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Abstract 

The traditional clustering method utilized to partition 
neuronal firing patterns, including K-means and FCM 
algorithm, require specification of clusters numbers as priori 
knowledge. A new approach to analyze groups of firing 
patterns of neuronal spike trains based on community 
structure partitioning analysis and modularity function Q is 
examined in this study. This approach is able to automatically 
identify the optimal number of groups in neuronal firing 
patterns, realizing the true unsupervised analysis, and identify 
groups of neurons with similar firing patterns. The method 
was tested on a surrogate data set and a testing data set with 
firing patterns known in advance. The method was also 
applied to multi-electrode recording spike trains with 
previously unknown patterns. Results indicate this method 
can effectively self-determine number of pattern groups and 
locate firing patterns of neuronal populations based on 
community modularity Q. 

Keywords: Community structure; Modularity; Clustering; 
Neuronal firing pattern 

Introduction 

A pressing neuroscience question exists as brain neuron 

encoding related to external information  for learning, 

memory and other cognitive tasks remains unknown (Brown 

et al., 2004). Neurons transmit information through the form 

of action potentials. The distributions of action potentials 

firing at different times and spaces is referred to as spatial-

temporal firing patterns. The study found when the same 

stimulation currents were injected into the soma of a cortical 

neuron in vitro the neuron may produce similar firing 

patterns (Fellous et al., 2004.). These patterns are very likely 

the neural basis of information representation and 

processing (Pillow et al., 2008). Each cortical area is 

composed of a large number of neurons, thus the study of 

brain functions has transferred from a single neuron to a 

large neuronal populations. The development of 

extracellular recording techniques has allowed a number of 

neurons to be recorded simultaneously by utilizing the 

multi-electrode recording (Buzsáki, 2004). Analysis of the 

intrinsic firing relationship between these neurons may 

reveal an existing structural or functional connectivity 

between the neurons (Jarrell et al., 2012). Studies have 

revealed brain modularity when performing cognitive tasks 

and that neural firing activities within the modules are 

correlative with several neurons exhibiting some type of 

similar firing patterns in a module (Schneidman et al., 2006). 

Discovering and analyzing neural systems holds key 

significance in revealing brain patterns (Lindsey et al., 

1997).    

Many computational and methodological challenges exist 

to study these firing patterns (Brown et al., 2004).  

Clustering methods such as the K-means clustering 

approach, FCM clustering algorithm and spectral clustering 

method have also been proposed to analyze the firing 

patterns (Toups & Tiesinga, 2006; Paiva et al., 2007). 

Clustering methods must specify the number of pattern 

groups in advance while the number of groups in real spike 

trains is unknown, limiting the practical usefulness of these 

methods. A new spike trains communities finding method 

based on the principle of community structure detection has 

been proposed; however, this method also utilized K-

means++ clustering algorithm in resulting similarity matrix 

eigenvectors (Humphries, 2011). Newman (2011) applied 

the clustering algorithm described by Humphries (2011) to 

identify neuron communities during a reach and grasp task 

(Newman et al., 2011). Community structure detection 
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algorithm is a graph partitioning method widely utilized in 

social network analysis. The recognition of community 

structure is a NP-hard problem with many new methods 

proposed to solve the problem. A modularity function Q has 

been proposed to optimize the community structure 

partitioning problem without requiring knowledge of 

community numbers in advance and to find the optimal 

partitioning of community structure by maximizing the 

modularity function Q (Le & Hankin, 2011). 

 

 
 

Figure 1: Schematic overview of neuronal functional 

network construction. (A) The original spike trains (line 

represents neuronal spikes). (B) Spike vector groups by 

binning the spike trains. (C) Correlation matrix by 

calculating correlations between two neuronal spike trains. 

(D) Retain all edges and construct a neuronal functional 

network. Physical locations of neurons in this Figure are 

random as study is limited to the functional connections 

between neurons. 

 

A new neuronal firing pattern finding method based on 

optimization of modular function Q was proposed in this 

study. Neuronal functional networks constructed from 

neuronal spike trains can be divided into different modules 

through the Ncut clustering algorithm. Optimal division of 

spike trains was obtained by searching for the maximum 

value of Q using this method.  Number of pattern groups 

was determined automatically by dividing the corresponding 

neuronal spike trains into similar groups, realizing the true 

unsupervised clustering of firing patterns. The K-means 

clustering algorithm was not utilized as with other existing 

firing pattern finding methods, thus this method not only 

found the similar spatial-temporal firing groups, but also 

divided neuronal functional networks into different 

community structures (Gansel & Singer, 2012; Toups & 

Tiesinga, 2006). Results revealed the technique was 

effective when tested on a surrogate data set and a testing 

data set with pattern structures known in advance. Finally, 

application to in vivo multi-electrode recording neuronal 

spike trains data set was performed with the firing patterns 

hidden and undiscovered. 

Materials and Methods 

Surrogate data set 

Proposed methods in this study were tested utilizing spike 

trains data sets with known neuronal firing patterns. A 

spiking neuronal model was utilized to generate a data set 

containing the three similar firing pattern groups (Izhikevich, 

2003). The number of neurons was 30.  The known neuronal 

community structure model included 3 communities and 

was constructed so neuronal firing patterns in each 

community were similar. Each community structure 

contained 10 neurons as presented in the neuronal raster plot 

(Fig.1A). Although neuronal firing patterns in this data set 

are simple, pattern clustering analysis methods are required 

to accurately locate firing patterns. 

Testing data set 

A testing data set, created by Fellous (2004), composed of 

90 spike trains and containing 3 pattern groups, was also 

utilized. A spike train simulates common patterns across 

trials of a single neuron. The corresponding neuronal raster 

plot is depicted in Fig.3A. Noise and jitter were added to the 

spike trains causing the spike trains to exhibit irregular 

firing. The data set can be obtained from sharing website 

(available from 

 http://cnl.salk.edu/fellous/data/JN2004data/data.html) and 

can be used to test various firing pattern finding algorithm. 

In vivo recording data set 

Data sets above were utilized to introduce a new 

modularity-based method for finding firing patterns in multi 

spike trains. This method was applied to real in vivo spike 

trains data as neuronal spike trains were analyzed by 

utilizing the multi-electrode arrays recorded from behavioral 

rats performing the Y-maze working memory task. Male 

Spraque-Dawley rats were used. Surgical procedures were 

performed under sodium pentobarbital anesthesia. 

Microelectrode array was made by 16 microelectrodes. 

Microelectrode array was implanted in the left mPFC. 

Recording signal acquisition system used the Plexon 

multichannel acquisition processor system. Spike trains of 

neurons were obtained by the Plexon Offline Sorter. All 

experimental procedures were approved and monitored by 

the Ethical Committee of Animal Experiments at the 

Institute of Neurobiology, Fudan University (Shanghai, 

China). Trial processes were selected randomly at a time 

period. The time length was 42s, between 3082s and 3124 s 

of the whole recording time. The data set included 82 task 

trials with 20 neuronal spike trains analyzed. 

Methods 

Different types of neuronal spike trains data sets were 

collected including multiple neuronal spike trains recorded 

from a trial task and neuronal spike trains consisting of 

several trials of single neurons.   
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Figure 2: Utilizing the proposed method to locate firing patterns in the data set presented in Fig. 1A. (A) Represents raster 

plot of 30 neuronal spike trains. (B) Represents correlation matrix between neurons. (C) Distribution of Q values utilizing the 

Newman modularity is represented, deriving maximum value of Q when the number of communities equals 3. (D) According 

to the Q, we divided 30 neurons into 3 communities only give out the connections between the inter-communities. (E) 

Correlation matrix in Fig. 2B was sorted according to the communities, resulting in a new matrix, indicating obvious modular 

structure compared to Fig. 2B. (F) Raster plot of spike trains with sorting according to similar firing patterns in Fig. 2A and 

time window size set to 10s. 

 

Construction of the functional connections between 

neuronal spike trains based on the correlation of neuronal 

firing were first required.  Figure 1 depicts a raster plot of 

multi-neuronal spike trains with each mark representing the 

firing of a neuronal action potential. A line of marks 

represents a neuronal action potential sequence. Calculating 

correlations between pairs of neurons is the first step to 

constructing functional connections of neurons. The 

procedure was realized, in this study, by binning the spike 

rastergram into non-overlapping, short time windows (also 

refers to bins). Multiple neuronal spike trains were 

converted to vector groups by sizing the bin utilizing 

parameter  t  and counting the number of spikes in each 

bin. The element of vector represents the number of spikes 

in each bin, as indicated in Fig. 1B.  Pearson correlation 

coefficient r was utilized to calculate the correlation 

between the two spike trains:  
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Where xi represents the value of the ith bin of the xth spike 

trains. x  represents the average values of all bins of the xth 

spike trains. The value of r is between -1 and 1. 

Pearson correlation has been widely utilized to calculate 

correlations between brain signals in the study of brain 

functional networks.  Focus of this research includes 

functional connectivity strength between neurons, regardless 

of the direction of functional connections, so the 

connectivity weights between neurons were defined as 

absolute values of Pearson correlation coefficient, 

 ijR r  (2) 

The undirected, weighted neuronal functional 

connectivity graph was built based on the weighted 

correlation matrix R (Liang & Zhang, 2011).  Weighted 

network is converted into binary by thresholding to simplify 

the analysis in some studies. Different group partitioning 

methods, based on the correlation matrix R, may be utilized 

to divide matrix into different clusters.  Standard data 

clustering techniques, such as K-means may be utilized to 

find clusters within the comparison matrix; however, K-

means requires specific clustering numbers and cluster 

centers in advance. The Ncut spectral clustering algorithm 

proposed by Shi and Malik(2000) and utilized in this study, 

is a graph-based partitioning method (Shi & Malik, 2000).  

Ncut algorithm produces a comparatively superior 

performance and has been applied in the brain functional 

networks of fMRI (Van et al., 2008; Shen et al., 2010).  

Ncut algorithm application obtains a neuronal functional 

network partition.   Evaluation of the partition quality and 

derivation of the number of groups hidden in spike trains 

was achieved utilizing the modular function Q (Newman, 

2004; Leicht & Newman, 2008). When value Q reached 

maximum, a corresponding number of communities 

reflected the number of neuronal firing pattern groups. A 

weighted network modular function Q is defined as follows: 
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Figure 3: (A) Original raster of spike trains. (B) Distribution of different modularity Q calculated from different number of 

pattern groups. (C) Divide 90 trials into three firing pattern groups with time window size set to 0.2s. 

 
 

Figure 4: The time window size is set to 4s. (A) original raster plot of spike trains (B) correlation matrix of spike trains (C) 

distribution of different Q value (D) correlation matrix sorted according to two similar patterns (E) sorted spike trains with 

two similar firing patterns. 
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Where l  is the sum of values in the weighted matrix.  

ik  and jk  are the degree of node i and node j , 

respectively. ij  is the Kronecker delta function, which 

equals 1 when node i  and node j  are in the same 

community and 0 when elsewhere. The community 

partitioning analysis process was realized by performing the 

following two steps alternately. A single partitioning was 

obtained in the first step utilizing Ncut algorithm when the 

number of communities was assigned to 2. The value of Q 

was calculated corresponding to this partitioning in the 

second step. One was then added to the number of 

communities and the above two steps repeated until the 

number of communities equaled the number of nodes. A 

distribution of Q values and corresponding partitioning was 

obtained and maximum modularity Q and corresponding 

partitioning then derived. 

Results 

Surrogate data set 

The study method automatically identified similar firing 

patterns of neurons by utilizing the community partitioning 

algorithm, including the number of pattern groups and 

corresponding firing patterns, without prior knowledge of 

patterns contained in the data sets.  Effectiveness of this 

method is illustrated as partitioning algorithm on a surrogate 

data set is tested. Figure 2 presents a description of the 

implementation procedure.   

Prior knowledge of pattern groups does not exist in the 

spike trains although there were obvious firing patterns 

among 30 neuronal spike trains (Fig. 2).  The initial 

structures between neurons were in disorder (Fig. 2A), thus 

the number of groups and the firing patterns contained in the 

spike trains remained unknown without applying the 

clustering analysis method. Using the proposed community 

partitioning method, the number of pattern groups was 

automatically identified and equaled 3 (Fig. 2C).  Ncut 
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Figure 5: Distribution of different Q with different bin size t parameter selected (A) Results of surrogate data set when bin 

size equals 5s and 10s and optimal number of groups 3 are identified. Optimal number of pattern groups is 2, otherwise. (B) 

Results of testing data set. 

 

partitioning method was then utilized to divide the 30 

neurons into 3 groups according to the pattern similarity 

(Fig. 2D) while the original spike trains were sorted 

resulting in a new raster plot (Fig. 2F). Compared to Fig. 2A, 

Fig. 2F exhibits three obvious spatial-temporal firing 

patterns and Fig. 2B and Fig. 2E represent the correlation 

coefficient matrix of before sorting and after sorting, 

respectively. 

Testing data set 

A different data sent created by Fellous (2004) and 

containing a known number of groups equaling 3 was also 

tested. Figure 3 presents experimental results with Fig. 3A 

representing spike trains containing multiple trials of a 

neuron. Neuroscientists utilize the clustering analysis 

method to discover the firing pattern in the spike trains. 

Spike trains were divided into different communities and 

corresponding Q values calculated. Maximum modularity 

value of Q was obtained when the number of communities 

equaled 3. Ninety trials of spike trains were divided into 3 

groups utilizing the Ncut algorithm as represented in 

different colors (Fig. 3C). Number of groups known in 

advance is not required with this method as opposed to the 

K-means clustering method, thus pattern discovery occurs 

unsupervised. 

In vivo recording data set 

The framework was applied to the recording spike trains in 

vivo and a trial process of spike trains was selected with a 

time period of 40 s and the number of neurons at 20.  

The spike trains data set was recorded from the prefrontal 

cortex of a rat chronically implanted with multi electrode 

arrays (see methods). Structure of the data set, including the 

number of pattern groups, was unknown in advance, thus 

the proposed analysis method was applied to detect 

assemblies.  Community modularity Q was utilized for this 

study as Q values were calculated when the number of 

communities varied. The maximum Q was found when the 

number of communities equaled 2 (Fig. 4C). The 20 

neuronal spike trains were then divided into two groups and 

two firing patterns identified. (Fig. 4E) 

Parameters selection 

Bin size t of spike trains is a parameter utilized in this study 

as different t will affect the number of spikes in each bin. 

The impact of bin size on experimental results was analyzed 

as a series of different bin sizes was utilized to construct 

neuronal functional networks. Framework proposed in this 

study was then applied to detect the optimal number of 

groups. 

Results of the two data sets were compared with the 

optimal number of groups known in advance. Different 

parameter influence on identification of the optimal number 

of groups was investigated revealing that different bin size 

affected optimal number of groups. Research for parameter 

selection is difficult. There is no more researches to show 

how to select the parameters reasonably. 

Conclusion 

A new method to detect multi neuronal firing patterns has 

been provided with the overall algorithm based on the 

Pearson correlation coefficient matrix, Ncut partitioning 

algorithm and modularity function Q. The algorithm 

automatically determines the number of pattern groups 

contained in spike trains by comparing the value of Q. 

Based on the maximum value of Q corresponding to 

potential optimal number of pattern groups, the firing of 

multi spike trains can be divided into different firing 

patterns without a priori knowledge about the number of 

groups or structure of spike trains. However, modularity 

function Q encounters the problem of resolution limit, 

which cannot identify some modules smaller than a certain 

scale. In future research, we will extend community 

structure partitioning methods that do not depend on 

modularity optimization (Lu & Wei, 2013). 
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