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Abstract

This report describes how to use SpecC System-Level Scheduling (SLS) tools, as well as
definitions of SLS tools, restrictions of curren release, and how to read the refined design
generated by SLS tools.

For quick start, two simplified SLS tools provide basic scheduling functions. However,
due to various situations in real designs, we suggest advance designers use combination of
all SLS tools to utilize all features provided by SLS tools to obtain better results.



1 Introduction

The SpecC System-Level Scheduler(SLS) is comprised by a set of tools, each tool can

perform a part of the scheduling job. These tools can be invoked in different combination

and different order to meet a variety of scheduling goals.

Figure 1 depicts the basic scheduling flow. The SLS inputs a hierarchical SpecC de

scription as shown in Figure 1(a). Before the scheduling, informations listed below have to

be provided.

• Each leaf-behavior instance(deflned in Section 4.2) is assigned to a speciflc type of

PE, for example, Pentium-lOOHz.

• Accurate or estimated execution time for each leaf-behavior instance is computed, for

example, 312^S.

• Communication style and direction of each ports of each leaf-behavior instance are

also determined.

The system-level static scheduling is performed in three major steps. The hierarchi

cal description is first transformed into an ETG(Extended Task Graph) as shown in

Figure 1(b). Hierarchy of the behaviors is turned into explicit precedences among the leaf-

behavior instances. Implicit precedences caused by communications ( the dashed arrows in

Figure 1(a) ) are also added into the ETC. The definition of ETC is given in Section 2.

Once the ETC is created, the SLS schedules all the nodes in the ETC according to the

design goals and constraints given by the designer, then produces a schedule as shown in

Figure 1(c). Different SLS scheduling tools can be involved here to obtain the best schedule

for the given design goals and constraints.

Finally, according to the schedule obtained, the SLS refines the original SpecC descrip

tion, creates necessary control signals, and modifies original variables and channel instances
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to generate the reflned SpecC description as shown in Figure 1(d). The output is then

hand-over to the next synthesis stage.

Figure 2 depicts how the SLS tools are assembled to conquer varied scheduling goals.

First, an SLS tool sir2etg inputs the original SpecC description and generates ETC.

Then, different SLS tools which are implementation of a variety of system-level scheduling

or binding algorithms are invoked to generate the best schedule. Finally, another SLS tool

bnd2sir reads the original SpecC description as well as the schedule obtained and generates



the refined SpecC description. Details of currently available SLS tools are given in Section 6

For quick start, two simplified tools, sls.time and sls_resource, are provided to con

quer basic time-constraint and resource-constraint scheduling problems. However, to con

quer varied scheduling problems, the designer can invoke combinations of all SLS tools to

utilize all features provided by SLS.

This report is organized as following. In Section 2, we define ETG, which is a task

graph specialized for system-level scheduling. In Section 3, we state some presumptions to

settle some un-clarified issues in SpecC. In Section 4, we describe required notations[l] of

SpecC descriptions which are going to to be fed into SLS tools and default conditions. In

Section 5, we explain how to use two quick-start tools. In Section 6, we list all the SLS tools

currently available and their features. In Section 7, we use an example to show how to use

SLS tools. In Section 8, we list some design guidelines related to system-level scheduling

which can lead to better designs. In Section 9, we state current restrictions on SLS tools.

Finally, we discuss some technical details of SLS tools in Section 10 and Section 11..

2 ETG(Extended Task Graph)

The ETG is a task graph which is specialized for system-level scheduling. We define ETG

as following.

Definition 1 An ETG is a graph G = {V, E) where

• F = Vr u Vf U Vj ;

• E = Eseq u Esync ;

• Fx is a set of tasks ;

• Ff is a set of forks ;
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Figure 3: An example of ETG

• Vj is a set of joins ;

• Eseq is a set of precedences, which are directed arcs;

• Esync is a set of synchronizations, which are undirected arcs.

Only one arc is allowed between any two nodes, either a precedence or a synchronization.

When multiple precedences source a task, only one of the arcs can be true at run-time.

When multiple precedences source a fork, all of them are true. Moreover, the sink of a

join can not be true until all the sources of the join become true. Tasks connected by

synchronizations have to be executed at the same time.

Figure 3 shows an example of ETG. Each box is a task. In applications, a task is a

piece of work which occupies a specified type of hardware component for a certain amount



of time. The up>-right triangle is a fork and the inverted triangles are joins. Moreover, task

a and b have to start at the same time, whereas task c and h don't have to.

3 Presumptions for SLS Tools

Some presumptions are made for un-clarified issues in SpecC documentations. We discuss

these issues in the rest of this section.

3.1 Relaxed Specification Timing

The SpecC simulation engine assumes unlimited resources associated with ASAP (as soon

as possible) scheduling for simulating. Each task will be executed as soon as it is ready.

However, no scheduling is needed if the designer has already assumed ASAP scheduling.

SLS tools assume relaxed timing in SpecC specification. Each task is not required to be

executed as soon as it is ready. The scheduler can schedules each task to be executed at

the best incidence time, according to the constraints and goals given by the designer.

SLS tools synthesize control signals in the refined design to synchronize all the tasks

to be executed in correct order and satisfying the design constraint given by the designer.

These control signals can also force each task to be executed at the scheduled incidence

time by the simulation engine.

Under the relaxed timing assumption, there can be a time interval between a state and

the next state in FSM. The value of a branch condition can change from time to time during

this period. SLS tools assume all these values are valid. If only one of these values is valid,

for example, the value at the time the current state complete, the designer should latch the

valid valve in a variable.



4 Input Specification

The central idea of this section is to describe required notations of SpecC descriptions which

are going to be fed into SLS tools. In addition, we discuss why these notations are vital for

system-level scheduling and explain the default conditions for these annotations.

4.1 Usage of Behavior and Behavior Instances

The physical entities in a SpecC description are behavior instances[2], not behaviors[2].

A behavior description is the declaration of characteristics of a component. The component

does not exist if no one invokes it, whereas the component may be duplicated if the behavior

is invoked multiple times. For example, in Figure 4 there is only one mpeg behavior, whereas

there are actually two mpeg chips needed in the system.

4.2 Leaf-behavior Instances

A leaf-behavior is defined as a behavior whose BehaviorClass[2] is SIR_BHVR_LEAF,

SIR_BHVR_EXTERN, SIR_BHVR_TRY or SIR_BHVR_OTHER. The SLS tools treats leaf-behaviors

as un-partitionable elements. Actually, a leaf-behavior may be partitionable, for example,

a piece of software, or un-partitionable, for example, a hardware component. However, to

well partition a leaf-behavior is beyond the scope of the scheduling job.

A notation slsJ5hvr_class = "leaf" can be attached to any behavior instances to

create super-nodes, which can be scheduled as leaf-behavior instances. For example, the

static schedulers can not schedule an ETG which has unbounded loops. However, by the

help of design experience and other knowledges, the designer can estimate the execution

time of the loops or may knowworse-case and averageexecution time of the loops. Thus, the

designer can use notation sls_bhvr_class = "leaf" to force these loops to be processed as

leaf-behavior instances, and put the above execution time as the sls_dura of these super-



behavior mpeg(inp_ch IN, out_ch OUT);
behavior top( ... )

mpeg a(inl,outl),
b(in2,out2),

c(in3,out2);

mainO {

par-C
a.mainO ;

b .mainO ;

c.mainO;

}

} // end par
]• // end main

}; // end top

Figure 4: An example of behaviors and behavior instances



nodes. For details, please see sir2etg on-line manual page.

Though there are usually several behavior instances in a try-behavior, whose Behav-

iorClass is SIR_BHVR_TRY, all the resources which are needed to execute these behavior

instances have to be reserved all the time while the try-behavior is executing, since any of

these behavior instances can be executed at anytime. Thus, the scheduler can do nothing

about these resources. As a result, a try-behavior instance is treated as single task by

SLS tools. However, the behavior associated with each of these behavior instances can be

scheduled as another top behavior.

4.3 Communication Entity and Task

Since SpecC is a hierarchical language, a variable[2] in the original description may rep

resent multiple real variables. Figure 5 shows an example. There is only one variable

X in the description, whereas three real variables are needed for x in the system desired.

Similarly, the same situation applies on channel instances[2] and behavior instances. We

define a communication entity as a real variable or real channel instance. Moreover,

port variables[l] of the top behavior are also considered as communication entities, since

they are accessed similar to variables and channel instances in the top behavior.

The SLS tool sir2etg flattens the original description into an ETC. In the ETG, each

task is usually a real behavior instance as explained above, or can be a communication

entity which exclusively occupies the hardware component it is bound to during its lifetime.

4.4 Behavior and Channel Instances

Foreach leaf-behavior instance, twonotations are required for the scheduling stage, namely

sls_type and sls_dura. sls_type specifies the assigned PE type for the behavior instance,

and sls_dura specifies the execution time of the behavior instance. The execution time

can be worst case execution time(WCET), average case execution time, or any metrics



behavior BX()

{

int x;

};

behavior MainO

{

BX B1(),B2(),B3();

main() {

par -C
B1 .mainO ;

B2.main();

BS.mainO ;

} // end par
} // end main

}; // end Main

Figure 5: An example of a SpecC variable which represents multiple real variables in the
system desired
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behavior Ll_d( ... )

{
io.channel cl;

note cl.sls.type = "PCI"; // Channel type
Bl_d BlO;

note Bl.sls_type = "P5-100"; // PE type
note Bl.sls_d'ura = 312; // task duration

Figure 6: An example of behavior notations

related to execution time. It depends on which execution time the designer wants to opti

mize. Default sls_type is "default". Default sls_dura is 0. Figure 6 shows an example

of notations for a leaf-behavior instance.

Channel instances can also be annotated sls.type, and the default is "chnl-default".

However, sls_dura makes no use for channel instances by current SLS tools.

4.5 Ports

For each port[l] of a leaf-behavior, a notation sls_dir is required for the scheduling stage.

Based on scheduling view, communications can be categorized into three primary styles as

following.

Synchronized communication The sender and the receiver have to be active concur

rently. For example, two components communicate via hand-shaking.

Buffered communication The sender doesn't have to wait for the receiver. However,

all the messages have to be received by the receiver. For example, two components

communicate through FIFO. As a consequence, the receiver needs to be scheduled

after the sender is finished, if no additional conditions are specified.

11



behavior Ll_d( chan_in cl , chan_update c2 )

•c

note cl.sls_dir = 'i'; // buffered input
note c2.sls_dir = 'u'; // update

Figure 7: An example of external communication notations

Update communication The message can be ignored if no one is waiting for the message,

whereas the receiver always uses the latest update and doesn't have to wait for a sender

sending a message.

The communication style of an external(outside-behavior) data access can be annotated

by sls_dir as shown in Figure 7. Four options are available, namely, 's' (synchronized),

' i' (buffered input), 'o' (buflFered output), and 'u'(update). Default sis_dir is 'u'. More

over, since global variable accesses which are not through any ports can't be annotated in

current SpecC version[2], their communication style can only be 'u'.

An external data access in SpecC can be any of three communication styles, depends on

how the designer manages it. Figure 8 and Figure 9 show an example. The communication

description in Figure 8 can be a buflFered communication or an update communication. In

case behavior A_Spec is declared as in Figure 9(a). The behavior instance Dis guaranteed to

receive new-data and can not be executed until Ais finished. The communication in Figure 8

is a buffered communication. On the other hand, the same communication description is

an update communication if behavior A_Spec is declared as in Figure 9(b). The behavior

instance D can be executed even A is not finished. D uses new.data if it starts after A is

finished; whereas D uses old^data instead if it starts before A is finished.

It is not feasible for the synthesis tools to tell which communication style the designer is

using in each communication description. Thus, a notation to identify the communication

12



behavior R_Spec(bool s, event e, d_type data)

{
A_Spec A(s,data);
B_Spec B();
main()

{
A.main();

notify e;
B.mainO ;

}
}; // end R_Spec

behavior LJ5pec(bool s, event e, d_type data)

{
CJSpec C();
D_Spec D(data);
mainO

{
C.mainO;

if(s) wait e;
D.mainO;

}
}; // end L_Spec

behavior topO

{
bool s;

d_type data;

event e;

R_Spec R(s,e,data);
L^pec L(s,e,data);
mainO

{
data = old-data ;

par {
R.mainO;
L.mainO ;

}
}

}; // end top

Figure 8: An example of un-determined communication style

13



(a)

behavior A_Spec(bool s, d_type data)

{
mainO

{
s = TRUE;

data = new-data ;

s = FALSE;

}
} ; // end A_Spec

(b)

behavior A_Spec(bool s, d_type data)

{
mainO

{
s = FALSE;

data = new-data ;

}
} ; // end A_Spec

Figure 9: Design two different communication styles using the same communication de
scription: (a) Buffered communication; (b) Update communication

14



style of each external data access is necessary.

4.6 Improper annotation

SLS tools can always generate correct refined descriptions corresponding to input SpecC

descriptions, with or without notations described in this section. The notations play the

roll of providing vital information for improving the design during this refinement(system-

level scheduling). The quality of this refinement is closely depend on the quality of these

notations.

In case the PE type is default, the schedulers assign the behavior instance to be exe

cuted by generic PE; whereas in case the duration is default, the schedulers automatically

allocate one PE for the behavior instance itself and synthesize synchronization signals for

the behavior instance to work correctly with the rest of the system. Therefore, in both

default cases the refined description can still function correctly.

In some cases the original description may run well but the refined description generates

incorrect output, especially when improper or incorrect values are annotated for SLS tools.

This situation implies the original description is not completely correct and will sometime

generate good output but sometimes not. Basically, what the system-level scheduler does is

to add restrictions on the task graph to force task execution through better sequence. Since

the bad notations lead SLS tools into worse cases, the refined description will tend to go

through a worse execution sequence. Therefore, it is more often for the refined description

to generate the bad output.

5 Quick Start

Two simplified SLS tools, sls_time and sls_resource, provide basic features to conquer

time-constraint and resource-constraint scheduling problems respectly. We explain how to

15



use them in the rest of this section.

5.1 Time-Constraint Scheduling

NAME

sls-time - SpecC System-Level(SLS) Time-Constraint Scheduling

SYNOPSIS

sls_time input-file output-file top-bhvr[ -p PE-cost-file] [ -m mobility] [ -b time-constraint

] [ -/]

DESCRIPTION

sls-time reads an SIR(SpecC Internal Representation) [2] file input-file and outputs a refined

description in SIR file ouput-file.

The FE-cost-file is required by sls_time. Use option -p to input the PE cost file name.

The default PE cost file name is wlmf.pel .

In output-file , a refined top behavior _sls_#_top_behavior is generated by scheduling

the original top behavior top-bhvr with time-constraint time-constraint. The is a se

quence number started at 1 and later generated top behaviors are associated with larger

sls_time outputs the name of the refined top behavior to standard I/O.

The original top behavior is not replaced by the refined top behavior. A related tool

change_bhvr, which is described in Section 5.3, can be used to change the behavior type

of selected top behavior instance(s) to the refined top behavior.

ARGUMENTS

input-file input SIR file

output-file refined SIR file

top-bhvr top behavior name ( default: Main )

OPTIONS

16



-p PE-cost-file PE cost file name ( default: wlmf.pel )

-m mobility use mobility as the time-constraint

-b time-constraint use time-constraint

Option -b will overwrite -m ( default: -m 0)

-f evaluate distribution boundaries only, result quicker but a little worse schedule

5.2 Resource-Constraint Scheduling

• NAME

sls_resource - SpecC System-Level(SLS) Resource-Constraint Scheduling

SYNOPSIS

sls_resource input-file output-file top-bhvr resource-priority-file

DESCRIPTION

sls_resource reads an SIR(SpecC Internal Representation) file input-file and a file re-

source-priority-file which contains informations about resources assigned and priorities of

tasks, then outputs a refined description in SIR file output-file.

In output-file , a refined top behavior jls_:j^_top_behavior is generated by scheduling

the original top behavior top-bhvr with the resources and priorities assigned. The # is a

sequence number started at 1 and later generated top behaviors are associated with larger

#. sisjresource outputs the name of the refined top behavior to standard I/O.

The original top behavior is not replaced by the refined top behavior. A related tool

change_bhvr, which is described in Section 5.3, can be used to change the behavior type

of selected top behavior instance(s) to the refined top behavior.

The resource-priority-file is a text file which contains a sequence of numbers. The first

part of the sequence are informations regarding resources allocated. As shown below, the

first number is the total number of types of resources. Following the first number are the

17



numbers of resources allocated of each resource type.

^types 4t^resourceo ^resourcei ^resource2 • • • ^resourcen

The resource type numbers are assigned by an SLS tool sir2etg. The type numbers can be

found in the information displayed by sir2etg running in non-quiet mode ( without option

-q ). Please see Section 10 for details.

The second part of the sequence are informations regarding scheduling priorities of

nodes. As shown below, the first number is the total number of nodes which are assigned

priorities. Following are nodes ranked by priority.

^nodesjwith-priority highest-node second-node third-node • • •

Nodes which are not appeared have the lowest priority. The node numbers are also assigned

by sir2etg. The node numbers can be found in the information displayed by sir2etg

running in non-quiet mode. Please also see Section 10 for details.

In void of the second part of the sequence, all nodes have the same priority.

ARGUMENTS

input-file input SIR file

output-file refined SIR file

top-bhvr top behavior name ( default: Main )

resourcc-priority-file a file which contains the information about available resources and

task priorities.

5.3 Change Type of Behavior Instances

NAME

change_bhvr - change behavior type of a behavior instance

18



SYNOPSIS

change_bhvr originalJSIR replacer [ replacee behavior ] [ -o output.SIR ]

DESCRIPTION

change_bhvr reads an SIR file originalJSIR, changes the behavior type of the selected

behavior instance replacee located in behavior behavior to replacer, then outputs the SIR

to file output-SIR. When no output file is specified, the output will over-write originaLSIR

In case no replacee and behavior are specified, behavior Main will be replaced by the

replacer.

ARGUMENTS

replacer new behavior name

replacee the behavior instance which will be changed

behavior the behavior which replacee is located in OPTIONS

-o output-SIR output SIR file name.

6 Currently Available Tools

Currently available SLS tools are described in this section. Please also see on-line manual

pages for details.

6.1 Transformation from and to SIR

6.1.1 sir2etg

sir2etg reads an SIR(SpecC Internal Representation)[2] file and outputs the ETC of

the selected top behavior to a binary file. Please see header file etgdef .h for details of

the binary ETG file.

Since there can be multiple real entities for each behavior instance, variable, or channel

instance, as discussed in Section 4.3, sir2etg assigns each real behavior entity a unique

19



task identification number. Each communication entity (real channel or variable entity) is

also assigned a unique communication entity identification number. In non-quiet (default)

mode, sir2etg displays informations about traversing the SIR, communication entities,

and the ETG. The task and communication entity identification numbers are included in

the display. We explain these informations in Section 10.

6.1.2 bnd2sir

bnd2sir reads an SIR file and task-to-PE scheduling and binding information, then outputs

the refined SpecC description in SIR. Please see $SPECC/src/sls/api2/read_bnd.cc for

details about the binary file which contains the scheduling and binding information.

In non-quiet (default) mode, bnd2sir displays information about refinement as well as

informations similar to what are displayed by sir2etg. Moreover, the refined SpecC de

scription is explained in Section 11

The refined top behavior's name is _sls_#_top_behavior, where # is a sequence number

started at 1 and later generated top behaviors are associated with larger #. bnd2sir outputs

the newest top behavior name to the standard I/O. The original top behavior is not replaced

by the refined top behavior. Some related tools e.g. chaiige_bhvr can be used to change

the behavior type of selected top behavior instance(s) to the refined top behavior.

6.2 Scheduling and Binding

6.2.1 wlmf

wlmf is a time-constraint scheduling program. It reads an ETG file, and outputs a schedule

of the ETG to a binary file. Please see $SPECC/src/sls/f l/read..sch.cc for details about

the binary file.

A PE cost file is required by wlmf. Use option -p to input PE cost file name. The default

PE cost file name is wlmf .pel. Using option -f can obtain quicker but worse schedule.

20



6.2.2 fplist

fplist is a resource-constraint scheduling program. It implements a fix-priority LIST

scheduling algorithm. It reads an ETG file and an ASCII file which contains the information

about available resources and task priorities, then output a resource-constraint schedule to

a binary file, in which each task is not only scheduled to a specific time but also bound to

a specific PE.

The resource4)riority_f ile is a text file which contains a sequence of numbers. The

first part of the sequence are informations regarding resources allocated. As shown below,

the first number is the total number of types of resources. Following the first number are

the numbers of resources allocated of each resource type.

#types jj^resourceo ^resourcei #resource2 ••• #resourcen

The resource type numbers are assigned by an SLS tool sir2etg. The type numbers can be

found in the information displayed by sir2etg running in non-quiet mode ( without option

-q ). Please see Section 10 for details.

The second part of the sequence are informations regarding scheduling priorities of

nodes. As shown below, the first number is the total number of nodes which are assigned

priorities. Following are nodes ranked by priority.

^nodes-withjpriority highest-node second-node third-node • • •

Nodes which are not appeared have the lowest priority. The node numbers are also assigned

by sir2etg. The node numbers can be found in the information displayed by sir2etg

running in non-quiet mode. Please also see Section 10 for details. In void of the second

part of the sequence, all nodes have the same priority.

Please see $SPECC/src/sls/api2/readJ)nd.cc for details about the binary file which

contains the scheduling and binding information.

21



6.2.3 Limitation on Static Scheduling

As the nature of static scheduling, wlmf and fplist only can schedule acyclic ETGs. To

schedule a ETG which contains loops, each loop needs to be either unrolled or annotated

as a super-node as described in Section 4.2. However, the loop-body can be statically

scheduled.

6.3 Other Tools

6.3.1 uid

uid assigns universal ID numbers for the behavior or channel instances. Both input and

output are SIR files.

6.3.2 sch2pri

sch2pri converts output of wlmf to the resource and priority lists for input of fplist so

fplist can be used as a binder of wlmf. sch2pri outputs to the standard I/O, which can

be re-directed to a file for input of fplist.

6.3.3 changeJbhvr

change_bhvr reads an SIR file, changes the behavior type of a selected behavior instance,

then outputs the updated SIR. When no output file name is specified, the output will

over-write the original SIR file.

f

7 A Synthesis Example

In this section, we use an example to show how the SLS tools are used to do general system-

level scheduling. Figure 10 shows the schematic diagram of the input SpecC description.

The input description can be found in $SPECC/examples/sls/before. sc . In Figure 10,

each box is a behavior instance, and cl, c2, and c3 are channel instances which all have
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Figure 10: The schematic diagram of before, sc

the buffered communication style, as defined in Section 4.5. That is to say behavior instance

B2 has to wait for B6 finished, and so do B8 and B3 to wait for B2 and B8 respectly. In the

rest of this section, we show two basic SLS synthesis scripts, namely, a resource-constraint

scheduling scripts and a time-constraint scheduling scripts.

7.1 Resource-Constraint Scheduling

Figure 11 shows a standard synthesis script for resource-constraint scheduling. SLS tools

input SIR files which can be compiled by the see compiler as before shown in line 1. The

input SIR file can also be generated by other SpecC tools.

The first step ofsystem-level scheduling iscreating the task graph (ETG), as before. etg

shown in line 2. Then, in line 3, wecreate an example resource-priority file before.pri for

the LIST scheduler fplist. The before.pri describes 2 type number 4 PEs are allocated

and task priority sequence are "22, 2, 3, ...". Task 22 has the highest priority, task 2 has

the second highest priority, and so on. The task numbers and PE type numbers are assigned

23



1 see before -se2sir -vv -w

2 sir2etg before.sir -t Main -o before.etg

3 eeho 500002 22 2 3 4 5 7 8 11 14 15 18 19 20 21 0 1 \

13 6 9 10 12 16 17 > before.pri

4 fplist before.etg before.pri -o before.bnd

5 bnd2sir before.sir before.bnd -t Main -o after.sir \

-1 $SPECC/sirlib/_sls_bnd2sirlib.sir

6 ehange_bhvr after.sir _sls_l_top_behavior

7 see after -sir2se -vvv -www

Figure 11: A standard synthesis script for resource-constraint scheduling

by sir2etg and can be found in the display of sir2etg. Please see Section 10 for details.

Moreover, the resource-priority file can be input by the designer as shown here, as well as

automatically generated by estimation or exploration tools.

Once both input data are prepared, the LIST scheduler fplist inputs before.etg and

before.pri, and outputs the scheduling and binding result to before.bnd as shown in

line 4. Then, in line 5, bnd2sir inputs the results and the original description before.sir,

then generates the refined description and outputs it to the SIR file after. sir. The original

top behavior Main is not overwritten by the newly synthesized top behavior. The new top

behavior's name is output to standard I/O. We assume the new top behavior's name is

_sls_l_top_behavior here. Figure 12 and Figure 13 show the schedule-and-binding diagram

and the schematic diagram of the refined top behavior respectly. Again, the schedule-and-

binding file can be generated by fplist as well as any available tools.

Since there could be several instances of the original top behavior, we give the designer
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Figure 12: Input schedule-and-binding for bnd2sir

the power to pick which top behavior instances to be replaced by the refined top behavior.

As shown in line 6, changeJDhvr replaces the original top behavior Main by the new top

behavior _sls_l_top_behavior. Finally, the refined description after.sir can be output

to next refinement tools or deparsed by the see compiler for human reading, as shown in

line 7.

7.2 Time-Constraint Scheduling

Figure 14 shows a standard synthesis script for time-constraint scheduling. Similar to the

synthesis script in Section 7.1, line 1 and line 2 prepare the ETG before.etg for the

scheduler. Then, in line 3, the time-constraint scheduler wlmf schedules before.etg with

given mobility 0.1 and outputs the schedule to the file before.sch.

wlmf is based on a scheduling algorithm similar to Force-Directed Scheduling[3], where

each task is assigned a start time but not bound to a specific PE. As a consequence, we

need to hand over the schedule to a binder to bind each task to a PE. In this example, we

use fplist as the binder. In line 4, a bridge tool sch2pri transforms before.sch into the

input data format of fplist. Then, in line 5 fplist inputs all the necessary information
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Figure 13: The schematic diagram of the refined top behavior
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1 see before -se2sir -vv -w

2 sir2etg before.sir -t Main -o before.etg

3 wlmf before.etg -m 0.1 -o before.seh

4 seh2pri before.seh > before.pri

5 fplist before.etg before.pri -o before.bnd

6 bnd2sir before.sir before.bnd -t Main -o after.sir \

-1 $SPECC/sirlib/_sls_bnd2sirlib.sir

7 ehange_bhvr after.sir _sls_i_top_behavior

8 see after -sir2se -vvv -www

Figure 14: A standard synthesis script for time-constraint scheduling

and generates the schedule-and-binding result before.bnd.

Finally, similar to the synthesis script in Section 7.1, bnd2sir synthesizes the re-

lined description in line 6, and behavior Main is replaced by the synthesized top behavior

_sls_l_top_behavior in line 7.

8 Design Guidelines

In this section, we list several guidelines which can help improve the design quality.

8.1 Partition Leaf-Behaviors

Properly partition leaf-behaviors can effectively improve scheduling quality. Figure 15 shows

an example. The leaf-behavior instance C has synchronized communications with both leaf-

behavior instances A and B. Without partitioning the behavior associated with C, both A

and Bneed to be active with C, thus three processors are required as shown in Figure 15(a).

Once we can partition the behavior associated with C into two new leaf-behaviors with
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(a)

C1 A

C2 B

(b)

Figure 15; An example of refining leaf-behaviors: (a) Before partitioning the leaf-behavior
associated with C, we need three processors to execute these tasks; (b) After partitioning the
leaf-behavior associated with C into two new leaf-behaviors, it needs only two processors.

instantiations C1 and C2 respectly, B can be inactive until C1 and A are finished, thus only

two processors are needed as in Figure 15(b).

9 Current Limitations of SLS Tools

At the time we started developing SLS tools, some features in current SpecC version were

not there. Thus, these features are not dealt in current SLS tools. In this section, we list

these features which are not supported by current SLS tools.

9.1 Bit-vector in port-map[2]

Bit-vectors in port-map are not supported by current SLS tools. Figure 16 shows an exam

ple. SLS tools will display error messages and bail out when they encounter bit-vectors in

port-map.

9.2 Channel with Ports

The idea of a channel which has ports is not fully understood at this time. Currently, SLS

tools assume all accesses of ports of channels are update communications. Moreover, SLS
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behavior xyz( ... );

behavior bit_vector_in_port_map( ... )
{

xyz xyz.inst( varl[i:14]@var2[5:8] ) ;

main(){

}

Figure 16: An example of bit-vectors in port-map

tools can only deal with channel instances in the top behavior and global channel instances

to have ports. SLS tools will display error messages and bail out when they encounter

channel instances which are not global or in the top behavior and have ports.

9.3 Behavior with Multiple Entries

A behavior has multiple member access entries is not supported by current SLS tools.

Figure 17 shows an example of a behavior which has multiple member access entries. SLS

tools will display error messages and bail out when they encounter a behavior member

access other than main(). However, if all the non-leaf behaviors involved in the scheduling

contain only behavior member accesses through main(), SLS tools will work correctly.

10 Read Display of SLS Tools

In non-quiet(default) mode, SLS tools display useful informations for the designer to verify

the refinement and understand the refined description. In thissection, we explain the display

of sir2etg. Other SLS tools display similar informations upon the need of understanding

their refinement.
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interface abc

void xyz( int x );
mainO ;

};

behavior multiple_entry( ... ) implement abc

void xyz( int x ) {

mainO {

>;

behavior MainO

multiple_entry mei( ... );
mainO {

mei.xyz( y );
mei .mainO;

>

>;

Figure 17: An example of a behavior which has multiple member access entries
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The issues discussed in Section 10 and Section 11 are closely related to SIR(SpecC

Internal Representation)[2]. Please see[2] for the definitions of the SIR terminologies.

10.1 Traverse Information

Owing to SpecC Synthesis System is still under construction, SLS tools display trace while

traversing through SIR. The trace is very helpful for verifying and debugging programs and

designs. We use a segment of the trace in Section 10.1.1 along with a portion of related

original SpecC description in Section 10.1.2 to illustrate the traverse information.

Each line of the trace in Section 10.1.1 contains the informations associated with an

SIR_Definition which makes sense to scheduling. Based on scheduler's view, theseSIR_Definitions

can be categoried into to four groups.

1. variables or channel instances

2. leaf-behavior instances

3. non-leaf-behavior instances

4. port-maps

There can be multiple tasks associated with the one leaf-behavior instance and multiple

communication entities associated with one variable or a channel instance, as explained in

Section 4.3.

The informations associated with each of the SIR_Definitions include its name, type,

task-ID(tid), mapping, and scheduling related notations. Most of these informations are

names of behaviors, behavior instances, variables, types, channels, channel instances, inter

faces, etc., which can be found easily in the original description, as shown in Section 10.1.2.

We only explain those which are generated by SLS tools below.
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A line in the trace leads with a number, for example, line 24 of the trace contains the

informations associated with a behavior instance LI in line 235 in the original description.

The leading number is enumerated BehaviorClass as in SIR. The indention of the lines of

the trace indicates the ancestor-descendent relation. For example, line 24 is associated with

behavior instance LI which has 3 ports, cl, c2, and c3 associated with line 25,26, and 27

respectly, and 3 child behavior instances, Bl, B2, and B3 associated with line 28, 32, and 38.

A line in the trace leads with one name followed by a colon and a number, for example,

line 35 contains the information associated with the second port-map of behavior instance

B2 (in line 32 of the trace and line 148 of the original description). The name is the name

of the corresponding SIR_PortVar (ci in line 95 of the original description) and the number

is the ID number of the communication entity which the port is mapped to. We explain

details of the communication entity in Section 10.2.

The task-ID(tid) is generated by sir2etg and is unique when we flatten the hierar

chical SpecC description. We also can use the tid to flnd the ancestors of the task.

10.1.1 A segment of the trace of traversing SIR

18 nb8 * tid=nb8

19 nb9 * tid=nb9

20 3 Main Main

21 cl sig_ch tid=Main.cl

22 c2 sig_ch sls_type="pci":3 tid=Main.c2

23 c3 sig_ch tid=Main.c3

24 2 LI Ll_d

25 cl:16

26 c2:17

27 c3:18

28 1 Bl NOID

29 delay:0

30 mark:6

32



31 sls_type="P5-i00":4 sls_dura=l.OOOOe-01:0.1 tid=Main.Ll.Bl

32 1 B2 10

33 delay:4

34 mark:8

35 ci:16 sls_dir='i':i

36 co:17 sls_dir='o':o

37 sls_type="P5-100":4 sls_dura=7.0000e-02:0.07 tid=Main.Ll.B2

38 1 B3 I

39 delay:2

40 mark:9

41 ci:18 sls_dir='i':i

42 sls_type="P5-100":4 sls_dura=5.0000e-02:0.05 tid=Main.Ll.B3

43 2 L2 L2_d

44 cl:16

45 c2:17

10.1.2 A portion of a SpecC design description

9

10

*nb8 = "B8" ,

*nb9 = "B9" ,

56 behavior NOIO( int delay , char *mark )

57 {

58 void mainO

59 {

60 printfC '"/.Olid s-'/.-7.7s\n" , now() , mark ) ;
61 waitforC delay );

62 printfC '"/.611d e-y.-7.7s\n" , now() , mark );
63 } .

64 };

95 behavior 10( int delay , char *mark , sig_in ci , sig_out co )
96 {

97 note ci.sls_dir = 'i' ;

98 note co.sls_dir = 'o' ;

99
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100 void mainO

101 {

102 ci.readO;

103 printfC "'/,611d s-y,-7.7s\n" , now() , mark );

104 waitforC delay );

105 printfC "'/,611d e-'/,-7.7s\n" , now() , mark );

106 CO.write();

107 }

108 }; .

143 behavior Ll_d( sig_in cl , sig.
144

145 NOIO BKdlOO.nbl);

146 note Bl.sls_dura = 0.1;

147 note Bl.sls.type = "P5-100";

148 10 B2(d70,nb2,cl,c2);

149 note B2.sls_dura = 0.07;

150 note B2.sls_type = "P5-100";

151 I B3(d50,nb3,c3);

152 note B3.sls_dura = 0.05;

153 note B3.sls_type = "P5-100";

154

155 void mainO

156 •c

157 B1 .mainO;

158 B2.main();

159 B3 .mainO ;

160 }

161 }:

231 behavior MainO

232 -C

233 sig_ch cl() ,c20 ,c3();

234 note c2.sls_type = "pci" ;

235 Ll_d Ll(cl,c2,c3);
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236 L2_d L2(cl,c2,c3);

237

238 void mainO

239 {

240 par {

241 Ll.mainO;

242 L2.main();

243 }

244 }

245 };

10.2 Communication Entities

Section 10.2.1 shows an example of listing of the communication entities. Each communi

cation entity is cissigned an ID number. The ID number is used as the major key for cross

reference among SLS tools as well as in refined SpecC description output by SLS tools. The

column entitled # contains the ID numbers.

Each number in the column entitled GPL indicates the origin of the associated commu

nication entity. The communication entities associated with 0 are system-only variables

which are invisible for SLS tools. The communication entities associated with 1 are global

variables or channel instances, associated with 2 are port variables of the top behavior, and

associated with 3 are variables and channel instances in the top behavior. The communi

cation entities associated with 4 are real local variables (explained in Section 4.3) in all the

descendent behavior instances of the top behavior.

Each number in the column entitled PE is the assigned hardware component type number

of the associated communication entity. Each name in the column entitled chnl_def is the

variable or channel type(or interface) of the associated communication entity.

The numbers in the column entitled duration are always zeros, since current SLS tools

did not consider lifetime of communication entities yet.
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10.2.1 An example of listing of communication entities

72 *** communication entity list

73 GPL: O=system-only l=global-var 2=parameter 3=top-bhvr-var \
4=local-var

74 # GPL PE duration chnl_def tid -

75 0 1 2 0.00000 * C ~=^

76 1 1 2 0.00000 * D ~=

77 2 1 2 0.00000 int dlOO

78 3 1 2 0.00000 int d40 -

79 4 1 2 0.00000 int d50 -

80 5 1 2 0.00000 int d60 -

81 6 1 2 0.00000 int d70 -

82 7 1 2 0.00000 int d80 -

83 8 3 2 0.00000 sig_ch Main.'

84 9 3 3 0.00000 sig_ch Main.'

85 10 3 2 0.00000 sig_ch Main.'

86 11 4 2 0.00000 int Main.:

87 12 4 2 0.00000 int Main.!

88 13 4 2 0.00000 int Main.!

10.3 ETG Content

Section 10.3.1 shows a portion of listing of the nodes in the ETG. Similar to communication

entity, each node is assigned an ID number.

Each number in the column entitled NT? indicates the type of the node. The node

associated with 1 or 2 is a task, which is a real behavior instance or a communication entity

with exclusive lifetime, respectly. The node associated 3 is a super-node which is a cluster

of tasks connected by synchronizations. All the immediate successors of the super-node are

those synchronized tasks. The node associated with 4 is a fork, and associated with 5 is a

join.

The numbers in the columns entitled PE, duration, and bhvr_def are similar to that
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in communication entity listing, except the numbers in the duration column are certainly

not always zeros.

At the end of each line are three groups of numbers which are separated by —, ==, and

::. The first group are successors of the node. The second group are predecessors of the

nodes. The third group are port-maps of the node if its type is 1. The port-maps map the

ports of the associated behavior instance to communication entities.

10.3.1 A portion of listing of of the nodes in an ETG

92 *** node dump

93 NTP: l=behavior 2=channel 3=sync_group 4=fork 5=join

94 # NTP PE duration bhvr_def tid — (suee)== (pred):: (para)
95 0 1 4 0.10000 NOID Main.LI.B1 — 2== 20:: 2

96 1 1 4 0.07000 10 Main.LI.B2 — 4== 2:: 689

97 2 5 0 0.00000 Main.LI.B2.in — 1== 0 3::

98 3 2 2 0.00000 sig_eh Main.el — 2== 11::

99 4 4 0 0.00000 Main.LI.B2.out — 7 5== 1::

100 5 2 3 0.00000 sig_eh Main.e2 — 14== 4::

101 6 1 4 0.05000 I Main.LI.B3 — 21== 7:: 4 10

102 7 5 0 0.00000 Main.LI.B3.in — 6== 48::

103 8 2 2 0.00000 sig_eh Main.e3 — 7== 15::

104 9 1 4 0.04000 NGIO Main.L2.B4 -- 18== 20:: 3

105 10 1 4 0,05000 • Main.L2.B5.B5L.B6 — 11== 18:: 4

11 Read Refined SpecC Description Output by bnd2sir

In this section, we only describe how to read refined SpecC descriptions output by bnd2sir.

For details of howthe refined descriptions are synthesized, pleasesee[4]. We use a portion of

a refined design description in Section 11.1 along with a portion of the display of bnd2sir in

Section 11.2 to illustrate how to read the refined SpecC description generated by bnd2sir.

The SpecC in Section 11.1 is created by using see compiler to deparse the SIR generated
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by bnd2sir.

Every SIRJDefinition generated by bnd2sir is prefixed with an sis-header. The sis-

header is a string _sls_#_, where # is an integer. Since it may go through several iterations

to refine the design, a SpecC description can be refined by bnd2sir several times. At each

time, bnd2sir finds the biggest # of all the sis-headers in the description, then increases

one as the new sis-header. If none of the # is found in the input SIR, bnd2sir uses _sls_l_

as the sis-header,

bnd2sir generates a new top behavior, whose name is sis-header + top-behavior, as

in line 643 in Section 11.1. The new top behavior has all the ports, variables, and channel

instances of the original top behavior Main, as in line 485.

In the new top behavior, bnd2sir synthesizes each PE into a behavior instance. Each of

the behavior instances is associated with name sis-header + PE_#1_#2, where #1 is the PE

type number and #2 is the rank of the PE in that type of PEs. For example, _sls_l_PE_4_0

in line 684 is a PE P5-100 whose type number is 4, and so is _sls_l_PE_4_l in line 685.

The behavior associated with each of these PE behavior instances is named sis-header +

PE_#l_#2_def, for example, behavior _sls_l_PE_4_0_def in line 558.

Each PE behavior contains several tasks. bnd2sir synthesizes each task into a behavior

instance associated with name sis-header + BHVR_#, where # is the node ID number of the

ETG as described in Section 10.3. For example, node #6 in line 174 of the display in

Section 11.2 is synthesized into behavior instance _sls_l_BHVR_6 in line 564 of the refined

description.

Similar to tasks, bnd2sir synthesizes each communication entity into a variable or

channel instance associated with name sis-header + CH_# in the new top behavior, where #

is the communication entity ID number as described in Section 10.2.1.

Variables in the new top behavior associated with names sis-header + SIG_ + anything,
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for example, _sls_l_SIG_0_2 in line 646, are signal wires which deliver execution sequence

control signals. Behavior instances associated with names sis-header + CTRL_ + anything,

for example, _sls_l_CTRL_19 in line 671, are glue logics or simply connections of signal

wires. There are seven types of glue logics or connections needed for bnd2sir as shown in

Section 11.3.

Each task with theoretical zero execution time is synthesized as an independent PE

associated with name sis-headerPE_duraO_#, for example, _sls_l_PE_duraO_l. Theoret

ical zero execution time(TZET) means that it is so small that system-level scheduling

can omit it, for example, the delay of a logic gate or a wire connection, or the designer

knows it make no difference for scheduling so he sets sls.dura of the task to zero. bnd2sir

synthesizes each TZET task into one PE so the refined description can produces correct

simulation results, and these TZET can be further refined or moved into other PEs by the

designer.

11.1 A portion of a refined design description

484 #line 231 "before.sc"

485 behavior Main ()

486 -C

487

488 #line 489 "tmp.sc"

489 void mainO ;

490 .

491 #line 233 "before.sc"

492 sig_ch cl(); sig_ch c2();

493 note c2.sls_type = "pci";

494

495 #line 233 "before.sc"

496 sig_ch c3();

497

498 Ll_d LlCcl, c2, c3);
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499 L2_d L2(cl, c2, c3);

500

501 void mainO

502 {

503 par {

504 Ll.mainO;

505 L2.main();}}

506 };

557 #line 558 "tmp.sc"

558 behavior _sls_l_PE_4_0_def (inout int CH_0_0, char *CH_6_1, \

inout int CH_4_2, char *CH_8_3, sig_in CH_i6_4, sig_out CH_17_5, \

inout int CH_0_6, char *CH_14_7, sig_in CH_17_8, sig_out CH_18_9, \

inout int CH_2_10, char *CH_9_il, sig_in CH_18_12, \

in bool SIG_20_0, out bool SIG_0_2, in bool SIG_2_1, \

out bool SIG_1_4, in bool SIG_14_13, out bool SIG_13_i5, \

in bool SIG_7_6, out bool SIG_6_21)

559 -C

560 void main(void );

561 NOIO _sls_l_BHVR_0(CH_0_0, CH_6_1);

562 10 _sls_l_BHVR_l(CH_4_2, CH_8_3, CH_16_4, CH_17_5);

563 10 _sls_l_BHVR_13(CH_0_6, CH_14_7, CH_17_8, CH_18_9);

564 I _sls_l_BHVR_6(CH_2_10, CH_9_11, CH_18_12);

565 _sls_START _sls_l_SEND_SIG_0_2(SIG_0_2);

566 _sls_START _sls_l_SEND_SIG_13_15(SIG_13_15);

567 _sls_START _sls_l_SEND_SIG_l_4(SIG_l_4);

568 _sls_START _sls_l_SEND_SIG_6_21(SIG_6_21);

569 _sls_WAIT _sls_l_WAIT_START();

570 void main(void )

571 {

572 fsm {

573 _sls_l_WAIT_START: { if (SIG_20_0) goto _sls_l_BHVR_0;

574 goto _sls_l_WAIT_START; }
575 _sls_l_BHVR_0: { goto _sls_l_SEND_SIG_0_2; }

576 _sls_l_SEND_SIG_0_2: { if (SIG_2_1) goto _sls_l_BHVR_l;
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666 bool _sls_l_SIG_9_18 = false;

667 _sls_OR_l _sls_l_CTRL_ll(_sls_l_SIG_10_ll, _sls_l_SIG_ll);

668 _sls_AND_2 _sls_l_CTRL_14(_sls_l_SIG_5, _sls_l_SIG_12_14. \

_sls_l_SIG_14);

669 _sls_OR_l _sls_l_CTRL_15(_sls_l_SIG_13_15, _sls_l_SIG_15);

670 _sls_OR_l _sls_l_CTRL_18(_sls_l_SIG_9_18, _sls_l_SIG_18);

671 _sls_AND_2 _sls_l_CTRL_19(_sls_l_SIG_15, _sls_l_SIG_17_19, \

_sls_l_SIG_19);

672 _sls_AND_2 _sls_l_CTRL_2(_sls_l_SIG_0_2, _sls_l_SIG_3, \

_sls_i_SIG_2);

673 _sls_START _sls_l_CTRL_20(_sls_l_SIG_20);

674 _sls_AND_2 _sls_l_CTRL_21(_sls_l_SIG_6_21, _sls_l_SIG_19, \

_sls_l_SIG_21);

675 _sls_OR_l _sls_i_CTRL_3(_sls_l_SIG_ll, _sls_l_SIG_3);

676 _sls_OR_l _sls_i_CTRL_4(_sls_l_SIG_l_4, _sls_l_SIG_4);

677 _sls_OR_l _sls_l_CTRL_5(_sls_l_SIG_4, _sls_l_SIG_5);

678 _sls_AND_2 _sls_l_CTRL_7(_sls_l_SIG_4, _sls_i_SIG_8, _sls_l_SIG_7);

679 _sls_OR_l _sls_l_CTRL_8(_sls_l_SIG_15, _sls_l_SIG_8);

680 sig_ch cl();
681 sig_ch c2();

682 note c2.sls_type = "pci";

683 sig_ch c3();
684 _sls_l_PE_4_0_def _sls_l_PE_4_0(dl00, nbl, d70, nb2, cl, c2, \

dlOO, nb8, c2, c3, dSO, nb3, c3, _sls_l_SIG_20, _sls_l_SIG_0_2, \

_sls_l_SIG_2, _sls_l_SIG_l_4, _sls_l_SIG_14, _sls_l_SIG_13_15, \

_sls_l_SIG_7, _sls_l_SIG_6_21);

685 _sls_l_PE_4_l_def _sls_l_PE_4_l(d40, nb4, dSO, nb6, cl, d70, nb7, \

dSO, nb9, d60, nblO, _sls_l_SIG_20, _sls_l_SIG_9_18, \

_sls_l_SIG_18, _sls_l_SIG_10_ll, _sls_l_SIG_ll, _sls_l_SIG_12_14, \

_sls_l_SIG_18, _sls_l_SIG_17_19);

686 void mainO

687 {

688 par {

689 _sls_l_CTRL_2 .mainO ;

690 _sls_l_CTRL_3.main();
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691 _sls_l_CTRL_4.main();

692 _sls_l_CTRL_5 .mainO ;

693 _sls_l_CTRL_7 .mainO ;

694 _sls_l_CTRL_8 .mainO ;

695 _sls_l_CTRL_ll .mainO

696 _sls_l_CTRL_14.main()

697 _sls_l_CTRL_15.main()

698 _sls_l_CTRL_18 .mainO

699 _sls_l_CTRL_19 .mainO

700 _sls_l_CTRL_20 .mainO

701 _sls_l_CTRL_21 .mainO

702 _sls_l_PE_4_0.inain();

703 _sls_l_PE_4_l .mainO

704 };

11.2 Display of bnd2sir

133

134

135

136

137

138

139

140

141

142

143

PE type# quantity name

0

1

2

3

4

0 default

0 chnl_default

0 pel

2 P5-100

TOP BEHAVIOR: Main

*+* communication entity list

GPL: O=system-only l=global-var 2=parameter 3=top-bhvr-var \

4=local-var

144 # GPL PE chnl_def tid

145 0 1 chnl_defau int dlOO

146 1 1 chnl_defau int d40

147 2 1 chnl_defau int d50

148 3 1 chnl_defau int d60

149 4 1 chnl_defau int d70

150 5 1 chnl_defau int d80
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151 6 1 chnl_defau * nbl

152 7 1 chnl_defau * nblO

153 8 1 chnl_defau * nb2

154 9 1 chnl_defau * nb3

155 10 1 chnl_defau * nb4

156 11 1 chnl_defau * nb5

157 12 1 chnl_defau * nb6

158 13 1 chnl_defau * nb7

159 14 1 chnl_defau * nb8

160 15 1 chnl_defau * nb9

161 16 3 chnl_defau sig_.ch Main.cl

162 17 3 pci sig_.ch Main.c2

163 18 3 chnl_defau sig_.ch Main.c3

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

*** node dump

NTP: l=behavior 2=chaiinel 3=sync_group 4=fork 5=join

# NTP PE PE# schedule bhvr_def tid — (succ)== (pred) ::(ref)

0

1

2

3

4

5

6

7

8

9

10

1 P5-100

1 P5-100

5

2 chnl_defau -

4 c

2 pci

1 P5-100 0

5 c

2 chnl_defau -

1 P5-100

1 P5-100

18:: 2 12 16

11 4

12 3— 10: :

12 1 P5-100

11:: 4 13

13 1 P5-100

14:: 0 14 17 18

0.00000 NOIO Main.LI.B1 — 2== 20:: 06

0.10000 10 Main.LI.B2 — 4== 2:: 4 8 16 17

0.10000 Main.LI.B2.in — 1== 0 3::

0.09000 sig_ch Main.cl — 2== 11::

0.17000 Main.LI.B2.out — 7 5== 1::

0.17000 sig_ch Main.c2 — 14== 4::

0.27000 I Main.LI.B3 — 21== 7:: 2 9 18

0.27000 Main.Ll.B3.in — 6== 4 8::

0.27000 sig_ch Main.c3 — 7== 15::

0.00000 NOIO Main.L2.B4 — 18== 20:: 1 10

0.04000 0 Main.L2.B5.B5L.B6 — 11== \

0.09000 Main.L2.B5.B5L.B6.out ~ \

0.09000 NOIO Main.L2.B5.B5L.B7 — 14== \

0.17000 10 Main.L2.B5.B5L.B8 — 15== \

44



182 14 5 c 0.17000 Main.L2.B5.B5L.B8.iii ~ \

13== 5 12::

183 15 4 c 0.27000 Main.L2.B5.B5L.B8.out — \

19 8== 13::

184 16 1 P5-100 1 0.16000 NOIO Main.L2.B5.B5R.B9 — 17== \

18;: 2 15

185 17 1 P5-100 1 0.21000 . NOIO Main.L2.B5.B5R.BIO — 19== \

16:: 37

186 18 4 c 0.04000 Main.L2.B5.fork — 10 16== 9::

187 19 5 c 0.27000 Main.L2.B5.join — 21== 15 17:

188 20 4 c 0.00000 Main.fork — 0 9==::

189 21 5 c 0.32000 Main.join —== 6 19::

190

191 New top behavior: _sls_l_top_behavior

192

193 *** control box: 2 3 4 5 7 8 11 14 15 18 19 20 21

194

195 *** behavior instance — tasks in the behavior

196 _sls_l_PE_4_0 — 0 1 13 6

197 _sls_l_PE_4_l — 9 10 12 16 17

11.3 Behaviors of Glue Logics and Connections Needed by bnci2sir

behavior _sls_EMPTY_BHVR()

•C

void mainOO

behavior _sls_WAITO

{

bool first_time=true;

void main(){

if(first_time) first_time=false;

else wait _sls_event;

}

>;
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behavior _sls_START(out bool OUT)

{

bool first_time=true;

void main(){

if(first_tirae){

first_time=false;

•UT=true;

notify _sls_event;

}

else wait _sls_event;

>

>;

behavior _sls_SYNC_START(out bool RDY,in bool START)

{

void main(){

RDY=true;

notify _sls_event;

while(!START)

wait _sls_event;

}

};

// # is a parameter

behavior _sls_SYNC_#(in bool IN,out bool OUT,

in bool RDY_0,in bool RDY_1, ... in bool RDY_(#-1),

out bool START)

•c

void main(){

while(!IN) wait _sls_event;

•UT=true;

notify _sls_event;

whiled(RDY.O && RDY.l && ... && RDY_(#-1)))

wait _sls_event;
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START=true;

notify _sls_event;

}

};

// # is a parameter

behavior _sls_AND_#(in bool IN_0,in bool IN_1, ... in bool IW_(#-1),
out bool OUT)

{

void main(){

while(!(IN_0 && IN_1 && ... & IN_(#-!)))

wait _sls_event;

•UT=true;

notify _sls_event;

>

};

// # is a parameter

behavior _sls_OR_#(in bool IN_0,in bool IN_1, ... in bool IN_(#-1),
out bool OUT)

void main()-[

while(!(IN_0 || IN_1 || ... || IN_(#-!)))

wait _sls_Gvent;

•UT=true;

notify _sls_event;

>

>;
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