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Managing Uncertainty in Rule-based Reasoning

Thomas R. Shultz, Philip David Zelazo, and Daniel J. Engelberg
Department of Psychology
McGill University

ABSTRACT

There are two major problems associated with propagation of uncertainty in the rule-based
modeling of human reasoning. One concerns how the possibly uncertain evidence in a rule's
antecedents affects the rule's conclusion. The other concerns the issue of combining evidence
across rules having the same conclusion. Two experiments were conducted in which psychological
data were compared with a variety of mathematical models for managing uncertainty. Results of an
experiment on the first problem suggested that the certainty of the antecedents in a production rule
can be summarized by the maximum of disjunctively connected antecedents and the minimum of
conjunctively connected antecedents (rmaximin summarizing), and that the maximum certainty of
the rule's conclusion can be scaled down by multiplication with the results of that summary
(multiplication scaling). A second experiment suggested that the second problem can be solved
with Heckerman's modified certainty factor model which sums the certainties contributed by each
of two rules and divides by 1 plus their product.

INTRODUCTION

Rule-based systems have proven to be among the most successful techniques for the computational
modeling of human reasoning. They are able to model human procedural knowledge in a
convenient, homogeneous, modular fashion that is consistent with a great deal of psychological
evidence. Some of the newer production systems have the capacity to learn or modify their own
rules (Klahr, Langley, & Neches, 1987). Many of the artificially intelligent expert systems are also
built on a rule-based architecture (Buchanan & Shortliffe, 1984).

Curiously, several of the rule-based expert systems, but very few of the rule-based human
simulations, employ techniques for representing and propagating uncertainty. Although it is widely
acknowledged that much of human knowledge is uncertain, it is in the field of artificial intelligence
that the debate about how to represent and manage uncertainty in rule-based reasoning has been
focused (Kanal & Lemmer, 1986; Hink & Woods, 1987).

The problem of uncertainty in rule-based architectures can be broken into two sub-problems. One
concerns how the possibly uncertain evidence in a rule's antecedents affects the rule's conclusion.
Consider the general case of a production rule with i antecedents and j conclusions.

IF antecedent
antecedent)

éntecedenti
THEN conclusion] (maxcf])

;:onclusionj (maxcfj)

Antecedents and conclusions would typically be represented as propositions, perhaps using a
predicate-argument structure. Each of the rule's j conclusions would typically be qualified by a
numerically represented maximum certainty factor (maxcy). If the evidence contained in the rule's
antecedents is believed with perfect certainty, then each conclusionj would be drawn with its
maxcfj. However, in the general case, the evidence in each of the rule's antecedents would be
believed with varying degrees of certainty. How should the uncertainty of antecedent evidence be
summarized? And how should this summarized antecedent certainty affect the maxcf of each
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conclusion? Slightly complicating the first question is the fact that the antecedents could be
connected either conjunctively or disjunctively. With conjunctive connectives, all of the antecedents
must hold in order for the rule to fire. For disjunctive connectives, satisfaction of only a single
antecedent could enable the rule to fire.

The other uncertainty sub-problem in rule-based systems concerns the issue of combining evidence
across different rules with the same conclusion. Imagine that particular conclusions exist in more
than one rule. As rules fire, their conclusions come to be believed with varying degrees of
certainty, as outlined above. How should these uncertainties be combined in cases where a
previously fired rule has overlapping conclusions with a newly fired rule? This is not a problem in
deterministic production systems that do not handle uncertainty since they typically avoid drawing
the same conclusion more than once. However, it is a problem in any production system that
attempts to propagate uncertainty as its rules fire.

Solution of these two sub-problems is critical for rule-based efforts to model human cognition.
Algorithms implementing a solution to each sub-problem are typically invoked every time a rule
fires. If these algorithms lack psychological validity, simulation errors will tend to accumulate and
be compounded as rules fire.

EXPERIMENT 1: PROPAGATING UNCERTAINTY WITHIN A SINGLE RULE

The purpose of this experiment was to test several different plausible models for combining
antecedent uncertainties to create a summary antecedent cf and two models for scaling down the
conclusion's maxcf by the summary antecedent cf.

The summary antecedent cf could be computed as the (a) minimum of the antecedent cfs, (b)
maximum of the antecedent cfs, (c) product of the antecedent cfs, (d) sum of the antecedent cfs
minus the overlap among them, (e) mean of the antecedent cfs, or (f) median of the antecedent cfs.
The first four models derive from insights or assumptions in probability calculus. The last two
models represent guesses about what ordinary humans might do. The minimum and product
models would be most appropriate for conjunctively connected antecedents; the maximium and
sum-overlap models for disjunctively connected antecedents.

Barclay and Beach (1972) reported psychological support for the product model with conjunctive
connectives and for the swm-overlap model with disjunctive connectives. Wyer (1976) also found
support for the swn-overlap model with disjunctive connectives. But with conjunctive connectives,
Wyer reported that an averaging together of the results of the product and mean models was most
successful in accounting for his data.

Two hybrid models for summarizing antecedent uncertainty were also tested. The maximin model
is a combination of the maximum and minimum models. It uses the maximum of disjunctively
connected antecedent cfs and the minimum of conjunctively connected antecedent cfs. Maximin is
easy to compute and sensitive to the distinction between conjunctive and disjunctive connections.

It makes some sense to use the minimum of conjunctively connected antecedent cfs since all of the
antecedents need to be satisfied in order for the rule to fire. The weakest link in this evidential chain
is that condition with the smallest cf. Similarly, it makes sense to use the maximum of disjunctively
connected antecedent cfs since satisfaction of any one of them can qualify the rule for firing. The
strongest of this evidential set is the antecedent with the highest cf. The other hybrid model, here
termed the probabilistic model, combines the product and sum-overlap models. It computes the
product of conjunctively connected antecedents and the sum-overlap of disjunctively connected
antecedents.

Scaling down the maxcf in the conclusion by the summary antecedent cf could be done by
multiplication, or averaging (mean). Multiplication is commonly used for scaling in production
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systems (Shortliffe, 1976; van Melle, Scott, Bennett, & Peairs, 1981). Averaging would be

mathematically unsophisticated, but is still a possibility for ordinary humans faced with the task of
combining two numerical estimates (Wyer, 1976).

Method

Our subjects learned a rule in which antecedent cfs were assigned and then were asked first about
the certainty of the rule's antecedents being satisfied, and second about the certainty of the rule's
conclusion. The first set of ratings were correlated with those generated by each of the 8
summarization models above. Then the second set of ratings was correlated with those generated
by the two scaling models combined with the best of the summarization models and with the
subject's own summarization rating.

A sample item was:
If event A, or event B, or event C happens, then event D is highly certain to happen.
Event A is highly certain to happen.
Event B is moderately certain to happen.
Event C slightly certain to happen.

With this item, subjects were asked to rate the certainty of their belief that one or more of events A,
B, and C will happen, and that event D will happen. Across the items, there was systematic
variation in the connective (conjunctive or disjunctive), the certainty of both antecedents and
conclusions, and the sign of the conclusion (positive or negative) so as to permit a robust test of
the models. For conjunctive connectives, subjects were asked to rate the certainty that events A, B,
and C will all happen. Additional items were presented at the end of each questionnaire in order to
calibrate the subject's use of the certainty descriptors employed in the previous rule items.

Results

Because different subjects may interpret the certainty expressions differently, responses to the
calibration questions were used to establish where on the rating scale each subject viewed the
adjectives completely-, highly-, moderately-, and slightly certain, and uncertain. These calibrated
values were then used to generate model predictions for each subject. Responses to the rule items
were converted to cfs.

The first major problem for the results is to identify the best model for summarizing the uncertainty
of the antecedent evidence. Predictions for the eight above models on each of the rule items were
generated using each subject's calibrated scores. Then the predicted ratings for each of the eight
models were correlated with the subject's actual ratings.

The resulting correlation coefficients were subjected to an analysis of variance. The mean
correlation coefficients for the various models in descending order were maximin .728,
probabilistic 706, maximum .322, sum-overlap .319, mean .288, median .276, product .170, and
minimum .129. The two hybrid models that distinguished conjunctive from disjunctive connectives
(maximin and probabilistic) performed significantly better than any of the other models.

Visual examination of the predicted ratings for these two best models indicated that the probabilistic
model generated ratings that were too extreme for most subjects. To test this systematically, the
variances of the predictions of the maximin and probabilistic models and those of the subject's
actual ratings were subjected to an analysis of variance in which the sole factor was the source of
the variances. The mean variances were probabilistic .166, maximin 091, and actual 073. Each of
these was significantly different from the other, but the actual variances were much more closely
approximated by the maximin model than by the probabilistic model.
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Visual examination of the data also suggested that there were substantial differences between
subjects in the size but not the pattern of correlations with models. Analysis of variance of the
model correlations, with subject as the repeated-measures independent factor, yielded a main effect
for subject. Mean correlations for subjects ranged from .04 to .64. The model correlations were
also converted to ranks within each subject, and analyzed for concordance, revealing considerable
agreement among subjects in the pattern of their correlations with models.

The next major task for the Results was to determine the best model for scaling down the certainty
of the conclusion by the summarized antecedent certainty. The summarized antecedent certainties
were computed for the two best summarizing models: maximin and probabilistic. The subject's
actual summarized ratings were also used, and this was termed the pure model since it permitted a
purer test of the scaling model, uncontaminated by the summarizing model. Predicted certainties of
the rule's final conclusions were generated for each of these summarized sources by both the
multiplication and mean scaling models. Then each of these six model based predictions was
correlated with the subject's actual certainty conclusions across the rule items.

The resulting correlation coefficients were subjected to an analysis of variance in which the
repeated measures were summarizing model (maximin, probabilistic, and pure), and scaling model
(multiplication and mean). The mean correlation coefficients for models using the superior
multiplication scaling were .702 pure, .634 maximin, and .626 probabilistic.

Discussion

The results of this experiment clearly suggest that the best way to summarize antecedent evidence is
by taking the maximum of disjunctively connected antecedent certainties and the minimum of
conjunctively connected antecedent certainties (the maximin model). The probabilistic model also
correlated well with subject data, but the fact that the maximin model predicted the absolute values
of the subject ratings so much better recommends this model over the probabilistic model. Maximin
also has the advantage of being easy for subjects to compute regardless of the number of rule
antecedents. The better of the two tested scaling methods was mudtiplication. Thus, a good
technique for propagating uncertainty within a production rule would summarize the uncertainty of
the antecedent evidence using maximin, and then scale down the maxcf in the conclusion by
multiplying the maxcf by the result of maximin.

EXPERIMENT 2: COMBINING UNCERTAINTY ACROSS RULES WITH THE SAME CONCLUSION

The problem of combining evidence across rules with the same conclusion has been the focus of a
good deal of research in artificial intelligence. A major distinction among the various approaches is
between those that use numeric vs. non-numeric approaches. Non-numeric approaches (e.g., P.
R. Cohen, 1985; Kuipers, Moskowitz, & Kassirer, 1988) have not yet successfully dealt with the
issue of combining conflicting evidence. Numeric approaches use techniques such as certainty
factors, Bayes' theorem, fuzzy logic (Zadeh, 1979), and Dempster-Shafer theory. The Bayesian
and fuzzy logic approaches have the difficulty of requiring knowledge that people rarely possess.
The Dempster-Shafer technique bears some similarities to certainty factors (Gordon & Shortliffe,
1984), which is the method emphasized here.

The certainty factor approach derives from the MYCIN (Shortliffe, 1976) and EMYCIN (van Melle
et al., 1981) programs. In the simplest case, where both rules support the same conclusion, the
certainty factor approach specifies that a prior cf (cfp) is updated (cfu) by new evidence (cfn) by
adding the new evidence to old after first scaling down the new evidence by the amount it could
benefit the old evidence

cfy = cfp + [cfp * (1 - cfp)] (D
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The scaling down serves to keep the revised cf within the bounds -1 to +1. Interestingly, this
reduces to the sum of the two cfs minus their product

cfy = cfp + cfy, - (cfp * cfph) )
Note that (2) is simply the sum-overlap rule for combining probabilities with no assumptions about
their correlation . (1) and (2) apply only when both cfs are positive. Where both cfs are negative,
one takes the negative of (2) with negated cf arguments

cfu= cfp + cfn + (cfp * cfn) (3)
Taken together, (2) and (3) describe the certainty factor approach to combining confirming
evidence. For disconfirming evidence, that is, when only one of the cfs is negative, the function
becomes

cfy= (cfp+cfn) /(1 - min (|cfpl, [cfnl)) 4)

The rationale for the unusual divisor in this third case is that a single new piece of disconfirming
evidence should not be allowed to overpower the accumulated evidence produced by possibly a
large number of rules (Buchanan & Shortliffe, 1984). The cf approach described in (2) - (4) shall
be referred to here as the classic ¢f approach.

Heckerman (1986) demonstrated that there is an unlimited number of probabilistic interpretations
of cfs, all of which are monotonic transformations of the likelihood ratio. In addition to the
standard cf formulation, revealed in (2) - (4), Heckerman proposed an alternate, simplified version

cfy = (cfp + cfp) / [1+ (cfp * cfp)] (5)
Heckerman showed that both (5) and (2) - (4) are valid probabilistic interpretations of cfs, under
the assumptions that the evidence provided by the rules is conditionally independent and that the
rule base forms a tree structure. The consequences of violating these two assumptions are
unknown. Grosof (1986) showed that (5) is equivalent to a special case of Dempster-Shafer
theory. The cf approach in (5) shall here be referred to as the modified cf approach.

The classic and modified cf approaches were contrasted with three mathematically unsophisticated
models that we thought ordinary reasoners might employ. The unsophisticated models computed
the mean, maximum, or minimum of the two certainties.

Method

Subjects learned two production rules with the same conclusion, were given antecedent cfs for the
two rules, and were then asked to indicate how strongly they believed the conclusion proposition.
Subject data were correlated with those generated by the five combining models. In a partial
replication of the results of Experiment 1, the maxcf of each rule could be scaled by the antecedent
certainty using either multiplication or averaging (mean). These two scaling models were crossed
with the five combining models to produce 10 tested models.

A sample item was:
Events A and B are independent sources of evidence for event C.
If event A happens, then event C is moderately certain to happen.
If event B happens, then event C is moderately certain not to happen.
Event A is highly certain to happen.
Event B is slightly certain to happen.

Subjects were asked to combine this evidence to rate the certainty of their belief that event C will
happen. As in Experiment 1, there was systematic variation in the certainty of antecedents and the
positivity-negativity of the conclusions so as to permit a robust test of the models. The last few
items of each questionnaire were used to calibrate the subject's use of the certainty descriptors.

Results
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Predictions were generated for each of the 10 models using each subject's calibrated scores. These
predictions were then correlated with the actual certainty conclusions given by each subject.
Correlations were subjected to analysis of variance. The mean correlation coefficients were
significantly higher for multiplication scaling than for mean scaling for every combining model
except the maximum model. Description of differences among the combining models will be
limited to those using the superior multiplication scaling. The mean (.835), classic ¢f (.858), and
modified cf (.848) combining models yielded significantly higher correlations than did the
maximum (.694) and minimum (.723) combining models, but did not differ from each other.

In order to draw a clearer distinction between the two cf and the mean combining models, their
absolute predictions were contrasted with the actual absolute certainty scores. The insight that led
to this comparison was that the cf techniques always raise the updated cf, and the mean technique
always lowers the updated cf, relative to the higher of two original cfs. Thus, the cf combining
models produce higher absolute predictions than does the mean combining model. An analysis of
variance of these absolute predicted and actual scores was undertaken in which the sole within
subjects factor was source of the absolute scores. The mean absolute scores were .378 actual, .362
classic ¢f model, .380 modified cf model, and .189 mean model. The acrual and cf models scores
did not differ significantly from each other, but did significantly exceed those generated by the
mean model.

As in Experiment 1, individual differences were confined to the size rather than to the pattern of
correlations with models. Analysis of variance of the model correlations, with subject as the
repeated-measures independent factor, yielded a main effect for subject. Mean correlations for
subjects ranged from .49 to .86. The model correlations were also converted to ranks within each
subject and analyzed for concordance, verifying that there was considerable agreement among
subjects in the pattern of their correlations with models.

Discussion

Confirming the results of the previous experiment, the present data indicated strong support for
scaling the maxcf in a conclusion by multiplication with the antecedent cf, as opposed to taking the
mean of the two values. The main result of this experiment was the finding that the two c¢f models
were the most effective in combining certainties across two production rules. The principal way in
which the cf models were superior to the mean model was in matching the absolute values of
subjects' certainty ratings. Since the two cf models are both monotonic transformations of the same
likelihood ratio, it is not surprising that they produce highly similar results. We have a slight
preference for the modified c¢f model (5) since it presents a simpler, more unified formula than does
the tri-partite classic ¢f model [(2), (3), (4)].

GENERAL DISCUSSION

The results of these two experiments suggest that a modified cf approach produces a good fit to the
certainty judgments of ordinary reasoners. Our cf approach summarizes the certainty of antecedent
evidence in a production rule by taking the maximum of disjunctively connected antecedents and
the minimum of conjunctively connected antecedents (maximin model). It scales down the maxcf in
the rule's conclusion by multiplying with the summary antecedent cf (multiplication model). And it
combines certainty evidence across production rules with the same conclusion by dividing the sum
of the certainties by 1 plus their product (modified c¢f model).

Previously, the only reported psychological support for a cf approach was provided by the
anecdotal testimony of a single expert diagnostician (Shortliffe, 1976). The present data show that
the cf approach, when modified to allow for rules with disjunctively connected antecedents, has
considerable validity in accounting for the reasoning of ordinary people. The MYCIN (Shortliffe,
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1976) and EMYCIN (van Melle et al., 1981) programs that pioneered the use of cfs did not
apparently allow disjunctively connected antecedents (except within a conjunct). The assumption
was that disjunction could be handled by having multiple rules with the same conclusion. Our
approach differs in allowing both disjunctive antecedents within a rule as well as multiple rules
with the same conclusion.

The decision about whether to use multiple rules vs. disjunction within a rule can be governed in
part by considering the corresponding differences in updating of certainties. Representation of a
packet of procedural knowledge in a single rule with disjunctive antecedents specifies that the
certainty of the antecedent evidence should be summarized by the maximum of the antecedent cfs.
Representation in multiple rules specifies that the updating of certainties across these antecedents
should be done using the modified cf procedure. The former assumes maximal correlation among
the antecedents and implies that cfs of the other antecedents should not increment the maximum cf,
whereas the latter assumes conditional independence among the antecedents and implies that cfs
from other antecedents (in other rules) may increment the cfs concluded earlier. These
considerations can give rule writers, whether cognitive modelers or artificial intelligence
programmers, greater expressive power.

Some of the evidence from Experiment 1 suggests that researchers in probabilistic reasoning ought
to consider the absolute values predicted by probabilistic models as well as their ability to correlate
with human judgments. In particular, the maximin model proved superior to the probabilistic
model in matching absolute values in human data. Use of the maximin model could account for the
often reported tendency of ordinary reasoners to overestimate the probability of conjunctive events
and underestimate the probability of disjunctive events (Barclay & Beach, 1972; Bar-Hillel, 1973;
J. Cohen, Chesnick, & Haran, 1972; J. Cohen & Hansell, 1957; Howell, 1972; Slovic, 1969).
The minimum will invariably be higher than the product, and the maximum lower than the sum-
overlap. Previous explanations of these estimation errors have emphasized the adjustment and
anchoring heuristic (Hink & Woods, 1987; Tversky and Kahneman, 1974). In that heuristic
account, a person might use the certainty of an elementary event as anchor and then insufficiently
adjust the certainty for the compound event upward in the case of disjunction and downward in the
case of conjunction. But without specifying the degree of adjustment, the adjustment and
anchoring model does not generate sufficiently specific predictions to compare with the maximin
model.

A limitation of the present studies is that they are restricted to reasoning with abstract, de-
contextualized material. Future research will be necessary to extend the present findings to more
realistic items. As that happens, theoretical ideas about the impact of context on reasoning under
uncertainty can be developed and contextual results can be compared to the those generated in the
present, abstract situation.

The results of both experiments indicated that there were individual differences in models for
managing uncertainty. These differences did not appear to reflect the use of different models by
different subjects. On the contrary, subjects showed remarkable agreement in the pattern of their
correlations across models. The best models were best for everyone tested. The way that subjects
differed from each other was in their tendency to produce moderate or high correlations with the
models in general. It is possible that such individual differences in average size of correlations
reflect differences in mental ability or motivation. Subjects who fill out questionnaires without
much care or who become confused by the items would not be expected to generate data consistent
with these sorts of models.
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