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Current limitations in technology have prevented an

extensive analysis of the connections among neurons,

particularly within nonmammalian organisms. We devel-

oped a transsynaptic viral tracer originally for use in

mice, and then tested its utility in a broader range of

organisms. By engineering the vesicular stomatitis virus

(VSV) to encode a fluorophore and either the rabies virus

glycoprotein (RABV-G) or its own glycoprotein (VSV-G),

we created viruses that can transsynaptically label neuro-

nal circuits in either the retrograde or anterograde direc-

tion, respectively. The vectors were investigated for their

utility as polysynaptic tracers of chicken and zebrafish

visual pathways. They showed patterns of connectivity

consistent with previously characterized visual system

connections, and revealed several potentially novel con-

nections. Further, these vectors were shown to infect

neurons in several other vertebrates, including Old and

New World monkeys, seahorses, axolotls, and Xenopus.

They were also shown to infect two invertebrates, Dro-

sophila melanogaster, and the box jellyfish, Tripedalia cys-

tophora, a species previously intractable for gene

transfer, although no clear evidence of transsynaptic

spread was observed in these species. These vectors

provide a starting point for transsynaptic tracing in most

vertebrates, and are also excellent candidates for gene

transfer in organisms that have been refractory to other

methods. J. Comp. Neurol. 523:1639–1663, 2015.

VC 2015 Wiley Periodicals, Inc.

INDEXING TERMS: VSV; transsynaptic; polysynaptic; anterograde; retrograde; visual pathways; centrifugal; retina; in

vivo; RRID: AB_10053281; AB_591819; AB_531908; AB_10562207; SciRes_000161

The development of broadly applicable technologies

that enable directional tracing of neural connectivity

can provide significant advances in our understanding

of the organization and function of neural networks

across species. Classical methods have used the injec-

tion of nonreplicating tracers, such as dyes or beads,
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which can be taken up by neurons projecting to, or sit-

uated within, an injection site. These methods have pro-

vided a framework for the connections between areas

in the nervous system, but have significant limitations

(Vercelli et al., 2000). For example, tracers such as

horseradish peroxidase or biotin-dextran amine do not

spread across synapses and do not enable the defini-

tion of microcircuitry. Other tracers that can spread

across synapses, including those based on lectins and

bacterial toxins, tend to dilute, hindering identification

of weak connections. Viruses that can infect neurons

and then transmit across synaptically connected cells

have provided solutions to some of these problems

(Ugolini et al., 1989; Astic et al., 1993; Wickersham

et al., 2007). Viruses can be engineered to express

transgenes, including fluorescent proteins, at a high

level, and the signal does not diminish as a virus

spreads among cells within circuits. Pioneering work

using a-herpesviruses, in particular pseudorabies virus

(PRV), and a rhabdovirus, rabies (RABV), demonstrated

the utility of these viruses as transsynaptic tracers

(Enquist et al., 1998; Kelly and Strick, 2000). Direct

injection of PRV and RABV into the central nervous sys-

tem (CNS) or periphery has been shown to result in pol-

ysynaptic patterns of spread among cells within known

circuits (Ugolini et al., 1989; Standish et al., 1994;

Enquist et al., 1998; Kelly and Strick, 2000). Vesicular

stomatitis virus (VSV), another rhabdovirus, also has

been shown to transmit anterogradely among neurons

(Lundh, 1990; Beier et al., 2011). When modified to use

the RABV glycoprotein instead of its own glycoprotein,

VSV behaves similarly to RABV in terms of a retrograde

pattern of transmission in vivo (Beier et al., 2011,

2013a, 2013b). Moreover, complex patterns of connec-

tivity generated with polysynaptic viral labeling can be

clarified using monosynaptic tracing based on viruses

that are limited to one transmission cycle, as has been

developed for RABV and VSV (Wickersham et al., 2007;

Beier et al., 2011).

Nearly all viral tracing experiments to date have been

performed in mammals. The broader application of viral

tracers may be limited by restricted host range.

Because viruses have evolved to interact with the

extracellular and cellular proteins of specific hosts, it is

expected that many viruses will lack the ability to infect

a wide range of species. While the host range of RABV

has not been extensively explored, previous work has

demonstrated that VSV has the ability to infect cells

from vertebrate and invertebrate species in culture

(Lichty et al., 2004; Knipe and Howley, 2007) and VSV

infects many organisms in its natural environment,

including insects and mammals (Johnson et al., 1966;

Bussereau, 1971; Butler and Hodos, 2005; Schott

et al., 2005). Our previous work in mice demonstrated

that VSV vectors can travel transsynaptically among

neurons, with anterograde or retrograde transmission

controlled by the viral glycoprotein (Beier et al., 2011,

2013a, 2013b). However, we do not yet understand the

mechanisms that lead to viral transmission patterns in

vivo, particularly those that govern the directionality of

transmission. In addition, the host range and utility of

these vectors for circuitry tracing or gene transfer has

not been examined in other organisms.

A variety of model organisms are studied for the

unique experimental advantages that they offer for stud-

ies of a particular tissue or function. Beyond providing

insight into biological diversity, cross-species compari-

sons of neural connectivity in a wide range of organisms

can give insights into the evolution of the nervous sys-

tem. Presently, there are few broadly applicable techni-

ques that allow the tracing of synaptic connections.

Some of the most highly developed techniques are for

use in mice, where genetic manipulations of the mouse

genome, coupled with viral vectors that infect mammals,

have allowed for sophisticated approaches to this prob-

lem (DeFalco et al., 2001; Wickersham et al., 2007; Beier

et al., 2011; Lo and Anderson, 2011). Given the sensitiv-

ity of viral tracing as a tool for understanding the organi-

zation of neural circuitry, the development of a virus that

can infect a wide range of organisms, and transmit trans-

synaptically, would address a gap in current technology.

In addition, some organisms have not been successfully

targeted by gene transfer using any method, and can

benefit from virus-mediated gene delivery tools. VSV was

thus investigated for its ability to fill these gaps for many

organisms. By using VSV’s native glycoprotein (G) gene,

VSV-G, or the G gene of RABV, RABV-G, we created

recombinant viral vectors that travel among neurons spe-

cifically in the anterograde or retrograde directions,

respectively. In diverse organisms such as mice, birds,

and fish, these recombinant VSV vectors (rVSV) were

able to transmit in a transsynaptic pattern in the direc-

tion dictated by the viral glycoprotein. We also show that

rVSV can infect a wide range of vertebrate and inverte-

brate species, including nongenetic model organisms,

such as seahorses, and the cubozoan jellyfish Tripedalia

cystophora. This opens the door for future studies of

gene function, and potentially synaptic connectivity, in

organisms that have heretofore been difficult to access

with genetic approaches.

MATERIALS AND METHODS

Virus construction and in vitro infections
Viruses were constructed and grown as previously

described (Beier et al., 2011, 2013b). To determine

N.A. Mundell
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infectivity in vitro, cells were split at confluence, 1:5,

onto new chamber slides. The following day cells were

infected in triplicate with 1 lL of 1 3 105 focus forming

units (ffu)/mL of rVSV(VSV-G) expressing Venus, a

YFP/GFP variant (Nagai et al., 2002), or rVSV(RABV-G)

expressing GFP. The following cell lines were used:

human embryonic kidney (293T) cells (Graham et al.,

1977), primate (Chlorocebus sabaeus) Vero cells (Yasu-

mura and Kawakita, 1963), dog (Canis lupus) Madine–

Darby canine kidney (MDCK) cells (Madin and Darby,

1958), mouse (Mus musculus) NIH 3T3 fibroblasts

(Todaro and Green, 1963), baby hamster (Mesocricetus

auratus) kidney (BSR) cells (Macpherson and Stoker,

1962), chicken (Gallus gallus) DF-1 cells (Himly et al.,

1998), axolotl (Ambystoma mexicanum) AL1 cells (Roy

et al., 2000), and fruit fly (Drosophila melanogaster)

S2R1 cells (Yanagawa et al., 1998). Due to lower infec-

tivity, S2R1 cells were infected with 1 lL of 1 3 107

ffu/mL of each virus. At 24 hours postinfection (hpi),

cells were fixed with 4% formaldehyde and imaged

using fluorescence microscopy.

Mouse
To test for anterograde and retrograde transsynaptic

directional specificity, 100 nL of 3 3 107 ffu/mL viruses

were injected into either the dorsomedial striatum (cau-

date putamen, CP) (bregma, 11.0 mm, lateral 1.7 mm,

ventral 2.5 mm) or primary motor cortex (bregma

11.34 mm, lateral 1.7 mm, ventral 1.0 mm) of 6-week-

old CD1 mice. Both males and females were used for

injections. Animals were sacrificed at 72 hpi, brains

were fixed in 4% formaldehyde in phosphate-buffered

saline (PBS) overnight, and tissue processing and sec-

tioning performed using standard procedures.

Chicken
Eggs from white leghorn chickens (Charles River, Wil-

mington, MA) were incubated at 38�C and embryos were

lowered after 2 days incubation by removal of 3–4 mL

albumin. For in ovo injections, embryonic day (E)14

embryos were injected with 0.5–1 lL of 1 3 1010 ffu/

mL rVSV-GFP(VSV-G) or rVSV-GFP(RABV-G) virus unilat-

erally into the right optic tectum (OT), or into the vitreal

cavity of the left eye using a Hamilton syringe (Reno,

NV; #87931) with a 30G, 15 mm beveled tip (7803-07).

For eye injections, an equal titer of either rVSV-

GFP(VSV-G) or rVSV-Venus(VSV-G) were used, as they

show identical transmission patterns. Eggs were then

sealed with tape and returned to the incubator where

they were maintained from 24 to 72 hpi. Brains were dis-

sected and retinae were isolated from the sclera and ret-

inal pigmented epithelium prior to fixation in 4%

formaldehyde. Tissues were washed in PBS, imaged in

whole mount, and processed through a sucrose gradient

prior to embedding in OCT and cryosectioning at 25 lm.

4,6-diamidino-2-phenylindole, dihydrochloride (DAPI,

1:5,000, Molecular Probes, Eugene, OR) was used to

detect nuclei. Images were captured and mosaics gener-

ated using a Keyence BZ-9000 microscope or a Zeiss

LSM 780 laser scanning confocal microscope. To define

brain regions, the levels and contrast of the DAPI chan-

nel image were adjusted with Photoshop software

(Adobe Systems, San Jose, CA; RRID:SciRes_000161)

and traced areas were then overlaid onto a merged

image.

ABBREVIATIONS

A Arcopallium
AI Arcopallium intermedium
AVT Area ventralis of Tsai
Cb Cerebellum
CP Caudate putamen
DS Dorsal striatum
E Entopallium
FC Central fissure
FS Sylvian fissure
GCL Ganglion cell layer
GLd Dorsal lateral geniculate nucleus
GP Globus pallidus
GPe External segment of the globus pallidus
H Hyperpallium
HA Hyperpallium apicale
HAB Habenula
Hp Hippocampus
IMC Nucleus isthmi pars magnocellularis
INL Inner nuclear layer (of retina)
ION Isthmo-optic nucleus
Ipc Nucleus isthmi pars parvocellularis
LHN Lateral hypothalamic nucleus (visual suprachiasmatic nucleus)
LSt Lateral striatum
M Mesopallium
Me Medulla
MLd Mesencephalicus lateralis, pars dorsalis
MRF Mesencephalic reticular formation
N Nidopallium

NB Nucleus basalis
NBM Nucleus basalis of Meynert
nBOR Nucleus of the basal optic root
NC Nidopallium caudale
OB Olfactory bulb
OM Occipito-mesencephalic tract
ONL Outer nuclear layer (of retina)
OT Optic tectum
P Pallium
PO Preoptic area
PRF Pontine reticular formation
PT Pretectum
Rt Nucleus rotundus
SAC Stratum album central (of optic tectum)
SGC Stratum griseum central (of optic tectum)
SGFS Stratum griseum et fibrosum superficiale (of optic tectum)
SGP Stratum griseum periventriculare (of optic tectum)
SNr Substantia nigra pars reticulata
SO Stratum opticum (of optic tectum)
St Striatum
STN Subthalamic nucleus
STS Superior temporal sulcus
Th Thalamus
Tn Nucleus teaniae
tn Terminal nerve
V1 Primary visual cortex
VL Ventricular layer (of optic tectum)

Circuit tracing in a wide range of organisms
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Zebrafish
Prior to injection, larval zebrafish were anesthetized

with 0.01% tricaine, and immobilized in 1.5% low

melting-point agarose. 1–2 nL of rVSV-Venus(VSV-G),

1 3 106 or 1 3 108 ffu/mL, rVSV-GFP(RABV-G), 1 3 108

ffu/mL, or rVSVDG-GFP(RABV-G), 1 3 108, or 1 3 109

ffu/mL was injected into the vitreal cavity of one eye.

Infected animals were fixed at 24, 48, or 72 hpi and

processed by whole-mount immunohistochemistry. Sam-

ples were incubated with rabbit anti-GFP to detect

Venus or GFP (MBL International, Woburn, MA; 598,

RRID:AB_591819), mouse anti-HU (HuC/D) (Life Tech-

nologies, Bethesda, MD; RRID:AB_591819), and mouse

anti-HNK1 (Developmental Studies Hybridoma Bank,

Iowa City, IA; RRID:AB_531908) followed by secondary

antibodies conjugated with Alexa dyes (Life Technolo-

gies, 1:500). Stained samples were mounted in 1.5%

low-melting-point agarose and imaged with confocal

microscopy. 3D rendering of zebrafish larvae was gener-

ated with FluidVis (Fluidity Software, Somerville, MA),

followed by manual annotation in ImageJ (NIH,

Bethesda, MD; RRID:nif-0000-30467) and Photoshop.

Seahorse
Adult captive-bred seahorses (Hippocampus erectus)

were anesthetized with 0.01% tricaine methylsulfate

(MS-222). Eyes were injected with 1–2 lL of 2 3 109

ffu/ml rVSV-GFP(RABV-G) or rVSV-Venus(VSV-G) into

the vitreal cavity. Seahorses were euthanized after 72

hpi. Eyes and brain tissue were fixed in 4% formaldehyde

for 2 hours at room temperature, washed in PBS, and

passed through a sucrose gradient. Brains and retinas

were cryosectioned at 30 lm. GFP or Venus was

detected using the rabbit anti-GFP primary antibody

(Invitrogen, La Jolla, CA; A6455, RRID:AB_10053281)

and a donkey antirabbit Cy3 secondary antibody. Images

were captured using a Zeiss LSM 780 laser scanning

confocal microscope.

Monkey
Two squirrel monkeys (Saimiri sciureus), and one rhesus

macaque (Macaca mulatta) were initially anesthetized

with ketamine (10 mg/kg) and xylazine (1 mg/kg) and

intubated thereafter. Anesthesia was maintained with

isoflurane (1–2% in oxygen). Using aseptic technique, a

circular craniotomy and then durotomy was made over

the occipital lobe or over the central fissure. Viral injec-

tions into the cortex were made using a micropipette

with a tip diameter of 10–15 lm inserted to a depth of 1

mm. In squirrel monkeys, injections were made into pri-

mary visual cortex (rVSV-GFP(RABV-G), 8 3 108 ffu/mL),

somatosensory cortex (rVSV-mCherry(RABV-G), 1 3 109

ffu/mL), and motor cortex (rVSV-Venus(VSV-G), 1 3 109

ffu/mL). In the macaque monkey, injections were made

into medial V1 (rVSV-mCherry(RABV-G), 1 3 109 ffu/mL)

and lateral V1 (rVSV-Venus(VSV-G), 1 3 109 ffu/mL).

Each cortical area received three pressure injections of a

different tracer �1 mm apart, for a total volume of 2 lL

for squirrel monkeys, and 4 lL for the macaque. Injec-

tions were controlled by a Picospritzer III (Parker Automa-

tion, Cleveland, OH) using multiple pulses at 20 p.s.i. of 5

ms duration. After the injections, the dura was reapproxi-

mated, the bone flap was secured with dental acrylic,

and the skin was sutured. Monkeys were returned to

their home cages after recovery. After a survival period

of 3 days for both squirrel monkeys and 4 days for the

macaque, each animal was sacrificed with an overdose

of Euthazol (>100 mg/kg) and perfused through the

heart with normal saline followed by 4% formaldehyde in

0.1 M phosphate buffer, pH 7.4. The brain was removed

from the skull for postfixation overnight at 4�C. After cry-

oprotection for 4–5 days in 30% sucrose solution, the tis-

sue was cut in 50-lm coronal sections using a freezing

microtome. Labeled neurons were observed using a fluo-

rescent microscope (Zeiss Axioscop). A digital camera

(Optronic Engineering, Goleta, CA) or FV1000 Laser

Scanning Confocal Microscope was used to record data

to image files.

Jellyfish
Cultured Tripedalia cystophora were obtained from tanks

at the Vision Group, Lund University, Sweden, and trans-

ferred to Harvard Medical School, Boston, where they

were maintained in 25 ppt salinity seawater at 28�C.

The vitreous space between the lens and the photore-

ceptors of the lower lens eye was injected with 1 3 1010

ffu/mL rVSV-Venus(VSV-G). Two lower lens eyes were

injected in 10 animals, for a total of 20 injected eyes,

and the other two noninjected eyes in each animal

served as controls. The animals were then transferred to

individual 50-mL Falcon tubes and maintained in 25 ppt

saline at 28�C until harvest, at which time they were

fixed in 4% formaldehyde, and the rhopalia whole-

mounted on microscope slides for imaging.

Drosophila
Adult Drosophila melanogaster were injected with �0.5 nL

of 2 3 1010 ffu/ml rVSV-Venus(VSV-G) or rVSV-GFP(RABV-

G) into the abdomen. Images of fluorescent protein expres-

sion were captured after 24 hpi using a Leica MZ FLIII

stereo microscope and Nikon DXM1200F digital camera.

Antibody characterization
Please see Table 1 for a list of all primary antibodies

used.

N.A. Mundell

1642 The Journal of Comparative Neurology |Research in Systems Neuroscience



The GFP antibodies (Life Technologies, #A6455) and

(MBL International, #598) react with GFP and its var-

iants on western blotting, immunoprecipitation, and

immunohistochemistry (manufacturer’s datasheets), and

stained tissues infected with rVSV expressing GFP or

Venus. No staining was seen in uninfected tissues.

Anti-HuC/D and anti-HNK1(zn-12) stained a pattern of

cellular morphology and distribution in the zebrafish

brain that is consistent with previous reports (Metcalfe

et al., 1990; Pan et al., 2012). Secondary antibodies

used include Alexa 568 antimouse IgG2b (Life Technol-

ogies, #A21144, 1:500), Alexa 647 antimouse IgG1

(Life Technologies, #A21240, 1:500), Alexa 488 antirab-

bit (Life Technologies, #A21206, 1:500), and Cy3 don-

key antirabbit (Jackson ImmunoResearch, West Grove,

PA; #711-165-152, 1:500).

All procedures were approved by the Harvard Medi-

cal Area Standing Committee on Animals and the Geor-

gia Regents University Institutional Animal Care and

Use Committee, and conformed to guidelines estab-

lished by the National Institutes of Health for the care

and use of laboratory animals.

RESULTS

Anterograde and retrograde transsynaptic
tracing in vivo in mice

In our previous studies in mice, we showed that

rVSV(VSV-G) travels anterogradely while rVSV(RABV-G)

travels retrogradely among neurons, in patterns consist-

ent with transsynaptic transmission (Beier et al., 2011).

Infections of the mouse visual system, basal ganglia,

and olfactory system were performed in these previous

studies (Beier et al., 2011, 2013a, 2013b). Here, in

order to further validate directional specificity of these

viruses in mice, we confirmed unidirectional transmis-

sion of rVSV(VSV-G) encoding Venus and rVSV(RABV-G)

encoding GFP within the motor cortex to dorsal stria-

tum (caudate putamen, CP) circuit (Albin et al., 1995;

Beier et al., 2013b). Consistent with lack of retrograde

transsynaptic spread, injection of rVSV(VSV-G) into the

dorsal striatum resulted in no cortical labeling in 4/4

animals, despite heavy labeling at the injection site

(Fig. 1A,B). In contrast, viral labeling of neurons in brain

regions downstream of the dorsal striatum, such as the

external segment of the globus pallidus (GPe) and sub-

thalamic nucleus (STN), was observed by 72 hpi, con-

sistent with anterograde transsynaptic transmission

(Fig. 1C,D). When the primary motor cortex was

injected with rVSV(VSV-G), in 4/4 animals fluorescently

labeled cell bodies in the dorsal striatum were

observed, as well as the same downstream nuclei from

the direct dorsal striatal injection (GPe, STN), again

consistent with anterograde transsynaptic transmission

(Fig. 1E–H). Notably, in injections into the primary

motor cortex, no somatic labeling was observed in the

nucleus basalis (Fig. 1F), consistent with a lack of retro-

grade transsynaptic transmission by rVSV(VSV-G). Neu-

rons in this area project strongly and diffusely to the

cortex and labeling of this area would be expected only

via retrograde transsynaptic transmission from cortical

cells (e.g., see next section).

When rVSV(RABV-G) was injected into the dorsal stria-

tum, viral labeling of cortical pyramidal neurons in layers 3

and 5 was observed in 6/6 animals, consistent with retro-

grade virus uptake (Fig. 1I–L). At or after 48 hpi, but not at

24 hpi, labeled cells also were seen in secondary areas,

such as the nucleus basalis, which projects to the cortex,

but not to the dorsal striatum (Wenk et al., 1980; Rye

et al., 1984; Baskerville et al., 1993). When injected into

the primary motor cortex, in 4/5 animals, rVSV(RABV-G)

did not label the dorsal striatum, but instead labeled areas

known to project to the primary motor cortex, including the

nucleus basalis, thalamus, and GPe (Fig. 1M–P and data

not shown). These data support the interpretation that

rVSV(RABV-G) transmission is retrograde among con-

nected neurons, but cannot move in the anterograde direc-

tion. In contrast, rVSV(VSV-G) moves anterogradely among

connected neurons, but is not transported well retro-

gradely from the initial injection site, nor does it replicate

and then transmit in the retrograde direction. This is con-

sistent with our previous results in the mouse showing uni-

directional viral spread, with the direction being dependent

on the identity of the glycoprotein in the viral envelope

(Beier et al., 2011, 2013b).

TABLE 1.

Primary Antibodies Used

Antibody Immunogen Source, Catalog #, RRID Species Concentration

Anti-GFP GFP isolated from
A. victoria

Life Technologies (#A6455),
RRID:AB_10053281

Rabbit polyclonal 1:500 dilution

Anti-GFP Recombinant GFP MBL international (#598), RRID:AB_591819 Rabbit polyclonal 1:1,000 dilution
Anti-HNK-1 Membrane fraction of

adult zebrafish CNS.
Developmental Studies Hybridoma

Bank (zn-12), RRID:AB_531908
Mouse monoclonal 1:200 dilution

Anti-HuC/
HuD

Human HuC/HuD
neuronal protein

Life Technologies (#A21271),
RRID:AB_10562207

Mouse monoclonal 1 lg/mL

Circuit tracing in a wide range of organisms
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Figure 1. rVSV(VSV-G) transmission shows an anterograde, and rVSV(RABV-G) shows a retrograde, polysynaptic pattern of transmission

among neurons in mice. (A–H) rVSV(VSV-G) was injected into the dorsal striatum (DS) (A–D) or primary motor cortex (E–H), and animals

were sacrificed 3 dpi. (A) Schematic of regions expected to be labeled by anterograde transsynaptic transmission (blue) of a virus from a DS

injection (injection needle, green). (B–D) At 3 dpi, DS injections of rVSV(VSV-G) resulted in patterns of infection consistent with anterograde

transsynaptic transmission. Infected cells were observed near the injection site in the DS (white arrowhead), as well as in the GPe (red arrow-

head), SNr (pink arrowhead), and the thalamus. The cortex, which projects to the DS, was not labeled (brown arrowhead). Higher-

magnification images of neurons in the DS (C) and GPe (D) are shown. (E) Schematic of regions expected to be labeled by anterograde trans-

synaptic transmission (blue) of a virus from a primary motor cortex injection (injection needle, green). (F–H) Injection of rVSV(VSV-G) into the

primary motor cortex labeled cells locally in the cortex (brown arrowhead), and the same regions as a direct DS injection, including the DS

(white arrowhead), GPe (red arrowhead), STN (yellow arrowhead), SNr (pink arrowhead), and thalamus (purple arrowhead). High-magnification

images of DS neurons (G), and neurons in the GPe (H) are provided. (I) Schematic of regions expected to be labeled by initial infection by

retrograde uptake, and/or by retrograde transsynaptic transmission (orange), with the nucleus basalis (NB) predicted to be labeled only by

retrograde transmission (magenta) of rVSV(RABV-G) from a DS injection (injection needle, green). (J–L) rVSV(RABV-G) was injected into the

DS. At 3 dpi, this injection resulted in infected cells in retrograde targets, including local infection in the DS (white arrowhead), cortex (brown

arrowhead), NB (red arrowhead), and the thalamus (purple arrowhead). High magnifications of a cortical neuron (K), and NB neurons (L) are

shown. (M) Schematic of regions expected to be labeled by initial infection by retrograde uptake, and/or by transsynaptic transmission

(orange) of a retrograde virus from a primary motor cortex injection (injection needle, green). (N–P) Injections of rVSV(RABV-G) into the pri-

mary motor cortex labeled neurons at the injection site in the cortex (brown arrowhead), as well as the NB (red arrowhead) and thalamus

(purple arrowhead), but not the DS. Higher magnification of a cortical neuron (O) and thalamic neurons (P) are shown. Multiple types of neu-

rons, including glutamatergic (e.g., cortical pyramidal neurons, panels K,O), GABAergic (DS medium spiny neurons, panels C,G), and choliner-

gic (NB neurons, panel L), were labeled. DS 5 dorsal striatum, Th 5 thalamus, STN 5 subthalamic nucleus, GPe 5 globus pallidus external

segment, SNr 5 substantia nigra pars reticulata, NB 5 nucleus basalis. Scale bars 5 1 mm in B,F,J,N; 50 lm in C,D,G,H,K,L,O,P.
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Infectivity in a wide range of cell lines
Given the apparent transsynaptic spread and direc-

tional specificity of rVSV in mice, we wanted to explore

if these vectors displayed the same properties in other

organisms. VSV-G, the natural glycoprotein of VSV, is

known to permit virus entry into a broad host range

(Knipe and Howley, 2007). In addition, VSV is able to

express its genes in a wide range of host species, and,

in many cases, produce infectious virions from these

hosts. However, the infectivity in various species with

VSV vectors encoding the RABV glycoprotein

(rVSV(RABV-G)), and, to some extent, the VSV glycopro-

tein (rVSV(VSV-G)), has not been extensively tested.

Therefore, these viral vectors were tested for their

infectivity in a variety of organisms, to determine if the

broad host range of VSV was maintained.

Human embryonic kidney (293T) cells, African green

monkey (Chlorocebus sabaeus) kidney Vero cells,

Madin–Darby canine (Canis lupus familiaris) kidney

(MDCK) cells, mouse (Mus musculus) NIH 3T3 fibro-

blasts, Syrian golden hamster (Mesocricetus auratus)

kidney (BSR) cells, chicken (Gallus gallus) DF-1 cells,

axolotl (Ambystoma mexicanum) AL1 cells, and fruit fly

(Drosophila melanogaster) S2R cells were infected with

an equal number of infectious particles of either

rVSV(VSV-G), which expressed the fluorescent protein

Venus, or rVSV(RABV-G), which expressed GFP. All of

these cell lines were infectable with both of these

viruses, as indicated by bright fluorescence by 24 hpi

(Fig. 2). With the exception of Drosophila S2R cells,

which showed about a 100-fold lower number of fluo-

rescent cells relative to the others, there was not a

noticeable difference in infection efficiency among

these cell types. Expression of viral fluorescent protein

was very rapid in all cell types, and cytopathic effects

were observed in infected cells (Ye et al., 1994; Lyles,

2000; van den Pol et al., 2002; Knipe and Howley,

2007) with the exception of S2R cells, which have been

reported to limit VSV replication by inducing autophagy

(Shelly et al., 2009).

Infection with rVSV(VSV-G) in the eye
generates an anterograde transsynaptic
pattern within visual circuits in chicken
embryos

Based on the transsynaptic labeling observed with

rVSV in mouse, we wanted to determine if rVSV(VSV-G)

or rVSV(RABV-G) could be used for transsynaptic neural

tracing in different vertebrate model systems in vivo. To

assess the in ovo viral spread of rVSV(VSV-G) in chicken,

we injected rVSV-GFP(VSV-G) unilaterally into the eye (n

5 3), and examined spread of the virus through the CNS

as indicated by GFP expression. Injection of rVSV(VSV-G)

into the left eye resulted in robust labeling of the retina,

first examined at 24 hpi (Fig. 3A,B). After 48 hpi, columns

of cells, only found in close proximity to the injection

site, showed a distinct pattern of transgene expression

within the outer (photoreceptor) and inner (amacrine and

bipolar cell) nuclear layers. Retinal ganglion cells (RGCs)

on the vitreal side of these labeled columns did not show

GFP expression at 48 hpi (Fig. 3C), suggesting local infec-

tion of photoreceptors in the subretinal space close to

the dorsal/anterior injection site, with subsequent

anterograde spread of rVSV(VSV-G). (Longer postinfec-

tion intervals may have resulted in labeling of RGCs in

these areas.) Throughout the posterior retina, i.e., not

restricted to the injection site, the most prominently

infected retinal cell type was the RGC (Fig. 3D), likely

due to the intended delivery site of the inoculum into the

vitreous body.

To characterize the transsynaptic tracing capability of

rVSV(VSV-G) in chicken, we turned to the well-

characterized tectofugal (Fig. 3E, red arrows) and thala-

mofugal (Fig. 3E, blue arrows) visual pathways, and

examined transmission to primary retinorecipient regions

of the brain, and to areas predicted to be infected by sec-

ondary spread, after retinal infection. The essential

regions and projections within these circuits are illus-

trated in parasagittal (Fig. 3E) and dorsal views (Fig. 3E2)

and are briefly summarized below. The majority of axons

from RGCs terminate within the contralateral (and to a

lesser extent, ipsilateral) optic tectum (OT) (superior colli-

culus in mammals). In the OT, RGC axons terminate in

layers 2-5 and 7 of the stratum griseum et fibrosum

superficiale (SGFS), where retinorecipient cells within

these laminae and in the stratum griseum central (SGC)

are modulated by the isthmic complex (Luksch et al.,

1998; Wang et al., 2004). Signals are then relayed by tec-

tal “ganglion cells” in the SGC to the nucleus rotundus

(Rt) and to higher tectofugal areas, including the entopal-

lium and mesopallium (De Long and Coulombre, 1965;

Thanos and Bonhoeffer, 1987; Mey and Thanos, 1993;

Wu et al., 2000; Wang et al., 2004). In the parallel thala-

mofugal pathway, a more limited subset of RGC projec-

tions provide visual signals to the nucleus geniculatus

lateralis pars dorsalis (GLd) (functionally equivalent to

the LGN in mammals) that are processed and relayed to

higher areas, including the hyperpallium (visual wulst) in

the forebrain (G€unt€urk€un et al., 1993). Other areas that

receive direct input from RGCs include the nucleus of the

basal optic root (nBOR) which transmits signals to the

cerebellum as part of the accessory optic system, and

retinorecipient targets in the circadian visual system,

including the lateral hypothalamic nucleus (LHN) (also

referred to as the visual suprachiasmatic nucleus [vSCN])

Circuit tracing in a wide range of organisms
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Figure 2. A variety of cell lines from different organisms were infectable with VSV vectors. Cells were infected with either rVSV(VSV-G) or

rVSV(RABV-G) and assayed for Venus or GFP fluorescence at 1 dpi. Chamber slides of (A–C) human 293T cells, (D–F) Vero monkey cells,

(G–I) dog MDCK cells, (J–L) mouse NIH 3T3 cells, (M–O) hamster BSR cells, (P–R) chick DF1 cells, (S–U) salamander AL1 cells, or (V–X)

Drosophila S2R cells were infected with 1 lL of 1 3 105 ffu/mL of either rVSV(VSV-G) (B,E,H,K,N,Q,T,W), or rVSV(RABV-G)

(C,F,I,L,O,R,U,X). The virus used to infect is indicated above the panels. Negative controls (A,D,G,J,M,P,S,V) were not exposed to virus.

Scale bars 5 50 lm.
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(Hunt and Kunzle, 1976; Brandstatter and Abraham,

2003).

Consistent with robust anterograde transsynaptic

transmission, we detected GFP-expressing cells within

the OT and multiple areas of visual pathways in 3/3

embryos at both 24 and 48 hpi after injection of

rVSV(VSV-G) encoding GFP into the eye (Fig. 3F–K). At

24 hpi, GFP-labeled RGC axons were present in the SO

and a few faintly labeled neurons were detected in the

retinorecipient layers of the SGFS (Fig. 3G–G2) and the

Figure 3. In ovo rVSV(VSV-G) infection of the chicken eye shows an anterograde transsynaptic pattern of spread. (A–D) Injection of

rVSV(VSV-G) into the left eye of E14 chicken embryos resulted in viral gene expression in the retina (A,B). Transverse section through an

infected retina at 48 hpi showing a column of labeled photoreceptor cells and associated GFP-positive cells. Labeled cells were found in

the outer nuclear layer (ONL) and inner nuclear layer (INL), but were absent from RGCs within these columns (C). This columnar transmis-

sion pattern was only detected near the injection site. In the posterior area of the retina in C, whole-mount confocal images show a large

number of labeled RGCs with axons directed towards the optic fissure (D). Inset in D shows high magnification of a labeled RGC. (E–E2)

Schematic of expected anterograde transsynaptic transmission of rVSV(VSV-G) through the tectofugal (E,E2, red arrows) and thalamofugal

(E,E2, blue arrows) visual pathways illustrated in parasagittal (E) and dorsal (E2) views. (F–K) The pattern of virus infection in whole brains

at 24 hpi (F–F2) and 48 hpi (I–I2) after unilateral injection of rVSV(VSV-G) into the left eye. Red arrow (I2) indicates fluorescent protein

expression in the OT. Sagittal sections at 24 hpi show the pattern of rVSV(VSV-G) transmission within the brain (G). Labeled RGC axons

were present in the stratum opticum (SO) of the optic tectum (OT), and sparse labeled cell bodies were detected in the SGFS, IMC (G,G2)

and the Rt (H). A few labeled cells were also detected within the GLd (H). At 48 hpi, fluorescent protein expression was greatly increased

within primary, secondary, and higher order sites of the visual pathways (J). Higher-magnification confocal image of the OT with DAPI stain-

ing to highlight tectal layers (J2) and detection of viral infection (J3) shows rVSV(VSV-G) transmission to retinorecipient layers of the SGFS

and the SGC output layer of the OT (J3). As compared to expression at 24 hpi (H), fluorescent protein expression was greatly increased

within the GLd and the Rt at 48 hpi (K). A 5 arcopallium, AI 5 Arcopallium intermedium, E 5 entopallium, GCL 5 ganglion cell layer, GLd 5

dorsal lateral geniculate nucleus, GP 5 globus pallidus, H 5 hyperpallium, Hp 5 hippocampus, IMC 5 nucleus isthmi pars magnocellularis,

INL 5 inner nuclear layer (of retina), LSt 5 lateral striatum, M 5 mesopallium, N 5 nidopallium, OT 5 optic tectum, ONL 5 outer nuclear layer

(of retina), Rt 5 nucleus rotundus, SGC 5 stratum griseum central (of OT), SGFS 5 stratum griseum et fibrosum superficiale (of OT), St 5

striatum, SAC 5 stratum album central (of OT), SGP 5 stratum griseum periventriculare (of OT), SO 5 stratum opticum (of OT), Tn 5 nucleus

teaniae, VL 5 ventricular layer (of OT). Scale bars 5 50 lm in C,D; 1 mm in G,J; 300 lm in G2,H,K; and 100 lm in J2,J3.

Circuit tracing in a wide range of organisms

The Journal of Comparative Neurology | Research in Systems Neuroscience 1647



Rt (Fig. 3H), indicative of labeling in both primary, and

to a lesser extent, secondary locations in the tectofugal

circuit. Sparsely labeled cells were also detected within

the GLd (Fig. 3H) suggesting rVSV(VSV-G) transmission

through the thalamofugal pathway. At 48 hpi, GFP-

expressing cells were greatly increased within primary,

secondary, and higher order sites of the visual path-

ways, including strong contralateral infection in the

SGC output layer of the OT (Fig. 3J–J3). GFP-positive

cells were also present in the ipsilateral SGC, but in

reduced numbers relative to the contralateral side (data

not shown). These observations indicate that after 48

hpi, the virus spread significantly beyond the retinoreci-

pient regions and secondary regions. Labeled sites

include major retinorecipient areas (SGFS, GLd), sec-

ondary regions (SGC, hyperpallium), and even higher

areas in both circuits including the Rt, entopallium,

mesopallium, and lateral striatum (Fig. 3J–K). In con-

trast to strong anterograde transsynaptic labeling with

rVSV(VSV-G), centrifugal neurons that project from the

isthmo-optic nucleus (ION) in the brain to the retina

were not labeled (data not shown), indicating a lack of

retrograde infection.

Infection with rVSV(RABV-G) in the eye
generates a retrograde transsynaptic
pattern within visual circuits in chicken
embryos

In addition to projections from RGCs to the brain, the

visual system in chick and other ground-feeding birds

also includes significant efferent projections from the

brain to the retina. This centrifugal visual system (illus-

trated in Fig. 4A, green arrows) originates from the con-

tralateral ION. Axons from the ION project to target

amacrine cells in the retina and transiently to the OT

prior to hatching (Cowan and Clarke, 1976; Wizenmann

and Thanos, 1990; Lindstrom et al., 2009). Visual input

to the centrifugal pathway includes projections to the

ION from the OT (from laminae 9 and 10) and modula-

tory inputs to these tectal neurons from the hyperpal-

lium (Uchiyama et al., 1987; Wizenmann and Thanos,

1990). In contrast to well-characterized tectal-ION cir-

cuits, previous studies have generated conflicting data

concerning extra-tectal afferents to the ION, possibly

due to technical difficulties with injection of traditional

tracers into the ION (Reperant et al., 2006; Reperant

et al., 2007). Several brain regions have been reported

to project afferents to the ION, including the zona peri-

nIII (ZpnIII), the area ventralis of Tsai (AVT), the mesen-

cephalic reticular formation (MRF), and pontine reticular

formation (PRF) (Reperant et al., 2006), but no transsy-

naptic viral tracing has been employed to map centrifu-

gal circuits. Injection of a polysynaptic retrograde virus

tracer into the eye circumvents the difficulties of inject-

ing conventional tracers into small target zones in ovo.

To examine the retrograde tracing capability of

rVSV(RABV-G) in the centrifugal pathway, we injected

rVSV(RABV-G) encoding GFP into the left eye of E14

chicken embryos, and examined embryos for viral trans-

mission into the brain (n 5 7) (Fig. 4B–K). GFP expres-

sion was not detected in brains when chicken embryos

were examined at 24 or 48 hpi (n 5 4) (Fig. 4B). How-

ever, after 48 hpi GFP expression was detected in the

retina in a few RGCs and amacrine cells (data not

shown), in agreement with previously reported timing of

infection and transmission with rVSV(RABV-G) in mice

(Beier et al., 2011, 2013b). Strikingly, after 72 hpi,

strong, widespread GFP expression was observed in the

brain from all three embryos examined at this time-

point, including in distinct regions of the forebrain, right

medial midbrain, and cerebellum (Fig. 4C).

To more precisely identify the locations of

rVSV(RABV-G) transmission we examined serial sagittal

sections of the brain at 72 hpi. Consistent with

retrograde-based infection and transmission, GFP-

labeled cells were found in the contralateral ION (Fig.

4D,E), the OT (layers 9–10 of the SGFS and the SGC)

(Fig. 4I–K), and the hyperpallium (Fig. 4D,H). These find-

ings are consistent with polysynaptic retrograde trans-

mission of rVSV(RABV-G) in the centrifugal pathway.

Interestingly, we also detected spread of rVSV(RABV-G)

to nuclei associated with other visual systems, including

the accessory optic system (nBOR, cerebellum, and

brainstem) (Fig. 4D,F) and the circadian visual system

(LHN/vSCN) (Fig. 4D). Because projections from the

nBOR include several areas thought to provide afferents

to the ION (Brecha et al., 1980; Wylie et al., 1997), we

examined GFP expression in medial sections and

detected rVSV(RABV-G) transmission to cells in the

PRF, MRF, and AVT (Fig 4G). These results suggest

amplified retrograde spread from the ION to oculomotor

regions (PRF, MRF, AVT) followed by transmission to

the nBOR. In addition to expected retrograde targets

uniquely labeled by rVSV(RABV-G), but not rVSV(VSV-

G), we also observed GFP expression in tectofugal cir-

cuits including in the Rt (Fig 4G), entopallium, mesopal-

lium, and lateral striatum (Fig. 4D–J).

Infection of the chicken optic tectum with
rVSV(RABV-G), but not rVSV(VSV-G), results
in retrograde viral transmission to the retina

To further compare patterns of polysynaptic transmis-

sion, rVSV(VSV-G) (n 5 7) or rVSV(RABV-G) (n 5 3)

was injected into the right OT of E14 chicks, and each

N.A. Mundell
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animal was examined for evidence of infection in the

eye. After 48 hpi, GFP expression from rVSV(VSV-G)

was readily detected in the injected and contralateral

tectum and the forebrain (Fig. 5A). Sagittal sections

revealed that rVSV(VSV-G) spread from the tectum

through tectofugal and thalamofugal pathways including

in the Rt and GLd (Fig. 5B). Despite strong anterograde

labeling throughout the visual circuits in the brain, GFP

was not detected in the retina at 48 or 72 hpi (n 5 7)

(Fig. 5C,D). In two out of seven embryos injected with

rVSV(VSV-G), GFP expression was detected in the cili-

ary body surrounding the lens (Fig. 5D), consistent with

Figure 4. In ovo rVSV(RABV-G) infection of the chicken eye shows a retrograde pattern of spread into the centrifugal visual system. (A–

A2) Illustrations of the centrifugal visual system (green arrows) shown in parasagittal (A) and dorsal (A2) views. Centrifugal neurons in the

isthmo-optic nucleus (ION) target amacrine cells in the retina (A–A2, large green arrow) and have collateral axons that transiently project

to the OT during development (dashed arrow). Brain regions that provide visual input to the ION include afferents from the OT, mesence-

phalic reticular formation (MRF), pontine reticular formation (PRF), and the area ventralis of Tsai (AVT).(B–K) GFP expression reveals a ret-

rograde pattern of rVSV(RABV-G) transsynaptic transmission within the brain following infection of the left retina at E14. GFP expression

was not detected in the brain at 24 hpi or 48 hpi (B–B2). However, at 72 hpi widespread GFP expression was observed in the forebrain,

right medial midbrain and cerebellum (C–C2). Sagittal sections through the right medial brain show rVSV(RABV-G) transmission in regions

associated with the centrifugal visual pathway and accessory optic system including the ION (D,E), nBOR (D), brainstem (D, yellow arrow-

heads) and cerebellum (D,F). GFP-expressing cells also were detected in several putative retrograde targets that project to the ION (and

also receive inputs from nBOR) including the MRF, PRF, and AVT (G). Distal sections through the right (H,J) and left (I,K) brain show GFP

expression in the contralateral OT, including in the SGC layer and layers 9–10 of the SGFS (J,K). A 5 arcopallium, AVT 5 area ventralis of

Tsai, Cb 5 cerebellum, E 5 entopallium, GLd 5 dorsal lateral geniculate nucleus, GP 5 globus pallidus, H 5 hyperpallium, HA 5 hyperpallium

apicale, Hp 5 hippocampus, IMC 5 nucleus isthmi pars magnocellularis, ION 5 isthmo-optic nucleus, LHN 5 lateral hypothalamic nucleus

(visual suprachiasmatic nucleus), LSt 5 lateral striatum, M 5 mesopallium, MLd 5 mesencephalicus lateralis pars dorsalis, MRF 5

mesencephalic reticular formation, nBOR 5 nucleus of the basal optic root, N 5 nidopallium, NC 5 nidopallium caudale, OT 5 optic tectum,

PRF 5 pontine reticular formation, Rt 5 nucleus rotundus, SGC 5 stratum griseum central (of OT), SGFS 5 stratum griseum et fibrosum

superficiale (of OT), St 5 striatum. Scale bars 5 1 mm in D,G,H,I; 100 mm in E,F,J,K.

Circuit tracing in a wide range of organisms
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Figure 5. Infection with rVSV(RABV-G), but not rVSV(VSV-G), in the chicken optic tectum results in retrograde transmission from the brain

to the retina. (A–D2) Injection of rVSV(VSV-G) into the right optic tectum (OT) (arrow) resulted in an anterograde transsynaptic pattern of

spread in the brain. Whole-mount dorsal views of brightfield (A) and GFP expression (A2) in the brain at 48 hpi. Sagittal section showing

GFP-positive cells (B) in the Rt, GLd (inset from a semi-adjacent section), and telencephalon (nidopallium, mesopallium, and hyperpallium)

consistent with anterograde labeling from the OT with rVSV(VSV-G). Brightfield (C,D) and fluorescent protein expression (C2,D2) in poste-

rior (C) and anterior (D) views of retinae after rVSV(VSV-G) infection of the OT. GFP expression was not detected in the retina at 48 or 72

hpi (n 5 7) (C-D2). In 2/7 embryos, GFP-positive cells were detected in the ciliary body surrounding the lens (D,D2, yellow arrow) but

were absent from the retina. (E–I) Injection of rVSV(RABV-G) into the OT resulted in retrograde transmission and GFP expression in the

retina. Dorsal views of brightfield and fluorescent (GFP) images (E–E2) of the brain at 72 hpi. Sagittal section showing GFP expression in

the brain (F) including in the ION (inset), nBOR, cerebellum, Rt, and telencephalon. At 72 hpi, OT injections with rVSV(RABV-G) resulted in

in clusters of GFP-positive cells throughout the retina (n 5 3) (G–G2). Confocal z-stack projection showing GFP expression in a RGC (H,

red arrow) and an adjacent amacrine cell (H, yellow arrow) in a flat-mount preparation of the left retina. Transverse section through a ret-

ina shows GFP expression in several retinal cell types including RGCs (I, red arrow), M€uller glia (I, purple arrow), and amacrine cells in the

lower half of the INL (I, yellow arrow). GFP-expressing cells in the INL were only found in locations proximal to GFP-positive RGCs. Cb 5

cerebellum, GCL5ganglion cell layer (of retina), GLd 5 dorsal lateral geniculate nucleus, HA 5 hyperpallium apicale, Hp 5 hippocampus,

INL 5 inner nuclear layer (of retina), LSt 5 lateral striatum, M 5 mesopallium, nBOR 5 nucleus of the basal optic root, N 5 nidopallium,

NC 5 nidopallium caudale, ONL 5 outer nuclear layer (of retina), Rt 5 nucleus rotundus. Scale bars 5 1 mm in B,F; 50 lm in H,I.



anterograde transmission from the oculomotor complex

and pupillary innervation. In contrast to the lack of ret-

rograde spread observed with rVSV(VSV-G), injection of

rVSV(RABV-G) into the OT resulted in widespread retro-

grade viral transmission and GFP expression in clusters

of cells throughout the retina (n 5 3) (Fig. 5G). When

examined at 72 hpi, GFP expression in the brain was

detected in the contralateral tectum, ION, Rt, nBOR,

cerebellum, and forebrain (Fig. 5F); locations that were

also labeled following injections of rVSV(RABV-G) into

the eye (See Fig. 4D–G). In the retina, RGCs were GFP-

positive (Fig. 5H,I, red arrows) presumably by retro-

grade uptake of the virus within the inoculum. Consist-

ent with replication and retrograde transmission within

the retina, other retinal cell types were labeled in the

vicinity of the GFP-positive RGCs, including bipolar cells

(not shown) and amacrine interneurons (Fig. 5H,I, yel-

low arrows), as well as M€uller glia (Fig. 5I, purple

arrow), similar to previous viral labeling with

rVSV(RABV-G) and PRV in mice (Viney et al., 2007;

Beier et al., 2011).

Infection with rVSV(VSV-G) in the eye
generates an anterograde transsynaptic
pattern within visual circuits in zebrafish

Previous studies have mapped the projections of

RGCs in zebrafish to 10 retinorecipient brain regions,

including within the OT, pretectum, thalamus, preoptic

area, and the accessory optic system (Burrill and

Easter, 1994; Robles et al., 2014). The vast majority of

RGC axons terminate in the OT (Burrill and Easter,

1994). Despite extensive characterization of retinoreci-

pient areas, fewer studies have examined higher-order

sites within zebrafish visual pathways. To evaluate the

ability of VSV to label visual circuitry in fish, we

injected larval zebrafish at 2 days postfertilization (dpf)

with rVSV(VSV-G). When injected into one eye, labeling

in RGC axons, pretectal, and tectal cells in the brain

was apparent as soon as 24 hpi (n 5 6) (Fig. 6A,B).

Labeling was sparse, with specific labeling of the optic

tract and RGC axon terminals (Burrill and Easter, 1994)

(Fig. 6B–B2). In the OT, thalamus, and preoptic area,

labeled cell bodies were seen adjacent to the optic

tract, and also positioned at the midline of the ventricu-

lar zone (Fig. 6C and Supporting Movie 1). In the OT,

labeled cell bodies were seen just beneath the tectal

neuropil, with neurites oriented towards the RGC axon

terminals (Fig. 6D). As expected for a polysynaptic

tracer, we observed progressive spreading of viral infec-

tion over time (Fig. 6E,F). At 24 hpi, labeled cells were

restricted to the OT and thalamus (including the emi-

nentia thalami [EmT] and dorsal thalamus) (Fig. 6E2). At

48 hpi, efferent axons projecting to the habenula and

cerebellum (Fig. 6H, arrowheads in the middle panels)

were observed (n 5 6). At 72 hpi, cell bodies were

identified in axon target areas, primarily in the contra-

lateral hemisphere (n 5 6) (Fig. 6H, arrowheads in bot-

tom panels). These areas include the pallium (part of

the telencephalon), ipsilateral tectum, habenula, mid-

brain tegmentum, cerebellum, and hindbrain. These pro-

jection areas are consistent with areas that are

synaptically connected with the diencephalon and OT in

zebrafish and other organisms (Ewert et al., 2001; Hen-

dricks and Jesuthasan, 2007; Sato et al., 2007; Nevin

et al., 2010; Volkmann et al., 2010). These results sug-

gest that these labeled nuclei are downstream targets

of RGCs (either monosynaptic or polysynaptic connec-

tions), and that these connections had already formed

in young larvae that had just started to swim and feed

(5 dpf).

Infection with rVSV(RABV-G) in the eye
generates a retrograde transsynaptic
pattern within visual circuits in zebrafish

Among teleost fish, previous work has identified at

least five distinct origins of centrifugal projections from

the brain to the retina (Reperant et al., 2006; Reperant

et al., 2007). Although the locations of centrifugal neu-

rons vary according to species, collectively these areas

include the olfactory bulb/terminal nerve (tn), thalamus,

OT, pretectum, and the isthmic region (Ebbesson and

Meyer, 1981; Munz et al., 1982; Stell et al., 1987;

Zucker and Dowling, 1987; Reperant et al., 2006;

Rosillo et al., 2013). The zebrafish centrifugal input into

the retina originates in the tn, connecting the olfactory

bulb and ventral pallium to the retina. However, the

extent of centrifugal circuitry in zebrafish is unclear;

only the olfacto-retinal pathway has been previously

studied (Li and Dowling, 2000; Maaswinkel and Li,

2003; Huang et al., 2005; Esposti et al., 2013). To fur-

ther evaluate centrifugal visual circuits, we injected

rVSV(RABV-G) into the eye of 3 dpf larval zebrafish. At

24 hpi, sparse, GFP-positive cells were evident in sev-

eral brain regions including in the contralateral olfactory

bulb, pallium, habenula, OT, and thalamus (n 5 3) (Fig.

7A–A2). By 48 hpi, we detected an increased number

of labeled cells present along the border of the olfac-

tory bulb and pallium, and a significant number of GFP-

positive cells residing at the midline of the pallium,

habenula, thalamus (n 5 4) (Fig. 7B–B2). As expected

with rVSV(RABV-G) infection of RGCs, we observed

dense labeling of the optic tract and RGC axon termi-

nals in the contralateral OT. However, in contrast to

rVSV(VSV-G), infection of the eye with rVSV(RABV-G)
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produced very few GFP-positive cell bodies located in

the OT (Fig. 7A,B). These data are consistent with

rVSV(RABV-G) infection of axonal terminals of olfactory

bulb/tn cells in the retina (illustrated in Fig. 7C, dark

green arrow), and in addition, also suggest that zebra-

fish may have other centrifugal circuitry, distinct from

the olfacto-retinal pathway, that are shared with other

teleosts (Fig. 7C, dashed arrows).

A comparison of labeling patterns from 24 and 48

hpi suggests transmission of rVSV(RABV-G) within the

brain. At 48 hpi, we detected additional sites of GFP

expression, including labeled efferent axons projecting

to the contralateral and ipsilateral cerebellum, and ipsi-

lateral tectum and habenula, along with sparse GFP-

positive cells in these locations (Fig. 7A–J). Regions

containing labeled cells after rVSV(RABV-G) infection

are illustrated in Fig. 7C (green shading), and GFP-

positive cells (white arrows) were verified in transverse

optical slices through the olfactory bulb, OT, pallium,

thalamus, preoptic area, habenula, and cerebellum (Fig.

7D–J).

In order to distinguish primary centrifugal neurons

from those labeled by polysynaptic transmission of

rVSV(RABV-G), we utilized a pseudotyped rVSVDG

Figure 6. Transsynaptic labeling of the visual pathway in larval zebrafish infected with rVSV(VSV-G). (A) Diagram of unilateral eye injection.

RGC axons (red arrows) project contralaterally to the optic tectum, pretectum, and thalamus. The locations of rVSV(RABV-G)-infected cells

are indicated by green shaded areas. Putative axonal projections from the OT to the pallium, habenula, and cerebellum are labeled as

dashed arrows. (B–D) rVSV(VSV-G) infection of the OT. Dorsal (B) and lateral (B2) views of a 24 hpi zebrafish stained for Venus (green),

HuC/D (red, pan-neuronal marker), and HNK1 (blue, neuropil). Labeled RGC termini and tectal cell bodies can be seen in the right (contra-

lateral) tectum. Boxed area in B is shown at higher magnification in C. Spectrum of colors represents depth from the dorsal surface of the

tectum (red-yellow) to the ventral surface (blue-pink) for Venus-labeled cells. (D) High magnification of contralateral Venus-labeled tectal

cells at 48 hpi, in location similar to C (boxed area). The majority of the labeled tectal neurons had a single process extending medially,

consistent with the previously described morphology of retinorecipient neurons (Robles et al., 2011). (E,F) Dorsal views of confocal maxi-

mal projections show rVSV(VSV-G) labeling at 24 hpi (E) and 72 hpi (F). Areas delineated by dashed lines are the OT, habenula, and olfac-

tory bulb. Transverse optical sections from each stage are shown in panels below (E2–E4 for 24 hpi and F2–F4 for 72 hpi). (G–I) Dorsal

view of the zebrafish brain (3 dpf), stained with HuC (G). Areas delineated by dashed lines are the habenula and cerebellum, which are

shown at higher magnification in H and I, respectively. 24 hpi labeling was restricted to the optic tectum, pretectum, and thalamus. At 72

hpi, labeling broadened and included cells in the pallium (F3), habenula (H), and the cerebellum (I). Labeled cells are indicated by white

arrows or arrowheads and axons are labeled with yellow arrowheads). Venus-expressing cells were not present in the olfactory bulb (E4,

F4). CB: cerebellum, HAB 5 habenula, Me 5 medulla, OB 5 olfactory bulb, OT 5 optic tectum, P 5 pallium, PT 5 pretectum, Th 5 thalamus.

Scale bars 5 100 lm in B–B2; 20 lm in C,D; 50 lm E–F4; 20 lm in H,I.
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Figure 7. Labeling of centrifugal circuits in zebrafish with rVSV(RABV-G). (A,B) Dorsal view of confocal maximal projections showing

rVSV(RABV-G) labeling (green, GFP) and HU (magenta, pan-neuronal marker) at 24 hpi (A) and 48 hpi (B). GFP channel from (A,B), with sig-

nal enhanced to show cells in the brain, is shown in (A2,B2). Images in (B–B2) were captured after dissection of the brain from surround-

ing tissues. GFP-labeled axonal projections from the contralateral to the ipsilateral habenula (white arrowhead) and projections from the

OT to the cerebellum (yellow arrowheads) are indicated in (B–B2). (C) Illustration showing injection of rVSV(RABV-G) into the eye of 3 dpf

larval zebrafish. Centrifugal axons in the terminal nerve (tn) originate from the contralateral olfactory bulb (OB) and ventral pallium (P), and

project to target cells in the retina (dark green arrow). The locations of rVSV(RABV-G)-infected cells after unilateral eye injection is indi-

cated by green shaded areas. Projections from other centrifugal neurons previously reported among teleost fish are indicated by dashed

arrows from the thalamus (Th), OT, and pretectum (PT). (D–J) Transverse optical sections from 24 hpi or 48 hpi are shown. At 24 hpi,

labeling is restricted to the RGC axons in the neuropil of OT, and cell bodies in the OB (D), OT (E, 48 hpi shown), pallium (F), thalamus

(G), preoptic area (H), habenula (I), medulla (J, 48 hpi shown), and pretectum (not shown). At 48 hpi, additional labeling was seen, includ-

ing GFP-positive efferent axons (yellow arrowhead) projecting into the contralateral and ipsilateral cerebellum (J). (K–L2) Confocal maximal

projections of GFP expression and HU after injection of 1 3 108 ffu/mL (K,L), or 1 3 109 ffu/mL (K2,L2) rVSVDG(RABV-G), at 24–48 hpi.

Yellow arrowheads in (K–L2) indicate RGC axons in the neuropil of the OT. In zebrafish injected with the higher dose of rVSVDG(RABV-G),

labeling revealed primary infection in centrifugal neurons. (M–U) Representative transverse optical sections from 24–72 hpi show the

results of centrifugal labeling, as sparse GFP-expressing cells in the OB (M,N), OT (O,P), pretectum (Q), pallium (R), thalamus (S), habenula

(T), and medulla (U). GFP-labeled cells were not detected in the preoptic area (not shown) and labeled axons were not present in the cere-

bellum (U) following infections with rVSVDG (RABV-G). CB 5 cerebellum, HAB 5 habenula, Me 5 medulla, OB 5 olfactory bulb, OT 5 optic

tectum, P5 pallium, PT 5 pretectum, PO 5 preoptic area, tn 5 terminal nerve, Scale bars: 5 50 lm.



(RABV-G) (Chandran et al., 2005) previously character-

ized in mice (Beier et al., 2011). rVSVDG(RABV-G) has

been engineered to have a deletion of the G gene in

the viral genome. When grown in tissue culture, the viri-

ons are supplied with RABV-G protein (“pseudotyped”),

which endows them with infectivity of cells at the injec-

tion site. However, due to the lack of a G gene in the

viral genome, rVSVDG (RABV-G) is not able to transmit

from initially infected cells. In addition to infection of

cells at the injection site, rVSVDG (RABV-G) virions in

the inoculum can be transported via axon terminals to

cell bodies (as also occurs with rVSV(RABV-G)). We

injected rVSVDG(RABV-G) into the eye and examined

GFP expression at 24, 48, and 72 hpi (n 5 3 for each

timepoint). Due to its lack of replication, infection with

rVSVDG(RABV-G) would be expected to produce sparse

labeling at all timepoints, as was observed (Fig. 7K–U).

Following injection into the eye of a stock at a concen-

tration of 1 3 108 ffu/mL rVSVDG(RABV-G), labeled

cells were present in the retina, and GFP-positive RGC

axon terminals were detected in the OT (Fig. 7K,L, yel-

low arrowheads). However, GFP-positive cells were not

detected in the brain. In fact, in order to see labeling of

cell bodies in the brain, we needed to inject 10 times

more rVSVDG(RABV-G) than rVSV(RABV-G) (Fig. 7K–L2).

Although this high number of virions delivered to the

retina facilitated the infection of centrifugal neurons in

the brain, it also resulted in death of neurons in the ret-

ina by the time the tissue was analyzed, as indicated

by the reduced numbers and morphology of labeled

cells (Fig. 7K2 vs. L2). Following retinal infection with a

high dose of rVSVDG(RABV-G), a few labeled RGC axon

terminals were still visible in the contralateral OT (Fig.

7K,L2, yellow arrowheads) and, importantly, a small

number of GFP-positive primary centrifugal target cells

were identified in several brain areas, including the con-

tralateral olfactory bulb, OT, pretectum, pallium, habe-

nula, medial thalamus, and the ipsilateral and

contralateral medulla (Fig. 7M–U, white arrows). All

areas containing labeled cells were previously identified

using rVSV(RABV-G). In contrast to labeling with

rVSV(RABV-G), however, rVSVDG(RABV-G) infected GFP-

expressing cells were not detected in the preoptic area

or in the cerebellum (Fig. 7U and data not shown).

These data help to clarify the locations of primary cen-

trifugal neurons and further suggest that the centrifugal

visual system in zebrafish is more extensive than previ-

ously characterized.

Infectivity in nonhuman primates in vivo
Although nonhuman primates (NHPs) provide impor-

tant models for complex brain functions, few techni-

ques exist for studying connectivity, or even for intense

fluorescent labeling of neurons, in NHPs. Although pre-

vious work has shown that NHPs can be infected with

rVSV (Hurst, 1933, 1936; Baskerville and Lloyd, 1977;

Geisbert et al., 2008; Clarke et al., 2014), direct infec-

tion of CNS tissue and an assessment of the utility of

rVSV as a neuronal tracer have not been carried out.

For an initial experiment, two squirrel monkeys (exam-

ples of New World monkeys) were injected, and a con-

servative, short survival time of 3 days was chosen to

reduce the possibility of morbidity. The injection sites

and the locations of labeled neurons and processes are

shown in Figure 8A. In monkey #1, rVSV(RABV-G)-

infected neurons expressing GFP were found within 3

mm of the injection site in primary visual cortex (V1)

(Fig. 8B). In monkey #2, injection of rVSV(RABV-G)

encoding mCherry yielded labeled neurons not only

near the site of injection in primary somatosensory cor-

tex (S1) (Fig. 8C) but also in a subcortical structure,

the basal forebrain nucleus of Meynert (Fig. 8D), which

was 12–15 mm from the injection site. The anterograde

transsynaptic tracer, rVSV(VSV-G), labeled neurons at

the injection site in primary motor cortex (M1) (Fig. 8E),

and labeled axons descending 5–6 mm away from pri-

mary motor cortex into the white matter (Fig. 8F).

A type of Old World monkey, a macaque, also was

injected. An rVSV(RABV-G) encoding mCherry and a

rVSV(VSV-G) encoding Venus were injected into V1,

and labeling was examined at 4 dpi (Fig. 8G–K). There

were mCherry-expressing neurons in the LGN, consist-

ent with retrograde uptake of rVSV(RABV-G) virions, as

well as mCherry labeled neurons near the injection site

(Fig. 8J,K). Venus-expressing neurons also were seen at

the injection site of rVSV(VSV-G), consistent with infec-

tion of cells at the site, and perhaps due to local

spread. As with injection of rVSV(VSV-G) into the squir-

rel monkeys, and as with injection of the other species

discussed above, there was no evidence of long-

distance retrograde labeling by rVSV(VSV-G). In all VSV-

infected animals, we did not find definitive evidence of

long-distance transsynaptic labeling, perhaps due to a

survival time that was insufficient for long-distance viral

transmission. It is possible that there was transmission

locally at the injection site, which was not possible to

distinguish from labeling via initial infection of cells at

the injection site.

rVSV(VSV-G) can infect many retinal cell
types in the seahorse

The lined seahorse, Hippocampus erectus, is a spe-

cies of bony marine fish unique in form, physiology, and

behavior (Fig. 9A). Seahorses are visually guided

ambush predators with a variety of visual
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specializations, including a foveal retina, ocular inde-

pendence, and diverse retinal topologies and spectral

sensitivities (Mosk et al., 2007; Lee and O’Brien, 2011).

Little is understood about the neuronal circuitry that

mediates the unique behaviors of these fish due in part

to the lack of effective neural tracing tools. To begin to

explore whether VSV might enable studies of circuitry in

this unusual species, rVSV(RABV-G) and rVSV(VSV-G)

were injected into seahorse eyes to assess infectivity, as

well as retrograde and anterograde tracing capability.

rVSV(VSV-G) injected into the vitreous cavity of the sea-

horse eye showed infection of many retinal cell types,

including photoreceptors, interneurons, M€uller glia, and

RGCs (Fig. 9B). Virally labeled RGC axons were seen to

extend through the optic nerve into the brain, passing

through the diencephalon and into the OT (Fig. 9C–E).

Projections were always limited to the contralateral side

of the brain and never extended bilaterally.

rVSV(RABV-G) injected into the vitreous cavity of the

seahorse eye infected a limited set of cell types, specif-

ically RGCs and M€uller glia (data not shown).

rVSV(RABV-G)-labeled axons were largely restricted to

the optic tract, with very little labeling observed beyond

this point. Labeled RGC axons were never observed in

the OT or in any other brain region, suggesting that,

similar to the results in chicken and zebrafish,

Figure 8. rVSVs can infect squirrel monkeys and macaques. (A) Schematic drawing of a squirrel monkey brain, indicating location of the

injection sites in primary visual cortex of monkey #1 (dark green), in the motor cortex (light green), and in the somatosensory cortex (red)

of monkey #2. Arrows indicate projections originating at the site of the motor cortex injection, small red and green dots represent retro-

gradely labeled neurons from the sites of somatosensory and visual cortex injections, respectively. The area demarcated by the red oval

corresponds to the nucleus basalis of Meynert (NBM) (B) A GFP-expressing neuron in the visual cortex after injection of rVSV(RABV-G)

encoding GFP into the primary visual cortex in monkey #1. This pyramidal neuron is located �3 mm dorsal to the injection site and is pre-

sumably labeled by retrograde uptake of the primary inoculum. (C,D) Neuronal labeling by presumed retrograde uptake after injection of

an mCherry-encoding rVSV(RABV-G) into the primary somatosensory cortex in monkey #2. (C) Labeled pyramidal neuron in cerebral cortex

�3 mm dorsal to the injection site. (D) Presumptive cholinergic neurons in basal forebrain nucleus of Meynert. (E,F) Results of the injec-

tion of rVSV(VSV-G)-expressing Venus into the primary motor cortex of squirrel monkey #2. (E) Labeled pyramidal neurons and interneur-

ons at the injection site. (F) Venus was seen in the axons originating from the infected neurons at the injection site, projecting away from

cortex into the white matter going towards internal capsule. (G–K) Labeling of cortical neurons after rVSV injections into the primary visual

area in a macaque monkey. (G) Schematic drawing of a macaque brain showing injection sites of rVSV(VSV-G) (dark green) and

rVSV(RABV-G) (red) in the primary visual cortex. Small red and green dots represent location of rVSV(VSV-G) (green) or rVSV(RABV-G)

(red) labeled neurons from the sites of somatosensory and visual cortex injections (H,I) Labeled neurons near the site of injection of

rVSV(VSV-G) encoding Venus into V1. (J,K) Labeled neurons near the site of injection of rVSV(RABV-G) encoding mCherry into V1. FC 5

central fissure; FS 5 Sylvian fissure; NBM 5 nucleus basalis of Meynert; STS 5 superior temporal sulcus, V1 5 primary visual cortex. Scale

bars 5 50 lm in B,C,E,G–J; 100 lm in D,F.
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rVSV(RABV-G) may have slower kinetics than the

rVSV(VSV-G) in the seahorse.

Infectivity of invertebrate model organisms
by rVSV in vivo

The cubozoan visual system is emerging as a trac-

table experimental system for invertebrate visual sys-

tem processing. It has highly developed camera type

eyes (Nilsson et al., 2005) and elaborate visual behav-

iors (Garm et al., 2007, 2011), despite having only

about 1,000 neurons available for visual processing

(Skogh et al., 2006). Tripedalia cystophora is a popu-

lar representative of the cubozoans, and thus this

species was tested for infectivity by rVSV. The vitre-

ous space between the lens and the photoreceptors

of the lower lens eye of 10 animals was injected with

rVSV(VSV-G) (Fig. 10A,B). The virus infected the reti-

nal photoreceptors within 2 days of injection

(Fig. 10C,D). No evidence of viral spread was

observed, even after 7 dpi.

In addition to cubozoans, previous studies of VSV

infection in its natural environment, as well as in the

lab, suggested that rVSV can infect invertebrates (Tesh

et al., 1977; Wyers et al., 1980; Mead et al., 2000;

Zarate and Novella, 2004; Shelly et al., 2009). We thus

tested the ability of rVSV vectors to infect the fruit fly,

D. melanogaster. Both rVSV(VSV-G) and rVSV(RABV-G)

infected Drosophila, as many brightly labeled fluores-

cent cells were observed at the injection sites (Fig.

10E–G). However, no evidence of spread was observed,

Figure 9. rVSV(VSV-G) can infect seahorse retinae and allows mapping of retinorecipient areas in the brain. (A) Skeletal preparation of a

seahorse (Hippocampus erectus) and schematic drawing of a seahorse skull with the brain. Dashed lines indicate approximate brain

regions for sections in C–E. (B) Injection of rVSV(VSV-G) into the retina resulted in infection of various retinal cell types (3 dpi). (C–E)

Brain sections depicting labeled RGC arbors throughout the seahorse brain, following injection of rVSV(VSV-G) into the retina. C2, D2, E2

are higher-magnification images of RGC axons in C–E. A small number of infected cell bodies were detected in the brain. Red 5 GFP,

blue 5 DAPI. PR 5 photoreceptors, M 5 M€uller glia, RGC 5 retinal ganglion cells. Scale bars 5 50 lm.
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perhaps due to the activation of autophagy (Shelly

et al., 2009), or insufficient synthesis and/or modifica-

tion of G proteins (Wyers et al., 1980).

DISCUSSION

Transsynaptic viral tracers provide a valuable plat-

form for the visualization and dissection of functional

neuronal networks. Historically, tracers were developed

to label mammalian circuitry (Callaway, 2008) and rela-

tively few methods have been developed for mapping

circuity in other model organisms, such as chicken,

zebrafish, or Xenopus. Our previous work in mice dem-

onstrated that changes in the G protein of VSV lead to

exclusive anterograde (VSV-G) or retrograde (RABV-G)

directional transsynaptic transmission between synapti-

cally connected neurons (Beier et al., 2011, 2013b).

However, the host range and effectiveness of these

vectors as circuitry tracers had not been examined in

other organisms. Here we present data demonstrating

that rVSV enables tracing of neural circuitry in a wide

range of organisms and in predictable directions dic-

tated by VSV-G or RABV-G. Our studies in mice,

chicken, and zebrafish establish the utility of these vec-

tors to identify patterns of connectivity in distinct visual

pathways. Further, we show that both retrograde and

anterograde rVSV tracers have an expansive host

range, and effectively labeled human, monkey, dog,

mouse, hamster, chicken, and axolotl cells in vitro.

These studies also demonstrated that rVSV was able to

infect neurons and facilitate gene transfer in vivo in all

vertebrates tested (mice, chicken, zebrafish, squirrel

monkeys, macaque, seahorses), and in invertebrates

such as the box jellyfish. In addition, our preliminary

results from infections using rVSV(VSV-G) in the eyes of

adult axolotls and Xenopus tadpoles showed viral label-

ing of RGC axons and transmission to cells in the OT

(data not shown). These findings suggest that rVSV may

be an effective vector for comparative circuitry tracing

among vertebrates, as well as for studies of gene

Figure 10. Recombinant VSV vectors can infect invertebrate organisms. (A,B) Image of the box jellyfish, Tripedalia cystophora (A). The vis-

ual system is comprised of four sensory structures, or rhopalia (white arrow in (A). Image in (B) shows higher magnification of rhopalium

in (A). There are six eyes located on each rhopalium, two of which are camera-type lens eyes (blue arrow, B). The vitreous space of the

lower lens eye was injected with rVSV(VSV-G) (injection site indicated by needle in B) and the infection was monitored for a total of 7 dpi.

(C,D) Photoreceptors in all 10 injected animals expressed Venus by 2 dpi. (C) Lateral view of entire rhopalium, with orientation as in (B),

shows Venus expression in the photoreceptors of the lower lens eye (C, boxed area). Green 5 Venus, blue 5 DAPI. (D) Higher magnifica-

tion of boxed region in C showing rVSV(VSV-G) infection in retinal photoreceptors of the everted lens eye (dashed lines). Images taken at

2 dpi. (E–G) Recombinant VSV vectors could also infect Drosophila melanogaster. (E) Uninfected flies were nonfluorescent, while those

infected with rVSV-Venus(VSV-G) (F) or rVSV-GFP(RABV-G) (G) showed fluorescent protein expression. Images taken 1 dpi. Scale bars 5

5 mm in A; 100 lm in B,C; 50 lm in D; 0.5 mm in E–G.
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function in species with few genetic tools. For explora-

tions of the use of rVSV in these and other organisms,

the data presented here provide a starting point. It is

likely that the time course of transmission, as well as

cellular toxicity, will vary among species and among cell

types, and will need to be determined empirically for

each system under study.

Several aspects of VSV make it particularly well

suited for mapping connected neurons in diverse spe-

cies. VSV encodes its own RNA polymerase, and does

not appear to depend on the host cell machinery for

viral gene transcription and RNA metabolism. Moreover,

its assembly and budding processes also seem to rely

primarily on viral gene products, and/or highly con-

served host activities, as evidenced by the spread of

VSV from insects to mammals in its natural environ-

ment (Comer et al., 1990; Mead et al., 1999, 2004;

Zarate and Novella, 2004). The VSV G protein has been

found to promote infection in a wide range of species,

when on the surface of the VSV virion, or when on the

surface of other types of viruses (Knipe and Howley,

2007). In the current study we found that each orga-

nism tested was infectable with VSV, both with VSV-G

and RABV-G glycoproteins. In addition to its wide host

range and rapid gene expression, VSV is not as biohaz-

ardous as other viruses used for neuronal tracing. In its

native form, VSV is endemic in some human popula-

tions with little evidence of pathology (Johnson et al.,

1966; Nichol, 1994). Its low toxicity, flexibility in

accepting the G proteins from other viruses, and its

ease of replication in tissue culture have made VSV an

attractive candidate for the production of viral vaccines

for humans (Lichty et al., 2004). Injection of the rVSVs

used here, in muscle or footpads of mice, resulted in

no evidence of morbidity (Goz Ayturk, Beier, Cepko,

unpublished). In contrast, wildtype RABV is lethal upon

peripheral injection (Fujii et al., 1994). It should be

noted, however, that lack of toxicity to the organism

does not mean that there is no toxicity in individual

infected cells. When rVSV was introduced in culture,

most cells tested were compromised, as were neurons

in vivo, with the extent of toxicity differing depending

on the organism and the duration of the infection.

The rapid onset of gene expression establishes VSV

as a convenient gene expression vector in these differ-

ent organisms, both in tissue culture and in vivo (van

den Pol et al., 2009), albeit with consideration given to

the eventual cytotoxicity. However, of greater interest

for work in some organisms was the potential of rVSV

for gene transfer in vivo, making possible studies of

gene function, as well as the possibility of tracing neu-

ral circuitry. Although VSV-G had been shown to lack

species-specificity, it had not been established that

RABV-G would endow such a wide host range. Recep-

tors have been defined for RABV-G (Lafon, 2005), but it

is not clear if the defined receptors are the only ones,

or even if they are necessary for infection in different

cell types or organisms. It is intriguing that viral infec-

tion via the two G proteins tested was not limited to a

few organisms. This implies either a highly conserved,

specific set of receptors, or a lack of specific receptors.

For VSV-G, this latter hypothesis may pertain (Marsh

and Helenius, 1989), although very recent studies have

suggested that the highly conserved LDL receptor might

provide a universal receptor (Finkelshtein et al., 2013;

Amirache et al., 2014).

rVSV transmission patterns in the visual
system are consistent with previously
described pathways

The value of these vectors lies in the prospect of dis-

covering previously unknown circuitry. Because of the

accessibility of the chick model system, avian visual

pathways have been extensively studied for over a cen-

tury (Cajal, 1911), and provide an ideal system in which

to test the anterograde circuity tracing capabilities of

rVSV(VSV-G). We found that rVSV(VSV-G) infection in

the eye followed a transsynaptic pattern of spread

through nearly all of the established neuronal networks

in the tectofugal and thalamofugal visual pathways,

including rapid labeling of the major retinorecipient

areas (OT, GLd), secondary regions (SGC, hyperpallium),

and even higher-order regions including the Rt, entopal-

lium, mesopallium, lateral striatum, and cerebellum. It

is interesting to note that, as expected with a polysy-

naptic tracer, the most abundant labeling within the OT

was localized to the SGC output layer and not the pri-

mary retinorecipient laminae. This is consistent with the

convergent nature of this circuit, as a large number of

synaptic connections exist between single RGCs, target

cells in retinorecipient laminae, and SGC neurons (LaV-

ail and Cowan, 1971; Crossland et al., 1975; Luksch

et al., 1998). In addition, given the very rapid and

extensive degree of labeling of the SGC, we favor the

hypothesis that there is rapid transmission among the

local neurons of the SGC.

Examination of the transmission pattern of rVSV(VSV-

G) in zebrafish also showed labeling consistent with

previously described patterns obtained with horseradish

peroxidase (HRP), DiI, transgenic, or mosaic labeling

(Ebbesson and Meyer, 1981; Burrill and Easter, 1994;

Hendricks and Jesuthasan, 2007; Nevin et al., 2010;

Robles et al., 2011). In addition, it revealed a pathway

between RGCs and the habenula in larval zebrafish,

which was previously unknown. The habenula is an
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important region for many behaviors related to vision,

including spatial learning, aversive response, and circa-

dian rhythm (Bianco and Wilson, 2009; Lee et al.,

2010). These results suggest that the visual pathway

may directly modulate the output of the habenula dur-

ing these behaviors. We are not yet able to resolve the

complete neural circuit from RGC to habenula, but the

likely intermediate area is the EmT, the main source of

input to the habenula in zebrafish (Hendricks and Jesu-

thasan, 2007). EmT labeling in our samples was fre-

quently observed. Additional experiments will be

needed to determine whether the EmT neurons inner-

vated by RGCs project to the habenula directly, and if

specific RGC cell types are involved in the RGC-

habenula circuit.

The results with rVSV(RABV-G) injection of chicken and

zebrafish retina were consistent with retrograde transmis-

sion in established centrifugal pathways, but suggested

undocumented connections as well. The rVSV(RABV-G)

transmission pattern observed in chicken is in agreement

with extra-tectal afferents to the ION from accessory

optic system regions (AVT, PRF, MRF), and help to clarify

previous conflicting data (Crossland et al., 1975; Miceli

et al., 1993; Reperant et al., 2006). In chick, we also

observed rVSV(RABV-G) transmission in other, previously

unreported locations, including the cerebellum, lateral

hypothalamic nucleus, rotundus, and pallium. Our findings

suggest that in both zebrafish and chicken centrifugal vis-

ual neurons are located in, or are in close proximity to,

primary visual centers, and that the centrifugal visual sys-

tem in zebrafish is more extensive than previously char-

acterized. In addition to rVSV(RABV-G) labeling of the OB

in zebrafish, labeled cell bodies in the OT, pretectum,

thalamus, habenula, pallium, preoptic area, and medulla

were observed. Use of a monosynaptic rVSVDG(RABV-G)

confirmed that these are likely to be primary centrifugal

neurons. While these findings are novel regarding zebra-

fish centrifugal circuitry, they are perhaps not surprising,

given that similar projections have been observed in

other teleost species, and the visual system is generally

highly conserved (Reperant et al., 2006, 2007). The fact

that the signal from viral tracers does not dilute as they

move among connected cells, and the fact that there is a

high degree of viral gene expression by rVSV, endows

rVSV with a high degree of sensitivity that can reveal pre-

viously undetected connections.

The data shown here do not provide a comprehensive

mapping of all circuits in chick and zebrafish visual sys-

tems. More work will need to be done to thoroughly

characterize whether the directionality of transmission

of rVSV(RABV-G) vs. rVSV(VSV-G) is exclusively retro-

grade versus anterograde, respectively, in all species.

However, the data presented here, as well as previous

work, support the hypothesis that exclusive directional-

ity of VSV spread is endowed by these two G proteins

(Tashiro et al., 1990; Beier et al., 2011). For example,

the anterograde transmission pattern from the retina to

distinct laminae in the OT using rVSV(VSV-G), but not

rVSV(RABV-G), is consistent with previous findings with

traditional neuroanatomical tracers, including PHA-L,

CTB, BDA, HRP, Fluoro-Gold, biocytin, and DiI (Thanos

and Bonhoeffer, 1987; Vanselow et al., 1989; Reuss

and Decker, 1997; Luksch et al., 1998; Sebesteny

et al., 2002). Likewise, retrograde transmission of

rVSV(RABV-G) is suggested by specific labeling of neu-

rons in layers 9 and 10 of the OT after retinal infection

with rVSV(RABV-G), but not with rVSV(VSV-G), and

agrees with prior isthmo-tectal tracing with PHA-L, fluo-

rogold, fast blue, microspheres, and HRP (Woodson

et al., 1991). In addition, rVSV directional specificity is

also indicated by the retrograde viral transmission from

the tectum to the retina by rVSV(RABV-G), but not

rVSV(VSV-G), as shown in Figure 5. We speculate that

the directionality of spread is due to the targeting of

the G proteins to different cellular compartments.

In previous work, we used electrophysiological

recordings to show that rVSV spread among hippocam-

pal neurons of the mouse was indeed transsynaptic

(Beier et al., 2011). In addition, following infection of

the murine visual system, basal ganglia, and olfactory

epithelium, the patterns of spread were as predicted

for transsynaptic transmission. There was a lack of

infection of cells that were not neurons, with the excep-

tion of M€uller glia, and the rostral migratory stream of

the olfactory system (Beier et al., 2011). These data

support the contention that the virus is most efficient

at transmitting across synapses, perhaps due to the

close apposition of membranes at synaptic clefts.

The broad host range of rVSV facilitates
studies of other model organisms

We demonstrate that retrograde and anterograde

rVSV vectors effectively labeled neurons in two primate

models, including Old and New World monkeys. rVSV

labeling produced Golgi-like fills of comparable quality

to other viral tracers in use (Wickersham et al., 2013).

Retrograde labeling at some distance from the injection

site, using rVSV(RABV-G), and rVSV(VSV-G) labeling of

neurons at the injection site yielded a high enough level

of infection and expression without antibody enhance-

ment to suggest that rVSV is well suited for neuron

labeling and perhaps circuitry tracing in primates. More-

over, the labeling pattern observed following infection

with rVSV(RABV-G) suggests that it is an effective retro-

grade tracer. Neurons within the basal forebrain

Circuit tracing in a wide range of organisms
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nucleus of Meynert, located �12–15 mm from the

injection site in S1, suggests that there was retrograde

uptake of rVSV(RABV-G), with subsequent high level

viral gene expression. The absence of retrograde label-

ing at a distance from the injection site following infec-

tion with rVSV(VSV-G) is consistent with the

anterograde specificity observed for rVSV(VSV-G) infec-

tion of the other species characterized here, and in pre-

vious work (Beier et al., 2011). The survival time

following infection of NHPs likely was insufficient for

long-distance transmission. Future experiments with

longer survival times and/or higher viral titers will be

required to determine whether the rVSV tracers are

able to efficiently cross synapses in the primate brain.

This study constitutes one of the first attempts to

map visual system circuits in the seahorse. The rVSVs

used here not only were able to infect seahorse neu-

rons, but also expressed at high levels, permitting

robust fluorophore expression in axons that project to

downstream targets without antibody enhancement.

Our results also demonstrate some initial characteris-

tics of the neural circuitry of the seahorse visual sys-

tem, e.g., monocular projections extended into the

contralateral, but not into the ipsilateral, hemisphere.

Further studies will be needed to determine whether

and under what circumstances rVSV(VSV-G) might be

used for transsynaptic neural tracing in the seahorse,

and to fully characterize anterograde and retrograde cir-

cuits in these fish, which currently lack neuroanatomi-

cal reference materials. However, our findings suggest

that rVSVs may be valuable to the fish neural research

community, especially for the study of species where

few genetic tools are available.

Characterizing the structure and function of the vis-

ual system in higher organisms remains a difficult task

due to the complexity of the circuitry involved. In con-

trast, the cubozoans provide valuable models for the

dissection of visual circuitry among a relatively small

number of neurons. Extracellular electrophysiological

approaches are readily available for recording afferent

signals from the epidermal stalk nerve or electroretino-

gram from the retina, but intracellular recordings from

single neurons are impeded by the lack of visual land-

marks in the rhopalial nervous system. Methods such

as the introduction of channel rhodopsin (Boyden et al.,

2005) or genetically engineered voltage-sensitive fluo-

rescent proteins (Alford et al., 2013) are attractive pos-

sibilities. However, all attempts to transduce cubozoans

in the lab setting have thus far been unsuccessful.

Therefore, while the current rVSV vectors did not show

transsynaptic spread in box jellyfish, they were able to

effect gene transfer and high-level gene expression in

cubozoans. Perhaps, with future modifications of the

virus, a viral transsynaptic tracer for jellyfish or other

invertebrates may be developed.
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