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Professor Itay Neeman, Chair

¿is thesis divides naturally into two parts, each concerned with the extent to which the theory of

L�R� can be changed by forcing.

¿e �rst part focuses primarily on applying generic-absoluteness principles to show that de�nable

sets of reals enjoy regularity properties. ¿e work in Part I is joint with Itay Neeman and is adapted

from our forthcoming paper [33]. ¿is project was motivated by questions about mad families,

maximal families of in�nite subsets of ω any two of which have only �nitely many members in

common. We begin, in the spirit of Mathias [30], by establishing (¿eorem 2.8) a strong Ramsey

property for sets of reals in the Solovay model, giving a new proof of Törnquist’s theorem [48] that

there are no in�nite mad families in the Solovay model.

In Chapter 3 we stray from the main line of inquiry to brie�y study a game-theoretic characteri-

zation of �lters with the Baire Property.

Neeman and Zapletal [36] showed, assuming roughly the existence of a proper class of Woodin

cardinals, that the boldface theory of L�R� cannot be changed by proper forcing. ¿ey call their result

the Embedding¿eorem, because they conclude that in fact there is an elementary embedding from

the ground-model L�R� to the L�R� of any proper forcing extension that �xes every ordinal and

every real. With a view toward analyzing mad families under AD� and in L�R� under large-cardinal

hypotheses, in Chapter 4 we establish triangular versions of the Embedding¿eorem, ¿eorems 4.3

and 4.8. ¿ese are enough for us to use Mathias’s methods to show (¿eorem 4.5) that there are

ii



no in�nite mad families in L�R� under large cardinals and (¿eorem 4.9) that AD� implies that

there are no in�nite mad families. ¿ese are again corollaries of theorems about strong Ramsey

properties under large-cardinal assumptions and AD�, respectively. Our �rst theorem improves the

large-cardinal assumption under which Todorcevic (see [14]) established the nonexistence of in�nite

mad families in L�R�.

Part I concludes with Chapter 5, a short list of open questions.

In the second part of the thesis, we conduct a �ner analysis of the Embedding¿eorem and its

consistency strength. Schindler [41] found that the the Embedding¿eorem is consistent relative to

much weaker assumptions than the existence of Woodin cardinals. He de�ned remarkable cardinals,

which can exist even in L, and showed that the Embedding ¿eorem is equiconsistent with the

existence of a remarkable cardinal. His theorem resembles a theorem of Kunen from the 1980s

(see [20]): the absoluteness of the theory of L�R� to ccc forcing extensions is equiconsistent with a

weakly compact cardinal. Joint with Itay Neeman [32], we improve Schindler’s theorem by showing

that absoluteness for σ-closed � ccc posets— instead of the larger class of proper posets— implies

the remarkability of ¯V1 in L. ¿is requires a fundamental change in the proof, since Schindler’s

lower-bound argument uses Jensen’s reshaping forcing, which, though proper, need not be σ-closed

� ccc in that context. Our proof bears more resemblance to Kunen’s than to Schindler’s.

¿e proof of ¿eorem 6.2 splits naturally into two arguments. In Chapter 7 we extend Kunen’s

method of coding reals into a specializing function to allow for trees with uncountable levels that

may not belong to L. ¿is culminates in ¿eorem 7.4, which asserts that if there are X b ω1 and a

tree T b ω1 of height ω1 such that X is codable along T (see De�nition 7.3), then L�R�-absoluteness

for ccc posets must fail.

We complete the argument in Chapter 8, where we show that if in any σ-closed extension of V

there is no X b ω1 codable along a tree T , then ¯V1 must be remarkable in L.

In Chapter 9 we review Schindler’s proof of generic absoluteness from a remarkable cardinal to

show that the argument gives a level-by-level upper bound: a strongly λ�-remarkable cardinal is

enough to get L�R�-absoluteness for λ-linked proper posets.

Chapter 10 is devoted to partially reversing the level-by-level upper bound of Chapter 9. Adapting
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the methods of [31], we are able to show that L�R�-absoluteness for max�c, SλS�-linked posets implies

that the interval �¯V1 , λ� is Σ21 -remarkable in L.
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Happy and mad families
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CHAPTER 1

Introduction

¿is part of the thesis is devoted to proving two theorems, each of which is joint with Itay Neeman

and appears in [33]. ¿e work was inspired by Mathias’s celebrated 1977 paper Happy Families [30].

Mathias showed (¿eorem 1.9) that there are no mad families in the Solovay-type model obtained

by collapsing a Mahlo cardinal, and he asked whether there are mad families in the traditional

Solovay model, obtained from only an inaccessible cardinal. ¿at question remained open until

Asger Törnquist answered it positively in 2015. Törnquist’s proof is entirely combinatorial and makes

no mention of the happy families Mathias used in his original argument. ¿e �rst main theorem

of this part is a strengthening of Törnquist’s theorem (¿eorem 2.8) that applies to Mathias’s happy

families. In contrast to Törnquist’s proof, our proof is very similar to arguments in Mathias’s original

paper [30].

¿e second main theorem of this part concerns mad families under large-cardinal and determi-

nacy assumptions. One of set theory’s major projects is to show, o en using strong assumptions, that

pathological sets of reals cannot be easily de�ned. ¿eorems in this vein might assert that a speci�c

type of pathological set cannot be Borel, or cannot be projective or ordinal-de�nable from reals in

the presence of large cardinals, or cannot exist under AD, the Axiom of Determinacy. Mathias [30]

showed that the Axiom of Determinacy for reals, ADR, implies the nonexistence of in�nite mad

families; it is natural to ask whether this assumption can be improved to AD, as Törnquist [48] asked.

Mathias argues for a strong connection between the Ramsey property and the existence of mad

families, so Törnquist’s question seems closely related to the longstanding open question of whether

every set of reals must have the Ramsey property under AD. In Chapter 4 we give a partial answer

(¿eorem 4.9), con�rming that there are no mad families under AD�, a well-studied strengthening

of AD. It is unknown whether AD and AD� are equivalent. In L�R�, AD implies AD� (see [8]).
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We will use conventional notation and de�nitions throughout this thesis. In particular, we write

�ω�ω for the set of in�nite subsets of ω, and more generally �X�ω will denote the set of all countably

in�nite subsets of X. For a set X b �ω�ω, it will be convenient to write Xc for the complement

�ω�ω � X. We write H�θ� for the set of sets hereditarily of cardinality @ θ, and we use the Boolean

forcing convention, according to which p @ q means that p forces more information than q.

For introductions to Gödel’s constructible universe L, the basics of forcing, and other prerequisite

topics, the reader is referred to the standard graduate texts [23] and [26]. In addition to those, the

monograph [5] serves as a good reference for the study of de�nable sets of reals, with which we will

be occupied in Part I. ¿e reader of Part II looking for more information about large cardinals is

directed to Kanamori’s book [25].

Basic de�nitions

De�nition 1.1. Two sets are almost disjoint if their intersection is �nite. An almost-disjoint family is

a family A b �ω�ω such that any two di�erent members of A are almost disjoint. Amad family is an

almost disjoint family that is maximal under inclusion. Equivalently, an almost-disjoint family A is

maximal if and only if every x > �ω�ω has in�nite intersection with at least one member of A.

Remarks.

(1) According to our de�nition, any partition of ω into �nitely many pieces is a mad family, but

we will be interested only in in�nite mad families.

(2) Zorn’s lemma implies that every almost-disjoint family extends to a mad family. By applying

this fact to an in�nite partition of ω, one obtains an in�nite mad family. ¿e use of AC in this

argument is unavoidable, by ¿eorem 1.9 (Mathias).

(3) A straightforward diagonalization argument shows that no in�nite mad family can be count-

able.

Crucial to the study of mad families has been Mathias’s connection between mad families and

the Ramsey property. In its classical form, Ramsey’s theorem states that every coloring χ� �ω�2 � 2
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has an in�nite monochromatic set, a set z > �ω�ω such that χ is constant on �z�2. It’s natural to

seek mild conditions on a family H b �ω�ω su�cient to guarantee that the monochromatic set z

could always be chosen to belong to H. ¿e problem certainly isn’t made easier by requiring H to be

upward-closed under b, and a short exercise shows that the complement of H must be closed under

�nite unions. Re�ecting on the proof of Ramsey’s theorem reveals that one more condition on H

would be enough for H to have at least one monochromatic set for every 2-dimensional coloring.

De�nition 1.2. If y0 c y1 c y2 c � is a decreasing sequence of subsets of ω, then we call a set

yª > �ω�ω a diagonalization of the sequence `yn � n @ ωe i� f �n � 1� > y f �n� for every n @ ω, where

f �ω � ω is the increasing enumeration of yª.

A set H b �ω�ω is called a happy family if it contains every co�nite set and satis�es the following

three conditions:

(i) (upward-closure) If x > H and y c x, then y > H too.

(ii) (pigeonhole) If x0 8 x1 8� 8 xn > H, then xk > H for some k.

(iii) (selectivity) Every decreasing sequence y0 c y1 c � of members of H has a diagonalization yª

in H.

Remarks.

(1) A brief meditation on this de�nition reveals that if yª diagonalizes Ñy, then so does every

in�nite subset of yª.

(2) Clauses (i) & (ii) simply assert that the complement of H, together with all �nite subsets of

ω, forms an ideal on ω, so a family satisfying (i) & (ii) is called a coideal. Accordingly, happy

families are o en called selective coideals in the literature.

Noting that happy families have monochromatic sets for all two-dimensional colorings, Mathias

began to investigate when they have monochromatic sets for in�nite-dimensional colorings.

De�nition 1.3. If H is a coideal (typically a happy family) and X b �ω�ω is a set of reals, then we say

X is H-Ramsey if there is in H a monochromatic set for the coloring associated to X, that is, if there

is z > H such that �z�ω b X or �z�ω b Xc.
4



¿e following fact explains the connection and the terminology.

Proposition 1.4 (Mathias [30]). If A b �ω�ω is an in�nite almost-disjoint family and I�A� is the ideal

generated by A, then �ω�ω � I�A� is a happy family.

If A is an in�nite mad family, then a set belongs to �ω�ω � I�A� if and only if it has in�nite

intersection with in�nitely many members of A.

Mathias provides two other prototypical examples of happy families.

(i) �ω�ω is a happy family.

(ii) Every Ramsey ultra�lter is a happy family.

We can take item (ii) as a de�nition: an ultra�lter F on ω is a Ramsey ultra�lter if and only if it is

a happy family.

Notice that a set X b �ω�ω has the classical Ramsey property if and only if X is �ω�ω-Ramsey, in

our terminology. See [18] and the references therein for an account of classical in�nitary Ramsey

¿eory, including some expansions of Mathias’s ideas.

¿is observation follows immediately from the de�nitions, but it deserves special emphasis.

Lemma 1.5. An in�nite almost-disjoint family A is a mad family if and only if I�A�c is not I�A�c-

Ramsey.

Mathias used Lemma 1.5 to prove several results about the non-existence of de�nablemad families.

His strategy, which we will emulate, is �rst to prove that de�nable (suitably understood) sets are

H-Ramsey for every happy family H. ¿en, if a mad family Awere de�nable, then its corresponding

happy family I�A� would be too. ¿ese two facts are incompatible, by Lemma 1.5.

Mathias’s analysis

To establish the H-Ramsey property, Mathias used what is now known asMathias forcing guided by

H, and which we denoteMH . Conditions are pairs `s, xe, where s is a �nite subset of ω, and x > H.

5



¿e ordering is de�ned as follows: `s, xe B `t, ye i� t is an initial segment of s and x b y. ¿e �rst

component s of a condition is called its stem, and the second component is called its commitment. If

G isMH-generic over V , then the union of the stems of conditions in G naturally gives a real g b ω

that can be shown to generate a �lter F b H that is, roughly speaking, a Ramsey ultra�lter from the

perspective of the ground model. In the case that H � F is already a Ramsey ultra�lter in V , this

property characterizesMF-generic reals: g isMF-generic over V if and only if g is almost-included

in every member of F.

¿e case H � �ω�ω gives the classicalMathias forcing. ¿e chief properties ofMH are these:

Proposition 1.6 (Mathias). Suppose that H is a happy family.

(Prikry Property): if `s, xe > MH is a condition and σ is a sentence in the forcing language, then

there is a condition `s, x�e B `s, xe that forces either σ or  σ .

(Characterization of genericity): Suppose that g is a real in an outer model of V . ¿en g isMH-

generic over V i� for every mad family A b H in V , g is almost-included in some member of

A.

(Mathias Property): if g isMH-generic over V and g� > �g�ω, then g� isMH-generic over V also.

Remarks.

(1) It is worth emphasizing that the Prikry Property allows the extension `s, x�e to be chosen to

have the same stem as `s, xe.

(2) ¿e Mathias Property follows easily from the characterization of genericity.

(3) In the case thatH � F is a Ramsey ultra�lter, the characterization of genericity can be simpli�ed:

g isMF-generic i� g is almost-included in every member of F.

Mathias gives several proofs that analytic sets are H-Ramsey for every happy family H. We

carefully review one here ([30, paragraphs following Prop 2.9]), both to illustrate the techniques and

to motivate later arguments.
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¿eorem 1.7 (Mathias). Suppose that X b �ω�ω is analytic and suppose that H is a happy family.

¿en X is H-Ramsey.

Proof. Let φ be Σ11 and r a real such that X � �x > �ω�ω � φ�x , r��. We can �nd a countable transitive

model M with r > M and an elementary embedding π�M h Vθ for some su�ciently large initial

segment Vθ of V . By insisting that H > π��M, we can ensure that H �� H 9 M > M, and M à

“H is a happy family.”.

Let ġ be the standard name for theMH-generic real. Apply the Prikry Property ofMH inM to

�nd x > H such that `0, xe forces (overM) either φ�ġ , r� or its negation. SinceM is countable, we

can use the characterization ofMH-genericity to �nd a real g > H that isMH-generic overM below

`0, xe (meaning that g b� x). By the Mathias Property, any real g� > �g�ω is alsoMH-generic overM,

so we have

g� > X 
� φ�g�, r� (de�nition of X)


� M�g�� à φ�g�, r� (Σ11 absoluteness)


� `0, xe èM
MH

φ�ġ , r� (genericity of g�)

We conclude that �g�ω b X or �g�ω b Xc, according to whether `0, xe forces φ�ġ , r� or  φ�ġ , r�.

¿e proof of ¿eorem 1.7 depends on the Mathias and Prikry properties ofMH , which in turn

depend on H’s being a happy family in M. In Chapter 2, we will de�ne a poset that, when guided

by a non-Ramsey ultra�lter, still has the Mathias and Prikry properties, and use this to adapt the

argument.

¿e proof also depends on the absoluteness of the Σ11 formula between V and M�g��. We will

show in Chapter 4 how to repeat the argument by establishing stronger absoluteness theorems under

large-cardinal or determinacy assumptions. In Chapter 2, we can use the homogeneity of the collapse

poset that gives the Solovay model instead of appealing to an absoluteness result.

In his study of happy families in the Solovay model, Mathias established two theorems to support

his conjecture that the Solovay model has no in�nite mad families.

¿eorem 1.8 (Mathias [30]). In the Solovay model, every set x > �ω�ω has the Ramsey property, i.e.,

is �ω�ω-Ramsey.
7



¿eorem 1.9 (Mathias [30]). Suppose that G is generic over V for the Levy collapse of a Mahlo

cardinal. In V�G�, every set x b �ω�ω that belongs to L�R� is H-Ramsey for every happy family

H > V�G�. Consequently, there are no in�nite mad families in L�R�V�G�.

¿ere are other strong forms of the Ramsey property known to hold in the Solovay model.

For example, Bagaria and Di Prisco [3] use generic-absoluteness results to establish parametrized

partition properties, some of which generalize the Ramsey property. Some regularity properties of

this kind (the Perfect Set Property, for instance) hold even in L�R��U�, the extension of the Solovay

model by a generic ultra�lter (see [12]), though in that model there are sets without the Ramsey

property, non-Lebesgue-measurable sets, and sets without the Baire property.

To prove that there are no in�nite mad families in the Solovay model (obtained by collapsing

an inaccessible cardinal), one might hope to imitate Mathias’s proof of ¿eorem 1.9, but Eisworth

showed that the conclusion of ¿eorem 1.9 is too strong for only an inaccessible.

¿eorem 1.10 (Eisworth [13]). Suppose that CH holds and that every set X > �ω�ω that belongs to

L�R� is H-Ramsey for every happy family H. ¿en ¯1 is Mahlo in L.

Eisworth’s theorem doesn’t seem to leave any room for proving a version of¿eorem 1.9 that uses

only an inaccessible, and Törnquist’s purely combinatorial proof seems to con�rm this suspicion. But

a closer examination of Eisworth’s proof suggests an alternative approach. Assuming that ¯1 is not

Mahlo in L, Eisworth builds Ramsey ultra�lters U such that not every set in L�R� can be U-Ramsey.

¿ese ultra�lters certainly aren’t de�nable, in the sense that they won’t belong to L�R�. ¿is suggests

that the Solovay model from an inaccessible could still satisfy the restriction of the conclusion of

¿eorem 1.9 to de�nable happy families. And indeed, in Chapter 2 we will prove:

¿eorem. IfG is generic over V for the Levy collapse of an inaccessible cardinal, then in V�G� every

set X b �ω�ω that belongs to L�R� is H-Ramsey for every happy family H > L�R�.

Using Lemma 1.5, we obtain as a corollary Törnquist’s theorem [48] that there are no in�nite

mad families in L�R�V�G�, the Solovay model. Törnquist was the �rst to show that the nonexis-

tence of in�nite mad families is consistent relative to an inaccessible cardinal. Recently, Horowitz
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and Shelah [21] have shown that this inaccessible is unnecessary, that is, that the theory ZF �

“there is no in�nite mad family” is in fact equiconsistent with ZFC.
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CHAPTER 2

¿e Solovay model

¿emain di�culty in adapting Mathias’s arguments to our needs is that, while a coideal H may be a

happy family in V�G�, its intersection with an intermediate extension V�G I α� b V�G� is unlikely

to be closed under diagonalizations. For this reason, there may not be (in V�G I α�) any Ramsey

ultra�lters U b H to guide Mathias forcing overM. Mathias forcing guided by an ultra�lter U b H

is the primary tool Mathias uses to prove that a set is H-Ramsey, but it has the Mathias and Prikry

properties if and only if U is Ramsey.1 Consequently, we will need a di�erent poset to serve the same

purpose in the absence of Ramsey ultra�lters.

Diagonalization forcing

We use standard notation for �nite sequences, so, for instance, lh�s� denotes the length of s (which,

for us, will always be the same as its domain). It will be convenient to refer to the last term of s by

last�s�, i.e., last�s� � s�lh�s� � 1�.

A set yª almost diagonalizes a b-decreasing sequence Ñy � `y0, y1, . . .e if there is some n @ ω such

that yª�n diagonalizes Ñy. Just asMathias forcing guided by an ultra�lter generically adds a set almost-

included in every measure-one set, we need a poset that generically adds a set almost-diagonalizing

every decreasing sequence of measure-one sets.

Fix a nonprincipal ultra�lterU on ω. (Crucially, we do not assume thatU is a Ramsey ultra�lter.)

De�nition 2.1. Conditions in PU are pairs `s, Ñye such that

(i) s > ω@ω is a �nite, strictly increasing sequence,

1¿is follows from [14, ¿eorems 2.4, 4.1]. See [30, ¿eorem 2.10] for the Mathias property, and for a related result
see [22, ¿eorem 1.20].
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(ii) Ñy � �y0, y1, . . . � is an b-decreasing sequence of sets, each in U .

Say `t, Ñze B `s, Ñye i�

(iii) s is an initial segment of t,

(iv) zn b yn for every n C last�t�, and

(v) t�n � 1� > yt�n� for every n > �lh�s�, lh�t� � 1�.

If p � `s, Ñye, then we will o en write stem�p� � s. Following convention, we write q B0 p to mean

that q B p and stem�q� � stem�p�. It will also be convenient to write Ñz B Ñy to mean that zn b yn for

every n @ ω.

A generic �lter G b PU gives rise in a natural way to a generic real g, the range of the union of all

the stems of conditions in G. Clause (v) of the de�nition ensures that a condition `s, Ñye forces the

generic real to almost-diagonalize Ñy.

¿ere is a natural Ellentuck-type neighborhood associated to a condition `s, Ñye. Let’s �rst de�ne

a version for �nite sequences:

Js, ÑyK �� �t > ω@ω
� t b s, or s b t and

t�n � 1� > yt�n� for every n C lh�s��.

Informally, Js, ÑyK comprises all end-extensions of s that diagonalize Ñy beyond s. Now de�ne �s, Ñy� to

be the set of x > �ω�ω such that s enumerates an initial segment of x and every initial segment of x

belongs to Js, ÑyK.

Remarks.

Y Js, ÑyK is a subtree of ω@ω, and �s, Ñy� is the set of its branches.

Y �0, Ñy� is exactly the set of diagonalizations of Ñy.

Y If p � `s, Ñye is a condition and t > Js, ÑyK, then Jt, ÑyK is a condition that extends p.

We have described a natural identi�cation of conditions `s, Ñye with subtrees Js, ÑyK of ω@ω. A

fusion argument (see the proof of Lemma 2.2) shows that these trees form a dense subposet of
11



Laver forcing guided by U , for which many of the results in this section were proved by Judah and

Shelah [22]. Nonetheless, our presentation of the poset allows us to characterize PU-genericity by a

proof very similar to Mathias’s original characterization of genericity for Mathias forcing. We will

therefore reprove some of the results of [22] and translate them into our language.

Lemma 2.2. Let O b �ω�ω be an open set. ¿ere is a condition `0, Ñye > PU such that either �0, Ñy� b O

or �0, Ñy� b Oc.

Proof. Consider the following game. Players I & II play to create a sequence `y0, k0, y1, k1, . . .e

I y0 c y1 c y2 c �

II k0 > y0 k1 > y1 k2 > y2 �

such that, for every n @ ω,

Y yn > U ,

Y yn�1 b yn,

Y kn > yn, and

Y kn @ kn�1.

At the end of the game, Player I wins i� �k0, k1, . . . � > O. By the determinacy of open games, one of

the two players has a winning strategy σ .

Suppose �rst that σ is a winning strategy for Player I. De�ne

yn ���σ�t� � t a sequence of II’s moves consistent with σ , last�t� B n� .

Any diagonalization x of the sequence Ñy is a sequence of II’s moves in a complete run of the game

consistent with σ , and thus x > O. ¿at is, �0, Ñy� b O.

Suppose that, on the other hand, σ is a winning strategy for Player II.

Claim. ¿e set z0 of k @ ω for which there is wk > U satisfying k � σ�`wke� belongs to U .

Proof of Claim. Suppose not, so that v �� �k � �¦w > U� k x σ�`we�� > U . But this means that v is a

valid �rst move for Player I, and then σ�v� > v. ¿is is impossible.
12



We can repeat the argument of the Claim to obtain a tree T b ω@ω and, for each t > T , sets

wt , zt > U satisfying

(i) every t > T has succT�t� > U ;

(ii) wt b ws whenever s b t;

(iii) zt � �k @ ω � k � σ�`w0 , . . . ,wt ,wtẦ kee��.

Put y0 � z0 and inductively de�ne yn � yn�19��zt � last�t� � n, t > T� Clause (iii) and the choice of

yn imply that every x > �0, Ñy� is a sequence of II’s plays consistent with the strategy σ . We conclude

that �0, Ñy� b Oc, as desired.

De�nition 2.3. Say that a condition `s, Ñye captures a dense set D b PU if every x > �s, Ñy� has an initial

segment whose enumeration t > Js, ÑyK satis�es `t, Ñye > D.

Compare with [30, De�nition 2.2]. Informally, a condition captures D if to get into D one need

only extend the stem of the condition, and the set of extensions that work is very rich, containing an

initial segment of every diagonalization of Ñy.

If `s, Ñye captures D, then `s, Ñye still captures D in any outer model. To see this, observe that

�x > �ω�ω � �§t, an initial segment of x� `t, Ñye > D�

is open in the product topology (since D is open in the forcing topology) and apply Π1
1-absoluteness.

We will use this fact in the proof of Lemma 2.6.

Lemma 2.4. Let p > PU be a condition.

(a) For every dense open set D b PU , there is a condition q B0 p that captures D.

(b) For every countable family �Dn � n @ ω� of dense open subsets of PU , there is a condition

q B0 p that captures all of the Dn.

Proof. (a) Assume for convenience that p is the empty condition; the proof of the more general

result is similar. For every increasing sequence t > ω@ω choose (if possible) a sequence Ñyt > Uω such
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that `t, Ñyte > D. (If no such sequence exists, just put Ñyt � `ω,ω, . . .e.) Construct a sequence Ñyª by

de�ning

yªn � �
last�t�Bn

ytn .

By the choice of Ñyt , if there is any Ñz > Uω such that `t, Ñze > D, then `t, Ñyªe > D. (¿is uses that D is

open.) Consider

O � �x > �ω�ω � �§t, an initial segment of x� `t, Ñyªe > D� ,

an open subset of �ω�ω. By Lemma 2.2, there is a Ñy� (which can be taken to satisfy Ñy� B Ñyª) in Uω

such that either �0, Ñy�� b O or �0, Ñy�� b Oc.

If �0, Ñy�� b O, then `0, Ñy�e captures D, and we’re done.

Suppose that �0, Ñy�� b Oc. Since D is dense, there is a condition `s, Ñze > D satisfying `s, Ñze B

`0, Ñy�e. By choice of Ñyª, `s, Ñyªe > D, so `s, Ñy�e > D since D is open. But now �s, Ñy�� b O, and �s, Ñy��

is nonempty, a contradiction.

Part (b) can be proved similarly to part (a), with an added fusion argument. Again assume for

convenience that p is the empty condition. De�ne Ñyt so that for any i B last�t�, if there is Ñz with

`t, Ñze > Di , then `t, Ñyte > Di . Set yªn � �last�t�Bn ytn.

Part (a) shows that there exists `0, Ñy�ne B `0, Ñyªe that captures Dn. Indeed for any �xed

z0, . . . , zn�1 > U one can �nd such Ñy�n with y�ni � zi for i @ n. To see this, for any r of length

B n with r�i � 1� > zr�i� run the construction of Ñy� in part (a) below `r, Ñyªe. ¿e option �r, Ñy�� b Oc

is still impossible, because of the current de�nition of Ñyª. So the construction produces Ñy�r with

�r, Ñy�r� b O. Set y�ni for i C n to be �last�r�Bi y�ri , and y�ni � zi for i @ n. ¿en for any x > �0, Ñy�n�,

setting r to be the �rst initial segment of x with last�r� C n we have x > �r, Ñy�r� b O.

In particular we can obtain Ñy�n so that for all i @ n, y�ni � y��n�1�i . Set y�n � �mBn y�mn . ¿en

`0, Ñy�e captures all Dn.

Lemma 2.5 (Prikry property). If p � `s, Ñye > PU is a condition and σ is a sentence in the forcing

language, then there is a condition p� B0 p that either forces σ or forces  σ .

Proof. Assume for convenience that s � 0; the proof of the general case is similar. We can again

assume, by shrinking the yns if necessary, that every sequence in J0, ÑyK is strictly increasing. Let D
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be the (dense, open) set of conditions that decide σ :

D � �q > PU � q è σ or q è  σ� .

By Lemma 2.4 there is a condition `0, Ñy�e B `0, Ñye that captures D. Now de�ne

B � �x > �ω�ω � `t, Ñy�e è σ for some initial segment t of x�

and

C � �x > �ω�ω � `t, Ñy�e è  σ for some initial segment t of x� .

Notice that both B and C are open subsets of �ω�ω and that �0, Ñy�� b B 8 C. Apply Lemma 2.2 to get

a condition `0, Ñy��e B `0, Ñy�e such that �0, Ñy��� b B or �0, Ñy��� b C.

We will show that `0, Ñy��e è σ in the case when �0, Ñy��� b B. (¿e other case is similar.)

Suppose for a contradiction that we can �nd a condition `s, Ñze B `0, Ñy��e that forces  σ . Choose any

x > �s, Ñz� b �0, Ñy��� b B and let t be an initial segment of x such that `t, Ñye è σ . ¿is fact contradicts

our assumption that `s, Ñze è  σ ; indeed, `t, Ñye and `s, Ñze are compatible conditions, since one of s

and t is an initial segment of the other.

Lemma 2.6 (Characterization of PU-genericity, Judah–Shelah). Let V bW be models of set theory,

let U > V be an ultra�lter in V , and let PU > V be the associated diagonalization forcing. For a real

g > �ω�ω 9W , the following are equivalent.

(a) g is a PU-generic real over V ;

(b) for every decreasing sequence Ñy > V of sets yn > U , g almost-diagonalizes Ñy.

Proof. First, we assume that g is a PU-generic real over V , by which we mean that the set

G � �`s, Ñye > PU � g > �s, Ñy��

is a generic �lter. Fix a sequence Ñy of sets yn > U that belongs to the ground model V . ¿e set D of

conditions `t, Ñze such that Ñz B Ñy is a dense set in V , so genericity provides a condition `t, Ñze > G 9 D.

¿ere is n @ ω such that t is the enumeration of g9n. It follows that g�n diagonalizes Ñz and therefore

also Ñy.

For the converse, suppose that (b) holds of g and let D > V be a dense subset of PU . We’ll need a

way to relate a condition p to a similar condition with a di�erent stem. For any condition p � `s, Ñye
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and any increasing sequence a > ω@ω, de�ne copya�p� to be the condition `aÂs, Ñye. Likewise, de�ne

copya�D� � �`t, Ñze � copya�`t, Ñze� > D�. Observe that copya�D� is a dense open subset of PU .

Apply Lemma 2.4 to the empty condition to get p � `0, Ñye that captures the dense open set

copya�D� for every increasing a > ω@ω. By assumption, there is n @ ω such that g � n diagonalizes Ñy.

¿e fact that p captures copyg9n�D�means that there is k C n such that `g 9 �n, k�, Ñye > copyg9n�D�.

(Here we are using the absoluteness of capturing from V toW ; g � n does not belong to V .) In other

words, `g 9 k, Ñye > D. And g > �g 9 k, Ñy�, so we have shown the �lter determined by g to be generic,

as desired.

Corollary 2.7 (Mathias property). If g isPU-generic over amodelM and g� b g, then g� isPU-generic

overM too.

Happy families in the Solovay model

Let κ be an inaccessible cardinal, and let G be generic over V for the Levy collapse Coll�ω, @κ�. For

the de�nition of Coll�ω, @κ�, its basic properties, and a proof of Solovay’s theorem, see [25, §§10–11].

For our purposes, the Solovay model is L�R� of the generic extension V�G�. In this section we

will prove the �rst main theorem of this part.

¿eorem 2.8. If X > L�R�V�G� is a subset of �ω�ω and H > L�R�V�G� is a happy family, then X is

H-Ramsey.

Remarks.

(1) When we say that “H is a happy family” and “X is H-Ramsey,” we mean that these statements

are true in V�G�, though they are certainly absolute between L�R�V�G� and V�G�.

(2) Contrast this theorem with Mathias’s theorem (¿eorem 1.9 above): Using a Mahlo cardinal,

Mathias constructs a model in which all sets in L�R� are H-Ramsey for every happy family H,

whereas using only an inaccessible cardinal we get this strong Ramsey property for only the

happy families that belong to L�R�.
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We’ll need the following lemma, an essential ingredient in Solovay’s proof that all sets in the

Solovay model are Lebesgue-measurable.

Lemma 2.9 (Factor Lemma, Solovay [42]). Suppose that κ is an inaccessible cardinal and that P is a

poset of size @ κ. Let G be generic over V for the Levy collapse Coll�ω, @κ�. If in V�G� there is a

�lter h b P that is P-generic over V , then there is G� > V�G� that is Coll�ω, @κ�-generic over V�h�

and such that V�h��G�� � V�G�.

V�G�

V�h�

V

Coll�ω,@κ�

Coll�ω,@κ�

P

Figure 2.1: Factor Lemma diagram.

Proof of¿eorem 2.8.

Let H > L�R�V�G� be a happy family, and let X b �ω�ω be a set of reals that belongs to L�R�V�G�.

Every set in L�R� is ordinal-de�nable from a real, so there are a formula φ � φ�x , y,w�, a real

r > V�G�, and a sequence α of ordinals such that

x > X i� V�G� à φ�x , r, α�.

We may assume that H is also ordinal-de�nable from r, by (if necessary) replacing r with a real

coding both r and a real from which H is ordinal-de�nable.

Recall that κ is inaccessible and G is generic over V for the Levy collapse Coll�ω, @κ�. It follows

from the chain-condition of the Levy collapse that there is an ordinal β @ κ such that G I β is

Coll�ω, @β�-generic over V and the real parameter r belongs to V�G I β�. Let φ� � φ��x , y,w� be

the natural formula satisfying the equivalence

φ��x , y,w� 
� 0 èColl�ω,@κ� φ�x , y̌, w̌�.
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And let

X � �x > �ω�ω 9 V�G I β� � V�G I β� à φ��x , r, α�� .

Notice that X belongs to V�G I β�; in fact, by the homogeneity of the collapse, it is equal to

X 9 V�G I β�. Indeed, for x > �ω�ω 9 V�G I β�,

x > X 
� V�G� à φ�x , r, α�


� 0 èColl�ω,@κ� φ�x , r, α�


� x > X .

By similar arguments, H �� H 9 V�G I β� belongs to V�G I β�. (Here we use our assumption that

H > L�R�. We only needed to �nd an initial segment of the collapse that absorbed the real parameter

r.)

If κ were a Mahlo cardinal, then we could choose β to ensure that H is closed under diagonaliza-

tions of sequences in V�G I β� and then �nd in V�G I β� a Ramsey ultra�lterU b H. ¿at approach

is not open to us, and it is for this reason that we must use the diagonalization forcing, since—unlike

Mathias forcing— it has the Mathias and Prikry properties even when guided by a non-Ramsey

ultra�lter.

Because H is a coideal in V�G�, its intersection H with V�G I β�must be a coideal in V�G I β�.

Working in V�G I β�, we can extend the �lter dual to the ideal Hc
to obtain an ultra�lter U b H.

Claim 2.10. Let g > V�G� be a real that is generic over V�G I β� for a poset P > V�G I β�. ¿en

g > X i� V�G I β��g� à φ��g , r, α�.

Proof of Claim 2.10. ¿is is just an application of the Factor Lemma 2.9. Work in V�G�. Because

Coll�ω, @β� � Ṗ is a poset in V of size @ κ, we can apply the Factor Lemma to �nd a �lter G� that is

Coll�ω, @κ�-generic over V�G I β��g� and such that

V�G� � V�G I β��g��G��.

Suppose �rst that g > X, so V�G� à φ�g , r, α�. ¿e homogeneity of the Levy collapse guarantees that

in V�G I β��g� the empty condition forces φ�ġ , ř, α̌�. ¿at is,

V�G I β��g� à φ��g , r, α�.
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For the converse, suppose that V�G I β��g� à φ��g , r, α�. Now V�G� � V�G I β��g��G��must

satisfy φ�g , r, α�, since the empty condition in Coll�ω, @κ� forces it and G� is Coll�ω, @κ�-generic

over V�G I β�. ¿at is, g > X.

Claim 2.11. In V�G�, for every `0, Ñye > PU there is a real g > H that is PU-generic below `0, Ñye over

V�G I β�.

Proof of Claim 2.11. Work in V�G�. By the characterization of PU-genericity (Lemma 2.6), we need

only ensure that g almost-diagonalizes every b-decreasing sequence of sets in U that belongs to

V�G I β�. But �ω�ω 9 V�G I β� is countable, so we can �nd a single sequence Ñz � `zn � n @ ωe of

subsets of U such that any real that almost-diagonalizes Ñz also almost-diagonalizes every sequence

in Uω 9 V�G I β�. Moreover, we can arrange that Ñz B Ñy.

It remains to show that there is a real g > H that diagonalizes the sequence Ñz, but this follows

immediately from the de�nition of happy family, since each zn belongs to H.

Using the Prikry property of PU , �nd a condition `0, Ñye > V�G I β� that forces either φ��ġ , ř, α̌�

or its negation. (Here ġ is the natural name for the generic real g.) Now the real g > �0, Ñy� 9 H

provided by Claim 2.11 will witness that X is H-Ramsey. ¿e argument is symmetric in X and Xc,

so we may assume without loss of generality that g > X. It follows by Claim 2.10 that `0, Ñye forces

φ��ġ , ř, α̌�, not its negation. Working in V�G�, consider any real g� > �g�ω. Since PU has the Mathias

property, g� is also PU-generic over V�G I β�. And g diagonalizes Ñy, so g� does also. ¿at is, `0, Ñye

belongs to the PU-generic associated to g�. It follows that

V�G I β��g�� à φ��g�, r, α�,

since `0, Ñye forces it. Now apply Claim 2.10 to conclude that g� > X. ¿is completes the proof that X

is H-Ramsey.

By taking X � H in ¿eorem 2.8 and applying Lemma 1.5, we obtain the following corollary.

Corollary 2.12. If A > V�G� is an in�nite mad family, then A does not belong to the Solovay model

L�R�V�G�, and neither does the ideal that it generates.
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CHAPTER 3

Meager �lters and determinacy

To answer Törnquist’s question, whetherAD implies that there are no in�nite mad families, onemight

hope to show that the ideal generated by an in�nite mad family fails to have a regularity property

that all sets enjoy under AD. Unfortunately, the Baire property is inadequate for this approach. It

can be seen directly from the de�nition that the ideal generated by an in�nite mad family has the

Baire property; in this section we give a game-theoretic proof that all ideals are meager under AD.

Notice �rst that an ideal on ω has the Baire property if and only if it is meager; this is a well

known application of 0–1 laws. See Oxtoby [37, ¿m. 21.4]. (Likewise, an ideal is measurable if and

only if it has measure zero.)

For a real x > �ω�ω, write ex for the unique increasing function ω � ω that enumerates x. We say

a �lter F on ω is bounded if the family �ex � x > F� is bounded in the eventual-domination ordering

on ωω.

Recall Talagrand’s characterization of �lters on ω with the Baire property.

¿eorem (Talagrand [46]). A �lter on ω is meager i� it is bounded.

¿e proof of Talagrand’s theorem is very nearly contained in Blass [7]; for the reader’s convenience,

we give the rest of the details here.

Claim. Let F be a �lter on ω containing every co�nite set. ¿e following are equivalent.

(i) F is meager.

(ii) ¿ere is an interval partition �I0, I1, . . . � of ω such that every set in F meets all but �nitely

many of the pieces In.
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(iii) ¿ere is an increasing function f > ωω such that every set in F meets the interval �n, f �n��

for all but �nitely many n.

(iv) F is bounded.

Proof of claim. ¿e equivalence of (i) and (ii) is established in Proposition 9.4 of [7], so it su�ces to

prove the implications (ii)� (iii), (ii)� (iv), and (iv)� (i).

(ii) � (iii). De�ne f �n� to be max�Ik�1� � 1 for the unique k such that n > Ik. Now let x > F

and let n be large enough that x 9 Ik�1 x 0, where n > Ik. Notice that Ik�1 b �n, f �n��, so x meets

�n, f �n��.

(iii)� (ii). Put In � � f n�0�, f n�1�0��. ¿en every x > F meets In for su�ciently large n.

(ii)� (iv). De�ne f �n� �max I2n. Let x > F and choose k large enough that x meets Im for all

m C k. In particular, x meets each of the intervals Ik , Ik�1, . . . , I2k, so Sx 9max I2k S C k. ¿is implies

that ex�k� Bmax I2k � f �k�, from which we conclude that ex B� f .

(iv)� (i). Suppose that f > ωω dominates the enumerating function of every member of F. ¿is

means that F is included in the set

�x > 2ω � ¦ªk Sx 9 f �k�S C k� ��
m
�x > 2ω � ¦k C m Sx 9 f �k�S C k� .

It’s easy to see that for each m the set �x > 2ω � ¦k C m Sx 9 f �k�S C k� is a nowhere-dense subset of

2ω, so we conclude that F is meager.

¿e game we study here is already well known. It provides a convenient proof, apparently part of

the folklore, that there are no nonprincipal ultra�lters under AD.

Players I & II alternate playing nonempty intervals Ik > �ω�@ω

I I0 I2 I4 �

II I1 I3 I5 �

subject to the following rules.

(i) Each play Ik is a nonempty �nite interval, and

(ii) min�Ik�1� �max�Ik� � 1.
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So the game board looks like this:

I �0, n0� �n1 � 1, n2� �

II �n0 � 1, n1� �n2 � 1, n3� �

We call an interval partition �I0, I1, . . . � a run of the game, and an interval partition of some

initial segment �0, n� of ω is a partial run of the game. If, in a run of the game, n > I2k, then we say

Player I claims n, and similarly Player II claims every member of each interval I2k�1.

To determine the winner of a run of the game, we require a �lter F on ω. Player I wins the game

i� �n>ω I2n > F. ¿at is, Player I wins i� he claims a measure-one set of integers.

It’s clear that Player I has a winning strategy if F is a principal ultra�lter. Conversely, if Player I

has a winning strategy, then a strategy-stealing argument shows that the �lter is principal. A strategy-

stealing argument also shows that Player II cannot have a winning strategy if F is an ultra�lter and

�0� ~> F. (If �0� > F, then Player II still does not have a winning strategy since Player I does.) ¿is

gives an easy proof that there are no nonprincipal ultra�lters on ω under AD.

In fact, the game can be used to show that every �lter is meager under AD. We provide that argu-

ment here, since it does not seem to appear in the literature. Bartoszyński and Scheepers [6], however,

give a similar characterization of meager �lters using an integer game, with some applications.

Proposition 3.1. A �lter F on ω is meager if and only if Player II has a winning strategy for the

partition game for F.

Proof. ¿is can be proved directly, but it will be easier to go through Talagrand’s characterization

of meager �lters. Suppose �rst that F is meager, hence bounded. Let g > ωω be a function that

dominates ex for every x > F; we can assume without loss that g is increasing. We describe a strategy

σ for Player II. Suppose it is Player II’s turn and that Player I has claimed exactly k integers so far.

Player II simply plays the shortest nonempty interval I such that max�I� C g�k � 1�. (Notice that

g�k � 1�may already have been claimed.) Explicitly,

σ�I0, . . . , I2n� �

¢̈
¨̈̈
¦̈̈
¨̈̈
¤̈

�max�I2n� � 1, g�k � 1�� if g�k � 1� Cmax�I2n� � 1

�max�I2n� � 1� if g�k � 1� Bmax�I2n�
.
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Now consider a run �I0, I1, I2, . . . � of the game according to σ , and put x � I0 8 I2 8�, the set of

integers claimed by Player I. If Player I has claimed exactly k integers before at the beginning of II’s

turn 2n � 1, then we have

g�k � 1� Bmax I2n�1 @min I2n�2 � ex�k � 1�.

We have found in�nitely many k for which g�k � 1� @ ex�k � 1�; this means that g does not dominate

ex . (Our in�nitely many k are those of the form k � SI0S � SI2S �� � SI2nS.) Because g dominates the

enumerating function of every member of F, x cannot belong to F. So Player I loses, and σ is a

winning strategy for Player II.

For the converse, suppose that F is unbounded, and we’ll show that Player I can defeat any

strategy σ for Player II. For a �xed n, there are only �nitely many partial runs �I0, . . . , Ik� of the

game such that both

Y I0 8 I1 8� 8 Ik � �0, n�, and

Y k is even, so it is Player II’s turn to play a er the partial run.

¿erefore, there are only �nitely many intervals Player II might play immediately a er such a partial

run, if Player II plays according to σ . With this in mind, let f �n� be the largest m contained in

any such interval. ¿is de�nition guarantees that in any run �In�n>ω of the game according to σ ,

max�I2n�1� B f �max�I2n�� for every n.

Since F is unbounded, there is some set x > F whose enumerating function ex is not dominated

by the function n ( f 2n�0�. (¿e exponent here indicates how many times f should be iterated.)

¿at is, there are in�nitely many n > ω such that S f 2n�0� 9 xS @ n. For such n, the set x meets fewer

than n of the 2n intervals � f k�0�, f k�1�0��, 0 B k @ 2n. It follows that there are in�nitely many k for

which

x 9 � f k�0�, f k�1�0�� � 0. (�)

On his turn, Player I should claim all integers up to f k�0� for some k satisfying (�). Player II, if using

her strategy σ , must respond by playing an interval I b � f k�0�, f � f k�0���. ¿erefore Player II never

claims any members of x, so Player I claims all members of x. Player I claims a set in F and wins, so

σ is not a winning strategy for Player II.
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CHAPTER 4

Determinacy and large cardinals

Background

¿is chapter includes a proof of our partial answer to Törnquist’s question. We begin by clarifying

some relevant parts of the literature.

In [14] Farah isolates the weakest analogue of happy family for which the key facts of Mathias’s

original paper [30] can still be proved.

De�nition 4.1 (Farah). LetH be a coideal on ω. If `Dnen@ω is a sequence of dense subsets of the poset

`H, be, then a set x > �ω�ω is a diagonalization of `Dnen@ω if there exists a sequence of sets dn > Dn

so that x is a diagonalization of `dn � n @ ωe, meaning that f �n � 1� > d f �n� for every n @ ω, where

f �ω � ω is the increasing enumeration of x. We say that H is semiselective if for every sequence

`Dnen@ω of dense subsets and every y > H, there is x > H 9 �y�ω that diagonalizes the sequence

`Dnen@ω.

When guided by a happy family, Mathias forcing is σ-closed � ccc, whereas when guided by a

semiselective coideal it is σ-distributive � ccc.

In [14, §4] Farah presents a theorem of Todorcevic, that, in the presence of a supercompact

cardinal, every set in L�R� is H-Ramsey for every semiselective coideal H. Lemma 4.3 in that

paper is not true as stated, but it is also not used in Todorcevic’s argument; rather Todorcevic used

a connection between the Ramsey property and the Ellentuck topology (see also Todorcevic [47,

Ch. 7]) and the conclusion of Lemma 4.4 of the paper, which is true assuming the existence of a

supercompact cardinal, by ¿eorem 4.1 of Feng–Magidor–Woodin [15].
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Large cardinals

We prove Todorcevic’s theorem by di�erent methods, from weaker large cardinals, in the region of

Woodin cardinals. Our large cardinal assumptions are weak enough to follow from determinacy

assumptions. ¿is allows us to then prove a version of the theorem under determinacy. Our methods

also give a correct version of Lemma 4.3 of [14]. ¿e restriction of the lemma to proper posets, or

more generally to the class of reasonable posets of Foreman and Magidor [16], is true and follows

from¿eorem 4.3 below.

¿eorem 4.3 is a triangular version of the following Embedding¿eorem ofNeeman–Zapletal [35]

and [36].

¿eorem 4.2 (Neeman–Zapletal [36]). (Large cardinals) Suppose that P is a proper (or reasonable)

poset and that G is P-generic over V . ¿ere is an elementary embedding j� L�R�V � L�R�V�G� that

�xes every ordinal.

¿eorem 4.3. (Large cardinals, see remarks following Corollary 4.5 for the exact assumptions)

SupposeM is a countable transitive model that embeds into a su�ciently large rank-initial segment

of V , say by π�M �

Ð� Vθ . If G is P-generic over M for some proper (or reasonable) poset P in M,

then there is an embedding Âπ� L�R�M�G� � L�R�Vθ that agrees with π on ordinals and reals, and

completes a commuting system of elementary embeddings:

L�R�Vθ

L�R�M L�R�M�G�

π Âπ

Using¿eorem 4.3, we prove Todorcevic’s theorem by imitating Mathias’s proof (¿eorem 1.7)

that there are no analytic in�nite mad families.

¿eorem 4.4. In the presence of large cardinals (speci�cally SRS� � 1-iterable model with the sharp of

ωWoodin cardinals), every set X b �ω�ω that belongs to L�R� is H-Ramsey for every happy family

H.

Proof. Let X > L�R� be a subset of �ω�ω and let H be any happy family. Find a formula φ, a real
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parameter z, and a sequence α of ordinal parameters such that

x > X 
� L�R� à φ�x , α, z�.

Let Z be a countable elementary submodel of a su�ciently large rank-initial segment of V containing

z, α, and H, and let M be the transitive collapse of Z. Let π�M � Z be the anti-collapse map. Put

H � π�1�H�, and α � π�1�α�. Notice that H � H 9 Z, and H is a happy family inM. It follows that

Mathias forcingMM
H
has the Prikry and Mathias properties inM. So there is a condition `0, xe > M

that either forces (over M) φL�R��ġ , α, z� or forces  φL�R��ġ , α, z�. (Here ġ is the usual name for

the generic real.) For any real g that is MM
H
-generic over M below `0, xe, we have the following

equivalence.

g > X 
� L�R� à φ�g , α, z�


� M�g� à φL�R��g , α, z�


� `0, xe èMM
H
φL�R��ġ , α, z�. (�)

¿e second equivalence is a consequence of ¿eorem 4.3.

Since H is countable, there is a real g > H that isMM
H
-generic overM below `0, xe. (To see this,

argue exactly as we did in the proof of Claim 2.11 while proving ¿eorem 2.8.) SinceMM
H
has the

Mathias property in M, every subset g� b g is generic too. Suppose without loss of generality that

g > X. ¿en the� direction of (�) implies that `0, xe è φL�R��ġ , α, z� overM, and the
 direction

of (�) implies that g� > X for every g� b g.

We apply Lemma 1.5 to obtain

Corollary 4.5. In the presence of large cardinals (speci�cally SRS� � 1-iterable model with the sharp

of ωWoodin cardinals), there are no in�nite mad families in L�R�.

Remarks.

(1) ¿e large cardinal assumption we use to prove¿eorem 4.3 is the existence ofM®
ω, the minimal

iterable model for the sharp of ωWoodin cardinals, and its Sπ�P�S� � 1-iterability.

(2) ¿eorem 4.2 applies not only to proper posets, but to the larger class of so-called reasonable

posets (introduced by Foreman and Magidor [16]), which includes all posets of the form
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σ-distributive � ccc. (A poset P is reasonable if for all uncountable cardinals κ, ��κ�ω�V is

stationary in ��κ�ω�VP . See [16].) Our triangular version, ¿eorem 4.3, also applies to this

broader class. We therefore obtain Todorcevic’s theorem for semiselective coideals, not just

happy families.

(3) Schindler [41] has computed the consistency strength of ¿eorem 4.2 for proper posets to be

exactly the existence of a remarkable cardinal (See De�nition 8.2), which is stronger than an

ine�able cardinal but weaker than the existence of 0®. ¿e consistency strength of the version

for reasonable posets remains open. (See Part II, especially Chapter 9.)

Schindler and William Chan have observed (unpublished) that our triangular version of the

Embedding¿eorem, ¿eorem 4.3, is also consistent relative to a remarkable cardinal.

AD�

We assume ZF throughout; theorems listed below under AD� are theorems of ZF � AD�. For the

precise de�nition of AD� and a thorough discussion of it, the reader is encouraged to consult [8,

§§1–3]. AD� implies AD, and it is open whether the two are equivalent.

A version of ¿eorem 4.4 holds under AD�, and implies a version of Corollary 4.5 under AD�.

¿ese are proved using an AD� version of the triangular embedding theorem. ¿e theorem applies

to posets in the following class:

De�nition 4.6. Call poset P b R absolutely proper (respectively absolutely reasonable) if there exists

a club C b �R�ω and A b R so that for every U > C and every transitive countable model N of a

large enough fragment of ZFC with RN � U and P 9U ,A 9U > N , P 9U is proper (respectively

reasonable) in N .

Note that absolute properness (reasonableness) is a Σ1 property in �R� over N 8R 8P�R�, with

predicates for membership and coding �nite and countable sequences of reals by reals, in other words

it is a Σ21 statement. In particular it re�ects up from transitive models containing �R�. It is phrased

without reference to countable elementary substructures of initial segments of the universe, which

need not exist in contexts where DC fails. Posets which are provably proper (reasonable) under AC
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by su�ciently absolute arguments are o en absolutely proper (reasonable). For example:

Lemma 4.7. Let H be a happy family. ¿en Mathias’s forcingMH (with conditions coded as reals in

a natural way) is absolutely proper.

Proof. Let C be the club of countable U b R which are elementary under the coding predicates for

countable sequences and for conditions inMH , and so that U 9H satis�es the requirements in the

de�nition of a happy family with upward closure restricted to y > U and selectivity restricted to

descending sequences that are coded by a real in U . ¿en for any N as in De�nition 4.6, U 9H is

a happy family in N . Hence in particularMN
U9H is proper in N . Using elementarity under coding,

MN
U9H �MH 9U .

¿eorem 4.8. (AD�) For every α @ Θ, for every A b R, and for stationarily many countable Z j

Lα�R,A�, if M is the transitive collapse of Z, π�M �

Ð� Lα�R,A� is the anti-collapse embedding,

α � M9On, A � π�1�A�, and P is absolutely proper (or absolutely reasonable) inM, then there exists

a countable transitive model N of ZFC with RN � R 9M and α,A > N , and there exists a P-name

Ȧ� > N , so that for everyG which is P-generic over N , there is an embedding Âπ� Lα�RN�G�, Ȧ��G���

Lα�R,A� that agrees with π on ordinals and reals, maps Ȧ��G� to A, and completes a commuting

system of elementary embeddings:

Lα�R,A�

M Lα�RN�G�, Ȧ��G��

π Âπ

Figure 4.1: ¿e triangular embedding theorem.

¿eorem 4.9. (AD�) Every set X b �ω�ω is H-Ramsey for every happy family H. Consequently,

there are no in�nite mad families.

Proof. Let A b R code X and H. Fix a countable Z elementary in Lω�R,A� for which ¿eorem

4.8 holds, with X ,H,A > Z. Let M and π be as in the theorem. By Lemma 4.7,MM
H is absolutely

proper inM. Now proceed as in the proof of ¿eorem 4.4, but using¿eorem 4.8 over N instead
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of ¿eorem 4.3, and forcing a truth value to φLω�R,Ȧ���ġ , Ȧ��, where φ is a formula so that φ�x ,A�

holds in Lω�R,A� i� x > X.

Remarks.

(1) Since¿eorem 4.8 applies to absolutely reasonable posets, the last theorem can be strengthened

to cover absolutely semiselective coideals, where absoluteness is meant in the manner of

De�nition 4.6, replacing proper there with semiselective throughout. ¿e absoluteness of

the semiselecitivity is necessary in several places beyond the use of ¿eorem 4.8, including

primarily for the arguments that use the Prikry and Mathias properties (as in the proof of

¿eorem 4.4) over N .

(2) Some contexts where semiselectivity is absolute were obtained by Larson and Raghavan [27].

For example the notion asserting that player II wins the strategic selectivity game there is

clearly absolute, and is equivalent under ADR to semiselectivity that persists to some outer

model of choice with the same reals, by [27, Proposition 1.4].

(3) Versions of ¿eorem 4.8 that provide less elementarity can be proved with less than full

determinacy. For example, the restriction of the theorem to projective sets A, where we

weaken stationarity to existence, weaken elementarity throughout to just Σ1 elementarity in

the structure �R,A�, and remove the club in the de�nition of absolute properness requiring

the conditions of the de�nition for all Σ1 elementary countable substructures in �R,A�, is

provable under projective determinacy. ¿e argument is less involved than the proof of the full

theorem, simply using the facts that projective truth is absolute to iterable models with a large

enough �nite number of Woodin cardinals, the ability to iterate to make any real generic for

the collapse of the �rst Woodin cardinal, and the existence of these models under projective

determinacy.

(4) ¿is projective version of¿eorem 4.8 is enough to run the proof of¿eorem 4.9 for projective

sets H and X. In particular projective determinacy implies that there are no projective in�nite

mad families. ¿is was proved independently by Karen Haga.
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An application of the triangular embedding theorem

¿e AD� triangular embedding theorem has additional applications. For example it can be used to

obtain results similar to these obtained under ADR � DC for proper ideals in Chan–Magidor [9],

working instead under the more general AD�, but restricting to absolutely proper ideals:

¿eorem 4.10. (AD�) Let I be a σ-ideal on ωω, so that PI is absolutely proper. Let Γ be a pointclass

closed under Borel substitutions, with a universal set. Let E be an equivalence relation whose

equivalence classes are all in Γ (respectively in both Γ and Γ̌). ¿en there exist densely many Borel

sets C in I� so that E I C is in Γ (respectively in both Γ and Γ̌).

Recall that PI , studied in Zapletal [50], is the poset of Borel sets in I�, ordered by reverse inclusion

mod I. Zapletal presented many of the standard cardinal invariants forcing notions in this form. For

many of the ideals he considered, the posets PI are provably proper, and by methods similar to the

proof of Lemma 4.7 one can show these speci�c posets are also absolutely proper. In the context of

absolute properness we assume some coding of Borel sets to view conditions in PI as reals.

Proof of ¿eorem 4.10. We prove that there exists C as in the theorem. Working throughout below

an arbitrary B > I� the same argument would show there exist densely many such C. We prove only

the case of membership in Γ. ¿e proof handling both Γ and Γ̌ simultaneously is similar.

Let U b R � R be universal for Γ. Let A b R code I, U , E, and a club witnessing that PI is

absolutely proper, so that the poset is absolutely proper in Lω�R,A�. Note that PI is also proper in

Lω�R,A�. Otherwise there is a stationary set of substructures without master conditions. But this

can be re�ected into a model N as in De�nition 4.6, contradicting properness in N .

Fix a countable Z elementary in Lω�R,A� for which ¿eorem 4.8 holds, with I,U , E ,A > Z.

Since PI is proper we can pick Z for which there are master conditions in PI . LetM and π be as in

the theorem. Let A � π�1�A�, I � π�1�I�, U � π�1�U�, E � π�1�E�. Let N and Ȧ� be as in¿eorem

4.8 for the forcing PM
I
. Let U̇� name the set coded by Ȧ� in the way U is coded by A, and similarly

with Ė�.

Recall from [50, Proposition 2.1.2] that if G is PM
I
generic over N then�G is a singleton real. Let

ẋ name this real. ¿e E-equivalence class of ẋ�G� is in Γ. By universality it is equal to the section Uy
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for some real y. Using the elementarity given by¿eorem 4.8 it follows that there is a name ẏ > N

so that over N the Ė�-equivalence class of ẋ is forced to be equal to the section U̇�
ẏ . Again by the

theorem, for any generic G, the E-equivalence class of ẋ�G� is then equal to U ẏ�G�.

Let C � �ẋ�G��G is PM
I
-generic over N�. Since N is countable, C is non-empty. In fact since

there is a master condition for Z in PI , C > I�, see the proof of [50, Proposition 2.2.2]. Each x > C

uniquely determines the generic which induces it, denoted Gx , through the condition that B > Gx i�

B > PM
I
, x > B.

We claim that E I C is in Γ. To see this, note simply that for any x1, x2 > C, x1 E x2 i� x2 > U ẏ�Gx1 �

i� ` ẏ�Gx1�, x2e > U . ¿e condition on the right is in Γ using closure under Borel substitutions since

N is countable.

Proof of the triangular embedding theorem

We derive both versions from the same lemma.

Call `Q , Σ, δe a germ which captures F b R just in case that:

1. Q is a model of a large enough fragment of ZFC with in�nitely manyWoodin cardinals, whose

supremum is δ.

2. Σ is an ω1 � 1 iteration strategy for Q.

3. (Condensation) If T is an iteration tree by Σ, and π�N � N� is an elementary embedding,

with N ,N� transitive models of enough of ZFC and T > range�π�, then π�1�T � is according

to Σ.

4. (Capturing) For every iteration map j�Q � Q� by Σ, there is a Coll�ω, j�δ��-name Ḟ� > Q�,

so that for every genericH for Coll�ω, j�δ�� overQ�, every η @ j�δ�, and every x > Q��H I η�,

x > Ḟ��H� i� x > F.

Condition (3) typically holds for uniquely iterable �ne structural models. In particular it holds for

Q � M®
ω, the minimal model for the sharp of ωWoodin cardinals, and its unique iteration strategy.
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Let j�Q � Q� be according to Σ. Let H be generic over Q� for Coll�ω, @ j�δ��. ¿e derived

model of Q� using H is Lα�R�, F�� where α � Q� 9On, R� consists of the reals in the extensions

of Q� by strict initial segments of H, and F� � F 9R�. We refer to R� as the derived reals. By the

capturing condition, F� belongs to Q��H�, and in fact there is a name in Q� which produces the

right F� independently of H.

By a composed Σ-iteration of Q with direct limit j�Q � Q� we mean a sequence of embeddings

jn�Qn � Qn�1 so that Q0 � Q, each jn is the embedding of a countable iteration tree Tn on Qn with

�nal model Qn�1, for each n the composition of the trees T0, . . . , Tn is according to Σ, Q� is the

direct limit of the models Qn, and j is the direct limit embedding. We write jn,m�Qn � Qm for the

composed embeddings, and jn,ª�Qn � Q� for the direct limit embedding from Qn.

If the sequence of trees belongs to V then the composition of all ω trees is by Σ, and hence

j�Q � Q� is itself an iteration embedding by Σ. But we will use the de�nition in models which do

not know enough of Σ to recognize the entire sequence as an iteration by Σ.

Lemma 4.11 (by Neeman–Zapletal [36]). Let N be a countable transitive model of a large enough

fragment of ZFC. Let P be a proper (or reasonable) poset in N . Let `Q , Σ, δe be a germ. Suppose that

Q > N and that the restriction of Σ to trees of length B SPS� in N belongs to N . Let G be P-generic

over N . ¿en there exists a composed Σ-iteration ` jn� n @ ωe of Q with direct limit j�Q � Q� so

that both RN and RN�G� can be realized as the derived reals of derived models of Q�. Moreover such

` jn� n @ ωe can be found inside any forcing extension of N�G� by Coll�ω,RN��Coll�ω,RN�G��, the

�nite restrictions of the sequence belong to N , and the sequence of critical points of the maps jn,ª is

increasing and co�nal in j�δ�.

Proof. ¿is follows by the construction in Section 2 of Neeman–Zapletal [36], building iterates of

the model Q of the current lemma using the iteration strategy Σ, and working over the model N of

the current lemma rather than V . We only note that the use of unique iterability in Lemma 3 of [36]

is replaced here by a use of the condensation assumption on Σ, which implies condensation in N for

the restriction of Σ to trees in N .

Proof of ¿eorem 4.3. Fix the relevant objects. It is enough to prove for every β > M 9 On, every

Ñγ > β@ω, every Ñy > �M�G� 9 R�@ω, and every formula φ, that Lβ�RM�G�� à φ�Ñγ, Ñy� i� Lπ�β��R� à
32



φ�π�Ñγ�, Ñy�. Since every element of L�R� is de�nable from ordinals and reals, one can then set Âπ to

map elements de�nable from Ñγ, Ñy in Lβ�R�M�G� to elements de�nable in the same way from π�Ñγ�, Ñy

in Lπ�β��R�, de�ne the horizontal embedding k� L�R�M � L�R�M�G� to map elements de�nable

from Ñγ, Ñy in Lβ�R�M to elements de�nable in the same way from Ñγ, Ñy in Lβ�R�M�G�, and verify that

the two embeddings, which obviously commute with π, are elementary.

Fix β, Ñγ, Ñy, and φ. Suppose that Lβ�RM�G�� à φ�Ñγ, Ñy�. We prove that Lπ�β��R� à φ�π�Ñγ�, Ñy�.

¿e large cardinal assumption we use is the existence ofM®
ω, and its Sπ�P�S� � 1-iterability. Let

Q � M®
ω, let δ be the supremum of the Woodin cardinals of Q, and let Σ be the unique iteration

strategy for Q. ¿en `Q , Σ, δe is a germ (capturing, for example, the empty set). By the elementarity

of π, Q belongs toM, and so does the restriction of Σ to trees of length B SPS� inM.

Let jn�Qn � Qn�1 and j�Q � Q� be given by Lemma 4.11 applied with N � M. Let Q�� be

obtained by iterating the sharp of Q� past β. Q� does not belong toM, but it belongs toM�G��h� for

some generic h for Coll�ω,RM� �Coll�ω,RM�G�� overM�G�. Q�� then also belongs toM�G��h�.

Let j̇n,m, Q̇n, Q̇�, Q̇��, and j̇n,ª inM name the corresponding objects inM�G��h�.

Fix H witnessing that RM�G� can be realized as the derived reals of Q��. Let η @ j0,ª�δ� be

large enough that Ñy belongs to Q���H I η�. Fix a name u̇ > Q�� so that u̇�H I η� � Ñy. Using the

symmetry of the collapse we can assume that it is outright forced in Coll�ω, j0,ª�δ�� over Q�� that

Lβ�Ṙ� à φ�Ñγ, u̇�, where Ṙ names the derived reals.

Let m be large enough that the critical point of jm,ª is above �2η�Q�� . ¿e statements above all

hold in M�G��h�, and Qm , j0,m belong to M. Let q > G � h force these statements, and force the

values of Q̇m and j0,m.

We now apply π to shi the statements from M to Vθ . Let G� � h� be generic for π�P� �

�Coll�ω,R��Coll�ω,RV�Ġ��� over V , below π�q�. Let Q� � π�Q̇����G���h��, Q�
n � π�Q̇n��G���h��,

j�0,n � π� j̇0,n��G���h��, j�n,ª � π� j̇n,ª��G���h��. Note that Q�
m � Qm, j�0,m � j0,m, and the critical point

of j�m,ª is above �2η�Q� , because G� � h� is below q. In particular H I η is generic for Coll�ω, η� over

Q�.

Using the elementarity of π, and since RM can be realized as the derived reals of Q��, R � RVθ

can be realized as the derived reals of Q�. Let E be generic witnessing this. Since H I η can be coded
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by an element of RV , it belongs to the derived model of Q� using E. By standard arguments E can

then be rearranged to get E I η � H I η without changing the derived reals. ¿en u̇�E� � Ñy. By the

elementarity of π, it is forced in Coll�ω, j�0,ª�δ�� over Q� that Lπ�β��Ṙ� à φ�π�Ñγ�, u̇�. Interpreting

this using E it follows that Lπ�β��R� à φ�π�Ñγ�, Ñy�.

To prove¿eorem 4.8 we need the following fact from inner model theory.

Fact. (AD�) Every true Σ21 statement has a witness F that is captured by a germ.

Proof sketch. Let φ have only bounded quanti�ers, and suppose that �§F b R�φ�F ,R,N� is true. By

Woodin’s basis theorem for Σ21 , see Steel [44, ¿eorem 9.10], there is then a witness F which belongs

to ∆0 � Γ0 9 Γ̌0, for a pointclass Γ0 which is good in the sense of Steel [45, De�nition 3.1]. Among

other things this means that there is a universal set U for Γ0, and a Γ0 scale on this set. Since U is

universal, there is a real z so that F � Uz.

¿ese facts themselves can be witnessed using Γ0 and U which belong to ∆1 � Γ1 9 Γ̌1 for a good

Γ1, so that Γ0 b ∆1, and similarly we can further arrange to have a good Γ2 so that Γ1 b ∆2 � Γ2 9 Γ̌2.

By [45, Lemma 3.13] there is then a coarse Γ0-Woodin mouse P, with z > P, and an iteration strategy

ΣP for P so that all iterates P� of P by ΣP are themselves Γ0-Woodin structures. ¿is means that the

ordinal height of P� is a Woodin cardinal in L�P� 8 �T , P���, where T is the tree of a Γ0 scale on

U , see [45, De�nition 3.11, ¿eorem 3.4]. Moreover the proof is such that P is not Γ1-Woodin, and

ΣP is the unique strategy that correctly moves witnesses for this. ¿is in particular gives branch

condensation for ΣP, a property similar to our condensation condition above but holding for more

general hulls.

Now by an argument similar to the proof of Sargsyan-Steel [38, Lemma 2.5], there exists a �P, ΣP�

mouseQ satisfying an arbitrarily large �nite fragment of ZFC, with ωWoodin cardinals. In particular

this means that a real coding P belongs to Q, Q is closed under ΣP and has a predicate for ΣP , and Q

is iterable by a strategy Σ which moves ΣP correctly. ¿is last property determines Σ uniquely, and

implies that Σ has our condensation property. ¿e argument for obtaining Q and Σ is similar to the

construction of �ne structure uniquely iterable models with in�nitely many Woodin cardinals under

AD, but replacing closure under ordinary constructibility with closure under constructibility and ΣP .
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¿e branch condensation properties of ΣP are used to see this hierarchy has condensation properties

similar to the hierarchy of constructibility.

Let δ be the supremum of the Woodin cardinals of Q. It remains to prove that `Q , Σ, δe captures

F. Fix an iteration map j�Q � Q� by Σ. Recall that P > Q� is Γ0-Woodin, U is a universal set for Γ0,

z is a real so that F � Uz, and T is a Γ0 scale on U . ¿e iteration strategy ΣP is moved correctly by j,

and in particular Q� is closed under ΣP and has a predicate for ΣP . Working in Q�, let σ �P � P� be

an iteration of P by ΣP to reach a model L�P� 8 �P�, T�� so that every real generic for Coll�ω, η�

over Q� for η @ j�δ� is generic for Woodin’s extender algebra at P� 9On over L�P� 8 �P�, T��. ¿is

is a variant of Woodin’s second genericity iteration used in [36, §2], but working with many names for

reals simultaneously. ¿e named reals can be made generic for Woodin’s extender algebra because

(for any iterate P�), the ordinal height of P� is Woodin in L�P� 8 �P�, T��.

Let A be a maximal antichain of conditions in Woodin’s extender algebra in L�P� 8 �P�, T��

which force the generic real to belong to p�T�z. Note A > L�P� 8 �P�, T��. Using the P� 9On-chain

condition for the extender algebra, A is bounded in P� 9On. In particular A > P�, and hence A > Q�.

Recall that conditions in A are identities in an in�nitary language, and if x is generic for the extender

algebra then the generic induced by x, call itWx , consists of the identities satis�ed by x. Now for

any real x in a generic extension of Q� by Coll�ω, η� for η @ j�δ� we have x > F i� x > p�T�z i�

�§a > A�a >Wx i� x satis�es an identity a > A. Letting Ḟ� > Q� be a Coll�ω, j�δ��-name for the set

of reals in small extensions of Q� which satisfy an identity in A, it follows that `Q , Σ, δe captures

F.

Proof of ¿eorem 4.8. Given A b R and a prewellorder j onR of ordertype α, let ψA,j�R� Lα�R,A�

be a standard surjection de�ned uniformly in A and j. ¿is can be done since every element of

Lα�R,A� is de�nable in the structure from reals and ordinals below α. Let TA,j be the truth predicate

for Lα�R,A� in the codes, meaning that `n, x0, . . . , xie > TA,j if and only if the nth formula in a

standard enumeration holds ofψA,j�x0�, . . . ,ψA,j�xi� in Lα�R,A�. Given a function e� Lα�R,A�@ω �

Lα�R,A� let eA,j � �`x0, . . . , xi , ye�ψA,j�y� � e�ψA,j�x0�, . . . ,ψA,j�xi���.

If ¿eorem 4.8 fails then there exists α @ Θ, A b R, and a function e� Lα�R,A�@ω � Lα�R,A�,

so that the conclusion of the theorem fails for every Z which is closed under e, and every such Z
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is elementary in Lα�R,A�. Using the coding in the previous paragraph this can be expressed as a

Σ21 statement, quantifying over j and eA,j instead of α and e. By Woodin’s Σ21 basis theorem, if the

theorem fails then there are witnesses A, j, eA,j as above in a good pointclass, and in particular in

a pointclass satisfying uniformization. So there exists ÂeA,j�R@ω � R uniformizing eA,j in its last

coordinate. For x0, . . . , xi > R then ÂeA,j�x0, . . . , xi� is an element of R, and we view it as a function

from ω to ω. Let ÂerA,j be the relation �`x0, . . . , xi , n, ke�ÂeA,j�x0, . . . , xi��n� � k�.

Suppose for contradiction that ¿eorem 4.8 fails. By the previous fact from inner model theory,

we can �nd a germ `Q , Σ, δe capturing a set F that codes A, j, and ÂerA,j witnessing the failure in the

sense of the previous paragraph, and codes the truth predicate TA,j.

Let N � Lθ�u��Σ� where u is a real coding Q and θ is least so that N à ZFC. By Lθ�u��Σ� we

mean the model obtained by constructing over u relative to the predicate �`T , ξe�T is by Σ and ξ

belongs to co�nal branch through T given by Σ�. Note θ @ ω1 since ω1 is measurable under AD. N

is a model of choice, closed under Σ, and the restrictions of Σ to strict initial segments of N are in N .

Let α be the ordertype of j, and let e� Lα�R,A�@ω � Lα�R,A� be the function coded by ÂerA,j. Let

Z � ψ��A,jR 9 N . We will prove that Z is closed under e and that the conclusion of ¿eorem 4.8 holds

for Z, contradicting the fact that A, j, and ÂerA,j form a counterexample to the theorem.

We will make several uses of Lemma 4.11. First, we use it to see that F 9 N belongs to N . By

the lemma, with the trivial poset P, inside every extension N�h� of N by Coll�ω,R�N there is an

iteration map j�Q � Q� by Σ so that RN can be realized as the derived reals of Q�. Since `Q , Σ, δe

captures F it follows using the capturing condition that F 9RN belongs to N�h�. ¿is is true for all

h, so F 9RN > N .

It follows that j 9N , A 9 N , ÂerA,j 9 N , and TA,j 9 N all belong to N . From the membership of

ÂerA,j 9 N in N it follows that RN is closed under ÂeA,j. ¿is in turn implies that Z is closed under e.

LetM be the transitive collapse of Z. M can be determined from TA,j 9 N , and therefore belongs to

N . In particular R 9 Z � R 9M b RN . Without loss of generality we can assume the coding ψA,j is

such that for every real x, ψA,j�0�x� is a code for x. ¿en since RN is closed under prepending 0, it

follows that RN b R 9M. So RN � R 9M.

Let π�M � Lα�R,A� be the anticollapse embedding, A � π�1�A�, and α � M 9 On. π is
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elementary since Z � range�π� is closed under e. Let P be absolutely proper in M. ¿en π�P� is

absolutely proper in Lα�R,A�, and moreover a club witnessing this belongs to Z, hence in particular

M 9R � N 9R belongs to this club. By de�nition it follows that P � π�P� 9 �R 9M� is proper in N .

Similarly if P is absolutely reasonable inM then it is reasonable in N .

Let G be P-generic over N . By Lemma 4.11, inside every extension of N�G� by Coll�ω,RN� �

Coll�ω,RN�G��, there is an iteration map j�Q � Q� by Σ so that both RN and RN�G� can be realized

as the derived reals of Q�. Arguing as above but over N�G� instead of N it follows that F 9RN�G�

belongs to N�G�. ¿is in turn implies, again arguing as above, that RN�G� is closed under ÂeA,j,

that Z� �� ψ��A,jR 9 N�G� is elementary in Lα�R,A�, and that Z� 9 R � RN�G�. Let M� be the

transitive collapse of Z�, and let Âπ be the anticollapse embedding. By elementarityM� has the form

Lν�RN�G�,A9RN�G��.

Note that Z� c Z so we can de�ne an elementary embedding k � Âπ�1 X π�M � Lν�RN�G�,A 9

RN�G��. We claim that ν � α and k is the identity on ordinals. For both statements it is enough to

show that Z� 9On b Z 9On. Without loss of generality, through an appropriate choice of ψA,j, we

can assume that Z 9On � φ��RN and Z� 9On � φ��RN�G� where φ is the norm associated to j. It is

then enough to show that every real in N�G� has a j-equivalent real in N .

Fix H and H� witnessing that RN and RN�G� respectively can be realized as the derived reals

of Q�. Using the capturing condition, and since F codes j, we have a name ṙ > Q� so that ṙ�E� is

equal to the intersection of j with the derived reals of Q� using E, for every generic E for Coll�ω, δ�

over Q�. Let φ̇ name the norm associated to ṙ. Fix x > N�G� and let µ � φ̇�H���x�. Fix η @ j�δ� so

that x > Q��H� I η�, and a Coll�ω, η�-name u̇ > Q� so that u̇�H� I η� � x. Using the symmetry of

the collapse we can assume it is outright forced in Coll�ω, j�δ�� that φ̇�u̇� � µ. Let y � u̇�H� > N .

Since H I η can be coded by a real in N b N�G�, it belongs to the derived model of Q� by H�.

Using standard arguments one can then rearrange H� to a generic E� which produces the same

derived reals as H�, but with E� I η � H I η. ¿e former fact implies that ṙ�E�� � ṙ�H�� and hence

φ̇�E���x� � φ̇�H���x� � µ, while the latter implies that φ̇�E���y� � µ. Putting the two together it

follows that x and y belong to the same ṙ�E��-equivalence class, and hence to the same j-equivalence

class.
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We now have the elementarity and agreement requirements of ¿eorem 4.8. It remains to �nd

Ȧ� > N so that for every P-generic G, Ȧ��G� � A9RN�G�.

Let δ0 be the �rst Woodin cardinal of Q. Working in N �nd an iteration σ �Q � Q� of Q so that

every real in any generic extension of N by P is generic over Q� for Woodin’s extender algebra at

σ�δ0�. ¿is is a variant of Woodin’s second genericity iteration used in [36, §2], but working with all

names for reals simultaneously. In N , the iteration terminates at some length @ SP �U S� where U is

the set of canonical P-names for reals.

Using the capturing condition, and since F codes A, there is a name Ȧ� > Q� so that for every

generic E for Coll�ω, σ�δ��, and any x added by a strict initial segment of E, x > A i� x > Ȧ��E�.

Woodin’s extender algebra at σ�δ0� is subsumed by Coll�ω, σ�δ��. From this using the symmetry of

the collapse it follows that there is an extender algebra name Ȧ�� > Q� so that for every generic g for

the extender algebra, Ȧ���g� � A9 Q��g�. From every real generic for the extender algebra one can

de�nably construct a generic �lter gx for the algebra so that x > Q��gx�. Now, working in N , let Ȧ�

be a P-name for the set of reals x (in the extension by P) so that x > Ȧ���gx�. ¿en for every x in an

extension N�G� of N by P, x > Ȧ��G� i� x > Ȧ���gx� i� x > A, with the last equivalence using the fact

that by construction x is generic for the extender algebra over Q�.

Remark. One can prove versions of ¿eorems 4.3 and 4.8 dropping the properness or reasonable-

ness assumptions, with the conclusions weakened to allow Âπ and π to di�er on ordinals, and (in

¿eorem 4.8) to allow Âπ to have domain Lβ�RN�G�, Ȧ��G�� for some β possibly di�erent from α.

Equivalently, this allows the horizontal embeddings in the theorems’ diagrams to move ordinals.

To see this, for example in the case of ¿eorem 4.8, instead of constructing a single iterate Q�

so that both RN and RN�G� are realized as derived reals of Q�, construct an iteration j�Q � Q�
1

so that RN can be realized as the derived reals of Q�
1 , and a further iteration i�Q�

1 � Q�
2 so that

RN�G� can be realized as the derived reals of Q�
2 . ¿is can be done with a direct use of Woodin’s

genericity iterations, working over N (a er collapsing its reals) to construct j and then over N�G�

(a er collapsing its reals) to construct i, noting that the initial segments of Q�
1 to any of its Woodin

cardinals belong to N and therefore to N�G�. ¿e proof of ¿eorem 4.8 can then be continued with

the natural modi�cations, except that, since RN and RN�G� are realized over di�erent models, one
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can no longer prove that Z� 9On b Z 9On, and consequently k need not be the identity on ordinals.

One can prove the modi�ed¿eorem 4.3 similarly.
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CHAPTER 5

Questions

We conclude this part of the thesis with a list of open questions.

Much remains open about how the existence of in�nite mad families relates to the existence of

other pathological sets of reals. Mathias’s original conjecture is the most well-known example.

Question 1 (Mathias [30]). (In ZF �DC) If every set has the Ramsey property, does it follow that

there are no in�nite mad families?

Question 1 seems to be open even under additional hypotheses like AD.

¿ere has been some further study of semiselective coideals since Farah’s original paper.

¿eorem (Di Prisco–Mijares–Uzcátegui [11]). Suppose thatG is generic over V for the Levy collapse

of a weakly compact cardinal. ¿en, in V�G�, every set X b �ω�ω that belongs to L�R� is H-Ramsey

for every semiselective coideal H.

Question 2 (Di Prisco–Mijares–Uzcátegui). Is the weakly compact in the theorem necessary?

It is natural to wonder whether the inaccessible in ¿eorem 2.8 is necessary.

Question 3. Is it consistent relative to ZFC alone that every set of reals in L�R� is H-Ramsey for

every H > L�R�?

A positive answer to Question 3 would also answer the longstanding open question of whether

“every set has the Ramsey property” is consistent relative to ZFC alone. A negative answer might

indicate something special about �ω�ω, even among de�nable happy families.

We conclude with Törnquist’s question that motivated our work in Chapter 4, which remains

open.

Question 4 (Törnquist [48]). Does AD imply that there are no in�nite mad families?
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Part II

Trees and remarkable cardinals
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CHAPTER 6

Introduction and motivation

¿e work in the second part of this thesis was motivated by a desire to better understand the

Embedding¿eorem of Neeman and Zapletal [36]. Its consistency strength was computed exactly

by Schindler [41]; in this part of the thesis we show that the restriction of the Embedding¿eorem

to σ-closed � ccc posets has the same consistency strength. ¿is requires a new proof of the lower

bound in Schindler’s theorem, using a poset in the smaller class.

¿ere is a rich tradition in set theory of investigating the extent to which forcing can change the

truth value of assertions about ordinals and reals, especially in the presence of large cardinals. It is

a now-classical theorem of Woodin that, in the presence of suitable large cardinals, the theory of

L�R� cannot be changed by set forcing, and, conversely, if the theory of L�R� cannot be changed

by set forcing, then AD holds in L�R�. (See Steel [43].) Adding parameters to the theory changes

the situation quite drastically, though: for example, any forcing collapsing ω1 changes the theory of

L�R� with ordinal parameters. Neeman and Zapletal [36] showed that, assuming roughly a proper

class of Woodin cardinals, the theory of L�R� with ordinal and real parameters cannot be changed

by any proper forcing. We call the conclusion of their theorem L�R�-absoluteness for proper posets.

Likewise, if C is a class of posets, then L�R�-absoluteness for all posets in C is the assertion that the

theory of L�R� with ordinal and real parameters cannot be changed by any forcing in C.

In [41] Schindler identi�ed the consistency strength of L�R�-absoluteness for proper posets

to be exactly what he called a remarkable cardinal (see De�nition 8.2). ¿e de�nition is a natural

weakening of Magidor’s characterization of supercompactness [29], in which the embedding is only

required to exist in some generic extension of V . ¿is large-cardinal assumption sits far below the

level of Woodin cardinals and ADL�R�: while a remarkable cardinal must be weakly compact, if 0®

exists then every Silver indiscernible is remarkable in L.
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¿eorem 6.1 (Schindler).

(a) Assume V � L. If κ is a remarkable cardinal, then L�R�-absoluteness for proper posets holds

in the extension by the Levy collapse to make κ � ¯1.

(b) Conversely, if L�R�-absoluteness for proper posets holds, then ¯1 is remarkable in L.

Schindler’s lower-bound argument uses the reshaping and almost-disjoint coding methods of

Jensen (see Jensen & Solovay [24]). ¿e reshaping poset to which he applies L�R�-absoluteness is

not σ-closed � ccc or indeed proper in any strong sense. (For more on the properness, distributivity,

and stationary-preservation of the reshaping poset, see [40].) Lower bounds for the Proper Forcing

Axiom are typically obtained using anti-square posets, which take the form σ-closed � ccc. (For a

particularly relevant example, see [4].) One might expect by analogy with the forcing-axiom case

that proper in ¿eorem 6.1(b) can be replaced by σ-closed � ccc. Our main theorem con�rms that

expectation.

¿eorem 6.2. If L�R�-absoluteness holds for σ-closed � ccc posets, then ¯1 is remarkable in L.

Whereas Schindler’s proof uses almost-disjoint coding, our proof expands on the codingmethods

introduced by Kunen, who showed that L�R�-absoluteness for ccc posets is equiconsistent with the

existence of a weakly compact cardinal. (A version of this theorem appears in a paper of Harrington–

Shelah as [20, ¿eorem C]. See [19] for the upper-bound portion of the argument.) Assuming that

¯
V
1 is not weakly compact in L, Kunen codes an uncountable sequence of reals into a single real by

specializing an Aronszajn tree. Since ¯1 can be weakly compact in L without being remarkable in L,

we must expand these coding techniques to trees that may have large levels. ¿e ccc part of our poset

will be a modi�ed specializing poset, following Kunen, but �rst we must add the tree to be specialized.

¿e trees we use bear some resemblance to those of [31], and in Chapter 10 we adapt the methods

of that article to obtain a �ner lower bound on the consistency strength of L�R�-absoluteness for

σ-closed � ccc posets.
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CHAPTER 7

¿e coding argument

In this chapter we show how to use our generic-absoluteness assumption to establish a principle

about trees on ω1. In the next chapter, we will use that principle in a σ-closed extension to deduce

that ¯V1 is remarkable in L.

¿e �rst di�culty in adapting the coding methods of [20] is that our trees will not belong to L, so

they too will have to be coded. A more substantive di�culty is that, although our trees will have size

¯1, they will not typically have countable levels. With a view toward de�ning a suitable countable

analogue of the αth level of a tree, we present our trees as increasing sequences of countable subtrees.

Tree presentations

De�nition 7.1. A tree presentation is a sequence ÑT � `Tα � α B ω1e of countable trees satisfying the

following conditions.

(i) ÑT is concrete: Each Tα is a tree on a subset of ω1. Moreover, the height of Tα is a (countable)

limit ordinal.

(ii) ÑT is increasing: if α @ β then Tα b Tβ. Moreover, if α @ β, then Tβ is an end-extension of Tα:

that is, if s BTβ t and t > Tα, then s > Tα also.

(iii) ÑT is continuous: if α B ω1 is a limit ordinal, then Tα � �β@α Tβ.

Remarks.

(1) Any two presentations of the same tree agree on a club. ¿at is, if `Tα � α B ω1e and `Uα � α B ω1e

are two tree presentations with Tω1 � Uω1 , then Tα � Uα for a club of α @ ω1.
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(2) If Tω1 is an Aronszajn tree, then one naturally obtains a tree presentation of Tω1 by taking Tα

to be the set of nodes on level @ α.

We will typically use B or BÑT to refer to the order on any tree in a tree presentation.

De�nition 7.2. Let ÑT � `Tα � α B ω1e be a tree presentation. ¿e αth boundary of ÑT is the set of

suprema in Tω1 � Tα of branches through Tα . ¿at is, a node t > Tω1 lies on the αth boundary of ÑT i�

t ¶ Tα but

�s > Tω1 � s @ t� b Tα .

De�nition 7.3. Let X be a subset of ω1 and ÑT be a tree presentation. We say that X is codable along
ÑT if Tω1 has no uncountable branches, but the set

�α @ ω1 � Tα has a co�nal branch in L�X 9 α��

is club in ω1.

¿e Tree Re�ection Principle at ¯1, abbreviated TRP�¯1�, is the assertion

�¦X b ω1��¦tree presentations ÑT�X is not codable along ÑT .

Here we are primarily interested in presentations of trees that have uncountable levels, but

De�nition 7.3 is relevant even for ¯1-Aronszajn trees. Even if Tα has many co�nal branches (as will be

the case if Tω1 has countable levels, for example), it may not have any co�nal branches in L�X 9α�. In

fact, TRP�¯1� is consistent (see ¿eorem 7.4), so it does not contradict the existence of ¯1-Aronszajn

trees.

Our main theorem, ¿eorem 6.2, factors conveniently through the Tree Re�ection Principle.

¿eorem 7.4. L�R�-absoluteness for ccc posets implies TRP�¯1�.

Since σ-closed posets don’t add reals, L�R�-absoluteness for σ-closed � ccc posets holds if and

only if L�R�-absoluteness for ccc posets holds in every extension by a σ-closed poset. With this

observation in hand, we obtain the following corollary.

Corollary 7.5. L�R�-absoluteness for σ-closed � ccc posets implies that TRP�¯1� holds in every

σ-closed forcing extension.
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Combining Schindler’s ¿eorem 6.1 with Corollary 7.5 gives the following consistency result.

¿eorem 7.6. Assume V � L. If κ is a remarkable cardinal, then in VColl�ω,@κ� the following holds:

TRP�¯1� holds in every extension by a σ-closed forcing.

¿eorem 7.6 can be proved directly, without going through¿eorem 7.4.

in Chapter 8 the following theorem will be proved as ¿eorem 8.1, completing the proof of

¿eorem 6.2.

¿eorem. If TRP�¯1� holds in every σ-closed forcing extension, then κ � ¯V1 is remarkable in L.

¿e rest of this chapter is devoted to a proof of ¿eorem 7.4.

Coding along trees

¿e following lemma gets to the heart of our coding argument.

Lemma 7.7. Suppose that X is codable along ÑT . ¿en, in a ccc generic extension, there is a real g

such that L�g� has uncountably many reals.

We may assume that ¯L�X9α�1 is countable for every α @ ω1; otherwise we could take the trivial

poset and let g be any real coding X 9 α.

Let C b ω1 be a club witnessing that X is codable along ÑT . In a series of claims we modify ÑT until

it is suitable for coding.

Claim 7.8. ¿ere is a tree presentation ÑT � � `T �
α � α B ω1e such that T �

ω1
has no co�nal branches and

for every α > C, the subtree T �
α has in�nitely many co�nal branches in L�X 9 α�. Moreover, for any

�nite subset F of Tω1 , there are in�nitely many co�nal branches of T �
α in L�X 9 α� each disjoint from

F.

Proof of Claim 7.8. Let T �
α be the image under a de�nable bijection ω1 � ω � ω1 of Tα � ω ordered as

the disjoint union of in�nitely many copies of Tα.

By replacing ÑT with ÑT � if necessary, we may assume that ÑT satis�es the conclusion of Claim 7.8.
46



Claim 7.9. ¿ere is a tree presentation ÑT � � `T �
α � α B ω1e satisfying the conclusion of Claim 7.8 such

that T �
ω1
has no co�nal branches and if b > L�X 9 α� is a co�nal branch through Tα, then b has a

supremum in Tα�1.

Proof of Claim 7.9. Notice �rst that Tα has countably many co�nal branches in L�X 9 α�, by our

assumption that ¯L�X9α�1 is countable. Recursively de�ne

Y T �
0 � T0,

Y T �
γ � �β@γ T �

γ for γ limit, and

Y T �
α�1 � T �

α 8 Sα,

where the order on T �
α is extended to make Sα exactly the set of suprema of co�nal branches through

Tα that belong to L�X9α�. Notice that Tα and T �
α have the same branches, so in fact T �

α�1 has suprema

of every branch in L�X 9 α� through T �
α.

To satisfy concreteness, the Sα should be chosen to be sets of countable ordinals, and in the end a

de�nable bijection ω1 � 2� ω1 should be used to ensure that the T �
α are trees on ω1. We leave it to

the reader to �ll in the details.

¿e point of Claim 7.9 is to guarantee that the specializing function will not diverge along a

countable branch of the tree. Again, by replacing ÑT with ÑT � if necessary, we may assume that ÑT

satis�es the conclusion of Claim 7.9.

Now we can mimic the coding argument in [20], using the presentation `Tα � α B ω1e in place of

the sequence of initial segments of the tree.

We review the de�nition of the modi�ed specializing poset de�ned in [20], tweaked for our

purposes.

De�nition 7.10. Let `dα � α @ ω1e be a sequence of reals, construed here as subsets of ω. Conditions

in the poset P�dα � α @ ω1� are �nite partial specializing functions Tω1 @ Q that code Ñd along ÑT .

Precisely, a condition is a �nite partial function p�Tω1 @ Q with the following properties:

(a) s @ t in Tω1 implies p�s� @ p�t� inQ, and
47



(b) if t is on the αth boundary of ÑT and belongs to the domain of p, then either p�t� > dα or p�t�

is not an integer.

Baumgartner’s original argument for the ccc of the specializing poset (see [23, Lemma 16.18], for

example) can be repeated to show:

Claim 7.11. If Tω1 has no uncountable branches, then P�dα � α @ ω1� has the ccc.

Suppose that G is P�dα � α @ ω1�-generic and consider the generic specializing function f �

�G�Tω1 � Q.

Remarks.

(1) As in [20], a crucial observation for us is that f is continuous: if t is a node on a limit level of

Tω1 then f �t� � sup� f �s� � s @ t�.

(2) ¿e other crucial observation is that f ��Bα 9Z � dα for α > C, where Bα is the intersection of

the αth boundary of ÑT with L�X 9 α�. ¿e b inclusion follows directly from condition (b) in

the de�nition of the poset; the other inclusion follows from a genericity argument, using the

properties of the presentation obtained in Claims 7.8 and 7.9.

Proof of Lemma 7.7. It will be convenient and harmless to assume that T0 has in�nite height. For

α @ ω1 we will write α� for min�C � �α � 1��.

¿e ccc poset will be a length-ω �nite-support iteration of posets of the form P�dα � α @ ω1�.

Since each iterate is ccc, the full iteration is ccc.1

First, let `d0α � α @ ω1e be any sequence of ω1 distinct reals such that, for all α > C, d0α codes α�, Tα� ,

and X 9 α�. Suppose inductively that fn is the generic specializing function added by P�dnα � α @ ω1�.

Let dn�1α be a real coding fn I Tα� .

In the extension by the full iteration, let g be any real coding (the countable sequence of reals)

`dnβ � n @ ω, β @min�C�e.

1Note that the tree Tω1 is special a er the �rst forcing, so none of the later posets can add uncountable branches to it.
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We will verify that X, C, `dnα � α @ ω1e, and ÑT all belong to L�g�. ¿is su�ces, since it implies

in particular that `d0α � α @ ω1e > L�g�. We prove by induction on α > C that dnα belongs to L�g�.

Moreover, the proof gives a uniform de�nition of dnα in L�g� from n and α; this uniformity in turn is

used for the limit case of the proof.

¿e base case of α �min�C� is immediate from the choice of g.

Suppose �rst that the induction hypothesis holds for α > C; we will show that it holds for α�.

From d0α we can decode α�, Tα� , and X 9 α�. From dn�1α we can decode fn I Tα� , which in turn gives

us dnα� by Remark (2).

¿e interesting case is when α > lim�C�. As in Remark (2), let Bα be the intersection of the αth

boundary of ÑT with L�X 9 α�. We claim that Bα belongs to L�g�. By the inductive assumption and

the uniformity of the proof, the sequence `dnβ � n @ ω, β > C9αe belongs to L�g�. From this sequence

one can decode X 9 α, Tα, and f I Tα. From Tα and X 9 α one can decode Bα.

Moreover, if s > Bα , then we can (in L�g�) compute fn�s�: the continuity of f implies that fn�s� �

sup� fn�t� � t B s, t > Tα�. Now dnα � f ��n Bα 9Z belongs to L�g�, and the induction is complete.

We need one more fact, which is well known.

¿eorem7.12 (Woodin). Suppose that L�R�-absoluteness holds for ccc posets. ¿en¯1 is inaccessible

to the reals, meaning that ¯L�x�1 @ ¯1 for every real x.

¿eorem 7.12 follows from a lemma of Woodin [49]: If X is an uncountable sequence of reals

in V and c is Cohen-generic over V , then in V�c� there is no random real over L�X , c�. In fact,

full L�R�-absoluteness for ccc posets is not needed for ¿eorem 7.12; the theorem can be proved

from the absoluteness of Σ14 sentences to Cohen and Random extensions. (See [1, ¿eorem 2.1.1.3].)

Likewise, ¿eorem 7.4 requires only the absoluteness of Σ14 sentences to ccc extensions, since the

existence of a real x for which ¯L�x�1 is uncountable can be expressed as a Σ14 sentence.

Proof of ¿eorem 7.4. ¿e theorem follows immediately from Lemma 7.7, the de�nition of “codability

along ÑT ,” and¿eorem 7.12.
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CHAPTER 8

¿e re�ection argument

In this chapter we complete our proof of ¿eorem 6.2 by proving the following theorem.

¿eorem 8.1. Suppose that TRP�¯1� holds in every extension by a σ-closed poset. ¿en κ � ¯V1 is a

remarkable cardinal in L.

Remarkable cardinals

De�nition 8.2 (Schindler). Let κ be a cardinal and λ C κ another cardinal. We say that κ is λ-

remarkable if there is a cardinal λ @ κ and in the extension VColl�ω,@κ� an elementary embedding

j�H�λ�� H�λ� such that j�κ� � κ, where κ is the critical point of j.

If κ is λ-remarkable for every λ A κ, then we just say that κ is remarkable.

Remarks.

(1) If we replaced VColl�ω,@κ� with V in the de�nition, we would get supercompactness, by a

theorem of Magidor [28]. (See [25, ¿eorem 22.10].)

(2) ¿e embedding j in the de�nition is (in VColl�ω,@κ�) a countable object; its existence is therefore

absolute between any two extensions of V where κ � ¯1.

(3) By standard arguments, if κ is λ�-remarkable, then in VColl�ω,@κ� the set of X > �H�λ��ω

for which the anticollapse of X witnesses the λ-remarkability of κ is stationary in �H�λ��ω.

(See [39].)

See [41, Lemma 1.6] for a characterization of remarkability that does not refer to forcing.
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In consistency strength, remarkable cardinals sit strictly between ine�able and ω-Erdős cardinals.

(¿is is proved in [41].) For a more detailed analysis of the consistency strength of remarkable

cardinals, see [17, §4], but for our purposes the following will su�ce.

Fact (Schindler [41]).

(a) Every remarkable cardinal is weakly compact.

(b) If 0® exists, then every Silver indiscernible is remarkable in L.

(c) Remarkability is downward-absolute to L.

Since their discovery by Schindler, remarkable cardinals have been analyzed from many perspec-

tives. For instance, Cheng and Gitman [10] de�ne a version of the Laver Preparation for remarkable

cardinals and use it to obtain an indestructibly remarkable cardinal, and their ideas are extended

in [4] to obtain a weak version of the Proper Forcing Axiom from a remarkable cardinal. It is also

shown there that this weak version of PFA implies that ¯V2 is remarkable in L.

Remarkability from branchless trees

Let κ � ¯V1 . Let λ C κ be an ordinal and f � κ � λ a bijection. (We will later assume that λ is a cardinal

of L and force to add f .) ¿e rest of the de�nitions in this section are made relative to f and λ.

In order to re�ect properties of `κ, λe to a pair `κ, λe of countable ordinals, we need to arrange

that κ is ¯1 in a suitable inner model. For this we use the following tree, a version of the tree of

attempts to express κ as an ordinal of countable co�nality, modi�ed to have height ω1.

De�nition 8.3. Let S, a tree of height κ, be de�ned as follows. Nodes are pairs `α, se, where α is

an ordinal @ κ and s is a strictly increasing �nite sequence of ordinals, each @ κ. We also require

that α > �sn�1, sn�, where s � `s0, s1, . . . , sn�1, sne. Nodes are ordered by the ordinal order in the �rst

coordinate and by extension of sequences in the second.

If we de�ne Sβ as in De�nition 8.3 but a er replacing “@ κ” with “@ β,” it is easy to see that we get

a tree presentation `Sβ � β B ω1e in the sense of De�nition 7.1.
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Let β B ω1. If b were an uncountable branch through Sβ, then the �rst coordinates of nodes on b

would have to be unbounded in β. Conversely, any co�nal ω-sequence in β de�nes a co�nal branch

through Sβ. ¿at is, we have:

Lemma 8.4. Sβ has a co�nal branch i� β has countable co�nality.

Our second tree will capture the fact that λ is a cardinal of L.

De�nition 8.5. If δ is an ordinal, then we write γ�δ� for the least ordinal γ (if any exist) such that δ

is not a cardinal in Lγ�1.

Remarks. Notice that if γ�δ� is de�ned, then

(1) γ�δ� @ �δ��L, and

(2) every element of Lγ�δ��1 is de�nable in Lγ�δ��1 from parameters in δ.

¿e following de�nition will apply to the rest of this chapter. We will de�ne point di�erently in

Chapter 10.

De�nition 8.6. Let α @ κ. De�ne εα to be the ordertype of f ��α.

A point is a countable ordinal α such that γ�εα� is de�ned. Points are ordered as follows. If α

and α� are points, then we say α @T α� i�:

(i) α @ α� (as ordinals).

(ii) Let j� εα � f ��α and j�� εα� � f ��α� be the anticollapse embeddings. Let π� εα � εα� be the

composite � j���1 X j. ¿en π extends to an elementary embedding Âπ� Lγ�εα��1 � Lγ�εα���1 with

Âπ�εα� � εα� .

Notice that the extended embedding in (ii) is determined uniquely from π, by Remark (2) above.

¿e de�nition of point depends on both the ordinal λ and the function f . When we wish to

emphasize this dependence, we will call a point a `λ, f e-point.

Let T � T�λ, f � be the tree of increasing sequences of `λ, f e-points.
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Lemma 8.7. If there is an uncountable branch through T�λ, f �, then λ is not a cardinal of L.

Proof. Let `αξ � ξ @ ω1e be a branch through T of length ω1 and for convenience put ε�ξ� � εαξ . For

ξ @ ζ @ ω1 let πξ,ζ � ε�ξ�� ε�ζ� and Âπξ,ζ � Lγ�ε�ξ���1 � Lγ�ε�ζ���1 be the maps determined by (ii) above.

It is easy to see that the πξ,ζ commute, so the maps Âπξ,ζ also commute. LetMª be the direct limit of

the system `Lγ�ε�ξ���1, Âπξ,ζ � ξ @ ζ @ ω1e, which is wellfounded since it is taken along a sequence of

length ω1. Let Âπξ,ª� Lγ�ε�ξ���1 � Mª be the direct-limit maps. Because the maps Âπξ,ζ extend the maps

πξ,ζ determined by the anticollapses of f ��α, because supξ αξ � κ � ω1, because Âπξ,ζ�є�ξ�� � є�ζ�,

and because f ��κ � λ, the model Mª is an end-extension of Lλ�1, and Âπξ,ª�ε�ξ�� � λ for every ξ.

But then, by the elementarity of these maps, λ is not a cardinal inMª, so λ is not a cardinal in L.

Lemma 8.8. If λ is not a cardinal of L, then there is in L� f � a branch of length ω1 through T�λ, f �.

Proof. Let γ� C λ be least so that λ is not a cardinal in Lγ��1. For each α @ ω1, let Hα be the hull in

Lγ��1 of f ��α. ¿ere is a club C of α for which Hα 9 λ � f ��α.

For every α > C, let Mα be the transitive collapse of Hα, let jα �Mα � Hα be the anticollapse

embedding, so that jα�εα� � λ and Mα � Lγ�εα��1 by elementarity. Every α > C is a point, and, for

α @ α� each in C, the map � jα���1 X jα witnesses that α @T α�. So C is a branch through T .

It is clear that this construction can be carried out in any inner model with f as an element, in

particular in L� f �.

¿e tree T � T�λ, f � has a natural tree presentation, namely `T 9 α � α B ω1e.

Proof of ¿eorem 8.1. Assume the Tree Re�ection Principle at ¯1 and let λ C κ be a cardinal of L. We

must show that κ is λ-remarkable in L. ¿at is, we must �nd κ @ λ @ κ and (possibly in a generic

extension of V) an embedding j� Lλ � Lλ such that κ is the critical point of j and j�κ� � κ. ¿e

de�nition requires the domain of j to be H�λ�L, so we must also arrange that λ is a cardinal of L;

this is the main di�culty.

By �rst forcing with the (countably closed) poset Coll�¯1, λ� if necessary, we can assume that

SλS � ¯1 in V . (By assumption, TRP�¯1� holds in this extension.) Fix a bijection f � κ � λ. ¿e

embedding we �nd to witness remarkability will extend the anticollapse of a set f ��κ.
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¿e following is routine.

Claim 8.9. ¿ere are a set X b κ and a club of κ @ κ satisfying the following. Let H be the hull in Lλ

of f ��κ, and let ρ�H � Lλ be the collapsing map.

(a) f ��κ 9 κ � κ.

(b) H 9On � f ��κ.

(c) ¿e map ρ X f � κ � λ belongs to L�X 9 κ�.

(d) For every α @ κ, L�X 9 κ� à SαS B ¯0.

Fix X b κ as given by Claim 8.9. We can use Lemma 8.4 to see that Sκ has no uncountable branches

inV . Since λ is a cardinal of L, we can use Lemma 8.7 to see that T�λ, f � has no uncountable branches

in V . We can therefore apply TRP�¯1� to the natural tree presentation of S 8 T�λ, f � to obtain a

stationary set of κ @ κ such that Sκ and T�λ, f � 9 κ each have no co�nal branches in L�X 9 κ�. Fix

such a κ that also satis�es the conclusions of Claim 8.9. Lemma 8.4 applied in L�X 9 κ� to Sκ implies

that κ has uncountable co�nality in L�X 9 κ�; combining this fact with item (d) of Claim 8.9, we see

that κ � ¯L�X9κ�1 .

Let H be the hull in Lλ of f ��κ, and notice that H is countable. By Condensation, H collapses to

an initial segment Lλ of L; let ρ�H � Lλ be the collapsing map. We aim to show that ρ�1 witnesses

the λ-remarkability of κ. By clauses (a) and (b) of Claim 8.9, ρ�1 has critical point κ, and the image

of its critical point is κ.

Let f � κ � λ be the map ρ X f . Clause (c) of Claim 8.9 ensures that f belongs to L�X 9 κ�.

Claim 8.10. ¿e tree T�λ, f � 9 κ is exactly the tree T�λ, f � as computed in the model L�X 9 κ�.

Proof of Claim 8.10. ¿e key observation is that ρ restricts to an order isomorphism f ��α � f ��α

for every α @ κ. ¿is and the fact that κ � ¯
L�X9κ�
1 imply that α @ κ is a `λ, f e-point in V i� it is a

`λ, f e-point in L�X 9 κ�.

To see that the tree orderings agree for `λ, f e-points and for `λ, f e-points, notice that the maps

π in item (ii) of De�nition 8.6 are the same for `λ, f e-points and `λ, f e-points, since the order-

isomorphisms given by ρ commute with the maps j and j� and their inverses.
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¿e point of Claim 8.10 is that

L�X 9 κ� à T�λ, f � has no co�nal branches,

so we can apply Lemma 8.8 in L�X 9 κ� to T�λ, f �, concluding that λ is a cardinal of L. (Here we

have used the fact that L�X 9 κ� c L� f �, which follows from item (c) of Claim 8.9.) ¿is concludes

the proof that ρ�1� Lλ � Lλ witnesses the λ-remarkability of κ in L.
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CHAPTER 9

Generic absoluteness from remarkability

In this chapter we review the upper-bound portion of Schindler’s theorem (¿eorem 6.1(a)), that

L�R�-absoluteness for proper posets holds in the extension by the Levy collapse to turn a remarkable

cardinal into ¯1. ¿e point of this diversion is to emphasize the level-by-level upper bound that

his argument gives. We will need to strengthen our de�nition of λ-remarkability so that it better

resembles the de�nition of λ-subcompactness.

De�nition 9.1. Let κ B λ be cardinals. We say that κ is strongly λ-remarkable if for every X b λ

there is in VColl�ω,@κ� an embedding j� `H�λ�, X , κe� `H�λ�, X , κe such that κ @ κ and j I κ is the

identity.

A standard argument shows that if κ is strongly λ-remarkable, then in VColl�ω,@κ� the set of

M > �H�λ��ω whose anticollapses witness the strong λ-remarkability of κ is stationary in �H�λ��ω.

A cardinal is remarkable if and only if it is strongly λ-remarkable for all λ, since

λ�-remarkable � strongly λ-remarkable � λ-remarkable.

Recall that a poset P is µ-linked if there is a function f �P � µ such that f �p� � f �q� only if p

and q are compatible conditions.

We show that Schindler’s argument gives the following re�ned version of ¿eorem 6.1(a).

¿eorem 9.2. Assume V � L. If κ is strongly µ�-remarkable, then in the extension VColl�ω,@κ�,

L�R�-absoluteness holds for posets that are proper and µ-linked.

By well-known arguments (see [41, Lemma 2.2] and also [2, Lemma 1.2]), it su�ces to show the

following:
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¿eorem. Assume V � L. Suppose that κ is strongly µ�-remarkable, G is Coll�ω, @κ�-generic over

V , and H is generic over V�G� for some proper, µ-linked poset P > V�G�. Suppose further that x is

a real in V�G��H�. ¿en in V there are a poset Qx of size @ κ and a Qx-generic F over V such that

x > V�F�.

Assume V � L. We �rst reduce the problem to posets of size µ�.

Claim 9.3. If P is a µ-linked poset and τ is a P-name for a real, then P has a µ-linked complete

subposet P of size µ� such that τ is a P-name.

Consequently, the empty condition forces τ�Ġ 9 P� � τ�Ġ�, where Ġ is the canonical name for

the generic.

Proof. Since µ-linked posets have the µ�-cc, we can assume that the name τ has size µ. Let f �P� µ

witness the linkedness of P. Choose θ su�ciently large, and let X h H�θ� be an elementary submodel

of size µ� such that Xµ b X and τ > X. ¿en P 9 X is as desired. Notice that f I P 9 X witnesses that

P 9 X is µ-linked, and every maximal antichain of P 9 X is maximal in P, by the elementarity of X

and the fact that X is closed under µ-sequences.

In V�G�, let P be a µ-linked, proper poset, and let τ be a P-name for the real x. In light of

Claim 9.3, we can assume that P has size µ�. By replacing P with an isomorphic copy, we can further

assume that P b µ�. Let f � µ� � µ witness that P is µ-linked. Both P and f are coded by subsets of

µ�, so we can apply the strong µ�-remarkability of κ to �nd (in V�G�) an embedding j� Lµ� � Lµ�

such that

Y j has critical point κ,

Y j�κ� � κ,

Y there are P, τ, and f such that j is an elementary map `Lµ� ,P, τ, f e� `Lµ� ,P, τ, f e,

Y and µ is a cardinal of L.

As noted earlier, images of embeddings of this type form a stationary subset of �Lµ��ω. We can

therefore extend j to an embedding Lθ � M h Lθ , which we also call j, for which M is countable
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and P, τ, f > M. (We do not assume that θ is a cardinal of L.) Take θ large enough to witness the

properness of P in V�G�.

Claim 9.4. M�G� 9On � M 9On.

Proof of Claim. ¿is just uses the κ-cc of the collapse. Suppose that σ > M is a Coll�ω, @κ�-name

for an ordinal. Since Coll�ω, @κ� has the κ-cc, we can assume that σ has size @ κ. By elementarity

of M the size of σ belongs to M 9 κ � κ. Since κ b M it follows that σ b M. It follows by standard

forcing arguments that σ�G� > M.

Claim 9.5. M�G� h Lθ�G�.

Proof. ¿is is a standard forcing argument, using no special properties of the poset.

So we have an extended anticollapse embedding, which we also call j, from a model of ordinal

height θ onto its imageM�G�. By a condensation argument, the domain of jmust be exactly Lθ�G�,

where G � j�1��G � G 9 κ. (¿is follows from the fact thatM 9 κ � κ.)

Claim 9.6. ¿e set of countable N h Lθ�G� such that N � M�G� for someM � N 9 V h Lθ is club

in �Lθ�G��ω.

Proof. ¿is is another straightforward application of the collapse’s chain condition. ¿e set is clearly

closed. Consider some countable set X b Lθ�G�. ¿ere is a countable set X� of Coll�ω, @κ�-names,

each of size @ κ (i.e., countable in V�G�), for the members of X. Choose a countable modelM h Lθ

such that X� b M. Since each name σ > X� is countable, it is a subset ofM, soM�G� c X.

In light of Claim 9.6 and the properness of P, we can choose our modelM so that P has master

conditions forM�G�; that is, we can chooseM h Lθ so that H is P-generic overM�G�.

We have an embedding j� Lθ�G�� M�G� h Lθ�G� with critical point κ. Recall that P � j�1�P�

and τ is the P-name j�1�τ�. Let H � j�1��H. ¿e elementarity of j implies that H is P-generic over

Lθ�G�.

Claim 9.7. H is P-generic over L�G�.
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Proof. ¿e strength of the remarkability assumption in L comes from the ability to choose the height

of the embedding’s domain to be a cardinal of L, and it is here that we make use of that. By the κ-cc

of Coll�ω, @κ�, the L-cardinal µ� remains a cardinal in L�G�, the extension by Coll�ω, @κ�. Every

antichain of P has size B µ, since f witnesses the µ-linkedness of P. It follows that every antichain of

P in L�G� belongs to Lµ��G�. And now, since H is P-generic over Lθ�G� c Lµ��G�, it must also be

generic over L�G�.

Now we’re ready to argue that the real x belongs to L�G��H�, a generic extension of L by the

small poset Qx �� Coll�ω, @κ� � Ṗ. ¿is follows, in L�G�, from the fact that τ is a P-name for x:

n > x i� �§p > H�p èP ň > τ

i� �§p > H 9M�G��p èP ň > τ

i� �§p > H 9 Lθ�G��p èP ň > τ

i� ň > τ�H�.

¿e second “i�” uses the fact that H is generic overM�G�, the third “i�” uses the elementarity of j,

and the fourth uses the Forcing¿eorem, for which we needed to know that H was P-generic over

L�G�.

Remark. Unlike the proofs of generic absoluteness in Part I, which also work for reasonable posets

(see Remark (2) on Page 26), Schindler’s proof here seems to use properness in an essential way.

Indeed, Schindler has shown [40] that L�R�-absoluteness for reasonable posets is strong enough to

give an inner model with a strong cardinal, much stronger in consistency strength than the existence

of a remarkable cardinal.
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CHAPTER 10

A better lower bound

In the previous chapter, we showed that the consistency of a strongly λ�-remarkable cardinal is

enough to imply the consistency of L�R�-absoluteness for λ-linked proper posets. ¿e arguments of

Chapters 7 and 8 give a naive level-by-level lower bound, too: L�R�-absoluteness for σ-closed � ccc

posets that are λ-linked implies the λ-remarkability of ¯V1 in L. While we do have an equiconsistency

between full remarkability and L�R�-absoluteness for all σ-closed � ccc posets, we do not have a

level-by-level equiconsistency. In this chapter, we improve the naive lower bound to get closer to a

level-by-level equiconsistency. To do this, we adapt the methods of [31].

De�nition 10.1 (See [31]). Let λ be a cardinal. A Σ21 truth for λ is a pair `Q ,ψe such that Q b λ, ψ

is a �rst-order formula with one free variable, and there is a set B b H�λ�� (called the witness for

`Q ,ψe) such that `H�λ��, >, Be à ψ�Q�.

An interval �κ, λ� of cardinals is called Σ21 -indescribable if for every Σ21 truth `Q ,ψe for λ, there

are cardinals κ B λ @ κ, Q b λ, and an embedding j�H�λ�� H�λ� such that `Q ,ψe is a Σ21 truth for

λ, and j is elementary from `H�λ�, >, κ,Qe to `H�λ�, >, κ,Qe with j I κ � id.

We de�ne what it means for the interval �κ, λ� to be Σ21 -remarkable by weakening the de�nition

of “Σ21 -indescribable” to require only that the embedding j exist in VColl�ω,@κ�.

Notice that the interval �κ, λ� is Σ21 -indescribable for every λ C κ if and only if κ is supercompact.

(See [34].) A similar argument shows that, likewise, the interval �κ, λ� is Σ21 -remarkable for every

λ C κ if and only if κ is remarkable.

¿eorem 10.2. Let κ � ¯V1 , and let λ C κ be a cardinal of L. Assume L�R�-absoluteness for σ-closed

� ccc posets that are also c � SλS-linked. ¿en, in L, the interval �κ, λ� is Σ21 -remarkable.
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¿e reader may, of course, replace c � SλS with SλS at the cost of assuming CH, but there are models

where L�R�-absoluteness for proper posets holds but 2¯0 C ¯2. For example, force over L with

Coll�ω, @κ�, where κ is remarkable, and then force over the extension to add ¯2 Cohen reals.

To prove¿eorem 10.2 we must repeat the argument of Chapter 8, �nding an embedding j� Lλ �

Lλ that witnesses the λ-remarkability of κ and also re�ects a prescribed Σ21 truth `Q ,ψe for λ.

We adapt the methods of [31], especially those of the �rst section of that paper, though we will

re�ect a gap �κ, λ� of cardinals instead of a single cardinal κ (which in that paper is ωV
2 ). Whereas

the embeddings of [31] extend inclusion maps ε � ε, ours will extend re�ections of a bijection κ � λ.

Our strategy will initially resemble our strategy in Chapter 8, though we will have to work harder

to re�ect a Σ21 truth. Our strategy is �rst to collapse λ to have size κ. Fix a bijection f � κ � λ in the

extension. It will be convenient to assume that f �0� � κ, so that in what follows we needn’t worry

about taking α large enough that κ > f ��α. We will ultimately capture the Σ21 truth by applying the

Tree Re�ection Principle to many more trees than we considered in Chapter 8.

If we could collapse λ�L, then we could establish the Σ21 -remarkability of �κ, λ�L�, which implies

our desired conclusion. In particular, we needn’t consider the case when λ�L has countable co�nality

in V .

Basic de�nitions

De�nitions in this section are made relative to a function f whose domain is κ � ¯1 and whose range

is an ordinal λ. We caution the reader that our re�ection argument will later require us to relativize

these de�nitions to a di�erent function f whose domain, while countable, is ¯1 in an inner model of

V . ¿e dependence on f will not always be made explicit, both to maintain readability and because

later we will show that many de�nitions do not change a er relativizing.

De�nition 10.3. For α B κ, let πα denote the collapsing map of f ��α, and let εα denote range�πα�.

Finally, we write fα,α� � εα � εα� for the function πα� X π�1α .

Fix a club C b κ on which α ( εα is one-to-one.

An f -point is a limit ordinal β such that there is α > C 8 �κ� satisfying the following conditions.
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Y Lβ à εα is the largest cardinal, and

Y β is not a cardinal of L.

¿e α in the de�nition is unique (by choice of C), is called the level of β, and is denoted α�β�. We

will write ε�β� for εα�β�. (¿e reader is encouraged to think of α as re�ecting κ and of εα as re�ecting

λ.)

Notice that α�β� depends on the club C, but only on C 9 β.

NB. Unlike in [31], the level of an f -point β is not the largest cardinal in Lβ.

We will continue to use De�nition 8.5: write γ�β� for the least γ (if any exist) such that β is not a

cardinal in Lγ�1.

Let β be a point on level α. Let α @ α and let H be the hull in Lγ�β��1 of range� fα,α� (� πα ��� f ��α�).

We say that α is stable in the f -point β if α b f ��α and H 9 εα � range� fα,α�. In that case, the

anticollapse of H is an embeddingM � Lγ�β��1 that extends fα,α and has critical point α. Its domain

M must be a level of L; in fact, it must be Lγ�β��1 for some β, which we denote projα�β�, and β must

be an f -point on level α. ¿e antiprojection embedding, which we call jβ,β� Lγ�β��1 � Lγ�β��1, is

unique because β projects below εα.

Claim 10.4. Suppose that β is an f -point and that α @ α is an ordinal. ¿ere is at most one f -point

β on level α such that there is an elementary embedding j� Lγ�β��1 � Lγ�β��1 with critical point α.

¿e proofs of the following two claims are straightforward and analogous to the proofs of Claims

1.3–1.4 of [31].

Claim 10.5 (Commutativity of projections). Suppose that α @ α @ α� and that β, β, and β� are all

f -points, respectively on levels α, α, and α�. Suppose further that β � projα�β�� and β � projα�β�.

(Wemean this to imply that α is stable in β and α is stable in β�.) ¿en α is stable in β�, projα�β�� � β,

and jβ,β� � jβ,β� X jβ,β.

Claim 10.6 (¿e projection ordering is “treelike”). Suppose that α @ α @ α� and that β, β, and β�

are all f -points, respectively on levels α, α, and α�. Suppose that β � projα�β�� and β � projα�β��.

¿en β � projα�β�.
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¿e following claim is analogous to Claim 1.5 of [31] and is proved similarly. Notice that item (2)

follows from Claim 10.4.

Claim 10.7 (Points on the same level I). Suppose that β and β� are points on the same level α, with

β @ β�. Let α @ α be stable in β�, let β
�
� projα�β��, and let j� denote jβ� ,β� . Suppose that β is

de�nable in Lγ�β���1 from parameters in range� fα,α� (that is, β belongs to the range of j�). ¿en:

(1) α is stable in β.

Let β � projα�β� and let j � jβ,β.

(2) β � � j���1�β�. (In particular, projα�β� @ projα�β��.)

(3) j � j� I Lγ�β��1.

A thread of f -points is a sequence T � `βα � α > De such that:

(i) D is club in ω1, and, for each α > D, βα is an f -point.

(ii) Let α > D and let α @ α. ¿en α > D i� α is stable in βα.

(iii) Let α @ α both belong to D. ¿en βα � projα�βα�.

By Claim 10.5, the system

`Lγ�βα��1, jβ,β � α, α > C , α @ αe

commutes. We write dlm�T� to denote the direct limit of this system. Since this direct limit is taken

along a sequence of uncountable co�nality, the direct limit is well-founded and therefore a level of L;

in fact, it must equal Lγ�β���1 for some β�, and the direct-limit embeddings must be the antiprojection

embeddings jβα ,β� . We call β� the limit of T and write β� � lim�T�.

Claim 10.8. Let β be an f -point on level ω1. ¿en there is a thread T > L� f ,C� with lim�T� � β.

Contrast with Claim 1.7 of [31], which draws the stronger conclusion T > L.

Proof. ¿e hulls in Lγ�β��1 of f ��α for α stable in β form a thread whose limit is β.
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Capturing the Σ21 statement

In [31], a Σ21 statement `Q ,ψe is captured by taking direct limits of levels of L that capture `Q 9 α,ψe

for various α; here, we will need to approximate Q using f , rather than by simply using initial

segments of Q.

¿e de�nitions in this section are made relative to a function f as in the previous section and

also to a subset Q of the range of f . Let ψ be a formula with one free variable. For α B κ, put

Qα �� πα ���Q 9 f ��α�.

We say that an f -point β captures `Q ,ψe if the following hold:

(i) Qα > Lβ.

(ii) ¿ere is η @ γ�β� and there is B b Lβ in Lη�1 such that `Lβ; >, Be à ψ�Qα�.

¿e witness of β, denoted η�β�, is the least η witnessing condition (ii). ¿ere is a subset of Lβ in

Lη�β��1 � Lη�β�, and so the following holds.

Claim 10.9. Every element of Lη�β��1 is de�nable in Lη�β��1 from parameters in Lβ.

If β @ β� are f -points on the same level α that each capture `Q ,ψe, then we say β and β� are

compatible if there is an elementary embedding Lη�β��1 � Lη�β���1 with critical point β. If β and β�

are compatible f -points on level α, then the embedding witnessing this is unique by Claim 10.9 and

it is denoted φβ,β� .

Claim 10.10. φβ� ,β,�� X φβ,β� � φβ,β�� .

Let Y be a set of compatible f -points on the same level α. ¿e direct limit of the system

`Lη�β��1, φβ,β� � β, β� > Y , β @ β�e is denoted hlim�Y� and is called a horizontal direct limit to

emphasize that f -points in Y are on the same level. If hlim�Y� is wellfounded, then it is a level of L

and by elementarity of the direct-limit embeddings it must be the �rst level of L satisfying

�§B b Lβ�� `Lβ� , >, Be à ψ�Qα�.

Notice that β� � sup�Y�, because crit�φβ,β�� � β and φβ,β��β� � β�.
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¿ere is no reason to expect Q 9 f ��α to belong to L, since f need not. Luckily, we can re�ect

membership of Q in L to membership of Qα in Lβ for many points β, as the next claim shows.

Claim 10.11. Suppose that β and β are f -points and that β � projα�β�. Let j � jβ,β. ¿en � j�1���Qα �

Qα. In particular, if Qα > Lβ, then j�1�Qα� � Qα.

Proof. ¿is follows immediately from the de�nition of Qα and the fact that j extends fα,α � πα X

π�1α .

Claim 10.12 (Points on the same level II). Suppose that β and β� are points on the same level α,

with β @ β�. Let α @ α be stable in β�, let β
�
� projα�β��, and let j� denote jβ� ,β� . Suppose that β is

de�nable in Lγ�β���1 from parameters in range� fα,α� (that is, β belongs to the range of j�).

Recall from Claim 10.7 that α is stable in β. Let β � projα�β� and let j � jβ,β.

Suppose also that β and β� capture `Q ,ψe and that α is large enough that Qα is de�nable in

Lγ�β���1 from parameters in range� fα,α�.

¿en:

(1) β and β
�
capture `Q ,ψe.

(2) β and β
�
are compatible i� β and β� are compatible.

Assume that β and β� are compatible. Let φ � φβ,β� and φ � φβ,β� .

(3) φ � j��φ�.

(4) j� X φ � φ X j.

Proof. ¿e proof resembles the proof of Claim 1.9 in [31], except that our Claim 10.11 is needed for

item (1).

¿e forcing and the trees

Now we suppose that f � κ � λ is a bijection and that `Q ,ψe is a Σ21 truth for λ in L.
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Following [31], we express the Σ21 truth as a statement about a club E of points on level κ and

then force to add a set K so that limits of threads through K are exactly the points in E, e�ectively

turning the Σ21 statement into a Π1
1 statement.

Claim 10.13. ¿ere is a club E b λ�L such that:

(a) every β > E is an f -point on level κ,

(b) β captures `Q ,ψe,

(c) for any two β, β� > E, the points β and β� are compatible, and

(d) hlim�E� is wellfounded.

Proof. Follow the proof of Claim 1.11 of [31], replacing κ with λ throughout.

De�nition 10.14. As in [31], we add a system K b κ by countable conditions as follows. (¿e only

clause that di�ers materially from its analogue in [31] is clause (g).) A condition in A is a countable

set p b κ 8 �λ, λ�L� of f -points satisfying the following conditions.

(a) Every point in p captures `Q ,ψe, and if β > p � κ then β > E.

(b) For every α @ κ all the points in p on level α are compatible, and their horizontal direct limit

is wellfounded.

(c) ¿e set �α @ κ � p has points on level α� is closed, with a largest element.

¿e set of f -points in p on levels @ κ is called the stem of p, denoted stem�p�, and the set of f -points

in p on level κ is called the commitment of p, denoted cmit�p�. Let levels�p� denote the set of α @ κ

so that p has f -points on level α. ¿e ordering on A is de�ned by setting q B p i� the following

conditions are satis�ed.

(d) p b q.

(e) If α > levels�p� then p and q have the same f -points on level α. If α > levels�q� � levels�p�

then α C sup�levels�p��.
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(f) If α > levels�q� � levels�p� then α is stable in β for every β > cmit�p�, and

�projα�β� � β > cmit�p�� b q.

(g) If α > levels�q� � levels�p� then α must be large enough that both of the following hold.

(i) For every pair β @ β� such that β and β� both belong to cmit�p�, β is de�nable in Lγ�β���1

from parameters in f ��α; and

(ii) for every f -point β > cmit�p�, Q is de�nable in Lγ�β��1 from parameters in f ��α.

(h) If α > levels�q� � levels�p�, β, β� > cmit�p�, and there are no elements of E between β and

β�, then there are no f -points in q between projα�β� and projα�β��. Similarly, if there are no

elements of E below β, then there are no f -points in q on level α below projα�β�.

¿e proofs of the following two claim follow the proofs of their analogues Claims 1.12 and 1.14

of [31], with the use and proof of clause (g) modi�ed in an obvious way.

Claim 10.15. Let `pn � n @ ωe be a decreasing sequence of conditions in A. ¿en there is a condition

q such that q B pn for every n.

Claim 10.16. Let p be a condition in A and let ξ @ κ. ¿ere is q B p such that q has f -points on

levels above ξ.

For Claim 10.16, notice that the proof of Claim 1.14 in [31], even though κ � ¯V2 there, needs only

that κ has uncountable co�nality in V .

Notice that A is κ-linked, since any two conditions with the same stem are compatible.

Let G be A-generic over V , and let K � �p>G stem�p�. ¿e remaining de�nitions in this section

depend on K, f , and C, and will later be relativized to K 9 κ, f , and C 9 κ. A thread T (of height ω1)

is a thread through K if unboundedly many f -points of T belong to K.

We will re�ect the Σ21 statement by re�ecting the branchlessness of several trees, which we de�ne

now.

De�nition 10.17. Let R1 be the tree of attempts to build a thread through K with unboundedly many

f -points on levels in levels�K� that do not belong to K. More precisely, a node in R1 is an f -point β

with α�β� > levels�K� so that
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(1) for unboundedly many α @ α, projα�β� > K, and

(2) for unboundedly many α @ α in levels�K�, projα�β� ¶ K (possibly because α is not stable in β

and so projα�β� is not de�ned).

¿e ordering on R1 is de�ned by projection: β @R1 β� i� β � projα�β��. ¿is is a tree ordering by

Claim 10.6. For α @ κ write R1 I α for the tree R1 restricted to nodes @ α. ¿is gives a tree presentation

`R1 I α � α B κe in the sense of De�nition 7.1.

¿e following claim is proved exactly like Claim 1.15 of [31], except that (as usual) “de�nable from

parameters in ν” should be replaced by “de�nable from parameters in f ��ν.”

Claim 10.18. Let T be a thread of height κ and let β � lim�T�. ¿e following are equivalent.

(1) T is a thread through K.

(2) β > E.

(3) All su�ciently large points in T on levels in levels�K� belong to K.

It follows that in V�G�, R1 has no co�nal branches.

De�nition 10.19. Let R2 be the tree of attempts to build a thread with only boundedly many points of

K to its right. ¿at is, a node in R2 is a pair `ξ, δe so that δ is an f -point, α�δ� > levels�K�, ξ @ α�δ�,

and for every α that is stable in δ and greater than ξ, there are no points β of K on level α with

β A projα�δ�. ¿e ordering on R2 is given by equality on the �rst coordinate and projection on the

second: `ξ, δe @R2 `ξ�, δ�e i� ξ � ξ� and δ � projα�δ��δ��. ¿e fact that this gives a tree ordering again

follows from Claim 10.6.

For α @ κ we write R2 I α to mean the tree R2 restricted to nodes `ξ, δe > α � α. ¿is gives a tree

presentation `R2 I α � α B κe in the sense of De�nition 7.1.

To prove the following claim, copy the proof of Claim 1.17 in [31], replacing “de�nable from

parameters in α” by “de�nable from parameters in f ��α.”

Claim 10.20. In V�G�, R2 has no co�nal branches.
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De�nition 10.21. For an f -point δ de�ne β�δ� to be the smallest β A δ in K on the same level as δ

if there is one, and leave β�δ� unde�ned otherwise. If T is a thread of height ω1, then this function

δ ( β�δ� is de�ned on unboundedly many points of T . (See the proof of Claim 1.17 in [31].)

A node in R3 is an f -point δ such that α�δ� > levels�K� and for every ν @ α�δ� there are

α x α� between ν and α�δ� such that β�projα�δ�� and β�projα��δ�� are each de�ned, but neither is

a projection of the other. ¿e ordering on R3 is given by projection: δ @R3 δ� i� δ � projα�δ��δ��.

For α @ κ we use R3 I α to denote the restriction of R3 to nodes δ @ α. ¿is gives a tree

presentation `R3 I α � α B κe in the sense of De�nition 7.1.

¿e following claim is analogous to Claim 1.18 of [31] and is proved similarly.

Claim 10.22. In V�G�, R3 has no uncountable branches.

Relativizing de�nitions

Anticipating our need to re�ect f � κ � λ to a countable function f � κ � λ and work in an inner

model in which κ � ¯1, we collect some claims relating the de�nitions of the preceding sections

relative to f to those same de�nitions relative to f . For now we need only assume that κ is (in V ) a

countable ordinal and that f � πκ X � f I κ�. Write λ for εκ, the range of f .

Where necessary, we will use superscripts to distinguish between a de�nition relative to f and its

analogue relative to f , so for instance we write π f
α for the collapsing map f ��α � εα and π

f
α for the

collapsing map f ��α � εα.

¿e de�nition of α�β� depends on the club C, but only on C 9 β, so it will be harmless to ignore

this dependence.

Claim 10.23. Let β @ κ.

(a) β is an f -point i� it is an f -point, and in that case α f �β� � α f �β� and ε f �β� � ε f �β�.

(b) π f
α � π

f
α X �π

f
κ I f ��α�.

Let α � α�β� and let α @ α.
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(c) fα,α � f α,α.

(d) α is f -stable in β i� it is f -stable in β, and the de�nitions of the projection map and antipro-

jection map do not depend on whether f - or f -points are considered.

Proof. (a) It is enough to check that ε f �β� � ε f �β�, and this follows from the de�nition of f and

the fact that π f
κ is an order-isomorphism.

(b) is very important but follows immediately from the uniqueness of the Mostowski collapse.

(c) Follows from the de�nition of fα,α and item (b):

fα,α � π
f
α X �π

f
α�

�1 � π f
α X �π

f
κ I f

��α� X ��π f
κ�

�1 I f ��α� X �π f
α�

�1

� π f
α X �π

f
α�

�1 � f α,α .

(d) Assuming that β is either f - or f -stable, we get f ��α � f ��α, since π f
κ is the identity on α. ¿e

rest follows from item (c).

Claim 10.24. Let Q � Qκ � π
f
κ
���Q9 f ��κ�. ¿e de�nition of Qα can be reinterpreted using Q instead

of Q; that is, by Qα we mean π
f
α
���Qκ 9 f ��α�.

(a) Qα � Qα.

(b) An f -point β f -captures `Q ,ψe i� it f -captures `Q ,ψe, and in that case the de�nitions of η�β�,

compatibility, the horizontal embeddings φβ,β� , and horizontal direct limit do not depend on

whether f -points capturing `Q ,ψe or f -points capturing `Q ,ψe are considered.

Proof. (a) Since π f
κ is a bijection, Q 9 f ��α � π f

κ
���Q 9 f ��α�. Apply Claim 10.23(b).

(b) All of this follows immediately from (a).

¿e de�nitions of the trees R1, R2, and R3 depend on C, f , and K. ¿e dependence on C and K

can be safely ignored, since we are re�ecting each of C and K to one of its initial segments. (Contrast

this with the situation in [31], where K is not re�ected to an initial segment of itself.) So we write

Ri� f � to emphasize the dependence on f .

¿e next claim follows easily from Claim 10.23.
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Claim 10.25. Suppose that M is an inner model in which κ � ¯1. For each i � 1, 2, 3, Ri� f � I κ �

RM
i � f �.

Proof of the theorem

A er forcing with Coll�κ, λ�, a σ-closed, c � SλS-linked poset to collapse λ to have size ¯1, �x a bijection

f � κ � λ. Assume for convenience that f �0� � κ. Suppose that `Q ,ψe is a Σ21 truth for λ in L. Fix E

as given by Claim 10.13 and force with the σ-closed poset A to add the system K of f -points. Let G

be the Coll�κ, λ� � Ȧ-generic over V . Coll�κ, λ� has size c � SλS, and A is κ-linked.

L�R�-absoluteness for ccc posets of size κ will hold in V�G�, and that is enough to apply ¿eo-

rem 7.4, since the posets used in the proof of that theorem all have size B κ.

We will need the trees S and T from Chapter 8 to ensure that κ and λ are cardinals in L�X�.

Choose X b κ so that, for a club of κ, X 9 κ codes C 9 κ, π f
κ X f I κ, and K 9 κ. ¿e trees R1,

R2, R3, S, and T are trees of size ¯1 with natural tree presentations, and they have no uncountable

branches in V�G�. We can therefore apply ¿eorem 7.4 to �nd κ @ κ satisfying the following:

(1) κ is a regular cardinal of L.

(2) X �� X 9 κ codes C �� C 9 κ, f �� π f
κ X f I κ, and K �� K 9 κ.

(3) f ��κ 9 κ � κ, and HullLλ� f ��κ� 9 λ � f ��κ.

(4) R1 I κ, R2 I κ, R3 I κ, S I κ, and T I κ all have no co�nal branches in L�X�.

Remark. We do not require the tree R0 of [31] for item (1), since we can use Kunen’s theorem that

L�R�-absoluteness for ccc posets implies the weak compactness of κ in L.

We will show that the anticollapse j� Lλ � Lλ of HullLλ� f ��κ� witnesses the Σ21 -remarkability of

�κ, λ�. Argue as in the proof in Chapter 8 of¿eorem 6.2 to see that κ � ¯L�X�1 and that λ is a cardinal

of L, using the fact that S I κ and T I κ have no co�nal branches in L�X�. It remains to show that

` j�1��Q ,ψe is a Σ21 truth for λ in L.
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First, notice that

j�1��Q � π f
κ
��Q � π f

κ
���Q 9 f ��κ� � Q .

So we need to show that `Q ,ψe is a Σ21 truth for λ in L.

Work in L�X�. Let E be the set of limits of threads through K. K is a set of f -points below κ, so

by Claim 10.24 every point in K is an f -point capturing `Q ,ψe. So E is a set of points on level κ,

each capturing `Q ,ψe.

Claim 10.26. E consists of compatible points.

Proof. Repeat the proof of Claim 1.21 in [31], except that there is no need for us to appeal to condition

(3) on page 10 there, since our K is just an initial segment of K. (As usual, “de�nable from parameters

in α” should be changed to “de�nable from parameters in f ��α” and Q 9 Lκ should be replaced by

Qκ.)

Claim 10.27. hlim�E� is wellfounded.

Proof. ¿e proof of Claim 1.22 of [31] can be repeated, changing de�nability from parameters in ν to

de�nability from parameters in f ��ν and changing Q 9 Lκ to Qκ throughout.

Claim 10.28. E is unbounded in λ
�L
.

Proof. ¿e proof follows the proof of Claim 1.24 in [31], but we give it here in full, since it is the

heart of the argument. Fix an f -point δ > �λ, λ
�L
�. We must �nd a β > E with β A δ. Let B be the

set of α @ κ that are stable in δ. Apply Claim 10.8 (in L�X�) to conclude that B is club in κ and

`projα�δ� � α > Be is a thread with limit δ. (¿is di�ers slightly from the proof in [31]: there, the

thread belongs to L, whereas here it only belongs to L�X�.)

Let D be the set of α > levels�K� such that there is a f -point β in K on level α with β A projα�δ�.

Let βα be the least such β.

Since R2 I κ has no co�nal branches in L�X�, D is unbounded in κ. Since R3 I κ has no co�nal

branches in L�X�, there is ν @ κ such that for all α, α� > D9�ν, κ�, one of βα and βα� is a projection of

the other. It follows that �βα � α > D , α A ν� generates a thread. ¿is is a thread through K, which

has limit greater than δ by Claim 10.7.
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LetM � hlim�E�. By Claim 10.27,M is wellfounded and is therefore a level of L. (Since λ
�L
is

countable in V , this is nontrivial.) Each of the points in E captures `Q ,ψe, so by the elementarity

of the horizontal embeddings φβ,β� it follows that M satis�es, “¿ere exists B b Lβ� such that

`Lβ� , Be à ψ�Q�.” Here β� � sup�E�, which by Claim 10.28 equals λ
�L
. SinceM is an initial segment

of L, we have shown that `Q ,ψe is a Σ21 truth for λ in L, completing the proof of the theorem.
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