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1  |  INTRODUC TION

Insular conditions are major drivers of population-level pheno-
typic differentiation (Meröndun et al., 2019; Phillimore et al., 2008; 
Runemark et al., 2014; Velo-Antón & Cordero-Rivera, 2017). In par-
ticular, island populations can experience rapid evolutionary changes 

in morphological traits due to founder effect and subsequent genetic 
drift (Alsos et al., 2015; Barton, 1996; Hedrick et al., 2001; Jordan 
& Snell, 2008; Santos de Souza et al., 2019; Sylvester et al., 1998; 
Velo-Antón et al.,  2012). As such, islands have long been consid-
ered natural testbeds for evolutionary questions (MacArthur & 
Wilson,  1963; Warren et al.,  2015), and have illuminated patterns 
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Abstract
Phenotypic divergence is an important consequence of restricted gene flow in insular 
populations. This divergence can be challenging to detect when it occurs through 
subtle shifts in morphological traits, particularly in traits with complex geometries, 
like insect wing venation. Here, we employed geometric morphometrics to assess the 
extent of variation in wing venation patterns across reproductively isolated popula-
tions of the social sweat bee, Halictus tripartitus. We examined wing morphology of 
specimens sampled from a reproductively isolated population of H. tripartitus on Santa 
Cruz Island (Channel Islands, Southern California). Our analysis revealed significant 
differentiation in wing venation in this island population relative to conspecific main-
land populations. We additionally found that this population-level variation was less 
pronounced than the species-level variation in wing venation among three sympatric 
congeners native to the region, Halictus tripartitus, Halictus ligatus, and Halictus farino-
sus. Together, these results provide evidence for subtle phenotypic divergence in an 
island bee population. More broadly, these results emphasize the utility and potential 
of wing morphometrics for large-scale assessment of insect population structure.
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of morphological variation, especially among birds and mammals 
(Cooper & Purvis, 2010; Grant, 1965; Millien, 2006). In contrast, trait 
variation in island populations of insects remains relatively unex-
plored, despite the prominence of these systems as ecologically im-
portant pollinators, pests, and invasive species (Fortuna et al., 2022; 
Hölldobler & Wilson, 1990; Klein et al., 2007; Traveset et al., 2013).

Beyond these taxonomic biases, our understanding of phe-
notypic variation across populations is biased toward traits that 
are easily distinguished or quantified by human observers, such as 
body size and coloration (Doucet et al., 2004; Kraemer et al., 2019; 
Lomolino, 1985; Palkovacs, 2003). In contrast, variation in traits that 
present measurement challenges, such as morphological traits with 
complex geometries, tends to be underexplored. One such trait is 
the pattern of venation in insect wings. Veins provide the primary 
structural support for wings, and while the functional significance 
of variation in venation patterns remains largely unclear (Combes & 
Daniel, 2003), they are highly conserved in insect lineages and thus 
are useful in phylogenetic reconstructions and taxonomic determi-
nations (Comstock & Needham, 1898; Sharkey & Roy, 2002). Indeed, 
many identifying characteristics in bee taxonomy are found in wing 
venation patterns, with characteristic variation distinguishing gen-
era and species (Michener, 1994).

Within a species, however, wing venation may present subtler 
patterns of variation that are undetectable via traditional obser-
vation methods. Geometric morphometrics, a set of methods that 
allows for spatial analysis of biological forms, has emerged as a prom-
ising approach to quantifying variation in complex morphological 
traits (Mitteroecker & Gunz, 2009; Rohlf & Marcus, 1993). This ap-
proach has been successfully implemented to discriminate patterns 
of insect wing venation among (Baylac et al., 2003; Deregnaucourt 
et al., 2021; Francoy et al., 2009, 2012; Kaba et al., 2017; Perrard 
et al., 2014; Rattanawannee et al., 2010, 2015; Santoso et al., 2018; 
Villemant et al., 2007) and even within species (Francisco et al., 2008; 
Francoy et al.,  2011, 2016). Geometric morphometrics, therefore, 
has potential to assess the extent of phenotypic divergence among 
discrete insect populations by quantifying variation in this highly 
conserved trait.

We examined trait variation among island and mainland native 
bee populations in a Southern California coastal ecoregion. Santa 
Cruz Island is a 249 km2 Pacific island located 32 km due south of 
mainland Santa Barbara, California. It is the largest of the California 
Channel Islands, an eight-island archipelago notable for its biodiver-
sity and endemic species and which has served as a site for many 
microevolutionary studies of island-mainland variation (O'Reilly & 
Horn, 2004). Santa Cruz Island shares many of its bee fauna with 
mainland Santa Barbara (Seltmann, 2019), but the distance sep-
arating these locations generally precludes gene flow between 
populations. Bees typically forage within a few kilometers of their 
nesting sites, and dispersal distances are generally well under the 
30 km water barrier separating Santa Cruz Island from the mainland 
(O'Reilly & Horn, 2004). Further, while stem- and wood-nesting bees 
have heightened island dispersal capabilities due to human transport 

of wood materials (Poulsen & Rasmussen,  2020), ground-nesting 
bees have limited opportunities for human-mediated island dis-
persal. Honey bees (Apis mellifera Linnaeus, 1758) were eradicated 
from the island by 2004 and have not been observed there since 
(Naughton et al., 2014; Seltmann et al., 2019; Wenner et al., 2009), 
suggesting that the channel is not easily crossed even by medium-
sized bees. As such, we are confident that gene flow between island 
and mainland bee populations in this context is minimal to nonex-
istent, increasing the likelihood of phenotypic divergence between 
populations.

In this study, we investigate variation in wing venation in is-
land and mainland populations of the sweat bee, Halictus tripartitus 
Cockerell, 1985. H. tripartitus is a widespread, ground-nesting social 
bee native to western North America and locally abundant both in 
mainland Santa Barbara and on Santa Cruz Island. We analyze mu-
seum specimens using a geometric morphometrics framework to 
assess the extent of variation in wing venation patterns between 
these two reproductively isolated populations. To contextualize the 
degree of variation, we additionally characterize variation in wing 
venation between H. tripartitus and two sympatric congeners, H. lig-
atus Say, 1837 and H. farinosus Smith, 1853. In doing so, we assess 
the role of reproductive isolation on population differentiation of 
morphological traits.

2  |  METHODS

2.1  |  Specimens and wing imaging

To assess population-level variation in wing venation patterns, we 
imaged wings from three Halictus species: H. tripartitus (nisland = 149; 
nmainland = 149), H. ligatus (nmainland = 43), and H. farinosus (nisland = 3; 
nmainland = 40; Figure  1). To achieve even sampling across species, 
we randomly selected 43 specimens of each species to analyze in 
our species-level comparison. We obtained bee specimens from 
the University of California, Santa Barbara Invertebrate Zoology 
Collection housed by the Cheadle Center for Biodiversity and 
Ecological Restoration. All specimens were female and were col-
lected between 1956 and 2020, with the majority of specimens 
collected recently (mean: 2018, median: 2019; Figure 2); (specimen 
catalog numbers available in Supplementary Materials). Species-
level identifications were confirmed by California native bee tax-
onomist Jaime Pawelek.

We removed left forewings from all specimens and imaged 
them with a stereo microscope digital camera along with a 1 mm 
scale slide (Dino-Lite AM3111T; DinoXcope software 2.0.1). The 
basal tip of some forewings were removed if they were heavily 
sclerotized and prevented the wings from lying flat. We plotted 9 
homologous wing venation landmarks (following Rattanawannee 
et al., 2015) onto each wing image using tpsDig software version 
2.31 (Rohlf, 2015; Figure 3). All analysis was conducted in R ver-
sion 4.2.2.

https://www.zotero.org/google-docs/?nU6aPZ
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2.2  |  Data analysis

We Procrustes-aligned landmark coordinates using R package “geo-
morph” version 4.0.0 (Adams et al., 2022; Baken et al., 2021). To test 
for statistical differences between the two H. tripartitus populations 
and among the three species, we ran one-way multivariate analy-
sis of variance (MANOVA) tests using R package “RRPP” version 
1.3.1 (Collyer & Adams, 2018, 2019). To visualize separation among 
groups, we generated density plots with discriminant analysis of 
principal components (DAPC) using R package “adegenet” version 
2.1.10 (Jombart, 2008; Jombart & Ahmed, 2011). To test the accu-
racy of using wing landmarks to predict an unknown bee's species or 
population, we utilized DAPC cross-validation. Cross-validation also 

informed the number of principal components (PCs) retained in each 
analysis (Jombart & Collins, 2015).

3  |  RESULTS

Our analysis of wing landmark coordinates successfully discrimi-
nated between wings of H. tripartitus, H. ligatus, and H. farinosus 
(MANOVA: Pillai = 1.817, p < .001); (full MANOVA tables in Table 1; 
landmark coordinates in Table S1). Based on cross-validation, 6 PCs 
were retained, and the density plot shows separation between spe-
cies (Figure 4a). The cross-validation test assigned 100% of Halictus 
specimens to their correct species (Figure S1a).

Population-level discrimination was also successful. The two 
populations of H. tripartitus differed significantly in wing landmark 
coordinates (MANOVA: Pillai = 0.425, p < .001; Table  1). Based on 
cross-validation, 13 PCs were retained. The density plot shows some 
separation between populations, with overlap (Figure 4b). The cross-
validation test assigned 80.7% of H. tripartitus specimens to their 
correct population (Figure  S1b). This analysis accurately identified 
the two subgroups (populations) of H. tripartitus, although with a 
lower degree of separation (MANOVA, DAPC) and accuracy (cross-
validation) than for the three congeneric Halictus species.

4  |  DISCUSSION

We employed a geometric morphometrics framework to demon-
strate strong differentiation in wing venation geometries across 
three sympatric species of Halictus bees, as well as significant 
(though less pronounced) differentiation across island and mainland 
populations of H. tripartitus. Species-level variation in wing venation 
is well established for many bee taxa, serving as useful characters 
for identification to family, genus, or species levels (Michener, 1994). 
Several studies have even successfully discriminated between dis-
tinct insect subspecies or genetic lineages within species using wing 
morphometrics (Akahira & Sakagami,  1959; Carneiro et al.,  2019; 
Francoy et al.,  2008, 2011). Fewer studies, however, have in-
vestigated population-level variation in wing venation (Francoy 
et al., 2011; Rossa et al., 2016). This variation in wing morphology 
can serve as a useful proxy for assessing the extent of divergence 
between closely related populations (Oleksa & Tofilski, 2015; Peil & 
Aranda, 2021). More broadly, these results provide robust evidence 
for microevolutionary change in wing morphology across reproduc-
tively isolated bee populations.

As for many island bee populations, it is unknown how and 
when this population of H. tripartitus colonized Santa Cruz Island. 
Island dispersal by bees is generally poorly understood, though 
phylogenetic analyses and behavioral studies can offer clues to 
potential avenues for colonization events. On Santa Cruz Island, 
colonization by many bee species could have occurred during the 
Last Glacial Maximum (17,000–18,000 years ago), when lowered 
sea levels reduced the distance from the mainland to about 6 km 

F I G U R E  1 Lateral images of female Halictus tripartitus (top; 
UCSB-IZC00040597), H. ligatus (middle; UCSB-IZC00044094), 
and H. farinosus (bottom; UCSB-IZC00042935) specimens. Images 
produced by Luz Ceja.
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(Miller, 1985). Gene flow across the channel may have continued 
for an unknown period, depending primarily on the distance of 
the water barrier and the dispersal capabilities of H. tripartitus. 
Dispersal timing aside, it is evident from our results that the Santa 
Cruz Island population has diverged morphologically from the 
mainland population. The unique selective environment of the 
island (i.e., including climatic and ecological differences from the 
mainland) may contribute to this population divergence, in addi-
tion to founder effect and genetic drift. Future sampling across 

the entire Channel Island archipelago could shed light on histori-
cal patterns of dispersal and population divergence, inferred from 
patterns of differentiation in wing landmark geometries. Finally, 
comparisons to other populations across the considerable geo-
graphic range of H. tripartitus would provide interesting context 
for assessing the relative magnitude of phenotypic divergence in 
the Santa Cruz Island population.

These results highlight the utility of geometric morphometrics 
for quantifying complex patterns of phenotypic variation that elude 

F I G U R E  2 Map of sampling sites (red dots) on Santa Cruz Island and mainland Santa Barbara County and Ventura County. Inset map 
shows sampling region within California. Halictus ligatus was collected only on the mainland. H. tripartitus and H. farinosus were collected 
both on the mainland and on Santa Cruz Island.

F I G U R E  3 Landmarked images of Halictus forewings, including: (a) Halictus tripartitus from the mainland (UCSB-IZC00042220), (b) 
H. tripartitus from Santa Cruz Island (UCSB-IZC00040420), (c) H. ligatus (UCSB-IZC00039120; mainland), and (d) H. farinosus (UCSB-
IZC00036955; Santa Cruz Island).
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observation via simple measurement techniques. The application of 
geometric morphometrics to insect wing venation patterns is still a 
relatively recent development, but already has shown promise for 
species identifications (Aytekin et al.,  2007; Francoy et al.,  2009; 
Rattanawannee et al., 2010). Our accurate discrimination between 
three Halictus species likewise supports a role for geometric mor-
phometrics in taxonomic identification to the species level. Further, 
geometric wing morphometrics may be useful for distinguishing 
among populations (Henriques et al., 2020; Rossa et al., 2016) and 
between species within complexes (Francoy et al., 2011). Identifying 
features of wing venation have even been successfully integrated 
into computer-aided identification systems, which can accurately 
identify bee specimens to species and even subspecies from images 
of wings (Buschbacher et al.,  2020; Rattanawannee et al.,  2012). 
Our results indicate that population variation in wing venation can 
be successfully discriminated using geometric morphometrics, and 
suggest that these patterns could be usefully extended toward au-
tomated identification systems with the aim of further classifying 
specimens to the population level.

Beyond its use in population identification, wing morphometry 
holds valuable potential for large-scale population studies, by pro-
viding a tractable alternative to more costly and time-consuming 
molecular methods for analyzing population structure. Unlike some 
morphological traits that can degrade over time, wing venation is 
strongly preserved in museum specimens, presenting opportu-
nities for sampling of existing specimens in place of conducting 
new surveys. Wings represent powerful candidates for geometric 
morphometric analysis because their two-dimensional surfaces 

lend themselves to straightforward imaging, in contrast to three-
dimensional traits that require additional protocols to standardize 
orientation within images. Future studies seeking to identify bees to 
species or population level may find this methodology viable and po-
tentially more adaptable than traditional taxonomic identifications 
using dichotomous keys. In particular, we envision that wing mor-
phometrics could increase the feasibility of large-scale monitoring 
projects by reducing taxonomic labor (Engel et al., 2021).

In conclusion, we demonstrated species- and population-level 
variation in Halictus wing venation. Our results provide evidence 
for the divergence of wing venation patterns in isolated island and 
mainland populations of H. tripartitus. Our study emphasizes that 
wing venation patterns can act as quantifiable indicators of pheno-
typic differentiation within species, and may be useful for inferring 
the extent of variation among reproductively isolated populations. 
Morphological population signatures such as these hold enormous 
potential for enabling broader assessments of evolutionary change 
across insect populations over time, over geographic space, or with 
climatic variables.
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