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Abstract
A critical part of language comprehension is inferring omitted
but plausible information from linguistic descriptions of events.
For instance, the verb phrase ‘preserve vegetable’ implies the
instrument vinegar whereas ‘preserve fruit’ implies dehydra-
tor. We studied the ability of distributional semantic models
to perform this kind of semantic inference after being trained
on an artificial corpus with strictly controlled constraints on
which verb phrases occur with which instruments. Importantly,
the ability to infer omitted but plausible instruments in our task
requires compositional generalization. We found that contem-
porary neural network models fall short generalizing learned
selectional constraints, and that a graph-based distributional se-
mantic model trained on constituency-parsed data and equipped
with a spreading-activation procedure for calculating seman-
tic relatedness, achieves perfect performance. Our findings
shed light on the mechanisms that give rise to compositional
generalization, and using graphs to model semantic memory.
Keywords: distributional semantics; semantic inference

Introduction
In language, the meaning of the whole is often determined by
some function of its parts. For example, the set of plausible
continuations of a ‘John preserves the pepper with ’ is con-
strained by the selectional preferences (Katz & Fodor, 1963)
of the verb (e.g. preserve), and the theme (e.g. pepper in the
sentence). While behavioral evidence for sensitivity to multi-
ple constraints during language processing abound (Rayner,
Warren, Juhasz, & Liversedge, 2004), there is a long-standing
debate concerning how such constraints are represented and
integrated during learning and generalization (McRae, Hare,
Elman, & Ferretti, 2005). In the connectionist approach, se-
mantic constraints on processing are typically considered to
emerge from open-ended interactions among linguistic units
without limits on the level at which such units are represented
(e.g. word, phrase, sentence). In contrast, the compositional
approach emphasizes principled decomposition of such con-
straints (e.g. independent constraints due to the verb, and due
to the theme). The primary difference (see Figure 1) is that
the connectionist approach permits relations among complex
expressions (e.g. ‘preserve pepper’ ↔ ‘preserve cucumber’),
whereas, in the compositional approach, such relations are
decomposed into smaller relations (e.g. cucumber ↔ pepper),
and encoded separately.

This difference has potential consequences for how models
generalize to novel stimuli. When a model has learned that
pepper is semantically similar to cucumber or another theme

vinegarpreserve cucumber
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similar preserve

cucumber

vinegarpreserve cucumber
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preserve pepper
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Figure 1: The connectionist (a) and compositional (b) perspec-
tive on semantic inference. The task is inferring the plausible
but omitted instrument vinegar given the verb phrase ‘preserve
pepper’ which was never observed with vinegar. Solid and
dashed lines indicate familiar, and inferred relations, respec-
tively. Similarity relations are labeled ’similar’. The compo-
sitional approach emphasizes relations between constituents
(e.g. themes, shown in blue) while the connectionist approach
also considers relations between larger chunks of language.

previously associated with vinegar, the model may perform
so-called compositional generalization, to infer that vinegar
is a plausible continuation of ‘preserve pepper’ despite never
having observed the two during training. If, instead, a model
has only learned the similarity between the verb phrases ‘pre-
serve pepper’ and ‘preserve cucumber’, the model must rely
on phrasal similarity instead of compositional generalization
to make the same inference. While both the connectionist and
compositional approaches may be, in principle, able to account
for compositional generalization, connectionist models often
do not converge on the needed lexical similarity structure that
would allow them to perform this kind of generalization. To
better understand why some models succeed and others fail,
we compared models in both traditions in a task that explicitly
requires compositional generalization. By comparing a novel
graph-based distributional semantic model to existing connec-
tionist models, our work sheds light on what data structures
and processes are better suited for generalizing knowledge of
individual words to novel word combinations.

While connectionist language models have proven success-
ful at predicting upcoming words in prediction tasks, they
often fall short when generalizing under conditions too dissim-
ilar from those during training (Lake & Baroni, 2018; Kim &
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Figure 2: Formation of the network structure in the Constituent Tree Network (CTN) and the Linear Order Network (LON)
given the mini corpus ‘preserve pepper’, ’preserve cucumber with vinegar’, ’preserve berry with dehydrator’. (a) The input
to the CTN consists of constituency-parsed trees for sequences in the mini corpus. (b) The network structure of the CTN is
formed by joining the constituent trees at shared nodes. (c) The input to the LON consists of word-chains, formed by connecting
adjacent words in the mini corpus (d). The network structure of the LON is formed by joining word-chains at shared nodes.

Linzen, 2020; but see Russin, Jo, O’Reilly, & Bengio, 2020).
One explanation is that such models often memorize larger
chunks of language without learning how they relate to similar
chunks (Arnon & Snider, 2010; Elman, 2014). For instance,
it is possible that when a neural network has encoded the
sequential dependency between ‘preserve cucumber’ and vine-
gar, it does so in a way that does not readily extend the same
knowledge to similar phrases such as ‘preserve pepper’. The
success of inferring that vinegar is a plausible continuation for

‘preserve pepper’ likely depends on whether or not a model
has learned similar representations for these two phrases. The
likelihood of this, in turn, rests on the statistical properties of
the training data, which is not always suitable for the induction
of compositional representations.

In contrast, compositional approaches typically eschew re-
lationships among unanalyzed wholes in favor of relations
among smaller components. Consider again the sentence

‘John preserves the pepper with ’. To infer the omitted in-
strument, compositional approaches prescribe a principled
computational procedure whereby selectional preferences due
to (i) the verb and (ii) theme are applied in a step-wise fashion.
For instance, to correctly infer the target instrument vinegar,
despite never having observed that instrument in that context,
a compositional system would first use the verb preserve —
independently of the theme — to access verb phrases which
were previously associated with an instrument (e.g. ‘preserve
cucumber’ occurred with vinegar; ‘preserve berry’ occurred
with dehydrator). The second step involves the theme. To
correctly choose the instrument, the system would exploit the

semantic similarity between the given theme and the two can-
didate themes. Because the similarity between pepper and
cucumber is greater than that between pepper and berry, the
system could infer that vinegar is a more plausible instrument
for ‘preserve pepper’. In such a system, the selectional prefer-
ences of the parts (the verb, and theme) separately contribute
to the selectional preference of the whole. This idea follows
from the principle of compositionality (Fodor & Lepore, 2002;
Carnap, 1947), and has previously been investigated for mod-
eling meaning combination (Mitchell & Lapata, 2010).

Models that approach semantic inference from the perspec-
tive of compositionality have varied in how their representa-
tions are formed. Traditionally, such models have included
hand-crafted rules (Fodor & Lepore, 2002). More recent
models derive their knowledge from corpus data via domain-
general learning algorithms (Mitchell & Lapata, 2010), similar
to the connectionism approach. To control for variation along
this dimension, we compared the compositional and connec-
tionist approach within the same framework — distributional
semantic modeling — in which models encode the meaning
of linguistic units in terms of their relation to other units in
linguistic data. Specifically, we examined two popular con-
nectionist distributional semantic models, the simple recurrent
neural network and the Transformer. We contrasted them with
a novel graphical distributional model, which we refer to as the
Constituent Tree Network. The graphical model is both com-
positional and distributional as it explicitly encodes constituent
structure of distributional linguistic data in a network (Figure
2b). While connectionist systems are in principle capable of
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Figure 3: Spreading-activation based measure of semantic
relatedness between nodes in a hypothetical network. S and
T indicate source and target nodes, respectively. (a) Because
activation diffuses along all edges (dashed lines), longer paths
lead to less activation arriving at T. (b) Multiple paths from
S to T may exist; only first and second shortest paths (thick
lines) are considered when calculating relatedness.

solving challenging semantic inference tasks, we hypothesized
that the Constituent Tree Network may surpass connectionist
models on some tasks requiring out-of-distribution generaliza-
tion.

The Constituent Tree Network
We propose a novel distributional semantic model, which we
call the Constituent Tree Network (CTN). The Constituent
Tree Network is a semantic network that encodes distribu-
tional language data in a graphical format we hypothesized is
useful for semantic tasks that require compositional general-
ization. Given a corpus of constituency-parsed sentences (Fig-
ure 2a), where nodes in the parse-trees represent constituents
(e.g. words, phrases and sentences), and edges represent con-
stituency relations, the network is constructed by joining the
constituent parse-trees at shared nodes (Figure 2b). As a result,
constituent structure is explicitly encoded in the network topol-
ogy; constituents that belong to the same phrase are connected
via higher-order phrasal nodes. These phrasal nodes are help-
ful for encoding the selectional preference of a whole phrase.
For instance, the verb phrase preserve cucumber is closer to
vinegar than to dehydrator by 2 steps in the network. How-
ever, without the phrasal node preserve cucumber, graphical
distance cannot be used to discriminate vinegar among other
instruments which are less related, but nonetheless associated
with the verb or theme (Figure 2d). By joining parse-trees
into a single network, the Constituent Tree Network is able to
leverage phrasal nodes to infer the relation between structures
that did not occur in the corpus. For instance, preserve pepper,
which did not co-occur with any instrument in the corpus,
becomes indirectly connected to instruments that did occur.

While graphical distance is typically adopted as a proxy for
the relatedness between linguistic units in networks, we imple-
mented a spreading-activation algorithm (De Deyne, Navarro,
Perfors, & Storms, 2016) to compute semantic relatedness.
Relatedness between a source node (S) and a target node
(T) is defined as the activation that reaches T and originates
at S. By so doing, relatedness in the network is graded and
sensitive to (i) the length of the path connecting node S and

Table 1: Two of 16 theme categories and their members. Ex-
perimental themes are in bold-face.

Theme Category Members

VEGETABLE potato cucumber pepper
FRUIT apple berry orange

T, (ii) the number of paths between S and T (see Figure 3).
Activation-spreading based measures on semantic networks
have been shown to be a better fit to empirical data, and are
better grounded in cognitive theory (De Deyne et al., 2016).

Methods and Materials
All models were trained on an artificial corpus, in which oc-
currences of instruments were precisely controlled. This en-
abled us to draw strong conclusions about model differences,
which would not have been possible if using a naturalistic
corpus. Each sentence in the artificial corpus is of the form
agent-verb-theme-instrument, where agent and theme refer to
the semantic roles of the subject, and direct-object, respec-
tively. For each trained model, all pairwise semantic related-
ness scores between verb-theme (VP) pairs and instruments
were computed, as a proxy for the selectional preferences
of VPs on instruments. Evaluation is based on how well a
model’s rank-ordering of relatedness scores matches the ex-
pected rank-ordering implicit in the training data. Relatedness
measures for graphical and connectionist models are obtained
using activation-spreading, and next-word prediction error,
respectively.

Corpus
The artificial corpus is based on a set of 48 verbs and sets
of nouns that define possible arguments for each verb. Each
verb is associated with three nouns in the agent position, three
nouns in the theme position, and zero, one, or two nouns
in instrument position (depending on verb-type, defined be-
low). The set of agent nouns is not verb-specific, and includes
John, Mary, and Fatima. In contrast, nouns that can occur in
the theme and instrument positions are verb-specific. In total,
there are three possible nouns in the agent position, 48 nouns in
the theme position, and 24 nouns in the instrument position. In
total, the vocabulary consists of 123 word types, not counting
the preposition with (which optionally preceded instruments)
and the period symbol, which marks sentence boundaries. We
varied whether with is inserted prior to each instrument, and
only report results that provide better performance. Words
are bound to specific positions; for instance, words that oc-
cur in the agent position never occur in the theme position
and vice versa. Sentences used for training were derived by
iteratively sampling from all possible (576) agent-verb-theme-
instrument combinations over 400 blocks. In each block, one
of 48 verbs was selected without replacement, and arguments
were filled by choosing among legal candidates randomly. For
the purpose of statistical comparison, multiple instances of
each model were trained, each on a unique corpus generated
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with a different random seed. This introduced variation in
learning outcomes for the graphical models, which would
otherwise produce the same results given identical input.

Themes Each theme (e.g. cucumber, berry) belongs to one
of 16 semantic categories, such as FRUIT and VEGETABLE.
Each category consists of 3 themes, and defines the verbs
with which a theme could co-occur. For each theme category,
two category members were designated as ‘control’ themes,
and one member was designated as the ‘experimental’ theme
(Table 1). The difference is that an experimental theme never
occurs with an instrument, while control themes always occur
with an instrument in the training corpus. Thus, while the
sentence ‘Mary preserve cucumber with vinegar’ was seen
during training, the sentence ‘Mary preserve pepper with vine-
gar’ was not; instead the corpus was limited to sentences like

‘Mary preserve pepper’ where the instrument had been omitted.
In this way, the selectional preferences of the VP on instru-
ments are expressed in the pairing between control VPs and
instruments. The critical test was whether models generalized
their knowledge of these preferences to the experimental VPs
that had not been seen with these instruments.

Verbs There are four verb types in the corpus. Type-0 verbs
only occur with themes that belong to the same theme cate-
gory; their purpose is to provide distributional evidence for
similarity among themes that belong to the same category.
Similarly, type-1 verbs can occur with two related theme cat-
egories (e.g. FRUIT and VEGETABLE), and their purpose is
to induce a distributional semantic hierarchy for theme nouns.
Neither type-0 not type-1 verbs occur with instruments, as
these verbs were created for the sole purpose of forming the
semantic structure in our corpus. Type-2 and type-3 verbs oc-
cur with instruments and are therefore used during evaluation
of selectional preferences on instruments. The difference is
that type-2 verbs can only occur with one instrument, whereas
type-3 verbs can occur with two. The instrument that can
occur with type-3 verbs is contingent on the choice of theme;
for instance, while ‘preserve cucumber’ can only occur with

‘vinegar’, ‘preserve berry’ can only occur with dehydrator.
Example sentences for each verb-type are shown in Table 2.

Model Training and Evaluation

Four classes of models were investigated. We included two
connectionist language models, the simple RNN (Elman,
1991) and the Transformer (Vaswani et al., 2017), and two
novel graph-based models, the Constituent Tree Network
(CTN), and a reduced variant of the CTN, the Linear Order
Network (LON). We trained 10 instances of each model, vary-
ing the random seed used to generate the corpus each time.
After training completed, for each model, we computed all
pairwise semantic relatedness scores between type-2 VPs and
instruments, and type-3 VPs and instruments. All subsequent
analyses are based on these scores.

RNN and Transformer We examined two connectionist
language models, the simple RNN (Elman, 1991) and the

more recent Transformer (Vaswani et al., 2017). For the latter,
we adopted a miniature version of the GPT-2 Transformer
architecture (Radford et al., 2019). We identified one highest-
performing hyper-parameter configuration for each model af-
ter extensive tuning on the selectional preference task. We
found that 64 hidden units, and 32 hidden units performed best
for the RNN and Transformer, respectively. Hyper-parameter
search was restricted to 1-layer architectures. In particular, the
Transformer required a significant amount of hyper-parameter
tuning to reduce variance over different seeds. After best
hyper-parameters were identified, we re-trained all models on
corpora generated using different random seeds compared to
the one used for tuning. While we observed strong perfor-
mance of the Transformer during tuning (near 100% accuracy
in all conditions), we observed a considerable drop in perfor-
mance in the generalization condition of Experiment 2 (see
Results and Analysis) after re-training on 10 novel random
seeds. In keeping with the format of the training task, we oper-
ationalized selectional preferences of the VP on instruments in
terms of prediction error: Given as input ‘John preserve pep-
per with ’, we computed the prediction error at the last time
step, substituting ‘ ’ with an instrument. This is in accordance
with previous proposals where constraints on predictive pro-
cessing are considered to reflect knowledge of typical events
(McRae et al., 2005).

CTN and LON Knowledge in the graphical models is en-
coded in a network consisting of nodes connected by edges.
Nodes correspond to lexical or phrasal units in the training
corpus, and edges correspond to co-occurrence (LON) or con-
stituency (CTN) relations between units. Training in both
models involves converting sentences into graphical form and
joining the resulting sub-graphs at shared nodes (Figure 2a-
d). The LON is a degenerate version of the CTN in which
word chains (words adjacent in the training data) instead of
constituency-parse trees are joined during training (Figure 2c-
d). In contrast to CTN that encodes phrasal (i.e. higher-order)
dependencies explicitly, the absence of phrasal nodes in LON
makes it difficult to represent the dependency between a VP
and associated instruments (see Figure 2b and 2d for a com-
parison). Thus, the LON was included to diagnose the effect
of ablating constituent structure.

In contrast to vector-based models, where relatedness corre-
sponds to distance in vector-space, relatedness in the CTN and
LON is based on a spreading-activation algorithm that closely
resembles the procedure described by Mao and Willits (2020).
In this work, we extend their measure of lexical relatedness —
defined for two words — to relatedness between a phrase and
a word, and refer to this extension as ‘phrasal relatedness’. To
compute phrasal relatedness between a VP and an instrument,
the lexical relatedness scores of verb-instrument pairs and
theme-instrument pairs were computed separately, and then
combined via multiplication. In this way, both constituents of
the VP contribute independently to the composite relatedness
— in accordance with compositional generalization.
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Table 2: Example sentences from the artificial corpus, for 2 theme categories only. Each category is associated with 4 verb types.
Type-2 and 3 verbs always occur with instruments except when theme is experimental (indicated by bold-face).

Theme Category type-0 type-1 type-2 type-3
VEGETABLE J dice cucumber J ferment cucumber J grow cucumber with fertilizer J preserve cucumber with vinegar

J dice potato J ferment potato J grow potato with fertilizer J preserve potato with vinegar
J dice pepper J ferment pepper J grow pepper J preserve pepper

FRUIT J dice berry J pick berry J spray berry with insecticide J preserve berry with dehydrator
J dice apple J pick apple J spray apple with insecticide J preserve apple with dehydrator
J dice orange J pick orange J spray orange J preserve orange

Experiments
We conducted two experiments to investigate the ability of
models to learn the structural relationship between VPs and in-
struments. In Experiment 1, we evaluated the ability of models
to predict the structurally-licensed instrument when the verb
alone provides sufficient information. In Experiment 2, the
verb alone is not sufficient, and to succeed, a model must use
the combined VP — the verb and the theme — to correctly pre-
dict the structurally-licensed instrument. In each experiment,
we separate performance by control and experimental themes;
high performance in the former condition indicates successful
encoding of the training data, while high performance in the
latter condition indicates successful generalization to out-of-
distribution data (unobserved VP-instrument pairs).

Experiment 1: Verb-based Learning and Generalization
In Experiment 1, we investigated the ability of models to learn
and infer the selectional preferences of VPs with type-2 verbs.
Given that type-2 verbs can only occur with one instrument,
their selectional preferences on instruments is reducible to a
simple lexical dependency — the theme provides no additional
information to succeed in this task. In the control condition,
we assessed learning by evaluating the ability of models to
assign greater relatedness scores to observed VP-instrument
pairs compared to unobserved pairs. In the experimental condi-
tion, we assessed generalization by evaluating only themes that
never occur with instruments in the training data. In both con-
ditions, accuracy indicates how often the structurally-licensed
instrument is ranked higher than all other instruments.

Experiment 2: VP-based Learning and Generalization In
Experiment 2, we investigated the ability of models to learn
and infer the correct selectional preferences of VPs with type-
3 verbs. This task is more difficult because each type-3 verb
can occur with two instruments in the corpus. This means the
correct instrument is a function of both the verb and the theme.
For instance, both vinegar and dehydrator are plausible (i.e
structurally licensed) instruments for the verb preserve, but
themes in the VEGETABLE category exclusively license the
former and themes in the FRUIT category exclusively license
the latter. On the flipside, the theme alone is not sufficient
either, given that themes occur with more than one instrument
in the training data. In the control condition, performance re-
flects learning; accuracy is calculated based on the proportion
of times a model assigns the highest semantic relatedness to

VP-instrument pairs that were observed in the training data
(given all possible VP-instrument pairs made of type-3 verbs
and control themes). To perform well in the control condition,
a model need only learn the dependency between VPs and
instruments directly accessible in the training data.

In the experimental condition, performance reflects general-
ization; not only must a model encode the dependency between
VPs and instruments, but do so in a manner that preserves the
similarity between same-category themes (e.g. cucumber and
pepper). Specifically, for each unobserved VP-instrument pair,
a model must infer a target rank-ordering of instruments that
aligns with the structure of the artificial corpus. For instance,
given ‘preserve pepper’, the correct rank-ordering is vinegar
> dehydrator > all other instruments, because vinegar co-
occurs with VEGETABLE themes, and dehydrator co-occurs
with semantically related FRUIT themes. High accuracy in
this condition requires compositional generalization because a
model must substitute the experimental theme pepper — never
paired with instruments in the corpus — with a control theme
from the same theme category without compromising the cate-
gorical verb-theme relation. The structure of the corpus was
created so that lexical semantic models fail the generaliza-
tion portion of Experiment 2. We confirmed this by training
Word2Vec (Mikolov, Chen, Corrado, & Dean, 2013) on our
data, and computing phrasal relatedness using element-wise
multiplication as in Mitchell and Lapata (2010)1.

Results and Analysis
All results are summarized in Table 3. We observed that the
CTN reached ceiling performance in all four conditions. As
expected, constituent structure is essential for compositional
generalization, as evidenced by the lower accuracy of the LON
in both conditions of Experiment 2. The Transformer scored
second-best, but performed considerably worse in the exper-
imental portion of Experiment 2. The RNN, excelled in the
control conditions, but fell short in the experimental condi-
tions which requires generalization. These findings shed light
on the capabilities of different classes of DSMs, and in partic-
ular, which factors are useful for compositional generalization.

1The corpus does not contain any first-order cue (i.e. dependency
between two words) useful for generalization in Experiment 2. Suc-
cessful generalization requires breaking the symmetry between the
two candidate instruments (e.g. vinegar and dehydrator), but neither
the verb or the theme alone is sufficient to do so. For instance, the
type-3 verb preserve is equally compatible with both instruments,
and the experimental theme pepper is never observed with either.
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Interestingly, while we observed strong performance of the
Transformer during tuning (near 100% accuracy in all condi-
tions), we observed a considerable drop in performance in the
generalization condition of Experiment 2 after re-training on
10 novel random seeds. This suggests that more sophisticated
hyper-tuning strategies are needed to make the Transformer
more robust against such performance discrepancy. Note that
the CTN, in contrast, requires no tuning.

Table 3: Accuracy of inferring the structurally-licensed rank-
ordering of instruments in the control (ctl) and experimental
(exp) condition. Accuracies are averages across 10 seeds.

Experiment 1 Experiment 2

Ctl Exp Ctl Exp

CTN 1.00 1.00 1.00 1.00
Transformer 1.00 1.00 1.00 0.43
RNN 1.00 0.40 1.00 0.06
LON 0.50 0.51 0.50 0.00

Limited Generalization in Neural Language Models
Limited compositional generalization has long been a major
weak point for neural networks (Symons & Calvo, 2014; Lake
& Baroni, 2018), and this work proved no exception. Both
the RNN and Transformer learned the selectional preferences
governing observed VP-instrument pairs, but failed to gener-
alize to novel pairs. To succeed in the generalization task in
Experiment 2 (i.e. where the instrument vinegar should be
ranked higher than dehydrator and fertilizer), a model must
utilize the distributional similarity between cucumber and pep-
per to transfer selectional preferences of preserve cucumber to
preserve pepper. However, because the RNN and Transformer
need not encode the similarity between cucumber and pepper
to succeed in the language modeling task used during training,
generalization based on the similarity between same-category
themes is not guaranteed after training.

Interestingly, the RNN performed much worse than the
Transformer in the generalization portion of both experiments.
Preliminary follow-up analyses of internal states showed that,
whereas the Transformer was able to consistently group exper-
imental themes with control themes of the same category, the
RNN was not able to do so. We think this difference is due
to the forward-looking bias of the RNN2 which limits the in-
formation the network can use to discover semantic similarity
to words that occur after — but not before — a target word.
Importantly, in our corpora, the information needed to infer

2This follows from the fact that next-word prediction is inherently
forward-looking: Next-word predictions forms similar representa-
tions of words that predict similar upcoming words. For example,
when trained on our corpus, the RNN learns to cluster control themes
because they share outcomes (i.e. predict the same set of instruments),
but not experimental themes. In contrast, words that share predictors
(i.e. all themes occur after the same set of verbs) do not form similar
representations. The forward-looking bias first noted by Cleeremans
and McClelland (1991) and briefly discussed by Davis and Altmann
(2021).

that same-category themes are semantically related is marked
only by the set of words that occur before each theme in the
order in which words are presented to the model. Because the
Transformer uses self-attention — the ability to consider word
pairs without interference due to intervening items — instead
of recurrence, it can leverage markers of semantic similarity
that occur both after and before a target word.

In contrast, the CTN is guaranteed access to the similarity
between pepper and cucumber via the indirect paths that link
the two nodes via VEGETABLE-specific verbs. Consequently,
the CTN is able to exploit the relatedness between the parts
(pepper ↔ cucumber) to infer the relatedness between the
wholes (‘preserve pepper’ ↔ ‘preserve cucumber’).

Discussion
This work examined the ability of distributional semantic mod-
els (DSMs) to perform compositional generalization, the trans-
fer of knowledge about semantic properties of simple expres-
sions to situations not encountered in previous experience with
language. We observed that two popular connectionist models
achieve lower performance relative to the Constituent Tree
Network (CTN), a novel graph-based DSM, and conclude that
compositional generalization does not readily emerge in these
connectionist models.

There are many potential reasons why the connectionist
models did not succeed in the most difficult generalization
portion of our task. First, more sophisticated architectures
may be needed to more strongly promote the emergence of
similarity relations between themes (e.g., see Russin et al.,
2020; Gordon, Lopez-Paz, Baroni, & Bouchacourt, 2020).
Second, it is possible that training on more naturalistic data
would better promote generalization compared to our carefully
balanced artificial dataset. Third, a more exhaustive search
through hyper-parameter space and random seeds may further
improve performance. On the other hand, these concerns
do not apply to the CTN, which does not require any hyper-
parameter tuning. Compositional generalization is built into
the architecture of the CTN even prior to the start of training.
The CTN succeeded in the experimental condition due to
its representational substrate: its edges represent constituency
relations, which explicitly constrain the spreading of activation
in accordance with constituent structure. More generally, the
CTN cleanly separates structure and function. The formation
of the network structure — joining parse-trees — is completely
independent of the spreading-activation algorithm used to
compute relatedness. This sharp distinction between training
and inference is absent in many contemporary neural networks,
where the task used during training (e.g. next-word prediction)
constrains the kinds of tasks that can be used during inference.

To strengthen our conclusions, future work is needed that
(i) includes a larger range of DSMs, (ii) provides a more
rigorous examination of the spreading-activation algorithm
under more diverse conditions, and (iii) compares the CTN to
recent proposals that promise compositional generalization in
vector-based and connectionist models.
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