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ABSTRACT

In this report, time stepping schemes for the numerical simulation of Case II diffusion of
a solvent into a glassy polymer are investigated. Two examples of 1-D models that produce
Case II behavior are considered. The Initial Boundary Value Problem (IBVP) obtained from
the governing equations that incorporate these Case II diffusion models are highly nonlinear
due to the following: a nonlinear flux law to produce sharp fronts, a concentration depen-
dent relaxation time of the polymer to model glass—rubber transition and coupling between
the diffusion and mechanical displacements. To handle these nonlinearities effectively, a
collection of relevant mathematical results are provided. Most notably, the solutions to the
solvent concentration under certain conditions satisfy a maximum and a minimum principle.
Also, the Differential-Algebraic-Equations (DAEs) arising from the spatial discretization of
the IBVP are stiff due to mesh size and the concentration dependent relaxation time for the
polymer. With this mathematical background, a fully implicit second order Backward Differ-
entiation Formula (BDF2) and a partitioned implicit-explicit Explicit-Runge-Kutta-BDF2
adaptive time stepping schemes are proposed. A Krylov Newton method which provides an
alternative to standard Newton’s method or its variants for solving nonlinear equations is
also examined. Through a careful parametric study, these numerical techniques for simula-
tion of Case II behavior for the two models are evaluated. In addition to these techniques
for time integration, a projection method to handle undershoots due to oscillations in the
concentration solution field on coarse meshes is also presented. '

The main inferences from the study are: Fully implicit schemes perform better than
the implicit-explicit schemes. This is because the stiffness effects on the stability of the
partitioned schemes were more significant than the reduction in the radius of convergence
for Newton (or Krylov Newton) methods while solving nonlinear equations in fully implicit
schemes. Adaptive time stepping is found to be very essential for robust and accurate
time integration. The projection method for handling oscillations is also found to be very
necessary for one of the models.
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1 INTRODUCTION

The problem of interest here is the modeling and numerical simulation of diffusion of
a liquid solvent into a glassy polymer. In particular, Case II diffusion where the solvent
diffusion into the glassy polymer is accompanied by a glass to rubber phase transition of the
polymer is considered here. In experiments, Case II diffusion is recognized by the appearance
of sharp fronts of the solvent that separate a swollen rubbery gel and the solid glassy core
occurring from glass-rubber transition. The fronts advance at a constant speed resulting
in a linear solvent-mass uptake in time. The presence of the solvent changes the material
properties such as the time scales of the relaxation mechanisms during the glass-rubber
transition. These main characteristics of Case II diffusion are described in some of the
experimental works such as ARGON ET AL. [1999] and THOMAS AND WINDLE [1978].

The motivation for numerical simulation of Case II diffusion comes from the lithography
process in the manufacture of semiconductor chips during which topographical features are
etched on the chip (see CROFFIE [1999]). In a typical process, a polymer slab used for
making the chip is irradiated on its surface through a mask to selectively expose the slab to
radiation. This causes the polymer chains in the exposed regions to cross-link. These cross-
linked regions in turn have very low solvent diffusivity (the solvent here is called the silylating
agent) compared to the uncross-linked regions. After the radiation step, the partially cross-
linked polymer is brought into contact with the silylating agent. The silylating agent diffuses
into the uncross-linked regions up to a certain depth in the slab forming a solvent-polymer
mixture while the cross-linked regions due to low solvent diffusivity remain intact. These
regions where the solvent-polymer mixture is formed have very different chemical properties
compared to the cross-linked regions and are in turn washed away using an etching procedure.
This leaves behind the cross-linked regions which in turn form the topographical features on
the polymer slab. The solvent diffusion step in these sequence of steps is modeled by Case II
diffusion.

From experimental results, it is clear that models for Case II diffusion should be able to
capture the formation and propagation of sharp solvent fronts, swelling of the polymer due to
solvent presence, and the change in material properties of the polymer. Case II models handle
these requirements by coupling the diffusion and the deformation phenomena. The first fully
coupled three dimensional (3-D) model for Case II diffusion was presented in GOVINDJEE
[1991] where independent concentration and displacement fields were considered. Several
other models for Case II diffusion also exist in the literature (see, WU AND PEPPAS [1993b],
CARBONELL AND SARTI [1990], ARGON ET AL. [1999], VRENTAS AND VRENTAS [2001]). In
these models, simplifications on the mechanical behavior are made to arrive at a formulation
effectively in terms of concentration.

- Numerical simulation of Case II phenomenon involves solving an Initial Boundary Value
Problem (IBVP) numerically. The governing equations that make up the IBVP are typically
“a set of highly nonlinear partial differential equations in space and time. The nonlinearities
in the IBVP arise from the nonlinearities in the flux law to model sharp fronts, concentra-

1



1 Introduction 2

tion dependent relaxation times for the polymer to model glass-rubber transition and the
coupling between the diffusion and deformation. These nonlinearities make the numerical
implementation of these models as challenging as the development of the models itself. In
many of the references mentioned earlier, not much attention was paid to the understand-
ing of the qualitative behavior of the solutions to the IBVP in a mathematical setting. In
fact, numerical methods developed without this understanding were usually too specific to
the example simulations that were considered (see, for example, WU AND PEPPAS [1993b]).
Furthermore, from our own experience with one of the Case II diffusion models, traditional
techniques such as, a fixed stepsize Backward Euler method for time stepping and the finite
element method for the spatial discretization, were found to be grossly inadequate in terms
of cost efficiency and robustness. Thus, there is a strong need to understand the mathe-
matical behavior of the solutions to the IBVP better and to develop appropriate numerical
techniques.
The main objectives for the present work are the following.

e To understand the important features a model should have in order to produce Case II
behavior.

e To understand the qualitative behavior of the solutions in a mathematical setting.

e To develop efficient and robust numerical schemes for solving the governing equations
that incorporate these models.

To this end, two Case II diffusion models in a simple 1-D setting are considered in this
report. The governing equations which include the global balance laws and constitutive
relations for the two models are presented in Section 2. These equations are normalized
into a dimensionless form to arrive at the Initial Boundary Value Problem (IBVP) for nu-
merical solution. In Section 3, spatial discretization using the finite element method and
time integration using two adaptive time stepping schemes is described. A collection of rel-
evant mathematical concepts such as the maximum and minimum principles and stiffness
are provided to aid the understanding of choice of numerical schemes. Various numerical
issues such as stability, accuracy and robustness of time stepping schemes are highlighted.
In Section 4, numerical examples for simulating Case II diffusion using the two models are
provided. A careful parametric study to address the various issues during time integration
of the governing equations is also presented. Finally, the work in this report is summarized
and concluding remarks are made in Section 5.




2 CoOUPLED STRESS-DIFFUSION MODELS FOR CASE II DIFFUSION

In this section, two examples of 1-D models for Case II diffusion are considered. The
first example is a 1-D coupled field model with independent displacement and concentration
fields. For this example, many of the ideas in GOVINDJEE [1991] are used to arrive at the full
set of balance laws and constitutive relations that make up the governing equations. For the
second example, an existing Case II diffusion model and the accompanying equations for the
balance laws, from the work of Wu AND PEPPAS [1993a, 1993b], is considered. In contrast
to the first model, the Wu and Peppas model is essentially a single field (concentration)
~model with assumptions on the mechanical behavior. These 1-D models are chosen to un-
derstand the various features Case II diffusion models should have and also their numerical
implementation, in a simple setting.

2.1 Case II Diffusion: Model-1

The governing equations for a coupled Case II diffusion model with mechanical displace-
ments and solvent concentrations as the independent fields are presented here. The relevant
balance laws are stated, and, constitutive relations are provided to arrive at a complete set
of equations that govern the model. Finally, these governing equations are normalized into
a dimensionless form suitable for numerical computation. The various steps in this section
~ clearly illustrate the general framework for modeling Case II diffusion.

2.1.1 CONSERVATION OF MASS

The equations of mass balance are recalled here from GOVINDJEE [1991] and particularized
for the 1-D case. The mass balance equations are obtained by considering a moving con-
trol volume which is closed with respect to the solid polymer skeleton while being open with
respect to the liquid solvent. Let Q be the 1-D reference configuration for the solid-liquid mix-
ture and ¢ : 2 — R denote the deformation mapping of the solid skeleton, mapping points
X € Qtoz €R It is assumed that both liquid and solid constituents coexist at points X.

The statement of Mass Balance for the polymer is given by
3

— pdr =0 (1)
dt ¢(R)

where R C © and £(-) is the material time derivative with respect to the velocity of the
solid. Further, p : ¢(R) — R*, is the spatial density of the solid. These equations are
transformed to the reference configuration R by using the stretch A = g}%, and the localizing
assumption is made to arrive at the following strong form of the polymer mass balance.

(pop)A=po (2)

3



2.1 Case II Diffusion: Model-1 4

In equation (2), po refers to the reference placement density of the solid.
Similarly, the mass balance of the liquid is given by

4 mdr = — / fndy (3)
dt Jo(r) ¢(9R)

where ¢(OR) denotes the boundary of the region of interest, m denotes the spatial concen-
tration of the liquid, f denotes the 1-D flux of the solvent at the boundaries (with normal
n = 1) with respect to the moving control volume. Transforming the integrals to the
reference configuration and using the localizing assumption, the following strong form of the
solvent mass balance is obtained.

aM  df

dt - dX (4)

Here, M = (m o ¢)\ denotes the reference solvent concentration, i.e., the solvent mass per
unit reference length.

2.1.2 BALANCE OF LINEAR MOMENTUM

The balance of linear momentum is written for the mixture as a whole. Assuming the
absence of body forces and inertia effects, the balance of linear momentum in 1-D takes the
form

do

e
where the scalar o is the 1-D stress. Equation (5) for linear momentum balance can be
equivalently written in reference coordinates X as

do _
dX

The balance of angular momentum is vacuously true in the 1-D case.

0 (5)

0 | (6)

2.1.3 CONSTITUTIVE ASSUMPTIONS

Constitutive relations for the diffusive flux f and the stress o complement the balance
laws to form a complete set of governing equations. While the balance laws are applicable to
any solid-liquid mixture, the constitutive relations define the specific Case II diffusion model
of interest.

Stress-Strain relations for the Solvent-Polymer mizture

The total stress in the mixture is assumed to have contributions from the solvent and
the polymer skeleton. These contributions are modeled by a simple rheological model shown
in Fig. (1). For better understanding, the elastic case in Fig. (1) is considered first. For a
given stretch )\, the elastic stress contribution 0,° from the polymer skeleton is assumed to
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o+ 0,° "‘ o+ 0P +¢q
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(a) Elastic Case (b) Viscoelastic Case

Figure 1: Rheological Model for Solvent-Polymer Mixture

be given by the stress in the elastic spring with spring constant E*°. Similarly, the solvent
stress contribution o; is assumed to be given by the stress in the spring with spring constant
E,. For calculating this stress, the spring with spring constant E; is thought to experience
an effective stretch X = h(M)), for a given stretch X and a concentration M. The solvent
stress is in turn calculated using the effective stretch A. The concentration dependent factor
h: M — [0,1] is assumed to monotonically decrease with increasing concentration and have
the limiting values h(0) = 1 for M =0, and h \, 0 as M — oo.

The actual functional forms of the dependence of 0,° on A, and g, on ), are motivated
by some of the nonlinear elastic models in OGDEN [1997]. In the present case, the following
stretch dependences for the stresses are chosen.

0;0 = E®(\ - :1\-) (7a)
g = El(/_\ — -;—)
= Ey(M(M) — —/\h(lM)) (7b)

From (7a), o5° is compressive(or negative) when A < 1 and tensile when X > 1. On the
other hand, the sign of 0; depends both on M and A. For a fixed stretch A, when M is large
enough to make h(M) small and consequently A < 1, the solvent stress would be negative.
This is true even when A > 1 corresponding to a swollen mixture.

The total stress ¢ for the elastic case is given by

o(\ M) = (A, M)) +02(N) 8)
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These constitutive relations for the total stress correspond to a fully compressible solvent-
polymer mixture. The total stress also satisfies the following physically motivated limits.

e For a fixed concentration M, as the stretch A goes to zero corresponding to zero mixture
length, the mixture stresses go to —oo.

e For a fixed stretch A, as M * oo corresponding to massive amounts of the solvent, the
total stress goes to —oo as well.

To understand how the rheological model captures the swelling behavior, the case of
(stress) free swelling is considered. For this case, the equilibrium combination of A and M
is a combination of their values which makes the total stress in the elastic case zero. As
expected, A = 1 and M = 0 is an equilibrium combination. Holding the stretch A fixed,
while increasing M from the equilibrium value corresponding to A, results in a negative total
stress. Therefore, the mixture expands or swells further to relieve the negative total stress
and thereby producing the right swelling behavior.

The relaxation mechanisms of the polymer chains is modeled by adding viscoelasticity for
calculating polymer stresses. The elastic model for the polymer is extended to a Standard
Linear Solid (SLS) model by adding a spring-dashpot combination in parallel as shown in
Fig. (1). The total stress is given by

o=o01+0,+q 9)
———

9p

where the viscoelastic contribution q satisfies

dq qg _,d 1

at *ron = PEE =3 (10)
In equation (10), 7 denotes a concentration dependent relaxation time that models the change
in the relaxation times during the glass-rubber transition, and B is a constant material
parameter. The relaxation time is the ratio of the viscocity n and the spring constant E° in
Fig. (1). The specific functional forms for the concentration dependence of relaxation time
7(M) and the stretch factor h(M) will be provided in a later section.

Fluz law
Recognizing that the driving force for the solvent diffusion is the chemical potential

(CussLER [1984]), the flux law is assumed to be of the form

= —Bm %
f= Bmdx (11)

where B is a concentration dependent mobility coeflicient and m is the spatial concentration
of the solvent. Using the relation, (m o )\ = M, and transforming the derivatives to the
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reference X coordinates, the flux law takes the form,
M du

f=-B5x | (12)

Having specified the flux law, the chemical potential alone remains to be specified to
complete the model. We assume p to be of a simple form

7 M |%4

l R
=T = G o) T 0

(13)

where the coupling is introduced between the diffusion and the mechanical displacement
through the stretch A and the dimensionless coupling coefficient V. Here, py; is the density
of the pure solvent at standard temperature and pressure, R is the universal gas constant,
and T is the absolute temperature. The argument of the logarithmic term in (13) is the
normalized concentration introduced in the next section. For small values of M, the normal-
ized concentration is linear in M and the first term on the right hand side of (13) generates
the standard Fick’s law. The coupling is introduced through the second term. The function
g(M) is chosen so that g(0) = 1 and g/(M) < 0 in order to satisfy the following conditions

1 dy _ Pot Vg
® RTAM = M{M + po) gZ,\>0
1duy_ _V
*RTdx = g <0

These conditions ensure that g — 0o monotonically, when either of the following two situa-
tions arise: (1) A N\ 0 for fixed M or (2) M " oo for fixed A. These were exactly the same
two limits considered for the stress constitutive relations. Further, the log(-) term in the
chemical potential ensures that 4 = —oco when M = 0, as required (see CUSSLER [1984]).

By providing the constitutive relations for the stress response, flux, and the chemical
potential, the model is complete. The specific functional forms of concentration dependent
mobility coefficient and the coupling function in the chemical potential, crucial for the for-
mation and propagation of sharp fronts, are provided later. In the meanwhile, a few remarks
are in order.

Remark 1

In GOVINDJEE [1991], constitutive relations for stresses and the chemical potential are
arrived at by using energy and entropy balance laws. This required the calculation of the
total energy of the mixture which has two parts—energy from the elasticity of the mixture
and the energy of mixing. The energy of mixing was calculated from micromechanics using
Hildebrand’s theory of mixing (see HILDEBRAND [1947]). This energy approach resulted in
expressions for stresses and chemical potential with too many parameters. Instead, only the
key features of the above model are incorporated here to obtain simpler but in a way adhoc
constitutive relations which still produce the right behavior.
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Remark 2

The functional form of the chemical potential provided here is different from GOVINDJEE
[1991]. However, a micromechanical motivation for the coupling of the diffusion and swelling
phenomena through the stretch (or determinant of the deformation gradient in the 3-D case)
provided in the above reference can be used here. Similarly, the stress constitutive relations
can also be motivated from the corresponding relations provided in the reference.

Remark 3

In some models, coupling between diffusion and mechanical deformation is introduced through
the stress (or pressure in the 3-D case) dependence of the chemical potential, instead of the
stretch dependence (see WEITSMAN [1987]). Model-2 presented in this report assumes the
dependence of the chemical potential on a stress-like quantity.

2.1.4 NORMALIZATION OF THE GOVERNING EQUATIONS

The governing equations are normalized by first considering a dimensionless concentration
w € [0,1] such that
M

W= — 14
M + py (14)

where py, is the density of the pure solvent at (say) standard temperature and pressure. This
normalization is chosen so that under assumptions of ideal mizing, i.e., the total mixture
volume is the sum of the volumes of the dry polymer and the solvent, w corresponds to
exactly the volume fraction of the solvent. The solvent volume fraction is the primitive
variable for Model-2. The functional forms of the various coefficients and the free parameters
are tabulated in table 1. These functional forms are shown to produce the Case II behavior
through some numerical examples provided at the end.

Functional Form Parameters
Diffusion Coefficient B | B(M(w)) = By exp(aqw)/RT By, aq
Coupling Function in p | g(M(w)) = %(1 — tanh(w—gl)) v, 6
Relaxation Time 7 T(M(w)) = 70exp(—ayw) 0, Gy
Stretch factor h h(Mw)) = exp(——i—g—_%) ¢

Table 1: Choice of functions for diffusion coefficient, the coupling function in
‘the chemical potential, the relaxation time, and the stretch factor
for Model-1
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Assuming the reference domain length of the polymer to be L and, wpe,, a constant,
as the maximum normalized concentration in the domain, the various quantities are non-
dimensionalized as follows.

= X
Non-dimensional Length: X = T (15a)
B maz )t
Non-dimensional Time: 6 = oexp(lzlz; Wmaz) (15b)
Similarly, the non-dimensional coefficient of relaxation is given by
_ Byexp(aqwmaz)To
o= 72 = (16)

The coefficient 75 relates the time scales of the diffusion and the relaxation phenomena and
‘is often called the Diffusion Deborah Number.
The dimensionless chemical potential is given by

—
17
= RT (17)
For use in the normalized balance laws presented next, a dimensionless mobility coefﬁc1ent
B is defined as
exp(ag(w — w w
p( d( ma:c)) (18)
A2(1 - w) :
Further, the stresses and the spring moduli are scaled by a constant E which has dimen-
sions of stress to obtain their dimensionless counterparts, i.e., (-) = (-)/E, where (-) is one
of 0,, 01, g, E®, E; or E°. Typically, a value of E = 1 is chosen and the values of the
dimensionless spring moduli are chosen accordingly.
Finally, the dimensionless form of the governing equations in normalized reference coor-
dinates and normalized time are summarized below.

B=

e Conservation of the Solvent Mass

1 dw d di dw ~ dpp dA
B(w, A
A=wpEdd  dx ( (@) [dw Xt dXD (19)
e Conservation of Linear Momentum
do
— =0 20

e Total Stress
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6=';°+¢7+"l (21)
e Elastic Stresses
— 00 700 1
o = E”(\ - X) (22a)
_ — 1
o1 = Ey(Ah(M) - W) (22b)
e Viscoelastic Stress
dgq q _od = 1
B Tep(—ags)  Pagl A7) (%)

These normalized equations are used to construct numerical approximations in later sec-
tions.

2.2 Case II Diffusion: Model-2

The model provided in the previous section considers the mechanical displacement and
the solvent concentration as independent fields. However, as mentioned in the introduction,
many models for Case II diffusion make assumptions about the displacements and formulate
the governing equations essentially in terms of solvent concentration. The existing model of
WU AND PEPPAS [1993a, 1993b] is chosen as an example for these single field models. Unlike
in the previous section, only the important assumptions and equations are summarized while
the reader is referred to the original works listed here.

2.2.1 BALANCE LAWS AND CONSTITUTIVE ASSUMPTIONS

The fundamental assumption in this model is that of ideal mixing. This assumption
implies that the spatial solvent concentration m is proportional to the solvent volume fraction
v with the solvent density in its pure state py as the proportionality constant. With this
understanding, the volume fraction v is sometimes referred to as solvent concentration in
this report. The assumption of ideal mixing also implies that the solvent concentration and
the displacements are no longer independent.

The spatial form of mass balance for the solvent is given by

om
ot

where V; is the spatial velocity of the solvent in 1-D, z denotes the spatial coordinate and
9(-)/0t denotes the time derivative (not the material derivative) for a fixed z. Defining X

+ %‘(mVl) =0 | | (24)



2.2 Case II Diffusion: Model-2 11

as the referential coordinates associated with the dry polymer, the ideal mixing assumption

implies that the stretch X satisfies
dz 1
A= —=— 25
dX v ' (25)
Here, v, is the volume fraction of the polymer and it satisfies the relation v, +v = 1. Using
the relation for X in (25), and taking the material derivative of v, one obtains

dv,  Ld\ _ LdVs
@ a T T

where V; is the spatial velocity of the polymer component. Using (25), equation (26) takes
the form

(26)

% = —Vp%‘—;z (27)
Finally, expanding the material derivative of v, as d(vp)/dt = 0v, /0t + v,dV,/dz, the fol-
lowing relation is obtained.
O 4 vy =0 ~ (28)
ot  dz ??

Equation (28) is exactly the mass balance of the polymer in spatial coordinates x. The
important thing to note here is that the polymer mass balance is obtained as a consequence
of the ideal mixing assumption and need not be specifically accounted for.

Assuming the volume average velocity Vo = vV} +1,V; to be zero, the solvent flux is given
by '

f=mWV1-V)=mW (29)

Skipping the details of the derivation (see WU AND PEPPAS [1993b]), the flux law is simply

stated to be of the form
Dy exp(aqv)vpu dp

= T -v)(1-2xv)dx
where Dy and a4 are constants. The constant x is the so-called Flory interaction parameter
and 4 is the chemical potential. Using the relation m = pgv and substituting the flux law
into (24), the following mass balance equation in v is obtained.

(30)

Ov _ d ([ Doexp(agr)v dp (31)
ot dz\(1-v)(1-2xv)dz
The chemical potential is given by ’
p=RT(log(v) + (1 —v) + x(1 —v)}) + VP (32)

where V is the coupling coefficient and P is what is termed as the swelling pressure. The
statement of mass conservation for the solvent and the flux law are similar to those in model-
1. However, the chemical potential depends on P, a stress quantity here whereas it depended
on the stretch A in model-1.
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In the original work cited before, the swelling pressure is introduced by considering the
following relation for the 3-D total stress tensor O Tot

ot =—Pl+a (33)

Here, I is the identity tensor and P appears to be the indeterminate pressure associated
with the volume constraint introduced by the ideal mixing assumption. Constitutive relations
are provided for the part &. In the absence of body forces and inertia effects, the balance of
linear momentum takes the form

V.oret=-VP+V.-0=0 (34)
Equation (34) is particularized to 1-D to arrive at

doToe _dP do _

i - amtm=0 | (35)

where o7, and o are the 1-D counterparts of the 3-D case.
Finally, a constitutive relation in terms of a Maxwell fluid is provided for the evolution of

o.
do o

7]
—+—-—==—(FEX 36

ot * 7= e (36)
where E' is an elastic constant, and 7 = 7, exp(—a,v) is the volume fraction dependent
relaxation time with 7, and a, being constants. From the ideal mixing assumption, the

relation A = 1/(1 — v) is used to write the evolution of & in terms of v alone to obtain

0o o O 1 '
o 7 (Em) (37)

In an earlier work, (see COHEN AND WHITE [1991]) an evolution equation similar to
(37) was introduced in an adhoc fashion without reference to momentum balance or stress
constitutive relations, and the flux was made to depend on the counterpart of o in that
model. This resulted in sharp fronts. Even in the present case, the flux dependence on the
gradient of P (or o) and the evolution equation (37) for o have a similar effect in producing
sharp fronts. ' :

The ideal mixing assumption is too restrictive in the sense that it violates the indepen-
dence of concentration and displacement fields. For example, the simplest case of solvent
diffusion in a polymer which is constrained to swell(or expand) by fixing the polymer at
the ends cannot be handled if ideal mixing is assumed. This is because the displacement or
the deformation field is predetermined from the concentration field and is not independent
of it. Consequently, the only situation where ideal mixing assumption holds is that of free
swelling.
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Using the definition A := dz/dX and the assumption of ideal mixing relating A with v,
the solvent mass balance can be transformed to X coordinates corresponding to the dry
polymer. Further, using (35) to replace the derivative of P by derivative of o one obtains,

1 0v_ d (Doexplanly [dudv | du do
(1-2xv) |dvdX dPdX

1-vot dX
Equations (38) and (37) are the governing equations for model-2 in terms of the single
unknown field v. '

(38)

2.2.2 NORMALIZATION OF THE GOVERNING EQUATIONS

As in the case of model-1, the governing equations are normalized into a dimensionless
form through the following relations. Assuming the initial length of the polymer to be L and,
Vmaz (2 constant) as the maximum normalized concentration in the domain, the following
normalization is done.

X

Non-dimensional Length: X = (39a)

L
Dy exp(agVmaz)t
RTL?

The dimensionless coeflicient of the relaxation time 7 or the Diffusion Deborah number
is given by

Non-dimensional Time: 6 = (39b)

Dy exp(agVmaz )T
T0 — 9 (L;i ) 0 (40)
The chemical potential is normalized as before
o
=L 41
A= g (41)

Having defined the dimensionless forms of length, time and the chemical potential, a
dimensionless diffusion coefficient D is defined as

- exp(aa(V — Vmaa) )V
b= (1 -—dQXI/)(l —v) (42)

The stress and the elastic constant are rendered dimensionless using

Rz
o= _}?T (438.)
_ VFE

E=+%r | (43b)

Finally, the dimensionless forms of the governing equations used for numerical computa-
tions are summarized below
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e Stress evolution equation
5+ e w1 (Prs) )
e Mass balance of the Solvent
v~ ax (P09 [T+ g ) )



3 NUMERICAL IMPLEMENTATION

3.1 Introduction

In this section, the numerical implementation of the two Case II diffusion models will
be discussed. The starting point for the numerical implementation is the normalized gov-
erning equations. Given the balance laws in strong form, the corresponding weak forms
are constructed. The weak forms for the mass and momentum balance are discretized in
space using the finite element method. This spatial discretization results in a system of
differential-algebraic equations(DAE) in time.

The DAEs are discretized in time using suitable time steppmg schemes. Two time stepping
schemes, namely, a fully implicit second order Back Differentiation Formula (BDF2) and
a Runge-Kutta-BDF2 implicit-explicit scheme are presented. Adaptive time stepping is
incorporated into both the time stepping schemes. The various numerical issues arising from
the space and time discretization of the IBVP are addressed.

3.2 Contruction of the Galerkin weak form
3.2.1 WEAK FORM BALANCE LAws: MODEL-1

The normalized balance laws provided in section 2.1.4 are used to construct the weak
form over the domain of interest [0, 1].
Define the solution space for the concentration field as

B={w(®):(0,1) = R | w(f) |r,= wo(0)} (46)

where T',, denotes the concentration Dirichlet boundary where w is specified. Functions in B
are assumed to have the required regularity for the integrals in the weak form to make sense
(see HUGHES [2000]). The space of test functions (or variations in the tangent space at a
point w € B) is defined as

T.B = {0w:(0,1) > R | éw |r,= 0} (47)

From their definition, the space of test functions satisfy the homogeneous counterpart of the
Dirichlet boundary conditions.

For building the weak from, equation (19) is multiplied by an element of T,,B and inte-
grated over the domain [0,1]. The integration by parts formula is applied to the resulting
integrals to obtain the weak form given below.

di i (48)
/ B(w, )\)( p'wx—l—d/\ X )&uXdX fow Ir,=0
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where u is the displacement field, and I'; is the portion of the boundary where the flux is
specified with f as the specified flux. The flux and the concentration boundaries satisfy
I'sTw=0and Ty T, =T, where T is the boundary of the domain. Finally, the Galerkin
weak form of the solvent mass balance reads: At each time 8, given wy, f , equation (48) is
satisfied for all dw € T,,B.

In equation (48), derivatives of stretch which correspond to second derivatives of displace-
ments need to be computed. Comments on handling these higher derivatives are made under

Remark 4 on page 21.
The weak form for the linear momentum balance is similarly constructed by defining the
solution space for the displacements as

S={u():(0,1) - R | u(®) |r,= uo(8)} (49)

where I, denotes the displacement Dirichlet boundary where the displacement w is specified.
The space of test functions (or variations in the tangent space at a point u € S) is defined
as
1,8 = {6u:(0,1) - R | 6u |p,= 0} (50)
Multiplying (20) by an element in T,,S, integrating over the domain [0,1], and using the
integration by parts formula yields the following

1
H,(w,u;bu) = / (N w)du 5 dX — §ou |r,= 0 (51)
0

Here, I'; is the boundary of the domain where forces are specified and § is the specified force.
Also, the force and the displacement boundaries satisfy Uy (1w = @ and I, |JT, =T. The
weak form of the linear momentum balance reads: At each time 8, given wy, ¢, equation (51)
is satisfied for all 6u € T,,S.

In the functionals H, and G, the dependency on the stretch ) is replaced by an equivalent
dependence on u using the relation A = 1 + U 5.

3.2.2 WEAK FORM OF BALANCE LAWS: MODEL-2

The normalized solvent mass balance provided by equation (45) is used to construct the
corresponding weak form. Using a similar procedure adopted in the case of Model-1, the
following weak form is obtained.

S |
G, (v; 0v) =/ 1 SvdX
+ 1D(z/)(l—u) dp -+@’- ovgdX — fov|p,=0
0 dVV,X dPa,X I/,X _f v Il‘f—
Here, the functions v belong to the solution space S defined by
B={v(0):(0,1) = R|v(9) Ir,= n(6)} (53)
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where I', denotes the part of the boundary where v is specified while I'y denotes the flux
boundary with specified flux f. As before, the flux and the concentration boundaries are
disjoint. The variation év belongs to the space of test functions 7, S defined as

T,B={6v:(0,1) > R| v |r,= 0} (54)

The statement of the weak form of the solvent mass balance reads: At each time 6, given
v, | equation (52) is satisfied for all v € T,,S.

3.3 Spatial Discretization Using the Finite Element Method

Starting from the weak forms of the balance laws, suitable finite dimensional approxima-
tions of the solution space and the space of variations are made to spatially discretize the
IBVP. This results in the Galerkin Finite Element equations. The various steps involved in
the finite element discretization procedure is fairly standard and the reader are referred to,
for example HUGHES [2000], for a comprehensive treatment. Only the important steps are
highlighted here after introducing some notation.

3.3.1 FimnitE ELEMENT DISCRETIZATION: MODEL-1

The solution space and the space of variations are approximated by standard conforming
isoparametric interpolations for the displacement and the concentration fields. Starting with
the space of variations T,,B for the concentration field, the finite dimensional approximation
T,,B" is defined as :

T.B" = {6w" € T,B| dwl =)  NA(£)dw”, bw” € R} (55)
A=1

where the superscript h’s denote the quantities associated with the finite element approx-
imation; the subscript e’s denote quantities associated with the individual finite elements
lp (i.e., 0wt = dwh |,); N4 are the shape functions defined on the isoparametric domain
[-1,1], and n,, is the number of nodes per element. The element coordinates X are given
in terms of the isoparametric coordinates & by

Nen

Xhe)=> NA©XA (56)

where X4 are the coordinates of the nodes. Similarly, the solution space for the concentration
field is approximated using ’

B" = {w" | w" = 6w + ¢*, 6" € T,B" and ¢" |r, = wo} (57)
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where g" satisfies the interpolation

Npn

g"=> N (58)
A=1

with ny, being the number of boundary nodes with Dirichlet boundary conditions and wg!
denoting the nodal values on the boundary nodes. Similar to the variations, the discrete
solution field w” is interpolated in terms of the nodal values w? within each element, i.e.,

Nen

wh =" NAE)wA (59)
A=1

The solution space S and the space of variations 7,S for the displacement field are
approximated by their finite dimensional subspaces, S* and 7,S", respectively.

Nen

T.8" = {ou" € TS | Sup = Y N*(¢)ou*, 6u” € R} (60)
A=1
8" ={u! | u" = du" + 7", Sut € T,B" and 1" |, = uo} (61)

Here, r* denotes the interpolation of the specified displacement on the Dirichlet boundary
nodes, similar to g*.

These approximations for the solution spaces and the space of variations for the me-
chanical displacements and the concentrations satisfy C° continuity across the inter-element
boundaries. :

At this point, the finite dimensional counterparts of the statements of the weak forms for
solvent mass balance and balance of linear momentum can be written as

1 1 dwh =
h ,h.g hy __ h
Gwh(w , U dw )_/0 ———(1 h)2—0 dw"dX

) i a7 (62)
[ B.n ho_ NS b g% _ Fs bl
+A B(w ,)\)(Ww ’X-l—a/\,x)&w,x,dX—fdw lr‘f—-O
and )
Hn (W, ul; 6ul) = / (A, wh) duls dX — gou" Ir,=0 (63)
0 .

where the above equations are satisfied for all 6w and duh, respectively. The dependence
on the stretch A in some of the functions in (62) and (63) is replaced by a dependence on u”
using the relation A =1 + u’;. Defining 6w and &u as

el
dw :AAI [0w!, 6w?, ..., Swhen]T , (64)
Nel

su=A [ul, 60, ..., sure] (65)
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where A is the standard assembly operator over the total n, number of elements for the
finite element method, the following matrix form of equations (62) and (63) can be obtained.

Mass Balance: dw? [M(c.'.:)%“;i + R(w,u) — f] =0 (66a)
Momentum Balance: du’[S(w,u) —s] =0 (66b)

The quantities w and u are defined in the same way as dw and du. Further, the various
matrices and vectors in equations (66a) and (66b) are defined as

Nen MNen dX
ZZ | NN (67)
A=1 B=1 (1-wh)
A dp . 4B
_ A By, h ap h
Rww=A 3 /L NAB( ,,\)( Tt g+ 0z )d (68)
K Nen
Quw=A 3 [ N0 ax (69)

Here, M is the concentration dependent mass matrix and f and q denote the vector corre-
sponding to the assembly of nodal fluxes and nodal forces.

Since equations (66a) and (66b) are valid for all variations 6w and du, they are equivalent
to the following Differential Algebraic Equations.

Mass Balance: M(w)c;—‘; +R(w,u) =f (70)

Momentum Balance: S(w,u)=s (71)

3.3.2 FINITE ELEMENT DISCRETIZATION: MODEL-2

The steps outlining the procedure for the finite element approximation of Model-1 are
repeated here to obtain the corresponding approximation in the case of Model-2. The finite
dimensional approximation T, B" for the space of variations of the volume fraction field is
given by

B = {6" € T,B| vk = N*(¢)év?, ov* e R} (72)
CA=1
where T,B" C T,,_B. As before, the solution space for the volume fraction field is approxi-

mated by ,
= {v" | V! = vt + g, ov* € T,B" and ¢" |r,= o} (73)
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where where g" satisfies the interpolation

Tpn

"= Ny (74)
A=1

The finite dimensional counterpart of the weak form of the solvent mass balance can be
written as

1 h
G (V60 = / 1 ot dX
o (1—vh) do
1 _ d,l—l; dﬂ _ o (75)
+/0 DM~ (C—iﬁllh,j{ + d—l;C_r’X) 61/,'}( dX — fou" Ir,=0
Defining
Ney
ov = A [6vt, 602, ..., duren]T (76)
the matrix form of (75) is obtained
T dv -
Mass Balance: dv M(V)@ +R(v,5)—f| =0
= M(V)fl—'; +R(v,0)=f (77)

In (77), the vector R explicitly depends on stress field 5. Since, the various integrals over the
elements are computed using a numerical quadrature rule, it turns out that the dependence
of R on the entire stress field & can be replaced by a dependence on ®s which represent
the stress only at the quadrature points. The mass matrix M and the vector R, in (77) are
given by

Nel n n —
en en dX
— AnarB
1\/1(1/)_1:’;\1 EjEjLNNm (78)
A=1 B=1 e )
R() = A }nw: NADWMY (1= v) (BB 4 BB N ax 79
- A=1 L X dyh X dPa’X ( )
A=1 e

The system of ordinary differential equations(ODEs) (which are a special case of DAEs) in
(77) are solved using a suitable time stepping scheme. '

By spatial discretization of the weak forms of the balance laws, semidiscrete DAEs in
time are obtained for the two models. The ODEs representing the stress evolution equations
at the quadrature points are discretized in time along with the spatial balance laws. In the
meanwhile, some important remarks are made here.
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Remark 4 '
In equation (62), derivatives of the stretches A appear. These correspond to the second
derivatives of the displacement interpolation. Since the displacements are interpolated to
have only C° continuity, these second derivatives result in jump terms at the element bound-
aries. Incorporating these jump terms require additional data structures which provides
each element with the information such as its neighboring elements and boundaries with the
neighboring elements. This also involves computing boundary integrals (for the 2-D and 3-D
cases) for the jump terms which require the knowledge of the solution field in the neighboring
elements. Thus, the computational structure of the standard finite element method, where
the various integrals computed over an element require only the knowledge of the solution
field within that element, is lost. To handle this situation, the approach of CARRANZA
ET AL. [1998], where a simple H' projection X of the stretch A is used for computing the
derivatives of the stretch in (62), is adopted. '
In the case of Model-2, derivatives of stress & appear in (52). However, & depends on only
the volume fraction v in equation (44), and Cj continuity of the interpolation of v implies
“the same for stress &. In this case, stress derivatives do not require computing jump terms
along the element boundaries.

Remark 5 »

A fixed mesh is used to spatially discretize the balance laws using the finite element method.
The solution to the concentration field is a travelling sharp front in time, and using adaptive
or moving meshes to resolve the sharp front as it moves seems appropriate (see, for example,
MILLER [1998a, 1998b] for an introduction to moving finite elements and CARRANZA ET AL.
[1998] for adaptive remeshing). However, this cannot be done so easily in our case. The stress
& is calculated only at the quadrature points while numerically computing the integrals in
(63) and (75). While these quadrature points are fixed in both number and spatial position
in a fixed mesh, new quadrature points may be created (or old ones destroyed) due to
mesh (un)refinement or the quadrature points may move when the elements move. In these
situations, stresses along with quantities (called the internal variables) at the quadrature
points on which the stresses depend have to be advected, interpolated or extrapolated with
the changing mesh. The advection, interpolation or the extrapolation procedures on the
stresses and the internal variables can affect the solution accuracy adversely. Therefore,
adaptive or moving meshes is not considered here.

3.4 Time Discretization of the Spatially Discrete Equations

The time integration of the spatially discrete governing equations is discussed here. The
full set of governing equations for time discretization include the DAEs that result from the
finite element discretization of the balance laws, and the evolution equations for the stress
at the quadrature points. The DAEs arising from the balance laws are referred to as global .
equations while the stress evolution equations are referred as local equations.

The goal of this section is to develop efficient and accurate time stepping schemes for the
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time integration of the global and the local equations. Crucial to the choice of one time
stepping scheme over another is the knowledge of the qualitative behavior of the solutions in
time. Towards this end, a collection of mathematical results is provided first. Following this,
a fully implicit second order BDF2 stepping scheme is introduced. The BDF2 scheme requires
the solution of highly nonlinear algebraic equations iteratively at each time step. Strong
nonlinearity results in a very small radius of convergence for iterative methods like Newton
(or Quasi-Newton) method. Thus, robustness in terms of convergence of the iterations to
the solution at each time step is a must. An adaptive time stepping strategy to efficiently
handle some of these issues is described.

As an alternative to the fully implicit scheme, an adaptive explicit-implicit Runge-Kutta-
BDF2 scheme is developed where it is hoped that the nonlinearities are handled effectively.
Following this, remarks on the efficiency, accuracy and robustness for the two time stepping
schemes are made. Finally, these time stepping schemes are applied to the spatially discrete
governing equations for numerical integration in time.

An itemized list of the various subsections introduced in this section along with a brief
description of each subsection is provided below. This is intended to serve as a road map for
the material covered in this section.

Sec. 3.4.1 In this section, a collection of mathematical results for understanding the qual-
itative behavior of the solutions to the governing equations is provided.

Sec. 3.4.2 Some of the mathematical understanding gained in Sec. 3.4.1 is used to motivate
the specific choices of the time stepping schemes made here.

Sec. 3.4.3 A complete description of the fully implicit second order BDF2 method with
adaptive time stepping on an example system of DAEs is provided in this section.

Sec. 3.4.4 Analogous to Sec. 3.4.3, a complete description of a second order explicit Runge-
Kutta method with adaptive time stepping on an example system of DAEs is provided
in this section.

Sec. 3.4.5 The explicit Runge-Kutta method and the fully implicit BDF2 method are
combined to obtain an implicit-explicit Runge-Kutta-BDF2 partitioned time stepping
scheme with adaptive stepsize control in this section.

Sec. 3.4.6 The spatially discrete governing equations incorporating Model-l are discretized
using the fully implicit and the implicit-explicit time stepping schemes in this section.

Sec. 3.4.7 The various steps followed for Model-1 in Sec. 3.4.6 are repeated for Model-1 in
this section.
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3.4.1 QUALITATIVE BEHAVIOR OF THE SOLUTIONS
Mazimum and Minimum Principles

For purposes of understanding, a simple nonlinear diffusion equation on the domain
Q = (0,1), with boundary conditions w(0,0) = Wm,. and w(l 0) = Wmin, and initial
conditions w(X,0) = 0 VX € Q, is considered

L) =2 L (Blw)e) =0 (80)

Here, w denotes concentration and B(w) is a concentration dependent diffusion coefficient.
The variables 8 and X denote time and spatial coordinate, respectively. For the case where
the coefficient B = By > 0 is a constant, the diffusion equation satisfies a maximum principle
(see JOHN [1982 pp. 216]) which states that: when w is continuous on = [0, 1] for § > 0,
and the partial derivatives of w exist and are continuous on ©, and L <0 (L =10 bemg the
special case), then :

mgx W = MAX W = Winas (81)
where O is the boundary of . Replacing w by —w in the proof for the maximum principle,
with the requirement that £ > 0, one can easily show a minimum principle as well.

mf_%n w= ngsizn W = Whin (82)
In the case of the concentration dependent diffusion coefficient, as long as B(w) > a > 0 for
a constant «, and is a smooth function of w, the proof for the validity of conditions in (81)
and (82) easily follows. The equations for the uncoupled case, corresponding to V' = 0 in
(19) for model-1 and V = 0 in (45) for model-2, can be rewritten into the form in (80) except
for the terms 1/(1 —w)? and 1/(1—v) that appear as the coefficient of the time derivatives in
the corresponding equations. This situation is handled by performing through an invertible
nonlinear transformation; for e.g., by defining w = 1/(1 — w) in (45) and transforming the
equations into the primary variable w, one can obtain the form in (80). The final result is
that the uncoupled case of the two models satisfy the two conditions in (81) and (82).

These maximum and minimum principles are important as we want the numerically com-
puted solution to satisfy them at least for the uncoupled case. Appendix B describes a
projection technique used in this report to ensure the satisfaction of the maximum and the
minimum principles.

Stiffness of the Resulting DAFEs

The typical constraints on stepsizes while using a time stepping scheme come from re-
quirements of stability and accuracy. Accuracy is quantified in terms of error committed
per time step due to the time discretization. Stability of a time stepping scheme refers to a
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requirement where the numerical solutions do not blow up in time when the exact solution
to the ODE does not. An interesting situation arises when the system of ODEs are stiff.
Roughly, stiffness refers to a situation where the stepsize of an explicit time stepping scheme
applied to a stable ODE is governed by stability requirements rather than by accuracy. For
implicit schemes, stiffness manifests as slow convergence of the iterates to the solution of
nonlinear equations while using simple functional iteration. The stiffness effects manifest in
the DAEs through the stiffness in the ODEs. For further details on the concepts of stabil-
ity, accuracy and stiffness in the context of time stepping schemes, the reader is referred to
HAIRER, NORSETT, AND WANNER [1993, vol.1], HAIRER AND WANNER [1993, vol.2] and
SHAMPINE [1994]. In the discussion presented here, questions on how stiffness manifests in
our situation and the bearing it has on the choice of the time stepping schemes are answered.

Stiffness arises from several sources. The first source is the spatial discretization of the
weak forms to arrive at the time continuous DAEs. To understand this, a linear case in (80)
where B = By a constant is considered. Building a weak form for this case, and discretizing
in space using a uniform mesh of length &, one obtains the following system of ODEs (which
accounts for the ODE part of the DAE for the fully coupled case).

dw 1 1

— =——M"1Kw+Mf

20 % M w + | (83)
where the M is the normalized mass matrix, and K is the normalized flux or stiffness matrix,
w is the vector of nodal solution values as defined before. The matrices M and K are given

by

Nel 1 Tlen Ten _
M = Ael =3 / NANBGX (84)
A=1 B=1 e
Rel Nen Nen
K=A Br} } / N4ANE4X (85)
A= A=1B=1"Y Le ’ ,

By factoring out the element length h appropriately, elements of the matrices M and K
are O(1). The Lipschitz constant associated with the right hand side in (83) is O(;%) and
explicit schemes experience a time step restriction due to linear stability of the form

ByA#8

~ <C (86)
where C is O(1). This restriction on the time step becomes more and more severe as the
mesh is refined. Also, the restriction is independent of how fast the solution is changing. For
example, when the transient system is approaching the steady state, solutions don’t change
very rapidly and large time steps would not hurt the accuracy. This makes the time step
requirement given by (86) a severe restriction. For the concentration dependent case where
B = B(w), the time step restriction (see LANGTANGEN [1999 pp. 348]) is roughly

Biaz A0
—E—<C (87)
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The important point to recognize here is that the # factor appearing in both the cases
of constant and the concentration dependent diffusion coefficient. For the coupled case in
Model-2, at least heuristically, it can be seem that the coupling terms would bring in a
h1—2 factor for the time step restriction. However, in Model-1 where derivatives of stretches
(of the order of second derivatives of the displacement) occur, it seems that the coupling
would bring in a factor of % for the time step restriction. The analysis for the concentration
dependent and the coupled case is purely heuristic and time step restriction may be more
complicated than what is provided here. The time step restriction for these cases can only
be inferred from actual numerical computation.

The second source of stiffness is the concentration dependent relaxation time in the stress
evolution equations, (23) and (44). For concreteness, the evolution equation (44) is recalled

here: 5 5
G o _ 1 ,

00 + 7o exp(—ayv) ——/80 (El - I/) (88)
To simplify things, a fixed nonzero volume fraction at one end, and a zero volume fraction
at the other is assumed as the end boundary conditions. Qualitatively, the coupled case
produces sharp fronts with nearly constant volume fraction values behind the front. These
fronts travel from the end with nonzero concentration towards the opposite end. Consider
a spatial point X, at which the front has passed and the volume fraction v is close t0 V-
Since, v does not change much in time, its time derivative and hence the right hand side
in (88) would approach zero. At the same time, the term &/7 exp(—a,v) can become very
large compared to 85/90, and in such cases & would approach a steady state value of zero
very rapidly. When the steady state is being approached the solutions being close to zero
don’t change very much at all. Even in this situation, explicit schemes are governed by a
time step restriction of the form

A <cC (89)

To exp(— a,,wmaz) -

in spite of accuracy not being a consideration. This restriction can again be severe when the
denominator in (89) is very small. A similar analysis holds for the evolution of 7 in equation
(23) in the case of Model-1.

Even though stiffness may arise due to other sources in the fully coupled case, these two
sources are identified as being primary. As far as time stepping schemes are concerned, they
should be able to handle these stiffness effects.

3.4. 2 CHOOSING TIME STEPPING SCHEMES

For stiff ODEs/DAEs, implicit time stepping schemes which lead to stable numerical
solutions are recommended. Implicit schemes require the solution of a nonlinear system of
algebraic equations have to be solved to find the solution at each time step. Consider, the
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ODE that results from the spatial discretization of (80). The resulting ODE is of the form

dw 1. —1
where again,
el n n
_ 1 €n en A B _
M_AA:I EZZLNNdX (91)
A=1 B=1 e
Net Nen Nen
= 2 ANBgx
K = é h;; /L BWINAN%X (92)

Solution of the nonlinear equations by a simple fixed point iteration would lead to a time
step restriction of the form (see LAMBERT [1993 pp. 103])

Al

7 <C (93)
where 1/(h?) plays the role of a lipschitz constant and C is some constant. While the
restriction in (86) was purely based on stability considerations, the restriction in (93) is
governed by the radius of convergence of the iterative scheme. The condition in (93) is
a sufficient condition and in practical situations the restriction may not be as severe as
the necessary condition in (86) for explicit schemes. In the linear case where B (w) = By,
the sufficient condition in (93) holds for the case of fixed point iteration. In contrast to
this, Newton’s Method for solving the resulting algebraic equations (linear in this case)
has infinite radius of convergence with no restriction on the time step at all. In mildly
nonlinear problems, the radius of convergence for the Newton’s method is large and the
stepsize is usually governed by accuracy requirements of the time integration. This explains
the popularity of using Newton (or Quasi Newton) methods for solving implicit algebraic
equations arising from stiff ODEs. However, the situation may completely change for highly
nonlinear ODEs. In these situations, the radius of convergence may govern the stepsize
rather than the accuracy when Newton type methods are used. This means that in addition
to solving implicit equations at each time step, one is also forced to take small time steps
so that the iterations in Newton type methods converge. This problem can be handled if
a good initial guess for the Newton type schemes can be found. Explicit methods which
are popularly used for finding predictors in predictor-corrector schemes (see, for example,
HAIRER ET AL. [1993]) are not applicable because the problem is stiff. This may be the
case also with extrapolation where the initial guess is an extrapolation of the solution at
previously computed time steps. Continuation methods are suggested (see RHEINBOLDT
[1981]) to improve the radius of convergence, where a sequence of problems of increasing
nonlinearity is solved at each time step. Numerical experience with these techniques for the
specific problem at hand was not very favorable and is not considered here.
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From the above discussion, it is clear that for implicit schemes, the stepsize is governed
by two primary considerations—accuracy of the solution, and radius of convergence of the
iterative scheme to solve nonlinear equations. Regarding stability, it is assumed that the
chosen implicit scheme has a large region of absolute stability. Typically A-stable (linearly
stable) or B-stable (nonlinear stable) implicit methods are chosen for stiff problems (see
HAIRER AND WANNER [1993] for various notions of stability and for the definition of region
of absolute stability). On the other hand, all explicit schemes have a finite region of absolute
stability and stiffness forces the time stepping scheme to take small time steps due to sta-
bility considerations. The relative costs for using implicit vs explicit schemes for situations
where the radius of convergence governs the stepsize can only be quantified by numerical
simulations.

The fully coupled problem is highly nonlinear due to nonlinear mobility/diffusion coeffi-
cient, nonlinear viscoelastic evolution equations and coupling between the swelling and the
diffusion phenomena. In spite of being aware of various issues with explicit and implicit time
stepping schemes for highly nonlinear problems, the only way to quantify the performance
of the various schemes is through numerical simulations.

Second Order Implicit Schemes

The choice of a second order method ensures that the global error decreases as the square
of the step size. Therefore, a target accuracy of the solution can be achieved with fewer
steps compared to first order schemes such as Backward Euler. Order of accuracy higher
than second order is not preferable as the solution may not have the required number of
derivatives in time to ensure that the high order is achieved. Though this is not a concern
here, extension to other models with such a restriction would not be possible.

The popular choices for the second order schemes are the family of A-stable second order
Implicit-Runge-Kutta (IRK) method and the BDF2 scheme. Both these choices are rec-
ommended for the time integration of stiff ODEs as well as index 1 DAEs (see BRENAN,
CAMPBELL, AND PETZOLD [1989 Ch. 3 and Ch. 4]). However, the IRK requires the so-
lution of nonlinear algebraic equations at each stage (more than one) within a time step
while BDF2 scheme requires the solution of the nonlinear equations once per time step. The
second order BDF2 scheme is also A-stable just as the IRK is chosen to be. In addition to
A-stability, IRK methods can be chosen to satisfy B-stability which refers to the contractiv-
ity property of the numerical method when the exact solution of the ODE system satisfies
it. Numerical experience with the BDF2 method showed that the timestep restriction due to
radius of convergence kept the numerical solution stable for the nonlinear problem at hand.
The storage requirements in terms of solution at previous steps of BDF2 is also comparable
to the storage requirements of the various stages within a time step in IRK. These above
considerations favored the choice of BDF2 method for the implicit time stepping scheme.
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Second Order Implicit-Ezplicit Schemes

As mentioned earlier, the nonlinearities (nonlinear mobility plus coupling in the mass
balance equations) that create the sharp fronts may force a fully implicit scheme to take tiny
steps. To handle this, an idea pursued here is to time integrate the mass balance equations
at the global level using an explicit scheme, while an implicit BDF2 scheme is proposed for
time integrating the local stress evolution equations. The momentum balance which forms
the algebraic part of the DAE is solved implicitly for the global mechanical displacements,
given the concentrations. These schemes are known as partitioned schemes and were first
used for partitioning a system of ODEs into stiff and nonstiff parts and using explicit schemes
for the nonstiff components and implicit schemes for the stiff components (see SODERLIND
[1980] for one such application).

The reason for choosing a Runge-Kutta (RK) method for the explicit scheme is due to
the motivation provided by a result in SHAMPINE [1994, pp. 302] that states: For a linear
first order ODE, controlling the local error per step in an explicit RK scheme controls the
stepsize to ensure stability. In the same reference, the author also remarks that this result
holds true in practice for nonlinear problems as well. Thus, the stability requirements for the
explicit part of the time stepping is satisfied by controlling the local error. For the implicit .
part, the A-stable BDF2 scheme handles the stability requirements.

In the following sections, formulas for the RK method and the BDF2 method for an
abstract ODE are provided. Error estimation for time adaptivity for the two methods is
described. Details of putting together the RK method and the BDF2 scheme for obtaining
the implicit-explicit schemes are outlined. Finally, remarks on the connection to the actual
governing equations considered here are made.

Adaptive Time Stepping

An adaptive time stepping strategy is incorporated into both the implicit BDF2 and the
implicit-explicit method. This serves to reduce the time step when the stepsize is large due
to considerations of accuracy or radius of convergence. But more importantly, it serves to
maximize the stepsize without violating the above two considerations, thus making the time
integration efficient. In the case of implicit schemes, robustness in terms of convergence
of iterations while solving nonlinear equations, can be achieved by say halving the step
size without time adaptivity when iterations don’t converge to the solution. However, for
rationally increasing the step size when it is not necessary that it is too small, a stepsize
estimate is needed based on an error criterion. Therefore, adaptive time stepping for the
implicit case is indispensable. For the explicit part of the implicit-explicit scheme, stability
is guaranteed by controlling the local error at each time step. The control of the local error
is efficiently handled by adaptive time stepping. :
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3.4.3 THE SECOND ORDER BACKWARD DIFFERENTIATION FORMULA (BDF2)

The various steps for implementing the BDF2 method with adaptive time stepping is
summarized in a flow chart in Fig. 2. A description of each of the steps summarized in the
flow chart is provided in the following.

Time Discretization

Consider a system of ODEs of the form

dY

dt
Here, Y and F(Y) are vectors in R™ and ¢ denotes the time. For finding the coefficients of
the variable stepsize BDF2, the following expansion for the exact solution Y is assumed

dY (tn+1)
dt

Here, 7p41 is the Local Truncation Error (LTE) and is of OA¢#?®. Using Taylor expansion of
the various terms in (95) about t,, the coefficients a, b and ¢ can be calculated in terms of
the current stepsize At and the previous stepsize At; by setting the constant term and the
coefficients of the At and the At? terms in the expansion to zero. Consequently,

=F(Y) (94)

Y(tn_H) = aY(tn) + bY(tn_l) + cAt + Tn+1 (95)

a=1+(1—/~;)§—tt1 (96)
b=(x— 1)—2—;; 97)
c=k (98)

(99)

where k = (At + At;)/(2At + At;). Finally, the variable stepsize BDF2 discretization for
equation (94) is given by
Yn+l - Y
kAL
Here, Y = aY, + bY,_; and Y|, is the numerical solution at time #(). Note that the
backward Euler scheme is simply obtained by setting a = ¢ = 1 and b = 0 leading to a local
truncation error of O(At?). For the ODE system of the form

dY
dt
where M is invertible for all Y, it can be easily shown that the corresponding BDF2 dis-
cretization is '

=F(Yn11) (100)

M(Y)Z- = F(Y) (101)

You-Y

o =F(Yan) | (102)

M(Yn+1)
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Figure 2: Flow Chart for Adaptive Second Order Backward Differentiation
Formula(BDF2)
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Equation (94) or (102) (as the case may be) represent the system of nonlinear algebraic
equations that arise as a result of the implicit BDF2 time discretization. They are solved for
Y,41 using iterative schemes such as Newton’s Method. In Appendix A, a Krylov Newton
procedure and the standard Newton’s method for the iterative solution of the nonlinear
algebraic equations are described. The predictor for these schemes is obtained by a quadratic
extrapolation of the numerical solution values Y,, Y,_; and Y,_o which are stored in a
standard divided difference form.

Apriori stepsizé Selection

For error control and choosing stepsizes, a predictor error defined here is used. It can be
argued (see MILLER [1997]) that it is difficult to estimate the LTE term and that estimating
predictor error is simple and satisfactory. Once the solution Y,; is found, the predictor
error (PE) is computed as

PE=Y,1— Vo (103)
where V., is the quadratic extrapolation for the initial guess to Newton-type methods. It
can be easily shown that this predictor error can be approximated by

PE = Y[n+1Ln,n—1,n— 2J(At)(At + Aty)(At + Aty + Aty) (104)

where Aty = t,_; — t,—2 and Y[n +1,n,n — 1,n — 2] is the third divided difference of the
numerical solution at the four time values ¢,.y, t,, tn—1, tn-2. To estimate the predictor
error for the next step, it is assumed that the divided differences at ¢,42, th+1, Tn, th-1 1S
the same as that at t,43, t,, tn—1, ta_2- Consequently, the estimated predicted error for the
next time step is

Est. PE=Y[n+1,n,n — 1,n — 2](Atpew)(Atnew + At)(Atpew + At + Aty) (105)

From this, the new stepsize At,., is estimated by solving the following cubic equation
approximately using Newton’s method with a crude tolerance.

1

s ‘m+1,n,n—1,n—2] 2
=1 rtol |Y +1| + atol
Here, atol and rtol are the absolute and relative tolerances on the error in the components of
the solution at the current step. The factor rtol |Y;| + atol for each component ¢ normalizes
the predictor error into a dimensionless form. Finally, consistent with the standard practice

of increasing the stepsize (see HAIRER ET AL. [1993]) by atmost a modest factor, the new
stepsize is chosen as

(106)

(Atpew)(Atpew + At)(Atpew + At + Aly) =

Atpew = min[Atyey,4 At] (107)

On the other hand 1f the stepsize needs to be reduced the calculated At,, is ensured to
be greater than a minimum allowed stepsize Aty,in-



3.4 Time Discretization of the Spatially Discrete Equations - 32

FError Control

The predicted error given by (104) is used to decide whether to accept or reject the current
step. Define the dimensionless error quantity ¢, as

- Yo~ Via )’
_ nt1~ Vi 108
¢ Z (rtol [Y?} 1| + atol (108)

i=1

Accordingly,

e if ¢, < 1, accept the current step and update the divided difference table for storing
the solution values at the previous steps.

e if €, > 1, reject the current step and reduce the stepsize by half for the current step
and repeat the step.

Stepsizes are halved when the error criterion is not satisfied as in here or when iterations
in a Newton-type scheme don’t converge within a maximum of MAXITR iterations. To
save computation, the iteration scheme is also terminated and the stepsize halved if the
convergence rate, which is the ratio of residual error in the current iteration to that of the
previous iteration, is larger than CRATE even after MAXRATE number of iterations. This
way, the situation where the iterations start to diverge is detected early. In the case of Krylov
Newton, the Jacobian is not updated freshly at every time step. Instead, it is updated only
when the iterations do not converge in MAXITR iterations while using an old Jacobian.
A limit MAXTRY on the number of times the stepsize is allowed to be halved within a
time step is specified. Exceeding MAXTRY number of stepsize reductions in a time step
forces the program to halt. The iteration sequence is considered successful if the norm of
the increment in an iteration is below a tolerance TOL. In this case, the satisfaction of the
error criterion is checked before proceeding to the next step. These additional features in
the implementation make the computation efficient and robust.

3.4.4 THE SECOND ORDER ExXpLICIT RUNGE KUTTA MEeTHOD (ERK2)

As in the case of the BDF2 scheme, the various steps for the partitioned implicit-explicit
schemes are summarized in a flow chart in Fig. 4. A description of each of the steps
summarized in the flow chart is provided next.

Consider a system of ODEs of the form

dZ

— =G(2Z

~=c@ (109)
where Z and G(Z) are vectors in R* and ¢ denotes the time, as before. The Explicit Runge-
Kutta method for this system of ODEs is given by its Butcher array as shown in table 2.
In table 2 only three stage are considered as we are interested in second order methods.
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Figure 3: Flow Chart for Adaptive Second Order Runge-Kutta Method

(ERK2)
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(&} 0
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3 — .
es | oz o 0 where )., i =

by by b3
1 81 52 53

Table 2: Butcher Array for Explicit Runge-Kutta Methods

First order Method | Second Order Method
by+by+b3=1 bi+by+b3 =1
b101 + b202 + b3C3 = 1/2

Table 3: Order conditions for First and Second Order ERK Methods

In fact, the unknown coefficients in the three stages provide enough flexibility to obtain
a second order method with a first order method embedded in it for error control.

The conditions on the coefficients in the butcher array for first and second order methods
are recalled from HAIRER ET AL. [1993] and are listed in table 3.

The ERK discretization is given by

K, = G(Z,) (110)
i—1
Kz‘ = G(Zn + At Z CY,;jKj)
Jj=1
3
foll =Z, + At Z b;K; (Second order solution) (111)
j=1

3
| Zfl?_l =2n + At Z b;K; (First order solution)
j=1
(112)

where K;s are called the stage derivatives at the stage points ¢; At within a time step, and
zijll denotes the first order solution and Zfﬂl denotes the second order solution, respectively.
The solution at the next time step is given in terms of the solution at the previous step and
a linear combination of the stage derivatives. The local error (LE) used in error control is
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0o | o
2/312/3 0
1 |1/4 3/4 0

1 |1/4 3/4 0
2/3 0 1/3

Table 4: A Choice of coefficients in the Butcher array

calculated by the difference
LE = 2, - Zphy (113)

The actual coefficients of the Butcher array satisfying the order conditions in table 3 are listed
in table 4. Besides being simple, the coeflicients are fully compatible with the extensive set
of guidelines on developing Runge-Kutta methods provided in SHAMPINE [1994, Sec. 5.3].
Most notably, these coefficients render a very accurate estimate of the Local Error which is
O(At?) by minimizing the coefficients of the O(A¢®) term in the error (i.e., the coefficients
almost satisfy the conditions for the method to be of third order).

For the case

dZ |
M(Z)Et— = G(Z) (114)
where M € R™*" invertible for all Z, the stage derivatives are computed using
( n)Kl = ( n) (115)
) i—1
M(Zy, + Atz% K)K; = G(Zy + At Y a;jK;)
Jj=1 j=1
(116)

and the rest of the procedure for calculating Z,.; and the local error, remains the same.

Error Control and Time adaptivity:

Similar to the normalization of the prediction error in the BDF2 scheme, the local error
can be normalized to obtain a dimensionless error ¢,.

- LE® \ 2
p—=1 _ 1
K J ; (Ttol |23, 1| + atol) (117)
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where atol and rtol were defined earlier. However, in this report, an alternate normalization
recommended in SHAMPINE AND REICHELT [1997] along with the || - ||oo for calculating e,
is used.

LE®
~ maxrtol |Z ], atol]
& = [Vl (119)

1

(118)

Once ¢, is computed, the step is accepted if €, < 1 and the new step size is estimated using

_1
Atpew = min[5 At,0.8 ¢, ?] (120)

where p denotes the order of the method which here is 2. The factor 0.8 ensures that the
next step would not fail just because it is a little too big. If €, > 1, the step is rejected and
the stepsize is halved before the step is repeated. A maximum MAXTRY number of stepsize
reductions are allowed within a time step. In the case of stepsize reduction or choosing a
new At, the stepsize is ensured to remain greater than a lower bound At,,;,. The various
steps for the ERK method are summarized through the flow chart in Fig. 3.

3.4.5 PARTITIONED IMPLICIT-EXPLICIT SCHEMES

In this section, the details of combining the fully implicit BDF2 scheme and the second
order ERK scheme by partitioning a system of ODEs are discussed. These details closely
follow those presented in SODERLIND [1980].

Consider a system of ODEs which are partitioned into the form

d (Z\ _(G(zY))
()~ () e

where Z and G(Z,Y) are vectors in R*, while Y and F(Z,Y) are vectors in R™. Further,
the vector X = [Z, Y]” € R™™ defines the full system of ODEs. The partition of the ODE
in dZ/dt is discretized using the ERK2 scheme with control of the local error, while that in
dY /dt is discretized using BDF2.
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Explicit Second Order Runge-Kutta Step
As before, the ERK2 step is given by

K, =G(Z,,Y,) (122)
i1
K.,; = G(Zn + At Z Olinj, Y’n+ci)
i=1
3 ,
Zﬂl =Zn + At Z b;K; (Second order solution) (123)
j=1

3
Zgll =Z, + At Z b;K,; (First order solution)
=1

(124)

The only change is that the quantities Y, ,, corresponding to the values Y at the stage
points %, + ¢;At, are required. The Y system has solution values at the previous steps stored
because of the multistep BDF2 scheme used for it. Using a linear polynomial Q(t) through
Y, and Y,_;, the values Y, are predicted by extrapolation. In other words, Y, are
replaced by Q(t, + ¢;At) in (122). This replacement by extrapolation is equivalent to taking
an ordinary ERK2 step on the system

“Z_ Gz (125)

dt

The error associated with the extrapolation in Q(t) is O(At?). Further, the BDF2 step
implies that the values Y's themselves have a global error of O(At?). Assuming that G/9Y
is continuous, the O(At?) error from the extrapolation and the global error in Y result in
O(A#®) perturbations in computing Z,4;. This is due to an additional of factor At that
is picked while computing Z,.; from K;s and Z,. Therefore, the extra error caused by
extrapolation and the global error in Y is of the same order of magnitude as the local
truncation error associated with the ERK2 scheme. The case where the ODE system in Z
is of the form iz '

M(Z)% = G(Z,Y) (126)
is handled as before.

Implicit Second Order BDF2 Step
The time discretization for the BDF2 step is given by

Yn+1 - ?

kAL = F(Zn-}-la Yn+1) (127)
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Figure 4: Flow Chart for the Implicit-Explicit ERK2-BDF2 Scheme
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where Y = aY,, +bY,,_; and the coefficients @ and b are defined in (96), and Z,, is already
computed from the ERK2 step. Substituting the exact solution Y (£,+1), Y (¢,), Y (¢,—1) and
Z(tn41) into (127), and performing a simple consistency analysis (see LAMBERT [1993)), it
can easily be shown that the local truncation error for the BDF2 step is also O(At3).

From the results on the explicit and the implicit steps, it is clear that the local truncation
errors in the Z and Y systems individually are of O(At®). This implies a O(At®) local
truncation error in the full system in X. The result is a partitioned scheme that is globally
of second order. '

3.4.6 TIME STEPPING SCHEMES FOR MODEL-1
Fully Implicit BDF2 method

The spatially-discrete equations in (70) corresponding to mass and momentum balance,
along with the stress evolution equations (23) at the quadrature points are discretized in
time to obtain

&ﬂlﬁ+Rmem%M_f (1282)

Mass Balance: M(
ass Balance (wn+1) A 7
Momentum Balance: S(wn41,Un41) =S (128b)
—(3) =(1) (1) 1 /\(z) _X @)
Stress Evolution: 2ntl 2 + il @y =P (1 + (@) ) ( - )
KAE To exp( anwn+1) (’\n-}-l)2 kAL

(128c)

where §) = aq( ) +bq( ) and 2D = gr +b)\f:) 1, and i denotes the index for the quadrature
points.

The concentration w,(g_l at the i*® quadrature point is obtained by interpolating the nodal
concentration values of the element that contains the quadrature point through an expansion
in terms of the nodal shape functions. Similarly, the stretch )\n +1 at the quadrature points are
obtained by taking the derivative of the interpolating dis <placement field at the quadrature
point. The stretches )\n , /\(z) 1, and the internal variables gn ) and qn_1 requlred for calculating

A® and §® are stored as history at each quadrature point. The quantity A appearing in the
argument list in (128a) is explained next.

Recalling Remark 4 on page 21, the weak form of the mass balance depends on the
derivative of the stretch. To handle this, a discrete H! projection of the stretches is computed,

i.€.,
A S
s 1 A\ oo
A-»H (1 A;I/GN )dX) (129)

where A denotes the nodal values of stretch interpolation. The projection matrix H is given
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by

Nel Nen MNen

11:4} E:E:/;NANB¢Y (130)

A=1B=1

The stretch derivatives at time ¢,,; are replaced by the extrapolation X of the nodal projec-
tions X, and A,_; at time ¢, and ¢,_;, respectively.

The nonlinear algebraic equations in (128a),(128b) and (128c) are solved iteratively by
Newton (or Krylov Newton) scheme. Stepsize adaptivity and error control are accomplished
by specifying the individual tolerances atol,,, rtol, for the displacement vector u, atol,,, rtol,
for the concentration vector w, and atol,(]i), rtol,S’) for stress at each of the quadrature points.
Using these tolerances, efficient adaptive time stepping is incorporated by requiring that the
error criterion for each type (displacement, concentration, stress at each quadrature point)
of the unknown quantities is satisfied.

Partitioned Implicit-Ezplicit method

The time discretization for the stress evolution and the momentum balance remains the
same as in equations (128b) and (128c). The mass balance equation in (128a) is discretized
using ERK2. This requires values of displacements u and nodal stretch projections A at
the intermediate stage points. They are calculated by extrapolating the solution values, u,,
u,; for u and A,, A,_; for A, at the previous time steps as discussed in Sec. ??.

From an earlier discussion, it seems that the stiffness would severely restrict the stepsize
in the explicit part of the partitioned method and in turn the overall scheme. Therefore,
the question arises as to why this scheme is considered at all. The reason for considering
the partitioned scheme is twofold: a) to evaluate the efficiency of the scheme b) to provide
a benchmark for comparing against the efficiency of fully implicit adaptive schemes like the
BDF2 method.

3.4.7 TIME STEPPING SCHEMES FOR MODEL-2
Fully Implicit BDF2 method

The spatially-discrete equations in (77) corresponding to mass balance, along with the
stress evolution equations (44) at the quadrature points are discretized in time to obtain

Mass Balance: M(Vn+1)£%;'_V + R(vpq, 6,(31) =f (131a)
=) =) = (4) _ (G  _ ~@)
Stress Evolution: 22+l % + Ont1 5= E( l(i) > ( Unt1 — ¥ )
_ rAt 7o exp(—ap¥pq 1= (Vp41)? KA
(131b)

As before, the stress evolution equation at each quadrature point is indexed by 7 in equation

(131b). The volume fraction 1/,(:4_1 at the ¢** quadrature point is obtained by interpolating
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the nodal volume fraction values of the element that contains the quadrature point through
the isoparametric mapping. The stresses &) and 5’,(3 ) , required for calculating 5 are stored
as history at each quadrature point.

The nonlinear algebraic equations in (131a) and(131b) are solved iteratively by Newton or
Krylov Newton scheme. Stepsize adaptivity and error control are accomplished by specifying
the individual tolerances atol,, rtol, for the concentration vector v, and atol.(,z , rtol® for

stress at each of the quadrature points

Partitioned Implicit-Ezplicit method

The time discretization for the stress evolution remains the same as in equation (131b).
The mass balance equation in (131a) is discretized using ERK2. This requires values of stress
at quadrature points & at the intermediate stage points in a time step. They are calculated
by extrapolating the quadrature stress values, 57(3), 6,(1111 at the previous time steps.

3.5 Linearization

The implicit BDF2 scheme and the implicit part of the partitioned Implicit-Explicit
method, result in nonlinear algebraic equations that needs to be solved. They are solved
using Newton or Krylov Newton schemes (see Appendix A). These schemes require the Ja- -
cobian or the derivative of the system of nonlinear equations. Although cumbersome, the
linearization procedure for finding the Jacobian matrix is fairly standard and will not be
discussed here. It will only be mentioned that the Jacobian matrix for the fully implicit
BDF2 scheme turns out to be unsymmetric for both the models. The Jacobian matrix
corresponding to the implicit part of the partitioned scheme turns out to be symmetric.



4 DISCUSSION OF NUMERICAL RESULTS

Numerical results from the time integration of the spatially discretized governing equations
for the two Case II diffusion models are presented here. The performance of the fully implicit
and the partitioned implicit-explicit time integration schemes developed earlier are compared
based on their ability to handle the various numerical issues discussed in the previous section.
Furthermore, the importance of using adaptive time stepping for our problem is illustrated.

4.1 Numerical Results for Model-1

The numerical simulation of Case II diffusion using Model-1 is considered first. The ma-
terial properties chosen for this model are listed in Table 5. A polymer of dimensionless
reference length L = 1 is considered as the domain of interest for the IBVP. The boundary
conditions for the diffusion problem are: a fixed concentration w |z_,= 0.3832 at the left
end, and a zero flux f |x=1= 0 at the right end. Correspondingly, the maximum concen-
tration wpqe, occurs that the left end boundary with the value Wmaz = 0.3832. Although
the maximum principle was not proved for the fully coupled problem, the sign of the flux
in the coupled case (on which the proof depends) can be seen to be the same as that of
the uncoupled case thereby implying, at least heuristically, the satisfaction of the maximum
principle. Numerical simulations (not presented here) for very fine spatial discretizations
and tiny time steps over a short time also confirm this implication. Given the value of wy,qq,
a value of ag = 20 corresponds to a change in the normalized mobility B by three orders
of magnitude which models sharp changes in mobility in the presence of the solvent. The
coefficient a, = 50 corresponds to a decrease in the the relaxation time 7 by nine orders
of magnitude for modeling the glass to rubber transition. For the mechanical problem, the
bar is assumed to be fixed at the right end, i.e., u |£=1= 0, and free to expand at the left
end. The mechanical boundary conditions correspond to those in free swelling. Further, zero
displacements, zero concentrations and zero stresses in the polymer are chosen as the initial
conditions for the IBVP.

‘'The IBVP incorporating Model-1 is discretized in space with 60 elements using the finite
element method. The resulting DAEs are solved using the fully implicit BDF2 scheme and
the partitioned ERK2-BDF?2 scheme with adaptive time stepping. The tolerances atol, =
5 x 1073, rtol, = 5 x 1072, atol, = 5 x 10~ and rtol, = 5 x 1072 are chosen for adaptive
time stepping in both the BDF2 and ERK2-BDF?2 schemes. The tolerances atolé’) and rtolgi)
for integration of the stress at each quadrature point (Gauss point) are set to a high value so
that the stepsizes don’t depend on them (see Remark 6). For the solution of the nonlinear
equations, the values MAXTRY = 9, MAXITR = 8, TOL = 10~!3 and MAXFAIL = 4 were
chosen. In the Krylov Newton Method, the maximum number of vectors in the subspace
V (see Appendix A) is set to 4. Old Krylov vectors are discarded if the sine of the angle
between any two vectors is smaller than 0.001.

In Fig. 5, a numerical simulation illustrating the formation and propagation of sharp fronts

42
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Parameter Value ~ Parameter Value
aq 20 E*® 40
ay 50 E, 200
1% 1 E* 40
v 0.36 ¢ 0.52
0 0.03 B 10
To 2.5 - -

Table 5: Material Properties for Model-1

using the BDF2 and the ERK2-BDF2 schemes is presented. In these plots, profiles of the
concentration ratio M/M.,,,, calculated from w/wy,,, are plotted on the deformed length
of the polymer at every 0.015 units of time. The entire simulation takes 0.33 units of time.
From the plots, it is clear that the fronts remain sharp and, except at the beginning, move
almost at constant speed. Due to swelling, the free (left) end of the polymer moves to the
left corresponding to a steady-state elongation of the total length of the polymer by 30%. At
steady state, the solvent concentration w takes the value wp,,, everywhere, consistent with
the zero flux boundary condition at the right end.

The BDF2 and the ERK2-BDF2 schemes for the full simulation in Fig. 5 are compared in
Table 6. Newton’s method is used to solve the implicit nonlinear equations that arise at each
time step in these schemes. While the implicit scheme required just 315 steps for the full
simulation, the partitioned scheme required as many as 67788 steps. From the discussion in
the previous section, a result like this is not totally unexpected. The stability requirements
due to stiffness indeed places very severe stepsize restrictions on the explicit ERK2 method
and in turn on the overall partitioned scheme. It turns out that in this problem, the reduction
in the radius of convergence due to the nonlinearities while using the fully implicit BDF2 is
not very significant. The stepsizes in the BDF2 case are in fact several orders larger than
those in the partitioned scheme thereby making the partitioned scheme quite ineffective here.

For assessing the accuracy of the partitioned scheme, the concentration profiles at various
time values obtained from the BDF2 method and ERK2-BDF2 scheme are plotted in Fig. 6.
The mesh size, material parameters, and the various tolerances are exactly the same as
before. In the figure, the concentration profiles obtained from the partitioned scheme are
indistinguishable from those obtained from the A-stable BDF2 method. This implies that
controlling the solution error in the ERK2 method has indeed ensured that the numerical
solution to the concentration field is stable even when the ODEs are nonlinear. The need
of choosing a stepsize apriori to ensure stability of the ERK2 scheme is thus obviated. In
the partitioned scheme the concentration and the displacement fields are essentially solved
independently at each time step. In spite of this, the results closely agree with those from
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Implicit BDF2 Scheme Partitioned Implicit-Explicit Scheme

1t 4 e

M/Mmaz
M/Mma:c

-0.5 O 0.5 1 -0.5 0 0.5 1
Deformed Length Deformed Length

Figure 5: Concentration Profiles at every 0.015 units of normalized time 6
starting from 6 = 0.005 at the left most front to 8 = 0.325 close to

steady state.

the BDF2 scheme where the two fields are solved together. The possible reason for good
accuracy here is because the stepsizes are small.

Effect of Stiffness due to Mesh Size

The effect of stiffness due to mesh size is examined by considering different spatial dis-
cretizations with 30, 60 and 90 elements. The results for the different meshes using a BDF2
scheme with Newton’s method from @ = 0 to # = 0.025 are tabulated in Table 7. The
corresponding results for the ERK2-BDF2 scheme are summarized in Table 8. The cost
increase for the BDF2 scheme in terms of function evaluations and Jacobian evaluations and
inversions due to mesh refinement is not significant at all. On the other hand, the cost of
function and Jacobian evaluations for the ERK2-BDF2 scheme increases more rapidly than
1/h? to ensure stability as the mesh size h is refined. This makes the partitioned scheme in-
effective even for practical mesh sizes considered here. Furthermore, it is interesting to note
that the fraction of the total number of attempted steps failing convergence of the Newton’s
method in the BDF2 scheme increases from 5% for 30 elements to 17% for 90 elements. In
other words, the stepsize requirements for satisfying the fixed error tolerance has less and
less correlation with the stepsize requirements from the radius of convergence as the mesh is
refined.

The cost statistics from using the Krylov Newton scheme with the BDF2 method for
solving the nonlinear equations could not be obtained for this example. This is because the
Krylov method experienced repeated failure of convergence of the iterates to the solution
even when MAXTRY reductions in the stepsize were tried. However, convergence was not a
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BDF2 Scheme With Newton’s Method ERK2-BDF2 with Newton’s Method
Total # of BDF2 Steps Attempted | 360 || Total # of Steps Attempted 67793
Total # of Successful Steps 315 || Total # of Successful ERK Steps | 67788
Total # of Function Evaluations | 1787 || Total # of ERK Function

Evaluations 203380
Total # of Jacobian evaluations 1787 || Steps Failing ERK Error Criteria 5
Steps Failing Error Criteria 0 Total # of Successful BDF2 Steps | 67788
Steps Failing Convergence of Function evaluations for BDF2 135182
Newton’s Method 45 || Jacobian evaluations for BDF2 135182
- - Steps Failing BDF2 Error Criteria 0
- - Steps Failing Newton’s Method 0

Table 6: Statistics for Implicit BDF2 scheme and partitioned ERK2-BDF2
scheme applied to Model-1 with 60 elements for a full simulation
from 6 =0 to § = 0.33

problem when Krylov method was used to solve the nonlinear equations in the implicit part

of the ERK2-BDF2 scheme.

Adaptive Time Stepping and the Stepsize-Error Tolerance Dilemma

The full stepsize sequence for the BDF2 scheme with 60 elements is plotted on a semi-log
scale in Fig. 7. The method is started with a small initial stepsize of order 107° from which
it proceeds by choosing stepsizes adaptively. The stepsizes at the end of the simulation are
of order 10~3. From the plot for the stepsize sequence, it is clear that adaptive time stepping
continuously tries to maximize the stepsizes during the course of the simulation, at the same
time satisfying the error criterion and the radius of convergence requirements.

From the compilation of statistics for this simulation in Table 6, around 12% of all the
attempted steps failed. In all the cases, the failures were due to nonconvergence of the
iterations while using the Newton’s method. Therefore, choosing stepsizes larger than the
stepsizes chosen here would be impossible as the Newton’s Method would not converge. From
the statistics, it is also interesting to note that none of the stepsizes failed due to violation
of the error criterion. If crude tolerances are chosen, the stepsizes in some of the time steps
where Newton’s iterations converge may be large. But in that case, numerical experience
showed that a larger percentage of the attempted steps would fail as the stepsize selection
based on error criterion would have no correlation with the stepsize requirements based
on the radius of convergence. This may lead to inefficiency because the adaptive scheme
would have to try several stepsizes for which Newton’s method would fail before finding the
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Figure 6: Comparison of partitioned ERK-BDF2 and the BDF2 scheme for
' Model-1; Looking from the left, the fronts correspond to 8 = 0.005,
6 = 0.1 and 6 = 0.265.
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Figure 7: Stepsize sequence using BDF2 method for Model-1; Stepsizes are
plotted in the interval [0, 0.342). (x) denotes failed stepsizes.
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30 Elements | 60 Elements | 90 Elements
Total # of Steps Attempted 58 125 186
Total # of Successful Steps 55 119 153
Total # of Function Evaluations 272 618 908
Total # of Jacobian evaluations 272 | 618 908
Steps Failing Error Criteria 0 0 0
Steps Failing Convergence of Newton 3 16 33

Table 7: Statistics for BDF2 scheme using Newton’s method applied to
Model-1 for various mesh sizes from 6 = 0 to 8§ = 0.025

right stepsize. Therefore, there is a delicate balance between achieving robustness in terms
of convergence of Newton’s method, accuracy in terms of satisfying an error criterion and
efficiency in terms of being able to take the largest possible stepsizes.

For a coarse time step simulation with large stepsizes, where solution accuracy is not of
concern, it is absolutely important to ensure that the Newton’s method has a very good
initial guess. In this case, choosing the converged solution at the previous step or a linear
combination of converged solutions at the previous steps (as in the case of extrapolation)
as the initial guess for the Newton’s method is found to be insufficient. The effect of a bad
initial guess is illustrated in Fig. 8. The data in the figure is taken from one of the actual
simulations using Model-2. The situation considered here corresponds to a time step where
the converged solution at the previous step is not a good initial guess. The Newton iterations
diverge in this time step. In the figure, the norm of the residual ||R(Y+sAYk)|| is plotted
against s € [0, 1] where k is the iteration number (see Appendix B for notation). The
residual norm increases in the direction AY k in a very haphazard way. The consequence is
divergence of the iterations. This is unlike the situation where the initial guess is within the
radius of convergence and the residual norm typically decreases with s . The only solution
to divergence of iterations is abandoning the current stepsize and choosing a smaller one.

The stepsize sequence for the ERK2-BDF2 scheme with 60 elements is shown in Fig. 9. A
sequence of 250 attempted stepsizes in the time interval [0.328917705, 0.329993138], close to
the steady state, and a sequence of 250 stepsizes in the interval [0.171909993, 0.173074479]
near half-time of the simulation are plotted. The stepsizes are 3 orders of magnitude smaller
than those in the BDF2 method. Due to stiffness, the stepsizes don’t change even when the
concentration solution does not change much while approaching the steady state.

The time integration of the stress equations is always done using the implicit BDF2
scheme. The influence of stiffness due to nonlinear relaxation times is not examined here as
the BDF2 scheme was found to handle this source of stiffness effectively.
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in an iteration with s = 1 being the full Newton Step.
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30 Elements | 60 Elements | 90 Elements
Total # of Steps Attempted 769 4141 10284
Total # of Successful ERK Steps 764 4136 10279
Total # of ERK Function Evaluations 2308 12424 30853
Steps Failing ERK Error Criteria 5 5 5
Krylov Newton For the Implicit Part ,
Total # of Successful BDF2 Steps 764 4136 10279
Function evaluations for BDF2 1657 8343 19104
Jacobian evaluations for BDF2 709 4082 10224
Steps Failing BDF2 Error Criteria 0 0 0
Failed Krylov (New Jacobian) 0 0 0
Failed Krylov (old Jacobian) 709 4082 10224
Standard Newton For the Implicit Part ‘
Total # of Successful BDF2 Steps 764 4136 10279
Function evaluations for BDF2 1601 8345 20629
Jacobian evaluations for BDF2 1601 8345 20629
Steps Failing BDF2 Error Criteria 0 0 0
Failed Newton 0 0 0

Table 8: Statistics for ERK2-BDF2 scheme applied to Model-1 for various
mesh sizes from § = 0 to § = 0.025

Remark 6 . _

In the simulations described in this section, the tolerances atolgz) and rtol,(f) for stress at
each quadrature point are not used to determine whether the current stepsize is accepted
or rejected. These tolerances are also not used to predict a stepsize for the next step.
The reason for this is as follows: The error criterion for the BDF2 scheme applied to the
stress equations is based on the predictor error. When a sharp concentration front happens
to pass a quadrature point in a time step, the viscoelastic stress ¢) at the quadrature
point would change rapidly in that time step. The resulting predictor error would also be
large. The predictor error at the other quadrature points would still be small. Therefore,
basing the decision of accepting or rejecting a stepsize on violation of the error criterion at
a few quadrature points which the front might pass in each time step turns out to be very
conservative. Due to a lack of a better criterion to decide on which quadrature points need to
be picked for checking the error conditions, the error criteria for ¢ at the quadrature points
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Parameter Value
aq 20
Q) 30
X 0.9
D 30
To 2.5

Table 9: Material Properties for Model-2

are completely ignored. The same discussion holds for doing away with the error criteria for
o in the case of Model-2.

4.2 Numerical Results for Model-2

The numerical simulation of Case II diffusion using Model-2 is considered here. The
material properties chosen for this model are listed in Table 9. As in the case of Model-1,
the domain of interest is the interval [0, 1]. The boundary conditions for the diffusion problem
are: a fixed volume fraction v |z_o= 0.3832 at the left end, and a zero flux [ |x=1= 0 at the
right end. Similar to the previous model, the maximum volume fraction Umaz OcCcurs that
the left end boundary with the value v,,,, = 0.3832. There are no boundary conditions for
the mechanical behavior that are needed to be specified for the IBVP. Furthermore, zero
volume fractions and zero stresses in the polymer are chosen as the initial conditions for the
IBVP.

The results of time integration using the fully implicit BDF2 scheme and the partitioned
ERK2-BDF2 scheme with 60 elements is shown in Fig. 10. The tolerances atol, = 2 x 103
and rtol, = 2 x 10~2 are chosen for adaptive time steppin§ in both the BDF2 and ERK2-
BDF2 schemes. As before, the tolerances atol' and rtol® for integration of the stress at
each quadrature point (Gauss point) are set to a high value so that the stepsizes don’t
depend on them. The values of the parameters MAXTRY, MAXITR, TOL and MAXFAIL
are chosen to be the same as in the case of Model-1. Similarly, the various input parameters
for Krylov Newton implementation are also chosen to be the same as before. In Fig. 10,
volume fraction profiles are plotted on the deformed length of the polymer. The deformed
length is calculated using the ideal mixing assumption, where the stretches \ computed from
v are integrated over the length to obtain the elongation. The right end of the polymer is
assumed to be fixed at X =1 for carrying out the integration. The volume fraction profiles
are plotted at every 0.3 units of time starting at 6 = 0.1 for the left most front. The entire
simulation takes 5.5 units of time. Sharp fronts of the volume fraction are formed as in
Model-1 and move from left to right. The diffusion problem finally reaches steady state
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Figure 10: Concentration Profiles at every 0.1 units of normalized time 6
starting from 6 = 0.1 for the left most front to 8 = 6.5 close to
steady state.

where v = Up,q, everywhere as governed by the zero flux boundary condition at the right
end. At steady state the net elongation of the polymer due to swelling is about 60%.

The BDF2 and the ERK2-BDF2 schemes for the full simulation in Fig. 10 are compared in
Table 10. Newton’s method is used to solve the implicit nonlinear equations that arise using
the BDF2 scheme. The implicit equation for the scalar variable stress at each quadrature
point arising in the ERK2-BDF2 and the BDF2 scheme is solved in closed form. The BDF?2
scheme took 1490 steps while the ERK2-BDF2 scheme took 13068 steps. Unlike in the case of
Model-1, where the implicit BDF2 scheme performed far better than the partitioned scheme,
the implicit BDF2 scheme performs marginally better than the ERK2-BDF2 scheme here.
In fact, the cost of 6278 function evaluations and 6278 Jacobian evaluations and inversions
for the implicit scheme may be comparable to 39577 function evaluations using the ERK2-
BDF2 scheme. For large systems of equations, formation and the inversion of the Jacobian
can be very expensive and this may outweigh the benefits of using an implicit scheme.

The accuracy of the partitioned scheme is assessed by plotting the normalized volume
fraction profiles at various time values obtained from the BDF2 method and ERK2-BDF2
scheme Fig. 11. The profiles from the two methods don’t quite match for the two schemes
possibly because the stepsizes in the partitioned scheme are not small enough. Nevertheless,
the results are still in good agreement.

Effect of Stiffness due to Mesh Size

The effect of stiffness due to mesh size is examined by considering different spatial dis-
cretizations with 30, 60 and 120 elements. The results for the different meshes using BDF2
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BDF2 Scheme With Newton’s Method ERK2-BDF2 with Newton’s Method
Total # of BDF2 Steps Attempted 1530 || Total # of Steps ERK Attempted 13189
Total # of Successful Steps 1490 || Total # of Successful ERK Steps 13068
Total # of Function Evaluations 6278 || Total # of ERK Function Evaluations | 39577
Total # of Jacobian evaluations 6278 || Steps Failing ERK Error Criteria 121
Steps Failing Error Criteria, 40 || Total # of Successful BDF2 Steps -NA-
Steps Failing Convergence of Newton | 1 Function evaluations for BDF2 -

Table 10: Statistics for Implicit BDF2 scheme and partitioned ERK2-BDF?2
scheme applied to Model-2 with 60 elements for a full simulation
fromf#=0to0 =55
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Figure 11: Comparison of partitioned ERK2-BDF2 and the BDF2 scheme for
Model-2; Looking from the left, the fronts correspond to 6 = 0.1,
60 =1.7 and 0 =4.7.
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30 Elements | 60 Elements | 120 Elements
Total # of Steps Attempted 165 605 1913
Total # of Successful Steps 163 582 1842
Total # of Function Evaluations 655 2475 8092
Total # of Jacobian evaluations 655 2475 8092
Steps Failing Error Criteria 2 21 27
Steps Failing Convergence of Newton 0 1 44

Table 11: Statistics for BDF2 scheme using Newton’s method applied to
Model-2 for various mesh sizes from § =0 to § = 0.5

30 Elements | 60 Elements | 120 Elements
Total # of Steps Attempted 284 1026 3377
Total # of Successful Steps 165 577 1977
Total # of Function Evaluations 1539 5686 19158
Total # of Jacobian evaluations 119 426 1274
- Steps Failing Error Criteria 1 3 4

Failing Krylov (old Jacobian) 117 424 1272
Failing Krylov (new Jacobian) 1 22 124

Table 12: Statistics for BDF2 scheme using Krylov Newton’s method applied
to Model-2 for various mesh sizes from # = 0 to 8 = 0.5

scheme with Newton’s method from # = 0 to § = 0.5 are tabulated in Table 11 while those
from using the Krylov Newton method are listed in Table 12. Furthermore, the results for the
ERK2-BDF2 scheme are summarized in Table 13.  The important observations from these
tables are as follows: stiffness due to the mesh size h increases the cost of the ERK2-BDF2
scheme more rapidly than 1/h? as the mesh size A is refined. The mesh size has a signifi- .
cant influence even on the implicit BDF2 scheme where the number of function evaluations
increase 4 times every time the mesh size is halved. The number of stepssizes failing due to
violation of error criterion is comparable to the number of stepsizes due to nonconvergence
of the iterations when Newton’s method is used with the BDF2 scheme. On the other hand,
most of the failed stepsizes are due to nonconvergence of the iterations when Krylov Newton
method is used with the BDF2 scheme. In other words, Krylov Newton method has a smaller
radius of convergence. However, the Krylov Newton requires significantly fewer number of
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30 Elements | 60 Elements | 120 Elements
Total # of ERK Steps Attempted 226 1077 5180
Total # of Successful ERK Steps 199 968 4714
Total # of ERK Function Evaluations 760 3568 17008
Steps Failing ERK Error Criteria 27 109 466

Table 13: Statistics for ERK2-BDF2 scheme applied to Model-2 for various
mesh sizes from § =0 to 8 = 0.5

Jacobian evaluations compared to the Newton scheme resulting in enormous savings in the
computational cost. In conclusion, for the cases considered here where an error tolerance
is specified, BDF2 scheme with Krylov Newton ranks the best followed by BDF2 with full
newton and ERK2-BDF2 scheme whose performances are comparable.

Adaptive Time Stepping

The adaptive time stepping algorithm for the BDF2 scheme with Newton’s method is illus-
trated by plotting stepsize sequences in the time intervals [0.8688, 1.6979] and [3.0973, 5.4993]
in Fig. 12. Similarly, the stepsize sequences for the ERK2-BDF2 scheme in the time intervals
[2.7911, 2.8943] and [5.3976, 5.4993] are plotted in Fig. 13. In the BDF2 scheme, the step-
sizes at the end of the simulation are about an order of magnitude larger compared to their
values in the interval [0.8688, 1.6979]. This is to be expected as the solution to the volume
fraction field changes slowly in most part of the domain while close to steady state. On the
other hand, the ERK2-BDF2 scheme suffers from stability requirements due to stiffness and
the stepsizes remain the same as at half-time even when the steady state is approached.

Handling Oscillations due to Sharp Fronts

The near vertical solvent concentration profiles in the sharp fronts lead to undershoots
in the numerical solution due to oscillations. These oscillations are illustrated in Fig. 14 for
Model-2 where a finite element discretization with 60 elements is used. The undershoots
that result in negative concentrations are not only unphysical but also detrimental to car-
rying out the time integration. From numerical experience, negative concentrations resulted
in repeated stepsize failures when solving nonlinear equations in implicit schemes thereby
forcing the integration scheme to stop. On taking a closer look at the various quantities
such as the flux that depend nonlinearly on the concentration, it was found that they were
totally wrong when evaluated for negative concentrations — sometimes even with a wrong
sign. The effect of undershoots on the explicit schemes was not very significant and the
explicit schemes recovered without the integration scheme being forced to stop.
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Figure 12: Stepsize sequence using BDF2 scheme with Newton’s method for
Model-2; Left: Stepsize in the interval [0.8688, 1.6979]. Right:
Stepsize in the interval [3.0973, 5.4993]. (x) denotes failed step-
sizes.
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Figure 13: Stepsize sequence using ERK-BDF2 method for Model-2; Left:
Stepsize in the interval [2.7911, 2.8943]. Right: Stepsize in the
interval [5.3976, 5.4993]. (x) denotes failed stepsizes.
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The undershoots here are handled by implementing the projection scheme described in
Appendix B. The results for Model-2 in Fig. 10 using 60 elements are obtained by using the
projection technique for both the BDF2 and the ERK2-BDF2 schemes and can be compared
with Fig. 14.

Implicit BDF2 Scheme
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Figure 14: Oscillations in Coarse Meshes due to Sharp Fronts.

Surprisingly, in the case of Model-1, no undershoots were detected even for coarse meshes.
In addition to the projection scheme used here, lumped mass matrices were used in all the
simulations for both the models. The main motivation for using lumped mass matrices in
the numerical simulation of the two models is that they are shown to satisfy the maximum
and minimum principles (see THOMEE [1980]), at least in the uncoupled case.

Finally, a remark on the error tolerances is made here.

Remark 7

Error tolerances, atol, and rtol, specified here ensure stability for the explicit part of the
partitioned scheme. If larger tolerances are used, stepsizes would be larger and the numerical
solution would still grow in time in a controlled manner without blowing up due to instability.
However, oscillations start appearing in the spatial solution as a manifestation of instability.
In fact, one can see mild oscillations in the spatial solution to the volume fraction in Fig. 10
close to the left end. Therefore, in the explicit schemes oscillations could also occur if crude
error tolerances for ensuring stability are used.



5 SUMMARY AND CONCLUSIONS

In this report, two models for simulating Case II diffusion in 1-D were presented. These
simple models in 1-D facilitated a good understanding of what features models for Case 11
diffusion should have. Most notably, the numerical simulations illustrated that nonlinear
mobility dependent on the solvent concentration and coupling of the chemical potential with
deformations or stress-like quantities are crucial for the single most important feature of
Case II diffusion — formation and propagation of sharp solvent fronts. The two models were
presented in a general framework involving balance laws and constitutive relations. This
framework has helped in seeing clearly the differences between fully coupled models with
independent displacement and concentration fields and those where simplifying assumptions
such as ideal mixing on the mechanical behavior are made. All the balance laws and consti-
tutive relations were presented in a dimensionless form. This provides the facility to simulate
Case II diffusion in various solvent-polymer combinations by simply scaling the dimension-
less time and the dimensionless length. The normalization of the governing equations also
avoided numerical complications associated with handling different orders of magnitudes of
the solutions to the different fields due to a bad choice of units. ‘

These models were successfully implemented in a numerical setting. As a first step towards
this, a mathematical understanding of the qualitative behavior of the solutions was presented.
The relevant concepts included the maximum and minimum principles and stiffness in the
DAEs obtained from spatial discretization using the finite element method. Although im-
plicit schemes were the recommended choice for handling stiffness, an alternative partioned
implicit-explicit scheme was explored to see how it compared with the implicit schemes.
Similarly, Krylov Newton method which is a cheaper alternative to Newton’s method for
solving nonlinear equations was examined. A motivation was provided for using adaptive
time stepping for time integration of the spatially discrete governing equations. Through
carefully chosen numerical examples, the efficacy of using adaptive time stepping to strike a
balance between efficiency, accuracy and robustness requirements was illustrated. Although
adaptive time stepping was found to be very useful, a genuine need for good initial guesses
for the iterative schemes (such as Newton) for solving nonlinear equations when using coarse
time steps with implicit methods was recognized. :

An assessment of the various numerical techniques can be made as follows: To varying
degrees, implicit schemes performed better than the partitioned implicit-explicit schemes. In
the case of Model-1, the implicit BDF2 scheme was clearly more efficient than the partitioned
ERK2-BDF2 scheme. Stiffness played a significant role in forcing small stepsizes on the
partitioned scheme while the stepsize restrictions on the implicit scheme due to radius of
convergence was not significant. Krylov Newton method exhibited very small radius of
convergence and could not be used in the implicit BDF2 method at all. In the case of Model-
2, the implicit BDF2 scheme with Krylov Newton method was found to be more efficient than
the implicit BDF2 scheme with Newton’s method or the ERK2-BDF2 method. In this case,
the cost of the ERK2-BDF2 method was also comparable to the implicit BDF2 scheme with
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Newton’s method. Furthermore, a technique for handling unphysical undershoots that lead
to negative concentrations was described. It was found that convergence of iterations while
solving nonlinear equations in the implicit BDF2 scheme crucially depended on avoiding the
undershoots altogether.

In conclusion, a sound understanding of various aspects of modeling Case II behavior
and its numerical implementation was accomplished by considering the 1-D case. With this
background, it is hoped to understand the extensions to the 2-D and the 3-D cases better.



APPENDIX A: NEWTON AND KRYLOV NEWTON METHODS

In this Appendix, a Krylov Newton method developed in CARLSON AND MILLER [1998a]
for the solution of nonlinear algebraic equations is described. This is followed by a short
comparison of the Krylov method with the standard Newton’s Method.

Consider a system of nonlinear equations of the form

R(Y) =0 (A-1)

As a first step, these equations are scaled through a premultiplication by —J~ 1 where
J = R/(Y) denotes the Jacobian of R evaluated at some value Y. Consequently, one

obtains
£(Y) = —J'IR(Y) =0 (A-2)

It is easily seen that the zero of f is also a zero of R as long as J is invertible. Scaling by the
inverse of the jacobian normalizes the equations. In fact, the jacobian f/(Y) of the scaled
equations is approximately the identity —I near the root Y if the jacobian J has been freshly
updated. The nonlinear Krylov Newton method is used to solve the equations in (A-2) and
assumes the following

1. f(X + Z) = f(X) — AZ for all X near the root Y where A is an unknown constant
nonsingular matrix. :

2. AZ = IZ for small corrections Z.

Starting with a good initial guess Yy, the goal here is to find a sequence of iterates Y that
converge to the solution Y, cheaply. This is done by building a subspace V of much smaller
dimension than Y and looking for a solution in the subspace.
The method starts by evaluating f at Y, to obtain f5. The first member v; of the subspace
V is set to fo. The next iterate Y, is obtained by setting Y; = Yy + v;. From assumption
1, this implies that
AVl = fo - fl ) (A-3)

where f; = £(Y;). Following this, the iterate Y, is obtained in terms of the residual correction

equation
f(Yz) = f(Y1 + V2) = f1 - AV2 =0 (A-4)

In the first pass, the above residual equation is approximately solved by letting wy be that
element of the subspace V = span{v,}, that best approximates f; in the L, norm. This is
a simple linear least squares problem and in the case where the subspace V has one vector,
Wy is simply given by

wy = [(Av)T (Avy)] iy , (A-5)

From w,, an approximation Y; = Y; + ws to Y, is made which would have a residual

q2 = f(Y;) = f(Y1 + Wz) = fl - AWz (A*G)
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A furfher correction z to Y is made by satisfying
| £(Y;+7)=qp— Az =0 (A-7)
Now, using assumption 2 which says Az ~ Iz, one obtains
Az=aq (A-3)

Finally, the second member v, of the collection of vectors that span the subspace V is
calculated as
Ve =Wat+ Q2 (A-9)

Knowing v;, Av, is obtained by the difference
AV2 = f1 - f2 (A—lO)

where f;, = f(Y,) = f(Y1 + v;). This constitutes the end of two steps where the vec-
tors {v1, vz} and their A values {Av;, Av,} have been accumulated. In a similar way, at
the end of k steps, the vectors {vy,..., v} that span the subspace V and their A values
{Avy,...,Av;} would have been accumulated. The desired correction Vi1 18 obtained by
solving the residual correction equation

f(Yk_H) = f(Yk + Vk+1) = fk - AVk+1 =0 (A-ll)

As before, v, is approximated by w1, where wy.; is the element in the span of {vi,-.-, v}
that best approximates f;. The linear least squares problem in this case is

Wil = [K]‘lfk (A-12)

where K is a symmetric matrix whose elements are inner products of the form (Av;)T(Av;).
As previously done, a further correction to wy.; is made finding the residual

Q1 = F(Yi + Wip1) = £ — Awpyy (A-13)
Using assumption 2 as before, yields
Az = g4 (A-14)
and the correction v, is given by
Vi1 = Wiy + Qe (A-15)
Finally, the A value of v is computed using

Avpp =f —fin (A-16)
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It is important to remark that A is never explicitly constructed. In all the steps, Av; are
directly computed.

As a word of caution, when f is strongly nonlinear (as in our case), some of the vectors
Av;s may become nearly linearly dependent and result in the ill-conditioning of the matrix
K. In that situation, the oldest vectors v; and their A values Av; are repeatedly discarded
to form a smaller collection of the vis and Avys until the matrix K is well conditioned again.
In any case, the dimension of the subspace V is typically restricted to a small number (say
around 10) even for very large sized problems.

The Krylov Newton method described above derives its name from the fact that the sub-
space V = span{vy, ..., vy} coincides with the Krylov subspace M = span{fy, Afp, ..., AF £}
when A is positive definite. The procedure involves simple function evaluations except for
a jacobian evaluation to scale the residual equations. This is in contrast to the standard
Newton scheme where the iterates Y are calculated through the following steps.

AYy = —(R'(Y))"R(Yy)
Yip1 = Yi + AY, (A-17)
(A-18)

Here, R’(Y}) is the Jacobian matrix that needs to be evaluated and inverted at each iteration
k in addition to a function evaluation of R(Y}). On the other hand, the Krylov Newton
method requires the jacobian evaluation and inversion only once followed by several function
evaluations to find the iterates Y;. However, the possible disadvantage with the Krylov
method is that the radius of convergence for the iteration scheme may be considerably small
compared to the Newton scheme where the jacobian is updated at every iteration.



APPENDIX B: A PROJECTION METHOD FOR PREVENTING OQSCILLATIONS

A projection method for preventing overshoots and undershoots of the numerical solution
to the concentration field due to oscillations is described in this appendix. Several techniques
for obtaining monotone solutions, without oscillations, that satisfy the maximum and the
minimum principles are developed for advection diffusion equations (see for e.g., MIZUKAMI
AND HUGHES [1985], ROY AND BAKER [1997], SHEU ET AL. [1997]). However, none of the
techniques were found to be applicable in our case. On the other hand, the work of LAYTON
AND POLMAN [1996] provides a projection technique which is applicable to any problem
with overshoots and undershoots in the numerical solution though it was developed in the
context of advection-diffusion equations. This technique is described here.

We begin by assuming that the discrete solution w” is required to satisfy

Wmazx Z Wh Z Winin (B'l)

where Wi, and Wy, are the lower and upper bounds for w”. Denote IIw" as the unique
element in the space K" satisfying

Iw" — TIw"|l = inf lw" — x|, (B-2)
x€K:
where || - ||z denotes the standard L, norm, and,
K" = {Wh € X" I Winaz 2 wh > wmin} (B-3)

The projection ITw" is shown to satisfy (see LAYTON AND POLMAN [1996]) the error
estimate
[lw — Tw"|l2 < [|lw — w"{|z + inf [lw — x|l (B-4)
x€K

where w is the exact solution that is monotone and satisfies the condition in equation (B-1).
This error estimate is independent of the problem at hand. '

In the context of the Finite Element method where the discrete solutions w” are given in
terms of interpolation of nodal values, the constraints in (B-1) simply translate to constraints
of the form

Winaz > wA > Win (B"5)

for each of the nodal values w4. The discrete spatial solution w” obtained by the finite
element method can be expressed as wh = 3% ¢4wA. Here, ¢* denotes a global shape
function such that its restriction to an element containing node A is the same as isoparametric
shape function associated with the node in the element. Defining,

CAB = /z ¢*9PdX (B-6)
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the iterates w#! are given by
= N
wzfil = ———ZcAgwﬁ_l + Z capwy — fa (B-7)
’ Car g1 *  B=am A
wity = Py[(1 = Quwf +Cwl ] (B-8)

Here, the quantity fa = 3 h_, capw® where w? is the unprojected nodal value of the finite
element solution. The projection operator Py : RV — Hf’ [Wimin, Wmaz), Where J] denotes
the cartesian product, is defined by

TA if Wrey > x4 2 Wmin
(PNX)A = Wmax if T4 Z Wimaz (B'g)
Wmin i T4 < Wpin

The iterates wy}, converge usually in O(1) iterations to the projected nodal values. In the
application considered here, the projection scheme is invoked at the end of each time step.
The oscillation free solutions form the initial values for the solution at the next time step.
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