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Modelling the Interpretation and Interpretation Ease of Noun-Noun
Compounds Using a Relation Space Approach to Compound Meaning

Barry Devereux (Barry.Devereux@ucd.ie)
Fintan Costello (Fintan.Costello@ucd.ie)

School of Computer Science and Informatics, University College Dublin
Dublin, Ireland

Abstract

In this paper, we present a computational model of
conceptual combination that introduces a new repre-
sentation for the meaning of compounds: the relations
used to interpret compounds are represented as points
or vectors in a high-dimensional relation space. Such
a representational framework has many advantages
over other approaches. Firstly, the high-dimensionality
of the space provides a detailed description of the
compound’s meaning; each of the space’s dimensions
represents a semantically distinct way in which com-
pound meanings can differ from each other. Secondly,
the spatial representation allows for a distance metric
to measure how similar of different pairs of compound
meanings are to each other. We conducted a corpus
study, generating vectors in this relation space rep-
resenting the meanings of a large, representative set
of familiar compounds. A computational model of
compound interpretation that uses these vectors as a
database from which to derive new relation vectors for
new compounds is presented. Also presented is a model
of interpretation ease: that is, the ease or rapidity
with which people can comprehend compounds. Our
model uses ideas from the CARIN theory of conceptual
combination about the modifier noun’s role in the
comprehension process; the model correlates as well as
the traditional CARIN model with people’s reaction
times.

Keywords: Conceptual combination; noun-noun
compounds; mathematical modelling; CARIN.

Introduction
Conceptual combination, the process that people employ
when interpreting novel noun-noun compounds such as
volcano science, gas crisis or penguin movie, is a non-
trivial cognitive task, often requiring people to access
complex knowledge about the two constituent concepts
and about the world in general. For example, people
can quickly and efficiently determine that the compound
penguin movie refers to a movie about penguins, and
not a movie by penguins (which would be the correct
way to interpret the compound penguin journey), nor
a movie for penguins (the correct way to interpret the
compound penguin enclosure), nor any of the infinitely
many other possible but implausible ways of interpret-
ing that compound. Perhaps because of the complex-
ity of the phenomenon, previous theories of conceptual
combination have tended to focus on only some aspects
of conceptual combination. For example, in Gagné and
Shoben’s (1997) CARIN model, the focus is on mod-
elling the ease and rapidity with which people interpret
noun-noun compounds (as measured by reaction time),
but not other features of the conceptual combination

process, such as how the correct relationship between the
two constituent concepts is found or constructed. In this
paper, our aim is to present evidence for a more compre-
hensive approach to conceptual combination, allowing us
to model both the interpretation and interpretation ease
aspects of noun-noun comprehension.

Conceptual combination can be regarded as a process
which instantiates the most plausible or most appropri-
ate relationship between the two constituent words in
a compound (termed the modifier word and the head
word, respectively). An important issue therefore for
any model of conceptual combination is the manner in
which the relationship between the modifier and head of
a compound is represented; indeed, previous models of
conceptual combination can be classified as belonging to
two types, distinguished by how they represent relations.
The first type, the concept specialization approach, as-
sumes that instantiating a relation for a compound in-
volves modifying a slot in the representation of the head
word concept (for example, see Smith, Osherson, Rips &
Keane, 1988). In the second type, the relationship be-
tween the two nouns is specified by means of a taxonomy
of general relation categories. For example Levi (1978)
describes a set of recoverably deletable predicates such
as CAUSE, HAVE & FROM which are used to spec-
ify the meaning of compounds. The idea that the re-
lationship between the constituents in a compound can
be specified by a taxonomy of semantic primitives forms
the basis for representing compound meaning in an im-
portant cognitive theory about conceptual combination,
namely the Competition Among Relations In Nominals
(CARIN) model (Gagné & Shoben, 1997).

The concept specialization approach and the taxo-
nomic approach both assume that the meaning of a com-
pound can be adequately captured by a simple label (ei-
ther as a slot in the head concept or as a stand-alone
relation category). One of the primary theses of this pa-
per is that such a simple representation of compounds
is inadequate; the relations instantiated during concep-
tual combination are semantically detailed entities and
as such require a more complex mode of representation.

Our approach assumes that relations are as complex
and as semantically non-trivial as the constituent con-
cepts that they link are. We therefore represent relations
in a way similar to how concepts have been represented
in the classification literature (e.g. Nosofsky, 1984; Kr-
uschke, 1992), using exemplars which are defined as sets
of values on a set of dimensions. We generate relation
exemplars using a corpus study where a large, represen-
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Table 1: The dimensions used in the relation-rating task

No. Relation Example

1 H causes M flu virus
2 M causes H job tension
3 H has M college town
4 M has H lemon peel
5 H made of M chocolate bar
6 H makes M honey bee
7 H location is M office friendships
8 H for M plant food
9 H is M guard dog

10 H uses M machine translation
11 H derived from M peanut butter
12 H about M budget speech
13 H during M summer clouds
14 H used by M servant language
15 M location is H murder town
16 H by M student vote
17 M makes H monastery beer
18 M is H girl guide
19 H resembles M mushroom cloud

tative sample of familiar compounds are rated on various
semantic dimensions, derived from the taxonomy of rela-
tions used in the CARIN model (Table 1). The values on
these dimensions for a compound then allow us to define
the meaning of that compound as a vector or point in a
high-dimensional semantic relation space.

In the remainder of the paper, we present models
which use this relation space approach to representing
compound meaning. The first model is a relation selec-
tion model which predicts the interpretation of a given
compound (in the context of our representation system,
it finds the point or vector in the relation space that
best corresponds to the compound’s meaning). The sec-
ond model predicts reaction time or interpretation ease;
given a compound and an interpretation for it, it esti-
mates how long it would take a person to produce that
interpretation for that compound. In both cases, the
models use information about how the constituents of
known compounds (i.e. those from our corpus study)
tend to combine. To foreshadow the results, we found
that both the relations generated by our approach and
the predicted reaction times correspond closely to those
generated by people.

Corpus Study

To test these ideas, a large, representative sample of
noun-noun compounds was required. In a previous study
(Keane & Costello, 1997) participants were presented
with some common examples of noun-noun compounds
and were instructed to generate as many noun-noun com-
pounds as they could think of. They were instructed
that the compounds should be “commonplace ones –
that is, ones used in everyday life that are familiar to

you.” The eight participants generated a total of 680
compounds. Several steps were then taken to ensure
that this sample was a representative set of familiar com-
pounds. Very infrequent compounds (where the log of
the number of hits in a Google search was more than
2 standard deviations below the average) were removed
from the sample. A priming effect was evident in the
generated compound lists; often a participant would gen-
erate a sequence of compounds that used the same mod-
ifier and similar relations (for example one participant
generated “train ticket, cinema ticket, bus ticket” in se-
quence) or used the same head and similar relations (for
example another participant generated “rugby ball, soc-
cer ball, tennis ball” in sequence). Therefore, to counter-
act the effects of this priming, compounds were removed
from the set of 680 available compounds so that each
modifier word and each head word appeared only once
in the items generated by each participant. Compounds
were removed in a way that aimed to maximize the to-
tal number of compounds remaining. In cases where a
choice between compounds did not affect this aim, the
most frequently occurring compound was retained. Ex-
amples such as electric razor, bob cat, and mini skirt
which could not reasonably be judged noun-noun com-
pounds were also removed. After these considerations,
a sample of 384 representative, familiar compounds re-
mained.

For each of these 384 compounds, the first author
rated the appropriateness (on a scale from 0 to 10) of
each of the 19 relation categories for that compound se-
quentially. The order in which the relation categories
were rated was randomized. (A new random ordering
of the relation categories was used after every 15 com-
pounds). As a test of the robustness and sensibility of
these ratings, the second author rated a random sam-
ple of 15% of the compounds; inter-rater reliability was
high (across all items and relation categories, r = 0.75,
p < 0.001, N = 1140).

Results

Following previous studies (e.g. Devereux & Costello,
2005), the relation category ratings produced in this way
were regarded as being histograms representing the re-
lationships between the heads and the modifiers of com-
pounds. Compounds which have very similar relation-
ships instantiated between the head and the modifier (as
toilet seat, watch strap, and door handle do, for example)
tend to have very similar relation rating histograms (for
example, with relatively high values on the H FOR M
and H HAS M dimensions). Compounds which have very
different relationships instantiated between the head and
the modifier (for example, watch strap and air rifle) tend
to have very different relation rating histograms. Fur-
thermore, the relation rating histograms can be thought
of as points or vectors in a 19-dimensional Euclidean
space. This allows us to measure the distance (or, in-
versely, similarity) between pairs of compound meanings
using the standard Euclidean metric.

Across the 384 items, there is a large degree of corre-
lation between many pairs of relation categories (Table
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Table 2: Relation categories with high rating correla-
tions

Relation 1 Relation 2 r

H makes M H causes M 0.85
M makes H H by M 0.80
M location is H H has M 0.76
H makes M H derived from M 0.67
H is M H made of M 0.63
H location is M M has H 0.60
H is M M is H 0.58
H for M H derived From M -0.58

2). For example, there is a high degree of correlation be-
tween the M MAKES H and H BY M relation categories
– if one of these relations is highly appropriate for a com-
pound, then the other one is also likely to be appropriate.
There are several potential problems with such interde-
pendencies between relations. Firstly, relation categories
with a high correlation tend to be semantically similar:
for example, M MAKES H tends to mean the same thing
as H BY M in many contexts. If a relatively large sub-
set of the 19 relation categories used in the corpus study
tend to be semantically similar, then the result is that
this aspect of relation meaning will be amplified in the
relation space. Secondly, as one of the aims of this work
is to describe a model that predicts appropriate relation
points in the space for new compounds, the possibility
that interdependencies between relations can potentially
lead to misleading evidence in support of a model must
be addressed. For example, if a model correctly predicts
that the meaning of a particular compound is modelled
by a point in the relation space that has high values on
the M MAKES H and H BY M dimensions, then sta-
tistically this counts as two points of agreement for the
model. However, in reality the model has only captured
one aspect of the meaning of the compound; the second
point of agreement is simply a result of the arbitrary
choice of dimensions for the relation space.

We therefore used Principal Components Analysis to
reduce the dimensionality of the relation space and to
produce a set of dimensions which have no significant
intercorrelations across the compound ratings in our cor-
pus. A principal components analysis with varimax ro-
tation was applied, which reduced the relation space to
six dimensions. There were no significant correlations
between these six new dimensions (r < 0.001, p > 0.999
for every pair of dimensions).

It is worth noting that these six new dimensions ap-
pear to have qualitative interpretations. For example,
the first dimension can be paraphrased as M GENER-
ATES H; brain child, lamb wool, body heat and horse ma-
nure are the compounds with the highest values on this
dimension. The second dimension can be paraphrased as
H CONTAINS M (mine field, boat race, book store and
disk drive are the highest on this dimension). The third
dimension can be paraphrased as M IS H (boy scout, girl

guide, sofa bed, guard dog). Similarly, the fourth, fifth
and sixth dimensions can be paraphrased as H USED BY
M, H GENERATES M, and H ON THE OCCASION OF
M, respectively.

Modelling Conceptual Combination

In this section, we propose models of several aspects of
conceptual combination that utilize our relation space
representation of relations. Firstly, we present a model of
how people interpret or comprehend a compound: given
a novel compound, how do people find an appropriate
or sensible way of linking the modifier and head of the
compound? Secondly, we present a model examining
the factors that influence the speed and ease with which
people interpret different compounds.

Finding the correct relation for compounds
Our model of conceptual combination presupposes that
people have experiential knowledge about how concepts
that they are familiar with have combined with other
concepts in the past (i.e. people have knowledge about
how semantic relationships have been instantiated be-
tween pairs of concepts). For example, people have ex-
periential knowledge about the concepts nest and tree
and how they tend to combine in the world by having
a “located in the branches of” relationship instantiated
between them. So for example, if a relationship is not
known and needs to be constructed between for the con-
cepts cocoon and bush, people might construct a rela-
tionship that is similar to the relationships they know
can exist between concepts similar to cocoon (e.g. nest)
and concepts similar to bush (e.g. tree).

In our model, we assume that our large corpus of fa-
miliar, commonplace noun-noun compounds is represen-
tative of how concepts combine in the world; it there-
fore uses the set of 384 familiar compounds and their
vector-represented relations as its knowledge base. In
constructing the correct relation vector for a novel com-
pound, the model uses information about the relation
vectors that exist for compounds in the database which
have a head or a modifier that is similar to the head
or modifier of the novel compound. More specifically,
the new relation vector is constructed as the weighted
average over the relation vectors already plotted in the
space, where the weight parameter on each term of the
average is derived from the total head and modifier sim-
ilarity of the known compounds. Formally, the relation
vector ~rm,h for a novel compound “m h” is defined to be

~rm,h =

∑
c∈S

(sim(m,mc) + sim(h, hc))α · ~rc∑
c∈S

(sim(m,mc) + sim(h, hc))α

where sim(m,mc) and sim(h, hc) denote the semantic
similarity between constituent concepts m & mc and h
& hc respectively. S is the set of known compounds
plotted in the relation space; the sum is taken over all
compounds c represented as vectors in this space. α is a
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Figure 1: The model’s performance for the compound
steam boat

free parameter which describes the relative importance
of constituent semantic similarity.

In estimating the similarity between concepts, we use
the Intrinsic Information Content metric for semantic
similarity in WordNet (Seco, Veale & Hayes, 2004). In
this approach, similarity between concepts is calculated
using the hierarchical structure in WordNet: the seman-
tic similarity between nouns is taken to correspond to the
ratio of the amount of intrinsic information in the two
nouns’ most specific common abstraction in the Word-
Net ontology to the amount of intrinsic information in
the two nouns themselves. For example, film and mag-
azine have similarity of 0.74 with this metric by virtue
of the fact that that they both have medium as a super-
ordinate category, while newspaper and magazine have
similarity of 0.92 by virtue of the fact that that they
both have public press as a superordinate category. In
the latter case the similarity score is higher because pub-
lic press is a more specific category than medium is.

Performance of the model To test the performance
of the model, we used the model to compute new rela-
tion vectors for each of the 384 items in our experiment.
In computing the relation vector for each compound, the
compound in question was excluded from S, the data-
base of known compounds already plotted in the relation
space. (there were therefore 383 terms in the numerator
and denominator of the model’s formula). For the full 19
dimensional space, there was a high agreement between
the computed vector and the human ratings (across all
384 items × 19 relation categories, r = 0.58, p < 0.001,
N = 7296, optimal value of α = 10). Using the 6 dimen-
sional, PCA-generated relation space, the agreement was
also respectable (r = 0.44, p < 0.001, N = 2304, optimal
value of α = 8.5). An example of the model’s predictions
for the items steam boat and billiards room are presented
in Figures 1 and 2, respectively.

Ease and rapidity of interpretation

Previous studies (e.g. Gagné & Shoben, 1997; Wis-
niewski & Murphy, 2005) have investigated what influ-
ences the ease and rapidity with which noun-noun com-
pounds can be interpreted by experimental participants.
These experiments typically consist of participants mak-
ing sense-nonsense judgements about a set of compounds
(and an equal-sized set of nonsense fillers) and reaction

Figure 2: The model’s performance for the compound
billiards room

times being recorded. The CARIN model proposed by
Gagné and Shoben (1997) posits that the ease and ra-
pidity with which a compound can be interpreted, as
measured by reaction time, depends on the availability
of the various thematic relations for the modifier of that
compound. In particular, the CARIN model predicts
that reaction times should be quickest when the com-
pound is interpreted using a thematic relation that is
often associated with that compound’s modifier. For ex-
ample, the CARIN theory predicts that the compound
mountain stream, which is interpreted with the location
thematic relation, should be interpreted easily, as the
modifier mountain is often associated with the location
relation (in compounds such as mountain cabin, moun-
tain trail, mountain goat, etc.). Conversely, the theory
predicts that mountain magazine will be more difficult
to interpret as the about thematic relation is rarely as-
sociated with the modifier mountain.

The framework that we have proposed for representing
the meaning of compounds differs considerably from the
representations assumed by the CARIN model. In that
model, compound meaning is represented by the simple
assignment of one of 16 thematic relation categories to
the compound. The approach we have proposed in this
paper allows for potentially infinite variation in com-
pound meaning (corresponding to the infinite number
of points in the relation space). Furthermore, our rep-
resentational framework allows for a graded measure of
relation similarity: that two compounds such as propane
stove and gas lamp are interpreted in very similar ways
is captured in our approach by the fact that the points
for these compounds are relatively close to each other in
the relation space.

We use the distribution of the relation vectors in the
relation space database to predict reaction time in our
model. For example, in our framework, cases such as
mountain stream should be easy to interpret not because
the same thematic relation is used most often for com-
pounds with the modifier mountain, but because com-
pounds with modifiers semantically similar to mountain
tend to have similar relations (that is, relations that are
close in the space). Cases such as mountain magazine
should be difficult to interpret not because the same the-
matic relation is used very infrequently for compounds
with mountain, but because compounds with modifiers
with high semantic similarity to mountain tend to be
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interpreted with relations that are very different (i.e. in
a different region of the space) compared to the relation
used to interpret mountain magazine. Following the ev-
idence (e.g. Gagné & Shoben, 1997) that it is the modi-
fier and not the head that primarily determines reaction
time, we can hypothesize that the compound interpre-
tation process begins with the retrieval of known com-
pounds which have modifiers that are the same or very
similar to the modifier of the target compound. Follow-
ing our methodology for modelling relation selection, we
can define a weighted-average of these retrieved modifier-
similar vectors using the formula

~rmsim =

∑
c∈S

sim(m,mc)α · ~rc∑
c∈S

sim(m,mc)α

where, as before, α is a free parameter that scales the
relative importance of concept similarity.

In Gagné and Shoben’s approach, the correct relation
for a compound is known to the reaction time model.
This makes sense: the time taken to interpret a com-
pound depends on how the compound is actually inter-
preted; reaction time is then modelled as being a mea-
sure of how untypical or implausible the correct relation
is for compounds with the given modifier. We follow the
same approach, and assume that the correct relation vec-
tor for a compound is available to our model of interpre-
tation ease. In essence, or model predicts that reaction
time is proportional to the likelihood that the quickly
retrieved, modifier-similar compounds (calculated using
the equation above) will lead to the correct interpreta-
tion.

In a sense-nonsense judgement task, participants need
only minimally interpret the compounds; therefore nu-
ances of interpretation should not effect reaction times.
In our representation, that a sensible compound has
some meaningful interpretation is represented by the
fact that its relation vector has a high value on at least
one dimension. Our model therefore takes the highest
component in the known, correct relation vector for the
compound and examines the relative strength of that
component in the weighed average of the highly modifier-
similar relation vectors retrieved at the beginning of the
interpretation process.

Performance of the model To test this model, we
used the RT data from Gagné and Shoben (1997) Ex-
periment 1. In that experiment, 45 of the 57 items have
a noun in the modifier position; these items were rated
on the 19 relation dimensions by the first author, in the
manner described above for the main corpus study. The
weighted average vector for the modifier-similar com-
pounds was then calculated. For each compound, the
highest rated component was extracted and the value of
this component on the weighted average of the modifier-
similar retrieved vectors was used as the statistic of in-
terest. We found that the correlation of this statistic
improved as α increased towards infinity (though the
correlation was significant for all α’s above 11). As α

approaches infinity, the weighted average equation be-
comes

~rmsim =

∑
c∈Sm

~rc

|Sm|

where Sm denotes the small (typically one or two ele-
ments) subset of the relation space database which have
maximal modifier-similarity to m.

This version of the model yields the best success in pre-
dicting the reaction times from Gagné & Shoben (1997),
Experiment 1 (r = −0.40, p < 0.01, N = 45). If the pre-
dictor statistic is taken to be the rank of the highest com-
ponent in the correct vector amongst the components of
the modifier-similar average vector, then the correlation
improves (r = 0.47, p < 0.01, N = 45), which is compa-
rable to the CARIN model’s performance over the same
items (r = 0.47). Using the rank rather than the ab-
solute strength can be motivated psychologically if one
assumes that people use the retrieved modifier-similar re-
lations to direct their search for plausible relations. For
example, if the rank is three then this means that there
are two more plausible regions in the space that need to
be examined before the correct region is considered; if
the rank is four there are three regions in the space that
need to be considered first, and so on. In this view, re-
trieving the meanings of known compounds with similar
modifiers at the start of the interpretation process is a
kind of heuristic people employ to direct their search for
plausible interpretations.

A version of the above model which uses the sum of
head and modifier similarity (rather than modifier sim-
ilarity alone) does not give significant correlations for
any value of α. This is interesting as it supports one of
the key tenets of the CARIN model: ease or rapidity of
compound comprehension depends on how relations are
associated with the modifier but not on how relations are
associated with the head noun. The current work there-
fore suggests that this finding is robust with respect to
both the choice of relation representation and choice of
corpus database used.

Intrinsic relation complexity Both the CARIN
model and our model of reaction time assume that ease
or rapidity of compound interpretation depends on how
relations are distributed amongst previously experienced
modifiers. This approach assumes that there is no intrin-
sic difference between different types of relations: differ-
ent types of relations are equally easy to interpret if the
relation distribution patterns are the same. Our relation
space representation for relations allows us to investigate
intrinsic differences in relations however; we can investi-
gate whether compounds located in some regions of the
relation space take longer to comprehend than others.
To investigate this possibility, we calculated correlations
between RT and the values on each of the 19 dimen-
sions across the 45 items. The two lowest correlations
with RT were for the M LOCATION IS H and H HAS
M dimensions (r = −0.31 & r = −0.20, respectively).
That compounds with high values on these dimensions
are easy to interpret seems sensible; these relations are

188



indeed intuitively simple. The two highest correlations
were for the H CAUSES M and H MAKES M dimen-
sions (r = 0.20 & r = 0.25, respectively). Again, that
compounds with high values on these dimensions tend
to be difficult to interpret is sensible; these types of rela-
tions may require more causal links or the construction
of more complex scenarios in order to be interpreted
fully. We therefore hypothesize that intrinsic informa-
tion about the meaning and complexity of relations, as
well as experience about how relations are instantiated
for already-known compounds, may be important infor-
mation to the question of conceptual combination. In
any case, these correlations between dimension scores
and reaction times offer further evidence that relations
have an intrinsic complexity that cannot be captured by
simple slot-value or taxonomy views of relation meaning.

Conclusion

In this paper, we have presented a new methodology
for representing the relations instantiated between the
two concepts of a noun-noun compound. Hypothesizing
that these relations have a complex internal semantic
structure, we represent them in a manner analogous to
how concepts themselves are represented in the classi-
fication learning literature. Following these approaches,
we represent compound meanings as exemplars in a high
dimensional semantic relation space.

In our model of compound interpretation, we have
shown how knowledge of known, familiar compounds in-
fluence the interpretation of new compounds. Such an
approach is intuitively sensible; an interpretation of a
compound will only be plausible if it is consistent with
how concepts are known to combine in the world (which
is knowledge inherent in our database of known com-
pound interpretations). The value of α is relatively low
(8.5 for the 6-dimensional relation space) in this model
therefore, as plausibility is a function of total world
knowledge. Our model of ease and rapidity of interpre-
tation assumes that people begin the process of inter-
preting a compound by first retrieving a relatively small
set of known compounds which have modifiers with very
high similarity to the modifier of the target compound.
The value of α is relatively high in this model (and op-
timal at infinity) because retrieval begins with the most
similar modifiers possible. It is important to point out
that there is no contradiction in these two approaches.
Our models suggest that people retrieve highly modifier-
similar compounds as a kind of heuristic employed to find
the region of the relation space that is most likely to
contain the correct, most plausible relation for the com-
pound. However, our model of compound interpretation
suggests that the most plausible meaning of a compound
is determined not by the contribution of the modifier
alone but by modifier and head together; it is therefore
possible that the initial modifier-similar retrieved rela-
tions do not lead to a plausible interpretation and in
such cases the search for a plausible interpretation must
continue by retrieving more, less similar, modifiers. The
CARIN model, on the other hand, has no mechanism
for modelling how the actual interpretation of a com-

pound is found; for example, it predicts correctly that
the reaction time for mountain magazine should be long
(because the most likely relation is incorrect), but does
not explain how the correct, unlikely about relation is
actually reached. However, the CARIN model is not
inconsistent with the principle that both head and mod-
ifier may be important in judging the plausibility of a
candidate interpretation. In future work, we hope to de-
velop a more detailed computational model of conceptual
combination that searches for plausible interpretations of
compounds using the similar modifier retrieval heuristic
that we have posited in this paper.
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Gagné, C. L., & Shoben, E. J. (1997). Influence of the-
matic relations on the comprehension of modifier-noun
combinations. Journal of Experimental Psychology:
Learning, Memory & Cognition, 23(1), 71–87.

Keane, M.T. & Costello, F. J. (1997). Where do “Soccer
Moms” Come From?: Cognitive Constraints on Noun-
Noun Compounding in English. Proceedings of MIND
II. Dublin: Dublin City University.

Kruschke, J. K. (1992). ALCOVE: An exemplar-based
connectionist model of category learning. Psychologi-
cal Review, 99, 22-44.

Levi, J. N. (1978). The Syntax and Semantics of Com-
plex Nominals. New York: Academic Press.

Nosofsky, R. (1984). Choice, Similarity, and the Context
Theory of Classification Psychological Review, 85(3),
207-238.

Seco, N., Veale, T. & Hayes, J. (2004). An Intrinsic
Information Content Metric for Semantic Similarity
in WordNet. In the Proceedings of ECAI’2004, the
16th European Conference on Artificial Intelligence.
Valencia, Spain.

Smith, E., Osherson, D., Rips, L., and Keane, M.
(1988) Combining prototypes: A selective modifica-
tion model. Cognitive Science, 12, 485-527.

Wisniewski, E. J., & Murphy, G. L. (2005). Frequency
of relation type as a determinant of conceptual com-
bination: A reanalysis. Journal of Experimental Psy-
chology Learning, Memory, & Cognition, 31, 169-174.

189




