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Abstract 

 

Single-cell multi-omic analysis of immune cell development 

 

By 

 

Zoe R Steier 

 

Doctor of Philosophy in Bioengineering 

 

University of California, Berkeley 

 

Professor Aaron Streets, Co-Chair, and Professor Nir Yosef, Co-Chair 

 

 

The continuous differentiation and selection of T cells within the thymus is critical for the 

maintenance of mammalian adaptive immunity. Yet it is unclear precisely how thymocyte 

development and fate determination occur to produce T cells with different specified effector 

functions. Recent technological innovations in microfluidics and genomic sequencing have 

enabled high-throughput approaches for probing cell identities and development by measuring 

multiple molecular features in thousands of single cells. However, there has been a lack of 

computational methods capable of synthesizing this data to form a coherent view of cell identity. 

Here, I present a new method to analyze multi-omics data, describe how experimental and 

computational multi-omics analysis can be performed in practice, and apply these approaches to 

investigate T cell development. 

 

First, I address the task of multi-omics data analysis. The paired measurement of RNA and surface 

proteins in single cells with CITE-seq is a promising approach to connect transcriptional variation 

with cell phenotypes and functions. However, combining these paired views into a unified 

representation of cell state is made challenging by the unique technical characteristics of each 

measurement. Here I present Total Variational Inference (totalVI), a deep generative model for 

end-to-end joint analysis of CITE-seq data that probabilistically represents the data as a composite 

of biological and technical factors including protein background and batch effects. To evaluate 

totalVI’s performance, I profile immune cells from murine spleen and lymph nodes with CITE-

seq, measuring over 100 surface proteins. I demonstrate that totalVI provides a cohesive solution 

for common analysis tasks like dimensionality reduction, the integration of datasets with different 

measured proteins, estimation of correlations between molecules, and differential expression 

testing. 

 

Next, I present a guide for fellow researchers on how single-cell multi-omics analysis of RNA and 

proteins can be performed in practice. Despite the increasing availability of commercial 

experimental products and open-source software packages, there are many details and practical 

challenges that scientists must overcome in order to implement published methods in real-world 

settings across different biological contexts and experimental designs. Here I provide an overview 

of the experimental and computational pipelines for single-cell analysis of RNA and proteins. I 

then describe the practical steps necessary to complete these pipelines from collecting paired RNA 
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and protein data from single cells to preprocessing and filtering the sequencing data, running the 

totalVI model, and conducting downstream analysis. I also provide notes on common pitfalls and 

offer recommendations so that joint analysis of RNA and proteins can be applied widely to other 

biological systems. 

 

Finally, I apply these methods for single-cell multi-omics analysis to investigate T cell 

development in the thymus. CD4 and CD8 T cells play a critical role in the mammalian immune 

system and understanding their fate decisions during development has broad clinical implications 

relevant to autoimmune diseases such as type 1 diabetes and to the production of cancer 

immunotherapies. While the development of CD4 and CD8 T cells within the thymus from the 

CD4+CD8+ stage has been widely studied as a classic model of a lineage determination, the 

developmental trajectory from immature thymocytes to mature T cells and the mechanism of 

lineage commitment remain unclear. To deconstruct this developmental process, I apply CITE-seq 

to simultaneously measure the transcriptome and over 100 surface proteins in thymocytes from 

wild-type and lineage-restricted mice. Using totalVI, I jointly analyze the paired measurements to 

build a comprehensive timeline of RNA and protein expression in the CD4 and CD8 lineages. 

Using lineage-restricted samples, I identify early differences that implicate the calcineurin-NFAT 

branch of the T cell receptor signaling pathway as a putative driver of lineage commitment. 

Employing drug perturbations in a neonatal thymic slice system, I validate the requirement of 

calcium signaling through NFAT for CD4, but not CD8, lineage commitment and shed light on 

the CD4/CD8 lineage commitment mechanism. 
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Chapter 1 

 
Introduction 

 

T cell development 

T cells play a critical role in the adaptive immune system by recognizing and responding to foreign 

antigens displayed on the surface other cells. There are two main types of T cells that perform 

distinct functions: CD4 (“helper”) T cells bind peptides on antigen presenting cells (APCs), 

activating the APC to produce antibodies (in the case of B cells) or to phagocytose a pathogen (in 

the case of macrophages), while CD8 (“cytotoxic”) T cells bind peptides presented on target cells 

which they kill upon recognition. To maintain a properly functioning immune system, the 

development of T cells must be stringently regulated. Precursor cells are selected for the affinity 

of their T-cell receptor (TCR) for a specific antigen. Immature T cells that are unable to recognize 

an antigen with high enough affinity will die by neglect, while immature T cells that recognize 

self-peptides with too strong affinity will die by negative selection. Those with intermediate 

affinity will undergo positive selection to develop into mature T cells (Kurd et al., 2016). When 

this selection and maturation process is improperly regulated, diseases such as autoimmunity, 

infections, or cancer could result. To design therapies for these pathological cases, we must first 

have a firm understanding of how T cell development occurs in a healthy setting. Moreover, the 

knowledge to direct or control the development of CD4 and CD8 T cells could facilitate the 

engineering of immunotherapies, motivating the study of the mechanisms governing this 

developmental process. 

 

T cells develop continuously in an organ called the thymus, where hematopoietic precursor cells 

first arrive from the bone marrow. Precursor cells known as thymocytes pass through multiple 

double negative developmental stages before beginning to express CD4 and CD8 surface proteins 

(double positive), which serve as co-receptors for TCR-antigen binding (Krueger et al., 2016). At 

this stage, cells expressing a functional TCR will bind to an antigen presented on either an MHCI 

or MHCII molecule of an APC, causing a signaling cascade that results in the maturation of the 

thymocyte into a single positive CD8 or CD4 T cell in which either CD4 or CD8, respectively, is 

no longer expressed (Kurd et al., 2016). This maturation process takes place over the course of 

two to three days during which the thymocytes migrate from the cortex to the medulla, with mature 

T cells eventually being transported out into circulation (Sinclair et al., 2013). 

  

To understand the biology of mammalian thymocyte development, the mouse thymus serves as an 

excellent model system and has provided great insight on T cell selection and maturation. Studies 

in mice led to the discovery the genes of the master regulators Zbtb7b (encoding THPOK) for CD4 

fate and Runx3 for CD8 fate (He et al., 2005; Sun et al., 2005; Woolf et al., 2003). Once activated, 

these transcription factors drive the transcription of genes that promote one cell fate and inhibit 

the other (Kurd et al., 2016). Additional studies have demonstrated that the signaling pathways 

immediately downstream of the TCR rely on many of the same molecules in these two cell types. 
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It is still unknown how the binding of an antigen by the TCR of immature thymocytes plays a role 

in producing signals that result in the maturation into two distinct cell types (Vacchio et al., 2016). 

This exemplifies a fundamental problem in biology: how does a developing cell decide its fate? 

The CD4/CD8 fate decision is a classic model of a branching, irreversible lineage commitment. 

Yet, it remains unclear precisely how CD4 or CD8 fate is determined and how thymocytes progress 

through phenotypic changes to produce mature CD4 and CD8 T cells. In the following sections, I 

explore state-of-the-art methods that could be used to investigate these questions with 

unprecedented resolution. I apply these methods in Chapter 4 to conduct an investigation of 

thymocyte development. 

 

Characterizing cell identity 

When studying a developmental process at the cellular level, there are multiple aspects of a cell’s 

identity that could be considered. We could describe a cell’s identity as existing along a continuum 

of phenotypes that progress over time and space (Wagner et al., 2016). This phenotype could 

include factors such as the cell’s physical morphology and its molecular composition. While 

imaging can provide information about the physical form, spatial position, and environment of the 

cell, it offers few clues to how or why a cell transitions from one developmental stage to another. 

On the molecular level, the unique set of proteins contained in a cell can characterize a cell’s state 

and reflect the molecular mechanisms at play in a developmental process. Particularly in the field 

of immunology, surface proteins are commonly used to define cell phenotypes as they play a 

critical role in immune cell function and can be used to distinguish major cell types. However, the 

gold-standard techniques of flow cytometry or fluorescence-activated cell sorting (FACS) are 

limited to measuring 18 proteins on a single cell due to spectral overlap of fluorescent antibodies 

that are necessary to uniquely detect the proteins of interest (Papalexi and Satija, 2017). These 

methods are not capable of comprehensive characterization of the proteome, which is particularly 

challenging due to the lack of intracellular measurements of proteins such as transcription factors 

that regulate gene expression. They are also ill-suited to uncover new factors that play a role in 

development because the proteins of interest must be identified in advance in order to select the 

relevant antibodies. Due to the challenges in measuring proteins, RNA often serves as a proxy, as 

it encodes the information necessary to produce proteins but can be measured more directly 

through sequencing. The measurement of all RNA molecules in a cell would quantify which genes 

of the genome are being expressed, and thus represents a type of comprehensive characterization 

of cell identity. 

 

From bulk genome measurements to high-throughput, single-cell multi-omics 

The development of high-throughput RNA sequencing (RNA-seq) methods that quantify the 

complete set of transcripts in a sample was a revolutionary advance (Wang et al., 2009). RNA-seq 

has some clear advantages overs techniques like flow cytometry that are limited in the number of 

measurements that can be made and biased by the measurement of pre-selected molecules. 

However, the original RNA-seq methods were designed to be performed on samples of cells in 

bulk due to limited sensitivity to detect small numbers of RNA molecules. Because these bulk 

methods produce average measurements across a population of cells, they are inadequate for 
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observing heterogeneity across a continuous developmental process. Technological innovations to 

improve sensitivity paved the way for single-cell RNA sequencing (scRNA-seq), where RNA 

sequencing reactions are performed on individually isolated cells (Tang et al., 2009; Picelli et al., 

2013). Subsequent advances in microfluidics increased the sensitivity and the number of single 

cells that can be measured (Streets et al., 2014, Wu et al., 2017). In particular, throughput was 

massively increased by methods that isolate thousands of single cells into nanoliter droplets, 

labeling them with DNA barcodes, and pooling them for sequencing reactions (Macosko et al., 

2015; Klein et al., 2015). Such methods provided the sensitivity and scale to embark on large-scale 

efforts to identify and profile every cell type in the human body through the Human Cell Atlas 

project (Regev et al., 2017). 

 

While scRNA-seq can achieve whole-transcriptome resolution, it lacks the functional and 

phenotypic information contained in the proteome, which has long been the gold-standard 

definition of cell types in immunology. Recently, the field has pushed towards developing multi-

omics technologies in which multiple molecular components can be measured in the same single 

cell. Approaches such as CITE-seq and REAP-seq adapted droplet-based scRNA-seq methods to 

simultaneously measure the transcriptome and surface proteins (Stoeckius et al., 2017; Peterson et 

al., 2017). These methods appeared highly promising for the study of immune cells by providing 

measurements of two uniquely valuable modalities for cell type characterization. However, the 

data produced by these experiments posed major challenges in analysis. 

 

Challenges in multi-omics analysis 

At the advent of multi-omics methods for paired measurements of RNA and proteins, it was not 

at all clear how the data should be analyzed. Early studies using CITE-seq and REAP-seq tended 

to apply standard workflows to analyze the RNA portion of the data while using protein data to 

validate and aid the interpretation of the RNA analysis post-hoc. These approaches resulted in 

analyses that were not only biased towards one modality, but also contained bias due to technical 

factors in the protein measurement that were not adequately addressed. To fully leverage the 

multiple molecular views of a cell provided by multi-omic measurements, an analysis method 

should take both modalities into account when performing all stages of analysis including, for 

example, determining similarities between cells, grouping cells into types, and quantifying 

differences in molecular profiles across groups. More than performing analysis on both 

modalities in parallel and combining their interpretations, a joint analysis would take advantage 

of the knowledge that a paired set of measurements originated from the same cell and combine 

the views of a cell gained by each modality in an unbiased way.  

 

To combine the data from the paired RNA and protein measurements, any analysis must first 

address the distinct sources of technical bias and noise in each modality. For the RNA data, 

technical aspects such as batch effects and sequencing library size have previously been addressed 

by computational methods such as scVI (Lopez et al., 2018), which uses deep learning to 

probabilistically model the biological and technical components of scRNA-seq data. However, the 

protein data has distinct sources of noise from RNA due to the different nature of the measurement: 
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rather than quantifying the molecules directly as in RNA sequencing, proteins cannot be directly 

sequenced, and thus are quantified via the sequencing of DNA barcodes that are conjugated to 

protein-specific antibodies. This results in large amounts of background in the protein 

measurement due to non-specifically bound or ambient antibodies. In addition, unlike the unbiased 

measurement of the whole transcriptome, the protein measurements rely on selections of 

antibodies that could vary across experiments, presenting a challenge in integrating datasets 

containing different measured proteins. In Chapter 2, I develop a computational framework called 

totalVI for multi-omic data analysis that relies on a detailed understanding of the experimental 

data-generating process to address its technical limitations and to jointly model the paired 

measurements (Gayoso et al., 2021). 

 

Multi-omics analysis in practice 

For researchers who want to use multi-omics analysis to answer a particular biological question, 

there are two major steps that must be completed: data collection and computational analysis. 

Especially for new researchers, both of these tasks can be daunting. Even with a firm understanding 

of the theoretical underpinnings of the experimental or computational methods, numerous 

questions tend to arise when performing these analyses in practice. On the experimental side, 

published methods often demonstrate proofs-of-concept in simple biological settings (e.g., healthy 

peripheral blood mononuclear cells), but have little guidance for how methods should be applied 

in other contexts, how much tolerance there is for protocol modifications, and what the tradeoffs 

are when making decisions that affect data quality, time, and cost. For instance, how many cells 

are needed, how deeply should RNA and protein libraries be sequenced, and what are places to 

troubleshoot when data quality is low? On the computational side, researchers without 

computational expertise often encounter basic questions related to performing a joint analysis: 

what are the required inputs, what are the outputs, and how should they be interpreted? Even for 

more experienced researchers, aspects unique to each dataset often raise questions: how should 

quality control filters be set and what hyperparameters should be used? To address these questions, 

I share in Chapter 3 a guide through the steps and decisions that must be made when conducting 

single-cell multi-omics analysis with RNA and proteins. 

 

Scope of the dissertation 

In Chapter 2, I present totalVI, a computational framework that probabilistically models paired 

RNA and protein data from single cells to enable joint analysis of both modalities. In Chapter 3, I 

provide a guide to the experimental and computational pipelines for conducting multi-omics 

analysis of RNA and protein data from single cells. In Chapter 4, I apply totalVI and the methods 

described in Chapter 3 to investigate thymocyte development, uncovering a pathway through 

which CD4 or CD8 T cell fate is determined. These works have opened the door to multiple future 

directions. In Chapter 5, I describe a selection of the ongoing works and promising next steps for 

future research building upon the work presented here. 
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Abstract 

The paired measurement of RNA and surface proteins in single cells with CITE-seq is a promising 

approach to connect transcriptional variation with cell phenotypes and functions. However, 

combining these paired views into a unified representation of cell state is made challenging by the 

unique technical characteristics of each measurement. Here we present Total Variational Inference 

(totalVI; https://scvi-tools.org), a framework for end-to-end joint analysis of CITE-seq data that 

probabilistically represents the data as a composite of biological and technical factors including 

protein background and batch effects. To evaluate totalVI’s performance, we profiled immune 

cells from murine spleen and lymph nodes with CITE-seq, measuring over 100 surface proteins. 

We demonstrate that totalVI provides a cohesive solution for common analysis tasks like 

dimensionality reduction, the integration of datasets with different measured proteins, estimation 

of correlations between molecules, and differential expression testing. 

 

Introduction 

The advance of technologies for quantitative, high-throughput measurement of the molecular 

composition of single cells is continuously expanding our understanding of cell ontology, state, 

and function [1-3]. A growing body of single-cell multi-omic techniques now offers the ability to 

further refine our definitions of cellular identity by providing multiple views of molecular state [4, 

5]. By extending single-cell RNA-sequencing (scRNA-seq) to simultaneously measure the 

abundance of proteins on the cell surface, CITE-seq [6,7] presents the opportunity to connect the 

information that can be gleaned from the transcriptome [8, 9] to the functional information 

contained in proteins [10, 11]. Such experimental tools necessitate computational tools to 

synthesize these high-dimensional views. 

 

Recent studies have analyzed CITE-seq data using standard workflows for one modality (often 

RNA) to cluster cells while contextualizing these results using information from the other modality 

post-hoc [12-14]. This sequential approach biases the analysis to one modality and becomes 

increasingly inefficient as CITE-seq measurements expand to hundreds of proteins. A joint 

analysis that combines these two cellular views in an unbiased manner can harness the strengths 

of each modality and streamline data analysis. However, combining RNA and protein information 

to define a single representation of cell state poses several challenges. First, the RNA and protein 

data have unique sources of technical bias and noise. While the technical aspects of the RNA data 

have been addressed by a flourishing body of computational methods [15-18], the protein data 

present distinct technical bias such as background due to ambient or non-specifically bound 

antibodies. Second, as large-scale community efforts such as the Human Cell Atlas (HCA) [8] 

begin to include CITE-seq datasets, the need arises for scalable computational methods that can 

integrate datasets with different measured proteins. 

 

Here, we present totalVI (Total Variational Inference), a deep generative model that enables 

multifaceted analysis of CITE-seq data and addresses these challenges. totalVI learns a joint 

probabilistic representation of the paired measurements that accounts for the distinct noise and 

technical biases of each modality, as well as batch effects. For RNA, totalVI uses a modeling 

strategy similar to our previous work (scVI; [15]). For proteins, totalVI introduces a new model 

that separates the protein signal into background and foreground components, which enables 

background correction. The probabilistic representations learned by totalVI are built on a joint 

low-dimensional representation of the RNA and protein data that is derived using neural networks. 



9 
 

totalVI can be used for disparate analysis tasks including joint dimensionality reduction, dataset 

integration (with and without missing proteins), protein background correction, estimation of 

correlations between genes and/or proteins, and differential expression testing. To highlight this 

functionality, we performed CITE-seq on murine spleen and lymph nodes, measuring up to 208 

proteins. We used these data, along with public datasets, to evaluate totalVI’s performance across 

these tasks. 

 

Results 

 

The totalVI model 

totalVI uses a probabilistic latent variable model [19] to represent the uncertainty in the observed 

RNA and protein counts from a CITE-seq experiment as a composite of biological and technical 

sources of variation. The input to totalVI consists of the matrices of RNA and protein unique 

molecular identifier (UMI) counts (Fig. 1a). Categorical covariates such as experimental batch or 

donor are optional inputs used for integrating datasets and referred to henceforth as “batch”. Input 

datasets can have different antibody panels, and a subset can be scRNA-seq datasets (i.e., without 

proteins). 

 

The output of totalVI consists of two components that can be used for downstream analysis (Fig. 

1b). The first component encodes each cell as a distribution in a low-dimensional latent space (20 

dimensions throughout; Supplementary Note 1) that represents the information contained in both 

the RNA and protein data (Supplementary Note 2), while controlling for their respective noise 

properties and batch effects. The second component provides a way to estimate the parameters of 

the distributions that underlie the observed RNA and protein measurements (i.e., likelihoods) given 

a cell’s latent representation. These distributions explicitly account for nuisance factors in the 

observed data such as sequencing depth, protein background, and batch effects (Supplementary 

Note 3). Both components use neural networks to specify distributions. 

 

totalVI optimizes the parameters of both of its components simultaneously using the variational 

autoencoder (VAE) framework [20]. Accordingly, totalVI uses highly efficient techniques for 

stochastic optimization that make it appropriate for the scale of CITE-seq data. Following 

optimization, totalVI’s components are used for downstream analysis. The latent cell 

representations can be used as input to methods that stratify cells like clustering, visualization, or 

pseudotime inference algorithms, thus allowing these methods to leverage both protein and RNA 

information. Other downstream tasks specific to genes and proteins, like differential expression, 

are linked to the likelihood parameters from the second component of totalVI. Finally, by 

constricting the latent space to the standard simplex, the dimensions of the latent space can be 

related to the expression of genes and proteins with archetypal analysis [21], adding an alternative 

way to investigate global and local patterns of variation in the data. A detailed specification of the 

model along with further description of the quantities used in downstream tasks is in Methods. 
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Figure 1: Schematic of a CITE-seq data analysis pipeline with totalVI. a, A CITE-seq experiment simultaneously 

measures RNA and surface proteins molecules in single cells, producing paired count matrices for RNA and proteins. 

These matrices, along with an optional matrix containing sample-level categorical covariates (batch), are the input to 

totalVI, which concomitantly normalizes the data and learns a joint representation of the data that is suitable for 

downstream analysis tasks. b, Schematic of totalVI model. The RNA counts, protein counts, and batch for each cell 

𝑛 are jointly transformed by an encoder neural network into the parameters of the posterior distributions for 𝑧𝑛, a low-

dimensional representation of cell state, 𝛽𝑛, the protein background mean indexed by protein, and ℓ𝑛, an RNA size 

factor. The posterior mean of 𝑧𝑛, which we refer to as the latent representation, is corrected for batch effects and can 

be used as input to clustering and visualization algorithms. Next, a decoder neural network maps samples from the 

posterior distribution of 𝑧𝑛, along with the batch, 𝑠𝑛, to parameters of a negative binomial distribution for each gene 

and a negative binomial mixture for each protein, which contains a foreground (FG) and background (BG) component 

(Methods). These parameters are used for feature-level analyses. 

 

CITE-seq profiling of murine spleen and lymph nodes 

We conducted a series of CITE-seq experiments that were designed to test the performance of 

totalVI on a variety of tasks. As a case study, we profiled murine spleen and lymph nodes, which 

contain heterogeneous immune cell populations that are well-characterized by surface protein 

markers. Cells were collected from two wild-type mice that were processed on separate days to 

serve as biological replicates (Methods). In each experimental run, cells from one mouse were 

stained with two different panels of barcoded antibodies containing either 111 or 208 antibodies, 

of which the 111 antibodies were a subset (Supplementary Data). Spleen and lymph node cells 

stained separately with the same antibody panel were combined using hashtag antibodies [22]. We 
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refer to the four resulting spleen/lymph node datasets by their panel and experimental day 

(experimental design in Supplementary Table 1), After pre-processing and filtering, these datasets 

contained a total of 32,648 cells (Methods). 

 

totalVI fits CITE-seq data well and is scalable 

The usefulness of probabilistic models like totalVI depends on how well they fit the observed data. 

Furthermore, they should generalize to unobserved data (i.e., not overfit) and scale to a realistic 

range of input sizes. To verify that totalVI satisfies these prerequisites, we benchmarked it against 

factor analysis (FA), which can be viewed as a linear-Gaussian baseline, scHPF [16], which 

performs a Poisson matrix factorization via a hierarchical Bayesian model, and scVI [15], which 

was restricted to the RNA portion of the data. We expected the performance of totalVI and scVI 

to be comparable on the RNA data, as they share similar architectures. Our evaluation relied on 

fitting the models to several CITE-seq datasets spanning different species and tissues, including 

peripheral blood mononuclear cells (PBMC10k) [23] and mucosa-associated lymphoid tissue 

(MALT) [24] from humans, and our murine spleen and lymph node data (SLN111-D1). 

 

We first estimated how well each model fit data that was available to it during training using 

posterior predictive checks (PPC) [16, 25]. To conduct PPCs, we generated replicated datasets 

(i.e., posterior predictive samples) by sampling from the fitted model (Methods). We then assessed 

how well these replicated datasets maintained the properties of the observed data with two metrics. 

First, we measured the similarity between the coefficient of variation (CV) per gene and protein 

of the replicated data to the observed CVs, thus evaluating how well the mean-variance 

relationship of the data is preserved. Second, we compared the replicated and raw data at the gene 

and protein level using the Mann-Whitney U statistic, which measures the extent to which the 

replicated and raw data come from the same distribution. totalVI had superior performance on both 

metrics (Extended Data Fig. 1a, b). 

 

We then evaluated how well each model generalizes to cells that were not available during training 

by generating replicated datasets conditioned on the held-out cells and computing two opposing 

metrics of predictive performance. First, we assessed how well the average replicated data set 

matched the observed held-out data by mean absolute error. Second, we quantified how well the 

interval of values from replicated data sets covered the observed held-out data values (calibration 

error [26]). These two metrics were computed separately for genes and proteins. On the held-out 

protein data, totalVI outperformed FA in both the mean absolute error and calibration error 

metrics. Comparing totalVI to scHPF revealed a tradeoff between calibration and held-out error 

for both the RNA and protein data. On the held-out RNA data, totalVI and scVI were largely 

comparable and outperformed FA (Extended Data Fig. 2a, b). totalVI and scVI also had a 

comparable held-out predictive log-likelihood for the RNA data (Extended Data Fig. 2c). Finally, 

totalVI’s performance was also stable across multiple initializations (Extended Data Fig. 2d, e). 

 

To assess the scalability of totalVI, we concatenated all of our spleen and lymph node data (SLN-

all) and recorded the training time for different sizes of subsets of this data. totalVI and scVI had 

similar dependence between run time and input size (Extended Data Fig. 2e). Furthermore, we 

observed that totalVI can readily handle large data sets, for instance, processing the complete set 

of approximately 33,000 cells with over 4,100 features (genes and proteins) in under one hour. 
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totalVI identifies and corrects for protein background 

To analyze protein data in an accurate and quantitative manner, it is necessary to distinguish 

between true biological signal and technical bias in the protein measurement. Background is a type 

of technical bias that is characteristic of antibody-based measurements [6, 7, 27]. In CITE-seq 

data, protein measurements include non-negligible background that arises experimentally from a 

combination of ambient antibodies, which can be detected in empty droplets, and non-specific 

antibody binding, which can be detected above ambient levels in cells with no expected expression 

of a protein, such as CD19 in T cells (Methods, Extended Data Fig. 3a-c, g). Recent methods have 

described background from ambient RNA [28-30], but the presence of background is more 

pronounced in protein measurements (Extended Data Fig. 3d-f, Supplementary Note 3). 

 

Previous studies of CITE-seq data derived a single decision rule for every protein, specifying the 

minimum number of counts required to be considered foreground by using either spiked-in 

negative control cells [6] or a Gaussian mixture model (GMM) to distinguish a background and 

foreground component for each protein [31]. Using the same boundary for all cells, however, relies 

on the assumption that all cells are subject to a similar background distribution of the protein in 

question and, in the case of a two-component GMM, that the foreground component is comparable 

across cell types. 

 

totalVI instead models protein background as cell- and protein-specific. To do this, totalVI models 

each protein measurement as a mixture of foreground and background components that depends 

on the cell’s representation in the latent space, and therefore the full transcriptomic and proteomic 

profile of that cell. The mixture is weighted by the probability that the counts of a protein in a 

given cell came from the background component (Fig. 1b, Methods). 

 

To evaluate totalVI’s ability to quantitatively identify protein background, we tested how well 

major cell types could be predicted by the foreground probability (one minus the background 

probability) of common marker proteins in the SLN111-D1 dataset (Methods). As a baseline for 

comparison, we used the assignment probabilities from a two-component GMM. For nine out of 

eleven known marker proteins, both totalVI and the GMM performed well at classifying cell types 

by marker foreground probability (ROC AUC > 0.97; Supplementary Table 2). For these proteins, 

such as the B cell marker CD19, the distributions of foreground and background expression were 

easily separated (Extended Data Fig. 3a and Supplementary Fig. 1a-d). However, for the B cell 

marker CD20 and the T cell marker CD28, distributions of foreground and background expression 

were highly overlapping (Extended Data Fig. 3b, c), and totalVI noticeably outperformed the 

GMM (Extended Data Fig. 3h). totalVI also performed better at distinguishing foreground and 

background for this set of proteins in the SLN208-D1 dataset, even after normalizing the raw data 

using isotype control antibodies [32] prior to fitting the GMM (Methods, Supplementary Table 3). 

Across all proteins, the totalVI foreground probability tended to fall near zero or one, indicating 

the model’s certainty about most measurements (Supplementary Fig. 1e). 
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Figure 2: totalVI identifies and corrects for protein background. totalVI was applied to the SLN111-D1 dataset. 

a-c, CD20 protein (encoded by Ms4a1 RNA). (a) totalVI foreground probability vs log(𝑝𝑟𝑜𝑡𝑒𝑖𝑛 𝑐𝑜𝑢𝑛𝑡𝑠 + 1). 

Vertical line denotes protein foreground/background cutoff determined by a GMM. Horizontal lines denote totalVI 

foreground probability of 0.2 and 0.8. Cells with foreground probability greater than 0.8 or less than 0.2 are colored 

by quadrant, while the remaining cells are gray. (b) UMAP plots of the totalVI latent space. Each quadrant contains 

cells from the corresponding quadrant of (a) in color with the remaining cells in gray. (c) RNA expression (log library-

size normalized; Methods 4.8) for cells colored in (a). d-f, Same as (a-c), but for CD28 protein (encoded by Cd28 

RNA). g, h, Distributions of log(𝑝𝑟𝑜𝑡𝑒𝑖𝑛 𝑐𝑜𝑢𝑛𝑡𝑠 + 1) (g) and log(𝑡𝑜𝑡𝑎𝑙𝑉𝐼 𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑 𝑝𝑟𝑜𝑡𝑒𝑖𝑛 + 1) (h) for CD20 

protein in B cells (blue) and T cells (yellow). y-axis is truncated at 3. i, j, Same as (g, h), but for CD28 protein. 

 

Using CD20 and CD28 as examples, we see how totalVI’s identification of protein foreground and 

background is more accurate than a single decision boundary. In the case of CD20 (encoded by 

Ms4a1 RNA), a GMM-based cutoff resulted in numerous false negatives (blue cells in Fig. 2a-c, 

Methods). These cells, identified by totalVI as having high foreground probability despite low 

CD20 expression, clustered with B cells and expressed Ms4a1 RNA, confirming their identity as 
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B cells. In contrast, cells with similarly low CD20 expression but with low totalVI foreground 

probability (green cells) clustered with T cells and did not express Ms4a1 (Fig. 2a-c). In the case 

of CD28, a GMM-based cutoff resulted in numerous false positives (red cells in Fig. 2d-f), while 

totalVI correctly identified that these cells with high CD28 had low foreground probability, and 

were in fact B cells rather than T cells. totalVI is not limited to distinguishing globally bimodal 

distributions (e.g., CD4 in peripheral blood mononuclear cells globally follows a trimodal 

distribution (Methods, Extended Data Fig. 4a, b)). 

 

For downstream analysis, totalVI uses foreground probabilities in a quantitative manner to remove 

protein background. Specifically, totalVI can denoise the protein data by setting the background 

component to zero, while also accounting for the measurement uncertainty of the foreground 

component (Methods, Fig. 2g-j, Extended Data Fig. 4f, g). We use the expectation of denoised 

values for visualization (Extended Data Fig. 4c-e). 

 

For statistical analyses like differential expression testing, totalVI uses distributions over the 

denoised values as opposed to testing directly on a denoised data matrix, which could introduce 

bias [33]. For analyses focused on the relationships between features, we developed a novel 

sampling method that controls for nuisance variation while avoiding denoising-induced artifacts 

(Methods). We applied this method to construct denoised feature-feature correlation matrices and 

found that totalVI preserved the independence of negative control genes (Extended Data Fig. 5a, 

b, d, e), lending confidence that downstream analysis with totalVI is not subject to spurious feature 

relationships arising from data denoising. Observing the correlations between proteins and their 

encoding RNA, we found that totalVI correlations were generally higher in magnitude than raw 

correlations (Extended Data Fig. 5c, f). 

 

totalVI integrates CITE-seq datasets 

We next evaluated totalVI’s ability to integrate data from CITE-seq experiments that measured 

different sets of proteins. Integration is built into totalVI via an assumption of independence 

between the latent space and the batch. Consequently, totalVI produces both an integrated latent 

space, as well as corrected expression values. In the case of unmatched protein panels, totalVI can 

impute missing proteins for a particular dataset by using the information learned from those 

proteins in the datasets in which they were observed (Methods). We applied totalVI to the SLN111-

D1 and SLN208-D2 datasets, which had a clear batch effect that was revealed by principal 

component analysis (Fig. 3a). We benchmarked totalVI against three state-of-the-art integration 

methods: Seurat v3 [34], Scanorama [35], and Harmony [36]. We assessed totalVI in the case of 

matched panels (using only the 111 overlapping proteins between the two panels; denoted as 

totalVI-intersect) and unmatched panels (using the union of the two protein panels, which results 

in missing data for some proteins; denoted as totalVI-union). Despite being designed for scRNA-

seq, the other methods could be extended to handle CITE-seq data, though only in the case of 

matched panels (Methods). 

 

We used four metrics to quantify how well each method mixed datasets along with how well they 

maintained the original structure of each dataset (Methods). The first two metrics (the latent mixing 

metric and the measurement mixing metric) quantify how well cells mix across datasets in the low-

dimensional latent space and the observed expression space (per feature), respectively. The second 

two metrics (the feature retention metric and clustering metric) summarize how well each method 
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preserves each dataset’s original structure, either at the feature-level through autocorrelation 

(feature retention metric), or at the cell-level through clusters (clustering metric). Finally, we 

benchmarked totalVI’s accuracy of predicting protein expression in cases where measurements are 

available in only one of the datasets. 

 

 
Figure 3: Benchmarking of integration methods for CITE-seq data. a-c, UMAP plots of SLN111-D1 and 

SLN208-D2 with no integration (PCA of paired data with intersection of protein panels), and after integration with 

totalVI-intersect, in which the protein panels were intersected, and totalVI-union, in which the unequal protein panels 

were preserved, colored by dataset. d, e, Performance of integration methods based on four metrics: (d) latent mixing 

metric, feature retention metric, clustering metric (displayed as point size), and (e) measurement mixing metric 

(computed for 𝑛 = 4000 genes and 𝑛 = 111 proteins; higher values are better for each; Methods). Box plots indicate 

the median (center lines), interquartile range (hinges), whiskers at 1.5x interquartile range. f, UMAP plot of SLN111-

D1 integrated with SLN111-D2 (proteins held out) by totalVI. g, UMAP plots colored by totalVI imputed and 

observed protein expression (log scale) of key cell type markers (range 0-99th percentile of held-out values for each 

protein). h, Root mean squared error (RMSLE) of imputed versus observed protein expression (log scale) for totalVI-

union and Seurat v3. totalVI performance per protein is presented as mean RMSLE with error bars representing 95% 

confidence intervals of the mean estimate (𝑛 = 30 model initializations). Proteins colored in black are not significantly 

different in performance, while those in red are significantly different (two-sided Student’s 𝑡-test, BH-adjusted 𝑝-

value < 0.05). Inset displays ratio in performance across proteins for totalVI and Seurat v3. 
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We found that after integration, cells of similar types were co-located in the latent space, as 

evidenced by the shared expression of key marker proteins like CD4, CD8a, and CD19 (Fig. 3b, 

c; Supplementary Fig. 2). Moreover, totalVI outperformed the other methods in the feature 

retention and clustering metrics, while comparing favorably in the remaining metrics (Fig. 3d, e). 

totalVI-union and totalVI-intersect performed similarly, indicating that the presence of missing 

data did not diminish totalVI’s integration capabilities. We repeated this analysis on two public 

datasets of PBMCs (PBMC10k [23], PBMC5k [37]), which also had very different sequencing 

depths, and observed similarly favorable performance for totalVI (Supplementary Fig. 3a-f). 

 

Since totalVI-union can integrate CITE-seq datasets with different protein panels, we reasoned it 

could also integrate a CITE-seq dataset with a standard scRNA-seq dataset that has not measured 

proteins and impute the missing protein measurements. We assessed this by integrating SLN111-

D1 and SLN111-D2, where we held out the proteins of SLN111-D2. We first observed that totalVI 

can learn a biologically meaningful integrated latent representation despite the large amount of 

missing data (Fig. 3f). Indeed, the location of observed protein expression in the latent space 

revealed the same broad immune cell types. Next, we imputed the protein expression for the cells 

in SLN111-D2 (Methods). For key cell type marker proteins, totalVI-imputed proteins shared 

similar patterns of expression as the held-out observed proteins (Fig. 3g). 

 

To further quantify imputation accuracy, we ran totalVI 30 times with resampled training sets and, 

for each run, computed the root mean squared log error between imputed and observed protein 

values. We compared totalVI to Seurat v3, which imputes protein values based on smoothing of 

protein values from mutual nearest RNA neighbors. The accuracy of 80 proteins was significantly 

different between totalVI and Seurat v3 (Student’s T-test, Benjamini–Hochberg (BH)-adjusted p-

value <0.05). The mean error of totalVI was better than the Seurat v3 error for approximately 68% 

of the 80 proteins (Fig. 3h). We also performed this task on PBMCs (Supplementary Fig. 3h, i), in 

which we also compared to another protein imputation method, cTP-net [38]. We found that 

totalVI and Seurat v3 performed more similarly, while outperforming cTP-net. For further 

discussion on the merits and limitations of imputing missing proteins, see Supplementary Note 4. 

 

totalVI identifies differentially expressed genes and proteins 

totalVI can leverage its estimates of uncertainty from a single model fit to detect differentially 

expressed features between two sets of cells while controlling for noise and other modeled 

technical biases like sequencing depth (RNA), background (protein), and batch effects (both). To 

do so, totalVI estimates a distribution over the log fold change (LFC) of expression between the 

two sets of cells, which is then used to quantify how well the data support a hypothesis of 

differential expression (using Bayes factors [15, 39, 40]; Methods). 

 

To evaluate totalVI as a framework for differential expression (DE) analysis in the common 

scenario of multiple experiments, we integrated all four spleen and lymph node datasets (SLN-all; 

totalVI-intersect). totalVI provided a descriptive representation of this data, as inspection of 

established cell type markers associated clusters of cells in the latent space with immune cell types 

or states (Fig. 4a, Extended Data Fig. 6, Methods). 
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Figure 4: totalVI identifies differentially expressed genes and proteins. totalVI intersect was applied to the SLN-

all dataset. a, UMAP plot of SLN-all, after clustering and annotating the data (Methods 4.11). b, c, Heatmap of markers 

derived from one-vs-all tests for (b) RNA and (c) proteins. For each cell type, we display the top three protein markers 

and top two RNA markers in terms of LFC. d, Volcano plot of protein differential expression test between ICOS-high 

Tregs and CD4 T cells for a Welch’s t-test and Wilcoxon rank-sum test. Putative positives and negatives are denoted 

by green and orange arrows, respectively. Significant proteins (BH-adjusted 𝑝-value < 0.05) are colored in grey, all 

others are in black. e, totalVI protein expression for proteins (columns) upregulated in ICOS-high Tregs versus CD4 

T cells. Cells (rows) are ordered by cluster, and subsampled to be equal in number per cluster. Columns are normalized 

in the range [0, 1]. The left section in the heatmap contains all the proteins called differentially expressed by totalVI 

with a positive log fold change. Proteins are sorted by Bayes factor (significance). The rightmost section contains the 

putative negatives, which are not called differentially expressed by totalVI. f, Comparison of log fold changes 

estimated by totalVI and observed in the raw data from a one-vs-all test of CD4 T cells. 
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Beyond markers used for annotation, we found that a totalVI one-vs-all DE test (in which one cell 

type is compared to all others) identified many additional features as differentially expressed 

(Methods, Fig. 4b, c; Supplementary Data). For example, totalVI identified the gene Klrc2 as 

differentially expressed in both natural killer (NK) cells and gamma/delta T cells, which has 

previously been shown to be upregulated in these populations relative to alpha/beta T cells [41]. 

For proteins, totalVI identified CD335 (NKp46) as among the top markers for NK cells, which is 

a canonical marker used for sorting [42], and CD43, which is associated with the development of 

NK cells [43]. 

 

Overall, the Bayes factors inferred by totalVI for the RNA data were highly correlated with those 

produced by scVI (Extended Data Fig. 7a), which has been independently evaluated [40]; 

therefore, we focused on evaluating the protein DE test. Throughout, we compared totalVI to two 

baseline methods: a Welch’s t-test and a Wilcoxon rank-sum test. We also compared to a version 

of totalVI in which the protein background was not corrected (totalVI-wBG). 

 

We first evaluated the extent of false positives using isotype control antibodies. As isotype controls 

lack target specificity, differences in their abundance between cell types likely stem from 

background or other technical sources of variation. Applying each method to the SLN208-D1 

dataset, which contained nine isotype controls, we found that totalVI called the fewest (and often 

zero) isotype controls as differentially expressed in one-vs-all tests (Extended Data Fig. 7b). We 

next tested the reproducibility of the methods across biological replicates, finding that totalVI 

outperformed the baseline methods (Extended Data Fig. 7c-e). The totalVI DE test was also 

reproducible across experimental designs: one in which the two CITE-seq datasets had the same 

protein panel, and another in which proteins were measured in only one of the datasets (Extended 

Data Fig. 7f). 

 

To gain further insight into the extent of false positive and false negative DE calls, we compared 

ICOS-high regulatory T cells (ICOS-high Tregs) and conventional CD4 T cells from SLN-all. This 

test is challenging because these two cell types share many of the same upregulated and 

downregulated features when compared with other immune cell types. Our analysis was based on 

a list of putative positive and negative surface proteins curated from previous studies that used 

flow cytometry (Methods). 

 

We found that totalVI and the baseline methods identified these putative positives as significantly 

upregulated; however, the two baseline methods also incorrectly called all putative negatives as 

upregulated (Fig. 4d). Globally, the two baseline methods both called 78 out of 110 proteins as 

differentially expressed, many of which are likely the result of differences in background. While 

filtering proteins by the observed LFC in the baseline methods may reduce these false positives, 

the improvement would be limited (e.g., CD5 and IgD had similar LFCs and therefore could not 

be distinguished; Fig. 4d). The totalVI test, in contrast, correctly classified all putative negatives 

and positives (Fig. 4e), calling 28 proteins differentially expressed in total. To further support the 

utility of correcting for protein background, we performed this test using totalVI-wBG, which 

improved upon the baseline methods, but also falsely called some putative negatives as positives 

(Supplementary Fig. 4a). 
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Finally, totalVI’s LFC estimates (defined as the median of the LFC distribution) better captured 

the underlying biological signal. For example, in a test of CD4 T cells vs all from SLN-all, the 

canonical marker CD4 had a higher LFC than in the raw data (Fig. 4f). Additional markers like 

CD28 (T cell marker) and CD20 (B cell marker), which we previously highlighted as having highly 

overlapping foreground and background components, had respectively higher and lower LFCs 

compared to LFCs derived from the raw data. 

 

totalVI provides an interpretable latent space 

Deep-learning-based methods for dimensionality reduction tend to rely on “black-box” models, 

making it difficult to interpret the coordinates of their inferred low-dimensional latent spaces. 

Despite the non-linear relationship between the totalVI latent space and the expression space, 

totalVI provides a way to relate each latent dimension to the expression of individual features via 

archetypal analysis [21, 44, 45] (Methods). Archetypes, which correspond to dimensions of the 

latent space, represent a summary of expression programs, the combination of which characterizes 

a cell. To demonstrate archetypal analysis, we ranked the features most associated with each 

archetype in the SLN-all dataset (Extended Data Fig. 8a, b), finding that some archetypes 

corresponded to specific cell types, and others captured more global variation (Extended Data Fig. 

9a). For example, archetype 16 was associated with high protein expression of CD93 and CD24, 

which mark the transitional B cell subset (Extended Data Fig. 9b). In contrast, archetype 7 was 

associated with interferon-response genes such as Ifit3 and Isg20 and reflected within-cell-type 

variability in several subsets, including CD4 and CD8 T cells, B cells, Ly6-high monocytes, and 

neutrophils (Extended Data Fig. 9c and Supplementary Fig. 5). We also used archetypal analysis 

to evaluate the influence of proteins on the latent space, and found that all but one archetype had 

proteins overrepresented in its top features (Extended Data Fig. 8c). This suggests that the 

inclusion of proteins significantly influences representations in the totalVI latent space. 

 

Characterization of B cell heterogeneity in the spleen and lymph nodes with RNA and 

proteins 

We next demonstrate how a joint representation of RNA and protein can be used to characterize 

cell identities within a specific immune compartment and in the context of multiple samples. Here, 

we used the totalVI-intersect model fit on the SLN-all dataset and focused on the B cell population 

(Methods, Fig. 4a). 

 

We started with characterizing cell identities using prior biological knowledge by visualizing the 

expression of six surface proteins commonly used for isolating B cell subsets (Fig. 5b, 

Supplementary Table 4). These subsets included transitional (marked by CD93 and CD24), mature 

(marked by IgD and CD23), B1 (marked by CD43) and marginal zone (MZ, marked by CD21) B 

cells. These markers stratified the B cells into groups that were largely consistent with 

unsupervised clustering (Methods). RNA expression of these markers followed similar patterns to 

the proteins they encode (Fig. 5c). 

 

The difference in subset composition between the spleen and lymph nodes (Fig. 5d) was consistent 

with previous studies (Fig. 5e, [46, 47]). In particular, clusters spanned the developmental range 

from recent bone-marrow emigrants in the splenic transitional B cell subset to mature cells present 

in both tissues. As expected, the B1 and MZ B cell subsets were found primarily in the spleen. 
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Figure 5: Characterization of B cell heterogeneity in the spleen and lymph nodes with RNA and protein. totalVI-

intersect was applied to the SLN-all dataset. Data were filtered to include B cells. a, UMAP plot of totalVI latent space 

labeled by cell type. b, c, UMAP plots of totalVI latent space colored by (b) totalVI protein expression of six marker 

proteins and (c) totalVI RNA expression of the six genes that encode the corresponding proteins in (b). d, UMAP plot 

of totalVI latent space labeled by tissue. e, Cell type composition per tissue. f, g, totalVI one-vs-all differential 

expression test on B cell subsets filtered for significance (Methods) and sorted by the totalVI median LFC. (f) The top 

three differentially expressed proteins per subset and (g) the top ten differentially expressed genes per subset, arranged 

by the subset in which the LFC is highest. h, totalVI Spearman correlations in transitional B cells between RNA and 

proteins, which were selected as described in Methods. Features were hierarchically clustered and are labeled as either 

RNA or protein, and by the cell type with which the feature is associated. i, UMAP plot of totalVI latent space colored 

by 𝑍16 (the totalVI latent dimension associated with transitional B cells). j, totalVI expression of features in (h) as a 

function of (1 − 𝑍16). Each feature was standard scaled and smoothed with a loess curve. 
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In a more unbiased approach, we quantified the differences between the B cell clusters with the 

totalVI one-vs-all DE test (Fig. 5f, g, Methods). As expected, the six known surface markers were 

among the top differentially expressed protein markers (Fig. 5f). Most RNA molecules encoding 

the marker proteins were also differentially expressed along with informative genes whose 

products are not present on the cell surface, such as the transcription factor Bhlhe41 that marks B1 

B cells (Fig. 5g, [48]). 

 

Globally, protein data combined with a transcriptome-wide view enabled a more refined 

characterization of variation within the four major sub-populations identified above by surface 

markers. For example, a sub-population of mature B cells labeled here as Ifit3-high B cells 

expressed all of the protein and RNA markers of mature B cells and could not be clearly 

distinguished from the remaining mature B cells based on protein data alone (maximum LFC 

across all proteins was less than 0.19). Nevertheless, with transcriptome-wide DE analysis, this 

cluster could be distinguished as a sub-type of mature cells by the elevated expression of interferon 

response genes (Fig. 5g). This observation was supported by a gene signature analysis with Vision 

[49], which identified two interferon response signatures enriched in the Ifit3-high B cell cluster 

(Methods, Supplementary Fig. 5a, b). The expression of interferon response genes was not 

expected since no inflammation was induced, however we found the Ifit3-high B cell cluster as 

well as Ifit3-high T cell clusters to be represented in both biological replicates, and therefore took 

it to capture part of the biology in the SLN-all dataset (Supplementary Fig. 5c, d). 

 

Next, we explored the variability within transitional B cells and its relationship with B cell 

development. Interestingly, latent dimension 16 (𝑍16) captured a gradual transition within this 

cluster: from a small population of Rag1 expressing cells (indicating early development [46]) to 

cells that were closer to the mature cluster (Fig. 5i, Extended Data Fig. 10a, b). To explore how 

development from transitional to mature B cells may be associated with coordinated changes in 

gene and protein expression, we calculated the totalVI Spearman correlations separately within 

transitional and mature B cells for a set of features that distinguished the two subsets (Methods). 

Hierarchical clustering of the correlation matrix within the transitional B cells clearly stratified 

these features into two anti-correlated modules: one associated with transitional B cells and the 

other with mature B cells (Fig. 5h). These modules, however, were not present in mature B cells, 

indicating that the apparent coordination may be a characteristic of the transitional state (Extended 

Data Fig. 10c). Within transitional B cells, we found that the features in the two modules 

significantly correlated with the axis of maturation captured by 𝑍16 (Extended Data Fig. 10d). 

Along this axis, features in the transitional module decreased while those in the mature module 

increased (Fig. 5j, Methods). These results point to a program of transitional B cell maturation that 

consists of coordinated activation and repression of multiple genes and proteins, leading to a 

gradual transition in cell state that is captured by a specific dimension of the totalVI latent space. 

 

Discussion 

totalVI is a scalable, probabilistic framework for end-to-end analysis of paired transcriptome and 

protein measurements in single cells. Like other multi-omics analysis methods [31, 50, 51], totalVI 

assumes that RNA and protein measurements are generated from the same latent space of cells 

that captures their state. A distinction of totalVI is that it explicitly models modality-specific 

technical factors like protein background, which we demonstrated can enable a denoised view of 
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the data and more accurate differential expression results. totalVI is also unique in its ability to 

handle missing protein data, which enables integration with growing public data resources like the 

Human Cell Atlas [8]. 

 

Beyond the characterization of cell types, totalVI can also uncover relationships between RNA 

and protein molecules within a cell. For example, totalVI could be used to investigate the 

relationship between the level of an RNA transcript and the level of its encoded protein in different 

biological settings, which remains an open question [52]. We found that the totalVI correlations 

were higher in magnitude than raw correlations across the majority of RNA-protein pairs, 

suggesting that the low correlations observed previously [6, 7] could have been due to technical 

noise. Future work quantifying correlations and regulatory relationships between RNA and protein 

features could inform our understanding of signal transduction pathways or transcription and 

translation dynamics [53]. 

 

While the totalVI model was designed to reflect our understanding of the CITE-seq experimental 

data-generating process (Supplementary Note 3), totalVI can also be used to inform experimental 

design. For instance, totalVI could help identify antibody titrations or experimental methods that 

improve signal-to-noise. totalVI could also identify sequencing depths for RNA and protein 

libraries that balance the information gained per measurement in various analysis tasks with the 

cost of additional sequencing [54, 55]. 

 

Through a single pipeline that jointly analyzes paired RNA and protein measurements, totalVI 

simplifies data analysis and interpretation that would otherwise be conducted in separate pipelines 

whose disparate results must be reconciled post hoc. totalVI is available through the scvi-tools 

software package, which connects it with the popular Scanpy [56] and Seurat [34] pipelines, and 

enables analysis on free cloud computing environments like Google Colab. The flexibility and 

scalability of totalVI make it easily applicable to future datasets with larger protein panels, and 

enable extensions that incorporate additional paired measurements. For example, we expect 

totalVI to naturally handle intracellular proteins measured with barcoded antibodies. Further 

additions of modalities like chromatin accessibility [57] or clonotype features [58] can also be 

implemented within the totalVI codebase with consideration of the modality-specific likelihood. 

By combining multiple views of cellular processes, totalVI can reveal a more complete picture 

that redefines cell states and elucidates mechanistic relationships between molecular components 

of the cell. 
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Methods 

 

The totalVI model 

totalVI estimates a conditional distribution for cell 𝑛, 𝑝𝜈(𝑥𝑛, 𝑦𝑛 | 𝑠𝑛), in which 𝑥𝑛 is the 𝐺-

dimensional vector of observed RNA counts (𝐺 genes), 𝑦𝑛 is the 𝑇-dimensional vector of observed 

protein counts (𝑇 proteins) and 𝑠𝑛 is the 𝐵-dimensional one-hot vector describing the batch index 

(experiment identifier). In total, there are 𝑁 cells. We use 𝜈 to refer to the set of all generative 

parameters, which are described throughout this section. This distribution is estimated using the 

framework of variational autoencoders (VAE; [20]). 

 

We begin by describing the generative process, for which a graphical summary is in 

Supplementary Fig. 6 and an algorithmic summary is in Algorithm 1. We then describe the 

inference procedure, as well as how downstream analysis tasks are directly linked to posterior 

queries of the model. 

 

Priors 

The latent cell representation 𝑧𝑛 ∼ LogisticNormal(0, 𝐼), where the logistic normal distribution is 

a distribution over the probability simplex. This specification, which has also been applied in the 

context of linear VAEs for scRNA-seq [59], enables cells to be interpreted with archetypal 

analysis. Typically in VAEs, 𝑧𝑛 follows an isotropic normal distribution, which is chosen for 

computational convenience [20]. In this setting, a logistic normal distribution arises as 

transforming a sample from a normal distribution with a softmax function. For all experiments, we 

set 𝑧𝑛 to 20 dimensions. We discuss the choice of number of latent dimensions in Supplementary 

Note 1. 

 

The latent RNA size factor ℓ𝑛 | 𝑠𝑛 ∼ LogNormal(ℓ𝜇
⊤𝑠𝑛, ℓ𝜎2

⊤ 𝑠𝑛), where ℓ𝜇 ∈ ℝ𝐵 and ℓ𝜎
2 ∈ ℝ+

𝐵  are 

set to the empirical mean and variance of the log RNA library size (defined as total RNA counts 

of a cell) per batch. We use a protein-specific prior for the protein background intensity, where 

𝛽𝑛𝑡 | 𝑠𝑛 ∼ LogNormal(𝑐𝑡
⊤𝑠𝑛, 𝑑𝑡

⊤𝑠𝑛). The parameters for the background intensity, 𝑐𝑡 ∈ ℝ𝐵 and 

𝑑𝑡 ∈ ℝ+
𝐵 , are protein specific and are treated as model parameters learned during inference. This 

prior is motivated by the observation that some component of the background is due to ambient 

antibodies. By being batch specific, these priors on ℓ𝑛 and 𝛽𝑛 account for differences in sequencing 

https://doi.org/10.1101/762773
https://doi.org/10.1186/s13059-017-1382-0
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depth between datasets. A prior can also be thought of as regularizing the posterior distribution, 

thus reducing the influence of outliers [60]. The selection of prior distribution was guided by the 

computational tractability and by properties that are of interest (e.g., non-negativity). 

 

RNA likelihood 

Given 𝑧𝑛, ℓ𝑛, and 𝑠𝑛, an observed expression level 𝑥𝑛𝑔 follows a negative binomial distribution, 

which we present here as a Gamma-Poisson mixture: 

𝜌𝑛 = 𝑓𝜌(𝑧𝑛, 𝑠𝑛) (1) 

𝑤𝑛𝑔 | 𝑧𝑛, ℓ𝑛, 𝑠𝑛 ∼ Gamma(𝜃𝑔, ℓ𝑛𝜌𝑛𝑔) (2) 

𝑥𝑛𝑔 | 𝑤𝑛𝑔 ∼ Poisson(𝑤𝑛𝑔) (3) 

 

The gamma distribution is parameterized by its shape and mean. The mean is equal to ℓ𝑛𝜌𝑛𝑔, 

where ℓ𝑛, a scaling factor, is multiplied by 𝜌𝑛𝑔, interpreted as a normalized gene frequency 

(because 𝜌𝑛 is nonnegative and sums to one). 𝜌𝑛 is the output of a neural network 𝑓𝜌, which takes 

𝑧𝑛 and 𝑠𝑛 as input (Algorithm 1). 

 

Integrating out 𝑤𝑛𝑔 results in the following conditional distribution: 

𝑥𝑛𝑔 | 𝑧𝑛, ℓ𝑛, 𝑠𝑛 ∼ NegativeBinomial(ℓ𝑛𝜌𝑛𝑔, 𝜃𝑔). (4) 

 

The parameter 𝜃𝑔, which is the shape of the gamma distribution, is also the inverse dispersion of 

the negative binomial (Supplementary Note 5). We perform inference on the model with 𝑤𝑛𝑔 

integrated out. We also treat 𝜃𝑔 as a model parameter learned during inference. Overall, this 

likelihood is equivalent to that presented in scVI [15], without zero-inflation. The negative 

binomial distribution has been shown to adequately handle the limited sensitivity and over-

dispersion that are characteristic of this data [61]. 

 

Protein likelihood 

To capture observed protein counts arising from the background or foreground, we model 𝑦𝑛𝑡 with 

a negative binomial mixture, given 𝑧𝑛, 𝛽𝑛 and 𝑠𝑛. This conditional distribution is described by the 

following process: 

𝜋𝑛 = ℎ𝜋(𝑧𝑛, 𝑠𝑛) (5) 

𝛼𝑛 = 𝑔𝛼(𝑧𝑛, 𝑠𝑛) (6) 

𝑣𝑛𝑡 | 𝑧𝑛, 𝑠𝑛 ∼ Bernoulli(𝜋𝑛𝑡) (7) 

𝑟𝑛𝑡 | 𝑣𝑛𝑡 , 𝛽𝑛𝑡 , 𝑧𝑛, 𝑠𝑛 ∼ Gamma(𝜙𝑡, 𝑣𝑛𝑡𝛽𝑛𝑡

+ (1 − 𝑣𝑛𝑡)𝛽𝑛𝑡𝛼𝑛𝑡) 

(8) 

𝑦𝑛𝑡 | 𝑟𝑛𝑡 ∼ Poisson(𝑟𝑛𝑡) (9) 

 

Here 𝑣𝑛𝑡 controls which mixture component generates the counts. Its parameter, 𝜋𝑛𝑡, is the output 

of the neural network ℎ𝜋(𝑧𝑛, 𝑠𝑛). Notably, 𝛼𝑛𝑡, which is the output of the neural network 

𝑔𝛼(𝑧𝑛, 𝑠𝑛), is greater than one. This ensures that one of the mixture components is always larger 

than the other, allowing us to interpret one component as background and one component as 

foreground. Furthermore, 𝜋𝑛𝑡 is interpreted as the probability that any cell-protein pair has 

observed counts due to background alone. For one mixture component, 𝑦𝑛𝑡 | 𝑧𝑛, 𝛽𝑛𝑡 , 𝑠𝑛, 𝑣𝑛𝑡 
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follows a negative binomial distribution, as can be seen by integrating out 𝑟𝑛𝑡. Finally, integrating 

out 𝑣𝑛𝑡 too shows that 𝑦𝑛𝑡 given 𝑧𝑛 and 𝑠𝑛 follows a negative binomial mixture distribution, where 

𝜙𝑡 is a protein-specific inverse dispersion parameter. 
 

Algorithm 1: The totalVI generative model. The gamma distribution is parameterized by its 

shape and mean. Let ν be the set of model parameters described here. A dataset has 𝐺 genes 

and 𝑇 measured proteins. 

Define: Neural networks  

 𝑓𝜌(𝑧𝑛, 𝑠𝑛)  ∶ 𝛥𝐾−1 × {0,1}𝐵 → 𝛥𝐺−1, 

 𝑔𝛼(𝑧𝑛, 𝑠𝑛) ∶ 𝛥𝐾−1 × {0,1}𝐵 → [1, ∞)𝑇, 
 ℎ𝜋(𝑧𝑛, 𝑠𝑛) ∶ 𝛥𝐾−1 × {0,1}𝐵 → (0,1)𝑇 

(Softmax output activation) 

(ReLU + 1 output activation) 

(Sigmoid output activation) 

Require: Inverse dispersion parameters 𝜃 ∈ ℝ+
𝐺 , 𝜙 ∈ ℝ+

𝑇 . Neural network parameters.   

for each cell n do   

    𝑧𝑛 ∼ LogisticNormal(0, 𝐼) K-dim. cellular state variable 

    𝜌𝑛 = 𝑓𝜌(𝑧𝑛, 𝑠𝑛) G-dim. RNA frequency 

    𝛼𝑛 = 𝑔𝛼(𝑧𝑛, 𝑠𝑛) T-dim. foreground increment protein scaling 

    𝜋𝑛 = ℎ𝜋(𝑧𝑛, 𝑠𝑛) T-dim. mixture parameter 

    ℓ𝑛 ∼ Lognormal(ℓ𝜇
⊤𝑠𝑛, ℓ𝜎2

⊤ 𝑠𝑛) Cell scaling factor for RNA 

   for each gene g do   

        𝑤𝑛𝑔 ∼ Gamma(𝜃𝑔, ℓ𝑛𝜌𝑛𝑔)  

        𝑥𝑛𝑔 ∼ Poisson(𝑤𝑛𝑔)  

   for each protein t do   

        𝛽𝑛𝑡 ∼ Lognormal(𝑐𝑡
⊤𝑠𝑛, 𝑑𝑡

⊤𝑠𝑛) Scalar background mean 

        𝑣𝑛𝑡 ∼ Bernoulli(𝜋𝑛𝑡) Scalar mixture assignment 

       if  𝑣𝑛𝑡 = 1 then  

            𝑟𝑛𝑡 ∼ Gamma(𝜙𝑡 , 𝛽𝑛𝑡)  

           𝑦𝑛𝑡 ∼ Poisson(𝑟𝑛𝑡)  

       else  

            𝑟𝑛𝑡 ∼ Gamma(𝜙𝑡 , 𝛽𝑛𝑡𝛼𝑛𝑡)  

           𝑦𝑛𝑡 ∼ Poisson(𝑟𝑛𝑡)  

        

Inference for totalVI 

Inference in the case of fully observed proteins 

The model evidence, 𝑝𝜈(𝑥1:𝑁, 𝑦1:𝑁 | 𝑠1:𝑁), cannot be computed as the integrals are analytically 

intractable, so Bayes rule cannot be directly applied to find the posterior distribution. Therefore, 

we use variational inference [62] to approximate the posterior distribution with a distribution 

having the following factorization: 

𝑞𝜂(𝛽𝑛, 𝑧𝑛, ℓ𝑛 | 𝑥𝑛, 𝑦𝑛, 𝑠𝑛) : = 𝑞𝜂(𝛽𝑛 | 𝑧𝑛, 𝑠𝑛)𝑞𝜂(𝑧𝑛 | 𝑥𝑛, 𝑦𝑛, 𝑠𝑛)𝑞𝜂(ℓ𝑛 | 𝑥𝑛, 𝑦𝑛, 𝑠𝑛). (10) 

 

Here 𝜂 is the set of parameters of an inference network, commonly called the encoder – a neural 

network that takes a cell’s combined expression as input and outputs the parameters of the 

approximate posterior (e.g., mean and variance). Factors of the posterior approximation share the 



29 
 

same family as their respective priors (e.g., 𝑞(𝛽𝑛 | 𝑧𝑛, 𝑠𝑛) is lognormal). The approximate 

posterior 𝑞𝜂(𝑧𝑛 | 𝑥𝑛, 𝑦𝑛, 𝑠𝑛), whose expectation we use as the latent cell representation, is integral 

to many cell-level and feature-level analyses. 

 

For the likelihoods, as described previously, we integrate out the latent variables 𝑣𝑛𝑡, 𝑟𝑛𝑡 and 𝑤𝑛𝑔 

(Algorithm 1), yielding 𝑝𝜈(𝑦𝑛𝑡 | 𝑧𝑛, 𝛽𝑛𝑡 , 𝑠𝑛), which is a mixture of negative binomials and 

𝑝𝜈(𝑥𝑛𝑔 | 𝑧𝑛, 𝑠𝑛, ℓ𝑛), which is a negative binomial distribution. 

 

The evidence lower bound (ELBO) [62] of log𝑝𝜈(𝑥1:𝑁, 𝑦1:𝑁|𝑠1:𝑁) is optimized with respect to the 

variational parameters 𝜂 and model parameters 𝜈 using stochastic gradients [20]. In other words, 

the model parameters and approximate posterior parameters are learned simultaneously. In the 

VAE framework, the generative neural network is referred to as the decoder. Each iteration of 

training consists of randomly choosing a mini-batch of data (256 cells), estimating the ELBO based 

on this mini-batch, and updating the parameters via automatic differentiation operators. The terms 

corresponding to Kullback-Leibler divergences of the ELBO (Supplementary Note 6) follow a 

deterministic warm-up scheme [63], which helps to avoid shallow local maxima. We use the Adam 

optimizer [64] with weight decay to update the model parameters. Learning rate reductions and 

early stopping are performed based on the ELBO of a validation set. As a result of mini-batching, 

totalVI’s memory usage is constant in the number of features in the dataset and number of neural 

network parameters. For example, in the runtime experiment presented in Extended Data Fig. 2f, 

totalVI used a constant 753 megabytes of memory on an NVIDIA Titan XP GPU. totalVI’s runtime 

is linear in the number of cells and linear in the number of features; however, as we use early 

stopping, convergence may vary with the dataset size. 

 

All neural networks are feedforward and use standard activations (e.g., exponential, softmax, 

sigmoid) to encode the variational and generative distributions. We use the same hyperparameters 

for all of our experiments. Supplementary Note 6 gives further implementation details. 

 

Inference in the case of missing proteins 

Here we adapted the training procedure from [65] to handle missing protein data. As any single 

batch may correspond to an experiment that used a different protein panel (or no proteins in the 

case of a scRNA-seq experiment), the missingness of protein features depends on the batch index 

𝑠𝑛. Further, suppose all batches share the same set of genes. Across all batches, there are 𝑇 proteins. 

For cell 𝑛, we denote the observed protein expressions 𝑦𝑛
obs and the unobserved protein expressions 

𝑦𝑛
mis. The log likelihood of the observed data decomposes as 

log𝑝𝜈(𝑥1:𝑁, 𝑦1:𝑁
obs , 𝑠1:𝑁) = ∑ 𝑙𝑜𝑔 𝑝𝜈(𝑥𝑛, 𝑦𝑛

obs | 𝑠𝑛)

N

n=1

 (11) 

 

The generative process for the observed data is the same as in Algorithm 1, with appropriate 

modification to only generate the features present in a particular batch. Thus, 𝜈 is the same set of 

model parameters described previously. Again, we use variational inference to approximate the 

posterior distribution with the distribution in Equation 10. In fact, all approximate posteriors share 
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the same encoder parameters 𝜂. We optimize the ELBO of Equation 11 similarly to the procedure 

used when there is no missing data (i.e., we optimize the ELBO with respect to the model 

parameters 𝜈 and variational parameters 𝜂). To handle mismatched dimensions in the encoder, we 

substitute zeros for missing proteins, and for the decoder, we only calculate the ELBO terms 

corresponding to observed data [66]. Therefore, this procedure naturally extends to the case when 

there is no observed protein data for a cell 𝑛, which would be the case when the cell is obtained 

from a scRNA-seq experiment. Since the quality of missing protein imputation depends on (i) the 

goodness of fit of totalVI to the protein for the data in which it was observed and (ii) the statistical 

distance of the aggregated posterior distributions of 𝑧𝑛 for each of the batches [65, 67], we add a 

domain adaptation regularization term to the ELBO when training [68]. A scaling factor on this 

regularization term decays from one to zero early in training. 

 

Posterior predictive distributions linked to downstream tasks 

For tasks like differential expression, denoising, and finding correlations, totalVI estimates 

functionals of posterior predictive distributions [19]. Define 𝐶𝑛 = {𝑥𝑛, 𝑦𝑛, 𝑠𝑛} as the set of 

observed data for cell 𝑛. First, consider the connection between the posterior predictive distribution 

of RNA data to totalVI denoised RNA expression. The posterior predictive RNA expression 𝑥𝑛𝑔
∗  

for gene 𝑔 given 𝐶𝑛 is distributed following: 

𝑝( 𝑥𝑛𝑔
∗ ∣∣ 𝐶𝑛 ) ≈ ∫ 𝑝ν( 𝑥𝑛𝑔

∗ ∣∣ 𝑧𝑛, l𝑛, 𝑠𝑛 )𝑞η( 𝑧𝑛, l𝑛 ∣∣ 𝐶𝑛 )𝑑𝑧𝑛𝑑l𝑛, 
(12) 

 

To produce denoised RNA expression, we compute the posterior predictive mean of 𝑥𝑛𝑔
∗ . To 

further control for variation due to ℓ𝑛, we condition on ℓ𝑛 = 1. By the law of total expectation, 

𝔼
𝑝(𝑥𝑛𝑔

∗  | 𝐶𝑛, ℓ𝑛 = 1)
[𝑥𝑛𝑔

∗ ] = 𝔼𝑞𝜂(𝑧𝑛 | 𝐶𝑛) [𝔼
𝑝𝜈(𝑥𝑛𝑔

∗  | 𝑧𝑛, 𝑠𝑛, ℓ𝑛 = 1)
[𝑥𝑛𝑔

∗ ]] (13) 

 
= 𝔼𝑞𝜂(𝑧𝑛 | 𝐶𝑛)[𝜌𝑛𝑔], (14) 

where 𝜌𝑛𝑔 is the expectation of the RNA likelihood with the additional condition that ℓ𝑛 = 1. 

 

For each cell 𝑛, we can compute the denoised RNA expression by averaging samples of 𝜌𝑛 

generated by the following process: 

1. Sample 𝑧𝑛 from 𝑞𝜂(𝑧𝑛 | 𝐶𝑛) 

2. Set 𝜌𝑛 = 𝑓𝜌(𝑧𝑛, 𝑠𝑛) 

 

There are two important considerations for these posterior predictive distributions. First, we use 

the approximate posterior as a surrogate for the posterior. Second, these posterior predictive 

distributions are not tractable to compute in closed form, so we can only sample from them with 

ancestral sampling. Functionals of the posterior are computed using Monte Carlo integration. 

 

Denoised protein expression 

After training the model, we can generate “denoised” protein expression – protein expression 

effectively absent of background and controlled for sampling noise. Consider the perturbed protein 

generative process in which we set the background intensity to zero: 
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𝑣𝑛𝑡 | 𝑧𝑛, 𝑠𝑛 ∼ 
Bernoulli(𝜋𝑛𝑡) 

(15) 

𝑟̃𝑛𝑡 | 𝑣𝑛𝑡, 𝛽𝑛𝑡 , 𝑧𝑛, 𝑠𝑛 ∼ {
Gamma(𝜙𝑡 , 𝛽𝑛𝑡𝛼𝑛𝑡) if 𝑣𝑛𝑡 = 0
𝛿0 if 𝑣𝑛𝑡 = 1

 (16) 

 

Here 𝛿0 is a point mass distribution at 0. After marginalizing out 𝑣𝑛𝑡, 𝑟̃𝑛𝑡 | 𝑧𝑛, 𝑠𝑛, 𝛽𝑛𝑡 follows a 

zero-inflated Gamma distribution with mean (1 − 𝜋𝑛𝑡)𝛽𝑛𝑡𝛼𝑛𝑡. 

 

For denoising, we return the posterior predictive mean of 𝑟̃𝑛𝑡. Indeed, the posterior predictive mean 

is equal to (1 − 𝜋𝑛𝑡)𝛽𝑛𝑡𝛼𝑛𝑡 averaged over many posterior samples of 𝑞(𝛽𝑛𝑡 , 𝑧𝑛 | 𝐶𝑛). In other 

words, we return the foreground mean, weighted by the probability that the observation was 

derived from the foreground. This can also be stated as subtracting the expected background from 

the expected total signal. 

 

Missing protein imputation 

To impute protein expression 𝑦𝑛𝑡
∗  for cell 𝑛 and protein 𝑡 missing in batch 𝑠𝑛, but that is observed 

in a batch 𝑠′ ≠ 𝑠𝑛, do the following: 

1. Sample 𝑧𝑛 from 𝑞𝜂(𝑧𝑛 | 𝐶𝑛) 

2. Sample 𝛽𝑛𝑡 from 𝑞𝜂(𝛽𝑛𝑡 | 𝑧𝑛, 𝑠 = 𝑠′) 

3. Sample 𝑦𝑛𝑡
∗  from 𝑝𝜈(𝑦𝑛𝑡

∗  | 𝑧𝑛, 𝛽𝑛, 𝑠 = 𝑠′) 

 

This process returns samples of 𝑝(𝑦𝑛𝑡
*  | 𝐶𝑛, 𝑠 = 𝑠′). Intuitively, we encode the cell into the latent 

space, which is designed to mix the batches (i.e., be an integrated low-dimensional representation 

of the data), and obtain the parameters for the protein likelihood (decode) conditioned on the cell 

being in batch 𝑠 = 𝑠′. Thus, the quality of imputation relies on how well batches mix in the totalVI 

latent space. Ultimately, we report the expected value of the imputed distribution 

𝔼𝑝(𝑦𝑛𝑡
∗  | 𝐶𝑛, 𝑠 = 1)

[𝑦𝑛𝑡
∗ ] = 𝔼𝑞𝜂(𝑧𝑛 | 𝐶𝑛) [𝔼𝑝(𝑦𝑛𝑡

∗  | 𝑧𝑛, 𝑠 = 1, 𝛽𝑛𝑡)
[𝑦𝑛𝑡

∗ ]] (17) 

 

We may also impute the denoised expression, by exchanging 𝑝𝜈(𝑦𝑛𝑡
∗  | 𝑧𝑛, 𝛽𝑛, 𝑠) with 

𝑝𝜈(𝑟̃𝑛𝑡 | 𝑧𝑛, 𝛽𝑛, 𝑠). This change would additionally remove the protein background contribution to 

the prediction. 

 

Differential expression 

With a single model fit, totalVI can detect differentially expressed features between sets of cells, 

i.e., the model does not need to be retrained for every test. Here we use the Bayesian framework 

of [40] to detect differential expression (DE) of genes and proteins. Let 

𝜆𝑎,𝑏 : = 𝛬(𝑧𝑎, 𝑧𝑏, 𝑠𝑎, 𝑠𝑏) : = log
2

𝜌𝑎 − log
2

𝜌𝑏 (18) 

be the log fold change (LFC) of RNA expression between cells 𝑎 and 𝑏. Then the probability that 

gene 𝑔 is differentially expressed (DE) is 

𝑝(|𝜆𝑎,𝑏
𝑔

| ≥ 𝛿 | 𝐶𝑎, 𝐶𝑏) ≈ ∫ 𝟙{|𝜆𝑎,𝑏
𝑔

| ≥ 𝛿}𝑞(𝑧𝑎 | 𝐶𝑎)𝑞(𝑧𝑏 | 𝐶𝑏)𝑑𝑧𝑎𝑑𝑧𝑏, (19) 
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where 𝛿 is a threshold for the effect size. Intuitively, we are measuring the fraction of posterior 

samples that the absolute LFC greater than or equal to 𝛿. For all experiments we set 𝛿 = 0.2. We 

compare the DE probability to the probability that the LFC is in the null region |𝜆𝑎,𝑏
𝑔

| < 𝛿 using a 

Bayes factor: 

BF𝑎,𝑏
𝑔

=
𝑝(|𝜆𝑎,𝑏

𝑔
| ≥ 𝛿 | 𝐶𝑎, 𝐶𝑏)

𝑝(|𝜆𝑎,𝑏
𝑔

| < 𝛿 | 𝐶𝑎, 𝐶𝑏)
. (20) 

 

This can also be extended to groups of cells. Let 𝐴 = 𝑎1, 𝑎2, … , 𝑎𝑚 be the indices of one 

subpopulation of interest, and 𝐵 = 𝑏1, 𝑏2, … , 𝑏𝑛 be the other subpopulation of interest. We then 

exchange the posterior distributions in Equation 19 with the aggregated posterior: 

𝑞𝜂(𝑧𝑎 | 𝐶𝐴)𝑞𝜂(𝑧𝑏 | 𝐶𝐵) = [
1

|𝐴|
∑ 𝑞𝜂

𝑎∈𝐴

(𝑧𝑎 | 𝐶𝑎)] [
1

|𝐵|
∑ 𝑞𝜂

𝑏∈𝐵

(𝑧𝑏 | 𝐶𝑏)] . (21) 

 

In this sampling procedure, a cell representation 𝑧𝑎 (resp. 𝑧𝑏) is sampled given one randomly 

chosen cell in subpopulation 𝐴 (resp. subpopulation 𝐵). Then, it is determined if |𝜆𝑎,𝑏
𝑔

| ≥ 𝛿 via an 

indicator function. The DE probability is estimated based on many samples. 

 

Furthermore, by integrating over the batch variable 𝑠𝑛, we effectively compare cells as if they were 

in the same batch [15]. For genes, this is equivalent to computing 

𝑝(|𝜆𝑎,𝑏
𝑔

| ≥ 𝛿 | 𝐶𝑎, 𝐶𝑏) ≈ ∑ ∫ 𝟙{|[𝛬(𝑧𝑎, 𝑧𝑏, 𝑠′, 𝑠′)]𝑔| ≥ 𝛿}𝑝(𝑠′)𝑞(𝑧𝑎 | 𝐶𝑎)𝑞(𝑧𝑏 | 𝐶𝑏)𝑑𝑧𝑎𝑑𝑧𝑏.

𝑠′

 (22) 

 

Here 𝑝(𝑠′) is a uniform prior over batches. Every time we sample from the posterior, we decode 

the samples using the same batch indicator, averaging the DE probability over every possible batch 

indicator. 

 

For proteins, we use the same framework, but define 

𝛾𝑎,𝑏
𝑡 = log

2
(𝔼[𝑟̃𝑎𝑡 | 𝛽𝑎𝑡 , 𝑣𝑎𝑡 , 𝑧𝑎] + 𝜖) − log

2
(𝔼[𝑟̃𝑏𝑡 | 𝛽𝑏𝑡 , 𝑣𝑏𝑡, 𝑧𝑏] + 𝜖), (23) 

where the conditional expectation is equal to 

𝔼[𝑟̃𝑎𝑡|𝛽𝑎𝑡 , 𝑣𝑎𝑡, 𝑧𝑎] = 𝛽𝑎𝑡𝛼𝑎𝑡(1 − 𝑣𝑎𝑡). (24) 

This is interpreted as the foreground mean if the cell was generated from the foreground, and zero 

otherwise. The added constant 𝜖 is a “prior count” that helps define the log fold change when 

𝔼[𝑟̃𝑛𝑡 | 𝛽𝑛𝑡 , 𝑣𝑛𝑡 , 𝑧𝑛] = 0. For all analysis, we set 𝜖 = 0.5. As with genes, we are interested in 

calculating 𝑝(|𝛾𝑎,𝑏
𝑡 | ≥ 𝛿 | 𝐶𝑎, 𝐶𝑏), where in this case we integrate with respect to the distribution 

∏ 𝑝

𝑖∈𝑎,𝑏

(𝑣𝑖𝑡 | 𝑧𝑖)𝑞(𝛽𝑖𝑡 | 𝑧𝑖 , 𝑠𝑖)𝑞(𝑧𝑖 | 𝐶𝑖). (25) 

 

We consider features with a log(BF) > 0.7 as differentially expressed. This is roughly equivalent 

to calling features significant if the odds ratio (here equivalent to a Bayes factor) is greater than 2. 
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Finally, we use the posterior samples of 𝜆𝑎,𝑏 (resp. 𝛾𝑎,𝑏 for proteins) as the estimate of effect size 

for each gene (resp. protein). Specifically, we use the median of the samples, which is robust to 

outliers and is also the Bayes estimator under 𝐿1 loss. 

 

Denoised correlation matrix construction 

We seek a feature-feature correlation matrix (e.g., gene-gene correlations, gene-protein cross-

correlations) that summarizes biological variation, instead of technical variation. As totalVI 

explicitly models nuisance factors (for genes as well as proteins), we can query the model while 

controlling for this nuisance variation. Furthermore, because naive computations of correlations 

on denoised values (parameters of conditional distributions) were shown to induce spurious gene-

gene correlations [33], we develop a novel sampling scheme that helps remove technical variation 

while avoiding such artifacts. 

 

In order to ensure our correlation matrix does not include variation from the modeled technical 

factors, we perturb the data generating process to fix the library size (ℓ𝑛 = 10000) as well as 

incorporate the denoised protein expression conditional distribution. In particular, we compute a 

correlation matrix using samples from the distribution 

𝑝(log 𝑤𝑛, log 𝑟̃𝑛 | 𝐶1:𝑁, ℓ1:𝑁). (26) 

 

This is also a posterior predictive density whose samples are generated with ancestral sampling. 

As 𝑟̃𝑛 is zero-inflated, we add the same “prior count” before taking the logarithm. For this 

distribution, we sample ancestrally using the aggregated posterior 

𝑞𝜂(𝑧𝑛, 𝛽𝑛 | 𝐶1:𝑁) =
1

𝑁
∑ 𝑞𝜂

𝑁

𝑛=1

(𝑧𝑛 | 𝐶𝑛)𝑞𝜂(𝛽𝑛 | 𝑧𝑛, 𝑠𝑛), (27) 

 

One could in principle replace the aggregated posterior with the prior in case of analyzing dataset-

wide correlations. However, this approach is more flexible as it can be applied to calculate the 

correlation matrix for a subpopulation 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑚}, where 𝐴 is the set of indices for the 

subpopulation, by conditioning the distribution on 𝑥𝐴 and 𝑦𝐴. 

 

The distinction between this procedure and those that induced spurious correlations is that the 

latter effectively estimates a correlation matrix using the expected value of the posterior predictive 

distribution, rather than estimating the correlation matrix of the posterior predictive distribution. 

 

Out-of-batch generalization 

totalVI learns a transformation from 𝑧𝑛 and 𝑠𝑛 to the parameters of the conditional distributions 

for each feature (decoder). In an out-of-batch prediction, we predict the expression of a cell (e.g., 

the mean of conditional distribution) given any of the other 𝐵 observed batches 𝑠 such that 𝑠 ≠ 𝑠𝑛. 

Here we describe a general way to sample posterior quantities for a cell while also “transforming” 

it into a different batch that was also observed for other cells [69]. Special cases of this have already 

been described in the protein imputation and differential expression sections. Consider, for 
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instance, the RNA counts in cell 𝑛 and gene 𝑔. We can calculate posterior predictive samples of 

𝑥𝑛𝑔 while conditioning on any arbitrary observed batch 𝑏. Then, 

𝑝( 𝑥𝑛𝑔
∗ ∣∣ 𝐶𝑛, 𝑠 = 𝑏 ) ≈ ∫ 𝑝ν( 𝑥𝑛𝑔

∗ ∣∣ 𝑧𝑛, 𝑠 = 𝑏 )𝑞η( 𝑧𝑛 ∣∣ 𝐶𝑛 )𝑑𝑧𝑛. (28) 

 

Furthermore, we can integrate over the choice of batch by sampling from 

∑ 𝑝

𝑏

(𝑥𝑛𝑔
∗  | 𝐶𝑛, 𝑠 = 𝑏)𝑝(𝑠 = 𝑏), (29) 

where 𝑝(𝑠) is a uniform prior over batches. We take the expected value of this particular 

distribution as batch-corrected, denoised gene expression data. This “transforming” can also be 

applied to other likelihood parameters like 𝜋𝑛. 

 

CITE-seq experiment on mouse spleen and lymph node 

Supplementary Table 1 shows a summary of the experimental design that generated the mouse 

spleen and lymph node CITE-seq datasets. Below, we describe in further detail how these datasets 

were collected and processed. 

 

Cell preparation 

Mice were group housed with enrichment in standard cages on ventilated racks at an ambient 

temperature of 26C and 40% humidity. Mice were kept in a dark/light cycle of 12 hours on and 12 

hours off. Two female C57BL/6 (B6) mice at 5 weeks of age were euthanized using CO2. From 

each mouse, six lymph nodes were harvested, pooled in RPMI + 10% FBS media on ice, 

mechanically dissociated with a syringe plunger, and passed through a 70 𝜇m strainer to generate 

a single cell suspension. Likewise, the spleen was harvested, placed in RPMI + 10% FBS media 

on ice, mechanically dissociated with a syringe plunger, and passed through a 70 𝜇m strainer to 

generate a single cell suspension. For the spleen, red blood cells were lysed in Red Blood Cell 

Lysis Buffer (BioLegend #420302) following the manufacturer’s protocol. All animal care and 

procedures were carried out in accordance with guidelines approved by the Institutional Animal 

Care and Use Committee at BioLegend, Inc. 

 

Antibody panel preparation 

We prepared panels containing either 111 antibodies (TotalSeq-A mouse antibody panel 1, 

BioLegend #900003217) or 208 antibodies (TotalSeq-A mouse antibody panel 2, BioLegend 

#900003218), which are enumerated in Supplementary Data. We performed a buffer exchange on 

each panel using a 50kDa Amicon spin column (Millipore #UFC505096) following the 

manufacturer’s protocol to transfer antibodies into RPMI + 10% FBS. Spleen and lymph node cell 

suspensions were stained with different hashtag antibodies [22]. 

 

CITE-seq protocol and library preparation 

The CITE-seq experiment was performed following the TotalSeq protocol with two slight 

modifications. First, the 10 minute centrifugation at 14,000g to remove antibody aggregates was 

conducted prior to buffer exchange. Second, cells were stained, washed, and resuspended in RPMI 

+ 10% FBS to maintain viability. After staining, washing, and counting, 12,000 spleen cells and 
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12,000 lymph node cells were mixed and loaded into a single 10x lane. We followed the 10x 

Genomics Chromium Single Cell 3’ v3 protocol to prepare RNA, antibody-derived-tag (ADT) and 

hashtag-oligo (HTO) libraries [70]. 

 

Sequencing and data processing 

RNA, ADT, and HTO libraries were sequenced with an Illumina NovaSeq S1. Reads were 

processed with Cell Ranger v3.1.0 with feature barcoding, where RNA reads were mapped to the 

mouse mm10-2.1.0 reference (10x Genomics, STAR aligner [71]) and antibody reads were 

mapped to known barcodes (Supplementary Table 5). Hashtags were demultiplexed separately for 

each 10x lane with HTODemux in Seurat v3 using the kmeans function [34]. No read depth 

normalization was applied when aggregating datasets. 

 

Additional datasets 

We also used publicly available CITE-seq datasets from 10x Genomics. These included “10k 

PBMCs from a Healthy Donor - Gene Expression and Cell Surface Protein” (PBMC10k, [23]), 

“5k Peripheral blood mononuclear cells (PBMCs) from a healthy donor with cell surface proteins 

(v3 chemistry)” (PBMC5k, [37]), and “10k Cells from a MALT Tumor - Gene Expression and 

Cell Surface Protein” (MALT, [24]). PBMC10k had 14,010 mean reads per cell for antibodies 

(5,816 median UMI counts per cell), while PBMC5k had 7,451 mean reads per cell for antibodies 

(2,752 median UMI counts per cell). 

 

CITE-seq data pre-processing 

For each dataset, after initial cell and gene filtering, we retained at least the top 4,000 highly 

variable genes (HVGs) as defined by the Seurat v3 method, merging HVGs from different batches 

when appropriate [34]. Dataset specific filtering is described below. 

 

Spleen and lymph node 

An initial cell filter removed cells expressing fewer than 200 genes. Cells labeled as either doublets 

or negative for hashtag antibodies by HTODemux were also removed. A protein library size filter 

retained cells with between 400 and 10,000 total protein UMI counts. We also filtered on the 

number of proteins detected. For cells stained with the 111 antibody panel, we removed cells with 

fewer than 90 proteins detected, while the cutoff was set to 170 for cells stained with the 208 

antibody panel. Cells with a high percentage of UMIs from mitochondrial genes (15% or more of 

the cell’s total UMI count) were removed. An initial gene filter removed genes expressed in 3 or 

fewer cells in any given batch. In addition to the top 4,000 HVGs selected by the Seurat v3 method, 

we retained genes that encode the proteins targeted by the 111 antibody panel. This resulted in 

4,005 total genes. After all filters, the distribution of cells per dataset was: (SLN111-D1, 9,264 

cells), (SLN111-D2, 7,564 cells), (SLN208-D1, 8,715 cells), (SLN208-D2, 7,105 cells). This is a 

total of 32,648 cells. Unless otherwise stated, we filtered out isotype control antibodies (9 total in 

the 208 panel) and hashtag antibodies. The protein CD49f was also removed due to having very 

low total UMI counts. 

 

PBMC10k, PBMC5k, & MALT 

For each of these datasets, we first removed doublets using DoubletDetection [72]. Cells with high 

mitochondrial content (percentage of UMIs from mitochondrial genes), high number of genes 
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detected, high UMI counts, and with fewer than 200 genes expressed were removed. Next, cells 

with outlier protein library size (on either end) were removed. Genes with expression in three or 

fewer cells were removed. Finally, the top 4,000 HVGs were retained. Dataset specific parameters 

are in Supplementary Table 6. In the case where the PBMC datasets are integrated, the 4,000 HVGs 

are selected by merging HVGs computed on each dataset separately as in the Seurat v3 method. 

 

Posterior predictive checks and held-out metrics 

Posterior predictive checks are useful to check the fit of Bayesian models. They work by 

comparing the observed data to posterior predictive samples from the model [25]. Much of the 

benchmarking done here was inspired by previous work done to benchmark the scHPF model [16]. 

We compared totalVI to factor analysis, which is a linear-Gaussian alternative to totalVI, and is 

easily extendable to multiple modalities as features are treated conditionally independent of the 

latent representation. Furthermore, we compared to scHPF, which received the concatenated RNA 

and protein count matrices as input. As a control, we also compared performance on RNA only to 

scVI [15]. Posterior predictive samples for totalVI and scVI were obtained by calling the generate 

function in the scVI package, which samples from the variational posterior distributions, and 

subsequently from the likelihood distributions given the posterior samples. We ran scVI with 20 

latent dimensions and negative binomial conditional distribution in order to be consistent with 

totalVI. Factor analysis (FA) models were fit using the sklearn package [73] on the combined RNA 

and protein measurements using one of two normalization procedures. The first procedure 

consisted of transforming each value by log(count + 1). The second procedure consisted of log 

library size normalizing the RNA features and protein features separately. For example, 

considering only the RNA measurements for a cell, we normalized each cell to sum to 1 by dividing 

by the library size of RNA, multiplied by 10,000, added 1 to each value, and took a log 

transformation: 

𝑥̃𝑛𝑔 = log (𝐿
𝑥𝑛𝑔

∑ 𝑥𝑛𝑔𝑔
+ 1) , (30) 

where 𝐿 = 10000. This process was then applied to the protein measurements. We refer to this 

type of normalization as log library size normalization, and for short, log rate. These normalization 

procedures are necessary as FA assumes a Gaussian distribution, so training on the raw data would 

lead to poor model fit. Posterior predictive samples for FA models were computed using the fitted 

parameters and posterior distribution derived in [74]. We note that normalization procedures were 

inverted so that FA posterior predictive samples were on the same scale as the raw data. 

 

For each dataset, each model was trained on a train set comprising of 85% of the cells. An 

additional 5% of cells were held-out as a validation set for totalVI early stopping. The remaining 

10% of cells were also held-out as a test set. For each model’s posterior predictive samples (25 for 

each model) based on the train set, we calculated the coefficient of variation (CV) for each feature, 

and calculated the mean absolute error between the average CV and the observed raw data CV. 

Furthermore, we computed the Mann-Whitney U statistic (implementation in 

scipy.stats.mannwhitneyu) for each feature between the posterior predictive sample and the raw 

data. We averaged the statistic across all posterior predictive samples for each feature. We also 

used posterior predictive samples to assess generalization to unseen data. In this setup, we 

generated posterior predictive samples (150 for each model) conditioned on the test set. We 
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considered the mean absolute error between the observed held-out data and the posterior predictive 

mean. 

 

Moreover, we computed a held-out calibration error [26] for each model based on the test set. For 

each cell 𝑛 and gene 𝑔, let 𝐼𝑛𝑔 be the indicator that the observed value is contained in the interval 

of all posterior predictive samples. The calibration error for genes is then calculated as 

Cal
RNA = (1 −

1

𝑁𝐺
∑ ∑ 𝐼𝑛𝑔

𝑔𝑛

)

2

. (31) 

The calibration error for proteins is computed separately following the same procedure. 

 

Finally, for totalVI and scVI only, and for only the RNA data, we computed the held-out predictive 

log likelihood. In this metric, 𝑧𝑛 and ℓ𝑛 were sampled from the variational posterior for each cell 

𝑛 and the average negative conditional log likelihood, −log𝑝(𝑥𝑛 | 𝑧𝑛, ℓ𝑛, 𝑠𝑛) was computed. This 

is also called the reconstruction loss in the VAE literature. This is also an approximation of 

−log𝑝(𝑥𝑛 | 𝑥𝑛, 𝑦𝑛, 𝑠𝑛), the negative predictive log likelihood. We note that we cannot compare the 

log likelihood of totalVI and scVI, which use discrete conditional distributions to factor analysis 

models, which use continuous conditional distributions. 

 

We further evaluated model misfit through posterior dispersion indices [75]. This metric highlights 

cells that are not well explained by the model. This analysis is described in Supplementary Note 

7. 

 

Background decoupling benchmarking 

We reported the totalVI background probability as the posterior predictive mean of 𝜋𝑛𝑡, thus 

𝑝(cell 𝑛, protein 𝑡 is background) = 𝔼𝑝(𝜋𝑛𝑡 | 𝑥𝑛, 𝑦𝑛, 𝑠𝑛)[𝜋𝑛𝑡], (32) 

where the expectation is approximated using Monte Carlo integration. The totalVI foreground 

probability is one minus the background probability. 

 

Observing protein background in empty droplets and non-expressing cell types 

To observe different sources of protein background, we considered both empty droplets and cell 

types with known expression of surface markers. We defined empty droplets as non-cell barcodes 

from the SLN111-D1 dataset with between 20 and 100 RNA UMI counts (approximately 75,358 

barcodes). We chose these criteria so that empty droplets were likely to represent ambient 

molecules rather than sequencing errors (with very low UMI counts) or cell debris (with higher 

UMI counts) [76]. To observe non-specific binding of antibodies, we considered B cells (which 

are known to express CD19 and CD20, but not CD28) and T cells (which are known to express 

CD28, but not CD19 or CD20). Using cell type annotations as described below, we grouped all 

high-quality, non-doublet B cell clusters (excluding plasma B cells), and alpha/beta T cell clusters 

(including all CD4, Treg, and CD8 T cell clusters). We observed that for these three proteins, both 

empty droplets and the non-expressing cell type contained protein background (non-zero protein 

counts) with varying degrees of overlap with the foreground signal of the expressing cell type. In 
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this text, we describe the protein counts of the non-expressing cell type above the counts in empty 

droplets as non-specific antibody binding, although we acknowledge there could be multiple 

sources of this cell-specific background (Supplementary Note 3). 

 

Classification of cell type by marker proteins 

We sought to evaluate totalVI against a Gaussian mixture model (GMM) at predicting major cell 

types by the foreground probability of commonly used surface markers. For these markers, protein 

counts were expected to come from the foreground component in some cell types and from the 

background component in others. For example, a high foreground probability for CD4 could be 

used as a positive predictor of CD4 T cells. We applied scikit-learn’s GaussianMixture with default 

parameters to fit a GMM with two components to the log(protein counts +  1) for each protein for 

all cells in the SLN111-D1 dataset. We interpreted the posterior probability of the component with 

the higher mean as the foreground probability and that of the lower mean as the background 

probability. Restricting all cells to just those that fell into the categories of B cells or T cells as 

described above, we tested how well totalVI or a GMM could classify cell types based on 

commonly used protein surface markers. For each marker protein, we computed a receiver 

operating characteristic curve (ROC) (sklearn.metrics) by thresholding the totalVI or GMM 

foreground probability estimates, using manual cell type annotations as true labels (stratification 

and annotation described below). We reported the area under the ROC (ROC AUC). The cell type 

considered as the positive population was either B cells, T cells, CD4 T cells, or CD8 T cells 

depending on the marker. In tests considering each of these positive populations, all remaining 

cells among the B and T cells were considered the negative population. Marker proteins tested 

included, for B cells: CD19, CD45R-B220, CD20, I-A-I-E (MHC II); for T cells: CD5, TCRb, 

CD28, CD90.2; for CD4 T cells: CD4; for CD8T cells: CD8a, CD8b [77-80]. Although we are 

aware of documented exceptions to these markers appearing strictly on a single cell type (e.g., 

CD5 is expressed on a portion of B1 B cells), these exceptions are rare. In these cases where marker 

expression is not mutually exclusive, cell types can still be distinguished by the gradation in levels 

of the marker between cell populations. Thus, these exceptions do not negate the utility of these 

markers in broad cell type classification (which is apparent in both totalVI and GMM performance 

at this classification task). 

 

GMM-based cutoff for protein foreground/background 

As a baseline determination of a cutoff to distinguish cells with foreground or background protein 

expression, we used a GMM fit on all cells of the SLN111-D1 dataset for each protein as described 

above. The GMM-based cutoff between foreground and background was determined to be the 

protein expression level at which the GMM foreground probability (described above) was closest 

to 0.5. 

 

Protein normalization using isotype controls 

Although totalVI does not make use of isotype controls in its model of protein background, some 

CITE-seq studies include isotype control antibodies as negative controls to adjust for protein 

background. To compare totalVI to a method that uses isotype controls to normalize protein data, 

we applied two different normalization strategies prior to fitting a GMM and performing the 

classification task described above. First, we applied the normalization strategy used by Cumulus 

[32]: 
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norm1: 𝑦𝑛𝑡 → max (log
𝑦𝑛𝑡 + 1

𝑘𝑛
(𝑡)

+ 1
, 0) , (33) 

where 𝑦𝑛𝑡 is the observed UMI counts for protein 𝑡 in cell 𝑛, and 𝑘𝑛
(𝑡)

 is the observed UMI counts 

of the corresponding isotype control for protein 𝑡 in cell 𝑛. In the case where the corresponding 

isotype control for a given antibody is not present in the data, normalized expression is calculated 

as 

norm1: 𝑦𝑛𝑡 → log(𝑦𝑛𝑡 + 1). (34) 

Because this normalization method restricts normalized values to be non-negative, the resulting 

distribution might not be fit well by a GMM. We therefore applied a second normalization strategy 

as a modification to the Cumulus method that adjusts for the relative isotype control level but does 

not restrict the distribution of normalized values to be non-negative: 

norm2: 𝑦𝑛𝑡 → log
𝑦𝑛𝑡 + 1

𝑘𝑛
(𝑡)

+ 1
. (35) 

If an isotype control is not present, norm2 values are calculated as in Equation 34. 

For the SLN208-D1 dataset, which contained a limited number of isotype control antibodies, we 

fit a GMM as described above to the log(protein counts +  1) (GMM), to the Cumulus normalized 

values (GMM norm1), and to the values normalized with the modified Cumulus method (GMM 

norm2). We performed the same classification of cell types by marker proteins as described for 

the SLN111-D1 dataset, noting that the isotype control for CD28 (Syrian Hamster IgG) was not 

contained in the dataset. 

 

Visualization and raw data normalization 

For the SLN111-D1 dataset, we visualized the totalVI latent space in two dimensions using 

Scanpy’s [56] implementation of the UMAP algorithm [81]. We applied log library-size 

normalization to the raw RNA counts as in Equation 30. All cells of the SLN111-D1 dataset are 

plotted (i.e., doublets were not removed). 

 

Distribution of foreground probabilities 

We observed the totalVI foreground probability for all proteins across all cells in the SLN111-D1 

dataset (Supplementary Fig. 1e). The totalVI foreground probability tended to fall near zero or 

one. Measurements for which totalVI estimates a foreground probability near 0.5 are instances 

where the model is uncertain about whether the measurement is likely to be derived from 

foreground or background. 

 

Distinguishing foreground and background in trimodal protein distributions 

Despite using a two-component mixture, totalVI can decouple the background and foreground of 

proteins that have more than two modes globally. totalVI is capable of distinguishing foreground 

and background in this setting because the mixture is conditionally dependent on 𝑧𝑛, which allows 

the foreground and background expression modes to be defined locally in the latent space. For 

example, as has been reported using flow cytometry [82], CITE-seq data of peripheral blood 

mononuclear cells contains three modes of CD4 expression corresponding to CD4 T cells, 
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monocytes, and background. totalVI detected that both CD4 T cells and monocytes had foreground 

expression of CD4, while the CD4 expression of the remaining cells was attributable to 

background expression. 

 

Denoised protein expression 

Denoised protein expression was calculated as previously described. B cells and T cells were 

defined by annotations, as described above. 

 

RNA-protein correlation analysis 

Evaluation of correlation calculation with permuted features 

Using totalVI, we aimed to calculate a correlation matrix between all RNA and protein features 

free from nuisance variation such as sequencing depth and protein background. We took care to 

avoid the naive calculation of correlations directly between denoised features, noting that a recent 

study reported false positive correlations in smoothed scRNA-seq data [33]. Instead, we developed 

a novel sampling method for the calculation of denoised feature correlations that removes nuisance 

variation while avoiding imputation-induced artifacts (described above). 

 

To evaluate whether totalVI could calculate a denoised feature correlation matrix without 

introducing spurious relationships in the data, we permuted the expression of a set of genes to 

serve as a negative control. To create this set of negative control genes from the SLN111-D1 

dataset, we selected the 100 genes with highest mean expression that were not already among the 

top highly variable genes used in the model. We randomly permuted the counts of these genes 

within each cell, rendering these genes independent of all other gene and protein features. After 

concatenating the SLN111-D1 dataset with the permuted gene expression for all cells, we ran the 

totalVI model. 

 

We then calculated Pearson and Spearman correlations between features using three methods, 

referred to here as raw, naive totalVI, and totalVI correlations. Raw correlations were calculated 

between log library-size normalized RNA (Equation 30) and log(protein counts + 1). Naive 

totalVI correlations were calculated between totalVI denoised RNA and totalVI denoised proteins. 

totalVI correlations were calculated by sampling denoised RNA and denoised protein values from 

the posterior (as described above). 

 

We observed the correlations between all RNA and protein features as well as the 100 additional 

genes whose expression was randomly permuted. By comparing the raw correlations with denoised 

correlations, we observed whether the method of denoising could maintain the relationship 

between these permuted genes and other features, which, in expectation, are independent from 

each other. Here, we highlighted the correlations between all proteins and the randomly permuted 

genes, whose correlations are expected to be near zero. 

 

Correlations of RNA-protein pairs 

We calculated a feature correlation matrix for the SLN111-D1 dataset using either the totalVI 

sampling method or by calculating raw correlations as described above. The resulting feature 

correlation matrices for both Pearson and Spearman correlations were subset to each protein and 
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its encoding RNA for all proteins with a unique encoding RNA in the dataset (i.e., excluding RNA 

with multiple isoforms such as Ptprc). It is worth noting that the totalVI model has no explicit 

information about the relationship between RNA-protein pairs, such that any correlation learned 

by the model is not predetermined by known RNA-protein relationships. 

 

Integration of multiple datasets 

We compared totalVI’s integration performance to that of Scanorama[35], Seurat v3 [34], and 

Harmony [36]. The two former methods, like totalVI, produce both integrated expression values 

and integrated low-dimensional cell representations. The input to both Scanorama 

(scanorama.correct), Seurat v3 (FindIntegrationAnchors, IntegrateData) methods was a 

normalized matrix of concatenated genes and proteins. Genes were subset to the same subset used 

as input to totalVI. The RNA counts of this matrix were normalized following standard log library 

size normalization (Equation 30). For proteins, we used a 𝑦 → log(𝑦 + 1) transformation. Finally, 

we standard scaled each feature. Harmony (harmonypy) received latent spaces for each dataset 

computed with PCA on the concatenated, normalized, and scaled datasets. All methods were run 

with default parameters. We compared the performance of the methods using the following 

metrics: 

 

Latent mixing metric 

The latent mixing metric measures how well the latent cell representations are mixed between 

batches relative to the global frequency of batches. First, a cell-cell similarity matrix is computed 

from a latent representation of cells. Next, select 100 cells uniformly at random, and calculate the 

frequency of batches represented in each cell’s 100 nearest neighbors. Let 𝑝𝑖
(𝑛)

 be the frequency 

of batch 𝑖 in the 100 nearest neighbors of cell 𝑛. Let 𝑞𝑖 be the global frequency of batch 𝑖. Compute 

the negative relative entropy between the frequency of observed batches in the neighborhood, and 

the global frequency of batches: 

KL(𝑝(𝑛)   ∥  𝑞) = ∑ 𝑝𝑖
(𝑛)

𝐵

𝑖=1

log
𝑝𝑖

(𝑛)

𝑞𝑖

 (36) 

Repeat this 50 times and return the average negative relative entropy. This is conceptually similar 

to the entropy of mixing that has been used in other studies [83]. 

 

Measurement mixing metric 

The measurement mixing metric describes how well the high-dimensional measurements are batch 

corrected, and for each feature, is related to the Mann-Whitney U statistic. Consider one feature in 

the batch-corrected data matrix placed in rank order. Let 𝑅1 be the sum of the ranks of the cells in 

batch 1 and 𝑁1 be the number of cells in batch 1. Define 𝑈1 = 𝑅1 −
𝑁1(𝑁1+1)

2
. Similarly, compute 

𝑈2 for batch 2 and return min(𝑈1, 𝑈2). Higher values of this metric indicate better mixing within 

that feature. This metric could not be applied for Harmony, which only produces an integrated 

latent representation. 

 

Feature retention metric 

The feature retention metric describes how spatial autocorrelation of both RNA and protein change 

when comparing cells from an integrated latent representation to a latent representation derived 
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from each batch separately. Lower values of this metric indicate that the integration procedure 

reduced the localization of feature expression, indicating some degree of random mixing. We 

calculate it as follows. For two batches and a particular integration method, we calculate 𝑍1 and 

𝑍2, the latent representations of the cells of batch 1 and batch 2, respectively. The latent space 

computation of the individual batches was chosen to closely match the integration method (see 

below). We also calculate an integrated latent representation of both batches 𝑍⊤ = [𝑍̃1  𝑍̃2]. Let 

𝐷1 = [𝑋1  𝑌1] be the combined RNA and protein batch 1 in which RNA is library size log 

normalized and proteins are log-transformed. Let 𝔼[𝐻(𝐷1, 𝑍1)] be the expected feature 

autocorrelation score as calculated by Hotspot [84]. Furthermore, let 𝔼[𝐻(𝐷1, 𝑍̃1)] be the 

analogous quantity calculated using the latent cell representations of batch 1 subsetted from the 

joint, integrated representation. The feature retention metric is calculated as 
1

2
∑ 𝔼2

𝑖 [𝐻(𝐷𝑖 , 𝑍̃𝑖)] −

𝔼[𝐻(𝐷𝑖 , 𝑍𝑖)]. In the case of totalVI union, features were intersected to compute this metric. 

 

For Scanorama, we define 𝑍1 and 𝑍2 to be a 100-dimensional matrix produced with principal 

components analysis (PCA), which is the same dimension reduction used in the integration 

method. For Seurat v3, we similarly use PCA to reduce 𝐷1 and 𝐷2 to 30 dimensions, the same 

number of dimensions used for integration. The input to PCA was the same as the input for the 

respective method, except for Scanorama, where we additionally 𝐿2 normalized each cell, because 

this step is done automatically by Scanorama’s correct method. 

 

Clustering metric 

The clustering metric quantifies the extent to which clusters defined on the unintegrated latent 

spaces are preserved in the integrated latent space. Using the same notation as before, we compute 

for each method, clusters based on 𝑍1 and 𝑍2, individually. Clusters were inferred using the 

standard Scanpy workflow: computing a neighbors graph, and running the Leiden [85] algorithm, 

with default parameters. Next, the silhouette coefficient 𝒮 was computed for every cell with respect 

to its latent representation and cluster label: 𝒮(𝑍1), 𝒮(𝑍2), 𝒮(𝑍̃1), 𝒮(𝑍̃2). Finally, a score for each 

dataset was defined as 𝔼[𝒮(𝑍̃𝑖) − 𝒮(𝑍𝑖)]. The final score was averaged across each dataset. Thus, 

lower scores suggest clusters are not preserved as well in the integrated latent space. We emphasize 

that this metric can only be taken as a proxy for cell type preservation, which requires “ground 

truth” cell type labels, or well-established datasets -- none of which exist for CITE-seq. 

 

Missing protein imputation 

For Seurat v3, we imputed proteins based on mutual nearest neighbors in the RNA data using the 

FindTransferAnchors and TransferData functions. Again, RNA data were log library size 

normalized. Proteins were not normalized as input to Seurat. For totalVI, after fitting the model, 

cells from the batch with held-out proteins were decoded conditioned on being in the batch with 

observed protein data. Note, we did not correct for background in this analysis since the 

comparison is to the observed data. We used the root mean squared error of values on the log scale 

to assess imputation accuracy. To produce error bars, we ran totalVI 30 times, resampling the 

dataset into the train/validation sets (validation used for early stopping), computing the mean and 

95% confidence interval. For the PBMC datasets, we compared to cTP-net [38], which is a neural 

network that was pre-trained on specific CITE-seq datasets from human cells, with no option to 

train a new dataset. The inputs to cTP-net were the log-normalized RNA data. cTP-net did not 
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provide predictions for CD127, CD15, CD25, PD-1, or TIGIT. To the best of our knowledge, 

neither of the PBMC datasets used in this study were used to train the pre-trained cTP-net model. 

Thus, a direct comparison of the results to those of totalVI or Seurat v3 is not straightforward. 

 

Stratification of cells in SLN-all 

We stratified cells of the mouse spleen and lymph node based on the SLN-all dataset (totalVI-

intersect model fit as described above). We clustered cells in the totalVI latent space with Scanpy’s 

implementation of the Leiden algorithm at resolution 1, resulting in 32 clusters [56, 85]. We 

repeated this approach to sub-cluster cells, finding a total of 43 clusters. We used Vision [49] with 

default parameters for data exploration, including its implementation of the Wilcoxon rank sum 

test, to identify cluster markers. Clusters were manually annotated based on a curated list of cell 

type markers (Supplementary Table 4). Clusters annotated as doublets, low quality cells (e.g., high 

percentage of UMI counts from mitochondrial genes), or cells undergoing the cell cycle were 

removed from further analysis. Again, we visualized the totalVI latent space in two dimensions 

using Scanpy’s implementation of the UMAP algorithm. These annotations were also consistent 

with the latent space derived with totalVI-union (Supplementary Fig. 7). 

 

Differential expression analysis 

The Welch’s t-test and Wilcoxon rank-sum test for each differential expression scenario were run 

on protein features (log-transformed) using the Scanpy library, which produces adjusted 𝑝-values 

corrected for multiple testing by the Benjamini-Hochberg procedure [86]. Both tests are two-sided. 

A protein was considered to be differentially expressed if the adjusted 𝑝-value was less than 0.05. 

Each application of totalVI differential expression tests to a dataset requires a trained totalVI 

model. For each dataset used in DE analysis, all cells were included to train the model. Throughout, 

we used our manual annotations from the SLN-all totalVI-intersect model run. The cells in 

nuisance clusters (described in previous section) were removed before running totalVI differential 

expression functions. 

 

In a given totalVI differential expression test, we identified cell type markers by first filtering 

features for significance (log Bayes factor > 0.7), and then sorting by the median log fold change. 

We only retained genes with non-zero UMI counts in at least 10% of the subset of cells. 

In the comparison to scVI gene Bayes factors, each method was trained independently on the 

SLN111-D1 dataset. We ran scVI with 20 latent dimensions and negative binomial conditional 

distribution to be consistent with totalVI. Differential expression of genes in scVI was computed 

using the same LFC-based method, which is implemented in the scvi-tools package. In 

reproducibility benchmarking, totalVI was trained independently on the replicates. 

 

In the test between ICOS-high Tregs and CD4 conventional T cells, we used the same totalVI-

intersect model fit that was used to manually annotate the cells. In this test, we expected CD73, 

CD357 (GITR), CD122, and CD5 to be upregulated (positives) in ICOS-high Tregs relative to 

conventional CD4 T cells [87-90]. The list of putative negatives included I-A/I-E (MHC II), IgD, 

CD19, CD8b, and CD8a, which have no expected expression in either of these cell types. 



44 
 

 

DE on imputed proteins 

In one totalVI model fit, SLN111-D1 and SLN111-D2 were integrated with the proteins of 

SLN111-D2 held out. In the second totalVI model fit, these two datasets were integrated with all 

data. In testing differential expression of proteins, and for each model fit, we conditioned on 

SLN111-D1. This is an application of Equation 22, except that the prior 𝑝(𝑠′) is 1 if 𝑠′ =
SLN111-D1 and 0 otherwise. 

 

Archetypal analysis 

This analysis was performed on the SLN-all totalVI-intersect model run. As 𝑧𝑛 is distributed as 

logistic normal, the latent space is then constrained to the probability simplex (i.e., each 𝑧𝑛 is non-

negative and sums to one). Archetypes correspond to vertices of the totalVI latent space, which 

means they can be represented by the identity matrix 𝐼𝑑, where 𝑑 is the number of latent dimensions 

(20 in all experiments). In this setting, the latent space is the 19-dimensional standard simplex. 

 

We first identified and removed four archetypes from further interpretation that suffered from 

inactivity (a known issue in training VAEs) [91]. For the remaining 16 latent dimensions, we 

decoded the archetypes to obtain denoised RNA and protein archetypal expression profiles, all 

conditioned on batch 0 (the SLN111-D1 experiment). We then computed denoised RNA and 

protein expression profiles for all cells in SLN-all, conditioned on SLN111-D1. To derive 

signatures for each archetype, we computed the mean and standard deviation of each feature in the 

denoised RNA and protein expression matrices (without the archetypes) and standard scaled the 

archetypal profiles with respect to this mean and standard deviation. We refer to this quantity as 

the archetype score. The top features for each archetype were those with an archetype score greater 

than 2. The distance to the archetype is computed as the Manhattan distance from each cell’s latent 

representation to the archetype. The distances per archeytpe were scaled into the range [0,1]. 
 

B cell analysis 

For this analysis, we used the totalVI-intersect model fit on the SLN-all dataset as described above. 

The SLN-all dataset was filtered to include all high-quality, non-doublet clusters annotated as B 

cells (excluding plasma B cells), resulting in 15,560 cells. 

 

Calculation of signature scores 

Gene signature analysis was conducted using Vision [49] with default parameters. Gene signatures, 

including interferon response signatures, were downloaded from MSigDB gene sets [92]. 

Signature scores were calculated on all cells in the SLN-all dataset based on cell similarities 

defined by the totalVI latent space. 

 

Identification of transitional and mature B cell feature modules 

totalVI Spearman correlations between all features were calculated separately within the 

transitional B cell cluster and the mature B cell cluster. Features were subset by the following 

method. From a one-vs-one DE test between transitional and mature B cells, we selected the top 

ten marker genes and top three marker proteins for each cluster (as described above). We added to 

this list the four features most highly correlated with each differentially expressed feature within 
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its respective cluster. This resulted in a list of both transitional and mature features which we used 

to subset the full feature correlation matrix. Features were hierarchically clustered separately for 

transitional and mature B cells using Seaborn’s clustermap with default parameters. 

 

When plotting totalVI expression of each feature as a function of 1 − 𝑍16, each feature was 

standard scaled and smoothed with a loess curve. Spearman correlations were calculated between 

each feature and 1 − 𝑍16. The p-values of these correlations were all significant (BH-adjusted 𝑝-

value < 0.001). 

 

Data availability 

 

The data discussed in this manuscript (SLN-all) have been deposited in NCBI’s Gene Expression 

Omnibus [93] and are accessible through GEO Series accession number GSE150599 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE150599). Processed data are also 

available in the reproducibility GitHub repository 

(https://github.com/YosefLab/totalVI_reproducibility). The SLN-all dataset processed with 

totalVI can be explored interactively with Vision at 

http://s133.cs.berkeley.edu:9000/Results.html. Public datasets were downloaded from 10x 

Genomics (PBMC5k: https://support.10xgenomics.com/single-cell-gene-

expression/datasets/3.0.2/5k_pbmc_protein_v3; PBMC10k: 

https://support.10xgenomics.com/single-cell-gene-

expression/datasets/3.0.0/pbmc_10k_protein_v3; MALT: 

https://support.10xgenomics.com/single-cell-gene-

expression/datasets/3.0.0/malt_10k_protein_v3). Mouse mm10 reference was downloaded from 

10x Genomics. 

  

Code availability 

The code to reproduce the results in this manuscript is available at 

https://github.com/YosefLab/totalVI_reproducibility and has been deposited at 

https://doi.org/10.5281/zenodo.4330368 [94]. The reference implementation of totalVI is 

available via the scvi-tools package at https://github.com/YosefLab/scvi-tools. 
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Extended data figures 

 

 
Extended Data Fig. 1 Evaluation of totalVI model. a, Posterior predictive check of coefficient of variation (CV) of 

genes and proteins. For each of the PBMC10k, MALT, and SLN111-D1 datasets and for each model (totalVI, scVI, 

factor analysis with normalized input, scHPF) the average coefficient of variation from posterior predictive samples 

was computed for each feature. Violin plots summarize the distribution of CVs for genes and proteins. Mean absolute 

error (MAE) between raw data CVs and average posterior predictive CV are reported. b, For each gene and protein, 

the Mann-Whitney U statistic between posterior predictive samples and observed data averaged over samples. Shown 

are boxplots of this statistic for each set of features (genes and proteins), model, and dataset (n=4000 genes across 

datasets and n=14 proteins for PBMC10k and MALT, n=110 proteins for SLN111-D1). Box plots indicate the median 

(center line), interquartile range (hinges), and whiskers at 1.5x interquartile range. Higher is better. 

  

https://www.nature.com/articles/s41592-020-01050-x/figures/6
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Extended Data Fig. 2 Evaluation of totalVI model (continued). a, Mean absolute error (MAE) between held out 

data and posterior predictive mean separated by genes and proteins for each model and dataset. b, Calibration error of 

held-out data reported separately for genes and proteins. c, Held-out reconstruction loss of RNA for scVI and 

totalVI. d, e, Stability of held-out results (n=5 initializations) for totalVI on SLN111-D1. Metrics displayed are the 

(d) Held out MAE, and (e) held out calibration error. Box plots indicate the median (center line), interquartile range 

(hinges), and whiskers at 1.5x interquartile range. f, Inference time for totalVI and scVI across cells randomly 

subsampled to different levels from SLN-all. scVI was run with only genes. totalVI was applied with 20 latent 

dimensions and 100 latent dimensions. 

  

https://www.nature.com/articles/s41592-020-01050-x/figures/7
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Extended Data Fig. 3 Protein background in cells and empty droplets. a-c, Histogram of log(protein counts + 1) 

in the SLN111-D1 dataset for B cells, T cells, and empty droplets (Methods) for CD19 (a), CD20 (b), and CD28 (c). 

d-f, Fraction of empty droplets, B cells, or T cells with > 0 UMIs detected for a given RNA (left, hatched) or protein 

(right, solid). RNA/proteins displayed are Cd19/CD19 (d), Ms4a1/CD20 (e), and Cd28/CD28 (f). g, Barcode rank plot 

for all barcodes detected in the SLN111-D1 dataset. Red lines at 20 and 100 RNA UMI counts indicate the lower and 

upper bounds, respectively, used to define empty droplets in (a-f). h, Performance of totalVI and a Gaussian mixture 

model (GMM) fit on all cells for each protein of the SLN111-D1 dataset to classify cell types by marker proteins 

(Methods). Receiver operating characteristic (ROC) curves shown for CD19 (B cells), CD20 (B cells), or CD28 (T 

cells). Area under the receiver operating characteristic curve (ROC AUC score) was calculated using as input either 

the totalVI foreground probability or GMM foreground probability where the indicated cell type was the positive 

population out of all B and T cells. 
  

https://www.nature.com/articles/s41592-020-01050-x/figures/8
https://www.nature.com/articles/s41592-020-01050-x#Sec12
https://www.nature.com/articles/s41592-020-01050-x#Sec12


51 
 

Extended Data Fig. 4 totalVI decouples foreground and background for trimodal protein distributions and 

denoises protein data. a, b, CD4 protein expression in the PBMC10k dataset. (a) Trimodal distribution of log(protein 

counts + 1). (b) UMAP plot of the totalVI latent space colored by totalVI foreground probability. c-e, UMAP plots of 

the totalVI latent space for the SLN111-D1 dataset. Plots are colored by log(protein counts+1) (top) and log(totalVI 

denoised protein+1) (bottom) for CD19 (c), CD20 (d), and CD28 (e). f, g, Distributions of log(protein counts + 1) (f) 

and log(totalVI denoised protein + 1) (g) for CD19 protein in B and T cells. y-axis is truncated at 3. 
  

https://www.nature.com/articles/s41592-020-01050-x/figures/9
https://www.nature.com/articles/s41592-020-01050-x/figures/9
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Extended Data Fig. 5 RNA-protein correlations. a, b, 2d density plots of Pearson correlations between all RNA 

and protein features in the SLN111-D1 dataset as well as 100 additional genes whose expression was randomly 

permuted. Correlations between all proteins and the randomly permuted genes are colored in red. Raw correlations 

were calculated between log library-size normalized RNA and log(protein counts + 1). (a), Naive totalVI correlations 

were calculated between totalVI denoised RNA and totalVI denoised proteins. (b), totalVI correlations were calculated 

between denoised RNA and proteins sampled from the posterior (Methods). c, Pearson correlations between each 

protein and its encoding RNA for all proteins with a unique encoding RNA, colored by the mean probability 

foreground of the protein across all cells. totalVI correlations were calculated as in (b) and raw correlation were 

calculated as in (a, b). d-f, Same as (a-c), but for Spearman correlations. 
  

https://www.nature.com/articles/s41592-020-01050-x/figures/10
https://www.nature.com/articles/s41592-020-01050-x#Sec12
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Extended Data Fig. 6 Integration of SLN-all with totalVI-intersect. a, b, UMAP plot of SLN-all colored by (a) 

dataset, and (b) tissue. c, Heatmap of proteins used for annotation. Proteins (columns) are log(protein counts + 1) 

scaled by column for visualization. d, Dotplot of RNA markers used for annotation. RNA is log library size 

normalized. 

https://www.nature.com/articles/s41592-020-01050-x/figures/11
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Extended Data Fig. 7 Differential expression analysis. a, 2d density plot of totalVI and scVI log Bayes factors for 

genes. Bayes factors were computed for each gene in one-vs-all tests on the SLN111-D1 dataset. b, Number of isotype 

controls called differentially expressed in one-vs-all tests (n=27) for totalVI, totalVI-wBG (totalVI test without 

background removal), Wilcoxon rank-sum, and t-test. Tests were applied to SLN208-D1, for which isotype controls 

were retained. Box plots indicate the median (center lines), interquartile range (hinges), whiskers at 1.5x interquartile 

range. Red dashed line indicates the maximum number of isotype controls. c-e, Significance level (Bayes factors for 

totalVI, adjusted p-value for frequentist tests) for proteins in one-vs-all tests computed on SLN111-D1 and SLN111-

D2 for each of (c) totalVI, (d) t-test, (e) Wilcoxon. f, Bayes factors for proteins in one-vs-all tests computed on the 

SLN111 datasets integrated with and without the SLN111-D2 proteins held-out. Differential expression tests for both 

model fits were conditioned on SLN111-D1. Bayes factors are colored by the average protein expression from 

SLN111-D1. 

  

https://www.nature.com/articles/s41592-020-01050-x/figures/12
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Extended Data Fig. 8 Interpreting totalVI latent dimensions with archetypal analysis. a, b, Heatmap of top (a) 

gene and (b) protein features for each archetype. The archetype score corresponds to the standard scaled archetypal 

expression profiles (Methods). Heatmaps are individually column normalized for visualization. c, Fraction of proteins 

in top archetypal features for each archetype. Features in each archetype were selected in the “top” if they had an 

archetype score of greater than 2. For these features, we performed a one-sided hypergeometric test to determine if 

proteins were over-represented in this feature set relative to the global distribution of feature types. Archetypes with 

over-representation of proteins (one-sided hypergeometric test, BH-adjusted P<0.05) are denoted. 
  

https://www.nature.com/articles/s41592-020-01050-x/figures/13
https://www.nature.com/articles/s41592-020-01050-x#Sec12
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Extended Data Fig. 9 Visualization of archetypes in totalVI-intersect model of SLN-all. a, UMAP plots of SLN-

all cells colored by latent dimension value. b, totalVI protein expression for CD24 and CD93 proteins as a function 

of distance to archetype 16. c, totalVI denoised expression for Isg20 and Ifit3 genes as a function of distance to 

archetype 7. Archetype is colored in blue, all other cells in grey. 
  

https://www.nature.com/articles/s41592-020-01050-x/figures/14
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Extended Data Fig. 10 totalVI identifies correlated modules of RNA and proteins that are associated with the 

maturation of transitional B cells. a, UMAP of the totalVI latent space colored by totalVI RNA expression 

of Rag1. b, totalVI RNA expression of Rag1 as a function of 1 - Z16 (the totalVI latent dimension associated with 

transitional B cells). c, totalVI Spearman correlations in mature B cells between the same RNA and proteins as in 

Fig. 5h. Features were hierarchically clustered within mature B cells. d, Histogram of Spearman correlations between 

each feature in (a) and 1 - Z16 (n = 2,735 cells). 
 

 

 

 

 

 

 

 

https://www.nature.com/articles/s41592-020-01050-x/figures/15
https://www.nature.com/articles/s41592-020-01050-x/figures/15
https://www.nature.com/articles/s41592-020-01050-x#Fig5
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Summary 

The recent development of single-cell multi-omic measurement techniques necessitates analysis 

strategies to combine these datasets into a single view of a cell. In the previous chapter, I presented 

totalVI, a computational framework for joint analysis of paired RNA and protein data. Despite the 

availability of commercial products for performing multi-omics experiments and open-source 

software packages like totalVI for performing analysis, there are many details and practical 

challenges that scientists must overcome in order to implement published methods in real-world 

settings across different biological contexts and experimental designs. In this chapter, I provide a 

guide for fellow researchers on how single-cell multi-omics analysis of RNA and proteins can be 

performed in practice. I first present an overview of the experimental and computational pipelines 

for single-cell analysis of paired RNA and protein measurements. I then describe the practical 

steps necessary to complete these pipelines from collecting paired RNA and protein data from 

single cells to preprocessing and filtering the sequencing data, running the totalVI model, and 

conducting downstream analysis. I also provide notes on common pitfalls and offer 

recommendations so that joint analysis of RNA and proteins can be applied widely to other 

biological systems. This joint analysis of single-cell multi-omic data not only provides a richer 

definition of cell state, but also has the potential to elucidate the dynamics and mechanisms of 

cellular processes by characterizing the relationship between molecular layers within a cell.  

 

Key words: single-cell analysis, transcriptomics, proteomics, multi-omics, CITE-seq, deep 

generative model, scRNA-seq, human cell atlas 

 

Introduction 

Single-cell measurements can reveal meaningful biological heterogeneity that is otherwise 

obscured by bulk analysis. Whole transcriptome analysis with single-cell RNA sequencing 

(scRNA-seq), for example, has been used to generate comprehensive maps of cell types and 

transcriptional states in both healthy and diseased primary tissue (Regev 2017). New technologies 

to measure multiple components of a single cell are now uncovering not only the variability within 

a given molecular layer, such as the transcriptome, but also the variability in the associations across 

layers, including the genome, proteome, and the epigenome. Such multimodal measurements are 

distinguished in their ability to make simultaneous orthogonal measurements on the same single 

cell. There are many emerging multimodal measurements that make use of tools such as imaging, 

sequencing, and other molecular assays (Chen 2015, Paul 2015, Wilson 2015, Chen 2020). The 

“multi-omic” methods that we discuss here probe large scale and genome-wide features, typically 

by converting the molecular components into a sequenceable readout (Figure 1a). As these single-

cell multi-omic measurements mature, there is a growing need for analysis strategies to combine 

these datasets into a single view of a cell. Here we describe a computational pipeline for analyzing 

paired protein and RNA data. The approach to data analysis described here could, with 

modifications, be extended to other multi-omic measurements.  

 

While high-throughput single-cell analysis technologies such as flow cytometry and scRNA-seq 

are independently powerful for identifying cell types and characterizing cellular heterogeneity, 

multi-omic analysis of single cells provides a more comprehensive view of cell state and of the 

relationship between molecular layers within a cell. For example, biologists have commonly relied 

upon an extensive literature of cell surface markers to define cell types and to sort cells for 

experiments, but recent cell atlas projects have amassed vast quantities of scRNA-seq data from 
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which cells can be defined by their unique marker genes or gene signatures. The transcriptome 

offers a broader view of the cell than a limited protein panel, however, scRNA-seq has limited 

detection efficiency of genes expressed at low levels. Combining the breadth of the transcriptome 

with the depth and stability of the proteome creates a more complete view of a cell’s state and 

allows the dynamics between the two modalities to be mapped. Beyond paired transcriptome and 

proteome measurements, other approaches for assessing multiple modalities in parallel have been 

developed. Many methods jointly measure the transcriptome and epigenome, such as with an 

epigenomic measurement of DNA methylation, accessibility, or genome organization (Clark 2018, 

Cao 2018, Chen 2019, Rooijers 2019).  

 

 
Figure 1: Single-cell multi-omics overview. a) Single-cell multi-omic measurements simultaneously profile multiple 

dimensions of the cell. Here, the major -omes currently used in multi-omic technologies are described: genome, 

epigenome, transcriptome, and proteome. b) For each -ome, a cell by measurement matrix is produced. c) These 

separate views can be combined to represent a cell in low dimensional space. 

 

Multi-omic approaches not only provide a more comprehensive view of cell state, but also have 

the potential to illuminate the dynamics and mechanisms of cellular processes. For example, using 

joint measurements of chromatin accessibility and gene expression in single cells, Cao et al. 

predict gene expression from changes in chromatin accessibility at promoters and linked distal 

sites (Cao 2018). Similarly, using paired mRNA and protein data, Gorin et al. model protein 

translation kinetics to measure “protein velocity and acceleration” (Gorin 2020). In particular, 

instances where mRNA and protein measurements are not correlated suggest an active layer of 

post-translational regulation. Thus, multi-omic measurements can elucidate regulatory 

mechanisms and outcomes, whether that outcome is RNA expression, protein expression, or some 

other phenotype detected with imaging.  

 

A major hurdle in working with these new types of multi-omic data sets is combining distinct data 

types into a single representation of a cell (Figure 1b, 1c). Each measurement presents unique 

technical biases, such as technical noise, limited sensitivity, background, and sparsity. 

Distinguishing technical noise from meaningful biological variability across omic measurements 

with unique noise profiles therefore complicates analysis. Processing and normalizing different 

datasets and combining them into a single view of a cell presents a challenge, and much of the 
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analysis to date has looked at modalities independently. However, methods such as MOFA, 

MOFA+, LIGER, and Seurat V3 have been developed to integrate multiple modalities (Argelaguet 

2018, Argelaguet 2020, Welch 2019, Stuart 2019). Multi-omics factor analysis (MOFA) is a 

multiview matrix factorization method that identifies factors that explain variation across multi-

omic datasets and has been applied to paired data sets profiling mRNA, DNA methylation, and 

somatic mutations or chromatin accessibility (Argelaguet 2018, Argelaguet 2019). Unlike MOFA, 

MOFA+ accounts for additional information about the structure between cells, such as batch and 

experimental conditions (Argelaguet 2020). LIGER uses an integrative non-negative matrix 

factorization (iNMF) to create a low-dimensional space in which a cell is defined by dataset-

specific factors and a set of shared factors (Welch 2019). Seurat V3 identifies pairwise 

correspondences, or “anchors,” between single cells across datasets to transform the datasets into 

a shared space (Stuart 2019).   

 

In this chapter, we focus on joint analysis of surface protein abundance and gene expression in 

single cells, a rapidly growing type of multi-omic data. Recently, CITE-seq and REAP-seq have 

demonstrated the ability to probe these two modalities simultaneously in single cells at high 

throughput with whole transcriptome profiling and the measurement of an expanded panel of 

proteins made possible by oligonucleotide-barcoded antibodies (Stoeckius 2017, Peterson 2017).  

 

We designed totalVI as a tool for conducting a joint analysis of RNA and protein data that 

addresses these assorted challenges of multi-omics analysis (Gayoso 2021). totalVI is a deep 

generative model that combines RNA and protein information into a single representation and 

leverages all available information (the gene and protein expression from each cell) to inform 

downstream analysis. Unlike previous strategies that analyze each modality independently and 

subsequently attempt to draw connections between the two, the joint analysis of totalVI combines 

this information to form a single, consistent view of cell state. Because of the direct connection 

between RNA and protein molecules through biology’s central dogma, a single model that pools 

RNA and protein information is consistent with biological knowledge that these paired 

measurements were derived from molecules produced in the same single cell. 

 

In its joint analysis, totalVI addresses the distinct sources of noise and technical bias in the RNA 

and protein measurements. While both RNA and protein data suffer from noise in the sampling of 

a limited number of molecules from each cell, other technical factors are specific to each modality. 

The RNA data tends to have limited sensitivity and variation in sequencing depth (where the total 

number of molecules detected per cell is known as the library size). The protein data is less sparse 

than the RNA data but tends to be obscured by background that arises experimentally from a 

combination of unbound ambient antibodies and non-specific antibody binding. These technical 

factors are modeled by totalVI so that analysis is based on the underlying biological signal rather 

than technical biases of the methods. totalVI can also correct technical differences between batches 

(known as batch effect correction) or between datasets (known as dataset integration). Unlike 

previous methods, totalVI is capable of integrating datasets with different protein panels (i.e., some 

or all proteins in a dataset are missing) and imputing the expression of the missing proteins. 

 

To model single-cell sequencing data including noise and technical artifacts, totalVI draws 

conceptually on previous work modeling scRNA-seq data. To model RNA, totalVI uses a similar 

probabilistic modeling strategy as scVI to account for the sampling noise in the measurement 
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(Lopez 2018). For proteins, totalVI introduced a new model that addresses the issue of protein 

background by distinguishing the foreground and background components of the protein signal. 

totalVI combines RNA and protein data into a joint, low-dimensional representation, which is 

rooted in the notion that genes are often expressed in co-regulated networks or modules that can 

contain the information describing the high-dimensional transcriptome or proteome. This low-

dimensional joint representation is derived using neural networks, which provide a powerful, non-

linear approach to accurately model the data. totalVI connects this model with downstream 

analysis tasks, providing an end-to-end framework for the analysis of RNA and protein data that 

both addresses the technical factors in each measurement and takes all information into account. 

 

Combining RNA and protein information in a joint analysis could enable the identification of new 

cell types or cell states that were not easily identified from a single measurement. The additional 

information provided by combining these two modalities might enhance the ability to detect 

markers in either modality, which could be particularly useful in finding surface proteins that could 

serve as potential drug targets, surface markers to isolate a cell population of interest, or 

transcription factors and enzymes that might define or regulate cells with a known cell surface 

phenotype. totalVI can bridge the gap between these two related views to form a more 

comprehensive understanding of cell state. The paired measurement of RNA and protein in the 

same cell might also illuminate the connection between the expression levels of these molecules 

in different biological settings or regulatory dynamics of transcription and translation.  

 

Conducting a joint analysis of RNA and protein data with totalVI consists of four main steps 

(Figure 2): 

1) Collecting a single-cell dataset with paired RNA and protein measurements 

2) Preprocessing and filtering the sequencing data 

3) Running the totalVI model 

4) Conducting downstream analysis with totalVI. 

 

Practical guidance in completing each of these steps is discussed in detail below. 
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Figure 2: totalVI experimental and analytical pipeline. This schematic shows the primary steps to take a single-

cell sample through joint analysis of gene expression and protein abundance with totalVI. The experimental workflow 

for generating a dataset containing paired RNA and surface protein abundance in single cells is illustrated in the top 

panel. First, a single-cell suspension is stained with a panel of barcoded antibodies. Each antibody in the panel has a 

unique oligonucleotide barcode that identifies the target protein and contains a poly-A tail for capture along with the 

polyadenylated mRNA transcripts (1). Next, this sample is processed, typically using a droplet microfluidics platform, 

for isolation of single cells and the reverse transcription and barcoding of captured molecules for multiplexed library 

preparation. After droplet processing, a single sequencing library is prepared and sequenced on a high-throughput 

sequencing platform. The bottom panel illustrates the totalVI analytical pipeline which requires first preprocessing 

and filtering the sequencing data to generate paired RNA and protein count matrices (2); Those count matrices are 

then used as input into the totalVI model (3). After running totalVI, downstream analysis allows for data interpretation 

(4). 

 

 

Experimental considerations for collecting paired RNA and protein measurements in single 

cells 

 
Methods for generating a single-cell dataset of paired RNA and protein measurements 

Droplet-based microfluidic platforms can be used to facilitate high-throughput scRNA-seq through 

rapid single-cell isolation and multiplexing using oligonucleotide barcodes, which capture mRNA 

transcripts with a region complementary to the poly-A tail, and identify the cell-of-origin of each 

captured molecule. Each barcode also contains a unique molecular identifier (UMI) that enables 

the quantification of the original number of captured molecules after amplification (Macosko 2015, 

Klein 2015). Once barcoded, transcripts from thousands of single cells can be pooled together in 
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the same tube, reverse transcribed, amplified, and prepared for sequencing in a process known as 

library generation. These libraries can be further pooled across samples, sequenced, and quantified, 

resulting in transcript counts for each gene in each single cell. 

 

High-throughput droplet-based scRNA-seq can be extended to measure both RNA transcripts and 

surface proteins from the same cell (Stoeckius 2017, Peterson 2017). Because proteins cannot be 

sequenced directly, these methods use antibodies specifically targeted to cell surface proteins, 

which are chemically conjugated to oligonucleotide barcodes that include polyadenylated tails 

(resembling the structure of mRNA transcripts). After staining cells with barcoded antibodies, cells 

are processed through droplet-generating devices, and both RNA transcripts and antibody barcodes 

can be captured, sequenced, and quantified in the same experiment.  

 

Currently, this droplet-based approach is the state-of-the-art for paired RNA and protein 

measurements. A number of companies have commercialized oligonucleotide-barcoded antibodies 

that target proteins on the cell surface, including BioLegend’s TotalSeq and BD’s AbSeq, which 

are compatible with the 10x Genomics platform (Zheng 2017) and the BD Rhapsody platform, 

respectively. The availability of these products has made the paired measurement of RNA and 

proteins in single cells increasingly accessible and has enabled the application of this multi-omic 

technology to various cell types, organisms, and disease states (Granja 2019, Praktiknjo 2020, 

Kotliarov 2020, Lavaert 2020, Muench 2020). 

 

Experimental Design 

Step-by-step protocols for conducting paired RNA and protein measurements are extensively 

documented by the manufacturers of commercial platforms and in the original publications 

(Stoeckius 2017, Peterson 2017). However, there are a few aspects of experimental design that 

should be considered regardless of the experimental platform. These experimental decisions can 

affect the quality of the sequencing data collected and can have an impact on downstream analysis 

(see Note 1). 

 

Cell numbers: Droplet-based microfluidic platforms can process multiple thousands of cells per 

reaction. For robust downstream analysis with tools like totalVI, it is recommended that an 

experiment contains as many cells as possible (considering sequencing costs and sample 

availability), but at least around 2,000 cells. Although cells can be loaded in numbers higher than 

those recommended by the manufacturer, caution should be taken since increasing cell numbers 

will increase the likelihood that two or more cells will be encapsulated in a single droplet, 

producing a “doublet” that should be filtered out from downstream analysis. 

 

Cell viability: The preparation of single cell suspensions should be completed as quickly as 

possible to maintain cell viability. As cells die, RNA degrades more quickly than protein. 

Therefore, when analyzing sequencing data, low-quality RNA libraries could be an indication of 

poor cell viability. To preserve cell viability after tissue extraction, cells can be stained, washed, 

and loaded in media (including serum; see manufacturer’s instructions for types of media that are 

incompatible with the platform in use). Commercial antibodies are formulated in buffers 

containing ingredients that might exacerbate cell death. To mitigate this, a buffer exchange can be 

performed on antibodies prior to cell staining to transfer antibodies into media or a more 

compatible buffer.  
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Cell hashing: Cell hashing is the practice of staining a sample of cells with a uniquely-barcoded 

antibody (“hashtag antibody”) that targets a ubiquitous surface marker such that multiple samples 

receiving different hashtag antibodies can be pooled together in the same experiment and 

demultiplexed following sequencing (Stoeckius 2018). Cell hashing is employed to save costs and 

mitigate batch effects by processing multiple samples in the same reaction. Cell hashing also 

provides a way to detect doublets between samples, facilitating the overloading of microfluidic 

devices with higher cell numbers. It is recommended to confirm that hashtag antibodies do indeed 

bind to the cell type of interest, since not all cells express so-called “ubiquitous” surface proteins. 

 

Antibody numbers: Because the available sequence space of oligonucleotide barcodes is virtually 

unlimited (Stoeckius 2017), the number of antibodies included per assay has thus far only been 

limited by the availability of barcoded antibodies. To date, experiments including hundreds 

(Gayoso 2021) of barcoded antibodies have reported no negative effects due to high antibody 

numbers, raising the potential for a future proteome-wide assay. To reduce pipetting errors and 

improve consistency across experiments, some companies have begun producing pre-mixed 

“panels” or “cocktails” of barcoded antibodies. Caution should be taken to ensure that such pre-

mixed panels have similar staining conditions (see Antibody staining below). 

 

Antibody titration: In some protocols, barcoded antibodies are added to the experiment in different 

concentrations (known as titrations). Traditionally, antibody titrations aimed to optimize the 

signal-to-noise ratio. Antibodies at too high a concentration might result in high levels of 

background due to non-specific binding or excessive unbound antibodies in the ambient solution. 

Alternatively, antibodies at too low a concentration might be undetectable or indistinguishable 

from background noise. Finding the optimal concentration for each antibody can be challenging, 

since this concentration is expected to differ across tissues and cell types depending on the 

abundance of the target protein (i.e., high concentrations are often used to detect rare/lowly 

expressed proteins). A recent study of barcoded antibodies explored reducing antibody titrations 

relative to previously published protocols with the goal of achieving sufficient signal while 

reducing the high cost of sequencing (Buus 2020). For instance, reducing an antibody’s titration 

might reduce background from excess antibodies, resulting in a lower required sequencing depth 

to recover the same level of signal over background. While reducing antibody concentrations 

might reduce background and lower sequencing costs, concentrations that are too low might inhibit 

the distinction of protein foreground from background and could reduce the power to detect 

differentially expressed proteins. Moreover, adding antibodies at different concentrations makes it 

challenging to draw comparisons between the absolute levels of two proteins. 

 

Antibody staining: Available protocols currently recommend uniform staining conditions for all 

antibodies in an experiment (e.g., add antibody panel to cell suspension and incubate for 30 

minutes at 4℃). It should be noted that antibodies for some proteins (e.g., chemokine receptors) 

typically require staining at higher temperatures and for longer times due to protein cycling onto 

and off of the cell surface. Therefore, pre-mixing antibody panels and conducting a single staining 

step might result in poor detection of some antibodies. It is recommended to consider the ideal 

staining conditions of each antibody included in the assay and to potentially conduct multiple 

rounds of staining to allow for the binding of all antibodies of interest. 
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Antibody aggregation: Due to the potential of antibodies to aggregate in solution, most protocols 

recommend a high-speed centrifugation step prior to staining to remove antibody aggregates. It 

should be noted when processing sequencing results that cells with extremely high (outlier) 

numbers of protein counts could be caused by these antibody aggregates and should be filtered out 

prior to downstream analysis. 

 

Antibody washing: Following staining, washing is an important experimental step to remove 

unbound antibodies and only retain antibodies on the cell surface that have specifically bound their 

target protein. In principle, the wash volume and number of washes could be modulated to improve 

the signal-to-noise ratio of barcoded antibodies. While it is recommended to use no less than the 

recommended wash volume or number of washes in the appropriate protocol (which could result 

in higher levels of protein background), attempting to reduce protein background by increasing the 

number of washes would come with the trade-off of reducing the overall cell number (since cells 

are lost in each round of centrifugation). 

 

Sequencing depth: Sequencing depth is a major experimental consideration that can impact the 

quality of downstream analysis. Sequencing single-cell libraries to saturation (i.e., counting each 

captured molecule at least once) provides the maximum information in a single experiment, but 

can be cost prohibitive. Previous studies and current protocols make recommendations far below 

the point of saturation, but this can come at the cost of failing to detect some molecules at all 

(known as dropout events) or inaccurately quantifying relative molecule counts. Because RNA 

and protein libraries are generated separately following upstream processing steps, these libraries 

can be sequenced at different depths depending on the relative amounts of information provided 

by each molecule in a given experiment. The choice of sequencing depth typically depends on the 

complexity of each library (i.e., the number of unique transcripts in a cell and the total number of 

antibodies included in the antibody panel, see Figure 3), cost considerations, including the number 

of cells analyzed, and the downstream analysis goals. For example, accurate clustering and cell 

type identification can be achieved at relatively low sequencing depths (Heimberg 2016, Svensson 

2019), but detailed downstream analysis, differential expression testing, and the detection of rare 

cell types or molecules might suffer at low depths. Particularly for protein analysis, sequencing at 

lower depth can make it more challenging to distinguish protein foreground from background. 

While a determination of the desired sequencing depth will depend on the cell type, proteins, and 

analysis of interest, it is recommended that initial experiments sequence at relatively high depth, 

and to reduce the sequencing depth in subsequent experiments if appropriate. For RNA libraries, 

a starting point is typically around 50,00-100,000 reads/cell depending on prior knowledge of 

low/high RNA content per cell. For protein libraries, a starting point is around 5,000-25,000 

reads/cell depending on the number of antibodies in the panel (e.g., 10-100+ antibodies). RNA and 

protein libraries can be pooled at the desired ratio in the same sequencing run to modulate the 

relative sequencing depth of each library. 
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Figure 3: Sequencing depth. This schematic illustrates the relationship between sequencing depth and recovered 

information as measured by average uniquely captured molecules (UMIs) corresponding to RNA transcripts (top) or 

surface proteins (bottom). In both RNA and protein libraries, the complexity of the system will determine the 

sequencing depth needed before all of the available information is collected. Cells with higher RNA content, such as 

HEK cells, saturate at higher sequencing depths than cells with lower RNA content, such as PBMCs.  

 

 

Joint analysis of paired RNA and protein measurements in single cells with totalVI 

 

Preprocessing and filtering the data 

Sequencing of RNA and protein libraries will produce reads in FASTQ format. For all analysis, 

FASTQ files must first be processed into a UMI count matrix, which should be filtered for quality 

prior to analysis with totalVI (see Note 1). 

 

Generating count matrices: UMI count matrices can be generated from FASTQ files using tools 

such as Cell Ranger (Zheng 2017) or kallisto (Melsted 2019), which align sequencing reads to a 

reference genome (for RNA) or to a reference of predefined oligonucleotide barcode sequences 

(for protein). The resulting matrix will contain a row for each feature (i.e., a gene or a protein) and 

a column for each cell. Each entry indicates the number of captured molecules (e.g., transcripts of 

a given gene or antibodies binding a target protein) in a given cell. 

 

Doublet filtering: Doublets, which are droplets that contain two or more cells rather than a single 

cell, can confound analysis (potentially appearing as nonexistent, hybrid cell types) and should be 

removed. Doublets composed of different cell types can be identified and removed by a number 

of existing packages (Wolock 2019, Gayoso 2018). These doublet detection packages use similar 

algorithms to detect doublets composed of different cell types. Caution should be taken when 

applying these methods to datasets containing homogeneous populations or continuous 

developmental trajectories since these algorithms are not expected to perform well in this setting 
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and could produce misleading results. If cell hashing was used, cross-sample doublets as 

determined by hashtag demultiplexing (Stoeckius 2018) should also be removed at this stage. 

 

Cell filtering by quality: It is recommended to remove dead cells, low-quality cells, and doublets 

before analysis. For convenience, this stage of preprocessing can be performed using common 

single cell analysis pipelines like Scanpy (Wolf 2018) or Seurat (Stuart 2019). Typically, 

dead/low-quality cells can be identified by a high percentage of RNA UMI counts derived from 

mitochondrial genes (e.g., > 15%) and low numbers of genes/proteins detected (the number will 

depend on sequencing depth per experiment). It is also recommended to remove outlier cells with 

extremely high protein UMI counts, since this is likely caused by antibody aggregation. However, 

it is not recommended to remove outlier cells with high RNA UMI content in an attempt to remove 

potential doublets, since these high UMI counts could be driven by biological differences that are 

of interest for analysis (e.g., large cell size, cell cycle stage). 

 

Feature filtering: Before running totalVI, it is recommended to conduct gene filtering. Users can 

decide how many genes to include in the model, but 5,000 highly variable genes is reasonable in 

most settings. Using fewer than 500 genes might result in lower accuracy or less informative 

analysis, and using greater than 10,000 genes might lead to longer run-times without any 

substantial improvement in performance. Hashtag antibodies and isotype control antibodies 

(which have no specific protein target) should also be removed prior to running totalVI. 

 

Running the totalVI model 

The totalVI software: totalVI is available as open-source, Python-based software as a part of the 

scvi-tools software package (https://scvi-tools.org/). The package includes tutorials and 

documentation describing how to perform the analysis pipeline described below. 

 

Model inputs: totalVI takes as input the filtered UMI count matrix including both RNA and protein 

features. totalVI can also include a categorical covariate (called “batch”). Batch labels can be 

applied to remove batch effects, for example differences across lanes of a 10x Genomics 

experiment, patient samples, or sequencing runs. Batch labels can also be applied to integrate 

datasets derived from different experiments or labs. totalVI is capable of integrating datasets with 

different protein panels. As a demonstration, Chapter 2, Figure 3a-c shows UMAP plots of   two 

CITE-seq datasets of spleen and lymph node cells with panels containing either 111 or 208 

antibodies (SLN111-D1, SLN208-D2). Linear dimensionality reduction with principal 

components analysis (PCA, 30 components) followed by UMAP reveals batch as a major source 

of variation (Chapter 2, Figure 3a). To remove these batch effects, the user can choose whether to 

run the totalVI model on only those proteins included in both datasets (totalVI-intersect; seen in 

Chapter 2, Figure 3b), or to use all available protein information (totalVI-union; seen in Chapter 

2, Figure 3c), which will impute the missing protein values. As can be seen in these figures, 

totalVI-intersect and totalVI-union both correct the batch effects between the datasets. totalVI-

union can also be used to integrate an scRNA-seq dataset (containing no protein information) with 

a CITE-seq dataset (containing both RNA and protein). In this case, totalVI can predict protein 

expression in the RNA-only data using the given CITE-seq data. 

 

Running the model: In general, it is recommended that users run the totalVI model with default 

hyperparameters (e.g., number of latent dimensions, learning rate, etc.). These parameters have 



69 
 

demonstrated accurate model fits on multiple cell types and datasets and are a good starting point 

for any analysis (see Note 2). The larger the size of the dataset (number of cells and number of 

features), the longer it will take to run the totalVI model. The model will run considerably faster 

on a GPU (highly recommended), which can be accessed on cloud computing platforms. After 

training, the model can be saved for downstream analysis at a later time. 

 

Downstream analysis 

Once trained, the totalVI model can be used for a wide variety of common analysis tasks. Here we 

present a common pipeline for downstream analysis with totalVI and show how totalVI can be 

used to learn about cells from the combination of their RNA and protein expression. 

 

Model outputs: The totalVI model contains two different components that can be used for 

downstream analysis. First, totalVI contains a low-dimensional representation of cells, known as 

the latent space, which contains information from both the RNA and protein data while controlling 

for noise and technical artifacts in each data type. The low-dimensional latent space can be used 

to visualize and cluster cell populations. Second, totalVI contains the parameters that describe the 

probabilistic distributions of each observed RNA and protein measurement. These distributions 

account for the noise and technical artifacts in the observed data, and can be used to denoise the 

high-dimensional RNA and protein expression data. These distributions can also be used to test 

differential expression and perform other analysis tasks while accounting for the noise and 

technical artifacts in the RNA and protein measurements. Below, we describe how these 

components of totalVI can be used to conduct downstream analysis. 

 

Dimension reduction for visualization: The totalVI model encodes the RNA and protein 

information from each cell in a single low-dimensional representation known as the latent space. 

Because the latent space includes a combination of RNA and protein information and has removed 

technical artifacts like batch and RNA library size, a cell’s location in the latent space can be 

interpreted as representing the cell’s underlying biological state. By applying a dimension 

reduction method like UMAP (McInnes 2018) to the latent space, users can visualize cells in two 

dimensions and interpret cell-cell similarities based on the combination of cells’ RNA and protein 

expression profiles. An example can be seen in Chapter 2, Figure 4a, which shows a UMAP 

representation of the latent space from four spleen and lymph node datasets integrated with 

totalVI-intersect. 

 

Clustering cells: Cells can be clustered using any clustering algorithm, such as the Leiden 

algorithm (Traag 2019), based on cell-cell similarity in the latent space (see Chapter 2, Figure 4a). 

Therefore, clusters based on the totalVI latent space take into account both the RNA and protein 

information from each cell. These clusters can be used to identify and annotate cell types. 

 

Denoising features for visualization: totalVI can produce a matrix of denoised expression values 

for RNA and protein that remove technical effects like RNA library size, protein background, and 

sampling noise. The removal of protein background in denoised values can be seen in Chapter 2, 

Figure 2g-h. For CD20 protein, which is a marker of B cells, the distributions of raw counts are 

difficult to distinguish between true expression in B cells and background in T cells in the SLN111-

D1 dataset (Chapter 2, Figure 2g). By denoising protein data with totalVI, the expected amount of 

background is effectively subtracted from the overall expected expression, resulting in a clear 
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separation in CD20 expression levels between B cells and T cells (Chapter 2, Figure 2h). These 

denoised values can be visualized to observe expression patterns across cells (see Chapter 2, Figure 

5a-c). Note that denoised values can be helpful for visualization, but downstream statistical 

analysis should not be applied to these values directly. Instead, for downstream analyses like 

differential expression testing and the calculation of correlations between features, totalVI contains 

statistical methods that account for technical artifacts (see Note 3). In the case of totalVI-union 

when a dataset might be missing data from some or all proteins, imputed protein values can be 

visualized to observe the predicted expression patterns of these proteins (see Note 4). 

 

Interpreting protein foreground probabilities: To accurately analyze protein data, the totalVI 

model learns to distinguish between protein foreground (a measurement likely derived from true 

biological signal) and background (a measurement likely due to ambient antibodies or non-specific 

antibody binding). For each protein measurement, totalVI estimates the probability that the 

measurement was due to foreground signal. totalVI uses these foreground probabilities to remove 

protein background when denoising protein data and conducting other downstream analysis tasks 

so that they are not biased by this technical artifact in the protein measurement. 

 

Users might be interested in visualizing these foreground probabilities to gain intuition about 

which cells are “on” or “off” for a particular protein. However, it is still recommended to use 

denoised protein expression (rather than foreground probabilities) for interpretation of cell type 

expression, since denoised values account for foreground probability while preserving the dynamic 

range of the protein measurement. Thus, users should not be concerned if a protein that is expected 

to be off has a higher-than-expected foreground probability, since the magnitude of denoised 

expression might still be very low. If the model is uncertain for a particular protein (i.e., if many 

cells have intermediate foreground probabilities near 0.5), it might be an indication that the 

targeting antibody was poorly titrated, making it challenging for the model to distinguish 

foreground from background.  

 

Differential expression testing: totalVI can be used to test differential expression for both RNA 

and proteins. The output of the totalVI differential expression test includes an estimate of the log-

fold-change of each feature between the comparison groups (indicating the magnitude of the 

difference) and a Bayes factor, which can be interpreted as the significance of the difference, where 

a higher Bayes factor means more significant. totalVI includes a number of commonly performed 

differential expression tests. In a one-vs-one test, differential expression of all features is tested 

between two groups of cells (e.g., testing between two clusters). In a one-vs-all test, each cluster 

is compared with all remaining cells. An example of a one-vs-all differential expression test in B 

cell subsets is shown in Chapter 2, Figure 5f-g. In this case, results were filtered for significance 

(log Bayes factor > 0.7), ranked by median log fold change, and filtered to retain genes with non-

zero UMI counts in at least 10% of the tested subset. This allowed for the identification of top 

differentially expressed genes and proteins in each subset. This type of test can be particularly 

useful for cell type annotation or identifying unique markers for a cell type. When comparing 

between two conditions (e.g., case vs control), the within-cluster DE test can identify differences 

between two labeled populations within each cluster (e.g., to identify differences between diseased 

and healthy T cells that are mixed within the T cell cluster). 
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Correlations between features: Beyond the standard set of analyses described above, users might 

be interested in calculating correlations between features. totalVI has no explicit information about 

which RNA transcript encodes which protein, so any correlation learned by the model is not 

predetermined by known gene-protein relationships. totalVI can calculate a denoised correlation 

matrix (either Pearson or Spearman) between all features that removes batch effects and technical 

artifacts (e.g., protein background). From the denoised matrix, users can extract a correlation of 

interest (e.g., between a particular gene and the protein it encodes). Correlations can also be used 

to cluster features into modules, which might provide insight into regulatory networks. An example 

of denoised feature correlations clustered into modules can be seen in Chapter 2, Figure 5h. It 

should be noted that correlations computed across an entire dataset might differ substantially from 

correlations computed within a cell type, since dataset-wide correlations might largely be driven 

by differences across cell types that either do or do not express a given feature.  

 

Interpretation of the latent space: Unlike many “black-box” deep-learning models that are difficult 

to interpret, the latent space of totalVI has interpretable latent dimensions. Users who are interested 

in exploring the meaning of the latent dimensions can visualize each dimension to observe which 

cells have high values. A latent dimension could be interpreted as describing a particular cell type 

(e.g., B cells) or as describing a trend that spans cell types (e.g., cell cycle). In Chapter 2, Extended 

Data Figure 9, we can see an example of latent space interpretation in the plotting of the values of 

each of the 20 latent dimensions of the full totalVI latent space. High values in these latent 

dimensions highlight T cells (Z_1), B cells (Z_3), cells undergoing the cell cycle (Z_14), and 

transitional B cells (Z_16). Further exploration of the latent dimensions could include archetype 

analysis (Cutler 1994), which identifies which genes and which proteins contribute the most to 

each latent dimension. 

 

Beyond standard analysis: In addition to the characterization of cell types and standard 

downstream tasks, totalVI can be used for a number of other types of analysis. For instance, totalVI 

could be used to inform aspects of experimental design such as identifying optimal antibody 

titrations to improve the detection of foreground and background in protein measurements. totalVI 

could also be used to explore the information gained per RNA or protein measurement in various 

analysis tasks, which could inform the desired sequencing depth of each library balanced with the 

cost of sequencing. Taking advantage of both RNA and protein information, totalVI could also be 

used to investigate basic biological questions on the relationship between RNA and protein levels, 

including the dynamics and regulatory processes governing transcription and translation in various 

cell types and experimental conditions. 

 

Conclusions 

 

totalVI provides a framework for end-to-end analysis of paired RNA and protein measurements in 

single cells. By combining RNA and protein information into a single model, totalVI creates a 

representation of cell state that forms a more complete description of a cell’s phenotype than either 

modality alone. Moreover, the combination of both pieces of information about a single cell 

strengthens the interpretation of either modality alone. For example, the use of RNA information 

in the totalVI model helps to distinguish protein foreground from background, improving the 

accuracy of protein analysis. In addition, having protein measurements associated with single-cell 
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transcriptomes can help relate RNA sequencing data to prior knowledge of cell types defined by 

surface marker expression.  

 

In a standard analysis with totalVI, dimensionality reduction, clustering, and visualization of 

denoised genes and proteins can be applied to annotate cells, potentially discovering new cell types 

or cell states. Through differential expression, new RNA or protein markers for these cell types 

could be revealed, and cells can be defined by the combination of their RNA and protein expression 

profiles. totalVI also provides methods to investigate correlations between features. totalVI can 

conduct these analyses on multiple batches or datasets through integration even if datasets did not 

measure identical protein panels. The totalVI model accounts for technical artifacts in each 

measurement, like protein background, batch effects, and sampling noise, improving the accuracy 

of downstream analysis.  

 

totalVI might be extended to perform additional tasks using RNA and protein data. One potential 

extension could perform an automated annotation of cell types based on both RNA and protein 

information. In the challenging problem of learning gene regulatory networks, totalVI could 

provide a connection between cell surface receptors receiving signals that are transduced to 

produce transcriptional changes, or connecting transcriptional events with changes in surface 

protein expression. totalVI could eventually serve as a useful tool to query and integrate data with 

various published cell atlases, which contain a combination of RNA and protein information with 

different protein panels across tissues. 

 

The totalVI model was designed specifically to handle the nuances of analysis of paired 

transcriptome and surface protein data. In the future, totalVI could be applied to additional 

measurements and data types. For example, as more barcoded antibodies become available, totalVI 

can easily scale to include the analysis of larger protein panels. It is also expected that totalVI will 

readily apply to the analysis of intracellular proteins measured with barcoded antibodies when 

these methods become available. Beyond RNA and protein measurements, the flexible framework 

of the totalVI model could be extended to include additional multi-omics measurements such as 

chromatin accessibility. For each additional modality included, the specific technical artifacts and 

nuances of the modality must be considered in order to properly model and address them.  

 

Notes 

 

1) Experimental and preprocessing choices affect downstream analysis. In particular, for data that 

appears low quality, the most common explanation is experimental. For RNA data that appears 

low quality, a suggested place to begin troubleshooting is cell viability. In the cell processing 

stage, even cells that are negative for markers of cell death (e.g., propidium iodide or annexin 

V) might have begun degrading RNA due to stress or death, so methods can be applied to 

preserve cell viability (as described above). Poor cell viability could also explain the capture 

of fewer cells than expected, since dying cells with degraded RNA often fail to meet the 

minimum UMI-count or gene-count thresholds for high-quality cells. For proteins that are not 

detected or are detected at lower-than-expected levels, it should be considered whether the 

antibody titration and sequencing depth are high enough to detect a signal, or if this antibody 

requires different staining conditions. After the data has been collected, skipping recommended 

preprocessing steps can result in a lower-quality analysis. Even though it might be challenging 
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to determine whether a certain filtering threshold is correct for a given dataset, users should 

not be alarmed if a few low-quality cells, dead cells, or doublets are missed by the filters. Often, 

after running totalVI, these cells will form separate clusters that can be filtered out at a later 

stage, or filtering thresholds can be updated and the model can be run again on more stringently 

filtered data. 

 

2) It is highly recommended to start by running totalVI with default parameters. Advanced users 

might be interested in conducting parameter tuning for a particular dataset to improve 

performance. However, in our experience, running totalVI with default parameters provides 

sufficient performance across a variety of datasets that include different numbers of genes, 

proteins, and cells, different sequencing depths, heterogeneous cell types or more 

homogeneous continuous development, and different types and severity of batch effects.  

 

3) Caution should be taken with downstream analysis on denoised values. Denoised values can 

be extremely helpful for visualizing RNA and protein expression after the removal of technical 

artifacts and sampling noise. However, due to the denoising process, denoised values might 

contain bias caused by spurious relationships between features. Therefore, it is not 

recommended for users to attempt to calculate correlations between these denoised values or 

to use these denoised values in a separate differential expression test. totalVI has statistical 

methods that control for nuisance variation while avoiding potential denoising-induced bias, 

which should be used for analysis testing the relationship between features or differential 

expression. 

 

4) Caution should be taken when drawing conclusions from imputed protein values (e.g., when 

observing predicted protein expression from a scRNA-seq dataset that has been integrated with 

a CITE-seq dataset). These predictions can be useful for making hypotheses to be further 

validated experimentally and have been shown to be highly accurate in some settings (Gayoso 

2021), but are expected to be less informative for cells that don’t have high overlap with data 

where the observed proteins are present. 
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Abstract 

CD4 and CD8 T cells play a critical role in the mammalian immune system, and understanding 

their fate decisions during development has broad clinical implications relevant to autoimmune 

diseases such as type 1 diabetes and to the production of cancer immunotherapies. While the 

development of CD4 and CD8 T cells within the thymus from the CD4+CD8+ stage has been 

widely studied as a classic model of a lineage determination, the developmental trajectory from 

immature thymocytes to mature T cells and the mechanism of lineage commitment remain unclear. 

To deconstruct this developmental process, we apply CITE-seq to simultaneously measure the 

transcriptome and over 100 surface proteins in thymocytes from wild-type and lineage-restricted 

mice. Using totalVI, we jointly analyze the paired measurements to build a comprehensive timeline 

of RNA and protein expression in the CD4 and CD8 lineages. Using lineage-restricted samples, 

we identify early differences that implicate the calcineurin-NFAT branch of the T cell receptor 

signaling pathway as a putative driver of lineage commitment. Employing drug perturbations in a 

neonatal thymic slice system, we validate the requirement of calcium signaling through NFAT for 

CD4, but not CD8, lineage commitment and shed light on the CD4/CD8 lineage commitment 

mechanism. 

 

Keywords 

Single cell; multi-omics, thymus; thymocyte; T cell development; CD4 T cell; CD8 T cell; fate 

decision; lineage commitment; NFAT; calcium signaling; T cell receptor signaling 

 

Introduction 

The continuous differentiation and selection of CD4 and CD8 T cells within the thymus is critical 

for the maintenance of mammalian adaptive immunity. These two primary types of T cells, despite 

having different effector functions, arise from a common precursor cell that expresses both CD4 

and CD8 surface proteins (double positive; DP). While the development of thymocytes from the 

DP stage into CD4 or CD8 T cells has been widely studied as a classic model of lineage 

determination between two irreversible fates, the mechanism of lineage commitment remains 

unclear. The transcription factors (TFs) THPOK (encoded by Zbtb7b) and RUNX3 are considered 

master regulators that enforce differences in phenotype and effector functions in the CD4 and CD8 

lineages, respectively. However, it is unknown which upstream factors initiate the distinction 

between lineages that results in the differential expression of these master regulators, and how 

these changes occur throughout the developmental trajectory from immature thymocytes to mature 

T cells (Taniuchi, 2016; Saini et al., 2010).  

 

Thymocyte populations have long been characterized into stages defined by surface protein 

markers, particularly the CD4 and CD8 coreceptors. However, the sorting and bulk analysis of 

these populations obscures the heterogeneity of continuous developmental changes and biases our 

understanding of this process towards prior knowledge of a limited set of surface proteins 

measurable by fluorescence-based flow cytometry. In contrast, advances in single cell RNA 

sequencing (scRNA-seq) technologies have enabled the unbiased observation of transcriptomic 

heterogeneity. scRNA-seq was recently used to construct a census of cells in the mammalian 

thymus (Park et al., 2020), opening the door to further investigations of the mechanisms underlying 

continuous changes along thymocyte development. Additional studies have used high-throughput 

single cell analysis techniques to identify the early precursor populations that seed the thymus 

(Lavaert et al., 2020), characterize the process of progenitor commitment the T lineage (Zhou et 



79 
 

al., 2019), and explore αβ T cell development (Chopp et al., 2020), yet the mechanism of CD4/CD8 

lineage commitment remains an open question. While earlier studies have proposed multiple 

models of thymocyte development and CD4/CD8 lineage commitment (Singer et al., 2008), recent 

work on αβ T cells has not been able to directly address the accuracy of these models due to a lack 

of protein information and mechanistic study designs. Additionally, these questions are 

challenging to address in human or wild-type mouse samples because the fate of a DP precursor, 

while influenced by its T cell receptor (TCR), cannot be directly observed. 

 

To investigate the process of thymocyte development and mechanism of CD4/CD8 lineage 

commitment, we performed CITE-seq to simultaneously measure the transcriptome and over 100 

surface proteins in single cells from wild-type and lineage-restricted mouse thymi. Using totalVI 

(Gayoso et al., 2021), we jointly analyzed this data to build a comprehensive timeline of continuous 

RNA and protein expression changes in both the CD4 and CD8 lineages. We connected these 

observations to a rich literature based on fluorescence activated cell sorting (FACS) by clarifying 

intermediate developmental stages and defining these populations by both their transcript and 

surface protein composition. Furthermore, by comparing thymocyte development between 

lineage-restricted mice, we detected early differences in TCR signaling and identified NFAT as a 

putative driver of lineage differences. To validate NFAT as a differential driver of lineage 

commitment, we applied drug perturbations to an ex vivo culture system of neonatal thymic slices, 

avoiding genetic perturbations that could have unintended consequences upstream of the 

thymocyte stages of interest. While NFAT was necessary for CD4 lineage commitment, it was not 

necessary for either commitment to or maturation of the CD8 lineage. Our findings fill the gap in 

knowledge between TCR signaling at the cell surface and differential master regulator activation, 

establishing a model for how a fate decision is made from a common precursor. 

 

Results 

 

A joint transcriptomic and surface protein atlas of thymocyte development in wild-type and 

lineage-restricted mice 

To study T cell development and lineage commitment, we profiled thymocytes from both wild-

type (WT) and lineage-restricted mice. Thymocyte populations in wild-type (B6) mice closely 

resemble those in humans (Park et al., 2020), and serve as a model of T cell development in a 

healthy mammalian system. However, in a wild-type system, the ultimate fate of thymocytes as 

CD4 or CD8 T cells is not directly observable, making it challenging to investigate the process of 

lineage commitment in these divergent groups. To probe the mechanism of fate commitment, we 

profiled thymocytes from lineage-restricted mice including two types of MHCII-specific TCR-

transgenics (AND, OT-II), two types of MHCI-specific TCR-transgenics (F5, OT-I), polyclonal 

MHCII-specific mice (B2M-/-), and polyclonal MHCI-specific mice (MHCII-/-). In lineage-

restricted mice, thymocytes are expected to pass through the same stages of development as wild-

type thymocytes (Figure 1A). However, unlike in wild-type thymocytes, the fate of lineage-

restricted thymocytes is known even before cells phenotypically appear as CD4+ or CD8+ T cells, 

allowing for independent characterizations of CD4 and CD8 T cell development and lineage 

commitment.  
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Figure 1: A joint transcriptomic and surface protein atlas of thymocyte development in wild-type and lineage-

restricted mice. (A) Schematic representation of thymocyte developmental trajectories in wild-type and lineage-

restricted mice used in CITE-seq experiments. (B, C) UMAP plots of the totalVI latent space from all thymocyte 

CITE-seq data labeled by cell type annotation (B) and mouse genotype (C). (D, E) Heatmaps of markers derived from 

totalVI one-vs-all differential expression tests between cell types for RNA (D) and proteins (E). Values are totalVI 

denoised expression. (F) UMAP plots of the totalVI latent space from positively-selected thymocytes with cells 

labeled by mouse genotype. (G, H) UMAP plots of the totalVI latent space from positively-selected thymocytes. (G) 

Cells colored by totalVI denoised expression of protein markers of lineage (CD4, CD8a), TCR signaling (CD5, CD69), 

and maturation (CD24, CD62L). (H) Cells colored by totalVI denoised expression of RNA markers of TCR 

recombination (Rag1), thymic location (chemokine receptors Cxcr4, Ccr7), and lineage regulation (transcription 

factors Gata3, Zbtb7b, Runx3).  
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We characterized developing thymocytes by measuring their transcriptomes and 111 surface 

proteins using CITE-seq (Stoeckius et al., 2017) and jointly analyzing these features using totalVI 

(Gayoso et al., 2021) (Methods). We sampled thymi from two biological replicates per lineage-

restricted genotype and five WT biological replicates (Table S1). To enrich for thymocytes 

undergoing positive selection in samples from non-transgenic mice, MHC-deficient samples and 

three WT replicates were FACS sorted for CD5+TCRb+ (Figure S1A). We integrated CITE-seq 

data from all samples (72,042 cells) using totalVI, which allowed us to stratify cell types and states 

based on both RNA and protein information (Figure 1B). We identified all expected coarse stages 

of thymocyte development including early CD4-CD8- (double negative; DN) and proliferating 

CD4+CD8+ (double positive proliferating; DP) stages. We detected early and late stages of DP 

cells undergoing TCR recombination, as well as DP cells post-recombination that are 

downregulating Rag and receiving positive selection signals. In addition to immature and mature 

stages of CD4+ and CD8+ T cells, we observed two distinct waves of cells undergoing negative 

selection (Daley et al., 2013): the first appeared to emerge from the signaled DP population (lying 

adjacent to a cluster of dying cells), and the second from immature CD4+ T cells. Foxp3+ 

regulatory T cells appeared to cluster near mature CD4+ T cells and the second wave of negative 

selection. Other populations included unconventional T cells (gamma-delta T cells, NKT cells), 

small clusters of non-T cells (B cells, myeloid cells, and erythrocytes), a thymocyte population 

with high expression of interferon response genes (Xing et al., 2016), and a population of mature 

T cells that had returned to cycling following the cell cycle pause during thymocyte development. 

As expected, WT, MHCII-, and MHCI-specific samples were well-mixed in earlier developmental 

stages but segregated into CD4 and CD8 lineages in later-stage populations (Figure 1C).  

 

Using totalVI, we defined cell populations not only by traditional cell type markers, but also by 

unbiased differential expression tests of all measured genes and proteins (Figure 1D-E, Table S3). 

Top differentially expressed features contained classical cell surface markers of lineage (e.g., CD4, 

CD8), key transcription factors (e.g., Foxp3, Zbtb7b), and markers of maturation stage (e.g., Rag1, 

Ccr4, S1pr1). Although these multi-omic definitions support the relevance of surface proteins in 

defining cell identities, they also reveal gradual expression changes, particularly between the DP 

and CD4+ and CD8+ single positive (SP) stages, that are best understood not as discrete 

populations, but as part of a continuous developmental process. Observation of these groups 

allowed us to select the populations of thymocytes receiving positive selection signals for further 

analysis (Methods). 

 

We focused our analysis on developing thymocytes from the signaled DP stage through mature 

CD4+ and CD8+ T cells. The totalVI latent space derived from these populations captured the 

continuous transitions that stratified thymocytes by developmental stage and CD4/CD8 lineage 

(Figures 1F and S1B). Through visualization of totalVI denoised protein expression, we observed 

that thymocytes remained phenotypically CD4+CD8+ even after a visible branching of the 

lineages in the UMAP (Becht et al., 2019) representation of the totalVI latent space (Figure 1G), 

indicating that combining transcriptome-wide information with surface protein measurements 

might reveal earlier signs of lineage commitment than could have been observed from FACS-

sorted populations. We also observed protein markers of TCR signaling (CD5, CD69) and 

maturation stage (CD24, CD62L), as well as RNA markers of TCR recombination (Rag1), cell 

location within the thymus (chemokine receptors Cxcr4, Ccr7), and lineage regulation 

(transcription factors Gata3, Zbtb7b, Runx3) (Figure 1H). Characterization of thymocytes by their 
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expression of known markers relates thymocytes in our dataset to previously well-studied 

populations and establishes a baseline reference point for understanding surface expression and 

transcriptional changes over the course of thymocyte development. 

 

Pseudotime inference captures continuous maturation trajectory and clarifies intermediate 

thymocyte stages 

To comprehensively characterize continuous changes over the course of thymocyte development 

from the DP stage to the CD4 or CD8 SP stages, we used Slingshot (Saelens et al., 2019; Street et 

al., 2018) to perform pseudotime inference (Figures 2A and S2A; Methods). Because cell-cell 

similarities in the reduced dimension space are based on both RNA and protein information, both 

the transcriptomic and surface protein state of each cell, which are dynamic over the course of 

development, contribute to its placement in pseudotime. In analysis of the CD4 and CD8 lineages, 

we used cells from lineage-restricted mice that followed the lineage expected based on their 

genotype restriction. 

 

We confirmed that the pseudotime ordering determined by Slingshot accurately captured a series 

of known expression events in thymocyte development (Hogquist et al., 2015) at the RNA and 

protein levels (Figure 2B). The expression patterns of these known features recapitulated the order 

of maturation events reported in prior studies (e.g., early downregulation of Rag1 and Rag2, 

gradual downregulation of Ccr9 and Cd24a/CD24, transient expression of Cd69/CD69, and late 

upregulation of Klf2, S1pr1, and Sell/CD62L). Many of these features associated with thymocyte 

maturation followed similar expression timing in the CD4 and CD8 lineages, although there were 

visible differences between lineages in expression levels of coreceptor molecules, master regulator 

transcription factors, and molecules associated with the TCR response. Because the 

pseudotemporal pattern of expression events that are known to correspond to maturation are well-

calibrated between the CD4 and CD8 lineages at both the RNA and protein levels (Figure 2C), 

pseudotime values can enable comparisons between lineages of cells at comparable developmental 

stages. By testing for differential expression between cells grouped by pseudotime (Methods), we 

created a comprehensive timeline of RNA and protein expression changes in both lineages over 

the course of thymocyte development (Figure 2D). 

 

We next sought to use pseudotime information to clarify the intermediate stages of thymocyte 

development. Thymocyte populations have been commonly defined by surface protein expression 

of the CD4 and CD8 coreceptors, although there is not a consensus on which intermediate 

populations exist in each lineage and in which order they occur (Singer et al, 2008; Germain, 2002; 

Bosselut, 2004; Saini et al., 2010). To clarify these intermediate populations between the DP and 

SP stages, we performed in silico flow cytometry analysis on totalVI denoised expression of CD4 

and CD8 (Figures 2E and S2B), which showed substantial resemblance to fluorescence-based flow 

cytometry measurements. Thymocytes could be gated into populations based on a contour plot of 

cell density. Observing CD4 and CD8 expression by lineage, we found that MHCII-specific cells 

appeared to progress continuously in pseudotime from DP to CD4+CD8low to CD4+CD8-, while 

MHCI-specific cells appeared to progress from DP to the CD4+CD8low gate before reversing 

course to reach the CD4+CD8- gate later in pseudotime. In further detail, separating these cells 

into eight bins uniformly spaced in pseudotime (Figure 2F) revealed two distinct features of  
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Figure 2: Pseudotime inference captures continuous maturation trajectory and clarifies intermediate 

thymocyte stages. (caption on following page)  



84 
 

Figure 2: Pseudotime inference captures continuous maturation trajectory and clarifies intermediate 

thymocyte stages. (A). UMAP plot of the totalVI latent space from positively-selected thymocytes with cells colored 

by Slingshot pseudotime and smoothed curves representing the CD4 and CD8 lineages. (B) Heatmap of RNA (top) 

and protein (bottom) markers of thymocyte development over pseudotime in the CD4 and CD8 lineages. Features are 

colored by totalVI denoised expression, scaled per row, and sorted by peak expression in the CD4 lineage. Pseudotime 

axis is the same as in (A). (C) Expression of features in the CD4 and CD8 lineages that vary over pseudotime. Features 

are totalVI denoised expression values scaled per feature and smoothed by loess curves. (D) Heatmap of all RNA 

differentially expressed over pseudotime in any lineage. Features are scaled and ordered as in (B). Labeled genes are 

highly differentially expressed over time (Methods). (E) In silico flow cytometry plots of log(totalVI denoised 

expression) of CD8a and CD4 from positively-selected thymocytes (left) and the same cells separated by lineage 

(right). Cells are colored by pseudotime. (F) In silico flow cytometry plot of data as in (E) separated by lineage and 

pseudotime. (G) UMAP plot of the totalVI latent space from positively-selected thymocytes with cells colored by 

gate. Cells were computationally grouped into eight gates using CD4, CD8a, CD69, CD127(IL-7Ra), and TCRbchain. 

(H) Histograms of cells separated by lineage and gate with cells colored by gate as in (G). (I) Stacked histograms of 

gated populations in MHCII-specific (top) and MHCI-specific (bottom) thymocytes, with thresholds classifying gated 

populations over pseudotime (Methods). (J) Schematic timeline aligns pseudotime with gated populations, with 

population timing determined as in (I). 

MHCI-specific development. First, there exists a developmental stage (pseudotime 6-8) at which 

nearly all MHCI-specific cells fall in the CD4+CD8low gate, implying that this is a required 

intermediate stage for all CD8 T cells, not just for those with high self-reactivity. The high numbers 

of MHCI-specific cells in the CD4+CD8low gate underscore the fact that WT cells within the 

CD4+CD8low gate cannot be assumed to be committed to the CD4 lineage. Second, at subsequent 

times (pseudotime 8-12), MHCI-specific thymocytes pass through a DP phase on their way 

towards the CD4lowCD8+ and CD4-CD8+ gates while the MHCII-specific lineage does not 

contain late-time DP cells. While a population of later-time DP cells has been previously described 

(Saini et al., 2010) it is not commonly used (Park et al., 2020; Chopp et al., 2020), resulting in a 

missing stage of CD8 T cell development as well as a DP gate contaminated by later-time CD8 

lineage cells.  

 

For the sake of experimental isolation of intermediate thymocyte stages across time and lineage, 

we used pseudotime information along with surface protein data to identify a minimal set of robust 

surface protein markers. Four stages in time could be separated by in silico flow cytometry gating 

on CD69 and CD127(IL-7Ra), in which thymocytes begin with low expression of both markers, 

first upregulate CD69, later upregulate CD127, and finally downregulate CD69 (Figure S2C). The 

addition of CD4 and CD8 as markers allow for the separation of lineages at later times. Finally, 

the later-time DP population that is prominent in the CD8 lineage can be distinguished from earlier 

DP cells by high expression of TCRb (Saini et al., 2010) in addition to expressing both CD69 and 

CD127 (Figure S2D-E). We refer to this later-time DP population as DP3 to distinguish it from 

the earlier DP1 (CD69-, CD127-) and DP2 (CD69+, CD127-) populations. In combination, a 

gating scheme based on these five surface proteins could identify eight populations (Figure 2G-H) 

that allow FACS to approximate the binning of thymocytes by pseudotime and lineage (Figure 2I-

J). These findings allowed us to specify an updated model of intermediate thymocyte populations 

in both the CD4 and CD8 lineages (Figure S2F). Fluorescence-based flow cytometry successfully 

replicated CITE-seq-derived gates on these surface markers, enabling the isolation of the eight 

described populations (Figure S2G) and supporting the presence of intermediate stages as specified 

in Figure S2F. 
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Paired measurements of RNA and protein reveal the timing of major events in CD4/CD8 

lineage commitment 

Previous studies have long recognized that CD4 and CD8 coreceptor expression on the cell surface, 

master regulator transcription factor activation, and TCR signaling play assorted roles in lineage 

commitment, but the relative timing and levels of these expression and signaling events in 

thymocyte development remain unclear. Multiple models have been proposed to describe how 

these components behave over the course of thymocyte development and how they might interact 

to initiate and enforce commitment to the CD4 and CD8 lineages (Singer et al., 2008). These 

models were primarily based on evidence from FACS-sorted populations that lacked high 

resolution in time and quantitative comparisons in expression levels. Here, we use paired RNA 

and protein measurements from continuously developing thymocytes to resolve the relative timing 

and between-lineage expression differences for these key molecular events. 

 

The expression levels of CD4 and CD8 coreceptors play an important role not only in defining the 

lineage of mature T cells, but also in transmitting the TCR signals that are necessary for thymocyte 

development. We observed that coreceptor expression followed an expected pattern by which 

RNA expression changed first, followed by a corresponding change in protein expression, likely 

explained by the lag between RNA transcription and protein translation (Figures 3A and S3A). 

Beginning from the DP stage with high expression of both coreceptors in both lineages, we 

observed small dips in expression of both coreceptors (“double dull” stage) followed by a rise in 

CD4 and a continued fall in CD8a in both lineages. Eventually, in the CD8 lineage, CD8 rose and 

CD4 expression fell, resulting in a late transient DP stage (DP3) as the cells move towards the 

CD8 SP phenotype. Differential expression between the CD4 and CD8 lineages indicated that a 

significant difference in Cd8a RNA expression began building from pseudotime point 6 

(approximately in the early CD4+CD8low gate), followed by a corresponding difference in CD8 

protein expression (Figure 3B). It was not until later, beginning with pseudotime point 9 (the point 

at which the lineage can first be distinguished by flow in the semimature CD4 vs DP3 gates), that 

a significant difference in CD4 expression emerged. 

 

Transcription factors THPOK and RUNX3 have been shown to either activate or inhibit the 

expression of the respective coreceptors later in development (Singer et al., 2008), but when 

differences in master regulator expression first emerge remains unclear. Gata3, which has been 

shown to play an important role in activating Zbtb7b expression in the CD4 lineage (Wang et al., 

2008), was expressed at a higher level over a longer time in the CD4 lineage relative to the CD8 

lineage (Figure 3C). Expression of Gata3 was followed by increased expression of Zbtb7b, and 

subsequently Runx3. Although previously described as having mutually exclusive expression and 

being mutually inhibitory (Vacchio and Bosselut, 2016), we observed transient, low expression of 

Zbtb7b in the CD8 lineage at the CD4+CD8low stage simultaneous to the rise in Zbtb7b expression 

in the CD4 lineage, as well as low Runx3 expression in the CD4 lineage throughout later time 

(Figure 3E and S3B). Intracellular staining in WT and MHCI-specific CD4+CD8low thymocytes 

confirmed the presence of a small population of cells co-expressing THPOK and RUNX3 (Figure 

S3C). Despite this observation that both lineages have at least minimal expression of all three 

transcription factors, there was a clear trend in differential expression between the lineages. First 

Gata3 was upregulated in the CD4 lineage, which was followed by Zbtb7b upregulation in the 

CD4 lineage, and then by Runx3 upregulation in the CD8 lineage (Figure 3D). Intracellular 

staining supported the observed timing in differential expression, detecting higher GATA3 in  
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Figure 3: Paired measurements of RNA and protein reveal the timing of major events in CD4/CD8 lineage 

commitment. (A) Expression of co-receptor RNA (dashed) and protein (solid) over pseudotime in the CD4 (MHCII-

specific) and CD8 (MHCI-specific) lineages. Features are totalVI denoised expression values scaled per feature and 

smoothed by loess curves. (B) Differential expression over pseudotime between CD4 and CD8 lineages for features 

in (A). Non-significant differences are gray, significant RNA results are filled circles, and significant protein results 

are open circles. Error bars indicate the totalVI-computed standard deviation of the median log fold change. (C) 

Expression over pseudotime as in (A), overlaying RNA expression of key transcription factors. (D) Differential 

expression over pseudotime as in (B) for features in (C). (E) In silico flow cytometry plots of log(totalVI denoised 

expression) of Runx3 and Zbtb7b from positively-selected thymocytes separated by lineage and colored by 

pseudotime. (F) Expression over pseudotime as in (C), overlaying RNA expression of TCR signaling response 

molecules. (G) Differential expression over pseudotime as in (B) for features in (F). Schematic timeline aligns 

pseudotime with gated populations (see Figure 2J). 
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MHCII-specific thymocytes at the CD4+CD8low stage, higher THPOK in MHCII-specific 

thymocytes at both the CD4+CD8low and CD4 SP stages, and higher RUNX3 in MHCI-specific 

thymocytes beginning at the DP3 stage and continuing through the CD8 SP stages (Figure S3D). 

Considering the patterns in coreceptor expression, it appeared that CD4 was downregulated in the 

CD8 lineage only after Runx3 upregulation (consistent with RUNX3 regulation of the CD4 locus 

(Vacchio and Bosselut, 2016)), but that CD8 expression in the CD8 lineage began upregulation 

prior to Runx3 expression (Figure 3B,D). This implies that differential regulation of CD8 occurs 

upstream of master regulator RUNX3 expression. In addition, the later upregulation of 

Runx3/RUNX3 in the CD8 lineage relative to Zbtb7b/THPOK in the CD4 lineage suggests that 

uncommitted thymocytes might first have the opportunity to commit to the CD4 fate and only later 

have the opportunity to commit to the CD8 fate, contradicting the “fork in the road” model of 

lineage commitment. 

 

Although it is unknown which initial factors drive the early differences in uncommitted 

thymocytes that lead to differential master regulator expression, previous work has pointed to TCR 

signaling as a potential source of difference (Germain, 2002). MHCII-specific thymocytes have 

been documented as having higher intensity, duration, or frequency of TCR signaling (Bosselut, 

2004), but thymocytes are also known to tune their levels of TCR signaling machinery to maintain 

adequate signaling through positive and negative selection (Azzam et al., 1998). We found a higher 

and more prolonged TCR response (indicated by Cd69 and Egr1 gene expression) in the CD4 

lineage (Figure 3F), which became significantly differentially expressed simultaneous to Gata3 

and prior to Zbtb7b (Figure 3G), suggesting that differences in TCR signaling might play a role in 

driving differential master regulator activation. Unexpectedly, we also found what appeared to be 

a second, lower TCR response in the CD8 lineage after master regulator induction that was not 

present in the CD4 lineage, which might provide evidence of MHCI-specific thymocytes tuning 

their TCR response by increasing their sensitivity to TCR signals. The timing of these assorted 

events can be summarized into a temporal model of CD4 and CD8 T cell development (Figure 

S4). 

 

Emergence of differences between CD4 and CD8 lineages implicate putative drivers of 

lineage commitment 

To better understand the process of lineage commitment, we investigated how differences emerge 

between the CD4 and CD8 lineages. In a differential expression test between lineages, there were 

not substantial differences in either RNA or protein expression at the early DP stages (Figure 4A), 

emphasizing the phenotypic similarity in thymocytes before lineage commitment. However, 

differences gradually accumulated over pseudotime. To summarize differences in expression 

patterns over time, we clustered all genes differentially expressed at any point in pseudotime 

according to the lineage in which they were upregulated (Figure 4B-C). While differences that 

appear later in time (after master regulator expression) are often related to effector functions, 

differences that appear relatively early in time might contain drivers of lineage commitment. For 

example, MHCII-specific clusters 4 and 7 contain Gata3, Cd69, Egr1, and other TCR response 

genes, which might be early drivers of differential activation of Zbtb7b and Runx3, which 

themselves induce and enforce large differences. Observing the fold change in expression between 

lineages for all differentially expressed genes (Figure 4D-E), we found many genes following an 

expected pattern in becoming increasingly different over time, particularly in the CD4 lineage. In 

the CD8 lineage, we found some gene clusters displaying delayed expression of genes that were 
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previously upregulated in the CD4 lineage, implying later commitment to the CD8 lineage from 

an uncommitted stage. 

 

Narrowing our focus upstream of master regulator expression, we sought to identify potential 

drivers of early lineage differences that result in lineage commitment. We performed transcription 

factor enrichment analysis with ChEA3 (Keenan et al., 2019), which identifies the transcription 

factors most likely to explain the expression of a set of target genes based on databases including 

ENCODE and ReMap ChIP-seq experiments (Dunham et al., 2012; Cheneby et al., 2020). In our 

study, we used genes differentially expressed between lineages in each unit of pseudotime as the 

target gene set (Figure 4F-G). We ranked candidate driver transcription factors based on 

enrichment in the three pseudotime units prior to master regulator differential expression in each 

lineage, and filtered out transcription factors in times at which they were not expressed in at least 

5% of the population of interest (Methods). In addition to their ranking, we made note of whether 

each transcription factor had a known association with TCR signaling (Kandasamy et al., 2010; 

Methods), was known according to ChEA3 databases to be a likely regulator of Gata3, Zbtb7b, or 

Runx3, and whether this transcription factor itself was differentially expressed at the relevant 

pseudotime stage. We observed that multiple candidate transcription factors highly ranked in the 

CD4 lineage were members of pathways associated with TCR signaling (e.g., Egr2, Nfatc2, Egr1, 

Nfatc1), and that multiple TCR response genes appeared upregulated in the CD4 lineage relative 

to the CD8 lineage prior to lineage branching (Figure 4H). In the CD8 lineage, multiple highly 

ranked transcription factors such as Ets1 and Tcf7 had known associations with thymocyte 

development (Zamisch et al., 2009), but have been previously shown to have relevance to the 

maturation of thymocytes in both lineages (Wang et al., 2010; Steinke et al., 2014).  

 

In selecting candidate drivers of lineage commitment for validation studies, we prioritized 

transcription factors that were highly enriched in the CD4 lineage prior to master regulator 

activation and had known associations with TCR signaling, which has previously been suspected 

as an upstream source of lineage differences in uncommitted thymocytes. TCR engagement with 

peptide:MHC (pMHC) activates a series of signaling cascades leading to nuclear translocation and 

subsequent control of downstream target genes. TCR signaling occurs through three main signal 

transduction pathways: the calcineurin-NFAT axis, the Erk-MAP Kinase (MAPK) cascade, and 

the PKC-NF-kB pathway, reviewed in (Navarro and Cantrell, 2014; Hogquist and Jameson, 2014; 

Malissen et al., 2014; Chakraborty and Weiss, 2014). Following TCR stimulation, T cells are 

particularly sensitive to calcium signaling transduced through calcineurin, resulting in NFAT 

(NFATC1, NFATC2) translocation to the nucleus. Calcineurin and NFAT are required for 

positive, but not negative selection (Gao et al., 1988; Jenkins et al., 1988; Shi et al., 1989; Wang 

et al., 1995). The location and duration of Erk-MAPK signaling in thymocytes also determines 

positive versus negative selection (Daniels et al., 2006). Brief, low-intensity Erk activation 

downstream of TCR signaling is required for positive selection, whereas negative selection induces 

rapid and robust Erk signaling (Daniels et al., 2006; McNeil et al., 2005). Of note, EGR family 

members, Egr1 and Egr2, lie downstream of the Erk-MAPK cascade (Figure 4I). The Erk-MAPK 

cascade has been proposed to be involved in the development of both CD4 and CD8 T cells (Sharp 

et al., 1997; Wilkinson and Kaye, 2001). TCR:pMHC engagement also facilitates nuclear 

translocation of the TF NF-kB. NF-kB is upregulated in DP thymocytes during positive selection, 

as well as in both CD4 SP and, to a greater extent, CD8 SP cells. However, the requirement for 

NF-kB in selection is unclear due to redundancy in the pathway (Hettman and Leiden, 2000; Jimi  
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Figure 4: Emergence of differences between CD4 and CD8 lineages implicate putative drivers of lineage 

commitment. (caption on following page)  
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Figure 4: Emergence of differences between CD4 and CD8 lineages implicate putative drivers of lineage 

commitment. (A) Number of differentially expressed features between the CD4 and CD8 lineages across 15 

pseudotime bins. (B) Genes upregulated in the CD4 lineage relative to the CD8 lineage scaled per gene and clustered 

by the Leiden algorithm according to expression in the CD4 lineage. Expression over pseudotime per cluster is 

displayed as the mean of scaled totalVI denoised expression per gene for genes in a cluster, smoothed by loess curves. 

(C) Same as (B), but for genes upregulated in the CD8 lineage relative to the CD4 lineage, clustered according to CD8 

lineage expression. (D) totalVI median log fold change over pseudotime of genes upregulated in the CD4 lineage 

relative to the CD8 lineage. Genes are grouped by cluster in (B). Clusters are ordered by their average highest 

magnitude fold change. (E) totalVI median log fold change over pseudotime of genes downregulated in the CD4 

lineage relative to the CD8 lineage (i.e., upregulated in the CD8 lineage). Genes are grouped by cluster in (C). Clusters 

are ordered by their average highest magnitude fold change. (F) Transcription factor enrichment analysis by Chea3 

for CD4-lineage-specific differentially expressed genes. Transcription factors are ranked by mean enrichment in the 

three pseudotime bins prior to Zbtb7b differential expression (between pseudotime 4-7). Gray indicates a gene 

detected in less than 5% of cells in the relevant population. “Differentially expressed” indicates significant 

upregulation in at least one of the relevant time bins. “Targets master regulator” indicates a transcription factor that 

targets either Gata3, Runx3, or Zbtb7b in Chea3 databases. “TCR pathway” indicates membership in NetPath TCR 

Signaling Pathway or genes transcriptionally upregulated by TCR signaling, or genes with literature support for TCR 

pathway membership (Methods). (G) Same as in (F), but for the CD8 lineage, with ranking by mean enrichment in 

the three pseudotime bins prior to Runx3 differential expression (between pseudotime 5-8). (H) Expression of genes 

downstream of TCR signaling in the CD4 and CD8 lineages over pseudotime. totalVI denoised expression values are 

scaled per gene and smoothed by loess curves. (I) Schematic of the major branches of the TCR signaling pathway: 

calcineurin-NFAT (blue), Erk-Mapk (green), and NFKB (orange). 

 

et al., 2008). Since all three TCR signal transduction pathways are involved in positive selection, 

it has been difficult to evaluate how TCR signaling contributes to either CD4 or CD8 lineage 

commitment. Based upon previously published experiments and the data presented here, we 

postulated that TCR signaling is not only essential for positive and negative selection, but 

influences CD4 versus CD8 lineage commitment. We hypothesized that thymocytes experience 

different timing and intensities of TCR signals resulting in preferential activation of different TCR 

signaling pathways, which ultimately influences commitment to the CD4 or CD8 lineage. The 

factors EGR and NFAT, which were both enriched for activity in the CD4 lineage, represent two 

of the three major branches of the TCR signaling pathway. Of note, while Egr1 and Egr2 

themselves are differentially expressed between lineages, Nfatc2 and Nfatc1 are not. However, this 

is not surprising, since NFAT activation is regulated by calcium signaling (not observed at the 

transcriptional level) and could be differentially activated without being differentially expressed. 

Due to previous findings on the role of the Erk-MAPK cascade in both lineages, we hypothesized 

that the NFAT signaling branch of the TCR pathway could drive the distinction in commitment 

towards the CD4 or CD8 lineage. 
 

NFAT drives commitment into the CD4 lineage via GATA3 

To test our hypotheses about lineage commitment drivers in the TCR signaling pathway, we 

developed an ex vivo neonatal thymic slice culture system in which we could perturb the pathways 

of interest in developing thymocytes with pharmacological agents. The thymic slice system is a 

powerful tool to study and manipulate T cell development spatially and temporally in a three-

dimensional live organ culture (Dzhagalov et al., 2012). The adult thymic slice system reliably 

recapitulates many temporal and phenotypic characteristics of thymocytes development reported 

in vivo (Dzhagalov et al., 2012; Melichar et al., 2013; Weist et al., 2015; Ross et al., 2014). 

However, because the adult thymic slice system does not reliably support the development of CD4 

thymocytes, we adapted this system to track development in neonatal slices, which produce both 

CD4 and CD8 thymocytes (Methods).  
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We harvested and generated thymic slices from postnatal day 1 mice, a time point that allows us 

to track a synchronous wave of developing CD4 and CD8 thymocytes since T cells in mice do not 

develop until birth (Kernfeld et al., 2018), and cultured slices for up to 96 hours on tissue culture 

inserts (Figure S5A). Using flow cytometry, we quantified populations of developing thymocytes 

within neonatal slices (Figures 5A and S5B) based upon cell surface marker expression. The 

neonatal slice system supports development of both CD4+ and CD8+ T cell lineages in WT mice 

(Figure S5C-J). We observed a decrease in unsignaled double positive (unsig DP; 

CD4+CD8+CD69-) cells and an increase in semimature and mature T cell populations over the 

span of 96 hours (Figure S5D,H,J). We first noticed an increase in CD4+CD8lo 

(CD4+CD8+TCRβ+) cells after 48 hours of culture (Figure S5F); followed by an increase in CD4+ 

semimature (CD4+ SM; CD4+CD8-TCRβ+CD69+) cells after 48-72 hours of culture (Figure 

S5G), and CD4+ mature (CD4+ Mat; CD4+CD8-TCRβ+CD69-) cells after 72-96 hours (Figure 

S5H). Consistent with previously published results (Kurd and Robey, 2016), CD8 T cell 

development was slightly delayed compared to that of CD4 T cells. We observed an increase in 

frequency of CD4loCD8+ (CD4loCD8+TCRβ+) cells after 72 hours (Figure S5I), and mature 

CD8+ cells (CD8+ Mat; CD4-CD8+TCRβ+CD69-) after 72-96 hours (Figure S5J). We also 

observed similar developmental patterns in MHCII-specific (β2M-/-) slices, with the exception of 

CD4loCD8+ and CD8+ Mat T cells, and in MHCI-specific (MHCII-/-) slices, with the exception 

of CD4+ SM and CD4+ Mat cells (data not shown). WT, β2M-/-, and MHCII-/- mice all have a 

population of CD4+CD8lo cells (Figure S5K), albeit it is reduced in MHCII-/- mice. This supports 

the concept that all developing T cells, regardless of MHC specificity and ultimate lineage choice, 

first downregulate CD8, proceeding through the CD4+CD8lo stage (Singer et al., 2008). Together 

these observations validate that the neonatal slice system supports the development of both CD4 

and CD8 lineage cells. Additionally, these data, in conjunction with previously published literature 

and our pseudotime analysis, support the order of CD4 and CD8 development, shown in Figure 

5A, with CD4+CD8lo cells developing first, followed by the CD4 lineage (CD4+ SM then CD4+ 

Mat) or, alternatively, the CD8 lineage (CD4loCD8+ and CD8+ Mat). 

 

To directly test the involvement of TCR signaling through the calcineurin-NFAT axis in lineage 

commitment, we inhibited calcineurin activity by adding cyclosporin A (CsA) (Liu, 1993) to 

neonatal slice cultures (Figure 5B). Inhibition of calcineurin-NFAT reduced early CD4+, but not 

CD8+ T cell populations. We observed a dose- dependent reduction in CD4+CD8lo cells in WT 

and MHCII-specific, but not MHCI-specific cells when CsA was added to neonatal slice cultures 

(Figure 5C). Addition of CsA also reduced CD4+ SM (Fig. 5D), but did not have an effect on 

CD4+ Mat (Figure 5E), CD4loCD8+ (Figure 5F), or CD8+ Mat (Figure 5G) populations. Notably, 

CsA treatment did not affect cell viability (Figure S5L), DN (Figure S5M), Unsig DP (Figure 

S5N), or Sig DP (Figure S5O) cell populations at low concentrations (50, 100, or 200 ng/mL). 

Although, we did observe a significant increase in DN cells (Figure S5P) at high concentrations 

of CsA (400 and 800 ng/mL), suggesting a block in b-selection which has been previously reported 

(Gallo et al., 2007; Urdahl et al., 1994). Together, these data suggest that NFAT is required for 

early CD4+ lineage commitment, but is not necessary for CD4+ maturation or CD8+ lineage 

commitment. 
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Figure 5. Inhibition of calcineurin-NFAT prevents early CD4 lineage commitment. (caption on following page) 
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Figure 5. Inhibition of calcineurin-NFAT prevents early CD4 lineage commitment. (A) Schematic showing cell 

surface markers used to identify populations of thymocytes; thymocytes were categorized into double negative (DN; 

CD4-CD8-), unsignaled double positive (Unsig DP; CD4+CD8+CD69-), signaled double positive (Sig DP; 

CD4+CD8+CD69+), MHCII-specific CD4+CD8lo (CD4+CD8lo; CD4+CD8loTCRβ+), CD4+ semimature (CD4+ 

SM; CD4+CD8-TCRβhiCD69+), CD4+ mature (CD4+ Mat; CD4+CD8-TCRβhiCD69-), MHCI-specific 

CD4+CD8lo (CD4+CD8lo; CD4+CD8loTCRβ+), double positive 3 (DP3; CD4+CD8+TCRβ+CD69+CD127+), 

CD4loCD8+ (CD4loCD8+; CD4loCD8+TCRβ+), CD8+ mature (CD8+ Mat; CD4-CD8+TCRβhiCD69-). See 

complete FACS gating strategy in Figure S5B. (B) Experimental overview of neonatal thymic slices cultured with a 

calcineurin inhibitor, Cyclosporin A (CsA). Postnatal day 1 (P1) thymic slices were harvested from mice and cultured 

at time point 0 in media alone containing no CsA or with various concentrations of CsA. Thymic slices were collected 

at indicated time points and analyzed via flow cytometry to quantify cell populations.  Illustrations were created using 

Biorender.com. (C) Frequency (% of live cells) of CD4+CD8lo (CD4+CD8loTCRβ+) cells in slices from wild-type 

(WT; circles), MHCII-specific (β2M-/-; squares) or MHCI-specific (MHCII-/-; triangles) mice following culture in 

basal medium alone (No CsA; filled symbols) or with CsA (open symbols) for 96 hours.  Data is compiled from 3 

independent experiments with WT (B6) slices, 2 independent experiments with MHCII-specific slices (β2M-/-), and 

5 independent experiments with MHCI-specific slices (MHCII-/-). Each symbol on the plots represents a thymic slice. 

Data was analyzed using an ordinary one-way ANOVA. (D-G) Frequency of (D) CD4+ SM, (E) CD4+ Mat, (F) 

CD4loCD8, and (G) CD8+ Mat cells from WT slices without CsA (filled symbols), as a control, or 200ng/mL CsA 

(open symbols). Data is compiled from 3 independent experiments with WT slices. Data was analyzed using an 

unpaired t test.  (H-I) Frequency of (H) CD4+CD8lo or (I) CD4+ SM cells after 0, 24, 48, 72 and 96-hours of culture 

in basal medium alone (No CsA; filled symbols) or with 200ng/mL CsA (open symbols). Data is compiled from 8 

independent experiments with WT slices. Data are displayed as mean ± standard error of the mean (SEM). For slices 

cultured with no CsA for 0 hours n=6, 24 hours n=6, 48 hours n=6, 72 hours n=22, 96 hours n=9. For slices cultured 

with 200ng/mL CsA for 24 hours n=3, 48 hours n=3, 72 hours n=15, 96 hours n=6. Data was analyzed using an 

ordinary two-way ANOVA with multiple comparisons. (J-O) GATA3 staining determined by using the FMO control. 

Data is from 1 experiment with WT slices. Frequency (J) and geometric mean fluorescent intensity (gMFI) (K) of 

GATA3+ Sig DP cells after 72 hours of culture in basal medium alone (No CsA; filled symbols) or with 200ng/mL 

CsA (open symbols). (L) Histogram displaying GATA3 expression of Sig DP cells cultured in basal medium alone 

(No CsA; solid, plum line) or with 200ng/mL CsA (dashed, plum line) and fluorescent minus one (FMO) control 

(solid, black line). (M) Frequency and (N) geometric mean fluorescent intensity (gMFI) of GATA3+ CD4+CD8lo 

cells after 72 hours of culture in basal medium alone (No CsA; filled symbols) or with 200ng/mL CsA (open symbols). 

(O) Histogram displaying Gata3 expression of CD4+CD8lo cells cultured in basal medium alone (No CsA; solid, pink 

line) or with 200ng/mL CsA (dashed, pink line) and fluorescent minus one (FMO) control (solid, black line). Data 

was analyzed using an unpaired t test. NS is not significant, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.  

 

To gain insight into the timing of calcineurin-NFAT signaling in CD4 lineage commitment, we 

added CsA to neonatal slice cultures and tracked development every 24 hours over the course of 

96 hours. We observed that the reduction in CD4+CD8lo cells when calcineurin-NFAT is inhibited 

was detectable after 48 hours in culture, and very apparent after 72 and 96 hours (Figure 5H). A 

reduction in CD4+ SM cells was observed slightly later after 72 and 96 hours (Figure 5I). These 

time course experiments confirm that inhibition of calcineurin-NFAT is affecting CD4+ T cells at 

early time points in lineage commitment. 

 

GATA3 is a downstream target of NFAT and is required for CD4 lineage commitment (Pai et al., 

2003; Aliahmad and Kaye, 2008; Lee et al., 2018). In addition, GATA3 is known to directly induce 

the expression of Zbtb7b (Wang et al., 2008). Therefore, we surmised that inhibition of 

calcineurin-NFAT may disrupt GATA3 expression, and thus block CD4 lineage choice by 

preventing sufficient expression of THPOK. To test this hypothesis, we measured GATA3 

expression in neonatal slices cultured with CsA. While we did not observe a reduction in signaled 

double positive (Sig DP; CD4+CD8+CD69+) cells (Figure S5N), we did observe a reduction in 

GATA3+ Sig DP cells in the presence of CsA (Figure 5J), and a trend toward a reduction in 
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GATA3 expression (Figure 5K,L). In addition to a reduction of CD4+CD8lo cells, we also 

observed a reduction in the frequency of GATA3+ CD4+CD8lo (Figure 5M) cells. Of the few 

GATA3+ CD4+CD8lo cells present, we observed lower GATA3 expression in cells cultured with 

CsA compared to those cultured without (Figure 5N-O). These data support a requirement of 

calcineurin-NFAT early in CD4 lineage commitment, prior to GATA3 expression. 

 

Discussion 

In this study, we applied single-cell multi-omic analysis to investigate the development of 

thymocytes into CD4 and CD8 T cells. By measuring the transcriptome and surface proteins in 

developing thymocytes, we could define the continuous changes that occur over the course of this 

process, and relate these continuous changes to defined intermediate stages that could be isolated 

by fluorescence-based flow cytometry for further study. In particular, we clarified the progression 

of MHCI-specific thymocytes from early CD4+CD8+ DP stages to the CD4+CD8low stage, 

followed by a later CD4+CD8+ stage (DP3) before maturation into the CD8 SP stage. We also 

demonstrated that in silico gating of CITE-seq protein data can inspire gating strategies for 

fluorescence-based flow cytometry. While differences between sequencing-based and 

fluorescence-based protein measurements such as noise (e.g., spectral overlap) and sensitivity 

(e.g., barcode amplification) might limit the direct translation of gate position, large CITE-seq 

panels could provide a useful platform for screening potential combinations of fluorescence-based 

markers. By performing multi-omic measurements on thymocytes from both WT and lineage-

restricted mice, we were able to identify the relative order and timing of key lineage-specifying 

differences. Our analysis bolstered support for the importance of early differences in TCR 

signaling in CD4/CD8 lineage commitment and generated the hypothesis that TCR signaling 

specifically through the calcineurin-NFAT axis provides the basis for early commitment into the 

CD4 rather than the CD8 lineage. Pharmacological inhibition of calcineurin-NFAT signaling with 

Cyclosporin A in ex vivo thymic slice culture supported this hypothesis, establishing the role of 

the calcineurin-NFAT axis of TCR signaling in CD4/CD8 lineage commitment. 

 

By synthesizing our findings on RNA and protein expression event timing from CITE-seq data 

with the chronological timing of population phenotypes in ex vivo thymic slice cultures (Figure 

S4), we could construct a temporal model for CD4 versus CD8 T cell lineage commitment. Our 

data suggest that all positively-selected DP thymocytes begin the process of lineage commitment 

by “auditioning” for the CD4 lineage. During this early CD4 auditioning phase of positive 

selection, most MHCII-specific thymocytes receive moderate, persistent TCR signals, allowing 

them to lock in the CD4 fate by fully upregulating THPOK, activating the THPOK positive 

autoregulation loop (Muroi et al., 2008), leading to repression of CD8 and RUNX3. In contrast, 

most MHCI-specific thymocytes receive weaker, more transient signals during this phase (due to 

the combined effect of weaker LCK recruitment by the CD8 co-receptor, drop in CD8 surface 

expression and increase in the negative regulator CD5 (Chan et al., 1999). During the later CD8 

lineage specification window, the CD8 SP enhancer and RUNX3 are activated, likely due to the 

maturation-associated drop in E protein activity (Jones-Mason et al., 2012). Continued 

upregulation of RUNX3 represses both THPOK and CD4, while further enhancing CD8 

expression. In addition, an increase in TCR sensitivity during the CD8 lineage specification phase 

(due to the drop in negative regulator CD5, rise in ZAP70 (ref), and increase in ion channel 

components (e.g., KCNA2 and TMIE (Lutes et al., 2021)) leads to a second wave of TCR 

signaling. TCR signaling at this late stage of CD8 specification may provide survival signals and 
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well as further upregulating RUNX3, and would serve to ensure the elimination of any MHCII-

specific thymocytes that failed the CD4 audition phase. 

 

While in this study we focused our analysis on the CD4/CD8 lineage commitment, we anticipate 

that our approach using single-cell RNA and protein data could be applied to the analysis of other 

developmental systems such as the selection of Tregs within the thymus and the commitment of 

naive T cells to specialized functions within the periphery. The simultaneous measurement of RNA 

and protein not only allowed us to track the differences in relative timing of RNA and protein 

expression events, but also enabled the direct connection between multi-omic cell profiles and 

tangible populations that could be gated by flow cytometry for further analysis, such as 

intracellular transcription factor staining. The CITE-seq method is currently limited to the 

measurement of surface proteins (Stoeckius et al., 2017), but future technological developments 

to facilitate the simultaneous measurement of RNA, surface proteins, and large panels of 

intracellular proteins could greatly enhance the ability to generate hypotheses about molecular 

pathway activity, gene regulatory networks, and transcription and translation dynamics. 

Furthermore, because thymocytes actively traverse the thymic cortex and medulla over the course 

of their development, imaging could provide a valuable dimension to our current understanding of 

the thymocyte developmental timeline (Germain et al., 2012). Future work that integrates spatial 

locations with the transcriptomic and surface protein profiles of this study could inform how a 

cell’s environment and physical motility might influence and reflect key aspects of the thymocyte 

developmental trajectory. 
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Methods 

 

CITE-seq on mouse thymocytes 

Mice: Wild type B6 (C57BL/6, Stock No.: 000664), B2M-/- (B6.129P2-B2mtm1Unc/DcrJ, Stock 

No.: 002087), OT-I (C57BL/6-Tg(TcraTcrb)1100Mjb/J, Stock No.: 003831), and OT-II (B6.Cg-

Tg(TcraTcrb)425Cbn/J, Stock No.: 004194) were obtained from The Jackson Laboratory. MHCII-

/- (I-Aβ-/-) mice have been previously described (Grusby et al., 1991). RAG1-/-AND TCRtg mice 

and RAG1-/-F5 TCRtg were generated by crossing AND TCRtg (B10.Cg-Tg(TcrAND)53Hed/J, 

Jax Stock No.: 002761; (Kaye et al., 1989)) and F5 TCRtg (C57BL/6-Tg(CD2-TcraF5,CD2-

TcrbF5)1Kio; (Mamalaki et al., 1992)) mice with RAG1-/- mice (Rag1-/-B6.129S7-

Rag1tm1Mom) as previously described by (Au-Yeung et al., 2014)). All mice used in CITE-seq 

experiments were females between four and eight weeks of age. Samples are further described in 

Table S1. Mice were group housed with enrichment and segregated by sex in standard cages on 

ventilated racks at an ambient temperature of 26 °C and 40% humidity. Mice were kept in a 

dark/light cycle of 12h on and 12h off and given access to food and water ad libitum. All animal 

care and procedures were carried out in accordance with guidelines approved by the Institutional 

Animal Care and Use Committees at the University of California, Berkeley and at BioLegend, Inc. 

 

Cell preparation: Mice were sacrificed, and thymi were harvested, placed in RPMI + 10% FBS 

medium on ice, mechanically dissociated with a syringe plunger, and passed through a 70 μm 

strainer to generate a single-cell suspension. 

 

Antibody panel preparation: We prepared a panel containing 111 antibodies (TotalSeq-A mouse 

antibody panel 1, BioLegend, 900003217), which are enumerated in Table S2. Immediately prior 

to cell staining, we centrifuged the antibody panel for 10 minutes at 14,000g to remove antibody 

aggregates. We then performed a buffer exchange on the supernatant using a 50 kDa Amicon spin 

column (Millipore, UFC505096) following the manufacturer’s protocol to transfer antibodies into 

RPMI + 10% FBS. 

 

Cell sorting: To enrich for positively-selecting thymocytes in MHC-deficient and some wild-type 

samples (Table S1), live, single, TCRb+CD5+ thymocytes were sorted by FACS. We took 

advantage of the fact that cells were already stained with TotalSeq (oligonucleotide-conjugated) 

antibodies and therefore designed oligonucleotide-fluorophore conjugates complementary to the 

TotalSeq barcodes (5’-CACTGAGCTGTGGAA-AlexaFluor488-3’ for CD5; 5’-

TCCCATAGGATGGAA-AlexaFluor647-3’ for TCRb). Prior to cell staining, the TotalSeq 

antibody panel was mixed with oligonucleotide-fluorophore conjugates in a 1:1.5 molar ratio. This 

mixture was incubated for 15 minutes at room temperature to allow for oligonucleotide 

hybridization, and then transferred to ice. Cells were then stained with the 

antibody/oligonucleotide-fluorophore mixture according to the TotalSeq protocol. Cells were 

stained, washed, and resuspended in RPMI + 10% FBS to maintain viability. Cells were sorted 

using a BD FACSAria Fusion (BD Biosciences). 
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CITE-seq protocol and library preparation: The CITE-seq experiment was performed following 

the TotalSeq protocol. Cells were stained, washed, and resuspended in RPMI + 10% FBS to 

maintain viability. We followed the 10X Genomics Chromium Single Cell 3′ v3 protocol to 

prepare RNA and antibody-derived-tag (ADT) libraries (Zheng et al., 2017). 

 

Sequencing and data processing: RNA and ADT libraries were sequenced with either an Illumina 

NovaSeq S1 or an Illumina NovaSeq S4. Reads were processed with Cell Ranger v.3.1.0 with 

feature barcoding, where RNA reads were mapped to the mouse mm10–2.1.0 reference (10X 

Genomics, STAR aligner (Dobin et al., 2013)) and antibody reads were mapped to known barcodes 

(Table S1). No read depth normalization was applied when aggregating samples. 

 

CITE-seq data preprocessing 

Prior to analysis with totalVI, we performed preliminary quality control and feature selection on 

the CITE-seq data. Cells with a high percentage of UMIs from mitochondrial genes (> 15% of a 

cell’s total UMI count) were removed. We also removed cells expressing < 200 genes, and retained 

cells with protein library size between 1,000 and 10,000 UMI counts. We removed cells in which 

fewer than 70 proteins were detected of the 111 measured in the panel. An initial gene filter 

removed genes expressed in fewer than four cells. The top 5,000 highly variable genes (HVGs) 

were selected by the Seurat v3 method (Stuart et al., 2019) as implemented by scVI (Lopez et al., 

2018). In addition to HVGs, we also selected genes encoding proteins in the measured antibody 

panel and a manually selected set of genes of interest. After all filtering, the CITE-seq dataset 

contained a total of 72,042 cells, 5,125 genes, and 111 proteins.  

 

CITE-seq data analysis with totalVI 

totalVI modeling of all CITE-seq data: We ran totalVI on CITE-seq data after filtering (described 

above), using a 20-dimensional latent space. Each 10X lane was treated as a batch. When 

generating denoised gene and protein values, we applied the transform_batch parameter (Gayoso 

et al., 2021) to view all denoised values in the context of wild-type samples. 

 

Cell annotation: We stratified cells of the thymus into cell types and states based on the totalVI 

latent space, taking advantage of both RNA and protein information. We first clustered cells in the 

totalVI latent space with the Scanpy (Wolf et al., 2018) implementation of the Leiden algorithm 

(Traag et al., 2019) at resolution 0.6, resulting in 18 clusters. We repeated this approach to 

subcluster cells. We used Vision (DeTomaso et al., 2019) with default parameters for data 

exploration. Subclusters were manually annotated based on curated lists of cell type markers 

(Gayoso et al., 2021; Hogquist et al., 2015), resulting in 20 annotated clusters (excluding one 

cluster annotated as doublets). We visualized the totalVI latent space in two dimensions using the 

Scanpy (Wolf et al., 2018) implementation of the UMAP algorithm (Becht et al., 2019). 

 

Differential expression testing of annotated cell types: We conducted a one-vs-all differential 

expression test between all annotated cell types, excluded clusters annotated as doublets or dying 

cells. We identified cell type markers by filtering for significance (log(Bayes factor) > 2.0 for 

genes, log(Bayes factor) > 1.0 for proteins), effect size (median log fold change (LFC) > 0.2 for 

both genes and proteins), and the proportion of expressing cells (detected expression in > 10% of 

the relevant population for genes), and sorting by the median LFC. For marker visualization, we 
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selected the top four (if existing) differentially expressed genes and proteins per cell type, arranged 

by the cell type in which the LFC was highest. 

 

totalVI modeling of positively-selecting thymocytes: To further analyze thymocyte populations 

with a focus on positively-selected cells, we selected the following annotated clusters: Signaled 

DP, Immature CD4, Immature CD8, Mature CD4, Mature CD8, Interferon signature cells, 

Negative selection (wave 2), and Treg. With an interest in the variation within thymocyte 

populations (rather than all cells in the thymus), we selected the top 5,000 HVGs in this subset, as 

well as genes encoding proteins in the measured antibody panel and a manually selected set of 

genes of interest. This resulted in a CITE-seq dataset containing 35,943 cells, 5,108 genes, and 

111 proteins. We ran totalVI on this subset dataset and generated denoised values as described 

above. We performed Leiden clustering and visualized the totalVI latent space in two dimensions 

using UMAP as described above.  

 

Cell filtering of positively-selecting thymocytes on the CD4/CD8 developmental trajectory: After 

visualizing the totalVI latent space of the thymocyte subset, we applied additional filters to restrict 

to cells on the CD4/CD8 developmental trajectory. We used two resolutions of Leiden clustering 

(0.6 and 1.4) and subclustering as described above to identify and remove clusters of negatively 

selected cells, Tregs, gamma-delta-like cells, mature cycling cells, and outlier clusters of doublets, 

interferon-responding cells, and CD8-transgenic-specific cells. After filtering, this dataset 

contained 29,408 cells that were used for downstream analysis. Differential expression testing of 

positively-selecting thymocytes using pseudotime information is described below. 

 

Pseudotime inference 

Pseudotime inference with Slingshot: Slingshot (Street et al., 2018) was selected for pseudotime 

inference based on its superior performance in a comprehensive benchmarking study (Saelens et 

al., 2019). Slingshot pseudotime was derived from the UMAP projection of the totalVI latent 

space. The starting point was assigned to DP cells, and two endpoints were assigned to mature 

CD4 and CD8 T cells. Slingshot pseudotime derived from the full 20-dimensional totalVI latent 

space was highly correlated with that from the 2-dimensional space (Figure S2A), supporting our 

use of the 2D-derived pseudotime values for ease of visualization and analysis. 

 

Lineage assignment: Initial lineage assignment of cells was made on the basis of their genotype 

(CD4 lineage for MHCII-/-, AND, and OT-II mice, CD8 lineage for MHCI-/-, F5, and OT-I mice, 

unassigned for B6 mice). However, small numbers of cells in MHC-deficient and TCR transgenic 

mice develop along the alternative lineage (particularly in TCR transgenics that are Rag+, which 

might express an endogenous TCR in addition to the transgenic TCR). We therefore added an 

additional filter of Slingshot lineage assignment weight > 0.5. Cells with a Slingshot lineage 

assignment weight of < 0.5 along the expected lineage based on genotype were excluded from the 

remaining pseudotime-based analysis. 

 

In silico flow cytometry 

To perform in silico flow cytometry, totalVI denoised protein counts were log-transformed and 

visualized in biaxial-style scatter plots. Gates in biaxial plots were determined based on contours 

of cell density. An approximate alignment of gated populations to pseudotime was generated by 
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identifying thresholds classifying adjacent populations in pseudotime by maximizing the Youden 

criteria. 

 

Adult thymocyte population analysis with fluorescence-based flow cytometry 

Mice: All experiments were approved by the University of California, Berkeley Animal Use and 

Care Committee. All mice were bred and maintained under pathogen-free conditions in an 

American Association of Laboratory Animal Care-approved facility at the University of 

California, Berkeley. Wild type B6 (C57BL/6, Stock No.: 000664) and B2M-/- (B6.129P2-

B2mtm1Unc/DcrJ, Stock No.: 002087) were obtained from The Jackson Laboratory. MHCII-/- (I-

Aβ-/-) mice have been previously described (Grusby et al., 1991). For thymocyte population 

analysis in adult mice, six to eight week- old animals were used. Thymi were analyzed from four 

mice per genotype (2 male and 2 female). 

 

Flow cytometry: Thymi were mechanically dissociated into a single-cell suspension, depleted of 

red blood cells using ACK Lysis Buffer (0.15M NH4CL, 1mM kHC3, 0.1mM Na2EDTA). Cells 

were filtered, washed, and counted before being stained with a live/dead stain; Zombie NIR 

Fixable Viability Kit (Biolegend). Samples were blocked with anti-CD16/32 (2.4G2) and surface 

antibodies against CD4, CD8, TCRβ, CD5, CD69, and CD127 (IL-7R). Intracellular staining for 

GATA3, RUNX3, and THPOK was performed using the eBioscience FOXP3/ Transcription 

Factor Staining Buffer Set (Thermo Fisher). All antibodies were purchased from BD Biosciences, 

Biolegend, or eBiosciences. Single-stain samples and fluorescence minus one (FMO) controls 

were used to establish PMT voltages, gating and compensation parameters. Cells were processed 

using a BD LSRFortessa or BD LSRFortessa X20 flow cytometer and analyzed using FlowJo 

software (Tree Star). 

 

Differential expression analysis of positively-selecting thymocytes with totalVI 

Testing for temporal features: Temporal features (i.e., features that are differentially expressed 

over time) were determined by a totalVI one-vs-all DE test within each lineage between binned 

units of pseudotime. DE criteria (as above) included filters for significance (log(Bayes factor) > 

2.0 for genes, log(Bayes factor) > 1.0 for proteins), effect size (median log fold change > 0.2 for 

both genes and proteins), and the proportion of expressing cells (detected expression in > 5% of 

the relevant population for genes). Top temporal genes were selected as the unique set among the 

top three differentially expressed genes per time in each lineage. 

 

Testing for differences between lineages: Differences between lineages were determined by a 

totalVI within-cluster DE test, where clusters were binned units in pseudotime and the condition 

was lineage assignment (i.e., cells within a given unit of pseudotime were compared between 

lineages). Criteria for DE were the same as above. 

 

Clustering of differentially expressed genes: To cluster differentially expressed genes into patterns, 

totalVI denoised gene expression values were standard scaled, reduced dimensions across cells 

using PCA, and clustered genes using the Leiden algorithm (Traag et al., 2019) as implemented 

by Scanpy (Wolf et al., 2018). For temporal features, clustering was performed across all cells. 

For features differentially expressed between lineages, the genes upregulated within a lineage were 

clustered according to expression within the lineage in which they were upregulated. 
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Transcription factor enrichment analysis 

ChEA3 analysis: To perform transcription factor enrichment analysis with ChEA3 (Keenan et al., 

2019), we first selected target gene sets as genes differentially upregulated in one lineage relative 

to the other in each unit of pseudotime, filtered for significance (log(Bayes factor) > 2.0), effect 

size (median log fold change > 0.2), and detected expression in > 5% of the population of interest. 

For each target gene set, transcription factors (TFs) were scored for enrichment by the integrated 

mean ranking across all ChEA3 gene set libraries (MeanRank) based on the top performance of 

this ranking method (Keenan et al., 2019).  

 

Ranking of candidate TFs: To generate an overall ranking of TFs for their likely involvement in 

CD4/CD8 lineage commitment, we focused on enrichment in the three units of pseudotime prior 

to master regulator differential expression in each lineage (i.e., in the CD4 lineage, the relevant 

pseudotime units are 4, 5, and 6 prior to the differential expression of Zbtb7b differential 

expression at pseudotime 7; in the CD8 lineage, the relevant pseudotime units are 5, 6, and 7 prior 

to the differential expression of Runx3 at pseudotime 8). We excluded the pseudotime unit 

containing master regulator differential expression from the ranking, as genes differentially 

expressed at this time could be the result of the master regulator itself enforcing lineage-specific 

changes rather than the factors driving initial commitment to a lineage. The pseudotime unit 

containing master regulator differential expression is included in Figure 4F-G for visualization, 

but did not contribute to the ranked order of TFs. We also excluded earlier units of pseudotime 

since these times included very few (< 15) significantly different genes between the lineages. 

Finally, we required that the TF itself had detected expression in at least 5% of the relevant 

population. The overall ranking of candidate driver TFs was then generated by taking the mean of 

ranks across the relevant pseudotime units. 

 

TCR signaling pathway involvement: TFs were annotated by whether they had a known 

association with TCR signaling. A list of molecules involved in TCR signaling were curated from 

the NetPath database of molecules involved in the TCR signaling pathway and the NetPath 

database of genes transcriptionally upregulated by the TCR signaling pathway (Kandasamy et al., 

2010). Additional genes related to TCR signaling were curated from literature sources (Shao et al., 

1997; Wong et al., 2014; Lopez-Rodriguez et al., 2015; Hedrick et al., 2013; Wang et al., 2010). 

TFs were also annotated by whether they were known to target either Gata3, Zbtb7b, or Runx3 

according to ChEA3 databases (i.e., Gata3, Zbtb7b, or Runx3 appeared in the Overlapping Gene 

list for the TF of interest in any ChEA3 query). 

 

Neonatal thymic slice experiments 

Mice: All experiments were approved by the University of California, Berkeley Animal Use and 

Care Committee. All mice were bred and maintained under pathogen-free conditions in an 

American Association of Laboratory Animal Care-approved facility at the University of 

California, Berkeley. Wild type B6 (C57BL/6, Stock No.: 000664) and β2M-/- (B6.129P2-

B2mtm1Unc/DcrJ, Stock No.: 002087) were obtained from The Jackson Laboratory. MHCII-/- (I-

Aβ-/-) mice have been previously described (Grusby et al., 1991). For neonatal thymic slice 

experiments, postnatal day 1 (P1) mice were used. 

 

Thymic slices: Thymic slices were prepared as previously described (Dzhagalov et al., 2012; Ross 

et al., 2016), with minor modifications to adjust for the smaller size of neonatal thymi compared 
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to those of adults. Thymic lobes were dissected, removed of connective tissue, embedded in 4% 

low melting point agarose (GTG-NuSieve Agarose, Lonza) and sectioned into 500 μM slices using 

a vibratome (VT1000S, Leica). Slices were overlaid onto 0.4 μM transwell inserts (Corning, Cat. 

No.: 353090) and placed in a 6-well tissue culture plate with 1 mL of complete RPMI medium 

(RPMI-1640 (Corning), 10% FBS (Thermo), 100U/mL penicillin/streptomycin (Gibco), 1X L-

glutamine (Gibco), 55µM 2-mercaptoethanol (Gibco)). Slices were cultured for indicated periods 

of time at 37 °C, 5% CO2, before being prepared and analyzed by flow cytometry. For neonatal 

slice cultures containing Cyclosporin A (CsA; Millipore-Sigma, Cat. No.:239835), CsA was 

serially diluted to indicated concentrations (50-800ng/mL) and added directly to the culture 

medium. 

 

Flow cytometry: Thymic slices were mechanically dissociated into a single-cell suspension, 

depleted of red blood cells using ACK Lysis Buffer. Cells were filtered, washed and counted 

before being stained with a live dead/stain; Propidium Iodine (Biolegend), Ghost Violet 510 

(Tonbo), Zombie NIR, or Zombie UV Fixable Viability Kit (Biolegend). Samples were blocked 

with anti-CD16/32 (2.4G2) and stained with surface antibodies against CD4, CD8, TCRβ, and 

CD69. Intracellular staining for GATA3, RUNX3, and THPOK was performed using the 

eBioscience FoxP3/ Transcription Factor Staining Buffer Set (Thermo Fisher). All antibodies were 

purchased from BD Biosciences, Biolegend, or eBiosciences. Single-stain samples and 

fluorescence minus one (FMO) controls were used to establish PMT voltages, gating and 

compensation parameters. Cells were processed using a BD LSRFortessa or BD LSRFortessa X20 

flow cytometer and analyzed using FlowJo software (Tree Star). 

 

Statistical analysis: Data were analyzed using Prism software (GraphPad). Comparisons were 

performed using an unpaired T test, one- or two-way analysis of variance, where indicated in the 

figure legends. For all statistical models and tests described above, the significance is displayed as 

follows; ns is not significant, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 
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Supplemental Tables 

 

Table S1: CITE-seq sample information.  

Table S2: Antibodies used in this study. 

Table S3: DE test results for totalVI one-versus-all DE test between annotated thymus 

populations. 

Table S4: DE test results for totalVI DE test across pseudotime within the CD4 lineage. 

Table S5: DE test results for totalVI DE test across pseudotime within the CD8 lineage. 

Table S6: Cluster assignments for genes with temporal patterns from the totalVI DE tests across 

pseudotime. 

Table S7: DE test results for totalVI DE test within pseudotime and between CD4 and CD8 

lineages. 

Table S8: Cluster assignments for genes upregulated in the CD4 lineage from the totalVI DE test 

within pseudotime and between CD4 and CD8 lineages. 

Table S9: Cluster assignments for genes upregulated in the CD8 lineage from the totalVI DE test 

within pseudotime and between CD4 and CD8 lineages. 

 

Data and Code Availability 

CITE-seq data are being uploaded to GEO. An accession number will be provided once available. 

Code will be made available upon request. 
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Supplemental figures 

 

 
Figure S1: FACS sorting and cell filtering to enrich for positively-selecting thymocytes. (A) Representative FACS 

plots displaying gating strategy to sort thymocytes for CITE-seq. Cell populations were gated and sorted to include 

lymphocytes, exclude forward scatter doublets, include Ghost Dye Violet 510 Live/Dead stain negative (live cells), 

then on TCRβ+CD5+ to select for cells that were positively-selecting. (B) UMAP plot of totalVI latent space from 

positively-selected thymocytes before filtering indicating annotated populations that were retained (positively-

selecting thymocytes)) or removed (all other populations) from downstream analysis. 
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Figure S2: Pseudotime inference identifies intermediate thymocyte stages that can be isolated by FACS. 

(caption on following page)  
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Figure S2: Pseudotime inference identifies intermediate thymocyte stages that can be isolated by FACS. (A) 

Correlation between Slingshot pseudotime inferred from the full 20-dimensional totalVI latent space and a 2-

dimensional UMAP projection of the 20-dimensional latent space. (B) UMAP plot of the totalVI latent space from 

positively-selected thymocytes. Cells are colored according to placement in one of eight bins uniformly spaced over 

2D pseudotime for visualization. (C) In silico flow cytometry plots of log(totalVI denoised expression) of CD127(IL-

7Ra) and CD69 from positively-selected thymocytes (left) and the same cells separated by lineage (right). Cells are 

colored by pseudotime. (D)  In silico flow cytometry plot of data as in (C) separated by lineage and pseudotime. (E) 

In silico flow cytometry plots of log(totalVI denoised expression) of TCRbchain and CD5 from DP thymocytes (left) 

and the same cells separated by lineage (right). Cells are colored by pseudotime. Among DP thymocytes, the DP3 

population is TCRbchain high, CD127+, and CD69+. (F) Schematic of a CD4 vs CD8 biaxial plot to identify gated 

populations in adult thymocytes. Cells were gated into 8 subsets: double positive 1 (DP1), double positive 2 (DP2), 

double positive 3 (DP3), MHCII-specific CD4+CD8lo (CD4+CD8lo), CD4+ semimature (CD4+ SM), CD4+ mature 

(CD4+ Mat), MHCI-specific CD4+CD8lo (CD4+CD8lo), CD8+ semimature (CD8+ SM) and CD8+ mature (CD8+ 

Mat). Circles represent lineage uncommitted cells, squares represent CD4 lineage committed, and triangles represent 

CD8 lineage committed cells. (G) Representative FACS gating strategy for thymocyte populations in adult mice. 

Thymocytes were harvested from 6-8-week-old WT (B6), β2M-/- or MHCII-/- mice. Cell populations were gated to 

include lymphocytes, exclude forward scatter and side scatter doublets, include live cells, include TCRβ+CD5int/hi, 

then on CD4 vs CD8. Cell populations were gated into the following subsets based upon cell surface marker 

expression: double positive 1 (DP1; CD4+CD8+CD127-CD69-), double positive 2 (DP2; CD4+CD8+CD127-

CD69+), double positive 3 (DP3; TCRβhiCD5+CD127+CD69+), MHCII-specific CD4+CD8lo (CD4+CD8lo; 

CD4+CD8loCD69+, only in β2M-/- mice), CD4+ semimature (CD4+ SM; CD4+CD8-CD69+), CD4+ mature (CD4+ 

Mat; CD4+CD8-CD69-), MHCI-specific CD4+CD8lo (CD4+CD8lo; CD4+CD8loCD69+, only in MHCII-/- mice), 

CD8+ semimature (CD8+ SM; CD8+CD69+) and CD8+ mature (CD8+ Mat; CD8+CD69-). 
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Figure S3: CITE-seq and fluorescence-based flow cytometry reveal the timing of expression for transcription 

factors and other features of CD4/CD8 development. (caption on following page) 
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Figure S3: CITE-seq and fluorescence-based flow cytometry reveal the timing of expression for transcription 

factors and other features of CD4/CD8 development. (A) Expression of RNA and protein features over pseudotime 

by genotype. Features are totalVI denoised expression values scaled per feature and smoothed by loess curves. (B) In 

silico flow cytometry plots of log(totalVI denoised expression) of Runx3 and Zbtb7b from positively-selected 

thymocytes separated by pseudotime. (C) Representative FACS dot plots displaying RUNX3 vs THPOK protein 

expression in CD4+CD8lo (CD4+CD8loCD69+) cells from WT, MHCII-specific (β2M-/-), and MHCI-specific 

(MHCII-/-) adult mice. Positive staining and gates were determined using fluorescence minus one (FMO) controls. 

(D) Transcription factor protein expression in adult thymocyte populations. Representative histograms displaying 

GATA3, THPOK, and RUNX3 transcription factor expression detected by FACS intracellular staining in MHCII-

specific (β2M-/-) and MHCI-specific (MHCII-/-) thymocyte populations. Thymocyte populations were gated on 

lymphocytes, excluding forward scatter and side scatter doublets, live cells, TCRβ+CD5int/hi then on CD4 vs CD8. 

Cell populations were gated into the following subsets based upon cell surface marker expression: double positive 1 

(DP1; CD4+CD8+CD127-CD69-), double positive 2 (DP2; CD4+CD8+CD127-CD69+), double positive 3 (DP3; 

CD4+CD8+TCRβhiCD5+CD127+CD69+), MHCII-specific CD4+CD8lo (CD4+CD8lo; CD4+CD8loCD69+, only 

in β2M-/- mice), CD4+ semimature (CD4+ SM; CD4+CD8-CD69+), CD4+ mature (CD4+ Mat; CD4+CD8-CD69-), 

MHCI-specific CD4+CD8lo (CD4+CD8lo; CD4+CD8loCD69+, only in MHCII-/- mice), CD8+ semimature (CD8+ 

SM; CD8+CD69+) and CD8+ mature (CD8+ Mat; CD8+CD69-). Positive staining was determined using a 

fluorescence minus one (FMO) control.  
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Figure S4: A temporal model for CD4 versus CD8 T cell lineage commitment. Key changes in mRNA and protein 

inferred from CITE-seq data are displayed from left to right in their order of occurrence based on pseudotime. Colored 

ovals indicate the relative order of key thymocyte stages as defined by cell surface markers. Black text and lines 

indicate dynamic changes in TCR signaling. Shaded red area indicates the time window during which both MHCI and 

MHCII specific thymocytes audition for the CD4 fate, corresponding to upregulation of GATA3 followed by THPOK. 

Shaded blue area indicates the later time window during which thymocytes that fail the CD4 audition (mostly MHCI 

specific) receive CD8 lineage reinforcement and survival signals. Bold upward pointing arrows at bottom indicate 

relative timing of lineage defining gene expression changes. During the earlier CD4 auditioning phase of positive 

selection (red shading), most MHCII-specific thymocytes receive moderate, persistent TCR signals, allowing them to 

lock in the CD4 fate (red rectangle) by fully upregulating THPOK, activating the THPOK positive autoregulation loop 

(red circular arrow, (Muroi et al., 2008)), leading to repression of CD8 and RUNX3. In contrast most MHCI-specific 

thymocytes receive weaker more transient signals during this phase (due to the combined effect of weaker LCK 

recruitment by the CD8 co-receptor, drop in CD8 surface expression and increase in the negative regulator CD5 (Chan 

et al., 1999)). During the later CD8 lineage specification window (blue shading), the CD8 SP enhancer and RUNX3 

are activated, likely due to the maturation-associated drop in E protein activity (orange triangle, (Jones-Mason et al., 

2012)). Continued upregulation of RUNX3 represses both THPOK and CD4, while further enhancing CD8 expression. 

In addition, an increase in TCR sensitivity during the CD8 lineage specification phase (due to the drop in negative 

regulator CD5, rise in ZAP70, and increase in ion channel components (e.g., KCNA2 and TMIE (Lutes et al 2021)) 

leads to a second wave of TCR signaling. TCR signaling at this late stage of CD8 specification may provide survival 

signals and well as further upregulating RUNX3, and would serve to ensure the elimination of any MHCII-specific 

thymocytes that failed the CD4 audition phase.  
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Figure S5: Cell populations in neonatal thymic slice cultures with Cyclosporin A. (caption on following page) 
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Figure S5: Cell populations in neonatal thymic slice cultures with Cyclosporin A. Thymic slices were isolated 

from postnatal day 1 (P1) mice and cultured at time point 0 in media alone containing no cyclosporin A (CsA) or with 

various concentrations of CsA for up to 96 hours. Thymic slices were collected and analyzed at indicated time points 

via flow cytometry to quantify cell populations. (A) Experimental overview of neonatal thymic slice cultures. 

Illustrations were created using Biorender.com. (B) Representative neonatal slice culture FACS gating strategy. Cell 

populations were gated to include lymphocytes, exclude forward scatter and side scatter doublets, include live cells, 

then on CD4 vs CD8. Thymocytes were further gated into double negative (DN; CD4-CD8-), unsignaled double 

positive (Unsig DP; CD4+CD8+CD69-), signaled double positive (Sig DP; CD4+CD8+CD69+), CD4+CD8lo 

(CD4+CD8loTCRb+), CD4+ semimature (CD4+ SM; CD4+CD8-TCRbhiCD69+), CD4+ mature (CD4+ Mat; 

CD4+CD8-TCRbhiCD69-), CD4loCD8+ (CD4loCD8+TCRb+), CD8+ mature (CD8+ Mat; CD4-

CD8+TCRbhiCD69-). (C-J) WT neonatal slice time course experiments. Data is compiled from 8 independent 

experiments, where each symbol represents a thymic slice. Plots display the frequency of (C) CD4-CD8- DN, (D) 

unsig DP, (E) sig DP, (F) CD4+CD8lo, (G) CD4+ SM, (H) CD4+ Mat, (I) CD4loCD8+, (J) CD8+ Mat cells in thymic 

slices after 0, 24, 48, 72 and 96 hours of culture. (K) Frequency of CD4+CD8lo cells in WT, MHCII-specific (B2M-

/-), and MHCI-specific (MHCII-/-) neonatal slices after 96 hours in culture. All genotypes possess a CD4+CD8lo cell 

population. Each symbol represents a thymic slice. (L-O) Addition of CsA to WT B6 P1 thymic slice cultures for 96 

hours does not affect the (L) frequency (% of total) of live cells, (M) frequency (% of live) of CD4-CD8- DN cells, 

(N) of unsig DP or (O) of sig DP. Data is compiled from 3 independent experiments. where each symbol represents a 

thymic slice. (P) Addition of high concentrations (400 and 800 ng/mL) of CsA increases frequency of CD4-CD8- DN 

cells. Data is representative of 2 independent experiments, n= 4 for each concentration of CsA, where each symbol 

represents a thymic slice. Data in (L-P) were analyzed using an ordinary one-way ANOVA. NS is not significant, 

*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 
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Chapter 5 

 
Concluding remarks 

 
Single-cell multi-omics analysis is a quickly developing field on both the experimental and 

computational fronts. These approaches have great potential to expand biological knowledge of 

cell types and the key molecules that define them. Multi-omics facilitates the drawing of 

connections between multiple views of cell identity and enables connecting the molecules 

themselves into regulatory pathways, signal transduction cascades, and a more detailed 

understanding of how cellular mechanisms are carried out. I have thus far described new 

approaches to leverage multi-omic measurements by performing joint analyses that combine RNA 

and protein data. I have applied these approaches to illuminate the fundamental biological 

processes of cell development and lineage commitment within the context of the thymus. Here, I 

briefly discuss promising directions for the previously discussed work. 

 

The work presented in Chapter 4 characterizes thymocytes that are developing into CD4 and CD8 

T cells on the basis of their transcriptomes and surface proteins from a snapshot in time of this 

continuous developmental trajectory. The measurement of additional modalities would be a natural 

next step to gain a more complete picture of this process. Future work would benefit from 

connecting these multi-omic profiles with the spatial locations of cells within the thymus, as the 

physical movement of cells from the thymic cortex to the medulla plays a role in maturation. 

Beyond providing spatial locations, imaging studies could more precisely quantify the timing of 

developmental events, identify the role of cell-cell interactions in thymic migration and 

developmental progression, and more directly track TCR signaling events using reporter systems. 

The measurement of chromatin accessibility or transcription factor binding could additionally 

inform the regulatory networks governing commitment to and enforcement of the CD4 and CD8 

lineages. While the connection between TCR sequence and antigen-MHC specificity remains an 

open question, the additional measurements of TCR sequences could aid our understanding of how 

a thymocyte with a given TCR sequence ultimately becomes specified towards the CD4 or CD8 

lineage.  

 

This work primarily focused on the lineage commitment between CD4 and CD8 T cells. However, 

the methods described here could be readily applied to study the development of other cell types.  

For instance, the dataset presented in Chapter 4 contains multiple thymic subsets of interest, such 

as regulatory T cells (Tregs) that play an important role in autoimmune disease. Moreover, the 

analytical approaches applied here could provide a useful approach to investigate cells outside of 

the thymus, such as the differentiation of T cells in the periphery in response to infection as well 

as the development of non-immune cell types.  

 

As described in Chapter 2, while the totalVI model was designed specifically for the analysis of 

paired transcriptome and surface protein data, the underlying conceptual framework is readily 

extensible to include additional measurements. Given that multiple measurements are generated 

from the same cell, a future model could jointly analyze RNA and protein data along with 

modalities such as chromatin accessibility or spatial locations. As with the totalVI model, the 
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addition of each new modality would require careful consideration of the technical nuances of the 

measurement. The analysis of multiple molecule types from the same cell (e.g., DNA, RNA, 

protein) invites future research on the fundamental dynamics of gene expression including the 

kinetics of transcription and translation. It also presents the opportunity to reconstruct gene 

regulatory networks by linking multiple molecule types, such as connecting a protein signaling 

event at the cell surface with downstream transcriptional events, or transcriptional regulation with 

subsequent surface protein expression changes. Ongoing work has extended the totalVI model to 

correct continuous covariates and allow for mapping new data onto an already trained model for a 

reference dataset, speeding dataset integration for large-scale atlas projects. In future work, the 

paired analysis of RNA and proteins with totalVI (potentially along with additional modalities) 

could potentially improve automated cell type annotation by relying on all available features to 

characterize cell types and cell states. 

 

As a tool for multi-omic data analysis, totalVI can be even more useful to the scientific community 

if it is made accessible and easy to use for diverse applications. totalVI is freely available through 

the scvi-tools package (scvi-tools.org), including extensive tutorials and documentation to increase 

user accessibility. In addition to streamlining the code to improve usability, ongoing work on the 

scvi-tools package aims to make the models themselves more modular and easily adaptable by 

developers for the creation of new models. Because multi-omics experiments and computational 

analyses can be complicated and often involve tricks of the trade learned by experience that are 

often unpublished, there can be a high barrier for researchers to attempt to use these methods. 

Chapter 3 translates some of the theory behind totalVI into an intuition for multi-omics analysis 

and practical guidance for performing multi-omics experiments and joint analysis. In enumerating 

many of the numerous experimental and computational variables and offering recommendations 

for navigating these decision points, I hope to enable other researchers to apply these methods to 

new questions and biological systems.  
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Supplementary Tables

Dataset Antibody Cells Cells
name panel Day Mouse Tissue (captured) (post-filtering)

SLN111-D1 111 1 A Spleen; Lymph Node 11,160 9,264
SLN111-D2 111 2 B Spleen; Lymph Node 9,017 7,564
SLN208-D1 208 1 A Spleen; Lymph Node 10,777 8,715
SLN208-D2 208 2 B Spleen; Lymph Node 8,921 7,105

Supplementary Table 1: Summary of spleen and lymph node datasets. Each dataset was processed in
a separate 10x lane. Each day indicates a 10x run. Cells captured is the number of cells reported by Cell
Ranger.

Cell type Protein totalVI ROC AUC GMM ROC AUC

B cells CD19 0.9998 0.9997
B cells CD45R-B220 0.9999 0.9974
B cells CD20 0.9995 0.8600
B cells I-A-I-E 0.9941 0.9725
T cells CD5 0.9998 0.9974
T cells TCRbchain 0.9999 0.9976
T cells CD90.2 0.9999 0.9986
T cells CD28 0.9999 0.8328
CD4 T cells CD4 0.9999 0.9969
CD8 T cells CD8a 0.9999 0.9985
CD8 T cells CD8b 0.9998 0.9980

Supplementary Table 2: Classification of cell types by marker proteins (SLN111-D1 dataset.) Perfor-
mance of totalVI and a Gaussian mixture model (GMM) fit on all cells for each protein of the SLN111-D1
dataset. Area under the receiver operating characteristic curve (ROC AUC score) was calculated using as
input either the totalVI foreground probability or GMM foreground probability where the indicated cell
type was the positive population out of all B and T cells. AUC results were truncated at four decimal places.
Bolded ROC AUC scores indicate higher values (better performance). Highlighted in blue are two proteins
for which totalVI noticeably outperformed the GMM.
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Cell type Protein Isotype Control totalVI GMM GMM norm1 GMM norm2
ROC AUC ROC AUC ROC AUC ROC AUC

B cells CD19 IsotypeCtrlRatIgG2a_k 0.9999 0.9996 0.9988 0.9988
B cells CD45R-B220 IsotypeCtrlRatIgG2a_k 0.9999 0.9973 0.9959 0.9961
B cells CD20 IsotypeCtrlRatIgG2b_k 0.9999 0.7197 0.7528 0.7494
B cells I-A-I-E IsotypeCtrlRatIgG2b_k 0.9984 0.9783 0.9695 0.9695
T cells CD5 IsotypeCtrlRatIgG2a_k 0.9998 0.9966 0.9938 0.9938
T cells TCRbchain IsotypeCtrlArm.HamsterIgG 0.9999 0.9943 0.7725 0.9762
T cells CD90.2 IsotypeCtrlRatIgG2b_k 0.9999 0.9988 0.8316 0.9984
T cells CD28 NA 0.9997 0.7805 0.7805 0.7805
CD4 T cells CD4 IsotypeCtrlRatIgG2a_k 0.9999 0.9966 0.9966 0.9966
CD8 T cells CD8a IsotypeCtrlRatIgG2a_k 0.9999 0.9991 0.7952 0.9989
CD8 T cells CD8b IsotypeCtrlRatIgG2a_k 0.9999 0.9993 0.8606 0.9989

Supplementary Table 3: Classification of cell types by marker proteins (SLN208-D1 dataset). Perfor-
mance of totalVI and a GMM fit on all cells for each protein of the SLN208-D1 dataset as in Supplementary
Table 2. GMM norm1 indicates that data were normalized using an isotype control as in Cumulus [1] prior
to fitting the GMM; GMM norm2 indicates that data were normalized using a modification to the Cumu-
lus method (Methods). Bolded ROC AUC scores indicate highest value for each protein. Notable result is
highlighted in blue.
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Cell type annotation Selected markers Selected references

Activated CD4 T cells Itm2a, Cd69 [2]
B1 B cells Bhlhe41, CD43, CD19 [3, 4]
CD122+ CD8 T cells CD122, CD62L, CD183(CXCR3), CD8a [5, 6]
CD4 T cells CD4 [7]
CD8 T cells CD8a, CD8b [7]
cDC1s Clec9a, Cd8a, Xcr1, CD11c [8, 9]
cDC2s Itgax, Cd4, CD11c [8, 9]
Cycling B/T cells Birc5, Top2a, Mki67 [10]
Erythrocytes Hbb-bs, Hbb-bt [11]
GD T cells Cd3e, Tcrg-c1, Tcrg-c2, Maf, Il17re [12]
ICOS-high Tregs Foxp3, CD4, ICOS [13, 14]
Ifit3-high B cells Ifit3, CD19
Ifit3-high CD4 T cells Ifit3, CD4
Ifit3-high CD8 T cells Ifit3, CD8a
Ly6-high monocytes Ly6c2, Fn1, F13a1 [15]
Ly6-low monocytes Cd36, Cd300e, Fabp4 [16]
Mature B cells IgD, CD23, CD19 [17]
Migratory DCs Slco5a1, Anxa3, Nudt17, Adcy6, Cacnb3 [18]
MZ B cells CD21, CD19 [17]
MZ/Marco-high macrophages Cd209b, Marco [19]
Neutrophils S100a8 [20]
NK cells NK-1.1, Gzma, Ncr1 [7, 21]
NKT cells NK-1.1, Cd3e, Ccl5, Klrd1 [7, 22]
pDCs Siglech, Irf8, Runx2, CD11c [8, 23, 24]
Plasma B cells Jchain [25]
Red-pulp macrophages F4-80, C1qa, C1qb, Hmox1, Vcam1 [26]
Transitional B cells CD93, CD24, CD19 [27, 28]
Tregs Foxp3, CD4, CD357(GITR) [29]

Supplementary Table 4: Annotated cell types and selected markers in the spleen and lymph node
datasets. cDC1: Conventional dendritic cell 1. cDC2: Conventional dendritic cell 2. GD: Gamma/delta.
MZ: Marginal zone. NK: Natural killer. NKT: Natural killer T. pDC: Plasmacytoid dendritic cell. Treg:
Regulatory CD4 T cell.
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Name RNA reads Protein reads RNA UMI Protein UMI

SLN111-D1 34,717 4,733 4,392 2,785
SLN111-D2 45,765 6,542 2,121 3,419
SLN208-D1 33,569 5,513 4,561 2,956
SLN208-D2 43,821 3,961 2,102 2,261

Supplementary Table 5: Sequencing statistics for spleen and lymph node datasets. Sequencing statistics
calculated per 10x lane by Cell Ranger. RNA reads: mean reads per cell from RNA. Protein reads: mean
reads per cell from antibody barcodes. RNA UMI: median UMI counts per cell from RNA. Protein UMI:
median UMI counts per cell from antibody barcodes.

Dataset No. cells Pct. Mito Protein Lib Size Range No. Genes Expr. RNA lib size

PBMCK10k 6,855 < 10% [400, 20,000] < 4,500 < 20,000
PBMC5k 3,994 < 20% [400, 20,000] < 4,500 < 20,000

MALT 6,838 < 15% [400, 20,000] < 5,000 < 30,000

Supplementary Table 6: Summary of filtering parameters for publicly available datasets. Ranges indicate
criteria for retained cells.
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Supplementary Figures

Supplementary Figure 1: totalVI decouples protein foreground and background. totalVI was applied
to the SLN111-D1 dataset. a-c, CD19 protein (encoded by Cd19 RNA). (a) totalVI foreground probability
vs log(protein counts + 1). Vertical line denotes protein foreground/background cutoff determined by a
GMM. Horizontal lines denote foreground probability of 0.2 and 0.8. Cells with foreground probability
greater than 0.8 or less than 0.2 are colored by quadrant, while the remaining cells are gray. (b) UMAP
plots of the totalVI latent space. Each quadrant contains cells from the corresponding quadrant of (a) in
color with the remaining cells in gray. (c) RNA expression (log library-size normalized; Methods) for cells
colored in (a). d, UMAP plots of the totalVI latent space colored by (log(counts + 1)) of cell type marker
proteins (Supplementary Table 4). e, totalVI foreground probability for all proteins across all cells in the
SLN111-D1 dataset.
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Supplementary Figure 2: UMAP embeddings of integration methods on spleen and lymph node data.
a-e, For each method, UMAP plots colored by dataset, and by log(counts+1) of key marker proteins (Sup-
plementary Table 4).
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Supplementary Figure 3: Benchmarking of integration methods on PBMC data. Integration methods
were applied to PBMC10k and PBMC5k. a-e, UMAP plots of integrated latent spaces. f, Latent mixing
metric, feature retention metric, and clustering metric for each method (Methods). g, Measurement mixing
metric applied individually to each batch-corrected feature (computed for n = 4000 genes and n = 14
proteins). Box plots indicate the median (center lines), interquartile range (hinges), whiskers at 1.5x in-
terquartile range. h, UMAP plot of integrated latent space from totalVI union mode when holding out the
proteins from PBMC5k. i, Root mean squared logarithmic error between imputed and observed proteins
from PBMC5k for totalVI and Seurat v3. cTP-net did not provide predictions for CD127, CD15, CD25,
PD-1, or TIGIT.
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Supplementary Figure 4: Differential expression using totalVI-wBG, which does not correct for the
protein background component. a Volcano plot for the ICOS-high Tregs vs CD4 T cells test. Putative
positives and negatives are highlighted (Methods). b The LFC estimates for totalVI and totalVI-wBG on the
CD4 T cells versus all others test.
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Supplementary Figure 5: Interferon signatures in the mouse spleen and lymph node. a, b, UMAP of
totalVI latent space for B cells of the SLN-all dataset (a) colored by the Hallmark Interferon Alpha Response
signature score and (b) colored by the Hallmark Interferon Gamma Response signature score (Methods). c,
d, Same as in (a, b), but for all cells in SLN-all.
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Supplementary Figure 6: totalVI probabilistic graphical model. Shaded nodes represent observed ran-
dom variables. Unshaded nodes represent latent variables. Edges denote conditional independence. Rectan-
gles (“plates”) represent independent replication.
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Supplementary Figure 7: Integration of SLN-all with union of panels. a-c, UMAP plot of SLN-all
colored by (a) cell types derived from manual annotation of model run with intersection of panels, (b)
tissue, and (c), dataset.
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Supplementary Figure 8: Evaluation of totalVI across choice of number of latent dimensions. a,
Posterior predictive check of coefficient of variation (CV) of genes and proteins. For totalVI with 5, 10,
20, and 100 latent dimensions, the average CV from posterior predictive samples was computed for each
feature. Violin plots summarize the distribution of CVs for genes and proteins. Mean absolute error (MAE)
between raw data CVs and average posterior predictive CV are reported. b, MAE between held out data and
posterior predictive mean separated by genes and proteins for each model and dataset. c, Calibration error of
held-out data reported separately for genes and proteins. d, Stability of estimate for background probability
for each cell and protein with respect to default parameters on PBMC10k dataset (n = 5 model runs for
each of the n = 14 proteins). e, Held-out marginal log likelihood on the PBMC10k dataset across latent
dimensions (n = 5 model runs). Box plots indicate the median (center line), interquartile range (hinges),
and whiskers at 1.5x interquartile range.
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Supplementary Figure 9: Feature autocorrelation across latent space representations. a, b, Geary’s
C calculated in three latent spaces for each feature across all cells in the SLN111-D1 dataset. p-values
indicate Wilcoxon rank sum test (two-sided). Box plots indicate the median (center line), interquartile range
(hinges), and whiskers at 1.5x interquartile range. (a), Geary’s C for each protein (log(protein counts + 1),
n = 110 proteins). In the RNA only vs protein only latent space comparison, p = 4e − 6. (b), Geary’s C
for each gene (log library-size normalized; n = 4005 genes). In the RNA only vs protein only comparison,
p = 2e− 8. For the totalVI joint latent space vs protein only comparison, p = 1e− 12. c, d, UMAP plots of
CD45 isoform expression in the PBMC10k dataset in the scVI (c) or totalVI (d) latent space. CD45RA and
CD45RO proteins are log(protein counts+1) and PTPRC RNA is log library-size normalized. e, Geary’s C
calculated for each protein (log(protein counts + 1), n = 14 proteins) in the totalVI and scVI latent spaces
depicted in (c, d). Box plots indicate the median (center line), interquartile range (hinges), and whiskers at
1.5x interquartile range.
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Supplementary Figure 10: Protein and RNA library sizes in the SLN111-D1 dataset. a, b, UMAP plots
of SLN111-D1 cells in the SLN-all latent space colored by (a) log(protein library size) and (b) log(RNA
library size). c, RNA library size vs protein library size (log scale) for each cell in the SLN111-D1 dataset.
d, Pearson correlation of RNA and protein library sizes (log scale) by cell type (n = 26 cell types) for each
cell type depicted in Fig. 4a excluding plasma B (two cells). Box plot indicates the median (center line),
interquartile range (hinges), and whiskers at 1.5x interquartile range. e-g, Protein (e) and RNA (f) library
sizes (log scale) for transitional and mature B cells in the SLN111-D1 dataset. (g) RNA library size (log
scale) of the genes encoding the top 10 differentially expressed protein markers of mature B cells relative
to transitional B cells. h, Protein library size in transitional and mature B cells separated by the top 10
differentially expressed markers of mature B cells and the remainder of proteins in the SLN111-D1 dataset.
Data are presented as mean values +/- SEM (n = 867 transitional B cells and n = 2, 733 mature B cells). i,
Geary’s C of library size computed per cluster in the SLN-all dataset compared across latent spaces. Left:
RNA library size in the RNA-only scVI latent space vs protein library size in the totalVI latent space. Right:
RNA library size in the totalVI latent space vs protein library size in the totalVI latent space.
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Supplementary Figure 11: Evaluation of totalVI across choice of protein likelihood. a, Posterior predic-
tive check of coefficient of variation (CV) of genes and proteins. For totalVI with Poisson, negative binomial
(NB), negative binomial mixture (NB Mixture), and negative binomial mixture with global background and
library size correction (Constant BG) protein likelihood, the average coefficient of variation from posterior
predictive samples was computed for each feature. Violin plots summarize the distribution of CVs for genes
and proteins. Mean absolute error (MAE) between raw data CVs and average posterior predictive CV are
reported. b, MAE between held out data and posterior predictive mean separated by genes and proteins for
each model and dataset. c, Calibration error of held-out data reported separately for genes and proteins.
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Supplementary Figure 12: Extended analysis of missing protein imputation. a, Distribution of observed
protein counts (blue), totalVI imputed protein counts (denoised, orange), and samples from the totalVI
imputed distribution (sampled, yellow). The random protein (observed, blue) is a simulated protein added
to SLN111-D1 in the imputation task. b, Evidence lower bound for SLN imputation task using default
parameters and updated (non-default) parameters across n = 30 trials. Significance was assessed with a two-
sided Welch’s t-test. Box plots indicate the median (center line), interquartile range (hinges), and whiskers at
1.5x interquartile range. c, totalVI imputation performance versus Seurat v3 imputation performance using
non-default totalVI parameters. totalVI performance per protein is presented as mean RMSLE with error
bars representing 95% confidence intervals of the mean estimate (n = 30 model initializations). Proteins
colored in black are not significantly different in performance, while those in red are significantly different
(two-sided Student’s t-test, BH-adjusted p-value < 0.05). Inset displays ratio in performance between totalVI
and Seurat v3. d, Reproduction of the UMAP in Figure 3f. e, Imputation performance (root mean squared
log error) for each protein using only cells annotated as low quality B versus those annotated as mature B
in SLN111-D2. f, totalVI imputation accuracy (Pearson correlation, log scale) versus number of expressed
cells, which was estimated using the totalVI foreground probability (πnt < 0.5). Points (proteins) are
colored by mean expression in expressing cells.
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Supplementary Figure 13: totalVI neural network architecture.
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Supplementary Figure 14: Evaluation of SLN-all fit with negative widely applicable posterior dis-
persion indices (nWAPDI). a, nWAPDI computed for each cell in SLN-all on UMAP projection of the
totalVI latent space. b, Distribution of nWAPDI for CD8 T cells, with decision boundary for cells marked
as low nWAPDI and high nWAPDI. c, Cd8a expression (raw UMI counts) for CD8 T cells with low and
high nWAPDI. d, RNA library size for same subpopulation split by low/high nWAPDI. e, Raw UMI counts
of CD8B protein expression using same subpopulation and split.
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Supplementary Note 1

On choosing the number of latent dimensions

The latent representation of a cell in totalVI, zn, is critical to many of the tasks performed in this
manuscript. Here we sought to understand the impact of the number of dimensions chosen for
zn on totalVI’s modeling capabilities. To do so, we ran totalVI with 5, 10, 20, and 100 latent
dimensions, and tested each model in our posterior predictive checking framework. For metrics
computed on the training data and held-out data, totalVI’s performance was fairly stable across this
choice of hyperparameter (Supplementary Figure 8a-c). We note that the denoising component of
totalVI also depends on zn, so we measured the stability of the protein background probability
estimate on the PBMC10k dataset across latent dimension choices and for five initializations each,
using the default parameters (20 latent dimensions) as a baseline. We again found this estimate to
be stable with respect to our default parameters (Supplementary Figure 8d). Finally, we measured
the held out marginal log likelihood of the PBMC10k dataset across latent dimension choices. The
marginal log likelihood improved for 100 dimensions, which could be due to increased capacity
(Supplementary Figure 8e). We note that the relationship between the marginal log likelihood and
all other downstream tasks is not well understood. While the marginal log likelihood on held-out
data can be used a heuristic for choosing the number of dimensions, it remains unclear in this
analysis what impact this will have on interpretation. This phenomenon of stability with respect to
the number of latent dimension has also been reported by others [30–32].

Overall, we recommend using the default choice of 20 latent dimensions, which sits between the
number used in the scVI [30] publication (10), and the number of principal components used in
standard pipelines like Scanpy (about 30), and was used to achieve state-of-the-art results through-
out this manuscript. Furthermore, the choice of 20 allowed us to interpret the totalVI latent space
with archetypal analysis. If the number of dimensions is much smaller than the number of cell
types, archetypal analysis may be more difficult.
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Supplementary Note 2

On combining RNA and protein information in a joint latent space

To further explore the latent representation of totalVI’s joint model and how it combines RNA and
protein information to define cell-cell similarities, we considered the autocorrelation of each fea-
ture as measured by Geary’s C [33]. We made comparisons to an RNA-only latent representation
produced by scVI [30] and to a protein-only latent representation produced by PCA (each with 20
latent dimensions). In the SLN111-D1 dataset, we found that totalVI increased the autocorrelation
(lower Geary’s C) of protein features relative to RNA only (p = 0.028, Wilcoxon rank sum test
(two-sided)) (Supplementary Figure 9a). Simultaneously, totalVI increased the autocorrelation of
RNA features relative to protein only (p< 0.001) (Supplementary Figure 9b). Notably, the auto-
correlation of RNA features in the totalVI latent space was not significantly different from that of
scVI (p = 0.102), implying that the joint latent space of totalVI does not sacrifice the richness of
information in the RNA data in order to incorporate protein information.

Combining RNA and protein information into a joint latent representation can be particularly ben-
eficial when the protein data includes isoforms not detectable by RNA sequencing that measures
transcript counts rather than full length molecules. For example, the CD45 isoforms CD45RA and
CD45RO are commonly used surface markers to distinguish naive from memory human T cells.
In an RNA-based analysis, it is possible to define a latent space based on RNA followed by the
annotation of cells with their protein isoform expression (Supplementary Figure 9c). However,
a joint analysis can make use of protein isoform expression along with transcriptome measure-
ments to define a latent space and cell-cell similarities (Supplementary Figure 9d). As expected,
totalVI’s joint model increases the autocorrelation of proteins relative to an RNA-only analysis
(Supplementary Figure 9e), indicating that totalVI incorporates isoform information into the latent
space.
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Supplementary Note 3

Protein considerations

Experimental considerations Sources of technical variation in CITE-seq experiments, particu-
larly protein background, are dependent on the experimental method itself. There are a number
of potential experimental sources of background. We primarily discussed ambient antibodies and
non-specific antibody binding. Another potential source of background could arise from oligonu-
cleotide barcodes that become dissociated from their conjugated antibody. Similarly to barcoded
antibodies, ambient oligonucleotide barcodes could contaminate cell-containing droplets or could
non-specifically bind to the cell surface. In this study, we do not distinguish between background
due to antibodies or background due to free oligonucleotide barcodes.

Although in our experiments we used the standard CITE-seq protocol, there are a number of pro-
tocol modifications that could change the amount of background. For instance, increasing the
number of washes after staining cells with antibodies could reduce ambient background. Alterna-
tively, a buffer modification could reduce the amount of non-specific binding. Both washing and
blocking are frequently considered in flow cytometry protocol designs. However, implementing
these protocol changes in an effort to eliminate background could come with trade-offs; reduc-
ing background by washing and blocking would likely reduce true signal by reducing total cell
numbers or blocking specific binding, respectively.

Another common experimental practice to modulate the amount of background is antibody titra-
tion, meaning that different antibodies are added to the experiment at different concentrations. At
the optimal titration, an antibody would have the maximal signal-to-noise ratio. This would re-
quire the antibody to be present at a sufficient concentration to specifically bind its target protein
and generate a detectable signal, but not at so high a concentration as to increase protein back-
ground by binding non-specifically or remaining at high concentration in the ambient solution. In
a CITE-seq experiment, it is possible that the recommended antibody concentration is too low to
detect foreground signal from a given protein. Finding the optimal concentration for each antibody
might be challenging, since the optimal concentration might be different for different cell types or
experimental systems. If titrations are modified per antibody, there are a few points to consider.
When antibodies are titrated at different concentrations, it becomes infeasible to quantify absolute
protein levels. For example, it would not be possible to determine if one protein was expressed at a
higher level than another protein. In addition, even if every protein in the cell were measured with
a theoretical unbiased antibody panel, the sum of all protein counts from a cell (referred to as the
protein library size) could not serve as a meaningful estimate of total protein molecules in a cell or
cell size because the relative amounts of each protein have been manipulated.

For proteins that are expressed at low levels or are only expressed in rare cell types, it might be
necessary to increase sequencing depth to increase the sensitivity to detect these molecules. In ad-
dition, sequencing depth could play a role in the ability of totalVI to decouple protein foreground
and background (i.e., with more counts, it might become easier to separate what appear to be over-
lapping foreground and background distributions). Determining the optimal sequencing depth for
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protein panels could be an important cost consideration in CITE-seq experiments, particularly as
the size of protein panels increases. Since in the CITE-seq protocol RNA and protein libraries are
prepared independently, future work could determine the value of these two molecules in various
downstream analysis tasks to make recommendations for sequencing depth for each library.

Because the barcoded antibodies used in this study came from clones that have been previously val-
idated, we were surprised to find that some common protein markers (e.g., IgM, CCR7) appeared
to have little or no signal. Aside from the consideration of titration and sequencing depth discussed
above, an additional explanation could be the uniform staining conditions for all antibodies in the
CITE-seq panel simultaneously. For example, the chemokine receptor CCR7 is a well-documented
marker in T cells and typically requires staining at higher temperature and for longer times than
other antibodies due to its constant cycling onto and off of the cell surface. For future CITE-seq
experiments, it might be worthwhile to consider the optimal staining conditions (e.g., time and
temperature) for each antibody independently rather than staining with all antibodies at once.

Modeling considerations Guided by the points raised above, we considered a variety of protein
likelihoods before settling on the version used in this manuscript. Among our considerations were
the interpretability of the parameters as well as how well the likelihood captured our view on the
CITE-seq protein data generating process.

In our modeling and analysis, we considered whether protein library size should be taken into
account. For example, we considered models that included a latent variable for the protein library
size (analogous to `n for RNA). Here, we discuss why protein library size does not convey the
same information as RNA library size and is thus not treated the same in the totalVI model.

In scRNA-seq data, we consider library size to be a nuisance factor that is reflective of a combina-
tion of sequencing depth and cell size. Although the number of RNA transcripts and the number
protein molecules both scale with the size of a cell [34], the unbiased sampling of the transcrip-
tome is much more likely to approximate the relative size of a cell than the sampling of a limited
selection of proteins on the cell surface. In CITE-seq experiments where only selected markers
are measured, there is no guarantee that the markers selected are representative of the total protein
content in the cell. For example, a cell with few detected protein counts might in reality express
other unmeasured proteins at higher levels, meaning this cell’s total counts reflect the selection
of markers rather than reflecting nuisance variation like sequencing depth or cell size. Therefore,
treating protein library size as a nuisance factor does not make sense in this context. Because mea-
sured proteins are biased in this manner, we do not assume that the protein data is compositional, as
is assumed by other methods that use a centered log ratio (CLR) transformation for normalization
per cell [35].

To further explore the effects of library size, we considered protein and RNA library sizes in the
SLN111-D1 dataset (Supplementary Fig. 10a-c). While RNA and protein library sizes (log scale)
were positively correlated (Pearson correlation of 0.54), this correlation varied widely by cell type
(Supplementary Fig. 10d). This observation suggested that within some cell types, protein library
size might approximate a cell’s relative size similarly to RNA library size. However, in other cell
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types, bias in the antibody panel results in total protein expression that reflects biological differ-
ences in the measured proteins rather than a global measurement of protein content. The difference
between RNA and protein library size can be observed when comparing transitional and mature B
cells, which have significantly different protein library sizes (Welch’s t-test, p < 0.01), but not sig-
nificantly different RNA library sizes (Welch’s t-test, p = 0.098) (Supplementary Fig. 10e-f). The
difference in protein library size between these cell types can largely be explained by differences
in expression of measured mature B cell markers: 74% of the mean difference in protein library
size is driven by the 10 most differentially expressed proteins in mature vs transitional B cells
(Methods), including known markers like IgD and CD23 (Supplementary Fig. 10g, h). Therefore,
normalizing each cell by its protein library size would remove biological differences and introduce
additional bias based on the selection of measured proteins. Finally, we considered how library
size is reflected in the latent space by calculating the autocorrelation of library size per cluster as
measured by Geary’s C [33]. The autocorrelation of protein library size in the totalVI latent space
was similar to the autocorrelation of RNA library size in either the RNA-only latent space com-
puted by scVI or in the totalVI latent space, both of which remove the effect of RNA library size
(Supplementary Fig. 10i). This finding further supported the notion that the totalVI latent space
was not unduly biased by protein library size. In the future, more unbiased protein panels might
necessitate further consideration of protein library size in CITE-seq data analysis.

We also considered whether RNA background should be addressed similarly to protein background
in our model. In addition to our observations that levels of background RNA were far lower than
protein background (Extended Data Fig. 3d-f), we considered estimates of UMI counts due to
background for RNA and protein. For RNA background, we refer to the DecontX method that
estimates and removes contamination of ambient RNA in scRNA-seq data [36]. According to
the DecontX study, in three scRNA-seq datasets of different tissues collected using the 10x v3
platform, the median percentage of RNA UMI counts estimated to be derived from ambient RNA
was 0.03% (brain), 0.12% (heart), and 0.56% (PBMC) [36]. For comparison, we estimated the
number of protein UMI counts that could be attributed to background in each cell by summing
all protein UMI counts with a foreground probability < 0.5 and dividing by the total protein UMI
counts. For the data reported in this study (also collected using the 10x v3 platform), the estimated
median percentage of protein background UMI counts across all cells in SLN-all was 12.71%.
By these estimates, RNA background UMI counts are low (<1%, approximately two orders of
magnitude lower than protein background UMI counts). We therefore chose not to explicitly model
RNA background in totalVI.

Additionally, we considered alternative models to decouple protein background. Initially, we at-
tempted to use simple likelihoods like Poisson or negative binomial, or models that assume every
cell receives the same distribution of protein background scaled by some cell-specific scalar. How-
ever, we found these models inadequate for decoupling the protein signal, which again suggests
that ambient antibodies can not fully explain the protein background, and that our proposed nega-
tive binomial mixture fits the data better (Supplementary Fig. 11).

The likelihood we used in this manuscript,

ynt | zn, βn, sn ∼ NegativeBinomialMixture(βnt, βntαnt, πnt), (1)
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also has some important downstream considerations. First, the mixture assumes that the observed
counts for a given cell n and protein t are generated from either the background component (with
probability πnt) or the foreground component (with probability 1 − πnt). Despite the fact that the
background mean parameter βnt appears in the foreground mean βntαnt, this likelihood does not
allow us to correct the foreground for possible background contamination. Here, the double usage
of βnt is to help identify the mixture model. In other words, we cannot “subtract the background”
from ynt that are determined to be in the foreground. Perhaps this limitation could be addressed
in future work, in which different latent variables are associated with local and global sources
of background; though this will require greater understanding of the experimental mechanisms
previously discussed.

As a final point, the negative binomial mixture we used in this manuscript may be less suitable
in the case where the dataset contains a homogeneous population of cells. This is due to there
being a lack of cells that would be considered background for the proteins. In this case, one can
either use the mean of the negative binomial mixture (without expected background subtraction) for
downstream analysis, or optionally use the negative binomial distribution as the protein likelihood
(an option in totalVI).
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Supplementary Note 4

On imputing missing proteins

In our analysis, we have shown that totalVI can accurately predict missing proteins, with improve-
ment over the predictions of Seurat v3. Here we further discuss the merits and limitations of
missing protein imputation.

We first sought to quantify any bias in totalVI’s protein imputation. As an illustrative example, we
simulated a protein as independently and identically distributed from a negative binomial distribu-
tion
(np.random.negative_binomial(10, 0.2).). We concatenated this protein to the others and
reran the imputation example used in Fig. 3 on our spleen and lymph node data (SLN111-D1 and
SLN111-D2 with no proteins). The default totalVI prediction is displayed as the orange histogram
in Figure 12a. As the totalVI denoised counts represent the expected value, we should expect that
if totalVI does not produce biased predictions that the values pileup around 40, the expected value
of the simulated negative binomial data (in blue). Because totalVI fits the full distribution, instead
of reporting the expectation, we can sample from it. From this sampling, we observed that the
samples closely matched the empirical distribution of the random protein. Taken together, in this
particular experiment, totalVI’s predictions have little bias, but the degree of noise in the proteins
sets a ceiling on the imputation performance of any algorithm.

We also sought to understand the impact of totalVI’s hyperparmeters on the imputation task.
Throughout the manuscript we used a set of default hyperparameters, so as the provide reasonable
defaults that would yield good performance across many tasks and datasets with distinct charac-
teristics. However, the task of protein imputation requires the model to not backpropagate certain
nodes in the network as well as to handle zeros for missing data; so, it is reasonable that another set
of hyperparameters could yield improved performance on this task. Guided by maximizing the ev-
idence lower bound, we found another set of hyperparameters that differed from the defaults only
in the number of hidden layers (two, relative the default one), and a reduction of the learning rate
from 4e-3 to 2e-3. We again performed the imputation task on the spleen and lymph node data
over 30 initializations. We found the evidence lower bound of the data to be significantly higher
with the non-default parameters (Welch’s t-test, p-value < 0.05; Supplementary Figure 12b). Fur-
thermore, we found 89 proteins to be significantly different in their root mean squared logarithmic
error to that of Seurat v3, 68 of which had better performance for totalVI (Supplementary Fig-
ure 12c). This is an improvement over the default parameters, though it is quite minor, indicating
that the task is somewhat robust to these choices.

Finally, we consider the usage of totalVI imputed proteins as proxies for real observed protein
measurements. In our analysis, totalVI had good imputation accuracy for many proteins. One
relevant consideration is the quality of the proteins in the reference dataset. Imputation perfor-
mance may suffer due to poor antibodies or lack of biological expression, and it will not always be
straightforward to understand which effect is being observed, especially as CITE-seq panels grow
to be more unbiased. Another consideration is the extent to which the reference and query datasets
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share underlying biology. totalVI relies on the assumption that a cell with no observed proteins
will have cells from the dataset with observed protein expression in its neighborhood in the latent
space. If a cell type is missing from the reference dataset that is observed in the query dataset, we
do not expect good imputation performance; though it may depend how biologically similar the
missing cell type is to the others in the reference dataset.

For example, the UMAP plot in Fig. 3f (reproduced here as Supplementary Figure 12d) revealed a
small subpopulation of cells from SLN111-D2 that did not integrate well with the cells of SLN111-
D1. Based on our annotations, these cells were overwhelmingly from a subpopulation of low
quality B cells (high mitochondrial content) that were enriched in the SLN111-D2 dataset relative
to the remaining spleen and lymph node datasets, explaining the lack of mixing. We compared the
imputation performance via correlation for these cells relative to a related population of mature B
cells, and found the performance tended to be similar in the low quality B cells (Supplementary
Figure 12e). However, this result may be due to the relative similarity of these low quality B cells
to the higher quality mature B cells, coupled with the fact that the RNA and not the protein data
were low quality. Generally, we believe that imputation performance will be better for those cells
that mix well with CITE-seq cells. The potential pitfall of poor imputation quality can be mitigated
by empirically quantifying the presence of CITE-seq cells in a cell’s neighborhood. While imputed
proteins can be used in downstream analysis to generate hypotheses, these predictions should be
validated experimentally before drawing concrete biological conclusions.

We also note that totalVI is capable of imputing the expression of proteins that are expressed in
rare cell types (Supplementary Figure 12f). Here we investigated the Pearson correlation as an
imputation performance metric, which allowed us to evaluate proteins on the same scale, as the
RMSLE depends on the range of expression values and mean of the protein. In Supplementary
Figure 12f, we can see that totalVI imputes Ly-6C well, which is expressed in smaller subpopula-
tions of CD8 T cells and monocytes. In contrast, IRF4 is a negative control protein (intracellular)
that was detected in very few cells (likely technical artifacts), explaining its low correlation.
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Supplementary Note 5

Integrating out latent variables

Here we show that if

w ∼ Gamma(θ, `ρ) (2)
x | w ∼ Poisson(w) (3)

then x ∼ NegativeBinomial(`ρ, θ). Note that we have dropped all subscripts and each variable
here is a scalar. While we parameterize the Gamma with its shape and mean, a more conventional
form is with its shape and rate, so w ∼ Gamma(θ, θ/(`ρ))

p(x) =

∫ ∞
0

p(x | w)p(w)dw (4)

=

∫ ∞
0

wxe−w

Γ(x+ 1)

(θ/(`ρ))θ

Γ(θ)
wθ−1e−θw/(`ρ)dw (5)

=
(θ/(`ρ))θ

Γ(x+ 1)Γ(θ)

∫ ∞
0

wx+θ−1e−(1+θ/(`ρ))wdw (6)

=
(θ/(`ρ))θ

Γ(x+ 1)Γ(θ)

Γ(x+ θ)

(1 + θ/(`ρ))x+θ
(7)

=
Γ(x+ θ)

Γ(x+ 1)Γ(θ)

(
θ/(`ρ)

1 + θ/(`ρ)

)θ (
1

1 + θ/(`ρ)

)x
(8)

=
Γ(x+ θ)

Γ(x+ 1)Γ(θ)

(
θ

`ρ+ θ

)θ (
`ρ

`ρ+ θ

)x
(9)

In the fourth line, we use the fact that the integrand is an unnormalized gamma distribution. The
final line is a negative binomial distribution with mean `ρ and inverse dispersion θ. Therefore, we
have a direct link between the parameters of the negative binomial and the underlying parameters
of the Poisson rate. Finally, we note that we could have written w ∼ Gamma(θ, ρ) and x | w ∼
Poisson(`w) and achieved the same result.
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Supplementary Note 6

totalVI implementation details

Evidence lower bound derivation Here we derive the Evidence Lower Bound (ELBO), which
is ultimately used in optimizing the model and variational parameters. For shorthand, we drop
subscripts and inference and generative parameters ν and η. The joint likelihood based on the
totalVI generative model for a single cell factorizes as

p(x, y, β, z, ` | s) = p(x | z, `, s)p(y | β, z, s)p(β | s)p(z)p(` | s). (10)

In the model specification, we use the latent variable z ∼ LogisticNormal(0, I). Here we use the
logistic normal definition of [37, 38], in which a normal random variable δ ∼ Normal(0, I) is
transformed by a softmax function, embedding the random variable in the simplex. Thus, z =
softmax(δ). However, the softmax function is not invertible, so for simplicity we consider the
underlying latent variable δ. In this setting, z, which is ultimately the input to the decoder, is
treated as a likelihood parameter. Therefore, we can rewrite the joint likelihood as

p(x, y, β, δ, ` | s) = p(x | δ, `, s)p(y | β, δ, s)p(β | s)p(δ)p(` | s). (11)

To perform variational inference, we define the variational posterior distribution as

q(β, δ, ` | x, y, s) = q(β | δ, s)q(δ | x, y, s)q(` | x, y, s). (12)

The ELBO is derived using Jensen’s inequality. We use the shorthand notation q(β, δ, `) =
q(β, δ, ` | x, y, s).

log p(x, y | s) = logEq(β,δ,`)
[
p(x, y, β, δ, ` | s)

q(β, δ, `)

]
(13)

≥Eq(β,δ,`)
[
log

p(x, y, β, δ, ` | s)
q(β, δ, `)

]
(14)

=Eq(β,δ,`) [log p(x, y | β, δ, `, s)] + Eq(β,δ,`)
[
log

p(β | s)p(δ)p(` | s)
q(β, δ, `)

]
(15)

=Eq(β,δ,`) [log p(x, y | β, δ, `, s)]− KL (q(`) ‖ p(` | s))− KL (q(δ) ‖ p(δ)) (16)
− Eq(δ) [KL (q(β) ‖ p(β | s))] (17)

To compute the KL divergences of lognormal random variables we note that the KL divergence is
invariant to invertible transformations, so the KL can be computed in closed form using the KL
between normal random variables. The log likelihood of a negative binomial mixture distribution
is computed using numerically stable functions in Pytorch (see below). The ELBO derived here
is amenable to the reparameterization trick used to train VAEs [39]. Estimates of the expectations
in the ELBO are taken via Monte Carlo and noisy gradients of the ELBO are used in a stochastic
optimization scheme. A sketch of the inference procedure for totalVI is in Algorithm 2.

148



Approximate posterior specification The approximate posterior distributions are specified by
neural networks. In particular, one neural network takes as input the triple (x, y, s) and outputs
the parameters of q(δ | x, y, s)q(` | x, y, s). An additional neural network maps (δ, s) to the mean
and variance parameters of q(β | z, s) through z. The variational distributions match their priors in
family (e.g., q(δ | x, y, s) is a Gaussian with diagonal covariance matrix). A posterior draw of z,
which we used as input to clustering and visualization algorithms, as well as used for archetypal
analysis is then obtained by

1. Draw δ from q(δ | x, y, s)

2. Set z = softmax(δ)

The mean of q(z | x, y, s) can be computed using Monte Carlo integration.

Neural networks The encoder neural network has one shared hidden layer of 256 nodes followed
by a layer of 512 nodes. The output of the 512 nodes are split in half and are used as input for
linear layers that parameterize q(δ | x, y, s) and q(` | x, y, s), respectively. The final encoder
neural network of one hidden layer and 256 hidden nodes takes as input (z, s) and outputs the
parameters of q(β | δ, s). The parameters of δ are 20-dimensional mean and variance parameters.
The decoder consists of three individual neural networks each with one hidden layer and 256 nodes.
The first maps to the parameters of the mean of the RNA likelihood (ρn). The second maps to the
foreground mean of the protein likelihood (αn). The third maps to the mixing parameter of the
protein likelihood mixture (πn). Each of these decoder networks takes as input (z, s). Furthermore,
(z, s) are reinjected at each hidden layer. All neural networks use batch normalization [40], dropout
regularization [41], and ReLU activations in hidden layers. The model parameters θ, φ, c, and d
are treated as global neural network parameters, optimized to maximize the ELBO. A schematic
of the architecture is in Supplementary Figure 13. We note that the architecture (fully-connected,
one to two hidden layers, ReLU activation, etc.) is similar to other VAE/autoencoder models used
for single-cell data including the scVI and DCA models [30, 31].

Hyperparameters The neural network architecture previously described was used throughout
this manuscript without modification. There are a number of other hyperparameters used to
train neural networks that we also held constant in all experiments. This includes the learning
rate of the optimizer (lr=4e-3), the size of the training test (90%), the KL warmup scheme
(0.75×NumCells minibatches, or 213 epochs with the fixed training set size of 90%), and the
number of training epochs (500 epochs). An early stopping scheme is performed with respect to
the 10% of cells in the test set. If there is no improvement of the held-out ELBO of the test set
with 30 epochs, the learning rate is multiplied by 0.6. If there is no improvement after 45 epochs,
the inference procedure is stopped.

Numerical considerations for the negative binomial mixture distribution For a single nega-
tive binomial mixture component, we use numerically stable functions provided by PyTorch (e.g.,
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Algorithm 2: Inference for totalVI
Initialize inverse dispersion parameters θ, φ, background parameters ct, dt and

encoder/decoder neural network parameters.
for iteration i = 1, 2, ..., do

Randomly choose M cells for mini-batch C
for each cell n in C do

Encode xn, yn, sn to obtain approximate posterior parameters
Sample zn, `n, βn from approximate posterior q(βn, δn, `n | xn, yn, sn)
Decode zn, sn to obtain likelihood parameters αn, πn, ρn
for each gene g do

Compute log p(xng | `n, zn, sn)
for each protein t do

Compute log p(ynt | βnt, zn, sn)

Update parameters using gradient of ELBO estimate

the log gamma function). For a mixture of negative binomials, we rewrite the distribution to use
numerically stable functions like logsumexp and softplus.

Let pb(y) = p(y | z, β, s, v = 1) be the probability mass function for the background and pf (y) =
p(y | z, β, s, v = 0) be the probability mass function for the foreground. Then by integrating over
v (recalling that v ∼ Bernoulli(π)),

log p(y | z, β, s) = log
(
πp(y | z, β, s, v = 1) + (1− π)p(y | z, β, s, v = 0)

)
. (18)

We now rewrite this in a form more amenable for optimization. We recall from Algorithm 1 that
π = hπ(z, s; Ω). Thus, with c(z, s) = logit(hπ(z, s)), then π = 1/(1 + exp(−c(z, s))). Also, let S
be the softplus function: x→ log(1 + ex).

log p(y | z, β, s) = log
(
πpb(y) + (1− π)pf (y)

)
(19)

= log
(
pf (y) + πpb(y)− πpf (y)

)
(20)

= log

(
pf (y) + pf (y)e−c(z,s)

1 + e−c(z,s)
+
pb(y)− pf (y)

1 + e−c(z,s)

)
(21)

= log
(
pb(y) + pf (y)e−c(z,s)

)
− log

(
1 + e−c(z,s)

)
(22)

= log
(
elog p

b(y) + elog p
f (y)e−c(z,s)

)
− log

(
1 + e−c(z,s)

)
(23)

= logsumexp
(
log pb(y), log pf (y)− c(z, s)

)
− S(−c(z, s)) (24)
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Supplementary Note 7

Posterior dispersion indices highlight model misfit

Here we describe how we used posterior dispersion indices to further evaluate the totalVI model
fit. In this analysis, we used the negative widely applicable dispersion index (nWAPDI) [42]. With
this metric, each cell gets a value describing the uncertainty of the likelihood of a particular cell
with respect to the latent variables. Higher values indicate that the model is failing to explain the
observed expression in a particular cell. The nWAPDI is computed for cell n as

nWAPDI(n) := −
σ2
log(n)

log µ(n)
, (25)

where the quantities

µ(n) = Eq(zn,βn,`n)[p(xn, yn | zn, βn, `n, sn)], (26)
σ2
log(n) = Vq(zn,βn,`n)[log p(xn, yn | zn, βn, `n, sn)], (27)

can be computed using samples from the approximate posterior (1000 samples for each cell). We
computed the nWAPDI for each cell in the SLN-all model fit (Supplementary Figure 14a). Next,
we looked at the distribution of nWAPDI scores inside a homogeneous cell type like CD8 T cells
and explored phenotypic differences between outliers and the remaining CD8 T cells. We found
that those cells with high nWAPDI tended to have a surprising zero UMI count frequency for
key cell type markers like the Cd8a gene and the CD8B protein, and it could not be explained
by a difference in library size (Supplementary Figure 14b-e). This indicates that totalVI may
not be explaining particularly surprising zeros well and could suggest the use of zero-inflated
distributions, though this remains future work.
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