R

2 given for all v and w in T(q1,q2)R
2 by

gSA
(v, w) = gSL

(dρL(v), dρL(w)) + gZ(dρR(v), dρR(w)).

Denote respectively by sL and sR the functions from SA to SL and from SA to Z that act
on underlying manifolds as the projections ρL and ρR. The augmentation VS is the triple of
maps

VS = (VSA
, VSL

, VZ) with VSA
(q1, q2) =

k1

2
(q1 − q2)

2, VSL
≡ 0, and VZ ≡ 0.

Define similarly the Riemannian span (Q, VQ), but with the Riemannian metric gQR
on QR

and the augmentations VQA
and VQR

given by

gQR
= m3g1, VQA

(q2, q3) =
k2

2
(q2 − q3)

2, and VQR
≡ 0.

Define by gQA
the metric on R

2 given for all v and w in T(q2,q3)R
2 by

gQA
(v, w) = gZ(dρL(v), dρL(w)) + gQR

(dρR(v), dρR(w)).

R
3

R
2

R
2

RRR

Diagram 6. Configuration Spaces for Three Point Masses

Denote by πL and πR the respective projections from SA ×Z QA to SA and to QA and by
πM the map sR ◦ πL, which is also the map qR ◦ πR. Denote by gSA×ZQA

the Riemannian
metric on SA ×Z QA given by

gSA×ZQA
= π∗

L(gSA
) + π∗

R(gQA
)− π∗

Z(gZ).
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The augmentation VSA×ZQA
is then given by

VSA×ZQA
= π∗

L(VSA
) + π∗

R(VQA
)− π∗

M(VZ).

Let Φ be the diffeomorphism from SA ×Z QA to R
3 given by

Φ(q1, q2, q2, q3, q̇1, q̇2, q̇2, q̇3) = (q1, q2, q3, q̇1, q̇2, q̇3).

Denote by PA the Riemannian manifold R
3, and by pL and pR the maps

pL = sL ◦ πL ◦ Φ−1 and pR = sR ◦ πR ◦ Φ−1.

Denote similarly by VPA
the potential

VPA
= VSA×ZQA

◦ Φ−1.

Define a Riemannian metric gPA
on PA by

gPA
= (Φ−1)∗(gSA×ZQA

),

making Φ an isometry. The Lagrangian for the composite system is LPA
where for every ν

in TPA,

LPA
(ν) =

1

2
gPA

(ν, ν)− VPA
(ρPA

(ν)) .

The Lagrangian L of the system with configuration space given by R
3 is given with respect

to coordinate system (q1, q2, q3) by

L(q1, q2, q3, q̇1, q̇2, q̇3) =
m1

2
(q̇1)

2 +
m2

2
(q̇2)

2 +
m2

2
(q̇2)

2 +
m3

2
(q̇3)

2 −
m2

2
(q̇2)

2

−
k1
2
(q1 − q2)

2 −
k1
2
(q2 − q3)

2 + 0 (since VZ ≡ 0)

=
m1

2
(q̇1)

2 +
m2

2
(q̇2)

2 +
m3

2
(q̇3)

2 −
k1

2
(q1 − q2)

2 −
k1

2
(q2 − q3)

2.

The Riemannian span (P, FP ) is a representative of the Lagrangian system [S, FS] ◦ [Q,FQ].
The Lagrangian L on PA is the Lagrangian for the given system of three masses and two
springs with configuration space equal to R

3. We leave the determination of the Hamiltonian
system to the reader as it is a straightforward exercise given the previous discussion and the
result of the next section.

In general, a description of a composite system requires a prior description of the subsys-
tems. The subsystems need not themselves have descriptions as composite systems and it
remains an open problem to determine the simplest subsystems that are required to con-
struct from them any other system as a composite. If two subsystems that share a common
component form a complicated system, and if we know how to map the subsystems into two
pieces, one of which is the common component, then we can view the complicated system
as a composite system in our formalism. We carefully work through a selection of examples
in an upcoming paper where we more carefully develop computational tools.
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5. The Legendre Functor

This section constructs a functor L from LagSy to HamSy that preserves the paths of
motion.

Suppose that (M, gM) is a Riemannian manifold of dimension m. The canonical 2-form,
ωT ∗M , is the exterior derivative of the tautological 1-form and is a symplectic form on T ∗M ,
[2, p. 202]. Denote respectively by πM and ρM the canonical projections from T ∗M to M
and from TM to M . Suppose a is a point of M . There is a chart U of M containing a that is
the domain of coordinates (xi)i∈{1,...,m}. The set of 1-forms {dxi : i ∈ {1, . . . , m}} trivializes

the subbundle T ∗U . Define for each i the real valued functions pMi on T ∗U with the property
that for all θ in T ∗M ,

θ =

m∑

i=1

pMi (θ)
∂

∂xi

∣∣∣∣
πM (θ)

.

The pMi are the momenta associated with the xi coordinates. For each i, the function pMi is
the evaluation map ev ∂

∂xi

∣

∣

∣

πM (θ)

that is defined by the equality

ev ∂
∂xi

∣

∣

∣

π(θ)

(θ) = θ

(
∂

∂xi

∣∣∣∣
πM (θ)

)
.

For each i, define qMi by

qMi = xi ◦ πM .

The function given by
(
qMi , pMi

)
i∈{1,...,m}

on π−1
M (U) is a Darboux coordinate system, that is

ωT ∗M =

m∑

i=1

dqMi ∧ dpMi .

Define for each i the real valued function q̂Mi on TM with the property that if v is in ρ−1
M (U),

then

v =

m∑

i=1

q̂Mi (v)
∂

∂xi

∣∣∣∣
ρM (v)

.

Note that q̂Mi is the function defined for each v in TU by

q̂Mi (v) = dxi|ρM (v) (v).

Denote ambiguously by qMi the function

qMi = xi ◦ ρM

on TU . The coordinate system
(
qMi , q̂Mi

)
is a coordinate system on ρ−1

M (πM(U)).
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The Riemannian metric gM on TM induces a Riemannian metric on the cotangent bundle
T ∗M , to be denoted g∗M and for each a in U defined on the pair (θ1, θ2) in T ∗

aM × T ∗
aM by

g∗M(θ1, θ2) = gM(♯M(θ1), ♯M(θ2)) =

m∑

i,j=1

gijM(a)pMi (θ1)p
M
j (θ2),

where gijM denotes the (i, j) entry of the inverse of the matrix given by gM in the (qMi , q̂Mi )
coordinates. For all v in TM and θ in T ∗M , denote respectively by gM(·) and g∗M(·) the
quadratic forms

(5) gM(v) = gM(v, v) and g∗M(θ) = g∗M(θ, θ).

Define K as a map from Riemannian manifolds to symplectic manifolds by

K (M, gM) = (T ∗M,ωT ∗M) .

For any surjective Riemannian submersion f from M to N , define (see Diagram 7) K (f) by

K (f) = ♭N ◦ df ◦ ♯M .

To simplify the notation, denote by F the function K (f).
Suppose that M and N are smooth manifolds of respective dimensions m and n and

suppose further that f is a surjective Riemannian submersion from M to N . For any point p
inM there is a coordinate system (x1, . . . , xm) ofAM on a chart containing p and a coordinate
system (y1, . . . , yn) of AN on a chart containing f(p) such that for all i in {1, . . . , n} and k
in {n+ 1, . . . , m},

xi = yi ◦ f and
∂

∂xk

∈ ker(df).

Let j be an index varying in the set {1, . . . , n}. For each i and each j, denote respectively
by qMi and qNj the functions xi ◦ πM and yj ◦ πN and denote by pMi and pNj the momenta
associated with the coordinate functions xi and yj. Use the above notation for the following
lemma, as well as for the rest of the section.

T ∗M

TM TN

T ∗N

M N

♯M ♭N♭M ♯N

F = K (f)

f

df

ρM ρN

πM πN

Diagram 7. Composition of df with the Musical Isomorphisms
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Lemma 5.1. For all pMj , pNj , and F defined as above,

pMj = pNj ◦ F.

Proof. For all j in {1, . . . , n},

df

(
∂

∂xj

∣∣∣∣
a

)
= df

(
∂

∂(yj ◦ f)

∣∣∣∣
a

)
=

∂

∂yj

∣∣∣∣
f(a)

.

For all θ in T ∗U , there is an element X of TU with θ equal to gM(X, ·). In this case, the
form F (θ) is equal to gN(df(X), ·), and so

pMj (θ) = ev
∂

∂xj

∣

∣

∣

∣

πM (θ)

(θ) = gM

(
X,

∂

∂xj

∣∣∣∣
πM (θ)

)
.

The function f is Riemannian, implying that

gM

(
X,

∂

∂(yj ◦ f)

∣∣∣∣
πM (θ)

)
= gN

(
df(X), df

(
∂

∂(yj ◦ f)

∣∣∣∣
πM (θ)

))

and so

pMj (θ) = gN

(
df(X),

∂

∂yj

∣∣∣∣
f(πM (θ))

)

= gN

(
df(X),

∂

∂yj

∣∣∣∣
πN (F (θ))

)

= F (θ)

(
∂

∂yj

∣∣∣∣
πN (F (θ))

)

= ev
∂

∂yj

∣

∣

∣

∣

πM (θ)

(F (θ)) = (πN ◦ F )(θ),

which proves the desired equality. �

Proposition 5.2. For any surjective Riemannian submersion f from a Riemannian mani-

fold M to a Riemannian manifold N , the function K (f) is a surjective Poisson map.

Proof. Suppose M and N have respective dimensions m and n. The map K maps Riemann-
ian manifolds to symplectic manifolds. Once again denote by F the map K (f). Suppose
that ΠT ∗M and ΠT ∗N respectively denote the Poisson bivectors for T ∗M and T ∗N . For any
α and β in C∞(N) and any a in M ,

dFa(ΠT ∗M)(α, β) = ΠT ∗M(α ◦ F, β ◦ F )
∣∣∣
a

=

m∑

i=1

(
∂(α ◦ F )

∂qMi

∂(β ◦ F )

∂pMi
−

∂(β ◦ F )

∂qMi

∂(α ◦ F )

∂pMi

)∣∣∣∣
a
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=
n∑

i=1

(
∂(α ◦ F )

∂qMi

∂(β ◦ F )

∂pMi
−

∂(β ◦ F )

∂qMi

∂(α ◦ F )

∂pMi

)∣∣∣∣
a

=

n∑

i=1

(
∂(α ◦ F )

∂(qNi ◦ F )

∂(β ◦ F )

∂(pNi ◦ F )
−

∂(β ◦ F )

∂(qNi ◦ F )

∂(α ◦ F )

∂(pNi ◦ F )

)∣∣∣∣
a

(6)

=

n∑

i=1

(
∂(α)

∂qNi

∂(β)

∂pNi
−

∂(β)

∂qNi

∂(α)

∂pNi

)∣∣∣∣
F (a)

= ΠT ∗N(α, β)
∣∣∣
F (a)

,

where Lemma 5.1 implies the equality in (6). Therefore, dF (ΠT ∗M) is equal to ΠT ∗N , which
implies that F is a Poisson map. The map f is a surjective submersion, therefore df is
surjective. The nondegeneracy of g implies that F is also surjective and so K maps the
morphisms in RiemSurj to morphisms in SympSurj. �

Lemma 5.3. For any Riemannian spans S and Q and any span isomorphism Φ from S to

Q, the function K (Φ) is a span isomorphism from K (S) to K (Q).

Proof. Suppose that Φ is a span isomorphism from S and Q. In this case, K (Φ) is Poisson.
Since K (Φ) is a diffeomorphism and Poisson, it is an isomorphism in the category SympSurj.
Recall that the isomorphisms in SympSurj are Poisson diffeomorphisms, which are symplec-
tomorphisms since the objects in SympSurj are symplectic manifolds, [1, p. 195]. Since Φ is
a span morphism,

sL = qL ◦ Φ and sR = qR ◦ Φ,

implying that

K (sL) = K (qL ◦ Φ)

= ♭QL
◦ d(qL ◦ Φ) ◦ ♯SA

= ♭QL
◦ dqL ◦ dΦ ◦ ♯SA

= ♭QL
◦ dqL ◦ (♯QA

◦ ♭QA
) ◦ dΦ ◦ ♯SA

= (♭QL
dqL ◦ ♯QA

) ◦ (♭QL
◦ dΦ ◦ ♯SA

) = K (qL) ◦ K (Φ).

A similar argument shows that

K (sR) = K (qR) ◦ K (Φ),

proving that K (Φ) is a span morphism. Therefore, for any spans S and Q in RiemSurj that
are span isomorphic, the spans K (S) and K (Q) are also span isomorphic. �

Lemma 5.4. For any Riemannian submersion f that is compatible with a Riemannian

augmentation, the function K (f) is a Poisson map that is compatible with the Hamiltonian

augmentation that is the image under K of the Riemannian augmentation.

Proof. For any span isomorphism Φ from S to Q that is compatible with FS and FQ,

VSA
= VQA

◦ Φ.
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The isomorphism Φ is Riemannian, hence an isometry. Therefore,

g∗SA
= g∗QA

◦ K (Φ),

and so

HSA
=

1

2
g∗SA

+ VSA
◦ πSA

=
1

2
g∗QA

◦ K (Φ) + VQA
◦ πQA

◦ K (Φ) = HQA
◦ K (Φ).

�

Suppose that S is a Riemannian span and let ⋆ denote either of the letters A, L, or R.
Define K (S⋆, V⋆) by

K (S⋆, V⋆) = (K (S⋆) , H⋆)

where for all η in S⋆,

HS⋆
(η) =

1

2
g∗S⋆

(η) + (V⋆ ◦ πS⋆
)(η).

Each object of LagSy is an augmented Riemannian manifold and so K maps the objects of
LagSy to the objects of HamSy. Define L to be K on the objects of LagSy and for each
morphism [S] in LagSy, define L ([S]) by

L ([S]) = [K (S)].

Theorem 5.5. The map L is a functor from LagSy to HamSy. Suppose that πSA
is the

canonical projection from T ∗SA to SA. Suppose that the Lagrangian system [S] has a path of

motion γ on the manifold SA that is specified by the representative S of [S] and suppose that

γ intersects a point x of SA at time zero. In this case, the path K ◦ γ is a path determined

by L ([S]), valued in the symplectic manifold K (SA), and πSA
◦ K ◦ γ also intersects x at

time zero.

Proof. The map L maps Riemannian manifolds to symplectic manifolds and potentials to
Hamiltonians, and therefore maps the objects of LagSy to the objects of HamSy. Proposi-
tion 5.2 implies that L maps surjective Riemannian submersions to surjective Poisson maps,
and so if S is a Riemannian span, then K (S) is a Poisson span. Lemma 5.4 implies that
if (S, FS) and (Q,FQ) are isomorphic as augmented Riemannian spans, then K (S, FS) and
K (Q,FQ) are also isomorphic as augmented Poisson spans and so L is well defined on
Lagrangian systems, mapping them to Hamiltonian systems.

Suppose that M is a Riemannian manifold. Denote by LM the Lagrangian on TM , where
for each ν in TM ,

LM(ν) =
1

2
gM(ν, ν)− VM(ρM(ν)) .

Denote by HM the Hamiltonian associated to VM and by {·, ·}T ∗M the Poisson bracket as
given above in the construction of L . It is a standard result in classical mechanics that a
path γ on M is a solution to (EL) if and only if it is an integral curve of {·, HM}M , [13,
p.25, Theorem 3.13]. This proves the last two statements of the theorem. To prove that L
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is a functor, it suffices to show further that: (1) L preserves composition and (2) L maps
identity morphisms to identity morphisms.

To show (1), suppose that [S, FS] and [Q,FQ] are augmented Riemannian spans and that
[S, FS] is composable with [Q,FQ]. Suppose that P is an F -pullback of (sR, qL), where
PA is the fibered product SA ×SR

QA and pR and pL are the respective restrictions of the
projections on SA×QA to SA and QA. The map K maps SA×SR

QA to its cotangent bundle
T ∗(SA ×SR

QA), which is isomorphic in SympSurj to the manifold (T ∗SA) ×(T ∗SR) (T
∗QA).

The symplectic form on T ∗(SA ×SR
QA) is given by the canonical 2-form and the symplectic

form ω on (T ∗SA)×(T ∗SR) (T
∗QA) is given by

ω = K (pL)
∗(ωT ∗SA

) + K (pR)
∗(ωT ∗QA

)− K (pL)
∗(K (sR)

∗(ωT ∗SR
)).

The symplectomorphism Φ from T ∗(SA ×SR
QA) to (T ∗SA)×(T ∗SR) (T

∗QA) is consistent with
the augmentations. Lemma 5.4 implies that

L ([S, FS] ◦ [Q,FQ]) = L ([(S, FS) ◦P (Q,FQ)])

= [K ((S, FS) ◦P (Q,FQ))]

= [K (S, FS) ◦K (P ) K (Q,FQ)]

= [K (S, FS)] ◦ [K (Q,FQ)] = L ([S, FS]) ◦ L ([Q,FQ]),

where the penultimate equality holds because K (P ) is an F -pullback.
To show (2), suppose that (X, VX) is an augmented Riemannian manifold and that IdX

is the identity map from X to X . Denote by IX the span (IdX , IdX). The span K (IX) is
the pair (K (IdX),K (IdX)) where K (IdX) is the identity map IdT ∗X from T ∗X to T ∗X .
Furthermore, K maps the augmentation VX to the augmentation HT ∗X where

HT ∗X =
1

2
g∗X + VX ◦ πX .

Suppose that S is an augmented Hamiltonian span with (SL, HSL
) equal to (T ∗X,HT ∗X). Let

Q be the F -pullback of the cospan (K (IdX), sL) with the property that QA is the symplectic
manifold T ∗X ×T ∗X SA. The maps qL and qR are the respective restrictions to the manifold
T ∗X ×T ∗X SA of the canonical projections of the manifold T ∗X × SA to T ∗X and SA and
are symplectomorphisms. The definition of the augmentation on a pullback implies that

HQA
=

(
1

2
g∗X + VX ◦ πX

)
◦ qL +

(
1

2
g∗SA

+ VSA
◦ πSA

)
◦ qR

−

(
1

2
g∗X + VX ◦ πX

)
◦ qL ◦ IdT ∗X

=

(
1

2
g∗X + VX ◦ πX

)
◦ qL +

(
1

2
g∗SA

+ VSA
◦ πSA

)
◦ qR −

(
1

2
g∗X + VX ◦ πX

)
◦ qL

=

(
1

2
g∗SA

+ VSA
◦ πSA

)
◦ qR = HSA

◦ qR,
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hence
HQA

= HSA
◦ qR.

The map qR is, therefore, compatible with the augmentations. Since Q is paired with
(K (IdX), sL),

sL ◦ qR = IdX ◦ qL = qL,

and so qR is a span isomorphism mapping the composite (K (IX) ◦ qL, sR ◦ qR) to the span
S that is compatible with the augmentations. This compatibility implies that

L ([IX , VIX ]) ◦ [S,HS] = [K (IX , VX) ◦ (S,HS)] = [S,HS].

Similar arguments show that for any augmented Hamiltonian span (S ′, HS′) such that
(S ′

R, HS′

R
) is equal to (T ∗X,HT ∗X),

[S ′, HS′] ◦ L ([IX , VX ]) = [S ′, HS′],

and so L ([IX , VX ]) is the identity map with source and target (T ∗X,HT ∗X).
�

We call the functor L from LagSy to HamSy the Legendre functor. It is a generalization
of the Legendre transformation which translates from the Lagrangian to the Hamiltonian
description of an open system in classical mechanics.
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