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ABSTRACT OF THE DISSERTATION 

 

 

Shared and Distinct Visuomotor Mechanisms Underlying  

Action Processing of the Self and Others 

 

by 

 

Akila Kadambi 

 

Doctor of Philosophy in Psychology 

University of California, Los Angeles, 2022 

Professor Hongjing Lu, Chair 

 

My dissertation aims to reveal the visuomotor mechanisms that underlie action processing 

of the self and others. The dissertation will shed light on domain-general computations underlying 

actions across the identity of others, as well as those unique to one’s own action. As 

methods, I will incorporate behavioral, neuroimaging, and computational techniques. I will 

further incorporate different types of stimuli ranging from visually impoverished point-light 

displays of the human body to contextually rich video stimuli. Chapter 1 examines at 

the behavioral level, how recognition of our own actions is affected by factors beyond visual 

properties, related to motoric and intrinsic participant variability. Chapter 2 extends the 

behavioral work to brain imaging, and further measures similarities and differences in neural 

activity for actions of the self and others. Chapter 3 shifts from the self to the actions of 

others involved in a range of social interactions. This chapter will systematize the degree 

of social context using methods adopted from computer vision and measure the representational 

space of motor and social features contributing to judgements of incongruency in the 

interaction. 
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Three questions maintain throughout the chapters: 

(1) What are the visuomotor mechanisms that underlie action processing of the self and 

others? 

 

(2) How distinct are neural computations for action recognition of the self and others, and 

to what degree do they rely on visuomotor featural processing? 

 

(3) What visuomotor features are selective and generalizable across the type of action stimuli 

(ranging from visually impoverished to contextually rich)? 
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CHAPTER 1 

 

1.1. General Introduction 

Human beings are one in the same. Our neurobiological similarities bind us together and 

allow for the exchange of shared experiences. Despite the similarities we share as species— our 

differences could collectively be reduced to what we lack access to: internal mental states of others.  

Aside from verbal communication, actions are perhaps the most important medium to 

indirectly access the hidden mental states of others. From action information conveyed by others, 

humans can infer rich social attributes including identity (Jokisch et al., 2006; Loulaet al., 2005; 

Cutting Kozlowski, 1977; Beardsworth Buckner, 1981), familiarity (Cutting & Kozlowski, 1977), 

emotional state (Atkinson et al., 2004; Dittrich et al., 1996; De Gelder et al., 2015; Roether et al., 

2009; Coulson, 2004) across different cultures (Parkinson et al., 2017), gender (Pollick et al., 2002; 

Pollick et al., 2005; Johnson et al., 2011), as well as personality traits (Thoresen et al., 2012; 

Heberlein et al., 2004; Gunns, Johnston, Hudson, 2002). Human inference from actions exceeds 

even that of modern-day surveillance systems, enacting a critical role in situations where cues to 

facial identity are masked (e.g., robbers covering their faces with masks) (Coste, 2020), as well as 

in daily life— shown recently in the pandemic, where the use of masks obscured facial identity, 

yet human movements proved especially useful as compensatory and robust biometric cues to 

identity. Despite the importance of action information in daily life, how our brain extracts high-

level attributes such as identity and social inferences from sparse action information, remains 

largely unclear.  

Findings from systems-level neuroscience demonstrate the importance of lower-level action 

systems to higher-level social inferences. These motoric regions are not only involved in action 
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production and perception, but also assist in social attributions, revealed by increased neural 

activity within and connectivity between these regions that interact with networks typically 

implicated in social cognition (e.g., mentalizing network) (Keysers and Gazzola, 2007). Motoric 

regions that code between both the self and other are collectively termed “mirroring” regions, since 

they procure a special common coding function that compares the similarity between the visual 

processing of actions of others and our own motor codes (Di Pellegrino et al., 1992; Rizzolatti et 

al., 1996; Gallese et al., 1996; Rizzolatti & Craighero, 2004). From this has followed numerous 

studies showing how our motor experience serves as a building block for ability to engage in 

higher-level shared social understanding in relation to empathy and theory of mind of others (e.g., 

Gallese & Goldman, 1998; Gallese 2005; Carr et el., 2003; Pfeifer et al., 2008; Iacoboni 2009). 

Interestingly however, we have copious visual experience observing the actions of others. 

It’s a familiar sight to see another human being moving. It’s also a familiar experience to 

“feel” oneself moving from a first-person and kinesthetic perspective. Unfamiliar to us, is 

the bridge that binds them: seeing our whole selves moving. Third-person glimpses of our 

bodies may indeed be captured through videos or glass mirrors, but are far less observable 

in daily life as compared to the rich visual experiences we have seeing the movements of 

close friends or coworkers. Since the visual experience of seeing oneself from an allocentric 

(third-person; 3PP) perspective is unfamiliar to a large extent, self-action recognition is often 

thought to tap into an intrinsic sense of sensorimotor or kinesthetic “awareness” (Blanke, 

2012; Blanke, 2015). This fundamental difference between actions of the self and others 

raises important mechanistic considerations: To what extent are the neural computations 

of these stimuli, actions of the self and others, processed similarly in the brain? Do they 

rely on identical neurocomputational features as cues to identity processing? How does 
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the presence of contextual information affect these computations? The present dissertation 

aims to address these questions. I will begin with a brief literature review on empirical work 

connecting action processing of the self and others. I will then introduce our large-scale 

study on self-action recognition, which in Chapter 1, directly compares the contribution of 

quantitatively derived features of visual action similarity to motoric and intrinsic influences 

in self-action recognition. In Chapter 2, I will extend the behavioral work to a neuroimaging 

paradigm. Here, I aim to show the commonalities and differences in neural recruitment and 

visuomotor features involved for action recognition of the self and others. In Chapter 

3, I shift focus from the self, to measure the visuomotor mechanisms that underlie action 

processing of others. Chapter 3 incorporates advances in computer vision that systematize 

the relative contributions of visuomotor and contextual information. In contrast to the 

minimal visual input of actions in Chapters 1 and 2, Chapter 3 uses diverse and naturalistic 

stimuli across a range of scenes and social interactions that convey both action congruencies 

and incongruencies. Across these studies, findings from my thesis stand to advance our 

understanding of how the brain represents actions of the self and others, bridging together 

behavioral, neuroimaging, and computational work. 
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1.2. Background 
 
 

1.2.1. Self-Action Processing 
 

Since we rarely view our own body movements in our daily lives, understanding how we recognize 

our own movements sheds light on the core of self-awareness and on the representation of actions. 

The extent to which vision modulates recognition of our whole bodies in motion, posits an 

intriguing question. We often view our own bodies from an egocentric frame of reference, with 

the world constructed through these body-centered coordinates. As a result, the visual information 

conveyed from an egocentric perspective is incongruent with our whole bodies perceived from an 

allocentric frame of reference. On the other hand, we have copious experience viewing other 

people’s actions in an allocentric frame of reference, for which we lack direct visual experience of 

our own whole-body actions. How does this lead to processing differences at the neural level 

between self and other actions? Are there unique computations when viewing our actions in the 

third person relative to others, even after degrading visual cues to identity? 

To study the mechanisms of action processing, empirical paradigms in action recognition 

of the self and others often incorporate visually impoverished stimuli known as point-light 

displays (PLD)s (Johansson, 1973) in 3PP. These stimuli prioritize tight methodological 

control, by rendering visual information of the body to a series of dots localized to key 

joints, which enables the vivid percept of an animated human figure. Despite the visually 

degraded stimuli, humans can infer a wealth of socially-relevant attributes from PLDs in- 

cluding gender (Pollick et al., 2002; Pollick et al., 2005; Johnson et al., 2011), emotional 

state (Atkinson et al., 2004; Dittrich et al., 1996; De Gelder et al., 2015; Roether et al., 2009; 

Coulson, 2004), and identity (Cutting Kozlowski, 1977). Moreover, the work has shown 

compelling evidence for a self-processing advantage—that humans can recognize their own 
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identity from PLDs presented across different action types and in these unfamiliar, allocen- 

tric perspectives (Jokisch et al., 2006; Loula et al., 2005; Beardsworth Buckner, 1981; Coste 

et al., 2021; Burling et al., 2019; Kadambi et al., under review). As a result, self-recognition 

from PLDs is often thought to rely on factors that are deeper than vision, such as motoric 

experience—a privileged access one has to their own motor system— since the displays are 

depicted in unfamiliar viewpoints and visual cues to identity are significantly diminished. 

However, direct evidence for the increased motoric involvement underlying the processing of 

self-actions is poorly understood, requiring a bridge between quantitative and neural metrics 

in self-action recognition. In Chapter 1, I directly test this question by measuring quan- 

titative contributions of visual features in comparison to motoric mechanisms in self-action 

recognition. In Chapter 2, I extend the behavioral work to directly map out the neural 

circuitry that underlies self-action recognition and assess the contribution of visuomotor 

features in the underlying representational space. 

 

1.2.2. Neural networks underlying action processing of self and others 

Since humans can recognize their own actions from sparse visual input, other modalities and 

systems beyond vision clearly contribute to self-recognition and potentially to action recognition 

of others. What are these underlying neural mechanisms? 

The neural mechanisms involved in action processing are collectively studied in two lines 

of work that together comprise the action observation network (AON). The first line of 

empirical work is focused on the visual neuroscience of actions (Urgen et al 2019), which 

prioritizes methodological control by using whole-body PLDs and focuses on the neural con- 

tributions of low- and mid-level temporooccipital neural regions to action processing. These 
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studies reveal insight as to how regions of the temporooccipital cortex, notably the extras- 

triate body area (EBA), fusiform body area (FBA), and posterior superior temporal sulcus 

(pSTS), are vital for processing lower and mid-level features of the human body related to 

postural attributes (de Gelder and Solanas, 2021), kinematics (Astafiev et al., 2004), their 

spatiotemporal integration (Downing Peelen, 2001; Zimmermann et al., 2018), as well as 

affective attributions (e.g., De Gelder and Solanas, 2021). The EBA, in particular, sits at 

interface of both perceptual and motor processing, with evidence for processing both static 

and dynamic postural attributes related to the human body (Zimmermann et al., 2018; De 

Gelder and Solanas, 2021; Downing et al., 2006; Walbrin et al., 2019; Orgs et al., 2016). The 

pSTS is notably sensitive to biological motion processing as well as higher-level processing 

of the action including intentions (Saxe et al., 2004; Brass et al., 2007), valence (Verosky 

Todorov, 2010; Candidi et al., 2015), and social interactions (Masson Isik, 2021; Isik et 

al., 2017), and is further thought to be the integratory mechanism between spatiotempo- 

ral information derived from actions. Regions of the fusiform cortex in the FBA appear 

attuned to the holistic form of the body, where the FBA is also shown to play a role in 

identity processing based on bodily information (Orgs et al., 2015; de Gelder and Solanas, 

2021) and prioritized processing of the whole-body relative to the EBA (Taylor et al., 2007; 

Hodzic et al., 2009; Orgs et al., 2016). The FBA’s role has also been pinpointed to prioritize 

static images of the whole-body, whereas it thought that dynamic forms of the body may 

instead be processed by EBA (cf Vangeneugden et al., 2014) or the pSTS (Vangeneugden et 

al., 2014; Grossman and Blake, 2002; Grèzes et al., 2007; Grossman et al., 2010). Notably, 

however, the degree to which these temporooccipital regions are sensitive to the self—in 

particular, the self in motion— is poorly understood. 
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Within the temporooccipital regions, the pSTS serves as the input to the mirror neuron 

system (MNS) (Iacoboni et al., 2001; Rizzolati, 2005; Iacoboni & Dapretto, 2006), leading 

to the second line of empirical work— the cognitive neuroscience of actions (Urgen et al., 

2019). From the temporooccipital regions, the flow of information processing travels anteri- 

orly toward the frontoparietal circuitry. This circuitry that conveys input from the pSTS to 

the frontoparietal regions comprises the MNS (e.g., Rizzolatti & Craighero, 2004; Iacoboni 

& Dapretto, 2006; Iacoboni 2009). Originally discovered in area F5 in monkeys (later in 

other areas including the PF, area 7b), neuroimaging studies reveal considerable evidence of 

mirror neuron involvement at the system-level in analogous premotor, parietal, and occipi- 

tal regions in humans, such as the inferior frontal gyrus (IFG), inferior parietal lobe (IPL), 

and the precentral gyrus (Rizzolatti et al., 1996; Buccino et al., 2001; Iacoboni et al., 1999; 

Rizzolatti & Craighero; 2004; Iacoboni & Dapretto, 2006). Importantly the MNS is consid- 

ered the integratory system between motor production and visual observation with a degree 

of functional equivalence, as the regions involved in motor production also contain special 

visuomotor neurons that map the actions of others to one’s own motor system (Rizzolatti 

& Craighero; 2004; Jeannerod, 2001; Decety 1994). Cognitive neuroscience approaches as 

studied to implicate the MNS notably differ from those in visual neuroscience due to the 

types of stimuli used to evoke responses in these regions, specifically relying on contextually 

rich video stimuli of isolated body parts (e.g., hand movements) or hand-object interactions. 

Regardless, the accounts together, involving the frontoparietal (cognitive neuroscience) and 

the temporooccipital (visual neuroscience) regions comprise the core circuitry of the action 

observation network (AON). 
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The architecture of the AON regions (temporooccipital and frontoparietal) is thought 

to comprise either a hierarchical structure of action processing or enact more distributed 

representations across the brain (Haxby et al., 2000; De Gelder & Solanas, 2021). At the 

lower-level of a possible processing hierarchy, one theory is that the temporooccipital regions 

including the pSTS, EBA, FG, inferior occipital gyrus are involved in information processing 

related to coarser features of the action such as shape, posture, motion patterns, or posi- 

tional changes of the body. The pSTS then acts as the driving input to the MNS, where 

the frontoparietal regions, centered on the IPL and posterior IFG, are involved in higher- 

level action processing (cf Wurm and Cazzaminga, 2021), such as encoding of the action 

outcomes (Rizzolatti & Sinigaglia, 2010; Hamilton and Grafton, 2006) or goals (Hamilton 

and Grafton 2006; 2007; Grafton and Hamilton, 2007; Iacoboni et al., 2005), across effectors 

(Jastorff and Begliomini, 2010; Hamilton and Grafton, 2008; Chaminade et al., 2005; Ferri 

et al., 2015) and type of actions (Ferri et al., 2015; Fogassi et al., 2005; Goodale & Milner, 

1992). Note however, it is unclear as to whether the temporooccipital regions primarily 

represent low/mid-level action features, such as kinematics (e.g., speed, acceleration, jerk, 

motion direction), postural attributes or general coherence of the stimuli, or whether they 

also encode higher-level conceptual understanding. There is ample evidence pointing to how 

the frontoparietal regions (particularly the anterior portions of the IPL) may not necessarily 

abstract to the level of conceptual knowledge (e.g., Goldenberg & Spatt, 2009; Wurm & 

Caramazza, 2021; cf Leshinskaya and Caramazza, 2015), but rather process the perceptual 

dependencies related to the action information, while the temporooccipital regions are re- 

sponsible for early conceptual decoding. In this regard, (also known as) cognitive theories 

suggest that conceptual understanding is mediated by predominantly visual areas, such as 
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the lateral occipital temporal cortex (LOTC) (Wurm and Lignau, 2015, 2017; Cook and 

Bird, 2013) that spans regions including the EBA, while motoric theories take the orthogo- 

nal view that frontal mirroring regions are involved in coding abstract goal representations 

in order to mediate action understanding (e.g., Rizzolatti et al., 2014). Hence, the discussion 

is open-ended as to the organization of the AON and whether this flow of information is 

truly hierarchical in nature, or more distributed across the network (De Gelder & Solanas, 

2021); resultingly, connectivity and organization within these systems as they contribute to 

identify recognition of the self and others remains unclear. 

 

 

 

Figure 1.1: Two prevailing models for how conceptual understanding (e.g., identity) is abstracted from 
bodily featural processing as implemented in the brain. The classic hierarchical model of information 
processing attributes the function of temporooccipital regions to primarily decode lower-level features of 
the action that proceeds hierarchically. The radically distributed model suggests that these regions are 
attuned to mid-level (intermediary) features of the action stimulus that draw insight into higher-level 
conceptual understanding earlier in processing, which need not proceed hierarchically. Abbreviations: FG, 
fusiform gyrus; IOG, inferior occipital gyrus; IPS, intraparietal sulcus; STS, superior temporal sulcus; TP, 
temporal pole. Figure and interpretation drawn from De Gelder and Solanas (2021). 
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1.2.3. Commonalities between action processing of the self and others 

The AON, and in particular the mirror neuron system (MNS), reveal how the self and others 

are linked by a common visuomotor thread, in which perception and action are matched 

on the same representational platform (Prinz, 1997). The link between actions of the self 

and the other, is a very difficult computational problem (Barresi & Moore 1996; Saygin 

and Dick, 2014), rendered simple when reducing the functional mechanism to a core neural 

substrate. Indeed, from MNS involvement in processing the actions of the self and others, 

even higher-level social attributions (e.g., personality trait inferences) are grounded upon 

the system, involving interactions between the MNS and the higher-level, socio-cognitive 

mentalizing system, consisting of the temporoparietal junction (TPJ), medial precuneus, 

and the ventromedial (vmPFC) and dorsomedial prefrontal cortex (dmPFC) (Spunt and 

Lieberman, 2009; 2013; Arioli et al., 2017). This system is traditionally implicated in social 

cognition tasks spanning a wide range including mental state attribution, perspective taking, 

and intentionality (Frith and Frith, 2006; Spunt & Lieberman, 2012), and overlaps across 

motoric and social cognition tasks (Iacoboni et al., 2005). Together, these studies shed light on the 

multidimensional constructions of both the self and others. The construct of oneself 

and the construct of “another” are multicomponent, spanning across sensorimotor contin- 

gencies and taking on complex, reflexive, and abstract types of cognition, as shown across 

diverse empirical tasks. Architecturally, the MNS is thought to enact the building block 

for more abstracted forms of social cognition. It is theorized that higher-level involvement 

of the higher-level socio-cognitive system, the mentalizing system (Frith & Frith, 2006), is 

grounded upon the action/perception MNS, and interacts—producing spontaneous dynamic 

interactions between the two systems required for different social inferences. Indeed, reputed 
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theoretical models (Keysers and Gazzola, 2007) demonstrate a degree of dynamic connec- 

tivity between mirroring and mentalizing during social-cognitive tasks that require both 

simulative motor representations and abstracted, reflective judgments. Importantly, both of 

these systems together are not just implicated in social cognition, but also for processing of 

the self, thus indicative of an inherent social and relational construction of the self. 

Together, the results across visuomotor to socio-cognitive domains maintain the similar 

pattern: overlapping neural systems for the self and others (Lombardo et al., 2010). However, it 

cannot be the case that actions of the self and others are represented identically in the brain. This 

would lead to an impossible situation— what allows for discrimination and awareness of our own 

movements from others? Fine-grained differences in person identity, as represented by their 

geometric distance at more granular levels, are thus required to differentiate between self and 

others. While representational differences for self and others are often documented within 

overlapping regions at the socio-cognitive level (e.g., in the medial prefrontal cortex; Courtney 

and Meyer, 2020), these regions do not typically overlap with those involved in action processing. 

Hence, at the action level, we still lack representational assessments of the self and others that 

reveal featural differences between the self and others beyond univariate averaging. Thus, the goal 

stands in Chapter 2, to further measure and connect the representational similarity at the neural 

level between the actions of the self and others. 
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1.2.4. Feature sets underlying action processing of self and others 

The question as to which features underlie action processing and recognition is largely ill-posed 

due to the following factors: stimuli differences in empirical work (e.g., using static images versus 

dynamic motion recognition) (Urgen et al., 2019), the emphasis on either high-level action 

understanding or low-level action perception as opposed to action recognition (Yovel & O’Toole, 

2016), the computational complexity afforded by the large degrees of freedom of the human body 

(e.g., Pham, Khanh, and Ha, 2014) and many potential view- points and positions of the body that 

change over time (Thurman and Lu, 2014). Studies investigating the systems-neuroscience of the 

self typically rely on averaging neural activity across the brain via standard univariate subtractions 

between task conditions. Evidence from these studies reveal largely overlapping cortical regions 

for both the self and others (e.g., Lombardo et al., 2010). However, finer-grained methods are 

required to truly differentiate not just where in the brain these regions are, but the type (i.e., what) 

information is processed and how these neural patterns reflect identity as represented in these 

regions. Neural pattern representation typically involves computing featural signatures using 

encoding metrics, such as representational similarity analysis, which defines which features are 

critical for self-recognition via measuring embedded correlations between feature-derived 

similarity matrices and neural activity patterns (Kriegeskorte et al., 2008). Thus, in Chapter 2, I 

will use multivariate encoding metrics (representational similarity analysis) as well as pattern 

classification decoding methods to ask the following question: what features are common for 

self and other action processing, and unique to each? Further, across the dissertation (in 

Chapters 1 and 3), I will explore this question not just at the neural level, but also involving 

behavioral and computational measures related to visuomotor processing. 
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1.2.4.1 Contributing action features to identity recognition 

What features are relevant to action processing of the self and others? In the action processing 

literature, while a range of critical features contribute to action recognition, they can often divide 

into two feature sets: form, which captures spatial information such as the posture of an agent, and 

motion, which captures the temporal dynamics of the agent (either local limb movements or global 

translational motion) (Giese and Poggio, 2003; Vangeneugden et al., 2014). It is thought that the 

visuo-cognitive architecture of our brains likely integrates these core signals to ensure the visceral 

and seamless perception of human actions experienced in daily life. However, active debate 

remains as to their relative contribution to action processing. It is largely unclear as to whether 

action processing relies primarily on form (motion derived from form) (e.g., Lange and Lappe, 

2006; Lappe 2012) or on motion (form derived from motion) (Mather 2016; Giese & Poggio, 

2003). To a large extent, this is due to the neuroanatomical architecture of two distinct visual 

processing routes involved in biological motion processing: the dorsal (primarily linked to spatial 

localization and dynamic motion), projecting to the parietal cortex and ventral stream (primarily 

linked to object and postural information), projecting to the temporal cortex (Ungerleider and 

Mishkin, 1983). Both form and motion cues are shown to be critical mechanisms involved 

in identity and action recognition from kinematics (Vangeneugden et al., 2014; Thompson 

& Parasuraman, 2012). Hence, self-recognition from visually-degraded actions may also rely 

to a large degree on low and mid-level spatiotemporal features, such as spatial structure 

of the body, speed, spatiotemporal visual cues to recognize oneself (Coste et al., 2021), or 

temporal exaggerations of the movement (Hill & Pollick, 2000). Distinctive visual features 

related to the action are shown to contribute to self-action recognition. Coste et al (2021) 

recently measured these distinctive features on the basis on movement trajectories (“move- 
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ment distinctiveness”) and identified person-specific kinematic fingerprints that facilitated 

self-recognition. Similarly other sorts of lower-level features, such as speed of movements 

or even postural differences may drive the performance advantage for self-recognition from 

actions, considering their general importance to action recognition and processing of others. 

On the other hand, because we have motor experience producing an action, as well as privileged 

access to motor planning for self-generated movements, it is possible that self-action 

recognition may be unique, in that it engages specialized motoric mechanisms for the self relative 

to the processing of others. 

1.2.4.2 Contributing action features to social processing 
 

Beyond tightly controlled empirical paradigms, humans reside in complex naturalistic 

environments that procure rich visual experiences and interactions with others. Hence, empirical 

paradigms are often encouraged to move beyond the laboratory and capture the dynamics of 

our natural environment. Importantly, in moving from visually sparse PLDs to naturalistic 

action stimuli, different sets of neural and featural contributions are likely at play, which 

can aid in understanding high-level judgments of the visual scene (e.g., Clarke et al., 2005; 

Lorey et al., 2012). At the neural level, these differences are reflected in much larger re- 

cruitment of heteromodal cortical regions as contextual information increases (Haxby et al., 

2020; Hasson et al., 2004; Sonkusare et al., 2019), which capture the natural regularities and 

embeddedness of the self in the environmental milieu (Yeshurun, Nguyen, & Hasson 2021). 

Mechanistically, however, what could be the featural and visuomotor contributions to the 

naturalistic processing of actions and social interactions? How does the presence of social 

context impact these featural representations? These visuomotor features that contribute to 

naturalistic social interactions are notably different than those involved in isolated actions. 
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For example, the goal representational space changes as more individuals engage in the 

interaction and depends on how the interaction partners engage with each other (e.g., co- 

operatively, competitively, congruently), which thus not only introduces social affordances, 

but also motor affordances (e.g., Borghi, 2018). Interactions also involve a sense of roleplay- 

ing (Goffman 1959) and in fact interaction partners are thought to represent a larger and 

broadened extension of oneself that together produce relational dynamics acquiring their 

own autonomy (De Jaegher, Paolo, Gallagher, 2010). Beyond the action “set”, the “setting” 

further interacts and directly influences the interaction. Our social environment is dynamic 

and replete with visual information, by which the “setting” enacts a top-down role to our 

social perception, seminally apparent in non-social examples such as visual illusions, where 

stimulus perception is influenced as a function of context— as well as cross-task across so- 

cial domains. This leads to a situation of “circular causality” (Bolis & Schillbach, 2019), by 

which our own actions interact with those of the environment to fit into the environment, 

or our actions produce effects that change the environment (Levins & Lewontin, 1985; Bo- 

lis and Schilbach, 2018; 2019; Friston 2010). Paradigms focused on the importance of the 

action setting often leverage naturalistic stimuli such as movies to engage multiple stages of 

perceptual processing (e.g., Haxby et al., 2020), which reveal modulatory effects of context 

on the processing of different types of action stimuli including social interactions (Kadambi 

et al., 2020) and agentic action (Haxby et al., 2020). Thus, how do the visuomotor features 

involved in isolated action processing contribute to action processing across naturalistic and 

social scenes? At the featural level, what specific role does postural information of the body 

play, and how does it interact with kinematic information in complex, naturalistic scenes? 
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Chapter 3 explores this question using advances in computer vision to semantically parse 

the visual scene and assess the featural contributions across social context. 

 
1.2.5. Intrinsic relations to oneself 

 

Recent empirical advances maintain the importance of avoiding arbitrary task-separation 

between the self and others in the research design. These studies directly recommend integrating 

the self and others, via embedding the participant (self) in the research design. This 

is perhaps most obviously described in second-person neuroscience approaches (Schilbach et 

al., 2013), where participants (selves) are directly embedded in the research design (e.g., in 

virtual reality) to naturalistically engage in interactions with others. There is compelling 

evidence from second-person neuroscience in support of the view of a fundamental difference 

about the relational component of the interaction, where novel dynamics emerge from 

the interaction, rather than a separated representational view which is typically ecologically 

invalid and unfamiliar (e.g., Schillbach et al., 2013; Bolis & Schillbach, 2019). While in 

the present dissertation, I did not directly embed participants into the interactions, one 

important aim was to measure participants’ intrinsic variability related to social and socio- 

cognitive difficulties and assess the influence on their recognition of the self and others. 

These forms of individual variance related to the participant are often treated as noise in 

empirical paradigms, though numerous studies have revealed how intrinsic variance related 

to participants often leads to different interparticipant interpretations of the action scene (e.g., Van 

Den Stock et al., 2015). 
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In Chapter 1, I thus measured individual differences in self-action recognition across a large set 

of participants (N = 101). The following individual differences, linked to both sensorimotor self-

processing and others, were measured: motor imagery, schizotypal and autistic traits. Subclinical 

traits linked to autism and schizotypy were of interest since both conditions are rooted in basic 

disturbances of the self, as defined in their names: Autism, from the Greek root “autos”, 

Schizophrenia, based on a “disordered self.” Both conditions are prevalent in the population and 

often manifest in social embedding and self-related difficulties in the neurotypical population that 

affect well-being and societal flourishing. 

      Aims 

In summary, my dissertation aims to reveal the shared and distinct visuomotor mechanisms that 

underlie processing of actions of the self and others. Bridging behavioral and neurocomputational 

work, the following questions will serve as guides throughout the thesis: (i) What are the 

visuomotor mechanisms that underlie action processing of the self and others? (ii) How distinct 

are neural computations for action recognition of the self and others, and to what degree do they 

rely on featural processing of form and motion? (iii) How does the presence of naturalistic context 

impact visuomotor contributions during the perception of social interactions? 
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CHAPTER 2 
 
 

Motoric and intrinsic factors modulate self-recognition of actions 
 

 
Abstract 

Although humans can recognize their body movements in point-light displays, self-recognition 

performance varies substantially across action types and participants. Are these variations primarily due 

to an awareness of distinct movement patterns, or to underlying factors related to motoric planning and/or 

participant traits? To address these questions, we conducted a large-scale study in self-action recognition 

(N = 101) and motion captured whole-body movements of participants who performed 27 different actions 

across action goals and degree of motor planning. After a long delay period (~ 1 month), participants were 

tested in a self-recognition task: identifying their point-light action amongst three other point-light actors 

performing identical actions. While we found no relationship between self-recognition performance and 

movement distinctiveness, we found that performance was modulated by interactions between extrinsic 

factors (associated with the degree of motor planning in performed actions) and intrinsic traits linked to 

individuals’ motor imagery ability and subclinical sensorimotor self-processing (autism and schizotypal 

traits). These interactions show that recognition of our own actions is influenced by factors beyond 

movement idiosyncrasies, with mechanistic implications for how the motor system may augment vision 

to construct self-awareness. 
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Introduction 

Recognition of oneself depends on more than visual experience. As a prime example, 

humans can recognize their own actions even from minimal visual input provided by point-light 

action displays (Cutting & Kozlowski, 1977; Loula et al., 2005; Beardsworth & Buckner, 1981)— 

disconnected dot animations depicting the motion of key joints on the human body (Johansson, 

1973). Despite removing body identity information and depicting actions in an unfamiliar third-

person perspective, self-recognition from point-light movements suggests that people can readily 

connect motor experience of performing actions to visual recognition of actions. These findings 

are consistent with multiple lines of evidence that have revealed close links between motor and 

visual representations of actions (e.g., Binet, 1886; Viviani & Stucchi, 1992; Prinz, 1997; Knoblich 

& Flach, 2001; Casile & Giese, 2006; Rizzolatti, Fogassi, & Gallese, 2001; Blake & Shiffrar, 2007; 

Iacoboni 2008).  

Previous research has identified a few core characteristics of self-recognition from actions. 

From point-light actions, participants are more accurate in recognizing themselves than visually 

familiar friends (Cutting & Kozlowski, 1977), even when configural topographic cues are 

disrupted (Cook, Johnston, & Heyes, 2012; cf. Loula et al., 2005), or visual feedback is removed 

(Casile & Giese, 2006; Bläsing and Sauzet, 2018). People can identify their own actions from 

whole-body movements (Loula et al., 2005) and even from hand movements (Conson, Aromino 

& Trojano, 2010). Self-recognition of one’s own gait is viewpoint-invariant (cf. Mitchell & Curry, 

2016), but recognition of familiar friends from their gait patterns is viewpoint-dependent, with 

better performance from frontal than profile views (Jokisch, Daum & Troje, 2006). View-

independent performance for self-recognition from point-lights has also been observed for actions 

less common than walking (Loula et al., 2005; Burling et al., 2019), suggesting that the visual 
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representation of self-actions based primarily on motor experience is fundamentally different from 

action representations of others learned from visual experience. The self-action advantage also 

extends beyond explicit visual recognition of whole-bodies, influencing the predictive accuracy of 

future action outcomes (e.g., Knoblich & Flach, 2001; Bischoff et al., 2012; cf. Hohmann et al., 

2011), task-irrelevant (implicit), body part recognition (Frassinetti et al., 2009; Daprati & Sirigu, 

2002; Daprati, Weriessneggeer, & Lacquaniti, 2007), facial expression recognition (Cook, 

Johnson & Heyes, 2012), memory for self-performed action verbs (i.e., enactment) (Engelkamp & 

Krumnacker, 1980), and multimodal action recognition (e.g., Repp & Knoblich, 2004; Flach, 

Knoblich, & Prinz, 2004; Murgia et al., 2012; Kennel et al., 2014).  

While these studies reveal that self-action recognition can arise from motor experience 

despite lacking visual experience, the underlying mechanisms are yet to be clarified. One empirical 

approach has been to include a range of actions in the paradigm, as self-recognition performance 

is known to vary substantially across different actions. Loula et al. (2005) recorded ten actions 

from each individual participant and asked participants to report the identity (self, friend or 

stranger) of the point-light actors. The researchers found that identity performance varied 

significantly across actions in the range of 40~80% (chance level of 33.3%). For example, people 

were more accurate in self-recognition for complex actions such as dancing (~80%) and boxing 

(~65%), than for relatively simple and routine actions such as walking/running (~40%). Similarly, 

Sevdalis and Keller (2009) found greater self-recognition performance for dancing movements 

than for stereotyped gait patterns. In a recent study by Coste et al (2021), the variability in self-

recognition performance was measured and attributed to movement similarity conveyed by their 

own body motions versus actions performed by others. In this study, participants were asked to 

perform postural motions with general instructions such as “create postural motions by keeping 
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knees extended with toes and heels in constant contact with the floor.” Although people recognized 

their own actions above chance, people often misattributed movements of others to themselves 

that were highly visually similar. These results are indicative of a “kinematic fingerprint”, in that 

people recognize themselves based on the degree of visual similarity to their own kinematic styles 

of body movements, as a type of familiar idiosyncratic movement feature for each person. 

However, the study gave participants the same general instructions for body movements in 

performed actions without varying the action goals or action complexity. Beyond visually similar 

properties of our own actions and actions performed by others, the influence of other potential 

contributors to self-recognition accuracy is unclear. 

Notably, other factors have also been shown to be especially important in influencing 

action processing of the self and others. In the action-processing literature, the motoric goal 

complexity of the action modulates the degree of motor planning required for action production 

(e.g., Burling et al., 2018) (complex goals require more motor planning than simple goals) and 

evokes different neural activity in the action observation network even when the same effectors 

are used (Molnar-Szakacs et al., 2006; Li et al., 2020). Although most previous studies in self-

action recognition opt for group-level averaging, variability in individual differences has also been 

shown to influence self-action recognition (e.g., Burling et al., 2018). At the individual level, self-

processing is characterized as atypical in clinical conditions linked to the sensorimotor system, 

including the Autism Spectrum Conditions (ASC) – from the Greek root “autos” for self (Kanner 

1943; Asperger, 1944; Perrykkad & Howhy, 2020), and Schizophrenia Spectrum Conditions 

(SSC), a “disordered self”, characterized by “a disunity of consciousness” (Bleuler, 1911; 

Schneider 1959; Sass & Parnas, 2003; Kraeplin 1919; Parnas & Herniksen, 2014; Sandsten et al., 

2020). In these conditions, atypical self-representations are present and primarily attributed to an 



 
 

28 

early disturbance at the bodily level (e.g., Noel et al., 2016; Sass & Borda, 2015; Gallese & Ferri, 

2014; Gessaroli et al., 2013; Perrykkad and Howe, 2020). These differences manifest in opposite 

ways in ASC and SSC (Noel, Cascio, Wallace, & Park, 2016), related to either sharpened or 

blurred internal self/other sensorimotor boundaries, respectively (Noel et al., 2016; Fletcher & 

Frith, 2009). Importantly, the differences extend to the general population. Participant-level 

variability linked to these conditions affects self-identification (Mul et al., 2019) and spatial self-

boundaries (Ferroni et al., 2020), and further impacts the general processing of action stimuli 

(Miller & Saygin, 2013; Puglia & Morris, 2017; Thurman et al., 2016; van Boxtel et al., 2017; 

Wang et. al., 2018; Chakraborty & Chakrabarti, 2015) and even in self-action recognition from 

point-light displays (autistic traits: Burling et al., 2018). Hence, while one potential form of 

variability in self-recognition accuracy could indeed result from distinctive kinematic styles of 

own body movements as in Coste et al., 2021, another—perhaps deeper source of variance, may 

be driven by differences in motor planning required by different action goals, and/or individual 

differences in self-processing. 

To assess the influence of intrinsic participant and extrinsic motoric factors that may extend 

beyond visual distinctiveness, we conducted the first large-scale study (N = 101) in self-action 

recognition and asked the following: is self-recognition performance primarily reflected in 

idiosyncratic motion of individuals? Or does self-recognition depend on systematic properties 

from extrinsic factors of the action and/or intrinsic traits of the participant? To measure the 

influence of extrinsic factors, we included a range of actions, varying action complexity based on 

the degree of motor planning involved in performing actions. To measure how movement 

distinctiveness across individuals influences self-recognition performance, we implemented a 

widely-used algorithm in spatiotemporal signal processing— dynamic time warping (DTW) 



 
 

29 

(Gavrila & Davis, 1995)— to quantify action similarity between self-movements and actions 

performed by others based on movement trajectories of joints in actions. To measure the influence 

of participant-level intrinsic traits, we computed the relation between self-recognition performance 

and three individual difference measures linked to sensorimotor self-processing: autistic traits, 

schizotypal traits, and motor imagery ability. Motor imagery was included as a third intrinsic 

measure since motor imagery serves as a part of the action simulation network, triggered either 

through visual observation of others or through self-imaging. Moreover, action recognition and 

motor simulation are well-characterized in the literature as sharing overlapping neural and 

behavioral resources (Jeannerod & Pacherie, 2004) and self-processing is shown to recruit motor 

imagery mechanisms (e.g., Conson et al., 2010).  

The experimental design consisted of two sessions. In the first session, each participant 

performed 27 actions that were recorded through motion capture. Participants were informed that 

their actions were recorded for an action recognition study but were importantly never informed 

of the study’s focus on self-recognition. After a delay of about one month on average, participants 

returned to complete a self-recognition task that required identifying their own action among three 

other actors performing the same action. We introduced three types of actions during the motion 

capture session: nine simple actions and nine complex actions that were verbally instructed (i.e., 

“please naturalistically perform the action: to grab / to get attention”), and nine actions that were 

provided with video instruction, asking participants to imitate body movements of an actor shown 

in a video. We included video instruction since imitation elicits a unique action requirement: action 

imitation reduces motor planning demands, due to copying another’s motor sequence (see 

enactment effect; Zimmer & Engelkamp, 1996). If self-recognition performance depends primarily 

on the degree of motor planning involved in performing actions, we would expect that imitation 
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actions may yield lower accuracy in identifying own body movements than complex actions 

provided with verbal labels, even at comparable levels of action complexity and across large 

variability in performing the same actions across individuals. If, however, distinctiveness in 

performing actions is the primary contributor to self-recognition performance, any performance 

differences between the action types should be attributed to visual properties of the stimulus, such 

as movement distinctiveness or speed.  

In summary, we hypothesized that participants would not only recognize their own actions 

in point-light displays, but that recognition performance would vary systematically, according to 

underlying extrinsic factors – action types linked to differences in motor planning– and intrinsic 

factors of participants, linked to sensorimotor self-processing.  

 

Method 

Participants. 108 undergraduate students (Mage = 21.20, SDage  = 3.81, females = 79, males = 29) 

were recruited through the Subject Pool at the University of California, Los Angeles. Sample size 

was determined sufficiently sensitive in accord with a previous study on the relation between 

emotion discrimination from gait patterns and autistic and schizotypy traits (Blain, Peterman, and 

Park, 2017). The study was approved by the UCLA Institutional Review board. All participants 

were provided course credit for their participation and were naïve to the purpose of the study. 

Participants had normal or corrected-to-normal vision and no physical disabilities. Seven 

participants were excluded due to inputting errors of participant motion capture files, resulting in 

a total of 101 participants included in the analysis (M = 28, F = 73). 

Apparatus. Participants’ body movements were recorded using the Microsoft Kinect V2.0 and 

Kinect SDK in a quiet testing room. Participants were instructed to perform the actions in a 
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rectangular 0.76 m x 1.52 m space, in order to provide flexibility to perform the action, while 

remaining within recording distance. The Kinect was placed 1.52 m above the floor and 2.59 m 

away from the participant. The three-dimensional (X-Y-Z) coordinates of the key joints were 

extracted at a rate of approximately 33 frames per second and later used to generate point-light 

displays of actions (see Figure 2). Customized software developed in our lab was utilized to 

enhance movement signals, and to carry out additional processing and trimming for actions 

presented later in the testing phase (van Boxtel & Lu, 2013).  

Stimuli Generation. All actions were selected to be commonly encountered actions and were 

captured by the motion capture system. The actions varied in complexity in order to characterize 

a broad range of common movements in daily life. First, participants were instructed to freely 

perform nine simple and nine complex actions provided with clear verbal labels (i.e., verbal 

instruction). Participants indicated the start/stop of their action with a T-position. Simple and 

complex actions were extended from Burling et al (2019), delineated by whether the action was a 

simple goal (e.g., wave), conveying a routine action with less motor planning, or a complex goal 

(e.g., argue) linked to more detailed motor planning. The simple actions included grab, jump, 

wave, lift, kick, hammer, push, point, punch. The complex actions included: argue, macarena, 

wash windows, play baseball, get attention, hurry up, fight, stretch, and play guitar.  

In addition, participants also performed actions based on video instruction. Participants 

were instructed to view an action performed by actors shown in a stick-figure display (i.e., lines 

connected between joint positions) on a computer, and subsequently imitate the seen action 

afterwards. Nine imitation actions were selected from the Carnegie Mellon Graphics (CMU) Lab 

Motion Capture Database available online (http://mocap.cs.cmu.edu), generated from pre-defined 

actors. The actions were selected to capture a broad range of goal variability: jumping jacks, 
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basketball, bend, direct traffic 1, direct traffic 2, conversation, laugh, digging a hole, and chopping 

wood. To account for any implicit goal-attribution or familiarity with action sequences that could 

impact the degree and/or type of imitation (e.g., Bekkering et al., 2000; Wöhlschalger et al., 2003; 

Wild et al., 2009), we also included a range of familiar (e.g., bend) and unfamiliar (e.g., directing 

traffic) imitation action sequences. Participants were never provided the verbal label for imitation 

actions. Each video displayed an actor shown as a stick figure performing one of the imitation 

actions and was presented in three different angles to the subject, either to the right or left (+/- 45°; 

half-profile) or facing forward (0°; frontal) by rotating the horizontal axis. Each imitation action 

was recorded twice: once after viewing the three different angles, and once more after viewing 

only the forward-facing angle. The first imitation recording was discarded (served as practice 

during motion recording), and only the second imitation recording was used in the self-recognition 

experiment. The recorded raw motion data from the Kinect system were passed through a double 

exponential adaptive smoothing filter (LaViola, 2003) to remove noisy and jittered movements 

(e.g., ballistic random jumps of points). Additionally, the stimuli were trimmed and processed to 

display the point light-displays using BioMotion Toolbox (van Boxtel & Lu, 2013) with their 

segmented action recording, which would be reiteratively looped in the self-recognition session. 

Procedure  

 The experiment was split into two phases: motion recording and recognition testing. The 

first phase consisted of a motion recording session, where participants performed the actions and 

were recorded with a motion capture system. Participants were informed that their actions were 

recorded for an action recognition study, but were never informed about the aim of the study. After 

a delay period (M = 37.39 days, SD = 5.20 days; range: 23 – 56 days), participants returned for the 

second phase to complete two recognition tasks. In the first task, participants completed a self-
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recognition task by identifying their own actions that were recorded with the motion capture 

system. In the second task, participants completed a visual recognition task, where they identified 

the actions imitated during the motion recording session (further detailed below). The order of the 

self-recognition task and the visual recognition task was counterbalanced between participants. 

 

 
 
Figure 2. Illustration of motion recording (session 1). Actions were recorded by the Kinect system 
and converted to point-light displays. Participants were instructed to perform the actions either 
through verbal instruction (simple, complex) or visual instruction guided by a stick figure 
(imitation).  
 
 

Motion Recording Phase 

In the first phase (recording session), participants were provided verbal instruction for the 

18 actions (nine simple and nine complex) and asked to perform the actions as naturally as possible 

(i.e., “please naturalistically perform the action: to grab”). For the remaining nine imitation 

actions, none of the participants were provided the verbal label of the action. Instead, participants 

were instructed to imitate the movements of the action presented in a stick figure video (Figure 2).  
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Upon completing the action recording, participants completed two questionnaires: 

Schizotypal Personality Questionnaire (SPQ; Raine, 1991) and the revised Vividness of Motor 

Imagery Questionnaire (VMIQ-2; Roberts et al., 2008). The SPQ was administered to assess 

degrees of schizotypal traits among individuals in the typical population. The VMIQ-2 was 

included to assess motor imagery differences as a potential source of variability in self-processing 

and biological motion processing.  

 

Recognition Phase: Self-Recognition Task and Visual-Recognition Task 

In the second phase (recognition test), participants were seated approximately 0.76 meters in front 

of a monitor in a dimly lit room and were asked to select their own action amongst three other 

distractor actions spread out horizontally along the center of the screen, as shown in Figure 3. Each 

action was presented with 17 point-lights located at key joints, in three different orientations 

(rotated around the vertical axis) 0°, (frontal), 45° (half-profile, right), 225° (half-profile, left), for 

a total of 81 trials. All of the actions within a trial displayed the same orientation. Participants were 

instructed to select their own point-light action amongst four displays. The actions were looped 

until the participant selected one of the point-light actors, each depicted in one of four horizontally-

spread, randomly arranged boxes, or until a time limit of 30 seconds. The four animations included 

their own action and the same action performed by three distractor actors with the same gender, 

all of whom participants were unfamiliar with. All the point-light actions were normalized for 

maximum height. Following selection of the action, participants were asked to provide a 

confidence judgment, in which they rated the confidence of their selection from 1 (not at all 

confident) to 5 (most confident). Participants were not provided any feedback. Following the 
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recognition task, participants were asked to complete the Autism-Spectrum Quotient (AQ) 

questionnaire to assess their degree of Autistic traits (Baron-Cohen et al., 2001).  

Figure 3. Schematic illustration of a sample trial showing “push” action for the self-recognition 
task. One point-light action is the participant’s action, while the other three point-light actions are 
distractors performed by gender-matched actors. During the display of actions, participants were 
provided a maximum of 30 seconds to click on the action that was their own. Following the actions, 
participants rated their overall confidence in the selection (1: not at all confident to 5: most 
confident)  
 

Individual Difference Measures 

Autistic Quotient We assessed self-reported autism-spectrum traits in the general population 

using the Autism-Spectrum Quotient (AQ) questionnaire, consisting of 50 questions designed to 

measure five different subtypes: social skill, attention switching, attention to detail, social 

communication, and imagination (Baron-Cohen et al., 2001). Response criteria requires the 

selection of one of the four possibilities (four-point scale): “definitely disagree”, “slightly 

disagree”, “slightly agree”, “definitely agree.” While not a diagnostic instrument, scores of 32+ 

on the AQ in the general population are generally indicative of a predisposition to ASC, out of a 

maximum score of 50 points (1 point per question validating autism-spectrum traits), though the 
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cutoff for ASC individuals on the AQ is typically shown to be greater than 26 (Woodbury-Smith, 

Robinson, Wheelwright, & Baron-Cohen, 2005; Ruzich et al., 2016).  

 

Schizotypal Personality Questionnaire To measure trait-variance related to Schizotypal 

Personality Disorder amongst neurotypics, we used the Schizotypal Personality Questionnaire 

(SPQ) developed by Raine (1991). The 74-item survey was based on criteria from the DSM-III-R 

(American Psychiatric Association, 1987) that measures schizotypy from multiple dimensions 

(positive, negative, disorganized, and paranoia) and captures its phenotype, etiology, 

symptomatology (Wuthrich and Bates, 2006; Barron et al., 2015). We chose the full-scale SPQ 

(74 items) rather than the more recent SPQ-brief (32 items; Cohen et al., 2010), as the original 

SPQ has been shown to provide a clearer division of the individual subscales (Ford and Crewther, 

2014), important when considering the reflected overlap between AQ and SPQ subscales. The 

SPQ adopts a three-factor structure (analogous to the symptom structure in Schizotypal Personality 

Disorder and SSC), measuring three main constructs of schizotypy: the cognitive-perceptual 

dimension (positive schizotypy), interpersonal dimension (negative schizotypy), and disorganized 

feature dimension (disorganized schizotypy) based on DSM-III-R criteria (Raine, 1994), but well-

matched to current DSM-V criteria (Barron et al., 2015). Further divisions within the three-factor 

structure include nine different subscales of the SPQ: ideas of reference, unusual perceptual 

experiences, odd/magical beliefs, suspiciousness/paranoid ideation (cognitive-perceptual); social 

anxiety, no close friends, constricted affect (interpersonal); odd behavior and appearance, and odd 

speech (disorganized) (Raine 1991; 1994). Response criteria on the questionnaire requires binary 

selection of “true” or “false” (two-point scale) to particular statements (e.g., “I am aware that 
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people notice me when I go out for a meal or to see a film”). The top 10% of scorers typically 

reflect scores greater than 41, while the bottom 10% typically score 12 or lower.  

Vividness of Motor Imagery Questionnaire The VMIQ-2 (Roberts, 2008) measures 

introspective reports of vividness of imagery in kinesthetic (movement simulation), internal (first 

person simulation), and external (third person simulation) visual imagery of 12 different actions 

(e.g., kicking). Vividness of motor imagery is rated on a five-point Likert scale for each of the 12 

actions in each of the three sub-areas. Note that lower scores in VMIQ-2 indicate more vivid 

images and stronger motor imagery ability.  

 

Action similarity measures 

People perform some actions with highly similar movements across individuals, but other actions 

with distinctively different body movements. To assess the role of movement distinctiveness as a 

contributor to self-recognition, we implemented the dynamic time warping (DTW) algorithm. 

DTW allows for quantitative measures of similarity between two temporal sequences based on 

motion trajectories in actions. The algorithm uses a non-linear, monotonic temporal warping 

algorithm to measure the similarity between time series data such as movement trajectories of 

joints (Gavrila & Davis, 1995). DTW is also able to account for the time-variance across human 

actions, in how different people may take different amounts of time with different movement 

trajectories even when performing the same action. The DTW algorithm is designed to find an 

optimal match (warping path) for temporal alignment between these pairwise time sequences that 

minimizes their dissimilarity regardless of low-level factors (e.g., speed, duration differences). 

Smaller DTW distance values indicate greater similarity of body movements between participants 
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when they performed the same action. A pseudo-code of DTW algorithm can be found in (Pham, 

Le, & Le, 2014).  

 

The following steps were implemented for DTW analyses:  

(1) For each participant’s action, we extracted the 3D positions of each of the 17 joints using the 

BioMotion toolbox (van Boxtel & Lu, 2013).  

(2) We centered each trajectory of a joint to zero in order to remove the impact of global factors 

(e.g., global body displacements, limb length, etc.) on the similarity measures.  

(3) We then implemented an action DTW algorithm (Pham, Le, & Le, 2014) to search for a 

temporal warping function shared across all 17 joints.  See Figure 4 for the illustration of temporal 

warping for joint trajectories performed by two actors in the action DTW algorithm.  

(4) After deriving the optimal warping function, the analysis computes the frame-by-frame 

Euclidean distances of the temporally warped joint trajectories in actions performed by different 

actors.  

(5) DTW distance was then computed as the sum of the distances between all joint trajectories 

normalized by the number of frames of a target actor. This normalization step is required in order 

to account for the different durations across participants performing the same action 

(6) For each participant, the dissimilarity of the target participant performing an action from all 

other participants was captured by a mean DTW distance measure, computed by averaging across 

pairwise DTW distances between the target participant with all other participants in performing 

this action. 
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Figure 4. Illustration of DTW alignment via temporal warping for joint movements (sample 
joint: elbow) in an action (sample action: wave) between performed by two actors (red or green). 
The gradient in circle colors indicates the elapse of time, with darker colors reflective of earlier 
frames, and brighter color in later frames. The temporal warping function is illustrated as 
connected lines.   
 
 

Results 

Impact of extrinsic factors (action types) on self-recognition performance 

As shown in Figure 5, participants were able to recognize self-actions significantly above chance 

performance (0.25 in a 4AFC task): for simple actions with verbal instruction (M = 0.41, SD = 

0.16), t(100) = 9.45, p < .001, cohen’s d = .940,  for complex actions with verbal instruction (M = 

0.54, SD = 0.17),  t(100) = 16.86, p < .001, d = 1.678,  and for imitated actions without verbal 

instruction (M = 0.39, SD = 0.16), t(100) = 9.20, p < .001, d = .916,  corroborating prior research 

(e.g., Burling et al., 2019; Loula et al., 2005). Confidence data further showed consistent results 

with self-recognition accuracy for the action types (see Appendix for further detail). 

Dynamic Time Warping 
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A two-way repeated-measures ANOVA with action orientations and action types as 

within-subjects factors on self-recognition performance revealed no effect of action orientation, 

facing left: 225° (M = 0.45, SD = 0.16), front: 0° (M = 0.45, SD = 0.14), right: 45° (M = 

0.44, SD = 0.15), F(2, 200) = 1.58, p  = .207, ηp2 = .016. The finding is consistent with a 

previous study showing that self-recognition of walking actions is independent of the viewing 

angle (Jokisch, Daum, & Troje, 2004). However, the analysis yielded a significant main effect of 

action type (simple, complex, and imitation), F(2, 200) = 43.09, p < .001, ηp2 = .301. Bonferroni-

corrected pairwise comparisons further revealed that self-recognition was more accurate for 

complex than simple actions (t(100) = 7.86, p < .001, d = .782) and imitation actions (t(100) = 

8.56, p < .001, d = .851). No difference emerged between simple and imitation actions (t(100) = 

0.54, p = .593, d = .053). We also found a significant two-way interaction between orientation 

and action type (Figure 5), F(4, 400) = 2.77, p = .027, ηp2 = .027, mainly driven by the weaker 

performance in the frontal view than side views for the imitation actions (F(2, 200) = 4.124, p = 

.018, ηp2 = .040). However, the small effect size calls for caution in interpretation of this 

interaction effect, as the degree of visual ambiguity due to body occlusion likely impacted self-

recognition performance for certain action orientations. Among the imitation actions, three 

actions (e.g., bend, digging hole and chopping wood) consisted of the most self-occlusion from 

the frontal view, resulting in grouping ambiguity in the point-light display. 
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Figure 5. Results of self-recognition accuracy by action types (x-axis) and orientation (colored 
bars). All action types recognized significantly above chance regardless of viewpoint. Complex 
actions showed greater self-recognition performance than did simple or imitation actions. Dashed 
line indicates chance performance (0.25). The error bars indicate standard error of means. 
 
 
Impact of individual actions on self-recognition performance 

Analysis of item-level variability in self-recognition performance for individual actions (Figure 6) 

revealed that self-recognition performance varied in a large range of .27 to .59 across the 27 actions 

(with the chance level of .25 for recognizing self from four actions in the experiment). All complex 

actions (stretch, get attention, wash windows, argue, guitar, hurry up, fight, baseball, and 

macarena) were self-recognized significantly above chance (ps < .001). Most simple actions 

(point, punch, lift, grab, push, hammer, jump, and kick) except wave, and most imitation actions 

(basketball, conversation, directing traffic p1, directing traffic p2, chopping, digging, and laugh) 

except bend, were also self-recognized significantly above chance performance (ps < .030). Due 

to variability in performance at the individual action level, we ran an analysis with a linear mixed 

effects model, including “individual actions” and “participants” as random effects and “action 

type” as a fixed effect. The model accounted for residual variance in the individual actions across 
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participants, with a significant main effect of action type on self-recognition performance (F(2.61, 

1.31) = 11.91, p  < .001),  confirming the impact of the extrinsic factor based on action type on 

self-action recognition.  

 

Figure 6. Results of self-recognition accuracy as a function of the individual action. Color-coding 
of bars corresponds to action type: simple actions denoted in gray, complex actions denoted in 
white, imitation actions denoted in black. Dashed line indicates chance performance (0.25). Error 
bars denote standard error of the means.        
 
No influence of movement distinctiveness on self-recognition performance 
  
In addition to the influence of the action type on self-recognition performance, we then measured 

whether the performance difference was driven by the movement distinctiveness, measured as the 

dissimilarities between how people perform the same actions. To do so, we examined the impact 

of movement dissimilarity on self-recognition accuracy using a well-known dissimilarity measure 

to quantify motion trajectories in actions, dynamic time warping (DTW). For each action, we 

computed the DTW distance between the action performed by the participant and the movements 

of other participants performing the same action. Greater DTW distance indicates higher 

dissimilarity of movements. First, movement dissimilarity showed clear differences in terms of 
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action DTW distances across different action type, as shown in Figure 6. Specifically, the repeated-

measures ANOVA revealed a significant main effect of action type on DTW distances, F(2,200) 

= 340, p < .001, ηp2 = .773. Paired-sample T-tests further revealed a significant decrease in DTW 

distances for simple actions (M = 1.55, SD = 0.21) than for complex actions (M = 1.97, SD = 

0.23),  t(100) = 20.840, p < .001, d = 2.07, showing that movement trajectories in simple actions 

were significantly more similar across participants than complex actions. Movements in simple 

actions were also confirmed as more similar to each other than imitation actions (M = 1.99, SD = 

0.17), t(100) = 26.857, p < .001, d = 2.67. Note that action DTW distances were not significantly 

different between complex and imitation actions in contrast to the difference in self-recognition 

performance, in which complex actions were self-recognized at greater rates than imitation actions. 

Similarly, in contrast to movement dissimilarity, the self-recognition performance pattern was 

similar for simple and imitation actions, but significantly greater for complex actions. Hence, 

movement dissimilarity does not provide a satisfying account for the pattern of self-recognition 

performance for the action types.  

The null relationship between self-recognition performance and movement dissimilarity 

was further confirmed using linear mixed modeling. First, we computed the correlation between 

self-recognition performance and movement dissimilarity measured as action DTW distances 

across participants and action types. The correlation was not significant (spearman ρ = .078, p = 

.174). DTW dissimilarity for each action type was then entered as a random effect to the linear 

mixed model previously run on the action types. The full model thus included “individual actions”, 

“participant”, and “DTW” (dissimilarity value for each action type) as random effects, and action 

type (simple, complex, imitation) as a fixed factor. The contribution of DTW was tested using 

Log-Likelihood by comparing the fit of the full model including DTW and the reduced model 
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without DTW. No effect of DTW on self-recognition accuracy was found, c2(1) = 2.635, p = .104, 

though the model showed significant influence of the other two random factors on self-recognition 

performance (individual action: c2(1) = 49.66, p < .001; participant: c2(1) = 64.40, p < .001). 

Together, the pattern of results rules out the possibility that self-recognition performance is 

primarily determined by the dissimilarity of body movements of individuals who perform actions 

in different ways from others.  

 

 
Figure 7. Action DTW distance for different action type, showing simple actions with less 
movement dissimilarity across participants than complex actions and imitation actions. The error 
bar indicates the standard deviation.  
 

Impact of intrinsic traits on self-recognition performance  

The second analysis step focused on the impact of intrinsic variability in individual difference 

measures on self-action recognition. Two participants did not complete the VMIQ-2, and one 

participant did not complete the AQ questionnaire. Hence, listwise deletion resulted in 98 

participants included in the individual differences analysis. Descriptive statistics for the scores of 

autistic traits (AQ score), schizotypal traits (SPQ score) and motor imagery ability (VMIQ-2 

score), and subscale scores are reported in Appendix Table 1.   

*** 

*** 
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We first conducted regression analyses to examine relations between composite scores of 

individual difference measures and self-recognition performance. For each action type (simple, 

complex, and imitation), self-recognition performance was set as the dependent variable and three 

composite scores (AQ for autistic traits, SPQ scores for schizotypal traits, and VMIQ-2 scores for 

motor imagery ability) were predictor variables in the regression analysis. None of the three 

regression models revealed significant relationships. However, nonparametric correlation analyses 

revealed that composite motor imagery (VMIQ-2) scores negatively correlated with self-

recognition performance for imitation actions (spearman ρ = -0.221, 95% CI [-.406, -.017], p = 

.029) (see Figure 8). Note that lower VMIQ-2 scores indicate stronger motor imagery ability. Thus, 

the negative correlation between motor imagery scores and self-recognition performance in 

imitation condition indicates that individuals with better motor imagery ability showed greater 

self-recognition performance for imitation actions. 
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Figure 8. Relations between composite motor imagery ability and self-recognition for imitation 
actions and 95% confidence interval. Note that lower VMIQ-2 score indicates better motor 
imagery ability. 

 

Next we examined whether subscale scores in the individual difference measures related 

to self-recognition performance. We focused on subscale scores for two reasons. First, both ASC 

and SSC are characterized by multidimensional symptom expression, which may be masked by 

only examining the composite measure. Second, selected subscale scores in autistic traits and 

schizotypal traits have been shown to relate to atypical biological motion perception (e.g., Blain 

et al., 2017; Puglia and Morris, 2017) as well as self-processing (e.g., Ferroni et al., 2020; Thakkar 

et al., 2011; Lenzenweger, 2010). 
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Considering the large number of possible predictors (5 subscales in AQ, 9 subscales in 

SPQ and 3 subscales in motor imagery VMIQ-2), we used stepwise regression on all of the possible 

predictors to select the important predictors in relation to self-recognition performance for the three 

action types. For the simple action condition, the stepwise regression selected a model with four 

subscale scores as strong predictor variables (AQ social communication, and three SPQ subscale 

scores including odd behavior, ideas of reference, and no close friends) that showed significance 

in predicting self-recognition performance for simple actions (F(4,93) = 2.817, p = 0.030). 

However, among the four selected subscale scores, only AQ social communication scores revealed 

a significant coefficient (t(92) = -2.672, p = .009). Using AQ social communication as the 

predictor, nonparametric correlation analysis revealed a negative relation between AQ social 

communication and the criterion, self-recognition for simple actions (spearman ρ = -.229, 95% CI 

[-0.414, -0.026], p = .023) (Figure 9). As higher AQ scores indicate more autistic traits, the 

negative correlation indicates that participants with more autistic traits in social communication 

were less able to recognize their actions when the actions conveyed simple types of goals.  

Figure 9. Relationship between AQ social communication subscale scores and self-recognition 
for simple actions and 95% confidence interval. Higher AQ scores indicate more autistic traits. 
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 For complex actions with more motor planning involved in the body movements, the 

stepwise regression analysis selected a model with three SPQ subscale scores as predictor variables 

(including unusual perceptual experiences, odd behavior, ideas of reference and no close friends) 

in relation to self-recognition performance. The selected model did not reach statistical 

significance (F(3,94) = 2.283, p = 0.084). Upon further examination, we noticed a nonlinear 

quadratic relationship between SPQ unusual perceptual experience scores and self-recognition for 

complex actions. Thus, we introduced an additional predictor variable of quadratic SPQ subscale 

scores of unusual perceptual experiences to the stepwise regression analysis. The results 

converged to a significant model with two predictor variables (SPQ unusual perceptual experience 

subscale scores, and its quadratic term), F(2,95) = 5.782, p = 0.004. As shown in Figure 10, there 

was a significant relationship between the SPQ unusual perceptual experiences subscale and self-

recognition performance for complex actions (spearman ρ = 0.264, 95% CI [.064, .445], p = .008). 

In addition to the linear relation, self-recognition performance for complex actions also related to 

a quadratic trend of SPQ unusual perceptual scores, revealed by significant coefficients to the 

quadratic term (t(92) = -2.937, p = .004). The coexistence of linear and quadratic relations indicates 

that participants with mid-range SPQ unusual perceptual experiences scores showed best self-

recognition performance for complex actions.  
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Figure 10. Relations between SPQ unusual perceptual experience subscale scores and self-
recognition for complex actions and respective 95% confidence intervals. Higher SPQ scores 
indicate more schizotypal traits. 
 

For imitation actions, the stepwise regression analysis selected a model with six predictor 

variables, including AQ social communication and attention subscale scores, three SPQ scores of 

odd speech, suspiciousness, and no close friends, and VMIQ-2 Kinesthetic scores, in relation to 

self-recognition performance (F(6,91) = 2.895, p = 0.013). However, only AQ social 

communication and SPQ suspiciousness scores showed significant coefficients (t(90) = -3.286, p 

= .001; t(90) = - 2.336, p = .022). The follow-up nonparametric correlation analysis did not reveal 

a significant relation between self-recognition performance for imitation actions and SPQ 

suspiciousness scores (p = .263), but confirmed its significant relation with the AQ social 

communication subscale scores (spearman ρ = -0.229, 95% CI [–0.414, -0.026], p = .023). This 

result suggests that people with higher AQ traits associated with social communication ability 

performed worse in the self-recognition task for imitation actions. As self-recognition performance 

with imitation actions also correlated with the VMIQ-2 composite scores of motor imagery ability 

as reported earlier, we ran a second stepwise regression analysis with four predictor variables, 

including AQ social communication scores and three VMIQ-2 subscale scores. This stepwise 
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regression selected a model with two predictor variables, AQ social communication scores and 

VMIQ-2 kinesthetic motor imagery scores (F(2,95) = 3.652, p = .030). We then examined 

interactions between these intrinsic factors, which showed how autistic traits and motor imagery 

abilities jointly impact self-recognition performance for imitation actions. As shown in the right 

panel of Figure 11, the negative relationship between AQ social communication scores with self-

recognition performance for imitation actions was moderated by kinesthetic motor imagery ability 

(ß = - 0.032, 95% CI [-0.063, -0.001], p = .043): higher kinesthetic motor imagery ability (- 1 SD: 

VMIQ scale reversed) was negligent in its overall effect on self-recognition (p = .949), having 

average (ß = -0.034, 95% CI [-0.065, -0.027],  p = .034) or lower kinesthetic motor imagery ability 

(+ 1 SD) (ß = -0.066, 95% CI [-0.108, -0.024],  p = .003) significantly reduced self-recognition 

performance as AQ social communication traits increased, indicating a possible compensatory role 

of kinesthetic motor imagery ability. 

 
Figure 11. Relations between self-recognition for imitation actions with AQ social communication 
subscale scores (left panel) and moderation of this relationship by kinesthetic motor imagery 
ability (right panel). Right panel: Individual slopes were significant for those with low kinesthetic 
motor imagery ability (+ 1 SD) and average imagery ability, but not high ability (- 1 SD). Note that 
higher AQ scores indicate more autistic traits, and higher VMIQ-K scores indicate weaker imagery 
ability. 
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Discussion 

On a large sample of participants, we measured the impact of motoric factors related to action 

planning and participant variability on self-recognition. Using quantitative measures of action 

similarity, we ruled out the primary contribution of movement distinctiveness to self-action 

recognition to show how this ability is modulated by systematic factors related to the degree of 

motor planning and intrinsic traits of the participant. In measuring intrinsic traits, we further 

parcellated the subscale measures, which revealed fine-grained variance beyond the composite 

measure for specific subscales. Specifically, subscales for motor imagery (kinesthetic), AQ (social 

communication) and SPQ (unusual perceptual experiences) interacted with joint and distinct action 

types to influence self-recognition performance.  

Movement distinctiveness is not the primary contributor to self-action recognition in PLDs 

First, we found that movement distinctiveness was not the primary contributor to variability in 

self-recognition performance, even after removing the visual cues to identity. Prior work has 

speculated on two main contributors to self-recognition of actions. On one hand, proprioceptive 

and kinesthetic information retained from executing familiar motor actions (i.e., motor experience) 

may primarily modulate self-action recognition. On the other hand, participants may recognize 

their movements on the basis of idiosyncratic movement cues, measured via perceptual 

distinctiveness (i.e., speed of movements; motion trajectories in observed actions). In our study, 

action dissimilarity analysis based on DTW revealed no significant relationship between perceived 

movement idiosyncrasies in performing actions and self-recognition accuracy. The analysis 

showed that even though both complex and imitation actions were significantly more idiosyncratic 

than simple actions and did not different from each other in terms of variability, this pattern in 

relation to self-recognition accuracy was distinctively different. Complex actions were self-



 
 

52 

recognized significantly better than simple and imitation actions, while simple and imitation 

actions showed no difference in self-recognition. Additional analyses quantifying movement speed 

differences across participants further found no relationship to self-recognition of the action types 

(see section V in Appendix), nor self-recognition differences between action types. Hence, our 

results suggest that neither movement variability (i.e., distinctiveness) nor low-level speed 

differences served as primary contributors to visual self-recognition when we accounted for other 

action factors. 

As an additional control for visual familiarity, we added a visual recognition task for 

imitation actions (further detailed in Appendix). Performance on this task showed chance-level 

recognition of briefly observed visual actions that participants had previous visual experience with, 

as compared to above-chance self-recognition performance for actions that participants had 

previous motor experience with. Moreover, all actions, regardless of their degree of complexity, 

showed viewpoint invariant self-recognition (frontal and right/left half-profile) of identifying own 

actions, confirming a body-centered representation for self actions (Jokisch, Daüm, and Troje, 

2006). Together, these findings underscore the importance of the motor system to self-recognition 

in that perpetual experience does not appear to suffice for self-recognition. In keeping with 

common coding theory, actions signaling a closer match between the motor system and perception 

(i.e., self-generated) enhance action recognition more so than those distally matched (i.e., other-

generated) (Prinz, 1997).   

Extrinsic variability modulates self-recognition performance 

Our study points to alternative factors beyond visual distinctiveness that primarily underlie self-

action recognition. First, we found that self-recognition performance varied according to the 

degree of motor planning, manipulated by our extrinsic factor of action type (simple, complex, and 



 
 

53 

imitation). A few prior studies have shown the contribution of item-level delineations based on 

perceptual variability or idiosyncrasies to self-action recognition (e.g., Loula et al., 2005; Coste et 

al., 2021). Importantly, the perceptual distinctiveness of self-actions is generated from privileged 

access of one’s motor plan during action performance (Knoblich and Prinz, 2001), and hence 

causally varies as a function of the degree of motor planning (e.g., Li et al., 2020). Complex actions 

required the greatest degree of motor planning due to the more complex variability of the goal 

representation space relative to simple actions (e.g., Li et al., 2020). Simple actions and imitation 

actions required less motor planning due to the reduced action complexity and mimicry of 

movement patterns, respectively (Zimmer & Engelkamp, 1996; Schwartz & Plass, 2014). The 

performance pattern mostly mapped onto the motor planning differences, with greatest self-

recognition performance for complex actions as compared to simple or imitation actions. However, 

we found no performance difference between simple (simple actions with semantic label; i.e., 

greater motor planning) and imitation (without semantic label; i.e., reduced motor planning) 

actions, even though imitation actions were considerably more variable. 

Intrinsic interactions with extrinsic factors influence self-recognition performance 

Beyond the separate influence of extrinsic action characteristics on self-recognition, our analyses 

revealed distinct interactions between the extrinsic action type and intrinsic traits linked to motor 

imagery ability and clinical subscales (AQ social communication, and SPQ unusual perceptual 

experiences). For imitation actions, we found that the composite motor imagery score was 

significantly correlated with self-recognition performance. Motor simulation theories (Jeannerod 

2001; Jeannerod and Pacherie, 2004) posit the central role of motor imagery during action 

perception. Our results suggest that a compensatory increase in motor imagery ability may be 

required to self-identify one’s own imitation action, which consisted of the least amount of motor 
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planning since no explicit action label was provided during the action execution session. No 

significant relationships were found between the visual imagery subtypes (internal and external) 

and self-recognition for any action types. This behavioral dissociation between visual and 

kinesthetic imagery neatly converges with neural evidence revealing partially distinct brain regions 

for visual imagery (parieto-occipital) and kinesthetic imagery (i.e., parietal and premotor) (Guillot 

et al., 2009). It is likely that during the perception of one’s own action, motor expertise of own 

actions is a fundamental contributor, and makes use of neural resources linked to kinesthetic motor 

imagery (Wei and Luo, 2010; Kim et al., 2011).  

We further found a negative relation between the AQ social communication subscale and 

self-recognition performance for imitations actions. This negative relationship was moderated by 

kinesthetic motor imagery traits: greater AQ social communication traits attenuated self-

recognition performance for imitation actions, only when kinesthetic motor imagery ability was 

weakened (low or average). In other words, greater kinesthetic motor imagery ability may play a 

compensatory role in the Autism-Spectrum, evidenced by reduced effects of AQ social 

communication on self-action recognition with more kinesthetic motor imagery traits. As motor 

imagery is thought to share neural resources with biological motion perception (e.g., Grèzes and 

Decety 2001), the negative AQ social communication relation could be driven by difficulties in 

biological motion processing. This is consistent with neuroimaging evidence showing reduced 

brain activity in prefrontal and left temporal cortices in high AQ social communication individuals 

when viewing point-light actions (Puglia and Morris, 2017). Behaviorally, this interpretation is 

also in line with empirical work linking the AQ social communication subscale to atypical 

processing of local kinematic information (i.e., individual joint movements) in biological motion 

(Wang et al., 2018). For simple actions with less perceptual variability, superior local processing 
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of joint movements may be an important factor in discriminating fine details of self from other 

actions, possibly compromised in those with high AQ social communication traits. This may 

similarly explain the nonsignificant relationship between AQ social communication and complex 

actions, which may be aided by the increased perceptual variability in the actions resulting from 

individualized body movements, providing a compensatory strategy to self-recognition, regardless 

of the AQ spectrum. The interpretation of weakened local processing in high AQ social 

communication traits is in contrast to behavioral patterns observed in biological motion research 

that utilize the composite AQ measure. Many of these studies show the reverse pattern—superior 

local processing and a generalized disturbance in global processing in high AQ individuals. 

However, findings from these studies remain inconsistent (largely attributed to task-specific 

variability) (e.g., van Boxtel et al., 2017) and a possible reconciliation could be obtained by 

exploring the subscales, rather than averaging them in the aggregate measure. 

Scores on SPQ unusual perceptual experiences were quadratically related to complex 

actions, such that low and high individuals performed worse at self-recognizing complex action 

sequences. How might the intrinsic SPQ subscale modulate self-recognition for complex actions? 

Prior work suggests impaired action perception across the schizophrenia spectrum (Kim et al., 

2005, Kim et al., 2011). However, we only observed a significant trend with self-recognition 

performance on one action type (i.e., complex actions). Thus, the present results cannot be reduced 

to a generalized abnormality in biological motion perception. Rather, atypical action monitoring 

in suppressing the sensory consequences of action may produce false positives — misattributions 

that the action is externally generated (Frith et al., 2000). The unusual perceptual subscale focuses 

on the positive (i.e., first-rank symptoms) of SSC, including incoherent perceptual experiences that 

reduce one’s sense of agency (Asai et al., 2008), blurring the boundaries between the self and other 
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(e.g., Waters & Badcock, 2010; Postmes et al., 2014).  In relation to atypical action monitoring, 

prior studies have shown that individuals high in SPQ unusual perceptual traits are more successful 

at self-induced tickling (i.e., Lemaitre, Luyat, & Lafargue, 2016), likened to a disrupted match 

between predicted efference copies and sensorimotor outcomes; see forward model accounts 

(Wolpert and Miall, 1996; Postmes et al., 2014). The action monitoring atypicality may be 

particularly exacerbated by complex actions that require a greater degree of motor planning and 

preparation. Weakened self-recognition performance on complex actions with those low on SPQ 

unusual perceptual experiences traits is less clear. It is possible that the weakened self-recognition 

may be due to decreased perceptual acuity in discerning subtle movement patterns, induced by the 

distraction of perceptual variance in complex action sequences. This could manifest in behavioral 

differences based on false negatives (i.e., decreased discrimination of perceptual idiosyncrasies), 

rather than on false positives (i.e., misattributions).  

Neither composite subclinical measure (schizotypal or autistic) showed a relation to self-

recognition performance. If our analysis was restricted to the composite measures, this would 

suggest that physical aspects of the self (i.e., bodily recognition) are intact in both conditions, 

consistent with many studies on visual self-recognition (e.g., Ferrari & Matthews, 1983; Uddin et 

al., 2008; Dunphy-Lelii & Wellman, 2012; Gillespie-Smith et al., 2014; Lee et al., 2007; cf. 

Chakraborty and Chakrabarti, 2015). However, the clear pattern of relations with the subscales 

suggests that a focus on the composite measure can be misleading, as it masks the 

psychopathological variance in the general population. SSC and ASC have heterogenous 

symptomatology, residing on a continuum that extends well into the general population, and 

frequently updated in light of DSM revisions. While models of AQ and SPQ symptomatology 

posit the large phenotypic overlap between AQ and SPQ subscales (which our results similarly 
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maintain), the AQ social communication and SPQ unusual perceptual experiences dimensions 

appear to reside on a diametric axis, largely exempt from the overlap (Dinsdale et al 2013; Ford 

and Crewther, 2014). The present results confirm the diametric relation presented in the prior work, 

as we found no relationship between the subdimensions of interest (i.e., AQ social communication 

and SPQ unusual perceptual experiences), which shared unique variance with each respective 

clinical composite measure. Since the composite measures average across the spectrum, a 

foundational approach for future individual difference studies should also prioritize subscale 

parcellations, which may reveal finer-grained individual variability. 

Our study presents some outstanding limitations. Though we separated actions based on 

motor planning, our actions included a range of social and non-social actions. In doing so, we 

preserve the naturalistic nature of the actions; however, additional studies can more specifically 

isolate the contribution of controlled action types. Another limitation pertained to the action 

similarity analysis in the present paper. The DTW analysis only derives similarity by comparing 

joint movements, not considering other factors that can influence similarity judgments such as 

body structure similarity across individuals, or semantic similarity across actions. In addition, 

DTW gives the same weight to each frame in the video. In some actions, subtle movement 

differences in a short period may play a more important role in determining action similarity than 

movements in other periods. These subtle movement segments, not capturable with dynamic time 

warping analysis across groups, may also be needed to assess whether motor performance 

differences are associated with our psychometric traits (e.g., Walker et al., 1999; Lenzenweger & 

Maher, 2002) or may provide idiosyncratic cues to identity in other ways. Importantly, our results 

do not rule out that perceptual distinctiveness is a relevant cue to self-identification, as was found 

in Coste et al (2021). Rather, we consider perceptual variance to be a result of the underlying 
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motoric complexity afforded by different action goals and may be more important when other 

manipulations to these motoric factors are not present. As Coste et al (2021) focused on postural 

movements, the goal complexity remained relatively constant across action sequences, hence 

providing a possible explanation for why visual distinctiveness served as the primary cue.  

 Few species are capable of self-recognition and develop motor-based, self-other mapping 

mechanisms in the brain. Visual self-recognition of point-light actions provides a unique lens to 

gauge the core perceptual and motor mechanisms underlying self-representations in humans. 

These paradigms control the level of visual familiarity people have with self-related stimuli (e.g., 

compared to familiar faces, body images, voices) from a third-person perspective, highlighting the 

importance of “acting” in “seeing” the self. Our findings thus complement a diverse body of 

literature in self-processing, demonstrating that self-recognition is possible for stimuli even with 

little visual experience. Furthermore, the approach of studying individual differences provides new 

evidence for how the motor system may contribute to self-recognition— distinct aspects of motor 

processing tap into intrinsic and extrinsic routes, imbuing the core of self-awareness. 
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CHAPTER 3 
 

 Specialized neural mechanisms for self-recognition from whole-body movements 
 
 
Abstract: Humans can identify their actions from point-light displays even when the actions are 

visually degraded and depicted in unfamiliar viewpoints. When presented with these visually 

impoverished stimuli, participants show a behavioral self-recognition advantage, indicating a 

preferential role of self-actions to visual awareness. To date, we lack a direct test of the neural 

circuitry underlying self-action recognition of the whole body. In the present study, across two 

sessions, we motion-captured a range of actions from 20 participants, who returned after a delay 

period for functional neuroimaging. Using univariate, multivariate, and connectivity analyses, we 

found that self-processing of own actions recruited the action observation network (AON) 

spanning the frontoparietal to the temporooccipital regions. The frontoparietal regions were 

functionally connected to the temporooccipital regions during self-processing and showed 

increased activity during self-recognition, while the temporooccipital regions primarily decoded 

domain-general identity processing. The pattern of results further indicated a degree of left-

lateralization in the frontoparietal regions and largely bilateral activity in the temporooccipital 

regions. Together, the findings are indicative of a specialized neural circuitry for whole-body self-

recognition of actions, with prioritized roles of frontoparietal regions of the AON.  
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Introduction 

Human life is built upon our own actions. Actions we perform entail interactions with both physical 

and social worlds and form the building block for self-awareness. This “bodily self” is one of the 

most primitive aspects of the self (Jeannerod & Pacherie, 2004; Van Den Bos & Jeannerod, 2002; 

Blanke, 2012; Blank, 2015) and leads to advanced and reflective forms of awareness that 

characterize later development of a self-concept. Prominent theories connecting the self and the 

other often underscore the importance of the sensorimotor system in social cognition, whereby 

experience with our own actions is fundamental beyond the individual self, such as for grasping 

the meaning behind the actions of others (e.g., Gallese & Goldman, 1998; Rizzolati and Craighero, 

2004; Iacoboni, 2008; Iacoboni, 2009).  

 Studies in visual self-recognition demonstrate a self-processing advantage during identity 

recognition of whole-body actions, even when the actions are visually degraded to a significant 

degree, as conveyed by point-light displays (PLD)s—dot motion localized to human joints that 

render the mechanics of the human body. These studies show compelling evidence for both an 

explicit self-action recognition advantage (Loula et al., 2005; Burling et al., 2019; Sevdalis & 

Keller, 2010, Wöllner, 2012; Beardsworth and Buckner, 1981; Knoblich & Prinz, 2001; Coste et 

al., 2021; Kadambi et al., under review) in comparison to recognition of visually familiar friends 

or strangers, as well as an implicit self-advantage across bodily stimuli (e.g., for body parts), 

measured by reaction time facilitation for self-actions (e.g., Frassinetti et al., 2009; Conson, 

Aromino & Trojano, 2010). The studies together shed light on the very intrinsic motor construction 

of the self that is independent of mere perceptual attributes of the stimulus. For instance, self-

recognition of actions is possible even without observing visual feedback (Knoblich & Prinz, 

2001), across action types varying in complexity (Burling et al., 2019; Kadambi et al., under 
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review), viewpoints (Jokisch, Daum & Troje, 2006), speed differences (Kadambi et al., under 

review), as well as linked to the degree of motor expertise (e.g., in sports; Hohmann et al., 2011), 

and individual differences in motor imagery ability (Kadambi et al., under review). Self-

recognition from PLDs also depends on the motoric goal complexity of the action, with greater 

self-recognition for actions that require more motor planning and complexity (Burling et al., 2019; 

Kadambi et al., under review; Loula et al., 2005). Together, the behavioral evidence follows that 

self-action recognition does not purely rely on visual signatures of the actions, but likely on motor 

experience generated from familiarity in performing actions that engages sensorimotor neural 

systems. 

Is self-recognition of whole-body actions more than an awareness of visually familiar 

movements? While behavioral findings on self-action recognition are well-replicated, the 

increased recruitment of motoric systems for whole-body self-action recognition is largely 

speculative. Neuroimaging studies that incorporate whole-body movements often omit the self and 

focus on the neural processes underlying action perception performed by other individuals. These 

studies converge to show that visual recognition of other people engages an action-specific 

network attuned to the human body known as the action observation network (AON). The AON 

consists of both temporooccipital regions (posterior superior temporal sulcus, pSTS; extrastriate 

body area, EBA; fusiform gyri), regions typically studied in visual neuroscience of actions using 

PLDs, as well higher-level frontoparietal circuits studied in cognitive neuroscience of actions, 

including the inferior parietal lobe (IPL), premotor cortex, and inferior frontal cortex (IFC). In 

combination between these regions, the flow of information bridges action pattern recognition 

from visual neuroscience and higher-level action understanding in cognitive neuroscience 

accounts together to comprise the AON (Urgen et al., 2019; Grèzes et al., 2003).  
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The AON not only supports action recognition from biological motion but is also 

considered a critical contributor to self-recognition as it codes the fundamental basis and link 

between the self and the other. Single-cell neurons in the AON found first in monkeys (Di 

Pellegrino et al., 1992) and later humans (Mukamel et al., 2010) demonstrate visuomotor 

“mirroring” capabilities, in that visual observation of a similar action goal performed by another 

individual evokes corresponding neural activity in motor regions of oneself. On non-motoric 

aspects of self-recognition, including recognition of faces and voices, increased sensorimotor 

(mirror neuron) involvement has also been shown for the self, in comparison to familiar others or 

strangers (Uddin et al., 2005; Kaplan et al., 2008; Uddin et al., 2007). Moreover, the degree of 

neural activity is modulated by the degree of familiarity to oneself, not only within the mirror 

neuron network, but based on interactions with higher-level neural systems (e.g., mentalizing 

network) (Molnar-Szakacs & Uddin, 2013) that engage the more reflective aspects of the self. 

In the literature, there are a few studies that have examined the neural mechanisms 

underlying self-action recognition, but these studies limit actions to simple arm movements rather 

than naturalistic whole-body movements, and often use tasks that do not explicitly ask participants 

to provide self-identity judgments. Two functional neuroimaging (fMRI) studies provide relevant 

evidence of increased sensorimotor involvement during self-action processing. First, Bischoff et 

al (2012) used implicit measures of self-recognition from PLDs constrained to four dots in the 

upper body. Participants in the study observed tennis swings from PLDs of themselves or others 

and were asked to predict the ball flight direction. They found left-lateralized frontoparietal 

activity eliciting stronger activation for the self than others, involving the angular gyrus in the 

inferior parietal lobe (IPL) and the anterior rostral medial frontal cortex. In a working memory 

paradigm, Wozniak et al (2021) opted to arbitrarily assign PLDs to an identity (self, friend, 



 72 

stranger). PLDs associated to oneself retained in memory recruited sensorimotor systems including 

the left middle frontal gyrus, inferior frontal gyrus (IFG), and supplementary motor area (SMA). 

Notably, however, because the actions were not actually performed by oneself (i.e., arbitrary 

association), the motor experience generated from performing the movements was not present. 

Other studies using videos consisted of isolated body parts of self-actions (e.g., Macuga and Frey, 

2011) further confirm recruitment of frontoparietal regions during self-recognition. However, by 

relying on either implicit tasks in which performance can be influenced by self-judgments, tasks 

that lack the motor familiarity that characterize our daily motion patterns (Wozniak et al., 2021), 

or isolated body parts, researchers may miss an opportunity window to identify the veridical 

regions and networks specialized for self-identity.  

In the present study, we aimed to identify the corresponding neural circuitry underlying 

recognition of self-actions from whole-body movements and map the contribution of the AON to 

self-recognition. We incorporated both featural and quantitative assessments of the action stimuli 

and used multivariate decoding and encoding methods to measure the full representational space 

of neural regions for self-recognition. Participants were recruited in a two-session experimental 

design. In Session 1, we motion-captured a range of actions of participants and their gender-

matched close friend performed using both visual instruction (imitation) and verbal instruction 

(freely performed). After a delay period, participants returned in Session 2 to undergo functional 

neuroimaging. For each trial of scanning, participants observed motion captured PLDs of either 

themselves, friends, or strangers and were tasked to identify the identity of the agent. 

In keeping with prior work, we hypothesized core involvement of the action observation 

circuitry for all identities (self, friends, or strangers). If self-actions are preferentially prioritized 

by sensorimotor regions, we expected increased activity in the AON for self-actions relative to 
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non-self actions, controlling for both visual familiarity (friend) and identity (stranger). The reverse 

was not predicted for either of the two other identities. Thus, in order to identify a preferential 

circuitry for self-actions relative to others, the AON network should be involved for both self and 

others, generate greater activity for self than non-self, and show inherent functional connectivity. 

 

Methods 

Participants 

Twenty right-handed undergraduate participants (Mage = 20.55, SDage  = 1.73, females = 12, males 

= 8) were recruited from the University of California, Los Angeles, and provided payment for their 

participation. Sample size was determined sufficiently sensitive in keeping with prior work on 

neuroimaging of biological motion (e.g., Saygin et al., 2004; Chang et al., 2021; Engelen et al., 

2015) and self-actions in PLDs (e.g., Bischoff et al., 2012). The study was approved by the UCLA 

Institutional Review board. All participants were naïve to the purpose of the study. Participants 

had normal or corrected-to-normal vision and no physical disabilities.  

Apparatus 

The Microsoft Kinect V2.0 and Kinect SDK were used for motion-capture of actions. The Kinect 

is effective for motion-capture and well-utilized in previous studies on self-action recognition 

(Kadambi et al., under review; Burling et al., 2018). Customized software developed in our lab 

was used to enhance movement signals, and to carry out additional processing and trimming for 

actions presented later in the testing phase (Van Boxtel & Lu, 2013). Three-dimensional (X-Y-Z) 

coordinates of the key joints were extracted at a rate of approximately 33 frames per second. Each 

action was trimmed to the start and stop of a T-position signaled by the participant and normalized 

to scale for use in the experimental task. Note that while motion capture accuracy was high, the 
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Kinect occasionally produced noise jittering in the stimuli, where frame-to-frame joints positions 

occasionally showed sudden jumps in position. Hence, to account for noisy frame-to-frame jitter, 

we impinged a manual correction for certain frames (i.e., replacing with the closest previous frame 

where the jitter was not present). 

 

Stimuli 

Twelve actions were selected from our previous work on self-action recognition (Burling, 

Kadambi, Safari, Lu, 2018; Kadambi and Lu, 2019; Kadambi, Xie and Lu, under review). These 

actions conveyed a range of variability in terms of action planning. Six of the actions (i.e. argue, 

wash windows, get attention, hurry up, stretch, and play guitar) were categorized as “verbally 

instructed actions”, delineated by a high degree of motoric goal complexity as defined in our 

previous work (Burling et al., 2019; Kadambi et al., under review). These actions were verbally 

instructed to the participant (e.g., please perform the action: “to argue”). The remaining six actions 

were characterized as visually instructed (imitation) actions, depicting a range of simple and 

complex goals (i.e., jumping jacks, basketball, digging, chopping, laughing, directing traffic). For 

these actions, participants observed a stick figure performing an action without any verbal label 

provided and were then visually instructed to ‘imitate the movements of the action.’ These stick 

figure actions were selected from the Carnegie Mellon Graphics (CMU) Lab Motion Capture 

Database available online (http://mocap.cs.cmu.edu), generated from pre-defined actors. PLDs 

were thus created using the above method for each participant, a gender-matched friend, and a 

gender-matched stranger.  The stranger action was randomly selected from one of three possible 

distractors for each gender (six total), pre-captured from the experimenters’ and research 

assistants’ actions. The categorization of the action types, in addition to providing variability of 
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the action goal, further allowed us to explore secondary analyses contrasting actions involving less 

motor planning (visual instruction) versus actions that required a greater degree of motor planning 

(verbal instruction) (detailed in Appendix). 

Procedure 

Behavioral Session 

In the first session (behavioral), participants’ body 

movements were recorded using the Microsoft Kinect 

V2.0 and Kinect SDK in a quiet testing room. Here, 

participants were instructed to perform the actions in a 

rectangular space, in order to provide flexibility to 

perform the action, while remaining within recording 

distance. The Kinect was placed 1.5 m above the floor 

and 2.59 m away from the participant. Participants were 

instructed to freely perform 12 actions as described 

above and recorded by our motion capture system. 

Participants signaled the start and stop of action performance with a T-Pose. Participant actions 

were then recorded and converted to point-light stimuli (Figure 12) for use in the fMRI session.  

Each of the 20 participants also brought a gender-matched close friend, who was also separately 

recorded with the same paradigm. None of the participants were informed about the study’s 

purpose on self-recognition, but were informed that this study was about general visual action 

processing. We utilized the recordings of the close friend in the fMRI session to assess the impact 

of visual familiarity. After the recording session, participants completed a few attitudinal 

Figure 12. Conversion of participant’s 
raw actions (kicking) into point-light 

displays 
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questionnaires including the Autism-Spectrum Quotient (Baron-Cohen et al., 2001), Schizotypal 

Personality Questionnaire (Raine, 1991), and Vividness of Motor Imagery-2 (Roberts, 2008). 

fMRI session 

Returning after a delay period of around two weeks (mean delay days = 18.55, SD = 2.87), 

participants underwent fMRI scanning in Session 2. During each trial of scanning, participants 

passively observed a point-light display (consisting of 25 joints) of either their own action, gender-

matched familiar friend, or gender-matched stranger for a 5 second duration. Following passive 

observation, participants were prompted to identify with a finger-press response on button box 

with the right hand, whether the action video shown was their own, friend, or stranger within a 2 

second maximum response period. Their response was followed by a jittered intertrial intervals 

(ITI) mean-centered at 5 seconds. Response order mapping of self/friend/stranger was 

counterbalanced across participants to reduce any effects of motor preparation or planning 

demands. A sample trial structure is represented in Figure 13. There were four runs per participant, 

each consisting of 36 trials (12 trials per identity condition) in an event-related design. For each 

run, experimental conditions were pseudorandomized to reduce stimulus autocorrelation related to 

order and sequence effects as well as correlated noise, such as scanner drift. Duration of the 

experimental task during scanning lasted around 24 minutes. Total scanning duration lasted around 

45 minutes. 
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Fig 13. Trial structure including timing. Participants centrally attended to a white fixation cross 
until the action (self/friend/other) appeared for 5 seconds. Participants were provided 2 seconds to 
make their identity judgment, followed by the variable ITI. The response order of self, friend, other 
varied per participant in order to reduce any impact of motor order. 
 

Localizer Sessions 

Two functional localizer scans were collected for posterior superior temporal sulcus (pSTS); 

Grossman et al., 2000; Grossman et al., 2010) and extrastriate body area (EBA; Peelen & Downing, 

2005; Downing et al., 2006; Downing et al., 2001). For the pSTS localizer, participants observed 

PLDs comprised of 12 dots, globally constructed to perform 12 different everyday actions (e.g., 

jumping, kicking, running, throwing). They also observed spatially scrambled PLDs in which the 

individual local dot trajectories of the point-light display remained intact, but the global 

configuration of the point lights was randomly displaced (i.e., starting positions of the dots were 

randomized). Sensitivity to intact biological motion was contrasted with spatially scrambled 

biological motion for the task contrast of interest. For the EBA localizer, 20 images of gray-scale 

bodies or chairs were presented sequentially for 300 ms. All images were identical in size (400 x 
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400). To ensure that participants were attending to both localizer tasks, participants were asked to 

focus on a central fixation cross and press a button when repetition of any stimulus occurred (i.e., 

one-back). 

 

MRI Acquisition 

The Siemens 3-Tesla Prisma Fit scanner at the Staglin IMHRO Center for Cognitive Neuroscience 

was used for Magnetic resonance imaging, equipped with a 32-channel head coil. Structural data 

was acquired using a T1-weighted MPRAGE protocol (2.5 mm3 resolution; repetition time = 2.0 

ms). Functional data was acquired utilizing T2*-weighted Gradient Recall Echo sequence. 

Scanning parameters for the main task included: repetition time = 700 ms, echo time = 33 ms, 

voxel size = 2.5 mm3 isotropic voxels, field of view = 192 mm, flip angle = 70°. Four dummy 

scans were acquired and discarded before each scan to account for scanner stabilization. Scanning 

parameters for the localizer task included: repetition time = 2000 ms, echo time = 2.52 ms, voxel 

size = 1.0 mm3 isotropic voxels. Five dummy scans were acquired and discarded for the localizer 

tasks. Participants viewed the stimuli presented on a projector through a mirror mounted on the 

head cover in the scanner.  Participants underwent four runs of 36 trials each. Each run lasted 

approximately 360 seconds.  

 

Imaging Analyses 

Univariate Analysis 

Statistical analyses were conducted using FEAT (FMRI Expert Analysis Tool) Version 6.00, part 

of FSL (FMRIB’s Software Library, www.fmrib.ox.ac.uk/fsl) using the GLM approach. Individual 

functional scans were coregistered to the high resolution structural image using boundary-based 
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registration (Greve and Fischl, 2009). Registration of the high resolution structural to the Montreal 

Neurological Institute (MNI) template was implemented using FSL’s FLIRT (Jenkinson 2001, 

2002) with 12 parameter DOF affine transformation. The following pre-statistics were applied; 

motion correction using MCFLIRT (Jenkinson 2002); slice-timing correction using Fourier-space 

time-series phase-shifting; non-brain removal using BET (Smith 2002); spatial smoothing using a 

Gaussian kernel of FWHM 5mm; grand-mean intensity normalisation of the entire 4D dataset by 

a single multiplicative factor; highpass temporal filtering (Gaussian-weighted least-squares 

straight line fitting, with sigma=50.0s). Regressors were defined based on the onsets and durations 

of the three identities (self, friend, stranger) across all actions. Individual runs were aggregated 

into a mixed effects higher-level model using FLAME (FMRIB’s Local Analysis of Mixed 

Effects) stage 1 and stage 2 (Beckmann et al., 2003; Woolrich, 2004; Woolrich 2008) for both 

within-session single subject variance and between-session group level variance. Significance 

testing on the statistical parametric maps was then assessed at the group level using two approaches 

in FSL (1) randomise with threshold-free cluster enhancement (TFCE) cluster correction (Winkler 

et al., 2014; Smith & Nichols, 2009), TFCE-p threshold = .05 (2) random-field (RFT) based 

thresholding at Z > 3.1, cluster corrected to a significance level of p < .05 (Worsley 2001). 

Randomise served as our main approach to significance testing given its more conservative, 

specific, and sensitive significance criteria (Smith & Nichols, 2009). For simplicity, all figures and 

tables generated from the parametric RFT analysis are reported in Appendix. Conjunction analysis 

to localize self-specific activity was also implemented in FSL using the easythresh_conj script 

(easythresh_conj) on univariate activation maps for both “self vs stranger” and “self vs friend” 

contrasts (Nichols et al., 2005; Price & Friston, 1997). The conjunction specifically tests the 
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“conjunction null hypothesis” as to whether both conditions showed significant functional 

activation  (Z > 3.1, p < .05), which were later used as seed regions in the connectivity analyses.  

 

Functional localizer 

For the extrastriate body area (EBA), we measured the functional activation from the task contrast 

bodies > chairs elicited by the functional localizer, uncorrected p < .05. Given the widespread 

activity evoked by the contrast, we constrained activity to the anatomical parcellation of the 

inferior lateral occipital cortex (LOC) from the Harvard-Cortical atlas generated by FSLEYES 

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases) and thresholded the mask to include the top 80% of 

voxels. The identical procedure was used for the posterior superior temporal sulcus (pSTS), with 

functional activation of interest measured by the contrast of intact > scrambled PLD and then 

constrained to the anatomical parcellation of the posterior superior temporal gyrus from the 

Harvard-Cortical Atlas. We could not localize the EBA for one participant, and the pSTS for 4 

participants using this method, so for those participants, their functional ROI was replaced using 

the peak group level activity for each contrast with the identical method. 

 

Functional connectivity: Psychophysiological Interaction (PPI; Friston et al., 1997) 

To identify a self-action circuitry based on task-specific changes in functional connectivity, we 

implemented generalized PPI (gPPI) connectivity analyses (McLaren et al., 2012). PPI relies on a 

moderation-based GLM framework, which examines how the relationships between a seed 

(physiological) region and voxels in other brain regions are modulated by the psychological state 

of the participant (task-dependent). The degree to which the seed regions and sink (other brain 

regions) vary as a function of the task, is measured by testing the significance of the b coefficient 



 81 

of the interaction computed between the experimental contrast vector and the sink region. gPPI 

similarly follows this logic, but is considered more sensitive and specific as a method as it accounts 

for residual variance related to all experimental conditions (Cisler, Bush, & Steele, 2014). Thus, 

in addition to the physiological seed, the GLM for gPPI further included all task-conditions and 

their PPI interaction regressors. As our analyses focused on a self-action circuitry, we constrained 

our physiological seeds to those determined by group-level functional activations in separate 

GLMs for either self > stranger or self > friend contrasts. The seed region in the Left IPL was 

generated from creating a small sphere (2mm radius) around the peak functional activation for the 

conjunction of the prior contrasts. We used a conjunction analysis implemented in FSL using the 

easythresh_conj script (easythresh_conj) on univariate activation maps for both “self vs stranger” 

and “self vs friend” contrasts. The seed region in the Left Insula/IFG was similarly generated from 

univariate activation, but only from the self > stranger since no activation was present at the group-

level for self > friend using the randomise approach. We extracted the time courses in these seed 

regions (Left IPL or Left Insula/IFG) using fslmeants 

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Fslutils), which generated a vector of mean activity in the 

mask for each volume. This time course was then entered as the ROI time series regressor into the 

gPPI GLM. Thus, the full GLM consisted of the interaction vectors (gPPI regressors), the main 

effects of the contrasts of interest (the psychological variables), and a vector representing the seed 

region time course (the physiological variable, Y regressor). At the group level, statistical 

parametric maps for the interaction term were thresholded (p < .001, uncorrected) to compute 

significance of the interaction term (i.e., task modulation of interest). 
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Multivariate Analysis (MVPA) 

Both region of interest (ROI) and whole-brain searchlight representational dissimilarity analyses 

(RDA) were implemented using the CoSMoMVPA toolbox (http://www.cosmomvpa.org/; 

Oosterhof et al., 2016) in MATLAB R2020a. Regressors were defined based on the onsets and 

durations of the three experimental conditions (self-actions, friend-actions, or stranger-actions). 

Using the Least-Squares Separate approach, beta-series parameter estimates (Rissman, Gazzaley, 

& D’Esposito, 2004; Mumford et al., 2012) were iteratively estimated per trial by modeling a 

regressor for the event of interest in the trial and a regressor for all other events within the run. 

Standard motion parameters were also included as regressors in each GLM. Preprocessing was 

identical to the univariate analysis, but no smoothing was applied. For each run, we extracted the 

36 beta weights from each participant, normalized each beta weight within run, computed the 

average for each of the 36 action targets across all runs, and then demeaned the data (i.e., 

subtraction of the grand mean of all averaged targets from each averaged target). For ROI-MVPA, 

a linear support vector machine (SVM) was trained on neural activity patterns from three runs and 

tested on the remaining one run using the leave-one-run-out cross-validation measure for each 

participant.  The same beta weights extracted for each participant were used for both ROI-MVPA 

and RDA.  

ROI -MVPA 

Feature selection 

ROIs for MVPA were constrained to spherical regions implicated in bodily self-processing and 

action processing based on peak coordinates extracted from meta-analytic activations in the 

frontoparietal regions (van Veluw & Chance, 2013; Qin et al., 2020) or the temporooccipital 

functional localizers (EBA and pSTS). The meta-analytic regions included the bilateral inferior 



 83 

parietal lobule (x,y,z = +/- 50, -40, 34), bilateral insula (x,y,z = +/- 44, -2, 0), bilateral 

temporoparietal junction (TPJ) (Left x,y,z: -48, -38, 36; Right x,y,z: 52, -26, 38). We accounted for 

individual variability in the peak ROI location by defining a sphere of 3-mm radius centered 

around the meta-analytic coordinate and moved the sphere within 4 voxels in each x,y,z direction 

for each participant as a ROI selection step. Within this search space, we used the peak ROI at the 

group-level participants that distinguished self from others (self > friend and self > stranger). As 

the meta-analytic coordinates did not include the IFG, we also included bilateral ROIs for the 

probabilistic map for the IFG pars opercularis from the Harvard Cortical Atlas.  

 

Table 1: Frontoparietal Locations for ROI-MVPA 

Location Hemisphere Area MNI(x,y,z) Original Coordinates 
Meta-Analysis Left IPL (-50, -40, 26) (-50, -40, 34) 
Meta-Analysis Right IPL (52, -44, 32) (50, -40, 34) 
Meta-Analysis Left Insula (-46, 0, 2) (-44, -2, 0) 
Meta-Analysis Right Insula (42, 6, 2) (44, -2, 0) 
Meta-Analysis Left TPJ (-54, -32, 42) (-48, -38, 36) 
Meta-Analysis Right TPJ (50, -24, 42) (52, -25, 38) 

Control Left Cerebellum (-18, -70, -54) (-48, -38, 36) 
 
Abbreviations: Inferior Parietal Lobe (IPL); Temporo-parietal Junction (TPJ) 
 

For the ROIs generated from the functional localizer scans, we extracted activity in the bilateral 

posterior superior temporal sulcus (pSTS) and bilateral extrastriate body area (EBA) using the 

method detailed in the functional localizer section. Since we encountered difficulty for some 

participants (N = 4) in extracting the pSTS localizer, we also included the full probabilistic map of 

the bilateral posterior superior temporal gyrus to test as ROIs.  
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Table 2: Temporooccipital Locations for ROI-MVPA 

Location Hemisphere Area 
Atlas Left IFG (pars opercularis) 
Atlas Right IFG (pars opercularis) 
Atlas Left pSTG 
Atlas Right pSTG 

Localizer Left pSTS 
Localizer Right pSTS 
Localizer Left EBA 
Localizer Right EBA 

 
Abbreviations: Inferior Frontal Gyrus (IFG), Posterior Superior Temporal Gyrus (pSTG); Posterior Superior 
Temporal Sulcus (pSTS); Extrastriate Body Area (EBA) 
 

MVPA Classification 

For ROI-MVPA, we conducted two-class classification to discriminate between each identity: self 

vs stranger; self vs friend; friend vs stranger. Classification accuracies for each ROI were 

compared to chance decoding (50%) using a two-tailed one-sample t-test and corrected for 

multiple comparisons using the false discovery rate (q < .05) across all participants (Benjamini 

and Yekutieli, 2001; Genovese, Lazar, Nichols, 2002; Pereira & Botvinick, 2011). 

 

Representational Dissimilarity Analyses (RDA) 

RDA (Haxby et al., 2014; Krieskegorte et al., 2008) was implemented using the CoSMoMVPA 

toolbox. We generated multiple target representational dissimilarity matrices (RDM)s based on 

spatiotemporal movement distinctiveness (dynamic time warping), speed, acceleration, body 

structure consisting of limb segment length, and a theoretical RDM based on visuomotor identity.  

The neural RDM was then constructed through extracting the 36 beta weights from each 

participant, normalizing each beta weight within run, computing the average for each of the 36 

action targets across all runs, and then demeaning the data (i.e., subtraction of the grand mean of 
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all averaged targets from each averaged target). We then computed their pairwise dissimilarity (1 

– Pearson correlation) across all runs. The construction of all RDMs (behavioral, theoretical, and 

neural) were thus square, symmetric, and reflected the pairwise dissimilarity between each element 

in the matrix. For whole-brain searchlight RDA, we defined each searchlight window by a 

Gaussian sphere of 2mm radius. Each spherical searchlight included every voxel in the brain, along 

with neighboring voxels within the window. RDA was implemented through correlating the target 

RDM with neural RDM in each searchlight across the whole-brain. The correlations were then 

Fisher-z transformed and mapped to the center of each searchlight to create individual similarity 

maps in native space as inputs to the higher-level non-parametric analyses. Individual maps were 

normalized to the MNI-152 template using FSL’s FLIRT functionality 

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT) using trilinear interpolation for group-analysis. One-

sample t-tests were computed at the group level, correcting for multiple comparisons using 

permutation-based threshold-free cluster enhancement with a corrected threshold of p < .05 (Smith 

and Nichols, 2009) with 10000 Monte Carlo Simulations.  

 

Target RDMs: 

Below we detail three target RDMs used for RDA. Detailed computations related to other target 

RDMs measured (speed and acceleration) are in the Appendix. 

 

Movement Distinctiveness: 

We generated the behavioral RDM for movement distinctiveness through implementing the 

dynamic time warping (DTW) algorithm to compare trajectory differences. DTW measures the 

pairwise movement dissimilarity between action time series via an alignment procedure that 
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accounts for variability in time series length or duration. DTW aims to find the lowest cost 

function (warping path) between pairwise action time series that stretches or shrinks the time 

series to reflect warped distances. Greater DTW values indicate greater movement dissimilarity 

between time series. A 36 x 36 RDM was thus created for each participant that computed the 

pairwise DTW dissimilarity between each of the 12 actions across each identity (self, friend, 

stranger). For a full description of the DTW procedure, see Appendix materials. 

 

Postural Limb Length: 

Limb length was calculated by computing the 3D Euclidean distance between pairs of joints that 

made up each of the 24 limbs of the PLD. Pairwise absolute value dissimilarities were then 

calculated across participants for each limb and averaged together across all limbs to comprise the 

target RDM. 

 

Visuomotor Identity: 

We computed a theoretical RDM based on the idealized visuomotor familiarity between each of 

the identities. Identity for the self was coded as 0 (most familiar due to motor experience), friend 

was coded as 0.5 (based on the theorized overlap of common visuomotor codes), stranger was 

coded as 1 for all actions. Dissimilarity was computed between identities to comprise the 

theoretical RDM.  
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Results 

Behavioral Analysis 

Across all actions, participants could discriminate all PLD identities (self, friend, stranger) 

significantly above chance (.33) performance, self: M = .563, SD = .180, t(19) = 5.789, p < .001, 

cohen’s d = 1.29; friend: M = .483, SD = .182, t(19) = 3.754, p = .001, d = .839; stranger: M = 

.5052, SD = .172, t(19) = 4.554, p < .001, d = 1.01.   

 

 
 
Fig 14. Left panel: depicts confusion matrix for each identity. No significant misattributions for 
found for the self across other identities, though friend and stranger were more confused relative 
to the self (~55% increase in misattributions for friend and strangers). Right panel: average 
recognition accuracy for each identity. Light gray fill indicates bar plots. Inference bands denote 
95% Bayesian highest density interval with 1000 iterations. Horizontal blue line indicates chance-
level decoding accuracy (.33); * p < .05, ** p ≤ .01, *** p ≤ .001 
 
 

Recognition accuracy for self-generated actions was significantly greater than friends’ actions, 

t(19) = 2.67, p = .015, d = .598, but not for strangers t(19) = 1.353, p = .192. No difference in 

accuracy was observed between recognition of friends versus strangers, t(19) = -.454, p = .655. No 

significant difference was observed between recognition for self vs friends’ actions (t(19) = .367, 

p = .718). Greatest self-recognition accuracy was found for the stretch action (M = .788, SD = 
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.412) and lowest for digging (M = .375, SD = .487) (Fig 15).  Across all actions, no relationships 

were found between self-recognition accuracy and distinctiveness related to speed (p = .747), 

acceleration (p = .380), postural length (p =.410), or spatiotemporal dissimilarity (p = .174) 

 
Fig 15. Self-recognition performance for different actions color coded by action type (verbal 
instruction: gray; visual instruction: blue). Light gray fill indicates bar plots for verbal instruction. 
Light blue fill indicates bar plot for visual instruction. Inference bands denote 95% Bayesian 
highest density interval with 1000 iterations. Horizontal blue line indicates chance-level decoding 
accuracy (.33) 
 
 

Univariate Results 

Across all identities (self, friend, stranger) vs baseline, univariate analysis revealed recruitment of 

the action observation network (overlayed in MNI space Fig 16), including the bilateral SMA 

(Right x,y,z = 12, 6, 56; Left x,y,z = -4, -8, 52), premotor cortex (Right x,y,z = 39,1,53; Left x, y, 

z = -45, 2, 50), inferior frontal gyri (IFG) (Right x,y,z = 50, 15, 10; Left x,y,z = -55, 16, 10), inferior 

parietal lobe (IPL) (Right x,y,z = 50, -40, 14; Left x,y,z: -56, -44, 11), posterior superior temporal 

sulcus (pSTS) (Right: x,y,z = 56, -42, 10, Left: -52, -50, 10) and lateral occipital cortices, spanning 

the extrastriate body area (EBA) (Right x,y,z = 44, -60, 10; Left x,y,z, =-51, -69, 10).+ 
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Fig 16. Group-level activity obtained using FSL’s non-parametric permutation approach 
(randomise) with TFCE, p < .05. From Left to Right: Self v baseline; friend v baseline; and stranger 
v baseline. +Large cluster sizes were obtained with TFCE due to the optimal cluster-defining 
threshold; hence cluster peaks are reported with visual interpolation using manual thresholding. 
Abbreviations: Inferior Frontal Cortex (IFC); Superior Temporal Sulcus (STS); Lateral Occipital 
Cortex (LOC); Supplementary Motor Area (SMA); Supramarginal Gyrus (SMG); Angular Gyrus 
(Ang)  
 

The main contrasts of interest for the self (self > stranger and self > friend) similarly recruited 

frontoparietal regions, lateralized to the left. For self > stranger, activity was localized to the left 

posterior supramarginal gyrus (peak x,y,z = -62, -48, 28) into the angular gyrus, as well as spanning 

the left insular cortex to the inferior frontal cortex (x,y,z = -42, 10, -8) (Figure 17, left panel). 

Additionally, a few small clusters in the anterior cingulate cortex (ACC) (x,y,z = -2, 20, 18; x,y,z 

= 4, 14, 28) and one small cluster in the right insular cortex (x,y,z =  40, 10 ,-2) were also observed. 

Self > friend similarly recruited the left posterior SMG of the IPL (x,y,z = -54, -50, 30), and into 

the angular gyrus (Figure 17, right panel). Parametric RFT cluster-corrected activity further 
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confirmed the presence of the left IFG (x,y,z = -47, 11, 4) for self > friend (detailed in Appendix). 

For friend > stranger, FSL’s randomise approach did not yield significant activity, though 

parametric cluster correction (Z > 2.3, p < .01) revealed activity in the right pSTS and the 

dorsomedial prefrontal cortex. No significant clusters were found for either method for the contrast 

of stranger > friend condition. All peak clusters are reported in Appendix. 

 
 
 

 
 
Fig 17. Univariate group-level activity (N = 20) for self > stranger (left) and self > friend (right) 
using the FSL randomise permutation approach, cluster corrected with TFCE (p < .05).  Violin 
plot shows mean parameter estimates (PE) for the left posterior supramarginal gyrus (SMG) for 
all identities. The left SMG significantly discriminated contrasts of PE for both self vs stranger (p 
= .001) and self vs friend (p = .005), but not friend vs stranger (p = .821) 
 

Results for gPPI: 

Task-specific modulation during self > stranger revealed greater connectivity strength between 

the left IPL seed taken from the functional activation of conjunction between self > friend and self 
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>stranger (2mm sphere; centered at peak center-of-gravity x, y, z = -56, -44, 42) and left 

temporooccipital regions, extending from the middle and inferior temporo-occipital gyrus(x, y, z 

= -54, -54, -10) to the inferior lateral-occipital cortex (x ,y, z = -52,-70,-14), cluster corrected (Z > 

2.3, p < .05). At the more liberal threshold (p < .001 uncorrected), the left IPL showed a whole-

brain increase in connectivity with the bilateral inferior frontal cortices (x, y, z = -54, 16, 30; x, y, 

z = 48, 14, 20). Similarly, task-modulation during self > friend (p < .001 uncorrected) of the seed 

left IPL also showed greater connectivity with the left inferior frontal cortex (IFC), IFG pars 

opercularis (x,y,z = -54, 20, 10) and near the caudate ( x,y,z = 20, -20, -26). Clusters with 10 or 

less voxels were not reported. The IPL seed showed no seed-to-whole-brain increase in 

connectivity during friend > stranger contrasts. 

 
 
Fig 18. Task-modulated functional connectivity analysis of left IPL showed increased connectivity 
to temporooccipital regions during self-processing (self > stranger; cluster corrected Z > 2.3, p < 
.05) and the IFG (self > friend, p < .001, uncorrected).  
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Task-specific modulation during self > stranger also revealed increased connectivity along the 

insular and inferior frontal cortices. The gPPI analysis with  the left insula seed (3mm radius 

sphere; centered at peak x, y, z = -44,12,6; from functional activation of self >stranger) was 

functionally connected to the left IFG pars opercularis (x,y,z = -52, 10, 16) with a small cluster 

(nvox = 8) also in the right IFG pars opercularis (x,y,z = 54, 16, 14) (z>2.3, p < .05). Task modulation 

for self > friend at the more liberal threshold (p < .001 uncorrected) similarly revealed increased 

connectivity between the left insula and the Left IFG (left x,y,z = -54, 18, 10; right x,y,z = 58, 14, 

10). Together, the connectivity results are indicative of recruitment of a wider neural circuitry for 

self-actions, extending from the temporooccipital regions to the frontoparietal regions.  
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Fig 19. Task-modulated functional connectivity analysis of Left Insula showed increased 
connectivity to bilateral inferior frontal gyri (pars opercularis) (self > stranger; cluster corrected 
Z > 2.3, p < .05) and the Left inferior frontal gyrus (pars opercularis) (self > friend, p < .001, 
uncorrected).  
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ROI-MVPA 

Using ROI-MVPA, we measured two-class decoding accuracy between each identity on the 

temporooccipital (localizer) and frontoparietal (meta-analytic) regions relative to chance 

performance (.50). We corrected for multiple comparisons using the false discovery rate (FDR) 

(Benjamini & Hochberg, 1995) on the number of ROIs (15 ROIs; q < .05, crit p = .0260). First, 

we measured the classification accuracy in the EBA derived from functional activity in the bodies 

> chairs localizer contrast. The right EBA showed significant above-chance decoding between all 

identities (self vs stranger, mean classification accuracy = .538,  t(19) = 2.816, padj = .025, d = .630 

self vs friend, mean classification accuracy = .535,  t(19) = 2.432,  padj = .016, d = .688, friend vs 

stranger, mean classification accuracy= .553, t(19) = 3.115 padj = .016, d = .696). The left EBA 

could also significantly distinguish between all identities: self and stranger identities, mean 

classification accuracy = .543, t(19) = 3.993,  padj = .0053, d = .893, self and friend identities, mean 

classification accuracy = .535,   t(19) =  2.432, padj = .039, d = .544 and friend and stranger, mean 

classification accuracy = .538, t(19) = 2.691, padj = .030, d = .602. The left pSTS also decoded 

between self and strangers, mean classification accuracy = .542, t(19) = 2.639, padj = .031, d= .590, 

but not between other identities (self vs friend, mean classification accuracy = .528, t(19) = 1.746, 

padj = .121, d =.391; friend vs stranger, mean classification accuracy = .524, t(19) = 1.655, padj = 

.135, d =.370). The right pSTS did not show significant decoding between any of the identities (ps 

> .11).  

Since we had some difficulty extracting the right pSTS from the localizer for a few 

participants (N = 4), we also examined classification accuracy in the full probabilistic map of the 

atlas-derived right posterior superior temporal gyrus (pSTG) across all participants. We observed 

~10% increase in training accuracy in the right pSTG and 12% increase in the left pSTG using the 
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full probabilistic map. The testing accuracy also showed statistical significance using larger ROI 

regions. The right pSTG significantly decoded all identities (self vs stranger, mean classification 

accuracy = .558, t(19) = 3.112 padj = .0159, d = .696; self vs friend, mean classification accuracy 

= .554, t(19) = 3.270, padj = .0159, d = .731; friend vs stranger, mean classification accuracy = 

.546, t(19) = 5.304, padj = .001, d= 1.186). The left pSTG decoded the self from other identities 

(self vs stranger, mean classification accuracy = .567, t(19) = 4.706, padj = .0017, d = 1.052; self v 

friend, mean classification accuracy = .571, t(19) = 3.819, padj = .0074, d = .854), but not friend vs 

stranger, mean classification accuracy = .525, t(19) = 1.290, padj = .2332).  

 
Fig 20. Top: Classification accuracies for temporooccipital regions of interest. Bottom: 
Classification accuracies for frontoparietal regions of interest. Average line denotes mean. White, 
light blue, and light gray fills indicate bar plots. Inference bands denote 95% Bayesian highest 
density interval with 1000 iterations. Horizontal blue line indicates chance-level decoding 
accuracy (.50). Abbreviations: extrastriate body Area (EBA); posterior superior temporal sulcus 
(pSTS); posterior superior temporal gyrus (pSTG); inferior frontal gyrus (IFG); temporoparietal 
junction (TPJ); insula (INS); inferior parietal lobe (IPL); * p < .05, ** p ≤ .01, *** p ≤ .001.  
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We then examined classification accuracy in the meta-analytic derived frontoparietal 

regions (Figure 20). For ROI selection, we used the grid-search approach for selection of peak 

coordinate within a range of 4 voxels in 3D space. Across these ROIs, the left IPL significantly 

decoded self from other identities: left IPL in the parietal operculum/SMG (x,y,z = -50, -40, 26, 

self v friend, mean classification accuracy = .548, t(19) = 3.618, padj = .009, d = .809; self vs 

stranger, mean classification accuracy = .542, t(19) = 3.157, padj = .016, d = .809). The left IPL 

was attuned to the self and could not discriminate between the other identities (friend v stranger, 

mean classification accuracy = .496, t(19) = -.272, padj = .780). The right IPL (x,y,z = 52, -44, 32) 

significantly decoded all identities, self v friend, mean classification accuracy =.541, t(19) = 3.27,  

padj  = .016, d = .731; self v stranger, mean classification accuracy = .551,  t(19) = 2.683, padj = 

.031, d = .600); friend v stranger, mean classification accuracy =.532, t(19) = 2.414,  padj  = .039, 

d = .540). The bilateral TPJ as well showed selectivity for the self, self > stranger: (Left: x,y,z = -

54, -32, 42, mean classification accuracy = .551, t(19) = 3.641, padj = .009, d = .814; Right: x,y,z 

=50, -24, 42, mean classification accuracy = .541, t(19) = 2.539 , padj = .036, d = .568), self > 

friend: (Left: mean classification accuracy = .536,  t(19) = 2.518,  padj = .036, d = .563; Right: 

mean classification accuracy = .546, t(19) = 2.961, padj = .019, d = .662), friend > stranger: (Left: 

mean classification accuracy = .516, t(19) = 1.582,  padj = .150, d = .354; Right: mean classification 

accuracy = .540, t(19) = 2.295, padj = .116,  d = .513). The bilateral insula further showed selectivity 

for the self. The left insula (x, y, z  = -46, 0, 2) decoded the self: self vs stranger, mean classification 

accuracy = .545,  t(19) = 4.995,  padj = .001, d= 1.11,  self vs friend, mean classification accuracy 

= .540, t(19) = 2.935,  padj = .019, d= .656, but could not decode friend vs stranger, mean 

classification accuracy = .509, t(19) = .707, padj = .511. The right insula (x, y, z = 42, 6, 2) similarly 

decoded the self: self vs friend, mean classification accuracy = .534, t(19) = 3.146 , padj = .016, d 
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= .704 and self vs stranger, mean classification accuracy = .539, t(19) = 2.409, padj = .039, d = 

.539, but could not decode between friend vs stranger, mean classification accuracy = .487, t(19) 

= -.901, padj = .406.  

As the meta-analytic coordinates localized the insula but did not include the inferior frontal 

cortices, we further measured identity discrimination in the IFG pars opercularis (IFGpo) using 

the full probabilistic map generated from the Harvard-Cortical Atlas in FSL. We found significant 

discrimination for all identities in the left IFGpo, self vs stranger: (mean classification accuracy = 

.549, t(19) = 3.211, padj = .016, d = .718), self vs friend: mean classification accuracy = .562, (t(19) 

= 5.169, padj = .0012, d = 1.156), friend vs stranger, mean classification accuracy = .540,  t(19) = 

2.538, padj = .0361, d = .567. We found significant decoding for self vs stranger in the right IFGpo, 

mean classification accuracy =.549, t(19) = 4.446, padj = .0025, d  = .994, but not self vs friend, 

mean classification accuracy = .531,  t(19) = 1.859, padj = .1072, or friend vs stranger, mean 

classification accuracy = .527, t(19) = 2.260,  padj = .0519. The bilateral TPJ/SMG (left x,y,z: -54, 

-32, 42; right x,y,z: 50, -24, 42) could also discriminate self vs strangers (left: mean classification 

accuracy = .551, t(19) = 3.641, padj = .009, d = .814;  right: mean classification accuracy = .541, 

t(19) = 2.539, padj = .036, d = .568) and self v friends (left: mean classification accuracy = .536,  

t(19) = 2.518, padj = .036, d  = .563; right: mean classification accuracy = .546, t(19) = 2.961, p  = 

.019, d = .662). Friend vs strangers were not significantly decoded from each other (left: mean 

classification accuracy =.516, t(19) = 1.582, padj = .150; right: mean classification accuracy = .540, 

t(19) = 1.79, p = .116).  

As a control for predictive power, we used the grid-search approach in the cerebellum 

centered on (x,y, z = -18, -70, -54) and did not identify significant identity decoding between our 

identities of interest (both self vs friend and self vs stranger). Out of 60 possible locations, one 
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coordinate (x,y,z =  -20, -68, -46) did show initial significance for both identity decodings, though 

it disappeared after the FDR correction (self vs stranger: padj  = .059; self vs friend: padj = .037).  

 

Representational Dissimilarity Analysis (RDA) 

Based on the significant identity decoding revealed in the temporooccipital and frontoparietal 

regions from MVPA analysis, we implemented searchlight RDA analyses to explore the featural 

space of low and mid-level signatures to recognition of actions performed by self and others. 

Multiple RDA searchlight analyses were conducted using body structure based on limb lengths, 

movement distinctiveness (DTW), speed, and acceleration differences as behavioral RDMs, as 

well as theoretical RDMs based on expected visuomotor familiairty. No relationships were found 

between speed or acceleration differences to neural similarity, however significant relationships 

were found to both DTW and body structure, as well as the theoretical RDMs. 

DTW RDA: Movement Distinctiveness 

As shown in Figure 21, the whole-brain RDA searchlight between the DTW RDM and 

neural RDM produced significant bilateral activity across the action observation network. Large 

clusters were found in the early visual cortex, spanning the early visual cortex (V1) to the 

temporooccipital regions including the fusiform gyri and EBA (x, y, z = 24, -82, -22). Clusters 

were also found in the bilateral anterior supramarginal gyrus and the IFC (spanning pars 

opercularis to the insular cortex), as well as in the bilateral premotor cortex (x,y,z = 18, -10, 52) 

and dorsolateral prefrontal cortex. 
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Fig 21. Searchlight RDA results depicting the z-transformed activity map for significant 
correlations between the DTW behavioral RDM and the neural RDM based on activity patterns 
for actions across all identities (self, friend, stranger). Activation map reflects TFCE-corrected 
brain activity after 10000 non-parametric Monte Carlo simulations. Top Right: DTW figure 
showing one joint from one actor’s action time series (in red) with lines measuring similarity to 
the corresponding joint in another actor’s time series to find the optimal decrease in dissimilarity 
over time. Bottom Right: Behavioral RDM used for DTW RDA reflecting the Euclidean distance 
between identity/action categories. Darker blue indicates smaller distance (i.e., more similarity). 
 

The results of the searchlight RDA with DTW were largely restricted to temporooccipital 

regions, though some neural activity was elicited more anteriorly in the IPL and IFC. Hence, we 

computed the degree to which univariate task average for the self in the left-lateralized IPL and 

IFC/Insula overlapped with the feature space of the DTW RDA map. Movement dissimilarity 

could explain portions of task-evoked activity in the left IPL (58% voxel overlap for self > 

stranger; 49% voxel overlap for self > friend), with the overlap localized to the anterior portions 

of the SMG. The remaining area of posterior voxels of the Left SMG did not overlap. For the 

univariate task-evoked left IFC we found 62.5% overlap with the task-evoked self > stranger 
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neural activity. However, given the relatively small cluster size of the task-evoked IFC, we used 

the full probabilistic ROI for the IFG that showed significant decoding of the self from other 

identities, which revealed much lower overlap (36% overlap in the left IFG and 33% in the right 

IFG).  

For the temporooccipital regions, we measured the percent overlap for each participants’ 

multivariate localizer ROI (normalized to standard space) and the group-level DTW RDA map. 

We found significant overlap of the EBA temporooccipital localizers with the DTW RDA map, 

consisting of 60.5% of the Left EBA localizer, 45% of the Right EBA localizer, as well as overlap 

in the pSTS: 28.7% of the Left pSTS localizer, 13.5% of Right pSTS localizer. As the probabilistic 

map of the pSTG showed significant identity decoding at the multivariate level, we further 

measured its overlap with the DTW RDA neural patterns and found 27.7% of voxel overlap of the 

left pSTG and 13.6% of the right pSTG with the RDA map. Together, the results suggest the 

contribution of movement distinctiveness as a factor to self-action recognition across regions of 

the AON, though not accounting for the entirety of self-processing. 



 101 

 

Fig 22. Searchlight RDA results depicting the z-transformed activity map for significant 
correlations between the body structure (postural length) behavioral RDM and the neural RDM 
based on activity patterns for actions across all identities (self, friend, stranger). Activation map 
reflects TFCE-corrected brain activity after 10000 non-parametric Monte Carlo simulations. Top 
Right: Body structure showing point-light joints interconnected to comprise 24 limbs (red lines). 
Pairwise distances for each limb length were calculated between each action for each identity. 
Bottom Right: Behavioral RDM used for body structure RDA reflecting the Euclidean distance 
between identity/action categories. Darker colors indicate smaller distance (i.e., more similarity). 
  
Body Structure RDA: Postural Length 

For the contribution of body structure to the feature space of identity recognition, we 

conducted RDA across the whole-brain using postural length as the target RDM. We identified 

activity patterns largely in the occipital and temporal regions, localized to the early visual regions 

extending to lateral occipital regions. Except for the bilateral occipital (i.e., early visual) regions, 

we noticed patterns of activity present at higher-level regions that were more right-lateralized, 

including small activity patterns along the superior parietal lobe to the right postcentral gyrus to 

the superior frontal gyrus, and a small cluster in the medial prefrontal cortex. We then calculated 

the percent activity overlap with ROIs from the AON. We found no overlap in the task-evoked left 
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IFG or IPL for the self, no activity overlap in the localizer for the left pSTS, and negligible overlap 

in the right pSTS (0.89%). We did, however, identify patterns of activity in the left EBA (18.1%) 

and the right EBA (11.24%) that represented body structure across identities.  

 

 
Fig 23. Searchlight RDA results depicting the z-transformed activity map for significant 
relationships between the theoretical identity RDM (self: 0, friend: .5, stranger: 1) and the neural 
RDM based on activity patterns for actions across all identities (self, friend, stranger). Activation 
map reflects TFCE-corrected brain activity after 10000 non-parametric Monte Carlo simulations. 
Right: Theoretical RDM used for the RDA reflects  the Euclidean distance between identity/action 
categories. Darker blue indicates smaller distance (i.e., more similarity). 
 

Identity RDA: Featural Overlap 

Finally, we included a theoretical RDM based on the identity matrix computing visuomotor 

familiarity to oneself across the whole-brain (Figure 23). Large clusters were present in the 

bilateral postcentral gyri extending to the precentral gyri and supplementary motor areas. We also 

found clusters in the bilateral early visual cortices extending through the temporooccipital cortex 

(including EBA, MTG). Other clusters were found in the precuneus, right dorsolateral prefrontal 
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cortex, left insula (direct overlap with the meta-analytic coordinate for the left insula: x,y,z = -46, 

0, 2), bilateral frontal operculum, and bilateral IPL. Considering the large number of AON regions 

that showed significant activity patterns from the identity RDA, we used the task contrast 

generated from FSL’s RFT cluster correction for self > stranger and measured self-related overlap. 

We found greatest overlap in the right ventrolateral prefrontal cortex (42%), right dorsolateral 

prefrontal cortex (36%), right IPL (36%), and right pSTS (25%).  

 

Fig 24. Searchlight RDA results depicting the z-transformed activity map for significant 
relationships between the intersection of activity maps for the theoretical identity RDA and the 
movement distinctiveness DTW RDA across all identities (self, friend, stranger). Activation map 
reflects TFCE-corrected brain activity after 10000 non-parametric Monte Carlo simulations. 
Right: Graph shows percent overlap in ROIs that were either task evoked in the frontoparietal 
regions (Left IPL; L IFG) or generated from the localizer in the temporooccipital regions (pSTS; 
EBA). The DTW and identity overlap shows a largely parametric trend, with little overlap in the 
left-lateralized frontoparietal regions, and large increases in the bilateral temporooccipital regions. 

 

We then separately computed the intersection of activity maps between movement 

distinctiveness and body structure with the identity matrix RDA map. For the intersection between 

DTW (movement distinctiveness) and identity RDA maps (Fig 24), we found overlap largely 
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localized to the bilateral occipital regions spanning the lateral occipital cortices and temporal 

regions (middle temporal gyrus). A few small clusters of activity were also found in the bilateral 

middle frontal gyrus, parietal operculum (spreading up to the posterior SMG), posterior cingulate 

cortex, right precuneus and superior parietal lobule. Small patterns of activity were also found in 

the more anterior part of the IPL (bilateral anterior SMG), lateralized slightly more to the right. 

Notably, we did not find overlapping activity patterns between the task-evoked left IFG activity 

for the self and the intersection map between DTW and identity, and only little overlap with the 

task-evoked left IPL, which was localized more anteriorly (self > stranger: 11.4%, self > friend: 

10.8% overlap), despite both the task-evoked Left IFG (62.5%) and Left IPL (58.4%) eliciting 

significant overlap with the DTW RDA. We also found little overlap with the left pSTS localizer 

(6%). However, we did find considerable overlap between the EBA localizer and the intersection 

map between DTW RDA and identity RDA (right: 39%; left: 24%), as well as the right pSTS 

(21.7%). These results together suggest that regions of the bilateral EBA and right pSTS rely on 

movement distinctiveness as a cue to identity. However, the frontoparietal regions, though 

similarly attuned to action features as shown by the neural relationship to movement 

distinctiveness, did not appear to predominantly rely on these action features as cues to identity. 

Finally, the intersection map produced between the RDAs for posture and identity were largely 

localized to the EBA. We found that the majority of voxels that represented posture in the right 

EBA overlapped with identity (62.25%), and a smaller, though considerable, percentage of voxels 

representing posture in the Left EBA overlapped with identity (45%).  
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Discussion 

Our findings converge on a specialized neural circuitry for visual self-recognition for actions. This 

circuitry was situated across the action observation network (AON) involving the temporooccipital 

regions and frontoparietal regions. Four main findings are discussed below: (1) AON was recruited 

across all identities (2) temporooccipital regions within the AON were involved in domain-general 

identity decoding (3) frontoparietal regions within the AON were broadly attuned to self-

recognition (4) visual self-action recognition additionally recruited motor planning regions. 

First, the behavioral results confirmed that all identities could be discriminated above 

chance performance in PLDs. Self-recognition performance also showed no relationship at the 

behavioral level to movement distinctiveness or with any of the other lower-level visual features 

(speed, acceleration).  We then moved to the univariate analyses where we identified common 

recruitment of regions of the AON regardless of identity. This is indicative, at the univariate level, 

of similar neural systems at play for actions of self, friends, and strangers. These regions spanned 

the inferior frontal gyrus (IFG), inferior parietal lobe (IPL), and supplementary motor area 

(SMA)— traditionally characterized as part of a larger mirror neuron system (e.g., Rizzolatti & 

Craighero, 2004; Iacoboni, 2009; Koski et al., 2003; Mukamel et al., 2010). This corroborates a 

long line of empirical work explicating the common visuomotor codes that underlie the self and 

others (e.g., Casile & Giese, 2006; Rizzolatti & Craighero, 2004; Iacoboni, 2009; Iacoboni & 

Dapretto, 2006). Importantly, these theories often suggest actions are a form of “sensemaking”— 

that it is through the motor experience of performing movements that we are able to grasp and 

embody the meaning of actions of others (e.g., Rizzolatti and Craighero, 2004). In our task that 

involved observing our own actions, the privileged familiarity of motor experience in performing 
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the action may be the defining factor that enhances and allows for self-other differentiation in 

visual recognition. 

Yielding support for this, we identified a primarily left-lateralized frontoparietal network 

for self-recognition, shown both by univariate increases in task-specific activity, as well as task-

modulated increases in functional connectivity within the AON. Our activity is notably more left-

lateralized than earlier work on self-recognition that have used static body images, faces, or 

isolated dynamic body parts, that typically show a degree of right-hemisphere lateralization (Brady 

et al., 2004, Keenan et al., 2003; Platek et al., 2004; Platek et al., 2003; Hodzic et al., 2008; Vocks 

et al., 2010; Uddin et al., 2006; Macuga and Frey, 2011; cf Uddin et al., 2005; cf Turk et al., 2002; 

cf Sperry et al., 1979). Our results introduce the possibility that processing of dynamic stimuli 

related to our whole-body may undergo more left-lateralized routes to awareness. This falls in line 

with laterality differences depicted in clinical conditions that have damage to the left hemisphere, 

such as in limb apraxia (e.g., Haaland et al., 2000; Haaland, 2006; Watson et al., 2019), as well as 

in empirical work using dynamic bodily stimuli of the self that similarly show a pattern of left-

lateralization for self-recognition (e.g., Bischoff et al., 2012; Wozniak et al., 2021). However, it is 

also important to note that while our study did not yield bilateral involvement of the IPL or bilateral 

involvement of other AON regions when using the non-parametric univariate thresholding, we did 

find bilateral involvement of the IPL and the AON regions when using FSL’s RFT univariate 

cluster correction (reported in Appendix) as well as in our multivariate analyses. At the univariate 

level, we chose to interpret the more conservative non-parametric results (TFCE), as TFCE been 

shown to more sensitive yet less prone to false positives in the literature (Smith & Nichols, 2009), 

which resultingly eliminated the activity in the right hemisphere. Thus, the left-laterality from our 

results cannot be stated with certainty, but does however indicate that the network for self-action 
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recognition is not primarily right-lateralized as previously suggested in some self-recognition 

work. 

The two key regions we found, the left IPL and IFG/inferior frontal cortex (IFC), are not 

only causally implicated in conditions linked to motoric planning or production (e.g., limb 

apraxia), but further comprise core nodes of the mirror neuron network, containing specialized 

visuomotor neurons that map the perception of others’ actions to our own motor system. Studies 

on visual self-recognition that have similarly shown recruitment of the IPL and IFC often use 

familiar stimuli including faces (Uddin et al., 2005; Uddin et al., 2006) or voices (Kaplan et al., 

2008). Task recruitment of these regions is largely attributed to greater mirror neuron activity for 

embodied self-representations based on a common coding mechanism that matches common 

perceptual and motor codes (Uddin et al., 2007; Uddin et al., 2005; Uddin et al., 2013; Prinz, 1997). 

Since self-generated actions would presumably have the greatest visuomotor match due to 

privileged motor experience performing the action, these results fall in line with the above common 

coding theory (Prinz, 1997; Hommel, 2001) and underscore the importance of the motor system 

to visual self-recognition.  

While these mirroring regions were involved for processing all identities, they notably 

showed greatest specificity for the self. We found a central role of the left IPL for self-processing, 

possibly acting as a hub/integratory zone—revealed both by increases in univariate activity and 

increased functional connections to both temporooccipital regions and bilateral inferior frontal 

cortices during self-processing. Connectivity between the more posterior portion of the 

supramarginal gyrus (SMG) of the left IPL increased in task-modulated functional connectivity 

during self-processing with the left-lateralized temporooccipital regions, including the inferior 

temporal gyrus, lateral occipital cortex, and superior temporal sulci. The pattern of results falls in 
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line with recent characterizations that underscore the possibility of recurrent patterns of 

connectivity between the left posterior parietal cortex and temporooccipital regions (left EBA) 

(Bracci et al., 2015) that facilitate a matching mechanism (individually defined as comparator 

regions) computing a discrepancy signature between “seen” and “felt” bodily representations 

(Limanowski & Blankenburg, 2017). Specifically, it is thought that the EBA and posterior parietal 

cortex together form a specialized pathway attuned to the visuoproprioceptive congruency of 

information- for example, when the observed hand orientation matches the participants’ hand 

orientation, task-modulated functional connectivity between these regions should increase due to 

the increase in congruency. Hence, increases in functional connectivity during visuoproprioceptive 

congruencies could facilitate the more advanced positional and bodily estimation computations 

required for self-recognition, which naturally have the greatest visuoproprioceptive congruency 

(Limanowski & Blankenburg, 2017). In line with this, specialized network characterizations 

increasingly implicated in the processing of self-related static stimuli such as our own faces or 

bodies, have also been shown to recruit specific cortical areas that are different from domain-

general processing of the stimulus (Platek et al., 2006; Sugiura et al., 2005; Hodzic et al., 2009), 

such as regions unique for self-face recognition rather than for identity-general face recognition. 

Since the prior work largely uses isolated faces, body parts, or static stimuli, our study involving 

holistic movements of the body further extends the circuitry to more widespread recruitment of 

the AON spanning the temporooccipital cortex to the IFC. Specifically, task-modulated activity 

for the self was functionally connected from the left temporooccipital regions to the IPL, and from 

the left IPL to the left IFC (spanning the insula)—indicative of a broader neural circuitry across 

the AON for the self-recognition of the dynamic whole-body.   
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Across methodologies, our findings converge on a key role of the posterior IPL to visual 

self-recognition. The IPL is a large cortical region consisting of posterior regions involved in 

person identity decoding (Tholen et al., 2019), construction of integratory body schemas (Jackson 

and Decety, 2004), reference frame transformation (Gallivan & Culham, 20015), body related 

processing (Ehrsson et al., 2005, Pellijeff et al., 2006, Shimada et al., 2005), modality-independent 

action processing (Wurm & Lignnau, 2015; Urgen et al 2019), action-outcome monitoring (Van 

Kemenade et al., 2017; Van Kemenade et al., 2019), self-processing (e.g., Bréchet et al., 2018, 

Uhlmann et al., 2019; Uddin et al., 2005; Uddin et al., 2007), and is spatially expanded in primates 

(Orban et al., 2004). Urgen et al (2019) delineated the central role of the IPL involved in action 

representations—building upon the visual representations of actions and transforming them into 

more abstract and semantic representations coding action type and intention. As person-identity 

labeling is abstracted relative to featural processing of actions, the IPL involvement for self-actions 

maintains contiguity with the logic. Our activity for the self in the IPL was localized more 

posteriorly in the left supramarginal gyrus, including parts of the angular gyrus, with direct overlap 

with the mirror neuron system (supramarginal gyrus in IPL). As follows with the more posterior 

activation of the parietal cortex, this establishes a close link to studies that have shown the 

importance of the posterior parietal cortex in motor planning, as well as in generating the forward 

models used in motor control theories as discrepancy comparators to predict the outcome of our 

own actions (Desmurget et al., 1999). Motor planning is hence privileged only to oneself, and 

regions that are involved in motor planning are by consequence attuned to the self, thus indicative 

of a key role of the IPL for attributing self-generated actions to oneself based on motor familiarity.  

As the IPL is a functionally heterogenous region, some degree of perceptual dependence 

has been shown, though localized more anteriorly (e.g., Goldenberg & Spatt, 2009; Wurm & 
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Caramazza, 2021). Results from the representational dissimilarity analysis (RDA) that measured 

the relationship between movement distinctiveness of actions and neural activity patterns across 

the whole-brain confirmed some of this dependence, as more anterior portions of the IPL 

represented features related to movement distinctiveness as well as did regions in the 

temporooccipital cortex. Moreover, posterior portions of the IPL overlapped with the activity 

patterns derived from the visuomotor identity RDA, indicative of higher-level identity information 

represented in the activity patterns, rather than on lower-level visual action features. In keeping 

with prior work, posterior portions of the IPL are shown to be involved in conceptual processing 

and higher-level action and conceptual knowledge (Leshinskaya & Caramazza, 2014; Wurm & 

Caramazza, 2021) as well as bodily self-awareness (i.e., in the angular gyrus; Bréchet et al., 2018). 

Thus, the pattern of results confirms the existence of functional subregions within the IPL that may 

be attuned to both visuomotor features of the action identities (anteriorly) as well as conceptual-

level identity decoding specialized at some level for the self (posteriorly).  

In a recent study, the involvement of motor experience was eliminated from the research 

design (Wozniak et al., 2021). Here, the researchers arbitrarily associated an identity (self, friend, 

or stranger) to point-light actions of one actor as a means of eliminating not only visual familiarity, 

but also motor/proprioceptive familiarity. The researchers identified a similar set of left-lateralized 

regions: IFG pars opercularis, middle frontal gyrus (MFG), and SMA. Notably however, they did 

not find recruitment of the IPL. In relation to our study, which similarly reduced visual cues to 

identity as in PLDs, but still maintained the natural proprioceptive familiarity we have with our 

bodies, the presence of IPL (posterior SMG) activity and its decoding ability in our study further 

underscores the centrality of this region to enacting motor codes of the self to visual self-

recognition.  
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Across the multivariate regions of interest, the majority of temporooccipital regions 

(bilateral EBA, right pSTG) could discriminate between all identities while the frontoparietal (IFG, 

IPL, TPJ) regions were largely attuned to decoding the self. Note however, the pattern did not 

maintain for three regions:  left IFG, right IPL, and left pSTG— whereas the left pSTG was 

specialized for the self (possibly due to its role in reafference: Iacoboni et al., 2001), the left IFG 

and right IPL could decode all identities. Holistically, however, the results suggest that the majority 

of the temporooccipital regions could be involved in initial identity decoding based on low and 

mid-level bodily action features, while the frontoparietal regions likely involve distinct routes for 

processing of self-actions at the motoric/proprioceptive level. For the temporooccipital regions, 

the literature has shown that the bilateral EBA is implicated in general identity processing related 

to perceivable features, such as in morphological cues from body images (De Bellis et al., 2017; 

Hodzic et al., 2009), where disruptions to the EBA significantly impair general body identity 

discrimination (Urgesi et al., 2007), reflective of the importance of EBA to person-identity 

processing, rather than a specific preference for the self (e.g, Hodzic et al., 2009; Sasaki et al., 

2018; cf Jeannerod, 2004; cf David et al., 2007).  

How do we account for the possibility that self-generated actions are variable and could 

convey more idiosyncratic visual features that allow for self-recognition? As posture and speed 

provide critical cues to valanced processing, such as the perception of threat (Candidi et al., 2011) 

or emotion (e.g., De Gelder et al., 2006; 2009), it is similarly possible that these idiosyncratic and 

“valenced” features related to oneself— distinctive visual cues— may pop out in self-awareness. 

Using RDA, we explored the featural space represented in neural activity patterns based on the 

contribution of low- and mid-level action features to self-recognition. We found no relationships 

between neural activity patterns across the whole brain with speed or acceleration. However, 
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movement distinctiveness showed clear relationships to many regions within the AON. We 

identified a primary role of the bilateral occipital and temporal regions in relation to the 

spatiotemporal movement distinctiveness between actions.  

Clusters of other regions throughout the AON, including in the IPL and IFG further related 

to movement distinctiveness of the actions, though with non-overlapping portions of these regions 

specialized for self-processing that were not based on low or mid-level features related to 

movement distinctiveness, speed, acceleration, or posture. Hence, visual variability in relation to 

the actions could serve as an early cue to self-identity but cannot account for the totality of activity 

in the AON, as numerous voxels of the supramarginal gyrus of the IPL and IFG that emerged from 

task-based self-processing did not overlap with neural activity patterns of movement 

distinctiveness. Many of these non-overlapping voxels in the IPL, however, did overlap with the 

identity processing, measured in the RDA analyses. Furthermore, task-evoked self-processing 

appeared to recruit activity in the posterior portions of the SMG nearer to the angular gyrus, while 

distinctiveness related to action features appeared to “spread” more anteriorly in the SMG. Note 

that the overlap present in the RDA does not necessarily suppose that the same populations of 

neurons performing identical functions (e.g., Peelen and Downing, 2005), as the analysis stands 

largely as a correlational measure. In a broader sense, our results specify that these overlapped 

regions from the RDA likely represent interleaved populations of neurons encoding functionally 

similar properties. 

We did not find much overlap with the left IFG (pars opercularis) and activity patterns 

from the identity RDA (though sparse overlap was present in pars triangularis), while large 

portions of these regions of the IFG were accounted for by the DTW RDA. Hence, while the RDA 

analyses revealed activity patterns in the IPL and IFG that represented movement distinctiveness, 
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the RDA showed that the representational space for identity processing in these regions did not 

overlap with movement distinctiveness or posture. Hence while the left IFG may be attuned to 

stimulus features related to movement distinctiveness, the patterns of activity reflected in the 

representational space of the region did not overlap with identity processing, indicative of other 

factors beyond action features driving identity decoding in the IFG. These other factors could like 

likely be top-down conceptual contributors to identity representations (Sokolov et al., 2018) in this 

region that instead pertain more to evaluative judgments of the self (Kaplan et al., 2008; Devue et 

al., 2007). It is important, however, to reiterate the functional heterogeneity of these regions (e.g., 

Weiner & Grill-Spector, 2011; Graziano et al., 2002; Graziano, 2016). Deeper levels of decoding 

at the level of each ROI are necessary to understand their exact processing pathways and 

connectivity with other regions, using both ROI representational metrics, as well as directed 

measures of connectivity between these subregions, which are current limitations in our study.  

The bilateral EBA revealed significant overlap with both movement distinctiveness and 

identity, suggesting the movement distinctiveness serves as a driving cue to identity in the EBA, 

which could then be transformed and passed upward to interconnected areas in the frontoparietal 

regions (Ma et al., 2018). Interestingly, the identity-based RDA also produced large clusters in 

motor planning and execution regions including M1, SMA, S1, the premotor cortex, as well as the 

ventrolateral prefrontal cortex, which is known for its involvement in motor inhibition (e.g., Leung 

and Cai, 2007; Aron et al., 2003). This overlap suggests that person identity representations based 

on visuomotor familiarity are coded in these motor planning and motor inhibition regions. 

Considering the relationship between neural activity patterns in the ventrolateral prefrontal cortex 

and identity processing, one conjecture could be that the region functions in isolation or in 

conjunction with larger circuitry (e.g., including the dorsolateral prefrontal cortex) to inhibit 
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automatic/imitative motor responses automatically evoked when viewing our own and actions of 

others (e.g., Brass, Zysset, Von Cramon, 2001; Darda & Ramsey,  2019).  

The temporooccipital regions were also functionally connected to the IPL during task-

modulated self-processing, again indicative of the central role of the left IPL as a hub for self-

identity. Information flow between temporooccipital regions and the IPL could provide a pathway 

to assist in the process of self-other differentiation prior to higher-level self-other differentiation 

in more posterior parts of the IPL (Limanowski & Blankenburg, 2017). Further, without the control 

for visual familiarity (i.e., measuring the self > stranger task contrast), we found enhanced 

connectivity between the left IPL and the temporooccipital regions including a smaller cluster in 

the anterior STS/MTG and lateral occipital cortex (EBA). Collectively, based on the RDA and 

connectivity analyses, it appears that course identity decoding based primarily on visual properties 

of the stimulus could occur in the temporooccipital regions and fed upward for integration in the 

IPL. Identity information from the IPL could then further flow upward through feedforward 

connections to the IFG (Sasaki et al., 2018), and/or influenced by backward connections from the 

IFG, evidenced by the task-modulated functional connections between the IPL seed region and the 

bilateral inferior frontal cortices. As the left IFG is also shown to be involved in more evaluative 

and autobiographical tasks (Morin and Michaud, 2007) as well as independent of the stimulus 

domain, it could plausibly enact a top-down and evaluative role (Soch et al., 2017) for identity 

processing, potentially explaining why the IFG (left) could decode all identities at the multivariate 

level. However, given the non-directionality of our connectivity analysis, our interpretation is 

largely speculative in determining directionality of information flow. 

For discussion purposes, a cluster of activity in the ACC was also observed during the 

univariate task contrast of self > stranger actions. We did not extensively analyze the involvement 
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of the ACC, though many studies underscore its importance to self-awareness and involvement in 

surprise signaling—as a sort of prediction error that emerges when viewing oneself (Apps & 

Tsakiris, 2014). The ACC is also a key node in the salience network which may explain why 

univariate activity spanned the insula during self-processing. Notably, however, we did not find 

increases in functional connectivity between the insula and ACC during self-processing, pointing 

less to salience network recruitment, and more to evinced activation along the inferior frontal 

cortices shown by the increased functional connectivity between the insula and IFC during self-

processing. As the insula has a well-known role in bodily and interoceptive states of the self 

(anteriorly), the pattern of results could also suggest more intrinsic bodily attunement during self-

recognition, or even more reflective processes related to the self, considering its proximity and 

anatomical connections to the ventromedial prefrontal cortex, a region well-characterized to code 

for social and reflective processes of oneself (e.g., Lieberman et al., 2019). 

Human beings are embedded in dynamic contexts that change across time and space. The 

contribution of motion information from the body shapes the ability to recognize not only the 

actions of others (Yovel & O’Toole, 2016), but also our own. Here, we characterize a cortical 

network across the AON that prioritizes for self- actions. These findings together reveal how 

awareness of our own actions taps into more than pure visual familiarity. Self-recognition shares 

common sensorimotor links to others, as well as specialized processing attuned to individual 

visuomotor contributions.  

 
Acknowledgements  
We thank Sophia Baia and Kelly Xue for assistance with data collection and stimuli creation, and 
Elinor Yeo, Jolie Wu, Kelly Nola, Nicolas Jeong, Danya Elghebagy, David Lipkin, Shahan 
McGahee for assistance with stimuli creation. We thank Jeff Chiang for helpful advice on the 
analyses. This project was supported by GRANT to H.L., GRANT to M.M, and APA Dissertation 
Award to AK. A preliminary version of this project was presented at the Virtual Society for 
Neuroscience (2020) and V-Vision Sciences Society (2020).  



 116 

 
References 

 
Apps, Matthew AJ, and Manos Tsakiris. "The free-energy self: a predictive coding account of self-
recognition." Neuroscience & Biobehavioral Reviews 41 (2014): 85-97. 
 
Aron AR, Fletcher PC, Bullmore ET, Sahakian BJ, Robbins TW (2003) Stopsignal inhibition 
disrupted by damage to right inferior frontal gyrus in 
humans. Nat Neurosci 6:115–116. 
 
Astafiev, S. V., Stanley, C. M., Shulman, G. L., & Corbetta, M. (2004). Extrastriate body area in 
human occipital cortex responds to the performance of motor actions. Nature neuroscience, 7(5), 
542-548. 
 
Atkinson, A. P., Dittrich, W. H., Gemmell, A. J., & Young, A. W. (2004). Emotion perception 
from dynamic and static body expressions in point-light and full-light displays. Perception, 33(6), 
717-746. 
 
Baron-Cohen, S., Wheelwright, S., Skinner, R., Martin, J., & Clubley, E. (2001). The autism-
spectrum quotient (AQ): evidence from Asperger syndrome/high-functioning autism, males and 
females, scientists and mathematicians. [erratum appears in J Autism Dev Disord 2001 
Dec;31(6):603]. Journal of Autism & Developmental Disorders. 
 
Beckmann, C. F., Jenkinson, M., & Smith, S. M. (2003). General multilevel linear modeling for 
group analysis in FMRI. Neuroimage, 20(2), 1052-1063. 
 
Beardsworth, T., & Buckner, T. (1981). The ability to recognize oneself from a video recording of 
one’s movements without seeing one’s body. Bulletin of the Psychonomic Society, 18(1), 19-22. 
 
Benjamini, Y., & Yekutieli, D. (2001). The control of the false discovery rate in multiple testing 
under dependency. Annals of statistics, 1165-1188. 
 
Blanke, O. (2012). Multisensory brain mechanisms of bodily self-consciousness. Nature Reviews 
Neuroscience, 13(8), 556-571. 
 
Blanke, O., Slater, M., & Serino, A. (2015). Behavioral, neural, and computational principles of 
bodily self-consciousness. Neuron, 88(1), 145-166. 
 
Bischoff, M., Zentgraf, K., Lorey, B., Pilgramm, S., Balser, N., Baumgartner, E., ... & Munzert, J. 
(2012). Motor familiarity: Brain activation when watching kinematic displays of one's own 
movements. Neuropsychologia, 50(8), 2085-2092. 
 
Bracci S, Caramazza A, Peelen MV (2015) Representational similarity of body parts in human 
occipitotemporal cortex. J Neurosci 35: 
12977–12985. CrossRef Medline 
 



 117 

Bréchet, L., Grivaz, P., Gauthier, B., & Blanke, O. (2018). Common recruitment of angular gyrus 
in episodic autobiographical memory and bodily self-consciousness. Frontiers in behavioral 
neuroscience, 270. 
 
Brady N, Campbell M, Flaherty M (2004) My left brain and me: a dissociation in the perception 
of self and others. Neuropsychologia 42:1156–1161. 
 
Burling, J. M., Kadambi, A., Safari, T., & Lu, H. (2019). The impact of autistic traits on self-
recognition of body movements. Frontiers in psychology, 9, 2687. 
 
Calvo-Merino, B., Grèzes, J., Glaser, D. E., Passingham, R. E., & Haggard, P. (2006). Seeing or 
doing? Influence of visual and motor familiarity in action observation. Current biology, 16(19), 
1905-1910. 
 
Candidi, M., Stienen, B. M., Aglioti, S. M., & de Gelder, B. (2011). Event-related repetitive 
transcranial magnetic stimulation of posterior superior temporal sulcus improves the detection of 
threatening postural changes in human bodies. Journal of Neuroscience, 31(48), 17547-17554. 
 
Chang, D. H., Troje, N. F., Ikegaya, Y., Fujita, I., & Ban, H. (2021). Spatiotemporal dynamics of 
responses to biological motion in the human brain. Cortex, 136, 124-139.s 
 
Cisler, J. M., Bush, K., & Steele, J. S. (2014). A comparison of statistical methods for detecting 
context-modulated functional connectivity in fMRI. Neuroimage, 84, 1042-1052. 
 
Conson, M., Aromino, A. R., & Trojano, L. (2010). Whose hand is this? Handedness and visual 
perspective modulate self/other discrimination. Experimental Brain Research, 206(4), 449-453. 
 
Coste, A., Bardy, B. G., Janaqi, S., Słowiński, P., Tsaneva-Atanasova, K., Goupil, J. L., & Marin, 
L. (2021). Decoding identity from motion: how motor similarities colour our perception of self 
and others. Psychological research, 85(2), 509-519. 
 
David, N., Cohen, M. X., Newen, A., Bewernick, B. H., Shah, N. J., Fink, G. R., et al. (2007). The 
extrastriate cortex distinguishes between the consequences of one's own and others' 
behavior.Neuroimage, 36, 1004e1014. 
 
Darda, K. M., & Ramsey, R. (2019). The inhibition of automatic imitation: A meta-analysis and 
synthesis of fMRI studies. NeuroImage, 197, 320-329. 
 
De Bellis, F., Trojano, L., Errico, D., Grossi, D., & Conson, M. (2017). Whose hand is this? 
Differential responses of right and left extrastriate body areas to visual images of self and others’ 
hands. Cognitive, Affective, & Behavioral Neuroscience, 17(4), 826-837. 
 
de Gelder B (2006) Towards the neurobiology of emotional body language. Nat Rev Neurosci 
7:242–249. 
 



 118 

de Gelder B (2009) Why bodies? Twelve reasons for including bodily expressions in affective 
neuroscience. Philos Trans R Soc Lond B Biol Sci 
364:3475–3484. 
 
Desmurget, M., Epstein, C. M., Turner, R. S., Prablanc, C., Alexander, G. E., & Grafton, S. T. 
(1999). Role of the posterior parietal cortex in updating reaching movements to a visual target. 
Nature neuroscience, 2(6), 563-567. 
 
Devue, C., Collette, F., Balteau, E., Degueldre, C., Luxen, A., Maquet, P., & Brédart, S. (2007). 
Here I am: the cortical correlates of visual self-recognition. Brain research, 1143, 169-182. 
 
Di Pellegrino, G., Fadiga, L., Fogassi, L., Gallese, V., & Rizzolatti, G. (1992). Understanding 
motor events: a neurophysiological study. Experimental brain research, 91(1), 176-180. 
 
Downing, P. E., Jiang, Y., Shuman, M., & Kanwisher, N. (2001). A cortical area selective for 
visual processing of the human body. Science, 293(5539), 2470e2473. http://dx.doi.org/10.1126/ 
science.1063414. 
 
Downing, P. E., Peelen, M. V., Wiggett, A. J., & Tew, B. D. (2006). The role of the extrastriate 
body area in action perception. Social Neuroscience,, 1(1), 52-62. 
 
Downing, P. E., Chan, A. Y., Peelen, M. V., Dodds, C. M., & Kanwisher, N. (2006). Domain 
specificity in visual cortex. Cerebral cortex, 16(10), 1453-1461. 
 
Engelen, T., de Graaf, T. A., Sack, A. T., & de Gelder, B. (2015). A causal role for inferior parietal 
lobule in emotion body perception. cortex, 73(195), e202. 
 
Gallese, V., & Goldman, A. (1998). Mirror neurons and the simulation theory of mind-reading. 
Trends in cognitive sciences, 2(12), 493-501. 
 
Genovese, C. R., Lazar, N. A., & Nichols, T. (2002). Thresholding of statistical maps in functional 
neuroimaging using the false discovery rate. Neuroimage, 15(4), 870-878. 
 
Goldenberg, G., & Spatt, J. (2009). The neural basis of tool use. Brain, 132(6), 1645-1655. 
 
Graziano, M. S., Taylor, C. S., & Moore, T. (2002). Complex movements evoked by 
microstimulation of precentral cortex. Neuron, 34(5), 841-851. 
 
Graziano, M. S. (2016). Ethological action maps: a paradigm shift for the motor cortex. Trends in 
cognitive sciences, 20(2), 121-132. 
 
Grèzes J,  Armony JL,  Rowe J,  Passingham RE. Activations related to “mirror” and “canonical” 
neurones in the human brain: an fMRI study, Neuroimage., 2003, vol. 18 (pg. 928-937) 
 
Haaland, K. Y., Harrington, D. L., & Knight, R. T. (2000). Neural representations of skilled 
movement. Brain, 123(11), 2306-2313. 



 119 

 
Haaland, K. Y. (2006). Left hemisphere dominance for movement. The clinical 
neuropsychologist, 20(4), 609-622. 
 
Haxby, J. V., Connolly, A. C., & Guntupalli, J. S. (2014). Decoding neural representational spaces 
using multivariate pattern analysis. Annual review of neuroscience, 37, 435-456. 
 
Hodzic, A., Kaas, A., Muckli, L., Stirn, A., & Singer, W. (2009). Distinct cortical networks for the 
detection and identification of human body. Neuroimage, 45(4), 1264-1271. 
 
Hohmann, T., Troje, N. F., Olmos, A., & Munzert, J. (2011). The influence of motor expertise and 
motor experience on action and actor recognition. Journal of Cognitive Psychology, 23(4), 403–
415.Return to ref 2011 in article 
 
Iacoboni, M., Koski, L. M., Brass, M., Bekkering, H., Woods, R. P., Dubeau, M. C., ... & 
Rizzolatti, G. (2001). Reafferent copies of imitated actions in the right superior temporal cortex. 
Proceedings of the national academy of sciences, 98(24), 13995-13999. 
 
Iacoboni, M., Molnar-Szakacs, I., Gallese, V., Buccino, G., Mazziotta, J. C., & Rizzolatti, G. 
(2005). Grasping the intentions of others with one's own mirror neuron system. PLoS biology, 
3(3), e79. 
 
Iacoboni, M. (2009). Imitation, empathy, and mirror neurons. Annual review of psychology, 60, 
653-670. 
 
Iacoboni, M. (2008). Mirroring people: The new science of how we connect with others. Farrar, 
Straus and Giroux. 
 
Jackson, P. L., & Decety, J. (2004). Motor cognition: A new paradigm to study self–other 
interactions. Current opinion in Neurobiology, 14(2), 259-263. 
 
Jeannerod, M. Visual and action cues contribute to the self–other distinction. Nat Neurosci 7, 422–
423 (2004). https://doi.org/10.1038/nn0504-422 
 
Jeannerod, M., & Pacherie, E. (2004). Agency, simulation and self‐identification. Mind & 
language, 19(2), 113-146. 
 
Jenkinson, M and Smith, S. A global optimisation method for robust affine registration of brain 
images. Medical Image Analysis, 5(2):143-156, 2001. 
 
Jenkinson, M., Bannister, P., Brady, J., and Smith, S. Improved optimisation for the robust and 
accurate linear registration and motion correction of brain images. NeuroImage, 17(2):825-841, 
2002. 
 
Jokisch, D., Daum, I., & Troje, N. F. (2006). Self recognition versus recognition of others by 
biological motion: Viewpoint-dependent effects. Perception, 35(7), 911-920. 



 120 

 
Kadambi, A., Xie, Q., & Lu, H. (2022). Motoric and intrinsic influences modulate self-recognition 
of actions. Under Review. 
 
Kaplan, J. T., Aziz-Zadeh, L., Uddin, L. Q., & Iacoboni, M. (2008). The self across the senses: an 
fMRI study of self-face and self-voice recognition. Social cognitive and affective 
neuroscience, 3(3), 218-223. 
 
Keenan, J. P., Wheeler, M., Platek, S. M., Lardi, G., & Lassonde, M. (2003). Self‐face processing 
in a callosotomy patient. European Journal of Neuroscience, 18(8), 2391-2395. 
 
Koski, L., Iacoboni, M., Dubeau, M. C., Woods, R. P., & Mazziotta, J. C. (2003). Modulation of 
cortical activity during different imitative behaviors. Journal of neurophysiology. 
 
Kriegeskorte, N., Mur, M., & Bandettini, P. A. (2008). Representational similarity analysis-
connecting the branches of systems neuroscience. Frontiers in systems neuroscience, 2, 4. 
 
Leung, H. C., & Cai, W. (2007). Common and differential ventrolateral prefrontal activity during 
inhibition of hand and eye movements. Journal of Neuroscience, 27(37), 9893-9900. 
 
Leshinskaya, A., & Caramazza, A. (2014). Nonmotor aspects of action concepts. Journal of 
Cognitive Neuroscience, 26(12), 2863-2879. 
 
Lieberman, M. D., Straccia, M. A., Meyer, M. L., Du, M., & Tan, K. M. (2019). Social, 
self,(situational), and affective processes in medial prefrontal cortex (MPFC): Causal, 
multivariate, and reverse inference evidence. Neuroscience & Biobehavioral Reviews, 99, 311-
328. 
 
Lingnau, A., & Downing, P. E. (2015). The lateral occipitotemporal cortex in action. Trends in 
cognitive sciences, 19(5), 268-277. 
 
Lombardo, M. V., Chakrabarti, B., Bullmore, E. T., Wheelwright, S. J., Sadek, S. A., Suckling, J., 
... & Baron-Cohen, S. (2010). Shared neural circuits for mentalizing about the self and others. 
Journal of cognitive neuroscience, 22(7), 1623-1635. 
 
Loula, F., Prasad, S., Harber, K., & Shiffrar, M. (2005). Recognizing people from their movement. 
Journal of Experimental Psychology: Human Perception and Performance, 31(1), 210. 
 
Macuga, K. L., & Frey, S. H. (2011). Selective responses in right inferior frontal and supramarginal 
gyri differentiate between observed movements of oneself vs. another. Neuropsychologia, 49(5), 
1202-1207. 
 
McLaren, D. G., Ries, M. L., Xu, G., & Johnson, S. C. (2012). A generalized form of context-
dependent psychophysiological interactions (gPPI): a comparison to standard approaches. 
Neuroimage, 61(4), 1277-1286. 
 



 121 

Molnar-Szakacs, I., & Uddin, L. Q. (2013). Self-processing and the default mode network: 
interactions with the mirror neuron system. Frontiers in human neuroscience, 7, 571. 
 
Morin, A., & Michaud, J. (2007). Self-awareness and the left inferior frontal gyrus: inner speech 
use during self-related processing. Brain research bulletin, 74(6), 387-396. 
 
Mumford, J., Turner, B., Ashby, G., & Poldrack, R. (2012). Deconvolving BOLD activation in 
event-related designs for multivoxel pattern classification analyses. Neuroimage, 59(3), 2636–
2643. doi: 10.1016/j.neuroimage.2011.08.076 
 
Mukamel, R., Ekstrom, A. D., Kaplan, J., Iacoboni, M., & Fried, I. (2010). Single-neuron 
responses in humans during execution and observation of actions. Current biology, 20(8), 750-
756. 
 
Nichols, T., Brett, M., Andersson, J., Wager, T., & Poline, J. B. (2005). Valid conjunction 
inference with the minimum statistic. Neuroimage, 25(3), 653-660. 
 
Oosterhof, N. N., Connolly, A. C., & Haxby, J. V. (2016). CoSMoMVPA: multi-modal 
multivariate pattern analysis of neuroimaging data in Matlab/GNU Octave. Frontiers in 
neuroinformatics, 10, 27. 
 
Orgs G, Dovern A, Hagura N, Haggard P, Fink GR, Weiss PH (2016) Constructing visual 
perception of body movement with the motor cortex. Cereb Cortex 26:440–449 
 
Peelen, M. V., & Downing, P. E. (2005). Selectivity for the human body in the fusiform gyrus. 
Journal of neurophysiology, 93(1), 603-608. 
 
Pereira, F., & Botvinick, M. (2011). Information mapping with pattern classifiers: a comparative 
study. Neuroimage, 56(2), 476-496. 
 
Price, C. J., & Friston, K. J. (1997). Cognitive conjunction: a new approach to brain activation 
experiments. Neuroimage, 5(4), 261-270. 
 
Platek, S. M., Wathne, K., Tierney, N. G., & Thomson, J. W. (2008). Neural correlates of self-face 
recognition: an effect-location meta-analysis. Brain research, 1232, 173-184. 
 
Platek, S. M., Loughead, J. W., Gur, R. C., Busch, S., Ruparel, K., Phend, N., ... & Langleben, D. 
D. (2006). Neural substrates for functionally discriminating self‐face from personally familiar 
faces. Human brain mapping, 27(2), 91-98. 
 
Qin, P., Wang, M., & Northoff, G. (2020). Linking bodily, environmental and mental states in the 
self—A three-level model based on a meta-analysis. Neuroscience & biobehavioral reviews, 115, 
77-95. 

Raine, A. (1991). The spq: A scale for the assessment of schizotypal personality based on DSM-
III-r criteria. Schizophrenia Bulletin. https://doi.org/10.1093/schbul/17.4.555 



 122 

Roberts, R., Callow, N., Hardy, L., Markland, D., & Bringer, J. (2008). Movement imagery ability: 
development and assessment of a revised version of the vividness of movement imagery 
questionnaire. Journal of Sport and Exercise Psychology, 30(2), 200-221. 

Rissman, J., Gazzaley, A., & D'Esposito, M. (2004). Measuring functional connectivity during 
distinct stages of a cognitive task. Neuroimage, 23(2), 752-763. 

Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annu. Rev. Neurosci., 27, 169-
192. 

Rizzolatti, G., Fadiga, L., Gallese, V., & Fogassi, L. (1996). Premotor cortex and the recognition 
of motor actions. Cognitive brain research, 3(2), 131-141. 

Roberts, R., Callow, N., Hardy, L., Markland, D., & Bringer, J. (2008). Movement imagery ability: 
Development and assessment of a revised version of the vividness of movement imagery 
questionnaire. Journal of Sport and Exercise Psychology. https://doi.org/10.1123/jsep.30.2.200 

Sasaki, A. T., Okamoto, Y., Kochiyama, T., Kitada, R., & Sadato, N. (2018). Distinct sensitivities 
of the lateral prefrontal cortex and extrastriate body area to contingency between executed and 
observed actions. Cortex, 108, 234–251. 

Smith, S. M., & Nichols, T. E. (2009). Threshold-free cluster enhancement: addressing problem 
of smoothing, threshold dependence and localisation in cluster inference. Neuroimage, 44(1), 83-
98. 

Soch, J., Deserno, L., Assmann, A., Barman, A., Walter, H., Richardson-Klavehn, A., & Schott, 
B. H. (2017). Inhibition of information flow to the default mode network during self-reference 
versus reference to others. Cerebral Cortex, 27(8), 3930-3942. 

Sokolov AA, Zeidman P, Erb M, Ryvlin P, Friston KJ, Pavlova, MA. 2018. Structural and effective 
brain connectivity underlying biological motion detection. Proc Natl Acad Sci U S A. 
115:E12034–E12042. 
 
Sperry, R. W., Zaidel, E., & Zaidel, D. (1979). Self recognition and social awareness in the 
deconnected minor hemisphere. Neuropsychologia, 17(2), 153-166. 
 
Sperduti, M, P. Delaveau, P. Fossati, J. Nadel (2011) Different brain structures related to self- and 
external-agency attribution: A brief review and meta-analysis. Brain Structure and Function, 216 
(2011), pp. 151-157 
 
Sugiura, M., Watanabe, J., Maeda, Y., Matsue, Y., Fukuda, H., & Kawashima, R. (2005). Cortical 
mechanisms of visual self-recognition. Neuroimage, 24(1), 143-149. 
 
Tholen, M. G., Schurz, M., & Perner, J. (2019). The role of the IPL in person identification. 
Neuropsychologia, 129, 164-170. 



 123 

Turk DJ, Heatherton TF, Kelley WM, Funnell MG, Gazzaniga MS, Macrae CN (2002) Mike or 
me? Self-recognition in a split brain patient. Nat Neurosci 5:841–842 

Uddin, L. Q., Kaplan, J. T., Molnar-Szakacs, I., Zaidel, E., & Iacoboni, M. (2005). Self-face 
recognition activates a frontoparietal “mirror” network in the right hemisphere: an event-related 
fMRI study. Neuroimage, 25(3), 926-935. 
 
Uddin, L. Q., Rayman, J., & Zaidel, E. (2005). Split-brain reveals separate but equal self-
recognition in the two cerebral hemispheres. Consciousness and cognition, 14(3), 633-640. 
 
 
Uddin, L. Q., Iacoboni, M., Lange, C., & Keenan, J. P. (2007). The self and social cognition: the 
role of cortical midline structures and mirror neurons. Trends in cognitive sciences, 11(4), 153-
157. 
 
Uhlmann, L., Pazen, M., van Kemenade, B. M., Steinsträter, O., Harris, L. R., Kircher, T., & 
Straube, B. (2020). Seeing your own or someone else's hand moving in accordance with your 
action: The neural interaction of agency and hand identity. Human brain mapping, 41(9), 2474-
2489. 
 
Urgen, B. A., Pehlivan, S., & Saygin, A. P. (2019). Distinct representations in occipito-temporal, 
parietal, and premotor cortex during action perception revealed by fMRI and computational 
modeling. Neuropsychologia, 127, 35-47. 
 
Urgesi, C., Candidi, M., Ionta, S., & Aglioti, S. M. (2007). Representation of body identity and 
body actions in extrastriate body area and ventral premotor cortex. Nature neuroscience, 10(1), 
30-31. 
 
van Boxtel, J. J., & Lu, H. (2013). A biological motion toolbox for reading, displaying, and 
manipulating motion capture data in research settings. Journal of vision, 13(12), 7-7. 
 
Van Den Bos, E., and Jeannerod, M. (2002). Sense of body and sense of action both contribute to 
self-recognition. Cognition 85, 177–187. doi: 10.1016/S0010-0277(02)00100-2 
 
van Kemenade, B. M., Arikan, B. E., Kircher, T., & Straube, B. (2017). The angular gyrus is a 
supramodal comparator area in action–outcome monitoring. Brain Structure and Function, 222(8), 
3691-3703. 
 
Van Kemenade, B. M., Arikan, E. A., Podranski, K., Steinsträter, O., Kircher, T., & Straube, B. 
(2019). Distinct roles for the cerebellum, angular gyrus and middle temporal gyrus in action-
feedback monitoring. Cerebral Cortex, 29, 1520–1531. https://doi.org/10.1093/cercor/ bhy048 
 
 
van Veluw, S. J., & Chance, S. A. (2014). Differentiating between self and others: an ALE meta-
analysis of fMRI studies of self-recognition and theory of mind. Brain imaging and behavior, 8(1), 
24-38. 



 124 

 
Vocks, S., Busch, M., Grönemeyer, D., Schulte, D., Herpertz, S., & Suchan, B. (2010). Differential 
neuronal responses to the self and others in the extrastriate body area and the fusiform body area. 
Cognitive, Affective, & Behavioral Neuroscience, 10(3), 422-429. 
 
Weiner, K. S., & Grill-Spector, K. (2011). Not one extrastriate body area: using anatomical 
landmarks, hMT+, and visual field maps to parcellate limb-selective activations in human lateral 
occipitotemporal cortex. Neuroimage, 56(4), 2183-2199. 
 
Winkler, A. M., Ridgway, G. R., Webster, M. A., Smith, S. M., & Nichols, T. E. (2014). 
Permutation inference for the general linear model. Neuroimage, 92, 381-397. 
 
Worsley, K. J. (2001). Statistical analysis of activation images. Functional MRI: An introduction 
to methods, 14(1), 251-70. 
 
Wozniak, M. M., Schmidt, T. T., Wu, Y., Blankenburg, F., & Hohwy, J. (2021). Differences in 
working memory coding of biological motion attributed to oneself and others 
 
Wurm, M. F., & Caramazza, A. (2021). Two ‘what’pathways for action and object 
recognition. Trends in cognitive sciences. 
 
Wurm, M. F., & Lingnau, A. (2015). Decoding Actions at Different Levels of Abstraction. Journal 
of Neuroscience, 35(20), 7727–7735. https://doi.org/10.1523/JNEUROSCI.0188-15.2015 
 
Wurm, M. F., Caramazza, A., & Lingnau, A. (2017). Action categories in lateral occipitotemporal 
cortex are organized along sociality and transitivity. Journal of Neuroscience, 37(3), 562-575. 
 
Yovel, G., & O’Toole, A. J. (2016). Recognizing people in motion. Trends in cognitive sciences, 
20(5), 383-395. 
 



 125 

 

CHAPTER 4 
 

Visual perception of social incongruencies: How interactions go awry 
 

Abstract 

Dyadic interactions can sometimes elicit a disconcerting response from viewers, generating a sense 
of “awkwardness”. Despite the ubiquity of awkward social interactions in daily life, it remains 
unknown what visual cues signal the oddity of human interactions and yield the subjective 
impression of awkwardness. In the present experiments, we focused on a range of greeting 
behaviors (handshake, fist-bump, high-five) to examine both the inherent objectivity and impact 
of contextual and kinematic information in the social evaluation of awkwardness. In Experiment 
1, we analyzed participants’ verbal descriptions about greeting behaviors presented in raw videos. 
Participants showed consensus in judging awkwardness from greeting behaviors, and consistently 
used social and motor related words in their descriptions for awkward interactions. Experiment 2 
employed advanced computer vision techniques to present the same greeting behaviors in three 
different display types. All display types preserved kinematic information but varied contextual 
information: (1) Patch displays presented blurred scenes comprised of patches (2) Body displays 
presented human body figures on a black background, (3) Skeleton displays presented skeletal 
figures of moving bodies. Participants rated the degree of awkwardness of greeting behaviors. 
Across display types, participants consistently discriminated awkward and natural greetings, 
indicating that the kinematics of body movements primarily drives awkwardness judgments. 
Multidimensional Scaling analysis based on the similarity of awkwardness ratings revealed two 
primary cues: social coordination and motor coordination. We conclude that the perception of 
awkwardness, while primarily inferred on the basis of kinematic information, is additionally 
impacted by the perceived social coordination underlying human greeting behaviors. 
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Introduction 

In some social situations, dyadic interactions can elicit a disconcerting response from viewers—a 

sense of “awkwardness”. For example, recent videos of U.S. President Donald Trump shaking 

hands with his Supreme Court nominee Neil Gorsuch (link) and the Prime Minister of Japan (link) 

generated a wave of discussions among both laypeople and experts about what exactly constitutes 

an “awkward” motoric social interaction (link).  

Although difficult to pinpoint an exact definition, awkwardness is a subjective impression 

that can arise from many different cues, including a failure in executing motor behavior, 

misunderstood intentions, and conflicting personality traits. While perhaps amusing as a construct, 

when an interaction is perceived as awkward, either by participants or third-party observers, social 

goals and fluid communication are also likely to be impeded (Snyder, Tanke, & Berscheid, 1977), 

compromised more readily in clinical conditions associated with mentalizing difficulties, such as 

across the Autism-Spectrum (Heavy, Phillips, Baron-Cohen, and Rutter, 2000). Therefore, to 

sufficiently probe an underlying, underexamined,  and heterogenous construct like 

“awkwardness,” important questions emerge: are people idiosyncratic in their perceptions of 

awkwardness in dyadic interactions, or are people in general agreement? If people agree with each 

other in perceiving awkwardness, is it possible to pin down the visual characteristics contributing 

to the impression of awkwardness? What visual features signal the oddity of a dyadic interaction? 

The present paper explores these questions through examining judgments of awkwardness 

conveyed through human social greeting interactions.  

Two research fields provide relevant knowledge about perceiving social attributes from 

visual input. Research on biological motion perception provides clear evidence that, when human 

actions are reduced to moving dots located at key joints (Johansson, 1976), human observers make 
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reliable attributions of social properties such as deception (Runeson & Frykholm, 1983), intention 

(Hohmann, Troje, Olmos, & Munzert, 2011), affect (Pollick, Paterson, Bruderin, & Sanford, 

2001), sex (Johnson and Tassinary, 2005), and personality traits (Borkenau et.al., 2004). 

Additionally, these studies highlight the importance of kinematic information in inferring the 

social properties of human actions. 

A separate line of work in person perception has focused on a different but equally 

important question, the role of visual context in social evaluation. Humans live and operate within 

rich contextual environments. Human observers have been shown to use static images of faces to 

make reliable attributions of visually ambiguous social properties such as sexual orientation (Rule 

& Ambady, 2008; Rule et al., 2008), political identity (Rule & Ambady, 2010), and personality 

traits (see Todorov, Said, & Verosky, 2011 for a review). Related research has demonstrated that 

other aspects of visual context, such as race (Alter, Stern, Granot, & Balcetis, 2016), attire 

(Freeman, Penner, Saperstein, Scheutz, & Ambady, 2011) and scene background (Freeman et al., 

2013) also influence the attribution of visually-based social properties. From these categorizations, 

visual context is multifaceted and wide-ranging. Hence, context could refer to something as low-

level as the human voice which contextualizes a face (Freeman & Ambady, 2011) or as high-level 

as the physical scene in which a human is grounded.  

Through integrating the two separate, but closely linked research fields, we aimed to 

provide a novel methodology to examine the role of visual context and human kinematic 

information in the perception of awkward greeting behaviors. Research in biological motion 

perception has shown that people do reliably use human kinematics to attribute social properties 

to human actions. However, daily encountered “awkward” social greetings, such as those 

conveyed through missed high-fives and handshakes, have not received sufficient empirical 
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attention. Modern advances in deep learning algorithms make it possible to systematically 

segregate motor and contextual information, by segmenting body movements and extracting 

skeleton displays from raw action video recordings. To this end, we delineated varying aspects of 

visual context (described in Experiment 2), through presenting highly naturalistic and 

contextualized human interactions in different display types, to parametrically examine the 

contribution of contextual and kinematic information.  

To assess whether people are in general agreement in their perceptions of awkwardness in 

dyadic interactions, we used both free response (Experiment 1) and rating (Experiment 2) 

paradigms. In Experiment 1, participants were presented with a variety of daily encountered 

greeting behaviors in raw videos and asked to identify whether each greeting behavior appeared 

awkward. If the video was categorized as awkward, participants were asked to describe why this 

categorization was made. The text analysis based on free responses allowed us to explore whether 

people consistently attend to certain social or motor cues in the raw videos to identify the presence 

of an awkward interaction.  

Experiment 2 aimed to further examine the interpretability of the free response results by 

asking for subjective ratings on the experimentally manipulated stimuli. We employed advanced 

computer vision techniques to generate the stimuli of greeting actions presented in three different 

video display types. These displays consisted of dyadic interactions and varied the amount of 

visual context presented in the stimuli. To parameterize the amount of visual information, we 

broadly divided visual context into four main categories: body structure (i.e., joints and height), 

body morphology (i.e., width, shape, gender), actor identity (i.e., skin tone, coarse facial features, 

attire), and scene depiction (i.e., physical background- indoor versus outdoor scenes). We 

characterized kinematics as the information provided by body movements of the actors involved 
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in each greeting action.  Across the display types, we maintained the kinematic information of 

body movements, while removing particular categories of contextual information. For instance, in 

one type of display (discussed in more detail below), we removed the scene and actor identity 

information, but maintained body morphology and structure characteristics. In another display 

type, consisting of the sparsest visual information, we removed the scene, actor identity, and body 

morphology information, while just preserving the body structure. Through incorporating these 

categorizations of visual context, we examined the independent contribution of human kinematic 

information to awkwardness judgments as impacted by the gradual mitigation of contextual 

information in the different display types. To further elaborate, we describe the visual context 

provided by three different display types below: 

The first type, patch displays, presented blurred scenes and featured the most amount of 

visual context of our three display types. Specifically, the patch displays preserved all four 

components of our broadly defined criteria of visual context: scene depiction, actor identity, body 

morphology, and body structure. They offered rich cues about the settings in which greeting 

actions occurred including the visual background, objects in the scene, and other actors not 

involved in greeting actions. They offered cues about actor identities including skin tone, coarse 

facial features (e.g., a separation of face area and hair), and attire. Additionally, they preserved 

body morphology information such as body shape and gender, as well as structural body 

information (joints and height). 

The second type, body displays, presented colorful human body figures on a black 

background and featured less visual context than did patch displays. Specifically, both scene 

information (the physical setting) and actor identity information (skin tone, coarse facial features, 

attire) were removed, while preserving body morphology (cues about coarse body shape, such as 
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width, height, and gender) and body structure (joints and height). Note that while the physical 

scene of the action was eliminated, sparse cues about other actors not involved in greeting 

behaviors (occasionally displaying body parts of background actors) remained. 

The third type, skeleton displays, presented white skeleton figures resembling human body 

structure against a black background. The skeleton displays featured the least visual context of our 

three display types, preserving only the structural body information of the main actors in the 

display. Specifically, the skeleton displays included no cues about the physical setting in which 

greeting actions occurred, nor actor identity information such as skin tone and coarse facial 

expression, nor cues about body shape, such as body width and gender. Therefore, only body 

height and joint information was presented, depicted by stick-figures of the main actors involved 

in greeting behaviors.  

Notably, all three display types held human kinematics constant as they were generated 

from the identical raw video recordings, but each display included different categories of visual 

context. This key experimental manipulation allowed us to compare awkwardness ratings of 

greeting behaviors across a range of different naturalistic actions, in order to examine the 

relationship between visual context and kinematic information in the social evaluation of greeting 

behaviors. To underscore, these display types were chosen due to their inherent similarity in the 

presentation of human body structure and kinematics, while systematically varying key 

components of visual context: body structure (consistent across displays), body morphology, actor 

identity, and background scene information. 

Finally, Experiment 2 also attempted to clarify what key visual features might serve as cues 

to the perception of awkwardness. To this end, we conducted a multi-dimensional scaling analysis 

(MDS) based on participant awkwardness ratings to recover the two-dimensional psychological 
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space in accordance to the difference of perceived awkwardness judgments amongst greeting 

behaviors. The interpretation of the two primary dimensions could provide convergent evidence 

to reveal the characteristics of free responses reported in Experiment 1 when people are explicitly 

asked to describe awkwardness. 

 

Experiment 1 

A free-response study was conducted to measure the perception of awkwardness in greeting 

behaviors from raw video recordings. Here, participants viewed videos of awkward and natural 

greeting behaviors and subsequently categorized the video as awkward or natural by providing 

written descriptions of the social interaction. The present experiment also explored features of the 

semantic descriptions judging awkward interactions, and whether the contribution of social and 

motor cues indeed signified the presence of an awkward interaction. 

 

Methods 

Participants 

30 participants (m = 9, f = 21) were recruited from the University of California, Los 

Angeles (UCLA) Psychology Subject pool. Participants provided informed consent, as approved 

by the UCLA Institutional Review Board (#16-001879) and were given course credit for their 

participation.  

Stimuli & Apparatus 

Participants were tested in a dark, quiet room 76.2 cm from the display. Monitor width and 

height was 53.1o x 40.7o. Thirty-four videos from YouTube (see Appendix A for links) were 

selected to capture a variety of greeting behaviors ranging from awkward and natural social 
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interactions. The videos varied in length (2 to 27 seconds, M = 6.36, SD = 4.47) and context, and 

were selected according to two important reasons. First, previous studies on interpersonal 

coordination of joint actions have largely categorized actions as either deliberate (such as high-

fiving) or unnoticed (such as bumping into each other; e.g., Schmidt, Fitzpatrick, Caron, & 

Mergeche, 2011). By including videos that encompass both types of greeting actions, we were able 

to include a more variable set of interactions. Secondly, the selected videos depicted different 

degrees of awkwardness. The range of variability allowed for participants to appraise social 

situations that were more relevant and encountered on a daily basis, as awkward interactions could 

occur from different types of greeting behaviors in many situations (e.g., multiple individuals, 

varied contextual settings, greeting styles). Hence, the stimuli of awkward greetings are more 

heterogeneous than natural greeting behaviors. Given the limited number of psychological studies 

that use naturalistic videos to examine and operationalize awkwardness from daily interactions, 

the key perceptual signals signifying a heterogenous construct, such as awkwardness, remain 

unknown. Therefore, to cover a large range of awkward greeting behaviors, we included a greater 

number of videos featuring awkward greeting behaviors (24) than videos featuring natural greeting 

behaviors (10). Finally, videos including text describing an awkward interaction (e.g., video 

22:“Trump’s awkward interactions with world leaders”) were cropped in order to not bias 

participant responses with the inclusion of text. 

Procedure 

Participants were presented with a randomized order of 34 raw videos selected from YouTube. For 

each of the 34 videos (and consequently after each trial), participants were asked to categorize the 

greeting behavior in the video as “awkward” or “not awkward”. Note that “awkward” and “not 

awkward” were not defined to the participant, thus allowing the participant to use their own 
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criteria. If the participants labeled the video as awkward, they were instructed to write a brief 

verbal description explaining why the greeting behavior in the video appeared awkward. 

Participants were not given a time limit to write their descriptions. No sound was provided to the 

participants during video presentation. 

Results 

In the first step, the proportion of participants identifying greeting behaviors as awkward 

was reported for each video (see Figure 25, column 5). The response proportion was used to 

classify each video as natural or awkward in the remaining paper. Each video was classified as 

natural if the mean proportion of participants categorizing it as awkward was less than .50, and a 

video was classified as awkward if this mean proportion was greater than .50. All 24 videos 

identified by the experimenters as awkward showed a mean proportion greater than .50. To reliably 

assess whether people were in general agreement in judging awkwardness from human 

interactions, a Spearman-Brown corrected split-half reliability coefficient indicated high internal 

consistency (r =.850) between participants for video awkwardness ratings. 
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Figure 25. Examples of video classified as awkward (top left and right) and natural (bottom) 
videos including: key frame, corresponding frequency of social and motor word descriptions 
(generated from participants’ written descriptions), and proportion of awkward responses (>.5 
indicates that the greeting action in the video was perceived as being awkward, <.5 indicates that 
the perception was natural behavior.) 

 

In the second step, we analyzed written descriptions of videos for the greeting behaviors 

that participants categorized as awkward. Written descriptions from all the participants were 

merged into one file in order to identify the high-frequency words including nouns, verbs, adverbs 

and adjectives. For reference, sample descriptions for the awkward videos included “This was 

awkward because the man in the middle attempted to shake hands with two people at once, using 

his left hand for another person’s right hand” and “The two men gestured but it was small enough 
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that the other person did not catch on fast enough so they were almost playing footsie with their 

hands.” The description file was entered into Textalyser (http://textalyser.net), an online software 

that provides a ranking of the most frequently occurring words used in a body of text. After 

excluding words with fewer than three characters and numerals, Textalyser returned the 200 most 

frequent words in the entire set of participants’ written descriptions. Of those 200 words, the first 

two authors selected a subset of words that consisted of verbs, adverbs, and adjectives and that 

excluded nouns and redundant words like “awkward” or “handshake” or words in phrases like “fist 

bump” or “high five”. From that subset, the authors selected words that were either motor-related 

or social-related. Motor-related words expressed actions predominantly related to motor behavior 

(e.g. “pull”, “grab”, “reach”) or their properties (e.g. “towards”). Social-related words had a wider 

range and included words related to mental attributes (e.g. “try”, “want”, or “confuse”). We also 

categorized social-related words as those whose use indicates social knowledge about appropriate 

greetings (e.g. “kiss”, “long”, “far”). For example, “far” is considered a social word because there 

appeared to be an ideal distance between two people based on inherent social knowledge (too 

“far”). See the full list in Appendix B, as shown in the word cloud display (http://worditout.com) 

in Figure 26. 
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Figure 26. Word cloud displays both social-related and motor-related words used to freely 
describe awkward handshakes in Experiment 1. Font size corresponds to relative frequency. 
 

  The frequencies of the selected social-related and motor-related words in participants’ 

written descriptions were then found for each of the 34 videos, individually (see Figure 25, 

columns 3 and 4). Note that when a social-related or motor-related word was a verb (e.g., try), all 

instances of its alternative forms (e.g. tried, tries, trying) were counted as instances of that word. 

Videos showed different ratios between the number of motor-related words and the number of 

social-related words in written descriptions. For example, for Video 1 in which Donald Trump 

aggressively attempts to pull a somewhat stiff and reluctant Neil Gorsuch closer and closer to him, 

participants’ descriptions included the most motor-related words (33). For Video 16 in which a 
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man seemingly reaches for a handshake from a woman and then attempts to kiss the woman’s 

hand, participants employed the most number of social-related words (56) in written descriptions. 

A Pearson correlation coefficient was computed to assess the relationship between the 

proportion of participants categorizing each video as awkward and the combined number of social-

related and motor-related word descriptions for each video. We found a significant positive 

relationship, r = .59, p = .002, observed power = .965, suggesting that the perception of 

awkwardness is consistent with verbal descriptions of the videos. Additionally, while there was no 

significant relationship between the number of social words used in the descriptions and awkward 

proportion, there was a significant relationship between the number of motor words and awkward 

proportion (r = .50, p = .012, observed power = .863), suggesting the possible strong influence of 

motor cues on awkwardness judgments.  

Collectively, the results of Experiment 1 revealed that people are qualitatively able to judge 

awkwardness from human interactions. Importantly, this ability is likely reliant on both social and 

motor cues, as revealed by the prevalence of social- and motor-related words in the semantic 

description of awkward greetings. 
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Experiment 2 

Experiment 1 served as an exploratory study, demonstrating that participants are not idiosyncratic 

in their perceptions of awkwardness when viewing raw videos of greeting behaviors. Experiment 

2 was designed to systematically measure awkwardness judgments by varying visual information 

provided in the display and to assess the contributions from the kinematics of body movements 

and the visual context in perceived awkwardness of greeting behaviors. 

Method 

Participants 

Sixty-six participants (f = 49, m = 17, mean age = 20.62) were recruited from the University of 

California, Los Angeles (UCLA) Psychology Subject pool. All but two participants had lived in 

the United States for at least five years and were fluent English speakers. The sample size was 

determined in accordance with a previous study on individual differences in biological motion 

perception (van Boxtel, Peng, Su, & Lu, 2016). Participants provided informed consent, as 

approved by the UCLA Institutional Review Board (#16-001879) and were given course credit for 

their participation.  

Stimuli and Apparatus 

The identical 34 videos from Experiment 1 were also used to generate the stimuli in Experiment 

2. The visual stimuli were presented on the center of the screen at the size of 250 x 250 pixels 

using MATLAB (R2017a; Mathworks, Natick, MA). The greeting behavior stimuli were 

manipulated by one of the three display types: patch, body, or skeleton display (see Figure 27 for 

sample image frames).  

Patch display. The superpixel algorithm segmented raw images into patches by grouping 

pixels with similar brightness, color, and texture in the local regions of images. The output of this 
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algorithm displayed patches of the locally consistent pixels with similar colors or gray levels (Ren 

& Malik, 2003). As shown in the second column of Figure 27, MATLAB’s “superpixel” function 

was used to process the 34 raw videos to generate the patch display as a blurred visual scene. Since 

the patch display included blurred backgrounds and other people/objects in the display, the stimuli 

in the patch display provided the most contextual information in the visual scene.  

Body display. We used a deep learning model to segment human bodies in the video. The 

model, RefineNet, exploits visual features at multiple levels of abstraction for high resolution 

semantic segmentation. The model classified the pixels of each video frame as belonging to a 

human form or not and further classified pixels corresponding to humans into the following body 

regions: head, torso, upper arm, lower arm, upper leg, and lower leg (Lin, Milan, Shen, & Reid, 

2017). RefineNet processed the 34 raw videos to present colored human figures against a black 

background, as shown in the third column of Figure 25.  

Skeleton display. We used a multi-person pose estimation algorithm (Cao, Simon, Wei, 

& Sheikh, 2016) to estimate the location of key body joints in videos. This deep learning model 

detects body parts and is robust against occlusion and viewpoints. Based on the inferred joint 

locations, skeleton figures were generated using BioMotion toolbox (van Boxtel & Lu, 2013) to 

extract the kinematic movement from the raw 34 videos, as shown in the fourth column of Figure 

25. The white skeleton was displayed against a black background. At the time of conducting the 

experiment (July 2017), the pose estimation algorithm did not include options to infer the hands 

of the actors, and only provided estimation of joint coordinates up until the wrist for arms. 

Therefore, the skeleton actors did not directly touch in the stimuli. Participants were informed of 

this display feature in order to minimize the surprisal that the two hand-shaking actors did not 

touch the other person’s skeleton. Additionally, the model occasionally failed to extract lower 
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body parts, largely due to the similar color of pants as the background, or the missing parts (such 

as lower legs) occluded by objects (such as a table) in the YouTube videos. To correct for this, and 

maintain consistency across videos, a gray rectangular occluder was displayed at the bottom of the 

screen, which covered missing body parts.  

Procedure 

Participants were randomly assigned to view one of three display types (i.e., patch, body, skeleton 

displays). Participants first viewed a sample video (which was manipulated by the assigned display 

type and was not included in the experimental test trials), in order to gain familiarity with the 

display type. Following exposure to the sample video, participants began the experiment. In each 

trial, participants were asked to rate the degree of awkwardness of the greeting behavior in the 

video stimulus on a 6-point scale from 1 (surely natural), 2 (probably natural), 3 (guess natural), 4 

(guess awkward) and 5 (probably awkward) to 6 (surely awkward). The subjects were not imposed 

with a time limit during the rating period and no sound was provided to the participants from the 

videos. The experiment consisted of 34 trials with randomized order and lasted around 30 minutes. 
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Figure 27. Example of stimuli in Experiment 2. Column 1, raw YouTube video frames; Column 2, patch 
display processed by superpixel algorithm; Column 3, body display processed by RefineNet model; Column 
4, skeleton display converted from raw video. 
 

Results 

Mean human ratings for the three display types in Experiment 2 were significantly 

correlated with the proportion of awkward responses for the raw video recordings in Experiment 

1 (r = .92 for patch, observed power = .999,  r = .83 for body, observed power = .999, and r = .84, 

observed power = .999 for skeleton, ps <.001), suggesting that participants were in general 

agreement about categorizing awkward or natural interactions across all displays.  

Next, we conducted a mixed ANOVA with one within-subjects factor, activity normality 

(awkward vs. natural greetings) and one between-subjects factor, display type (patch vs body vs 

skeleton). The activity normality of videos was determined by the proportion of responses in 

Experiment 1 that classified the videos as awkward (proportion >.5) or natural (proportion < .5). 

The average ratings for awkward videos and natural videos were used as dependent variables in 

the ANOVA analysis. As shown in Figure 28, a main effect of activity normality was revealed to 

show higher ratings for awkward videos than for natural videos, F(1,63) = 539.100, p < .001, ηp2 

= .895. We also found a significant two-way interaction effect between activity normality and 

display types (F(2,63) = 11.096, p < .001, ηp2 = .260). Specifically, the impact of display type on 

ratings was not found for natural videos (patch vs body; patch vs skeleton, ps > .05). However, for 

awkward videos, participants yielded greater awkwardness ratings for the patch display than for 

the other two displays (patch vs. body, p = .003; patch vs. skeleton, p < .001, with Bonferroni 

correction). Since both the skeleton and body displays remove a majority of the contextual 

information (such as background, colors, race), the lower awkwardness ratings in these two 

displays reveal the strong influence of contextual information in judgments when observing 
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awkward human interactions. This impact of display type on ratings for awkward videos is also 

consistent with the observations that awkwardness perceived in some videos differs depending on 

the display type. For example, the famous video of President Donald Trump shaking hands with 

his Supreme Court nominee (Video 1) was ranked highly awkward in the body display (rank #5; 

ranging from 1, most awkward, to 34, least awkward). But in the skeleton and patch display, people 

gave lower awkwardness ratings (#12 for skeleton, #8 for patch). Another example is Video 7. 

This video involves a scene where a person is intentionally avoiding a second person’s high-five, 

fist-bump, and hug. Here, the video is consistently rated as awkward in the displays with increased 

contextual information (as rank #4 in the patch display and rank #5 in the body display). However, 

the skeleton display of the video was no longer judged high on awkwardness (rank #13). This 

discrepancy may result from the lack of contextual information (such as male/female, scenery) in 

the skeleton display, and the missing subtle kinematic information (such as missing hand 

movements). Participants’ written descriptions for Video 7 match these observations, with 65% 

more social words than motor words. 

 

Figure 28. Mean awkwardness ratings for awkward and natural videos as a function of three types of 
displays. The error bars indicate standard error of the means.  
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Since our experiment included human interaction videos with different durations, we conducted a 

multiple regression analysis to assess whether video duration significantly accounted for 

variability in participants’ awkwardness ratings.  We measured participants’ awkwardness ratings 

for the patch, body, and skeleton displays through utilizing two predictors: the proportion of 

awkwardness for each video (determined in Experiment 1) and video duration (measured in 

seconds). For all three display types, the proportion of participants classifying each video as 

awkward statistically significantly predicted awkwardness ratings. For the patch display, a 

significant regression equation was found F(2, 31) = 67.929, p < .001, with an R2 = .814. However, 

there was no relationship between video duration and mean awkwardness ratings for the patch 

display (b = .094,  n.s.), while the proportion of participants classifying each video as awkward 

served as a significant predictor (b =.861, p < .001). When mean awkwardness ratings for each 

video in the body display was predicted, a significant regression equation was found F(2, 31) = 

27.514, p < .001. The overall model fit was R2 = .739. Similarly, the proportion of participants 

classifying the video as awkward was a significant predictor (b =.796, p < .001), while there was 

no linear relationship between video duration and mean awkwardness ratings for the body display 

(b = .136, n.s.). For the skeleton display, a significant regression equation was also found F(2, 31) 

= 37.420,  p < .001,  with R2 = .707. Additionally, the proportion of participants classifying the 

video as awkward served as a significant predictor (b =.773, p < .001), while there was no 

significant relationship between video duration and mean awkwardness ratings for the body 

display (b =.146, p < .001), consistent with model results from the patch and body display. 

Therefore, the varied video duration did not appear to influence participant’s awkwardness 

judgments. Collectively, these findings indicate that participants reliably categorized videos as 

awkward and natural regardless of display type, highlighting the importance of kinematics to 
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awkwardness judgments. Additionally, the proportion of participants categorizing each video as 

awkward served as an important predictor of awkwardness ratings for each of the display types, 

accounting for most of the variability in awkwardness ratings for each of the video display types. 

Finally, the degree to which the proportion of awkwardness correlated with ratings for each display 

type still varied according to the amount of contextual information present in each display type, 

with the most variability in awkwardness judgments in the patch display accounted for by the 

participants’ proportion of awkwardness. 

To better understand a psychological space underlying the awkwardness judgements, we 

conducted a Multidimensional Scaling (MDS) analysis (Kruskal & Wish, 1978) to explore what 

psychological dimensions play key roles in determining participants’ ratings for awkwardness. We 

first included all 34 videos in the MDS analysis, however the MDS results appeared to cluster all 

the awkward videos in similar locations to separate from the natural videos, unhelpful for 

visualizing the basic features sensitive to the different degrees of awkward behavior. Hence, in the 

final MDS analysis, we only included ratings for the 24 awkward videos identified in Experiment 

1. We computed the Euclidean distance between any pairs of ratings for awkward videos to 

generate the distance matrix for the 24 videos for each display type. Smaller distances reflected 

that the pair of actions were judged with similar awkwardness ratings across subjects. The 24 X 

24 distance matrix was the input for the nonmetric MDS to project the pairwise distances of 

awkwardness ratings to a two–dimensional space.  

The resultant space of MDS analysis was a two-dimensional psychological space with r2 = 

.94, .92, .83; and stress = .07, .10, .17 for the displays of patch, body, and skeleton, respectively. 

Across all display types, we found a significant correlation between the horizontal coordinates of 

videos and the number of social words present from descriptions of the videos in Experiment 1 
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(for patch display, r = -0.488, p = .015, observed power = .686; body display, r = -.562, p = .004, 

observed power = .514; skeleton display, r = -.611, p = .002, observed power = .903). These 

correlation results were consistent with individual observation of clusters in Figure 29, which 

revealed that actions exhibiting a higher degree of social incoordination (with more social word 

descriptors) were consistently located at the left end of the resultant psychological space in the 

MDS result plot. For example, Video 16 was consistently located on the left side of the MDS result 

plot, wherein a man attempted to kiss (in lieu of handshaking) a young woman who avoided the 

body contact. This action involves a high degree of social incoordination due to the lack of 

engagement of the female actor, and a general violation of social heuristics (kissing instead of 

handshaking). On the other hand, awkward videos with a lower degree of social incoordination 

(determined by their lower degree of social descriptors from Experiment 1) were clustered on the 

right side. For example, Video 2, showing President Trump catching and vigorously shaking Ben 

Carson’s hand at a presidential debate, was rated as highly awkward for the raw video. After 

removing the identity information, the handshaking videos in all the three displays were located 

on the right side of the MDS space, due to the high degree of social coordination in their 

interaction. Hence, the horizontal dimension in the psychological space of awkwardness judgment 

reveals the perceived degree of social incoordination, an overall impression of how well the two 

actors coordinate their social interaction in the greeting behavior.  

The first dimension (horizontal) accounted for most of the variability in the awkwardness 

judgments across the videos: 86%, 79%, and 50% of the variance for the displays of patch, body, 

and skeleton, respectively. In contrast, the vertical dimension accounted for less variability, as 

44%, 21%, and 16% of the variance for the three displays. The interpretation of the vertical 

dimension is not as clear as the horizontal dimension. Since the number of social words for each 
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video from experiment 1 correlated with the horizontal axis, we explored whether the vertical axis 

correlated with the number of motor words for each video from experiment 1, but found no 

relationship across all display types. However, we noticed a possible relation with the touching 

duration for the skeleton display. For each video, we estimated whether “touching”, defined by the 

distance between the two wrist points, was less than the average lower arm length. We found that 

the vertical locations of videos in the psychological space showed a marginal correlation with 

touching duration in the greeting behaviors in the skeleton display, r = .390,  p = .060, observed 

power = .502. We conjecture that, when only body kinematics are available in the visual input, 

physical contact may serve as an important cue for judging the actions, likely related to internal 

knowledge regarding the appropriate duration of touching in the present greeting behaviors. 

However, when more contextual information is available in the interaction, other contextual cues, 

aside from touching duration, may more strongly contribute to awkwardness judgments, as we did 

not find a significant relationship between touching duration and the vertical axis for the more 

contextually rich patch and body displays.  
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 Figure 29. Results of the psychological space from MDS analysis for Patch Display (top), Body 
Display (middle), and Skeleton Display (bottom). Video 16 (boy kisses girl’s hand) and 2 (Donald 
Trump’s aggressive handshake-grab) are representative of videos consistently appearing in the 
similar horizontal location across display types, with Video 16 having more social descriptors and 
Video 2 having less.  
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Figure 30. Stress plot of MDS representation for each of the three display types. A two-
dimensional space was selected as the best choice since there was only a marginal improvement 
in stress with increased dimensionality. 
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Discussion 

Humans encounter and experience awkward social interactions on a daily basis, yet previous 

research has not explored this complex social construct, nor investigated the contribution of 

kinematics to these judgments. Largely absent, is an interdisciplinary “person construal” approach 

(Freeman and Amabady, 2011), relating lower-level perceptual mechanisms (e.g., kinematics) 

with attributions of higher-level social judgments of awkwardness. Therefore, in two experiments, 

we examined whether awkwardness is inherently subjective, or whether there exists a more 

objective, streamlined criterion that humans use to reliably categorize awkwardness. Experiment 

1 served as a preliminary study examining whether awkwardness can be reliably judged from 

greeting behaviors, and how this ability related to the presence of social and motor cues. Utilizing 

the written descriptors from Experiment 1, we rank-ordered the videos based on the proportion of 

participants classifying each interaction as awkward. In Experiment 2, we manipulated the amount 

of visual information while holding body kinematics constant. Together, the present experiments 

revealed that participants were systematically able to judge awkward behaviors across all three 

display types, underscoring the potential importance of human kinematics to social interpretations 

and its key role in signaling awkward behavior. This ability also appeared to account for the 

presence of contextual information (body morphology, actor identity, and scene depiction), as 

revealed by significantly greater awkwardness ratings for the patch display (with the highest 

degree of contextual information) than the body or skeleton displays.  

To compare these results with individual cases, we examined particular videos judged with 

higher awkwardness ratings. We found that the video of President Donald Trump shaking hands 

with Neil Gorsuch (Video 1) was rated consistently higher (i.e., more awkward) than many of the 

other videos, even when visual cues to identity were removed, or reduced (as in the skeleton and 
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body displays), suggesting that the perception of President Trump’s awkward handshaking may 

primarily be attributed to his motoric “awkward” behavior (barring external influences of 

contextual differences). While visual identity generally appears to play a predominant role in social 

judgments (e.g., knowledge of President Trump) as well as in action recognition (e.g., Ferstl, 

Bulthoff, & de la Rosa, 2016), even observing the kinematics of human movements is a viable tool 

to make high-level social judgments of interactions. In fact, participants’ written descriptions on 

the raw video corroborated this finding, by including double the amount of motor descriptions than 

social descriptions in their awkwardness descriptions.  

Previous research has found that certain human motor cues play an important role in the 

detection of threatening actions (van Boxtel & Lu, 2011, 2012), perception of social interactions 

(Thurman & Lu, 2014), emotion perception from actions (Roether, Omlor, Christensen & Giese, 

2009) and action discrimination (van Boxtel & Lu, 2015). What specific cues impact the 

perception of awkwardness in social interactions? To probe the underlying psychological 

dimensions of awkwardness judgments in greeting behaviors, Multidimensional Scaling (MDS) 

analysis revealed two important candidates: social coordination and touching duration (overall 

length of handshake/greeting). Social coordination accounted for most of the variability in judging 

awkwardness. Here, we define social coordination as the degree to which individual actions are in 

accordance not only with greeting behavior norms (e.g., shaking hands instead of kissing), but also 

with the physical setting in which the interaction takes place. Individual cases, such as President 

Trump catching and shaking Ben Carson’s hand, demonstrate how (although ranked awkward) the 

interaction does not violate social coordination within the presidential debate setting (clustered on 

the right, or congruent, side). However, in cases of the first-time meeting with another individual 

in a public setting, a violation of social appropriateness in American culture is likely to occur when 
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a stranger attempts to grab and kiss another individual’s hand (as seen in Video 16 clustered on 

the opposite side in psychological space).  

Through visual inspection, we also found that actions with an obvious motor incoordination 

(e.g., missed catch) also tended to cluster on the left side of the MDS space. Videos in this cluster 

consisted of strong motor incoordination (e.g., Video 5 featuring a dyadic interaction consisting of 

a series of missed fist bumps and handshakes). Meanwhile, the opposite (right side) of the 

horizontal dimension showed the cluster of actions with good motor coordination (e.g., Video 22 

showing Donald Trump shaking Mitt Romney’s hand) in the greeting behavior, suggesting that 

the degree to which the two actors coordinate their movements in the display can signal a key 

underlying dimension of awkwardness. Given the relationship between the horizontal dimension 

and the number of social words in the descriptions, we conjecture that motor coordination likely 

factors into participants’ social judgments since motor coordination does not generally occur in 

isolated situations.  

Touching duration may serve as a secondary cue for signaling awkward greeting behaviors. 

While cautious in our interpretation of the marginally significant relationship (Pritschet, Powell, 

Horne, 2016), this result is still consistent with previous findings that people are sensitive to 

temporal relation between actors (Sebanz & Knoblich, 2009; de la Rosa, et al., 2014; Burling & 

Lu, 2018) and different motion cues in actions (Thurman & Lu, 2016; Peng, Thurman & Lu, 2017). 

Furthermore, interpersonal touch also serves as a non-verbal social cue, incorporating important 

social information, such as emotional attributes and bonding (Gallace & Spence, 2010). Our results 

suggest that the correlations observed in the patch (most contextual information) and skeleton 

(least contextual information), but not in the body display (medium degree of contextual 

information) may be due the importance of touching duration as a social cue to awkwardness when 
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incorporating key contextual information, such as the setting in which an interaction occurs (as in 

the patch display) and the importance of touching duration as a motor cue to awkwardness when 

relying predominantly on human kinematic information (as in the skeleton display). Further 

characterizing this relationship as it pertains to cultural differences, or remains inherent to 

American society, is an interesting area of future exploration. 

As an important final point, while we aimed to separately examined the contribution of 

contextual information, consisting of rich social cues (e.g., scenery, attire), and human kinematic 

information (consisting of rich motor cues), as key signals underlying the evaluation of awkward 

interactions, the MDS results reveal their inextricable link. Specifically, the similar clustering of 

videos with both social and motor incoordination, as well as the key motor signals in touching 

duration (also related to social heuristics), prompt the following question: to what extent is motor 

coordination distinct from social coordination? Previous literature on interpersonal social 

interactions has shown that the temporal and motion congruency between two agents underlies 

human perceptions of social traits and/or animacy to the interaction (Thurman and Lu, 2014). Our 

present results similarly converge, suggesting that social coordination is likely impacted by motor 

coordination in awkwardness judgments. While objectively examining the extent of this 

relationship is outside the scope of our present paper, these results point to an important area of 

investigation that can even extend to wide-ranging, more ecologically valid domains, such as 

human robot interaction.  

We conclude that the perception of awkwardness in greeting behaviors is based on general 

principles that significantly rely on motor cues, with the additional detection of failed social 

coordination for body movements that provide a key signal that a greeting has gone awry. 

Importantly, judging awkwardness does not appear to be entirely idiosyncratic, individuals appear 
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to predominantly rely on a general set of heuristics rooted in human kinematics that is dynamically 

coupled with contextual information.  
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CHAPTER 5 

General Discussion 

Across three studies, my dissertation aimed to examine the mechanisms that drive person 

recognition and processing from actions by revealing the visuomotor contributions underlying 

actions of ourselves and others. Between individuals, the aim was not only to measure the 

mechanistic distinctions that separate the self from others, but the commonalities at the action level 

that also help to construct the social concept of oneself. 

 

In Chapter 1, we showed how self-recognition from our own actions, conveyed in visually 

impoverished point-light displays (PLDs), was modulated by the complexity of the action and 

intrinsic traits related to the participant. Self-recognition ability was importantly independent of 

lower-level actions factors related to speed or to perceived movement distinctiveness in the 

actions. This was an important finding, as it indicates that when motoric factors related to the 

action, or individual variance at the participant-level are accounted for, distinct visual cues to 

identity are less implicated in self-recognition. At first glance, this is somewhat in contrast to the 

results found by Coste et al (2021). Here, the researchers similarly captured participant body 

movements (N = 15), but had the participants performed improvised and simple postural motions 

(i.e., “keep knees extended with toes and heels in constant contact with the floor”) that produced 

rhythmic motion patterns. The main finding from the study was that participants could recognize 

their own actions from postural signatures, but their recognition judgments of identity were largely 

based on their perceived self-similarity to the action. That is, the degree of visual similarity to 

oneself of the action they observed in the recognition task modulated their judgment as to whether 

the action belonged to oneself or another individual. These interpretations were fit in line with 
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common coding theory (Prinz, 1997; Hommel, 2001), in that the closer the visual familiarity of 

the action matched one’s own motor representation, the more likely the action would be attributed 

to the self. 

Our findings do support, and further extend the results from Coste et al. In our study, we 

included a range of 27 actions and separated the actions into three categories based on their degree 

of motor planning. Across all action types that varied in motor planning, we found not only that 

participants could self-recognize their own actions, but substantial variability at the performance 

level for the action types. The action type (complex) that required the most motor planning was 

self-recognized significantly better than the action types that required less motor planning, which 

fits the premise of common coding theory, in that the increased motor familiarity resulting from 

more effortful motor planning facilitates the identity advantage for the self. It is important to note 

that with the increase in motor complexity from increased motor planning, the visual complexity 

of the action also increased. We used the Dynamic Time Warping (DTW) algorithm to compute 

the movement dissimilarity (or distinctiveness) across individuals in the self-recognition task. 

More distinctive visual movements were evident in actions required the most motor planning 

(complex). Notably, however, actions that required the least motor planning based on copying 

another agent’s sequenced motor repertoire (imitation), also conveyed a very high degree of 

movement distinctiveness due to the range of variable actions that were included in the action 

category. As a result, movement distinctiveness was not significantly different for imitation actions 

and complex actions, contradictory to self-recognition performance. From this pattern of results, 

it is clear holistically that movement distinctiveness of the actions cannot be the driving factor in 

self-action recognition. Familiarity with one’s own motor repertoire (i.e., motor planning of the 

participant) appeared to be the main contributor to self-recognition that we attributed to motor 
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experience. To confirm this, we conducted multiple regression analyses including correlational 

and linear mixed effects modeling, which further confirmed the importance of motor experience 

at the action level to self-recognition. 

Returning to Coste et al (2021), it appears that movement distinctiveness likely plays a 

central role to self-recognition when other factors related to the action are not accounted for. 

However, by accounting for differences in motor planning and the complexity of the actions, the 

contribution of movement distinctness was negligible, as was found in our results. Our 

methodology to compute movement distinctiveness using DTW did have some limitations as 

discussed in the results for Chapter 1. It is important that future studies augment this work –perhaps 

using finer-grained measures of movement distinctiveness, or perhaps directly manipulating the 

degree of visual similarity of the PLD to oneself, by introducing some level of deviance bias (e.g., 

angular deviations), typically studied in paradigms measuring agency of actions (e.g., Penton et 

al., 2022). 

Beyond measuring motor familiarity in isolation, our study found interactions with the 

motoric factors and intrinsic traits of the participants linked to Autism, Schizotypy, and motor 

imagery. Disturbances in self-processing have been reported across the Schizophrenia-spectrum 

and Autism-spectrum. In Schizophrenia, self-disturbances (see Nelson, Whitford, Lavoie, & Sass, 

2014 for a review) are thought to account for the hallucinatory experiences prevalent in the 

condition, as a form of misattributing self-generated stimuli to external sources. Further, numerous 

studies have reported atypical self-reflective processing (Van der Meer, Costafreda, Aleman, 

David, 2010), body ownership (e.g., Thakkar, Nichols, McIntosh, Park, 2011; Klaver and 

Dijkerman, 2016), self-monitoring (Keefe, Arnold, Bayen, McEvoy, & Wilson, 2002; Carter et al., 

2001), agency (e.g., Jeannerod, 2009), and self-control (Frith, 2005) in Schizophrenia, as well as 
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converging evidence in ASD, showing developmental delays in self-face recognition ability 

(Spiker & Ricks, 1984; Dawson & McKissick, 1984).  

While the prevailing empirical method to study self-recognition of whole-body movements 

is to significantly degrade visual cues to identity, the impact of intrinsic traits, and in relation to 

these clinical conditions, to recognition ability has gained little attention within the literature. 

There are a number of reasons as to why it is important to measure individual difference traits in 

self-action recognition. First, the unique contribution of various individual difference measures 

can uncover critical information that could potentially be lost through group-level averaging 

(Peterzell & Kennedy, 2016). Second, self-recognition is a complex process, with its investigation 

particularly hampered by its own operationalization and resulting lack of objectivity (consisting of 

no clear-cut computational investigation). Finally, examining individual difference traits linked to 

clinical disorders (i.e., schizophrenia and autism) in the general population has several advantages 

over utilizing clinical patients, notably in its cost-effectiveness and lack of confounding medication 

that could otherwise hamper with the interpretation of results (Lam, Raine, and Lee; 2017). 

Several findings emerged from the individual difference results. Notably, we found 

interactions between the motoric factor and variability for subscales of the composite individual 

difference measure. Subscale variability ranged from both motoric dimensions to social and 

interpersonal dimensions, that impacted and moderated (motor imagery and autism-spectrum) the 

relationship to self-recognition. These results are indicative as to how the automaticity of self-

recognition can be misleading. Rather than a simple process, self-action recognition involves a 

complex architecture with dynamic interactions between perceptual and motor systems, as well as 

intrinsic variance related to the participant.  
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In Chapter 2, we extended the behavioral work on self-recognition to brain imaging. Our aim in 

the study was based on the premise of common coding theory and the pattern of results related to 

motor experience/expertise from Chapter 1—specifically whether common codes as reflected by 

the mirror neuron frontoparietal regions would be more strongly implicated in self-action 

recognition relative to others. We further integrated the work with the visual neuroscience 

paradigms using PLDs of the whole-body, as our stimulus set was purposely different from typical 

those typically used cognitive neuroscience action processing tasks that tend to involve isolated 

body parts or social neuroscience tasks on high-level attributes of the self. Moreover, by 

characterizing a broader range of regions within the action observation network (AON), our 

findings integrated regions commonly targeted in the visual neuroscience tasks involving the 

temporooccipital cortex including the extrastriate body area (EBA) and posterior superior temporal 

sulcus (pSTS), as well as regions found in cognitive neuroscience such as the IPL and IFG. 

Our findings are indicative of a specialized pathway for self-recognition that showed 

increased recruitment of the AON. We found activity across regions in the AON comprising both 

temporooccipital and frontoparietal regions. Specifically, temporooccipital regions within the 

AON were involved in domain-general identity decoding, while frontoparietal regions within the 

AON were broadly attuned to self-recognition.  These results appeal to how the intrinsic nature of 

self-recognition relies on sensorimotor properties. Moreover, our findings also reveal the common 

connection for self and others by demonstrating how processing for both, recruits common neural 

circuitry across the AON. 
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Figure 31. Top: Possible network architecture for general action recognition from whole-body 
movements in PLDs from Chapter 2. Red arrows: feedback influence from IFG and IPL. Blue 
arrows: feedforward influence from EBA to higher-level. Green: reflect idealized feedforward 
processing from sensory (occipital) to evaluative processing (IFG). Bottom: Greater top-down 
influence for whole-body self-action recognition reflected through feedback influence from the 
IFG and IPL (red arrow).  Modeled using Emergent (Aisa et al., 2008), Leabra (O’Reilly, 1996) 
and altering the model architecture from Schapiro et al (2017).  
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Considering the increased recruitment of the AON found for self-recognition, one possible 

framework for self-recognition could involve decoding attuned to specific features at the 

temporooccipital regions (in this case localized to the EBA), as depicted in Figure 31. Here, I 

focus on three regions: EBA, IPL, and IFG based on the results from the gPPI analysis in Chapter 

2, as well as previous effective connectivity work (e.g., Sasaki et al., 2018). Since our functional 

connectivity analysis was nondirectional, Figure 31 represents a potential framework for the 

directionality of information flow, as well as their representational structure (based on the results 

from the RDA analyses). Input is presumed to arrive from the occipital regions which then is 

integrated in the EBA. Here, the EBA has sparse and non-overlapping representations, allowing 

for granular discrimination of postural and kinematic signatures as cues to identity. Information 

from the EBA flows upward to the IPL, which contains populations of neurons that encode both 

specific and fine-tuned features, as well as generic and generalizable populations that encode 

identity.  Hence, both action features (more anteriorly) and identity features (more posteriorly) are 

represented here. Information from the IPL could then be passed on the IFG, which encodes 

information at an evaluative and generic knowledge space, with high-density and overlapping 

representations. This may explain why we identified cues to movement distinctiveness represented 

here, which importantly did not overlap with identity. Finally, the entire model hierarchy involves 

directed feedback loops from the IFG to the temporooccipital regions (EBA/pSTS) and IPL for 

more evaluative judgments. For self-identification (Figure 31, bottom), the architecture infers 

greatest top-down influence from the IFG and IPL relative to identification of others. 

In Chapter 3, we moved away from contextually impoverished PLDs and incorporated 

naturalistic video stimuli of social interactions. We went in the opposite direction 

methodologically, where we started with a high degree of context in one level of the independent 
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variable, and parametrically degraded the amount of context in the display to comprise the other 

two levels. The goal of this study was to assess the impact of social context and the measure the 

underlying visuomotor features that contribute to social attribution judgments of interpersonal 

congruency. Specifically, we asked whether systematizing the degree of context affects judgments 

of action congruency— “awkwardness”— of social interactions of others. Similar to Chapters 1 

and 2, we aimed to explore the visuomotor space of the features that contribute to interactions of 

others. The interactions entailed both regular (natural) interactions, as well as those that violated 

our natural sense of congruency, termed “awkward.” We constructed the database of stimuli as 

compiled from online resources and then performed a stimulus validation check in experiment 3.1, 

where participants categorized each interaction as natural or awkward.  In 3.2, we used advances 

in computer vision and image processing to systematically degrade the degree of context in the 

interactions into three types of stimuli: (1) patch, that blurred the interaction scene but preserved 

the highest degree of social context (2) body, that eliminated most identity features and 

background, except for the body morphology and structure (3) skeleton, that only preserved the 

body structure. Importantly, kinematics of the actions were held constant across all three displays, 

which allowed us to explore how featural representations related to the body and visual scene 

affected participant judgments of incongruency/awkwardness of the interaction.  

Across the three displays, we found reliable consistency across participants in categorizing 

interactions as awkward or natural. Importantly, even after degrading the social context to just 

kinematics conveyed by stick figures, participants were still consistent in terms of extracting high-

level social information from the displays (i.e., determining whether the interaction was awkward 

or not). This corroborates work from Chapters 1 and 2, where we show how participants can extract 

high-level attributes, such as identity, from visually impoverished stimuli, and broadens the results 
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to judgments within naturalistic social interactions. In line with the importance of the motor system 

to action processing, these findings suggest high-level social information can be grasped even on 

the basis of motoric cues (e.g., kinematics), which at the neural level, could potentially be 

facilitated by frontoparietal mirroring systems in the brain. 

We further explored the representational space of the social judgments related to the 

interactions that showed a high degree of incongruency. Two factors accounted for some of the 

explanatory variance in the awkwardness judgments. The featural space of the awkwardness 

judgments represented coordination related to both interpersonal social (number of social words), 

as well as motor (touching duration) factors. The motoric factor contribution was marginally 

significant, but only in the skeleton display. Hence, while social context played a relatively a strong 

role in influencing judgments of awkwardness, degrading the social context increased the 

involvement that motoric cues play, even in social attributions. Evidenced even at the behavioral 

level, we show how social judgments are largely inferred by both social and motoric factors. 

There are limitations in Chapter 3 that should be addressed in future work. First, 

explanatory dimensions related to other social and visuomotor features should be measured. We 

did not sufficiently explain all the variability in the 2-D space for the rating judgments for the 

display types. Part of the reason is due to the fact that we did not include a wide range of tests 

related to motoric features (e.g., speed, acceleration). Moreover, social features are hard to 

quantitatively measure given their latent structure. Potentially incorporating additional methods to 

quantitatively measure social information in the display types, such as Word2Vec or classic 

methods in natural language processing could allow for finer-grained subtypes of social relations 

to emerge in the representational space. Additionally, while it is certainly beneficial for empirical 

paradigms to use naturalistic stimuli, they also present some issues of experimental control. Our 
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paradigm included a range of videos that varied in social context and types of interactions, as 

means to mitigate the influence of any single factor influencing the social judgments. However 

tighter control, while still incorporating naturalistic types of paradigms, would be beneficial in 

future research.  

 

 

Conclusion 

In general summary, the dissertation sheds light on the important contribution of the visuomotor 

mechanisms to high-level attributes related to actions of the self and others. Featurally, motor cues 

appear to be a common contributing link, whether presented in an isolated self-recognition task, 

or in naturalistic interactions that involve multiple individuals. Yet, as is evident in 

neuropsychology, the research emphasis remains largely constrained to studying higher-level 

cognitive processes, rather than on the causal motoric factors that underlie them. Producing 

movements and forming goal-directed actions are one of the most common experiences we have. 

By bridging action processing methods in visual and cognitive neuroscience, my dissertation takes 

steps to attribute these visuomotor mechanisms to high-level social processes, and ultimately in 

how they relate to our own self-representation. 
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A1. Supplementary Materials Chapter II 

 
I. DESCRIPTIVE STATISTICS 

Measure N Max Score Mean Standard 
Deviation 

Range 

AQ 98 50 18.62 6.03 8-38 

AQ-Comm 

AQ-SocialSkill 

AQ-Imagination 

AQ-

AttentionDetail 

AQ-

AttentionSwitch 

SPQ 

SPQ-

UnusualPerceptual 

SPQ-

IdeasReference 

SPQ-OddBeliefs 

SPQ-Suspiciousness 

SPQ-SocialAnxiety 

98 

98 

98 

98 

98 

98 

98 

98 

98 

98 

98 

10 

10 

10 

10 

10 

74 

9 

9 

7 

8 

8 

2.49 

2.49 

2.67 

5.36 

5.60 

23.54 

2.56 

3.81 

1.15 

2.66 

4.09 

1.93 

2.21 

1.45 

2.18 

1.95 

11.14 

1.95 

2.39 

1.39 

1.96 

2.33 

0-8 

0-10 

0-7 

0-10 

1-9 

3-56 

0-9 

0-9 

0-5 

0-8 

0-8 

SPQ-

NoCloseFriends 
98 9 2.29 2.20 0-9 

SPQ-OddBehavior 

SPQ-OddSpeech 

98 

98 

7 

9 

1.15 

3.39 

1.99 

1.93 

0-7 

0-9 
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Table 1. Descriptive statistics for all composite (AQ, SPQ, VMIQ-2) and subscale 

measures 

 
Independent sample t-tests revealed no significant effects of gender on composite AQ 

(t(96) = 1.06,  p = .293, d = .239),  SPQ (t(96) = 0.01,  p = .994, d = .002), or VMIQ-

2 (t(96) = -0.98, p = .328, d = -.222) scores. Table 1 include descriptive statistics for all 

composite and subscale scores in individual measures. Figure S1 shows correlations 

between all the measures. 

 
II. CONFIDENCE DATA 
Metacognitive assessments of self-recognition performance 

Seventy-four participants provided confidence ratings for the self-recognition judgments. 

One-way repeated measures ANOVA revealed participants’ confidence ratings for self-

recognition reflected performance accuracy based on action type, F(2,146) = 6.35, p = 

.002, ηp2  = .080. Participants were significantly more confident for self-recognition for 

complex than for simple actions (t(73) = 4.05, p < .001, d = .471), and for imitation 

SPQ-

ConstrictedAffect 

VMIQ-2 

VMIQ-E 

VMIQ-I 

VMIQ-K 

98 

98 

98 

98 

98 

8 

180 

60 

60 

60 

1.75 

67.95 

26.13 

20.70 

21.11 

1.74 

20.16 

10.19 

7.32 

8.64 

0-7 

36 – 157 

12 – 49 

12 – 49 

12 – 60 
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actions (t(73) = 2.04, p = .046, d = .237), while there was no difference in confidence 

judgments between imitation and simple actions (t(73) = 1.25, p = 0.217, d = .145).   

 

III. INTRINSIC MEASURES 

 
A1. Spearman correlation heatmap depicts spearman rank-order relationships between 
all intrinsic measures (composite scores in brackets). Brighter colors indicate stronger 
relationships between trait measures. Circles denote .01< p < .05; asterisks denote p < 
.01 significance. 
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IV. SELF-RECOGNITION VS VISUAL RECOGNITION 
 
To confirm the importance of motor experience to action identity recognition (speculated 

upon in Loula et al., 2005), we included an additional visual recognition task in which 

participants were asked to recognize previously-seen and imitated actions. We expected 

that the impact of visual experience on identity recognition may diminish after a long 

delay of about one month, but motor experience of own body movements would maintain 

in its effect on self-action recognition. 

The first 28 participants only underwent the self-recognition task. The subsequent 

73 participants were tested with both the self-recognition task and an additional visual 

recognition task consisting of nine trials depicting the forward-facing imitation actions. In 

the visual recognition task, participants were instructed to identify the stick-figure actor 

they imitated during the motion recording phase (converted to point-light display) 

amongst three other distractor point-light actors who performed the same action, that 

were identical to those used in the self-recognition task. The visual recognition task 

allowed us to compare performance of recognizing self-actions versus recognition of 

imitated actions performed by others, which delineates self-generated from visually 

observed actions. The visual recognition trials used the identical stimulus layout as in the 

self-recognition task, except that the participants’ own action in the self-recognition trials 

was replaced by the point-light actions of original imitation actor from the CMU motion 



Appendix 

 A5 

capture database. The order of presentation of the visual recognition task was 

counterbalanced to either follow or precede the self-recognition task across participants. 

We contrasted performance in the self-recognition task in comparison to 

performance in the visual recognition task for imitation actions. Self-generated actions 

present the unique case of expert motor experience (kinesthetic, proprioceptive, and 

muscle contraction information), but impoverished visual experience from a third-person 

perspective. By contrast, expertise of movement patterns in many situations, such as 

sports, show both superior motor ability in performance of one’s own actions, but also 

superior visual ability in recognition of actions performed by others, such as teammates 

(Hohmann et al., 2011). Our task manipulation allowed for the comparison between 

actions that participants performed (i.e., own imitation action) versus actions that the 

participant observed (i.e., stick figure imitation actor). As shown in Figure S1, 

participants performed at chance level for visual recognition of previously viewed actions 

(M = 0.23, SD = 0.19), t(72) = - 0.718 , p = .475, d = -.084, but showed much greater 

recognition performance in identification of one’s own action (M = 0.38, SD = 0.15), 

with visual recognition performance significantly lower than performance in self-

identification, t(72) = 5.41, p < .001, d = .633. The around-chance performance for 

actions with only visual experience confirms that prior visual experience alone may not 

suffice for supporting self-recognition. Identifying oneself relies on the ability to simulate 
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the action onto one’s own motor system, with visual self-recognition in turn dependent on 

a matching process to compare simulated action to observed action. 

 

Figure A2. Recognition accuracy for imitation actions in the self-recognition task with 
motor experience versus performance in the visual-recognition task with visual experience. 
Significantly weaker performance from recognizing actions from visual experience than for 
self-recognition from performed actions. Dashed line indicates chance performance (0.25). 
Error bars indicate standard error of means. 
 
 
V. SPEED ANALYSIS 
To measure the contribution of movement speed to self-recognition, we calculated a 

movement distinctiveness value for every participants’ action within the three action types 

(simple, complex, imitation) and measured the relation to self-recognition performance for 

the action types. For each action, we computed the average 3D positional displacement 

across all frames and all 17 joints relative to all other participants as a measure of speed 

distinctiveness. No significant differences in speed distinctiveness were found between the 

action types: complex v simple, t(100) < .001, p = 1.00, cohen’s d = .009; complex v 
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imitation: t(100) < .001, p = 1.00, cohen’s d = .011; simple v imitation: t(100) < .001, 

p = 1.00, cohen’s d = .009), in contrast to the performance pattern for self-recognition. 

Addiitonally, no correlation was found between speed distinctiveness and accuracy for the 

action types: simple (spearman ρ = .332, p = .059), complex (spearman ρ = .151, p 

=.401), imitation (spearman ρ = .058, p = .747).  
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A2. Supplementary Materials Chapter III 

 

I. Univariate table of results for subtraction contrasts of interest (self vs others), 

using FSL randomise, corrected using TFCE (p < .05) 

 

II. BEHAVIORAL RESULTS FOR ACTION TYPE 

A 2 x 3 repeated measures ANOVA revealed a significant interaction between action type 

(verbal vs visual instruction) and identity (self, friend, and stranger) (F(2,38) = 7.79, p 

= .001, partial eta square = .291). We found that action type only modulated the 

performance difference for self-generated actions. Actions that were freely performed (i.e., 

verbal instruction; M = .616, SD = .199) were recognized at greater rates than for actions 

that were imitated (i.e., visual instruction; M = .509, SD = .188), t(19) = 3.32, p = .004, 
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d = .743. Greatest accuracy for freely performed actions only held true for self-generated 

actions. By contrast, a marginal difference was observed (after bonferonni correction; 

alphanew = .016) in the reverse direction for recognition of stranger actions, such that 

participants showed marginally better recognition for actions that were more stereotyped 

(i.e., visually instructed) than verbally instructed (t(19) = 2.178, p = .042, d = .487).  

 

III. RDM FEATURAL CALCULATIONS 

Movement distinctiveness: 

The following steps were implemented for Dynamic Time Warping (DTW) analyses in 

MATLAB R2020a: 

(1) For each participant’s actions, we extracted the 3D positions of each of the 25 joints 

using the BioMotion toolbox (van Boxtel & Lu, 2013).  

(2) We centered each trajectory of a joint to zero in order to remove the impact of global 

factors (e.g., global body displacements, limb length, etc.) on the similarity measures.  

(3) We then implemented an action DTW algorithm (Pham, Le, & Le, 2014) to search 

for a temporal warping function shared across all 25 joints.   

(4) After deriving the optimal warping function, the analysis computes the frame-by-frame 

Euclidean distances of the temporally warped joint trajectories in actions performed by 

different actors.  
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(5) DTW distance was then computed as the sum of the distances between all joint 

trajectories normalized by the number of frames of a target actor. This normalization step 

is required in order to account for the different durations across participants performing 

the same action 

(6) For each participant, the dissimilarity of the target participant performing an action 

from all other identities was captured by a mean DTW distance measure, computed by 

averaging across pairwise DTW distances between the target participant with the other 

actors (friend, stranger) in performing this action to construct the 36 x 36 representational 

dissimilarity matrix (RDM). 

Speed and Acceleration Distinctiveness: 

To measure the contribution of movement speed to self-recognition, we calculated a 

movement distinctiveness value for every participants’ action for each individual action 

in MATLAB R2020a. For each action, we computed the average 3D positional 

displacement across all frames and all 25 joints (using the first-order derivative of position) 

extracted from Biomotion Toolbox (Van Boxtel & Lu, 2013). We then computed the 

average pairwise Euclidean distance to all other identities as a measure of speed 

distinctiveness to construct the 36 x 36 RDM. No relationships were found between speed 

distinctiveness and self-recognition performance (spearman ρ = -.077, p =.747), nor with 

general identity discrimination (spearman ρ = -.093, p =.698). 
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Acceleration was computed in the identical way, but instead taking the second-order 

derivative of position. No relationships were found between acceleration distinctiveness 

and self-recognition performance (spearman ρ = -.234, p =.321), nor with general identity 

discrimination (spearman ρ = -.272, p =.247). 

Postural Distinctiveness: 

To compute body structure distinctiveness, we measured the averaged postural limb 

length for each participant. We used Biomotion Toolbox (Van Boxtel & Lu, 2013) to 

extract the 25 normalized joint coordinates for each participant and compute their 

relative Euclidean distance, which resulted in 24 limbs produced for each actor. We then 

computed the average pairwise Euclidean distance across all limb lengths between each 

of the identities (self, friend, stranger) to construct the 36 x 36 RDM for each 

participant. No relationships were found between body structure distinctiveness and self-

recognition (spearman ρ = -.195, p =.410), nor with general identity discrimination 

(spearman ρ = .053, p =.823). 
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IV. Univariate Cluster Correction (as reported by FSL) 

Self > stranger (Z > 3.1, p < .05; RFT Cluster Correction): 
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Self > Friend (Z > 3.1, p < .05; RFT Cluster Correction): 
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Stranger > Self:  (Z > 3.1, p < .05; RFT Cluster Correction): 

 
 

 
 

No significant clusters obtained for friend > self; friend > stranger (Z > 
3.1, p < .05) 
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A3. Supplementary Materials Chapter IV 

Links to Video Stimuli 
Clip name Link Start Duration (s) 

clip1 https://youtu.be/T84se4fc4KU?t=30s 0:31 6.72 
clip2 https://youtu.be/_npyQonU-V0?t=1m39s (N/A) 4:72 3.80 
clip3 https://www.youtube.com/watch?v=i6i1PpEtM_4 1:06 10.04 
clip4 https://youtu.be/6yWCmMQy1Qk?t=1m45s 1:44 3.80 
clip5 https://www.youtube.com/watch?v=c5aN5zOEpM8 0:05 26.96 
clip6 https://youtu.be/T84se4fc4KU?t=28s 0:27 3.08 
clip7 https://www.youtube.com/watch?v=c5aN5zOEpM8 1:09 12.04 
clip8 https://www.youtube.com/watch?v=c5aN5zOEpM8 1:21 7.64 
clip9 https://youtu.be/_npyQonU-V0?t=5m03s (N/A) 5:03 7.92 

clip10 https://youtu.be/_npyQonU-V0?t=9m6s (N/A) 9:06 7.16 
clip11 https://www.youtube.com/watch?v=c5aN5zOEpM8 1:01 6.36 
clip12 https://www.youtube.com/watch?v=i6i1PpEtM_4 2:43 10.40 
clip13 https://youtu.be/wT9Prne9wF0 (N/A) 0:00 6.40 
clip14 https://youtu.be/_npyQonU-V0?t=31s (N/A) 0:31 8.04 
clip15 https://www.youtube.com/watch?v=i6i1PpEtM_4 1:42 8.04 
clip16 https://www.youtube.com/watch?v=i6i1PpEtM_4 2:35 3.68 
clip17 https://www.youtube.com/watch?v=i6i1PpEtM_4 2:24 7.72 
clip18 https://www.youtube.com/watch?v=i6i1PpEtM_4 2:52 4.40 
clip19 https://youtu.be/iPDM0msZwQk?t=8s 0:08 10.24 
clip20 https://youtu.be/_npyQonU-V0?t=1m8s (N/A) 1:08 4.80 
clip21 https://youtu.be/_npyQonU-V0?t=3m50s (N/A) 03:50 5.24 
clip22 https://youtu.be/T84se4fc4KU?t=24s 0:23 3.68 
clip23 https://www.youtube.com/watch?v=i6i1PpEtM_4 0:45 2.76 
clip24 https://www.youtube.com/watch?v=c5aN5zOEpM8 0:51 3.72 
clip25 https://www.youtube.com/watch?v=JPhIPT9yOu8 0:42 8.00 
clip26 https://youtu.be/WmuybcgSjkI (N/A) 3:24 3.20 
clip27 https://youtu.be/_npyQonU-V0?t=47s (N/A) 0:47 3.60 
clip28 https://youtu.be/09ZtoTthtys?t=4m50s 4:50 5.56 
clip29 https://youtu.be/HVK-xbdddhA?t=3m8s 3:07 6.32 
clip30 https://youtu.be/09ZtoTthtys?t=9m13s 9:14 3.20 
clip31 https://youtu.be/V-mR66UW8NI?t=105  1:45 2.08 
clip32 https://youtu.be/09ZtoTthtys?t=4m57s 4:57 3.00 
clip33 https://www.youtube.com/watch?v=muN0yh_STkM 0:05 2.64 
clip34 https://youtu.be/V-mR66UW8NI?t=30s 0:30 4.04 
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+As of publication, please note that some links no longer exist since they were collected in 2017. Due to copyright issues, we cannot upload the 
full videos publicly. We have indicated with N/A next to the links that do not exists. Please do not hesitate to contact the authors if interested 
in viewing the original video. 

List of Motor and Social Words Classification in Experiment 1 

 
Word Category Frequency 

try social 111 
want  social 84 
long social 55 
attempt  social 39 
know social 25 
uncomfortable social 23 
confused social 20 
kiss social 20 
think social 18 
give social 16 
initiating social 10 
expecting social 9 
pull motor 45 
reach motor 39 
hold motor 38 
gesture  motor 38 
grab motor 36 
change motor 35 
move motor 23 
touch motor 20 
pull  motor 20 
times motor 19 
far motor 19 
towards motor 19 
turned motor 17 
timing motor 11 
respond motor 11 
playing motor 11 
extended motor 10 
continued motor 9 
switched motor 9 

 

 




