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Conceptual risk assessment of
mosquito population modification
gene-drive systems to control
malaria transmission: preliminary
hazards list workshops
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Gregory C. Lanzaro1, John M. Marshall4 and Anthony A. James5*
1Vector Genetics Laboratory, University of California, Davis, Davis, CA, United States, 2W. Harry Feinstone
Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Malaria
Research Institute, Johns Hopkins University, Baltimore, MD, United States, 3Department of Cell and
Developmental Biology, University of California, San Diego, San Diego, CA, United States, 4Divisions of
Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, Berkeley, CA,
United States, 5Departments of Microbiology and Molecular Genetics and Molecular Biology and
Biochemistry, University of California, Irvine, Irvine, CA, United States

The field-testing and eventual adoption of genetically-engineered mosquitoes
(GEMs) to control vector-borne pathogen transmission will require themmeeting
safety criteria specified by regulatory authorities in regions where the technology
is being considered for use and other locales that might be impacted. Preliminary
risk considerations by researchers and developers may be useful for planning the
baseline data collection and field research used to address the anticipated safety
concerns. Part of this process is to identify potential hazards (defined as the
inherent ability of an entity to cause harm) and their harms, and then chart the
pathways to harm and evaluate their probability as part of a risk assessment. The
University of California Malaria Initiative (UCMI) participated in a series of
workshops held to identify potential hazards specific to mosquito population
modification strains carrying gene-drive systems coupled to anti-parasite effector
genes and their use in a hypothetical island field trial. The hazards identified were
placed within the broader context of previous efforts discussed in the scientific
literature. Five risk areas were considered i) pathogens, infections and diseases,
and the impacts of GEMs on human and animal health, ii) invasiveness and
persistence of GEMs, and interactions of GEMs with target organisms, iii)
interactions of GEMs with non-target organisms including horizontal gene
transfer, iv) impacts of techniques used for the management of GEMs and v)
evolutionary and stability considerations. A preliminary hazards list (PHL) was
developed and is made available here. This PHL is useful for internal project
risk evaluation and is available to regulators at prospective field sites. UCMI project
scientists affirm that the subsequent processes associated with the
comprehensive risk assessment for the application of this technology should
be driven by the stakeholders at the proposed field site and areas that could be
affected by this intervention strategy.
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Introduction

Advances in the development of genetically-engineered
mosquitoes (GEMs) to control transmission of malaria parasites
has stimulated work to define pathways from discovery through
development to delivery (Carballar-Lejarazú and James, 2017).
Identifying these pathways is work in progress and the science is
outpacing community-based efforts to certify best practices. As a
consequence, investigators, scientific advisory groups and potential
stakeholders have offered analyses of challenges and issued
guidelines for moving the science forward (Benedict et al., 2014;
Wilson et al., 2015; National Academies of Sciences Engineering and
Medicine, 2016; James et al., 2018). A common guiding principle is
that the work be done in a step-wise, phased fashion during which
specific criteria must be met before advancing from one phase to the
next. The UCMI program applies a relationship-based model that
goes further and argues that many of the criteria defined for each
research phase should be determined by the end-user groups
considering the application of the technology (Kormos et al.,
2021; see also; National Research Council, 1983). An early
framework for testing GEMs proposed by the World Health
Organization (WHO) specified four phases: Phase 1 tests are
discovery stages confined physically to laboratories and
insectaries; Phase 2 studies move the strains to development and
are carried out in small-scale physically- and/or ecologically-
contained field tests; Phase 3 continues development in a series
of open release trials that increase in size, length and complexity at
one or more sites; and Phase 4 moves the technology to wider
application as a malaria control tool in the delivery stage (James
et al., 2010). Specific GEM strains are evaluated and subjected to
rigorous ‘go/no-go’ criteria in each Phase. Subsequent efforts
acknowledged special challenges posed by GEMs carrying gene-
drive systems (National Academies of Sciences Engineering and
Medicine, 2016; James et al., 2018).

As part of the phased evaluation, field-testing and eventual
adoption of GEMs will require them meeting rigorous safety
criteria along with demonstrations of efficacy, stability, cost-
effectiveness and community acceptance. Many of the evaluation
criteria are elaborated in the context of a target product profile
(TPP), which lists ideal characteristics and minimally-acceptable
thresholds defined specifically to assist go/no-go decision-making
(Carballar-Lejarazú and James, 2017). Preliminary risk
consideration is crucial in any pathway that ultimately certifies
safety.

The UCMI program follows the recommendedWHO guidelines
and is currently in the beginning stages of Phase 2, which includes
baseline data studies and evaluation at field sites in direct
partnership with local scientists and stakeholders. The
preliminary consideration of potential risks described here may
be useful for field-site authorities in their defining a regulatory
pathway and in weighing risks and benefits that should be addressed
in a TPP.

Risk assessment has been characterized as a four-step process
that includes hazard identification, dose-response assessment,
exposure assessment and risk characterization (NRC, 2009). This
approach was adopted by the US Environmental Protection Agency
(EPA) and details developed on possible ways to conduct it (Norton
et al., 1992; EPA, 2000; Raybould, 2006; Ankley et al., 2010; Wolt

et al., 2010; Devos et al., 2019). Part of the process is to identify
potential harms, pathways to harm and the hazards they pose. These
terms have been defined in multiple contexts and as used here,
‘harm’ is a detrimental outcome of an event or activity and ‘hazard’ is
an event, condition or activity with the potential to cause harm
(Benedict et al., 2008).

A series of workshops was held to develop a preliminary hazards
list (PHL) specific to somemosquito populationmodification strains
and their use in a hypothetical island field trial. Population
modification strategies seek to introduce into a target mosquito
species one or more genes or alternative alleles that confer resistance
or refractoriness to the parasites (Carballar-Lejarazú and James,
2017). These anti-parasite effector genes present at sufficient
frequencies in the vector population should lower parasite
transmission to a level that results in reduced morbidity and
mortality. While no specific intervention product was defined
during the workshops, the general properties of the envisioned
strains are those engineered genetically to carry an autonomous
gene-drive system linked to one or more genes that interfere with
parasite development in the mosquito and therefore eliminate or
reduce pathogen transmission by the vector to its human hosts. The
engineered and introduced DNA would be similar conceptually to
that of the Cas9/guide RNA (gRNA)-based, autonomous gene-drive
system coupled to anti-parasite effector genes currently under
development (Carballar-Lejarazú et al., 2020; Carballar-Lejarazú
et al., 2023). The effector genes are constructed using
endogenously derived cis-acting control (promoter and enhancer)
DNA to determine when, where and how much of the effector-gene
product is made. Specific activation of the gene-drive system is
achieved using well-characterized gene promoter and control DNA
sequences to express the Cas9 nuclease in the pre-meiotic germline
of both male and female mosquitoes along with a ubiquitously- and
constitutively-expressed gRNA (Carballar-Lejarazú et al., 2020;
Carballar-Lejarazú et al., 2023). Activity of the gene-drive system
results in the conversion of hemizygous gene-drive germline cells to
homozygotes.

The initial field trial scenario envisages a small-scale release on
an island where there is minimal human traffic and transport of
goods that may harbor mosquitoes to an adjacent mainland area
(Lanzaro et al., 2021). One such island nation meeting these criteria
is the Democratic Republic of São Tomé and Príncipe (STP), where
the UCMI program has been working since 2019. The prospective
target organism is Anopheles coluzzii, an efficient vector of human
malaria parasites. We present here a preliminary PHL relevant to an
initial, island-based, field-release strategy and make it available for
the next steps in charting possible pathways to harm.

Methods

Gene-drive nomenclature

The following nomenclature is adopted from previous work by
the authors and others. Gene drive is any natural or synthetic
phenomenon that results in the distortion of the inheritance ratios
following meiosis in a diploid organism. Gene drive is used most-
commonly to refer to circumstances in which one of a pair of
alternative forms of a gene (alleles) in a heterozygous parent is
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inherited preferentially by its offspring (James, 2005). A gene-drive
mechanism is the underlying biology that results in the observed
inheritance distortion, an example of which includes the now
widely used Cas9/gRNA technology (Macias et al., 2017;
Bottino-Rojas and James, 2022). A gene-drive system is the
final synthetic gene drive-inducing genetic construct based on
one or more of the naturally occurring or synthetic mechanisms
(James, 2005).

Workshops

A series of six online workshops facilitated by the Foundation
for the National Institutes of Health (FNIH) was carried out during
August-September 2020. The first four included the UCMI
researchers from University of California (UC) campuses
(Berkeley, Davis, Irvine and San Diego) and Johns Hopkins
University (JHU), and Transmission Zero, a Bill and Melinda
Gates-funded initiative at Imperial College, London. Experts from
the Commonwealth Scientific and Industrial Research Organisation
(CSIRO) assisted FNIH personnel in guiding the participants in the
process of developing and formatting a PHL and acted as guest
observers. Following this, the UCMI scientists participated in two
additional FNIH/CSIRO-facilitated online workshops that focused
on summarizing the outcomes of the larger, previous workshops and
reviewed the outcomes in the context of hypothetical hazards
associated with gene-drive modified mosquitoes identified in the
literature. UCMI participant expertise included working knowledge
of vector transmission and molecular genetics, genetic and
epidemiological modeling, mosquito population biology and
genetics and community engagement. The outcomes of these
efforts are presented in full in a CSIRO report available on the
UCMI website (stopmalaria.org) and this contribution summarizes
the development of the PHL.

Literature review

Hypothetical GEM hazards available in the literature reviewed at
the time of the workshops (2021) were derived from three sources, 1)
biosafety regulations of relevant individual authorities (for example,
The Royal Society, 1983; Norton et al., 1992; Environmental
Protection Agency (EPA), 2000; Hayes et al., 2015; Hayes et al.,
2020), 2) documents produced by respected international or
national organizations including the WHO (WHO-TDR, 2014),
Secretariat to the United Convention on Biological Diversity
(UNEP/CBD, 2016), National Academy of Sciences, Engineering
and Medicine (NASEM, 2016), European Food Safety Authority
(EFSA, 2013; EFSA, 2020) and Australian Academy of Sciences
(AAS, 2017) and 3) the views of individual or groups of scientists,
published as proceedings of workshops or in “self-governance”
documents (Higgs, 2003; Benedict et al., 2008; James et al., 2010;
David et al., 2013; Roberts et al., 2017; Hayes et al., 2018; James et al.,
2018; James et al., 2020; Rode et al., 2019; Teem et al., 2019; Romeis
et al., 2020). All documents in the last two groups were reviewed by
workshop participants and the hazards and issues identified within
them discussed. Additional resources not considered or appearing
after the workshops are listed following the References.

Results and discussion

All hazards and issues identified in the literature review were
categorized initially into one of the seven ‘areas of risk’ defined by
EFSA: ‘1) persistence and invasiveness of the GM animal, including
vertical gene transfer (VGT), 2) horizontal gene transfer, 3)
interactions of the GM animal with target organisms, 4)
interactions of the GM animal with non-target organisms (NTOs),
5) environmental impacts of the specific techniques used for the
management of the GM animal, 6) impacts of the GM animal on
biogeochemical processes and 7) impacts of the GM animal on human
and animal health’ (EFSA, 2013). An eighth risk area, designated
‘Evolutionary and stability considerations’ was added by workshop
participants to accommodate issues raised in the literature that
were deemed sufficiently different to warrant independent
consideration. Overlaps among the hazards in the EFSA risk
areas were identified and these were consolidated to produce
five categories 1) pathogens, infections and diseases, and the
impacts of GEMs on human and animal health, 2) invasiveness
and persistence of GEM insects, and interactions of GEMs with
target organisms, 3) interactions of GEMs with non-target
organisms including horizontal gene transfer, 4) impacts of
techniques used for the management of GEMs and 5)
evolutionary and stability considerations. Hazards identified in
all five areas belong to two general categories, those that arise as a
consequence of the insertion and/or expression of the gene-drive
system in the mosquitoes (‘off-target’ effects) and those that occur
as a result of the presence and/or utilization of the GEMs (‘non-
target’ effects) with some potential hazards overlapping both
categories. Twenty-five potential hazards from the five
aggregated risk areas were identified (Table 1) and their
potential for generating harm (adverse effects) are discussed
here in detail.

Pathogens, infections and diseases and
human and animal health

Hazard 1: Gene-drive system insertion and expression and the
use of the GEM strains in the field may impact vectorial capacity or
vector competence for the target pathogen (malaria parasite) or
other non-target pathogens. Pathogens, infections and diseases
adversely impact both human and animal health with
considerable overlap in potential hazards. An increase in vector
competence or vectorial capacity could affect either vertebrate host
group. Using the Ross-MacDonald model for malaria transmission
as an example to predict impacts on humans, increases in human
malaria incidence could result from an increase in the post-release
abundance of the vector that changes the vector-to-host ratio within
a defined region or an increase in GEM vectorial capacity or vector
competence as compared to their wild-type counterparts (Smith
et al., 2012; Rainer, et al., 2013). The hypothetical scenario of
releasing a population modification strain on an island could
involve release of only males at ratios between 1% and 10% of
the wild-type male population. These ratios are based on the
performance of gene-drive systems in anophelines in small
laboratory cage trials (Gantz et al., 2015; Pham et al., 2019;
Adolfi et al., 2020; Carballar-Lejarazú et al., 2020; Carballar-
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TABLE 1 Preliminary hazard list (PHL) for a gene drive- and island-based population modification field trial.

Area of risk Potential hazard

Pathogens, Infections and Diseases and Human and Animal Health 1 Insertion and/or expression of the gene-drive system in mosquitoes or the presence and/or
utilization of the genetically-engineered mosquitoes (GEMs) in the field causes an increase in the
vectorial capacity or vector competence for the target pathogen (malaria parasite) or other non-
target pathogens

2 Insertion and/or expression of the gene-drive system selects for the emergence of target pathogens
with increased virulence, possibly through the development of resistance to modified physiological
mechanisms in the mosquito vector, resulting in a population of pathogens that may be transmitted
more efficiently

3 Insertion and/or expression of the gene-drive system causes reduced fitness in the GEMs resulting
in an increase in the abundance of other disease-transmitting insects through pathways such as
niche replacement or competitive release of another disease vector

4 Presence and/or utilization of the GEMs results in the introduction of new pathogens into the
receiving environment, including into areas where a non-GEM comparator is not present

5 Insertion and/or expression of the gene-drive system causes physiological or behavioral differences
in the GEMs that effect nuisance impacts, such as increased human biting rate

6 Insertion and/or expression of the gene-drive system causes transmission of toxic or allergenic
substances (related to the components of an engineered gene drive) either directly by biting, or
indirectly by exposure from such substances released into the environment (for example, incidental
exposure through inhalation or ingestion)

7 Presence and/or utilization of the GEMs results in successful reduction and a prolonged period of
low incidence of the parasite that may result in loss of immunity in human populations, requiring
reliance on continued long-term positive effects of vector modification strategies to avoid
resurgence of disease

Invasiveness and persistence of GEMs and Interactions of GEMs with
target organisms

8 Insertion and/or expression of the gene-drive system causes unintentional genetic or behavioral
changes that might decrease susceptibility to control (or surveillance) measures such as insecticides
and attractants

9 Insertion and/or expression of the gene-drive system causes changes in mosquito population
parameters, fitness or behavior (e.g., altered larval competition or accelerated maturation) that may
advantage GEMs as compared to the wild type, causing increased persistence and invasiveness, and
possibly leading to the displacement of other insect species

10 Long term gene-drive system expression results in a reduction in the efficacy of the GEM-mediated
trait that may result in harm

11 Insertion and/or expression of the gene-drive system causes changes in interactions with the target
organisms arising from an altered genetic diversity of a reared GEM population that may result in
harm

12 Long-term utilization results in failure to achieve the quality or number of released GEM needed
for intended vector or disease outcomes

Interactions of GEMs with non-target organisms, including
horizontal gene transfer

13 Presence and/or utilization of the GEMs results in harms to insectivorous vertebrates due to toxins
or allergens associated with the GEM

14 Presence and/or utilization of the GEMs results in change in the abundance or species composition
of pollinators and the pollination service they provide, or changes in other ecosystem services such
as decomposition of organic matter, nutrient cycling, water regulation and purification (e.g.,
reduced larval consumption of algae causing levels of algae to increase and their associated toxins
produced from algal bloom)

15 Presence and/or utilization of the GEMs results in reductions in the abundance (or composition) of
species of ecological, economic, cultural and/or social importance through competitive release if
the GEM population is reduced, or from trophic consequences of species that rely on mosquitoes
for food at specific times of the year

16 Presence and/or utilization of the GEMs results in harm to the reproduction of non-target
organisms through sterility or mutation

17 Presence and/or utilization of the GEMs results in potential harms arising from the exchange of
genetic information between GEMs and symbionts/parasites associated with them

Impacts of techniques used for the management of GEMs 18 Long-term utilization results in changes in resource usage and waste production of GEM
production facilities

(Continued on following page)
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Lejarazú et al., 2023). Since male mosquitoes do not bite, their
release should have no direct effect on the vector-host ratio as only
females transmit pathogens. However, sex-separation procedures
are not 100% effective and a small percentage (conservatively
5%, ≤0.5% of total mosquito population for a 1:10 release) of the
released mosquitoes may be females. This in theory could lead to a
temporary increase in pathogen transmission, but the magnitude of
this effect could be mitigated using laboratory biosafety procedures
designed to ensure that all released cohorts are free of any human or
animal pathogens (population modification females are designed to
be resistant to infection by the targeted pathogen). Furthermore,
density-dependent larval mortality is expected to cause the
population of adult female mosquitoes to equilibrate within a few
reproductive cycles, although such effects are difficult to measure
given the stochasticity of mosquito populations in the field.

There is currently no evidence to indicate that previous genetic
modification has increased GEM vector competence for target or
non-target pathogens (Pike et al., 2017). However, the release strains
can be designed to mitigate this by careful selection of the gene
drive-system chromosomal target locus to avoid disrupting any gene
known to affect vector competence and any changes can be tested in
the laboratory with parasite challenge assays. These tests will only be
considered if there is an expectation that the expression of the novel
genes or insertion sites of the modification impact some intrinsic
feature of the competence of the mosquito for non-target pathogens.
Indirect effects on vectorial capacity parameters due to changes in
the microbiome of GEMs could occur but it is difficult to envision
how this would lead to an increase in vectorial capacity compared to
wild-type mosquitoes. Nonetheless, it would be possible to test all
circulating pathogens that could be vectored by anopheline
mosquitos at a given release site (see below) to compare the
vector capacity of resident mosquitos to their closely-related
gene-drive counterparts.

Changes in vector competence or vectorial capacity parameters
for the target pathogen are unlikely as the design of the gene-drive
system is to introduce anti-parasite effector genes. The principal

pathogen target of the potential gene-drive system mosquitoes is the
human malaria parasite, Plasmodium falciparum. However, there
are three other significant species, Plasmodium vivax, Plasmodium
ovale and Plasmodium malariae, that cause disease in humans and
both P. vivax and P. ovale are found rarely in STP (WHO, 2022).

Anopheline mosquitoes are known to transmit pathogens that
cause diseases other than malaria, therefore it is important to
consider other human and animal non-target pathogens that may
be present in the release site and areas into which the mosquitoes are
predicted to spread, as well as any pathogens of concern identified by
stakeholders or regulators. For example, mosquitoes in the An.
gambiae complex can transmit seven other human or animal
pathogens, Bwamba virus, lymphatic filariasis, Ngari virus,
o’nyong virus, Rickettsia felis, Rift Valley fever virus and
Tataguine virus (Hayes et al., 2020). Searches of a published
materials database failed to identify any reports of Bwamba,
Ngari, o’nyong or Tataguine viruses in STP (PubMed [nih.gov]).
Lymphatic filariasis has been recorded there (transmitted also by
Culex quinquefasciatus), as well as R. felis in animals (Ruiz et al.,
1994; Sabatinelli et al., 1994; Fan et al., 2013; Roger et al., 2014; Tsai
et al., 2020). While the arboviruses causing dengue and chikungunya
fever also have been detected, these are not transmitted by
anopheline mosquitoes (Sang et al., 2008; Dellagi et al., 2016;
Yen et al., 2016).

Hazard 2: Changes in parasite virulence in the host may occur
through increased transmission (greater infectivity to the host at the
liver stage) or through increased disease (causing more severe and
damaging illness/disease). An increase in virulence also may result
from greater parasite loads (intensities of infection) in either the
mosquito or human hosts or increased percentages of parasites
successfully negotiating the host-specific developmental transitions.
However, increases in parasite load in the context of natural
environments could lead to greater fitness costs to the parasite,
which should limit the degree of such hypothetical increases in
parasite burden in the mosquito vector. Plasmodium falciparum has
~6,000 annotated genes and the mosquito stages that are targeted by

TABLE 1 (Continued) Preliminary hazard list (PHL) for a gene drive- and island-based population modification field trial.

Area of risk Potential hazard

19 Presence and/or utilization of the GEMs results in potential reductions in conventional vector
control and results in impacts on mosquito population dynamics, humans health and the wider
environment, including altered management and control measures of other (secondary) vector or
pest species that arise as a consequence of the control of the primary vector or pest species

20 Presence and/or utilization of the GEMs results in changes in land management in the receiving
environment (e.g., wetland drainage, irrigation practices), exploitation of environmental resources
or use of different control/recovery systems

21 Long-term utilization results in changes in management responses to reduced efficacy of GEMs

22 Long-term utilization results in changes in program activities at the release site related to mosquito
surveillance and trapping

Evolutionary and stability considerations 23 Long-term utilization while under environmental selection results in changes of the GEM
phenotype, including its marker and other expressed genes, after numerous generations of
propagation

24 Insertion and/or expression of the gene-drive system causes genetic rearrangements or other
mutation at measurable rates

25 Presence and/or utilization of the GEMs results in synergistic genetic interactions and unexpected
phenotypic consequences of multiple “stacked’ transgenic modifications
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the effector genes (ookinetes, oocysts and hemocoel-stage
sporozoites) in the proposed product are not involved in
infecting the human host (Gardner et al., 2002). Hence, an
effector-mediated selective pressure on the parasite is less
unlikely to alter its interactions in the human host. Furthermore,
it is possible that parasites could be selected for resistance to a single
effector gene product, but this will not necessarily result in increased
virulence, and therefore may not pose a hazard above the pre-
existing state. It is important to note that the design proposed for the
mosquitoes strains considered here involves dual effector genes
targeting different aspect of parasite biology, which is expected to
decrease significantly the probability of selecting effector-resistant
parasites (Isaacs et al., 2011; Isaacs et al., 2012; Carballar-Lejarazú
and James, 2017; Carballar-Lejarazú et al., 2023).

Hazard 3: Population modification strategies are designed
deliberately to leave the ecosystem structure largely unchanged
thereby preventing empty niches and potential population
increases of competitive species while also providing on-going
protection against re-establishment of unmodified mosquitoes
(Carballar-Lejarazú and James, 2017). However, genetic
engineering may impose fitness costs that could reduce GEM
competitiveness. This could be overcome with effective gene
drives so that population modification could still occur while the
abundance of the wild-type (non-engineered) target population is
concurrently diminished (Unckless et al., 2015).

Hazard 4: The introduction of new pathogens into the target
environment is unlikely because the genetic modification would be
introduced into the existing wild-type genetic background and
released into a location with endemic wild-type targets of
identical vectoring profiles. Standard insectary operating
procedures can ensure that no pathogens are introduced with the
released strains (Adelman, et al., 2017).

Hazard 5: The workshop participants did not envision any
circumstances in which the introductions of the gene-drive
system would impact any behavior that would result in increased
biting rates.

Hazard 6: The mode-of-action of the leading candidate gene-
drive systems does not involve the production of toxins or
allergenic substances (Carballar-Lejarazú et al., 2023). None of
the effector genes are expressed using salivary gland-specific gene
control sequences and Cas9 transcription is controlled by a germ-
line specific promoter with a high degree of stage- and tissue-
specific expression (Carballar-Lejarazú et al., 2020; Terradas et al.,
2022; Carballar-Lejarazú et al., 2023). While constitutively
expressed or perduring transgene products could be present in
the saliva, the immunogenicity of the prospective core gene-drive
system products was tested in preliminary work in a
demonstration at UC Davis and the results showed no
differences in the bite responses in human volunteers following
exposure to GEM and control unmodified mosquitoes (https://
youtu.be/041t05gchUs).

Hazard 7: Concerns about the loss of acquired, anti-disease
immunity in human hosts are not specific to the GEM strategy
proposed here and are a potential hazard for any successful malaria
intervention strategy, genetic or otherwise. Modelling supports the
conclusion that rapidly reducing exposure to malaria parasites can
reduce disease prevalence in acquired immune populations resulting
in a greater disease burden in later years (Ghani et al., 2009).

However, there is no evidence to date of this hazard occurring in
practice with all current applied transmission-blocking and disease-
mitigation technologies including insecticide treated nets, indoor
residual spraying and malaria mass-drug treatments (Pryce et al.,
2018; Kigozi, et al., 2020). In addition, the prospective release site
islands, São Tomé and Príncipe, are hypo-endemic for malaria,
which may mitigate a potential ‘rebound effect’ (Wang et al., 2022;
WHO, 2022).

Invasiveness and persistence of GEMs and
interactions of GEMs with target organisms

It is important to note that the laboratory-developed GEMs do
not ‘invade’ and ‘persist’. It is the gene-drive system that moves into
the indigenous wild-type genetic background through mating, and
its persistence is a beneficial design feature that provides a
sustainable control option that potentially removes the need for
continual interventions even in the face of re-introduction of wild-
type mosquitoes.

Hazard 8: It is difficult to imagine how the insertion and/or
expression of the gene-drive system components could lead to
unintentional genetic or behavioral changes that would allow
GEMs to evade existing control and surveillance methods. Any
significant changes would be evident in the early, pre-release Phase
testing and represent a ‘no-go’ decision as they would likely prevent
the GEMs from being competitive with their wild-type target
population and would lead to their extinction.

The probability of enhanced insecticide resistance in the GEMs
as compared to wild-type mosquitoes is unlikely because the gene-
drive system moves into the target population and would have
resistance profiles similar to them. Concerns about a ‘hitch-hiking’
effect, where a non-native resistance genotype accompanies the
gene-drive system, can be mitigated by ensuring in Phase
1 testing that the GEMs do not carry any resistance-conferring
alleles. Any Cas9-induced off-target mutations to specific codons,
such as those in the voltage gated sodium channel (Vgsc) gene,
resulting in knock-down resistance (kdr) to pyrethroids (Martinez-
Torres et al., 1998), would be lower than spontaneous mutation rates
estimated to be 1.00 × 10−9/base pair/replication in An. coluzzii
(Rashid et al., 2022). Laboratory analyses of transgenic mosquitoes
carrying effector genes confirmed this conclusion and showed no
changes in insecticide-resistance phenotypes (Pike et al., 2017).
However, as discussed, laboratory tests for enhanced insecticide
resistance may be a procedural requirement in the development of
the TPP imposed by biosafety authorities when permitting the
importation or release of GEMs.

Hazard 9: The development of multiple Cas9/gRNA-based
population modification gene-drive systems and strains has
informed the discussion on the impact of these newly introduced
genes on the mosquitoes carrying them. Discussions of genetic loads
and resulting effects on fitness have long been a part of the insect
transgenesis literature and researchers in diverse disciplines
(ecology, genetics, physiology and molecular biology) often have
contributed differing opinions on their potential impact, based in
some cases on empirical measurements (Catteruccia et al., 2003;
Marrelli et al., 2006; Amenya et al., 2010; Isaacs et al., 2011; Pham
et al., 2019). Evaluating gene-drive system loads and fitness costs is
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key in their phased development pathway (Carballar-Lejarazú et al.,
2020; Carballar-Lejarazú et al., 2023). Epidemiologically meaningful
descriptions of fitness can only be obtained from field trials in which
GEMs are placed in the natural environment.

Transgene-imposed loads and ensuing fitness costs can result
from two effects, the direct consequences of the gene-drive system
integration in the genome (insertion/position effects) and those that
result from the expression of the components of the system
(expression effects). The insertion event is mutagenic, it disrupts
the DNA at the site of integration, and depending upon where it
inserts, may affect the gene into which it inserts or genes linked
closely enough to be affected by changes in DNA architecture. The
introduction of enhancer and promoter DNA sequences that can
interact among themselves or with other nearby regulatory
sequences may result in chromatin rearrangements. One notable
example of an insertion effect was observed following the disruption
of both copies of the kynurenine-white (khw) gene in the Indo-
Pakistan vector, An. Stephensi (Gantz et al., 2015; Pham et al., 2019).
The enzyme encoded by this gene has an important role in
tryptophan metabolism in adult females following a blood meal
and generates precursors for the formation of eye pigments.
Ablations of both copies of khw resulting from homozygous or
heteroallelic combinations of gene-drive construct insertions or
non-functional alleles generated by non-homologous end-joining
(NHEJ) impose a large and significant fitness cost on females, who
display significantly reduced survival and fecundity following a
bloodmeal (Bottino-Rojas et al., 2022). In this instance, insertion
of recoded kh coding sequences into the gene-drive cassette
eliminated all detectable fitness costs of the drive element once
introduced into a laboratory population (Adolfi et al., 2020).

Expression of novel gene products and ectopic, mistimed or
reduced expression of host-derived gene products also may confer a
load and impact fitness. For example, ablation of the mosquito
FREP1 gene reduces parasite infection intensities but also imposes a
high fitness cost (Dong et al., 2018). Remarkably, a naturally
occurring allelic variant that also shows the anti-parasite effect
does so without apparent fitness costs (Li et al., 2013; Dong
et al., 2018). Furthermore, the expressed transgene products may
induce a physiological imbalance or divert or interfere with
resources needed for normal survival or reproduction (Terenius
et al., 2008). One study showed a GEM strain with an altered mating
behavior due to an effector gene-mediated change in the microbiota,
and this provided a fitness advantage to the GEM (Pike et al., 2017).
Comprehensive metabolomic studies offer opportunities to
investigate these types of impacts (Carballar-Lejarazú et al., 2020;
Horvath et al., 2021).

Empirical tests for measuring transgene loads and fitness
impacts vary, but one potential significant impact would be a
reduction in the mating competitiveness of the engineered
mosquitoes so that natural or directed selection processes lead to
loss of the introduced genes from the population. Here gene drive-
based systems have an interesting competitive advantage. Modeling
efforts predict that while gene-drive systems could impose a
significant fitness cost on an organism, a strong inheritance bias
could overcome this disadvantage (Ribeiro and Kidwell, 1994;
Marshall, 2008; Carballar-Lejarazú et al., 2023). Drives can be
favored if the inheritance bias compensates for the fitness penalty
(Noble et al., 2018). Achieving a balance of these two characteristics

(drive efficiency/fitness) is key to the development of successful
population modification gene-drive systems.

A variety of life-history parameters associated with viability and
vigor (such as life-stage specific mortality rates, adult longevity),
fecundity (number of eggs laid, egg hatching rates) and fertility
(percent of females laying eggs) and mating competitiveness are
evaluated during Phase 1 testing (Carballar-Lejarazú et al., 2020;
2023). GEM fitness can be lower than that of wild-type comparators
due to their relatively rapid adaptation to laboratory conditions and
the reduced genetic diversity of these populations (Catteruccia et al.,
2003). However, the workshop participants also noted that the
microbiome and/or transcriptome of GEMs may be different
from wild-type and this can influence fitness (citing differences
in mating choice in laboratory studies) and noted that competitive
interactions with other species are possible, most likely in the larval
aquatic ecosystems. Nevertheless, any changes to the fitness of
GEMs were thought likely to be modest.

In direct laboratory comparisons between source wild-type
strains and their derivative gene-drive modified strains,
statistically significant differences were found in a number of life-
table parameters of the UCMI prospective strains but the aggregate
genetic load did not affect the overall gene-drive dynamics in
competitive small cage trials with 1:1 ratios of gene-drive system
to wild-type males (Carballar-Lejarazú et al., 2020; Carballar-
Lejarazú et al., 2023). However, the workshop participants
acknowledged that these changes might lead to a small increase
in the vectorial capacity of non-target pathogens by increasing the
vector-to-host ratio in isolated island settings and developed a
conceptual pathway to harm with plausible, hypothetical and
modeled linkages supported by quantitative/semi-quantitative
mechanistic and empirical data (Figure 1). The analysis also
identifies the potentially most-practical, cost-effective and safest
step at which to carry out laboratory or field tests. It was also
noted that fitness differences could lead to an increase in the
vectorial capacity of target pathogens but only when the effector
gene concurrently fails, or pathogen-resistance emerges (Figure 2).

Hazard 10: While failure of the drive or effector molecule
components could cause epidemiological conditions to revert to
previous, pre-release, levels mediated by the existing wild-type
mosquitoes, the participants were unable to identify any
additional harms that may occur following a reduction in the
efficacy of the GEM-mediated traits, aside from the already
mentioned temporary bounce-back in malaria cases mentioned in
Hazard 7.

Hazard 11: The genetic construct would be introduced into the
wild-type genetic background prior to release and is then expected to
spread into the endogenous wild-type genetic background.
Introduction of any other genes responsible for laboratory-
induced phenotypic behavior was considered to be unlikely based
on the mechanistic biology of Cas9-based gene drives, which
mobilize only the drive-system components. Hence the
participants were unable to identify any additional harmful
pathways due to the altered genetic diversity of the GEMs.

Hazard 12: No specific harms were identified arising from not
having the quality or number of released GEM needed to achieve
intended vector or disease outcomes. The consequences of program
failure are shared by all alternative control methods. The gene-drive
system design features are used to mitigate this issue. No difficulty is
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expected in rearing the number of transgenic mosquitoes necessary
for the field trial, and failure of the construct would not result in the
GEMbeing able to transmit malaria better than wild-typemosquitoes.

In addition to these specific hazards, the literature also notes that
changes to the habitat or geographic range of the target population,
including the potential for long-range, trans-boundary dispersal,
and the spread of the genetic construct via gene transfer to sexually
compatible species in the release area, possibly disrupting their
population dynamics, may or may not lead to harmful outcomes.
These areas are the subjects of on-going research.

Interactions of GEMs with non-target
organisms, including horizontal gene
transfer

The literature identifies horizontal gene transfer as a potential
mechanism leading to harm of non-target organisms. This
mechanism was invoked in several of the pathways to harm
identified by the workshop participants, so these two separate
EFSA risks areas (non-target organisms/horizontal transfer) are
combined here.

Hazards 13–16were all deemed to be implausible by the workshop
participants. As noted previously, the construct is not anticipated to
produce toxic or allergenic substances in the mosquito salivary glands
(or elsewhere). Phase 1 trials would have precluded the release of any
strain where the introduction of the construct into wild-type
mosquitoes would have caused any significant change in the
abundance, fitness parameters or behavior of mosquitoes. Reviews
of ecosystems would be required to determine the possible non-target
species that could be affected. Although few surveys exist of the total
species complexity of many locations, a recent book describes
thoroughly the biodiversity of the Gulf of Guinea oceanic islands
that include São Tomé and Principe (Ceríaco et al., 2022).

Hazard 17: The literature highlights the possibility of horizontal
gene transfer (HGT) to micro-organisms, noting that this could be
expected a priori to be more likely than horizontal transfer to other
insects (or eukaryotes more generally). This context raises concerns
that transgenes may contain components that could confer a
selective advantage to micro-organisms with which the GEMs
interact; and that there may be undesirable consequences should
the transgene persist in the ecosystem.

Harmful outcomes due to HGT to prokaryotes or other
eukaryotes, including impacts on the reproduction of non-target

FIGURE 1
Conceptual pathway to harm for the potential hazard: increase in vectorial capacity of GEM for non-target pathogens. Following synthesis and
insertion of the gene-drive construct to produce the genetically engineered mosquito (GEM; top left), transgene expression in the larval or adult stages
may lead to changes in the mosquito transcriptome or microbiome leading to changes in fitness parameters (top center). This may lead to an increase in
GEM vector abundance and alter the vector/host ratio (top right). This could lead to an increase in human or animal morbidity andmortality (bottom
right). Linkages for each step are categorized based on an established mechanistic quantitative or qualitative data (black box) and empirical quantitative
data (red box). The potential most practical, cost effective or safest laboratory or field target for evaluation is shaded in green. Plausible, hypothetical and
model-based linkages are shown with black, white (with question mark) and blue arrows. QSAR are quantitative structure–activity relationship models
used conceptually in evaluating drugs or chemicals but could be adapted here (Kim and Kim, 2015).
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organisms, or other effects following the transfer of genetic
information to the symbionts and parasites associated with GEMs,
were deemed to be implausible for several reasons. A recently
completed intensive review of published materials found evidence
for a few documented examples of HGT between prokaryotes and
eukaryotes supporting the conclusion that this is rare (Wang et al.,
2016). Over evolutionary time frames, HGT fromWolbachia to their
hosts has been documented inAedesmosquitoes (Klasson et al., 2009),
but the team found only one report of HGT occurring in the opposite
direction, that is transfer of latrotoxin genes from spiders to their
bacterial endosymbionts (Zhang et al., 2012; Bing, et al., 2020). Even if
the construct was transferred to prokaryotes, it is highly unlikely to be
functional because the transgene promoters are exogenous, eukaryotic
and highly divergent.

Similar reviews of published materials conducted previously by
CSIRO identified other examples of eukaryote to prokaryote gene
transfer over evolutionary time scales. A number of examples of
apparent HGT from insects to Wolbachia have been reported and
support the hypothesis that this symbiont may have adopted
eukaryotic protein-coding genes (Le et al., 2012; Duplouy et al.,
2013; Gabaldón, 2020).

HGT of transposable elements (TEs) among insect species has
been proposed for a long time based on the non-overlap of insect
evolutionary lineages with the primary structure of families of TEs
(Robertson and MacLeod, 1993; Peccoud et al., 2017). However, it is

only recently with the availability of many insect genome sequences
and the application of analytical software that genes not related to
these self-mobilizing factors have been identified (Soares de Melo
and Wallau GL, 2020; Koutsovoulos et al., 2022; Li et al., 2022).
These HGT events typically occur on timescales of millions of years.
The mechanistic basis for HGT remains unclear although it is
possible that they may ‘hitch-hike’ if integrated into the genomes
of infectious agents such as viruses. Parsimonious hypotheses posit
that such genes should be expected to confer a fitness advantage to
those populations carrying them in order for them to reach fixation.
Whether any of the gene-drive lines under investigation confer such
a benefit is not known. Parasites are thought to pose some burden on
the insects carrying them, but the number of actual infected
mosquitoes in the wild may be too low for this to be a selective
pressure in the short term. Naturally-occurring resistance to malaria
parasite infection has been observed, but it has been argued that it
comes with a fitness cost, and in the absence of a gene-drive system
to spread it and parasite selection pressures to maintain it, it would
be expected to be lost during competition with wild-type insects
(Niaré et al., 2002; Voordouw et al., 2009). We anticipate that HGT
from mosquitoes to any other insect of the population modification
gene-drive systems currently under development would be an
anomalous, low frequency event and be selected against.

Horizontal gene transfer in the Anopheles gambiae species complex:
While this was not identified as a hazard by the workshop

FIGURE 2
Conceptual pathway to harm for the potential hazard: increase in malaria due to emergence of target pathogens with transmission advantage. The
release of the genetically engineered mosquitoes (GEM) imposes selection pressures that lead to the emergence of parasites resistant to the effector
molecules (top left and center). Two outcomes are possible, the first of which produces mosquitoes with no changes in transmission dynamics and
malaria prevalence reverts to pre-release levels (top right). The second outcome results in parasites with an advantage that leads to an increase in
prevalence above pre-release levels (bottom right). Image notations identical to Figure 1.
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participants, it has come up in much of the literature addressing the
extent of spread of gene-drive systems as a consequence of direct
mating between species complex members. The An. gambiae complex
consists of nine sibling species (Barron et al., 2019). Three of these
species, An. gambiae sensu strictu, An. coluzzii and An. arabiensis, are
major vectors of malaria, while the others are either minor vectors or
non-vectors due to their localized distribution or animal feeding
preferences (White et al., 2011). Experimental crosses between An.
gambiae sensu strictu and An. coluzzii result in fertile, viable offspring
with no obvious fitness costs in laboratory settings. Analyses of
hybridization and introgression between An. coluzzii and An.
gambiae in natural populations have demonstrated that hybrids do
suffer reduced fitness (Lee et al., 2013; Hanemaaijer et al., 2018). Rare
episodes in which assortative mating between the two species breaks
down have been observed in the field resulting in hybridization
rates >10% (Lee et al., 2013; Norris et al., 2015; Pombi et al.,
2017). Higher levels have been observed on the western edge of
the species’ distribution (Marsden et al., 2011; Vicente, et al., 2017).
The workshop participants identified An. gambiae sensu strictu and
An. coluzzii as the prospective target species, and due to the efficiency
of the gene-drive systems under development, these may spread into
either of the two species and impact parasite prevalence and intensities
of infection (Carballar-Lejarazú et al., 2023). In two possible island
field sites examined previously, only one of the species is known to
occur, An. coluzzii in STP and An. gambiae s.s in the Comoros
(Brunhes, 1977; Loiseau et al., 2018; Lanzaro et al., 2021). Laboratory
studies confirm introgression of a gene-drive construct from an.
gambiae/An. coluzzii hybrid strain into An. coluzzii but this may
be difficult to achieve in nature due to the observed reduced fitness of
hybrids (Carballar-Lejarazú et al., 2023).

Although there are reports of introgression between An.
gambiae s.s. and An. arabiensis, and they mate readily under
laboratory conditions, the resulting F1 males are sterile
(F1 females are fertile) (Slotman et al., 2004; Slotman et. al.,
2005a; Slotman et. al., 2005b). Subsequent fertility in
backcrosses varies due to incompatible alleles. Anopheles
gambiae/An. arabiensis hybrids in the field are rare (estimated
at less than 0.1%), due likely to a variety of incomplete prezygotic
mating barriers and selection acting against these hybrids (Slotman
et al., 2004; Slotman et. al., 2005a; Slotman et. al., 2005b; Fontaine,
et al., 2015; Pombi et al., 2017). Therefore, transfer of the genetic
construct to An. arabiensis was considered highly unlikely, not
necessarily harmful, and not identified as a plausible pathway to
harm. Importantly, An. arabiensis is not present on the prospective
islands being evaluated by UCMI (Brunhes, 1977; Loiseau et al.,
2018).

Impacts of techniques used for the
management of GEMs

Hazards 18–22: The literature does not identify specific hazards
in this risk area and no pathways to harm were identified by the
workshop participants. The participants noted that there could be
some increase in vector monitoring activities, but parasite
monitoring activities would remain largely unchanged, and the
anticipated reduction in insecticide use (if the trial was
successful) could have positive environmental outcomes.

Evolutionary and stability considerations

Hazard 23: The loss of the phenotype conferred by the
modification, including its marker and other expressed genes,
after numerous generations of propagation while under
environmental selection is possible. The long-term activity of the
drive system in the target population could impair the effector
molecules through mutation or aberrant recombination. We have
Phase 1 long-term cage trials in progress to try and detect this,
although we acknowledge that the chance of occurrence is higher in
large populations. However, any hazard imposed by this would be
similar to any of the other circumstance that could arise from the
lack of function of the transgene and aside from the temporary
bounce-back in cases due to reduced population immunity, are not
expected to produce any additional hazards above the pre-release
epidemiology of malaria transmission.

Hazard 24: Discussions identified a pathway to harm wherein
the Cas-9 endonuclease reliably makes off-target cuts in every
generation (Figure 3). NHEJ repair of off-target, Cas-9/gRNA-
based double-stranded DNA breaks are known to give rise to
chromosomal rearrangements such as deletions, inversions and
translocations (Cho et al., 2014). Reciprocal chromosomal
translocation may occur at some of these break points at rates
that are higher than baseline rates associated with spontaneous
mutations. These types of rearrangements can present strong
barriers to gene flow between populations because they reduce
recombination in heterokaryotypes, and facilitate reproductive
isolation and speciation (Navarro and Barton, 2003). However,
the extent to which this speciation process may lead to
phenotypes with possible adverse characteristics, such as
increased vectorial competence or vectorial capacity, is unknown
and hypothetical at this stage. It is also unknown how the scale of
such effects would compare to rearrangements events generated that
lead to speciation by known genetic processes.

Hazard 25: Discussions of synergistic genetic interactions did
not identify a specific pathway to harm but the workshop
participants noted that it is theoretically possible for different
constructs to interact, for example, through template switching
due to shared target sequence homology. Research groups
developing different gene-drive systems may need to consider
ways to design them to avoid interactions with one another and
incorporate such consideration into the design of any new drive
system.

Discussion

The academic literature and reports from trusted international
bodies used by the workshop participants identified a number of
possible hazards, associated situations and initiating events that may
lead to harms on human health and environmental values following
the production, release, and long-term use of GEMs. Using this
information and the outcomes of a series of hazard identification
workshops, our analysis highlighted three pathways to harm for a
hypothetical release of genetic construct designed to make
mosquitoes refractory to the Plasmodium parasites that cause
human malaria. The presentation of these pathways emphasizes
the weight of evidence that supports each step, distinguishing well-
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established relationships from hypothetical ones, and attempts to
identify the most cost-effective, practical or safest point in the
pathway to gather laboratory or field-based observations to test
risk hypothesis of no harm and support subsequent risk assessment
calculations. In work appearing subsequent to the efforts presented
here, similar analyses were applied to gene-drive system strains for
population suppression (Connolly et al., 2021; Connolly et al., 2022;
Hartley et al., 2023).

Three important considerations inform this type of analysis, 1)
potential hazards and the range of solutions available for mitigating
them, 2) risk assessment endpoints and the choice of environmental
values that are deemed to be important and worth protecting, and 3)
differentiating risk hypotheses determined to be important enough
to carry through to the risk-calculation stage from those that are not.
It is essential that the stakeholders and communities that stand to
lose or benefit from the application of the novel technologies are
involved in these choices (Nelson et al., 2004; Stirling et al., 2018;
Kormos, et al., 2021).

The major focus for much of the research in this field is the
elimination of the on-going burden of malaria in sub-Saharan Africa
(Alonso et al., 2011; WHO, 2022). We focus here on one possible
control approach, the use of a genetic control technique that in
theory can modify mosquito populations so that they are refractory
to the major malaria-causing parasite, P. falciparum (Carballar-
Lejarazú and James, 2017). This analysis did not canvass the

opinions of scientists or stakeholders on alternative solutions, but
independent studies in Africa show that community members,
policymakers and regulators are generally supportive of genetic
control techniques whereas scientists tend to be more skeptical
(Okorie et al., 2014; Finda, et al., 2020).

The analysis here was not conducted with, or informed by, any
formal stakeholder engagement activities. While the described
technology is at a relatively advanced stage of discovery, and
identification and consultation with relevant community groups and
stakeholders is underway, the endpoint definitions and distinctions
between plausible versus implausible pathways reflect the judgement,
beliefs and values of only the workshop participants. While this
information will inform future work, the final process for risk
assessment will be determined by the appropriate authorities and
communities at prospective field sites. Independent community
engagement activities have taken place at African field sites and
there is overlap among the concerns and issues addressed here
(Finda et al., 2021). For example, concerns are expressed about the
possibility of increased disease transmission and horizontal gene
transfer causing harm to humans or other animals. The latter was
estimated to be unlikely based on the low rates of natural HGT and the
inherent design features of gene drive systems that emphasize targeting
specificity, particularly within a given genus where HGT is expected to
be likely. Community-expressed concerns about the genetic
modification transferring to humans through biting is implausible.

FIGURE 3
Conceptual pathway to harm for the potential hazard: emergence of new mosquito phenotypes through enhanced chromosomal translocation.
The Cas9/gRNA-mediated cleavages of the target chromosome and potential off-target sites in other chromosomes results in reciprocal translocations
(top left and center). If the translocations are fitness neutral or confer a reproductive advantage (top right), they may lead to reproductive isolation that
results in a newmosquito species with unknown vectorial capacity for malaria parasites or other pathogens (bottom right). Image notations identical
to Figure 1.
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A general analysis such as this is likely to be adapted by
stakeholders to reflect local values and social practices.
Thoughtful and intentional engagement with stakeholders should
occur to ensure that the perceived risks (concerns) of local people are
considered seriously and addressed. Perceived risks that developers
determine unlikely may be legitimate social risks that could affect the
way stakeholders and community members view the project and will
influence their decision making. These considerations provide an
opportunity to recalibrate and adapt the hazard analysis to new
endpoints while documenting the rationale for their inclusion.

Hazard analysis exercises are early steps in risk assessment that
attempt to distinguish plausible from implausible pathways and
focus risk assessment on manageable numbers of potential hazards.
Plausibility at this stage is the perceived probability of an event based
on the experience and expertise of the participating scientists taking
into consideration the best currently available data and issues
relevant to stakeholders. The resulting hazard analysis exercise is
a qualitative process that is expected to support the structured,
specific and rational development of a quantitative risk assessment.

These early analyses are incomplete because the number of possible
hazards is large and the final operational PHL used will be smaller. This
applies to any risk assessment of potential alternative approaches
including those that propose ‘do nothing’ or ‘business as usual’
options (Kaplan and Garrick, 1981). Those risks are well known for
malaria, which causes >600,000 deaths and >2 million life-disrupting
infections annually (World Health Organisation, 2022). An approach
for managing this incompleteness is to consider a grouping of “other”
risks that includes all the hazards not expressed (Kaplan and Garrick,
1981). The likelihood of any individual outcome within this aggregated
group can be calculated by monitoring outcomes during the
application of the approach, including situations in which no harms
are observed, and an appropriate statistical model for the potentially
relevant observations (Hayes et al., 2015). The genetically- and
geographically-contained staged-release strategy is amenable to this
approach by providing an opportunity for gaining operating experience
in a contained and safemanner. This approach does assume that harms
not considered previously would be detectable during post-release
monitoring activities, but their detection is likely to be fortuitous
because the outcomes would not have contributed to the post-
release monitoring design.

The possibility of an incomplete hazard analysis and subsequent
risk assessment cannot be eliminated for any product for which there is
no previous relevant experience. This may be acceptable to
stakeholders if the perceived cost/benefit balance favors the novel
technology. However, it is incumbent on all those involved in the
product development to do a careful, systematic and rigorous hazard
analysis that addresses known concerns. Phased strategies that provide
relevant field-based observations should be accompanied by hazard
analysis based on checklists from the literature and be complemented
by other methods designed to inform how harm might occur.

The pathways to harm analysis conducted here is an initial step in
what it expected to be an iterative process of conceptual analysis and
modelling. This should be followed by well-designed and co-developed
limited field releases and observation, together with formal engagement
and collaboration with stakeholders, and potentially complemented by
additional hazard identificationmethodologies. The field and laboratory
tests identified in this analysis also should be viewed as a minimum set
that does not preclude additional tests and experiments.
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