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Visual Data Analysis for Detecting Flaws and Intruders
in Computer Network Systems
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∗Department of Computer Science †Department of Computer Science and Engineering
University of California, Davis Mississippi State University

Abstract

To ensure the normal operation of a large computer network sys-
tem, the common practice is to constantly collect system logs and
analyze the network activities for detecting anomalies. Most of the
analysis methods in use today are highly automated due to the enor-
mous size of the collected data. Conventional automated methods
are largely based on statistical modeling, and some employ machine
learning. In this paper, we show interactive visualization as an al-
ternative and effective data exploration method for understanding
the complex behaviors of computer network systems. We describe
three log-file analysis applications, and demonstrate how the use of
our visualization-centered tools can lead to the discovery of flaws
and intruders in the network systems.

Keywords: information visualization, intrusion detection, visual
data mining, network visualization, internet routing stability

1 Introduction

To keep computer and network systems secure and stable, it is nec-
essary to collect vast amounts of data in order to analyze how the
systems are performing dynamically. This is because no matter how
rigorous the design process was for a particular system, many fac-
tors during run-time can compromise its performance. Likewise,
even though network protocols may have strong theoretical bases,
they may suffer security flaws and instability when actually de-
ployed. Furthermore, most systems are not designed with perfect
security. Intrusion detection and response are thus very important
components of any computer system.

The above examples of run-time errors, protocol architecture
weaknesses, and computer attacks are different examples offlaws
and intrusions. Flaws refer to unintentional defects in the system
design, human mistakes in the operation of the system, or malfunc-
tions in the machinery. Intrusions refer to intentional illegitimate
use of the system or malicious attacks on it. Whether intentional or
not, such errors can cause severe damage to network systems. Col-
lection and analysis of logs of actual activities are helpful in both
detecting errors and analyzing them.

Although system logs are vital for understanding a running sys-
tem, the analysis of logs to search for problems is a nontrivial task.
This is because we need to discover new and unexpected knowledge
to find hitherto unknown weaknesses and security flaws. The task of
finding useful information by sifting through large amounts of data
has spawned the field ofdata mining. Most data mining approaches
are based on machine learning techniques, numerical analysis or
statistical modeling. In any case, human interaction and visualiza-
tion are used only minimally. Such automatic methods may miss
some important features in the data.

In this paper, we describe solutions based on visual analytics,
taking advantage of human intuition, visual pattern recognition
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and domain knowledge, as well as modern computers’ processing
power. We outline a visual exploration process for the analysis of
logs. We also describe the principles behind using visual analytics
in this application domain, and compare the visual analytics ap-
proach against existing alternative methods. We then present three
examples of data analysis problems of detecting flaws and attacks,
and show how the visual analytics process helps to discover new
and useful knowledge in the data, leading to improvements in sys-
tem security and stability. Lastly, we present updates to our pre-
vious visualization tools and show some new discoveries made by
these tools. The new knowledge gained demonstrates the effective-
ness of taking the visual analytics approach to uncover security and
network protocol flaws.

2 Computer Security and Network Stabil-
ity

The goals of computer security can be classified broadly into three
categories: prevention, detection, and response. Intrusion detec-
tion plays a critical role in the security of most systems because
prevention methods such as passwords and access control can be
and are often compromised. Therefore, in the management of a ro-
bust system, it is necessary to incorporate some intrusion detection
mechanism. Its purpose is to detect any unauthorized malicious use
of the system that could compromise the availability, integrity or
confidentiality of the resources. Analysis of the detected intrusion
is also important so that corrective and/or punitive action may be
taken. The typical approach to intrusion detection is to collect and
analyze logs of user activity from which suspicious or anomalous
behaviors can be scrutinized and analyzed to determine if the sys-
tem has been attacked (see the “Data Mining and Visualization for
Network Security” sidebar).

Network stability is closely related to computer security. At-
tacks over the Internet such as denial of service attacks can com-
pletely shut down the availability of the target website. In Section
4, we also discuss attacks on the Internet routing protocol itself,
where an attacker can potentially usurp a router and gain access to
TCP packets meant for other parties. Network administrators can
also sometimes inadvertently make mistakes in router configura-
tions, leading to serious problems in the network. In addition, a
network protocol can have flaws, e.g. race conditions, that appear
at run-time. Whether to detect architectural flaws, router errors,
or network attacks, examining logs of the messages exchanged be-
tween the nodes in the network can help. This approach is thus the
same as that taken for intrusion detection.

3 Using Visual Analytics

The guest editors of this special issue of CG&A describevisual
analyticsas “a contemporary and proven approach to combine the
art of human intuition and the science of mathematical deduction
to directly perceive patterns and derive knowledge and insight from



Data Mining and Visualization for Network
Security

The use of data-mining methods for intrusion detection began with
the realization that widely-used signature-based methods were too
rigid to discover novel attacks. Such approaches differ in the data-
mining methods they employ, as well as the data they analyze.
Schultz et. al [13], for example, use Naive Bayes algorithms to
detect malicious executables. Ghosh and Schwartzbard [4], on the
other hand, use neural networks on the DARPA network connec-
tions dataset. Another problem with signature-based methods is the
necessity for time-consuming human input. To solve this problem,
Lee et al. [8] use data-mining methods to learn rules to accurately
capture behavior from network connection and host session fea-
tures.

Jiang et al. [6] present a pattern extraction algorithm and a
method to compare the extracted patterns to find intra- and inter-
pattern mismatches. An alarm is raised when there is significant
deviation from normal behavior. In Mahoney and Chan’s work [9],
association rules, which is another data mining technique, is applied
to intrusion detection. The rich data mining techniques for finding
frequent sequences are also helpful for computer security. For ex-
ample, Michael [10] uses suffix trees to find frequently occurring
sequences of system calls.

In contrast, much less work has been done in applying visualiza-
tion to computer security. These include Erbacher et al.’s [3] work
using glyphs to visual intrusion detection data, Yurcik et al.’s [15]
tool for visualizing network traffic, Girardin’s [5] packet-based vi-
sualization, and Tudumi [14], a visualization system designed to
monitor and audit computer logs to help detect anomalous user ac-
tivities.

Visualization-based data mining methods are also few in num-
ber. One example is PBC [1], a visual classification tool. Because
classification can be applied to intrusion detection, this visualiza-
tion tool is particularly relevant to computer and network security.
Furthermore, this work also successfully incorporates visualization
and machine learning techniques to improve data mining.

Various Internet and network visualization tools exist, such as
the Internet Mapping Project [2], the H3Viewer [11], and Munzner
et al.’s [12] work on visualizing the global topology of the MBone.
These tools focus on displaying changes in reachability and topol-
ogy. Labovitz et al.’s [7] paper on Internet routing instability also

includes some simple visualization of the number of Internet rout-
ing changes.
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them.” This approach has been used in the past decade for various
applications. For example, Ahlberg and Shneiderman [1] promote
visual-based methods as a viable approach to information-seeking
due to the ability of humans to recognize features in visual displays
and recall related images to identify anomalies. According to Gi-
rardin [2], human perception can notice even unexpected features.
From our experience, we believe that this is the biggest advantage
offered by visual analytics compared to primarily algorithmic data
mining methods.

Our work is based on the premise that valuable knowledge can be
gleaned from large datasets; this is the premise behind the field of
knowledge discovery. Most data mining methods are based on al-
gorithms or statistical or mathematical models, often adapted from
machine learning techniques. While these methods have been suc-
cessful at efficiently performing tasks like classification, regression,
clustering, detecting frequent itemsets and outliers, each method
discovers only limited knowledge from the data.

Since visual data mining [5] is different in essence to automated
methods, visual methods can discover valuable information that
complements the knowledge found by more commonly-used statis-

tical approaches. This is particularly useful in applications where
the user is unsure about what needs to be discovered from the data,
but only desires to explore the data to learn about the data. Many
real-world problems fit into this category, such as the examples we
discuss in Section 4.

The visual analytics process that we use is as follows. Start-
ing with a large dataset, in our case a log file, an appropriate vi-
sual representation is designed, together with an intuitive interac-
tion method. The user then interactively explores the data in or-
der to extract knowledge. The critical part of this process is in the
design of the visualization and interaction method. Good visual
metaphors will bring out interesting features of the data in a way
that makes sense. Note that for any application, different visual
metaphors can be potentially used, and each can lead to different
discoveries. Some of these discoveries lead to better understanding
of the system. Other discoveries may reveal flaws and weaknesses
in the system architecture, and some intruders may also be detected
this way.

In the visual analytics process that we describe, there is a tight
collaboration between human and computer. Human intelligence is



Figure 1: Visualization of OASCs. Left: Each event consists of a
line connecting the affected IP prefix and ASes. Right: Actual data
with color denoting event type.

used in two ways: First, in the design of the visualization and in-
teraction techniques; and second, in the use of the interactive visu-
alization to discover, analyze and draw conclusions from the data.
On the other hand, computations are used to process and project
the data onto the display, and to transform the data based on user
input. In our Future Work section, we also mention incorporating
more advanced machine learning techniques into the log file analy-
sis systems.

4 Applications and Techniques

We present visual-based methods for detecting flaws and intrusions
in networks. Each application examines a different problem domain
and uses different visual metaphors. However, the common visual
approach has led to useful insights in each case.

4.1 Anomalous Origin AS Changes

To manage packet traffic on the Internet, groups of hosts sharing
portions of their IP addresses are partitioned into clusters of ma-
chines calledautonomous domains(ASes). The problem of packet
routing then simplifies to routing data between these larger entities
(see “The Border Gateway Protocol” sidebar for more information).
To maintain network stability, it is important that the AS associated
with a group of IP addressed (theirorigin AS) actually corresponds
to the router for that subnetwork. Thus, network analysts are in-
terested in studying the dynamics of origin AS changes (OASCs)
in order to distinguish normal behavior from faults or suspicious
activity. Previously, we have presented a visual analysis tool to ad-
dress this problem [8]. Here, we discuss an augmentation to the
browsing portion of the tool and its application to a set of anoma-
lous OASCs in 2000–2001.

The visual exploration of the OASC data is a two phase process.
First, the user browses a sequence of visualizations summarizing
the OASCs over time. Then, if an anomaly is discovered, the user
can drill-down into the data to determine the type of anomaly and
which ASes were involved. In the first stage, the user is essen-
tially performing visual pattern matching, using the visual system
to separate normal from abnormal behavior. This visual classifica-
tion is based upon the rendering of OASCs for a given date. Figure
1 demonstrates our rendering method. Each IP address is mapped
to a pixel using a quadtree decomposition, iteratively mapping pairs
of bits from the 32-bit IP address. ASes are mapped along the four
edges of the display area, and an OASC is represented by a colored
line connecting the previous owner to the new owner of the AS (in
O-type events, there is no previous owner). The color designates
the type of change.

Figure 2: OASCs from three different dates. The first two are typ-
ical of normal OASCs. Looking at the display of different dates,
the user gets a sense of what “normal” is. The right-most image,
with its high concentration of lines from the same ASes, indicates
an anomaly.

The original browsing tool was successful in separating normal
from abnormal behavior in the OASC data (Figure 2). However,
occlusion would occasionally mask some events. To rectify this
issue, a new browser was developed. Instead of displaying a sin-
gle depiction of the OASC events, one image for each change type
and one displaying all the changes together are displayed. In ad-
dition, a depiction of the previous and next date’s events are also
shown. To manage screen real-estate, a focus+context radial layout
is used [3]—the images are arranged in a circle about a larger focal
image chosen from the others (Figure 3). The new layout solves
the line-occlusion problem of the old browser by decomposing the
event types while retaining the same mode of rapid, iterative ex-
ploration. A new date is chosen by selecting the previous or next
date’s image; in addition, one of the eight event type images can
also be selected to become the new focus. To assist in analysis, the
sectors of the circle are colored according to event type, with the
combination image colored white.

A user can utilize the new event browser in several ways.
For example, in our previous study, we noted several sequential
CSM/CMS events; these indicate a misconfigured router and its
subsequent correction. To determine how common these paired
events are, a user could select either the CSM or CMS event as the
focus and then explore the data (such as in Figure 3). Paired events
would then be discovered by comparing the previous/next day’s im-
age for the given type (at the five or seven o’clock positions around
the circle) against the image for its complementary type for the cur-
rent date (at either 10 or 11 o’clock). This analysis would show that
these events are very common, occurring almost once a month over
the 480 days sampled.

As a further example, a user browsing the data could note some
interesting behavior on March 31st, 2001 (Figure 4). The browser
shows several coordinated CMS (light yellow), CMM (red), and
H (blue) events. In addition, the image for April 1st (light gray)
shows a similar pattern consisting of different events (CMS, CSM
(cyan), and CSS (green)). It is important to note that this coordi-
nation is difficult to see in the combined image (center) and might
have been missed without the other images. Using the browser, the
user could then step through the subsequent dates to determine the
length of the anomaly. The behavior is strongest in the first four
days after March 31st, though smaller corrections continue after-
wards. To find out which ASes were involved, the drill-down mod-
ule described in our previous work would be used. A 3D representa-
tion of the events, using the quadtree of IP addresses as its base, AS
identifiers for height, and colored cubes for events, shows two clus-
ters of overlapping events (Figure 5), meaning that several OASCs
are associated with the same IP address. Both of the clusters are
in the same vertical plane, suggesting the same AS was involved,
AS 703. After using the analysis tool, the user would conclude
that AS 703 and 4740 claimed different portions of AS 17561’s ad-



The Border Gateway Protocol

Two of the applications discussed in this article analyze different
aspects of packet routing on the Internet. It is thus useful to under-
stand the mechanics of Internet routing. The Internet can be consid-
ered as a set of clusters, each cluster representing an organization’s
network. Theseautonomous systems(ASes) entirely manage any
traffic within an AS cluster. To communicate between ASes, routers
on the edge of an AS use theborder gateway protocol(BGP) [6].

In BGP, each AS is assigned a unique identifier and an IP pre-
fix mask. This mask identifies which subset of IP addresses corre-
spond to hosts in the AS. For example, the IP prefix 128.120.0.0/16
means that every machine in the AS shares the same initial 16 bits
128.120. Using BGP, edge routers communicate network reachabil-
ity information in order to properly transmit packets. TheseBGP
routesconsist of the destination IP prefix and a list of the ASes
through which data will be routed to reach the destination. The
BGP route “128.120.0.0/16: (7, 23, 92),” for example, means that
packets for the IP prefix 128.120.0.0/16 would need to sequentially
pass through AS 7 and AS 23 before reaching the AS representing
their destination (AS 92). The AS responsible for an IP prefix is
known as the prefix’sorigin AS.

Two aspects of BGP routing information are visualized in this
article: Origin AS changes (OASCs) and BGP route changes. In
the former, we depict the changes to origin ASes over time. An
origin AS can change due to a change in the ownership of its IP
prefix, valid network operation, network faults, or attacks. In the
latter two cases, this change would force the delivery of packets to
a wrong AS. An OASC event consists of the IP prefix affected, a
list of ASes associated with the change (generally the new origin
AS for the prefix), the date of the change, and the type of change.
A change can either narrow the mask of addresses an AS already
owns (a B-type) or another AS owns (an H-type), claim ownership
of another AS’s prefix (C-types), or clam ownership of an unowned
prefix (O-types). The last two changes are further classified de-
pending on whether a single AS or multiple ASes claim ownership
of the prefix. As only one AS should claim ownership of a prefix,
multiple origin AS conflicts indicate faults or attacks [7]. Some
OASCs are complementary: A CMS event (a C-type change from

multiple ASes to a single origin AS) could correct a CSM event (a
C-type change from a single AS to multiple origin ASes). There
are eight OASC types overall (OS, OM, CSM, CMS, CMM, CSS,
H, and B); each is visualized in the tool described here.

In the second visualization, we examine BGP route dynamics.
As a host’s availability changes, either an AS along a route or the
the origin AS could become unavailable. Whenever routing infor-
mation changes, edge routers exchangeBGP announcements. An
announcement is either a new BGP route or awithdrawal event
such as “128.120.0.0/16: WD;” in this example, the IP prefix
128.120.0.0/16 has become unavailable. From a sequence of BGP
announcements, the behavior of Internet routing can be observed.
Instabilities in routing can cause serious disruptions in network
traffic. Previous studies have identified three forms ofinstability
events: slow convergenceto a stable path,oscillationsbetween dif-
ferent paths, andrepeatsof the same path [1, 2, 3, 5]. The visu-
alization discussed in this work aim to reduce the time to discover
and analyze these events.

The routing data for this article was obtained from the Oregon
Route Views server [4]. The data consists of BGP events over 480
days in 2000 and 2001.
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dresses (the H events), causing conflicting correcting events over
the rest of day and the following days (the other events). This anal-
ysis demonstrates the strength of our visual analytic approach. For a
user, noticing the correlated visual patterns without training is easy;
a fully machine-based method would require a significant number
of event signaturesad hoc.

4.2 Routing Instability

The Internet is a complex distributed system running on a very large
number of nodes using various protocols. The study of the opera-
tional behavior of the Internet is a fundamental and important part
of the effort to make the Internet more stable, robust, and secure.
In the past, monitoring and analyzing network behavior has been
mainly done by browsing the raw data or looking at some simple
plots of statistical analysis results. We have developed a suite of
visualization techniques and formulated a sequence of steps utiliz-
ing them for improved understanding of Internet routing data, and
this has been described in our previous work [7]. In this paper, we
focus on the use of the system to detect and analyze a problem in
the routing to the Google IP address. The discovery of this problem
is mentioned in our previous work [7], but in this paper we describe
further visual-aided analysis and investigation to find out the root
cause of the observed problem.

The first indication of the problem is observed from the
EventShrubs module, where each instability event is shown as a
circle on a time-line. The circle has segments colored according
to the instability type matching the event, such asoscillation and
repeat. The size of the circle is determined by the number of BGP
update messages included in the event. Obviously, the more the
number of messages in a short period of time, the more unstable
routing is, and the user’s attention is immediately drawn to large
circles. The height of each shrub has no inherent meaning; differ-
ent heights are used simply to prevent shrubs from occluding one
another. However, the presence of very tall shrubs does indicate
that there are many different instability events around that period of
time. Therefore, this provides an additional visual cue.

Figure 6 shows the EventShrubs visualization of the routing in-
stability events of the Google IP address for the year 2001. You can
see that a very severe instability event occurred around July of the
year.

The next step naturally is to investigate what caused this prob-
lem. Using the browsing feature available in the visualization sys-
tem, the user quickly locates the period of instability and looks at
the text visualization of the update messages. This is shown in Fig-
ure 7.

To investigate even further, the user looks at the BGP update
messages from a different peer. From the point of view of the obser-



Figure 3: The new OASC browser. The eight change types are ar-
ranged radially about the center in addition to an image showing
all events and images for the neighboring dates. User selection ei-
ther changes the focus type or navigates through the dates. In this
example, the CSM events for January 30th, 2000 are the focus.

Figure 4: Correlated anomalous OASCs on March 31st, 2001.

Figure 5: Further investigation into the March 31 anomaly. The two
clusters involve AS 703, one of the ASes at fault.

Figure 6: EventShrubs visualization of the instability periods of the
route path to the Google IP address shows one instance of severe
instability around July 2001.



vation point from which we’re collecting the data, the observation
point is connected to multiple peers, which are nodes that have a
direct connection to the observation point. Each of these peers has
a path to the destination IP address, in this case Google. The visual
displays from Figures 6 and 7 show the messages from peer AS
2914. The user now looks at the messages from another peer, AS
3333. From AS 3333, there is no corresponding instability in this
same time period. Instead, there is a long “Withdraw” covering this
period of instability. A “Withdraw” message means that no path is
available to the IP address. A visual comparison can be performed
by telling the visualization program to display the messages from
the two peers side-by-side (Figure 8). The most likely explanation
is that the Google server was experiencing some major problems
at that time, sporadically working and shutting down. This caused
very frequent changes in its availability, leading to many BGP an-
nouncements and withdrawals. These messages are filtered out by
an AS along the path from AS 3333 due to damping. The problems
highlighted by the visual analysis are the problem on the Google
server on that day, as well as the lack of damping along the path
from AS 2914.

4.3 Intrusion detection

Detecting intruders in a computer network system is often per-
formed by the examination of logs of user activity, system calls
or network connections. In our work, we allow the user to interac-
tively explore logs so that intruders to computer network systems
can be detected.

Intrusion detection can be treated as a form of the event classifi-
cation problem. In a classification problem, each object is defined
by its attribute values in a multi-dimensional space; furthermore
each object belongs to one class among a set of classes. The task is
to predict, for each object whose class is unknown, which class the
object belongs to. Typically, a classification system is first trained
with a set of data whose attribute values and classes are both known.
Once the system has built a model based on the training, it is used
to assign a class to each unclassified object. A classification-based
intrusion detection system therefore takes samples of network con-
nections labeled as “attack” or “normal”. These samples are then
used to construct a model so that any future connection can be com-
pared with the model, and thus attacks can be detected. We describe
how visualization is used not only for classification, but also for
anomaly detection and cluster analysis, and how these tasks help in
the intrusion detection effort.

4.3.1 Visual Classification

To display the data, we use PaintingClass [6], a user-directed vi-
sual classification program we previously designed. PaintingClass
is based on decision trees, a popular and well-known classification
approach. A decision tree classifier constructs a decision tree by
recursively partitioning the dataset into disjoint subsets. One class
is assigned to each leaf of the decision tree.

Interactive decision tree construction starts by visualizing the
training set consisting of connections whose attribute values and
class are known. In the root of the decision tree, every object in the
training set is projected and displayed visually. Each non-terminal
node in the decision tree is associated with aprojection, which is
a mapping from multi-dimensional space into two-dimensional dis-
play. The projection method used is Star Coordinates [4], where
the position of a point representing a data object is given by (Σn

i=0
ai xi , Σn

i=0 ai yi ), whereai refers to the data objects attribute value
in dimensioni, and (xi , yi ) are the screen coordinates of the end-
point of axisi. In other words, the position of a point is influenced
by its attribute value in each dimension and the user-defined axis
position of that dimension. By moving the axes in a Star Coordi-

Figure 7: Visualization of the update messages from Peer AS-2914
during the Google instability event. Each update message is written
horizontally across, with a line drawn to the vertical time-line to
indicate the time the message was received.

Figure 8: Visualization of the update messages from Peer AS-2914
together with Peer AS-3333 shows that the instability was filtered
out by damping along the AS path from AS-3333 to the Origin
AS. The lack of damping from AS-2914 is one of the problems
discovered by the visual analysis.



Figure 9: Left: Star Coordinates projection. The four dimensions
used are represented as axes labeled A through D. Each data object
is projected to one point on the display. Middle: The user moves
the A axis with the mouse. The projected points move accordingly.
Right: A projection with a different assignment of the axis yields a
significantly different picture.

nates projection, the user creates a projection that best separates the
data objects belonging to different classes. The position of each
data object is therefore determined by the projection, and its color
is assigned according to the class it belongs to (Figure 9).

Each projection is then partitioned by the user intoregionsby
painting. Painting is performed by left clicking and dragging the
mouse cursor over the screen. The path traveled by the cursor will
be colored with the selected color. Next, for each region in the
projection, the user can choose to re-project it, forming a new node.
In other words, the user creates a projection for this new node in a
way that best separates the data objects in the region leading to this
node.

For every new node formed, the user has the option of par-
titioning its associated projection into regions. The user recur-
sively creates new projections/nodes until a satisfactory decision
tree has been constructed. Each projection thus corresponds to a
non-terminal node in the decision tree, and each un-projected re-
gion thus corresponds to a terminal node. In this way, for each
non-root node, only the objects projecting onto the chain of regions
leading to the node are projected and displayed. PaintingClass dis-
plays the decision tree according to the schematic in Figure 10, and
allows the user to switch the focus to different projections, move the
Star Coordinates axes, paint regions, and build the decision tree.

In the classification step, each object to be classified is projected
starting from the root of the decision tree, following the region-
projection edges down to an un-projected region, which is a termi-
nal node (ie. a leaf) of the decision tree. The class which has the
most training set objects projecting to this terminal region is pre-
dicted for the object.

We applied PaintingClass to the KDD Cup ’99 Intrusion De-
tection dataset. Each object in this dataset is a network con-
nection. Each object is defined in 41-dimensional space, and
belongs to one class among five possible classes:normal,
probe, DOS, U2R and R2L. The normal class indicates that
the connection is a harmless normal connection, whereas the
other four classes are different types of attacks. There are
494,021 connections in the training set, and 311,029 in the test
data. A detailed description of the dataset can be found at:
http://kdd.ics.uci.edu/databases/kddcup99/task.html The KDD Cup
’99 dataset is the only large-scale, publicly available data for eval-
uating intrusion detection tools.

We visualize the KDD Cup training set, where each connection
is labeled as one of the five classes, and interactively construct a
visual decision tree (Figure 11), through the painting of regions and
specification of projections. This decision tree is then used to clas-
sify the test data, whose class labels are omitted; the results are
discussed in Section 4.3.3.

Figure 10: PaintingClass decision tree visualization layout. The
current projection (ie. projection in focus) is drawn as the largest
square in the upper right corner. In this figure, each projection is
labeled by its distance to the root. In this example, the current pro-
jection has three regions, and each has been re-projected to a child
projection.

Figure 11: PaintingClass visualization of a decision tree con-
structed of the KDD Cup ’99 Intrusion Detection dataset. In the
current projection, the blue region is re-projected to Child Projec-
tion 1 and the white region is re-projected to Child Projection 2. In
Child Projection 1, the user has adjusted the axes so that the objects
of the blue and green classes are better separated than in the parent
projection. The regions in Child Projection 1 are not re-projected,
and so form the leaves of the decision tree.



Figure 12: The normal objects in the training set are displayed as
purple points. The grayscale objects belong to the un-classified test
set. Two clusters of test set data are highlighted. The absence of
normal data in the training set in these clusters indicate that they
are intrusions.

4.3.2 Anomaly Detection

While standard decision tree classification is effective for intrusion
detection, anomaly detection can complement such classification.
Given examples of only normal activity, an anomaly detector cre-
ates a model of what constitutes normal activity. When it is sub-
sequently given new unlabeled activity, the anomaly detector will
compare it against the normal pattern and flag the new activity as
an anomaly if it deviates from the normal pattern. The advantage
of anomaly detection lies in discovering types of attacks that are
previously unknown.

To use the visual intrusion detection system for anomaly detec-
tion, the connections to be classified are displayed together with the
training set. For the training set, each object is colored according to
the class it belongs to. The data to be classified are colored gray .
For testing purposes, the objects in the test set are colored gray, as
they would be if they were new connections to be classified as in-
trusion or normal. It is very important not to reveal the class labels
of the test set objects, because we are simulating the visualization
of as yet un-classified connections.

With the option of displaying objects from the test set (with class
labels omitted) together with objects from the training set, the user
can now identify regions where the density distribution in the two
sets are different. In particular, the user is interested in finding re-
gions where the training set has a low density of normal data while
a high-density cluster exists in the test set. Such a region is con-
sidered an anomaly because the density distribution deviates from
normal. An example is shown in Figure 12. Using PaintingClass,
the user paints and labels such a region as one of the attack classes
based on neighborhood information, and all test objects projecting
to the region will be predicted to belong to the labeled class.

4.3.3 Accuracy

We used our visual intrusion detection system (IDS) to classify the
KDD Cup ’99 test data to measure the accuracy of our approach.
First, the visual IDS was used to visualize only the training data,
and a decision tree classifier was built by the user. This corresponds
to using PaintingClass as purely as a visual classification tool. Sec-

Table 1: Cost score of visual IDS compared with top 5 (out of 24)
KDD Cup ’99 Entries. The lower the cost the better.

Visual classification and anomaly detection 0.2087
KDD Cup First Place 0.2331
KDD Cup Second Place 0.2356
KDD Cup Third Place 0.2367
KDD Cup Fourth Place 0.2411
KDD Cup Fifth Place 0.2414

ond, test data (with class labels omitted) was visualized together
with training data, and a different decision tree was constructed by
the user. This corresponds to using PaintingClass as both a classi-
fier and an anomaly detector.

The scoring system used to judge the entries of the contest is
described at http://www.cs.ucsd.edu/users/elkan/clresults.html. It
is a cost-based system. The objective of a classifier is to minimize
the cost. The results are also presented in the same website.

Table 1 shows the cost score of the top 5 entries to the contest.
Visualizing only the training data, using the visual IDS incurred a
cost of 0.2551, which would place it in the middle among all 24
entries. When anomaly detection was incorporated into the visual
IDS, the cost improved to 0.2087. This is significantly better than
the winning entry of the contest, considering that the threshold for
statistical significance used in judging the contest is 0.0060. Com-
paring our present results with the actual participants of a past con-
test certainly does not indicate the superiority of our method. Our
intention is merely to show that visual classification and anomaly
detection does indeed work.

4.3.4 From Patterns to Knowledge

What is perhaps the most important contribution of visual intrusion
detection is that besides being very accurate, some new patterns
were observed during interactive use of the visualization system.
These patterns indicate important properties of the data, and were
unlikely to have been discovered by automatic classification meth-
ods.

Some patterns observed in the visualization of the data caught
the attention of the user. For example, Figure 13 shows an L-shaped
cluster of denial-of-service (DOS) attack connections (blue). Such
a pattern leads the user to question whether it represents a cluster in
a higher-dimension space.

We created an interactive visual mechanism to allow the user to
analyze such patterns in higher-dimensional space. Once the user
observes a pattern, the user paints on the pattern. The user then
specifies the class to be examined, and clicks on the “Correlate”
button. The program makes a list of all objects belonging to the
specified Class and projecting to the painted region. From this list,
the program finds the minimum and maximum values of the screen
x and y coordinates. The coordinate that has the larger range (max-
imum - minimum) is called theScreenCoordinate. The program
then displays a table of plots, one plot for each dimension in the
original attribute space. In each plot, each object is displayed as a
point whose y coordinate is determined by its attribute value in that
dimension. The x-coordinate is determined by the ScreenCoordi-
nate.

Figure 13 shows an example of a table of plots. The user ob-
serves that most points follow a trend in each plot. For example,
in some dimensions, the attribute values of the objects are constant,
in others, they vary linearly with ScreenCoordinate. The user thus
hypothesizes that the trends observed describe a cluster, and that
the points which are anomalous do not belong to the cluster. The
user paints on these points and clicks on the “Remove” button. The
objects represented by these points are removed, and only the re-
maining points are labeled as belonging to this cluster.



Figure 13: The visual cluster definition process. Top: DOS attack
connections are shown in blue, all other connections are colored
gray. A big L-shaped cluster is observed. The user paints a region
covering this L-shape. Middle: Table of plots of individual dimen-
sions againstScreenCoordinate. The user notices many dimensions
that are mostly constant except for a few outliers. Bottom: These
outliers are then be removed by painting. The remaining points are
considered to belong to the cluster being defined.

In this way, clusters of attack types can be defined precisely.
Each constant dimensiondi results in an equationdi = c. Each
pair of linearly varying dimensionsdi andd j results in an equation
di = k × d j + c. For example, the L-shaped DOS cluster shown
in Figure 13 can be defined as a 25-dimension cluster. This clus-
ter contains the entire L-shaped cluster, which consists of 280,795
objects, with 3,649 false positives. (A false positive is a non-DOS
object wrongly classified as a DOS object.)

Note that if additional dimensions such assrv countandcount
are taken into consideration, the two parts of the L-shape each be-
comes a separate cluster. This is clearly visible by painting the
entire L-shape and viewing each dimension in the matrix of plots.
The lower-dimensional description is therefore a generalization of
the two higher-dimensional clusters, and represents common char-
acteristics of the two clusters. This “signature” thus can be used
to detect new variants of this attack type. In our use of the visual
tools, lower-dimensional generalizations of other clusters were also
found.

5 Future Work

In each of the three applications presented, even though we have
made some key discoveries from the visualization, there is other
useful information in the datasets to be uncovered. For example,
many OASC events remain to be analyzed. Although our visual
representations have revealed some patterns, additional algorithmic
filtering and processing may reveal other patterns, such as the cor-
relation between different days, or temporal patterns pertaining to
specific ASes or IP prefixes. Such patterns, if exist, are not easily
observable using current visualization. Similarly, machine learning
algorithms can be applied to routing instability analysis to gener-
ate better definitions of instabilities. They can also be applied to
intrusion detection to guide the user in finding “good” projections.
We are thus working on how to efficiently combine interactive vi-
sual methods with algorithmic methods to make further analyses
and discoveries.

The cluster definitions found in Section 4.3.4 can be analyzed to
extract characteristics of different attack types. We also begin to
look at the problem of real-time BGP monitoring, as well as real-
time deployment of the visual IDS.

6 Conclusions

We have demonstrated the usefulness of visual analytics in discov-
ering flaws and intrusions from exploring logs. First, router miscon-
figuration was discovered by visualizing Origin AS changes. Sec-
ond, lack of damping and unstable network availability was discov-
ered by visualizing and analyzing routing update messages. Third,
visualization was used not only to successfully classify connections
as attack or normal, but also to reveal patterns and signatures in the
attacks.

All three applications require the design of appropriate visual-
ization tools and interaction techniques. Because of the difference
in the nature of the data, the task, and the desired knowledge, the
visual metaphors used in each of the applications are very different
from one another. In fact, different visualization tools are used in
the same application.

It is important to point out is that this knowledge is not easily
obtainable through conventional statistical or algorithmic analyses.
The use of visual analytics in exploring logs is particularly effec-
tive because humans are good at discovering unexpected patterns,
whereas automatic methods are better suited to performing a spe-
cific well-defined task. For example, the observation of clusters
such as the example shown in Figure 13 is completely unexpected.



Before visualization, we were expecting to see attack clusters hav-
ing Gaussian-like distribution. Only after visual analysis did we
find that many of these clusters have clearly-defined characteristics
in the form ofdi = c. Without prior knowledge, standard clustering
algorithms such as k-means would not have discovered such cluster
characteristics.

Another advantage of visual analytics is in the analysis of the
data to find the cause or explanation for an observed phenomenon.
The example shown in this paper is the explanation found for the
Google BGP routing instability. Visual analytics is advantageous
when the question is open-ended, meaning that the range of possi-
ble explanations is unknown beforehand. If the possible explana-
tions could be enumerated exhaustively, then automated methods
can easily test the signatures of each of the possibilities. However,
in cases where this is not possible, such as in our Google exam-
ple, then it can be useful for the user to visually explore the data,
look at the patterns, and use domain knowledge to help think of the
explanation.

One characteristic of information visualization is that there is
no inherent visual spatial coordinates of the data being visualized.
Therefore, the mapping from data attributes to visual attributes is
unrestricted. Different mappings can possibly be used. The key
is to find an appropriate mapping that has the potential to lead to
discoveries. The success in finding patterns in our three examples
shows that the mappings we have chosen make sense. However, we
would not be surprised to find that other mappings can lead to more
discoveries.

The process of visual analytics is a continuous loop between in-
teractive visualization and knowledge discovery (and perhaps even
back to data collection/preparation, but not in our example applica-
tions). Starting with a dataset and analysis goals, a visualization is
designed. From the interactive exploration of the dataset, the user
gains previously unknown knowledge about the data. With this new
knowledge, the user may be prompted to ask further questions, ne-
cessitating further analysis using existing visual tools, or requiring
new tools to be developed. This loop continues until the user is
satisfied with the information acquired. Our example applications
illustrate this process very well, and this is shown in Figure 14.
This figure shows two examples, one from intrusion detection, the
other from routing instability. Each example has two iterations of
the visual analytics loop.

It is not our intention to replace conventional machine learning
methods with visual data mining. Just as different machine learn-
ing methods can be used together to complement one another in
discovering different knowledge in particular datasets, the addition
of visualization to the suite of data mining methods employed can
help discover patterns missed by other methods. Therefore, the
full power of visual analytics for log-file analysis remains to be
exploited.
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