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1.  Introduction
Global concentrations of atmospheric CH4 have substantially increased since 1750 due to the expansion of hu-
man agriculture, waste management, and fossil fuel usage (Dlugokencky et al., 2011). CH4 is a 28 times stronger 
greenhouse gas than carbon dioxide (CO2) on a century timescale and increased atmospheric CH4 accounts for 
25% of anthropogenic climate forcing to date (Etminan et al., 2016). CH4 has also contributed to increases in 
tropospheric ozone, an air pollutant and short-lived greenhouse gas (Fiore et  al.,  2008), and to stratospheric 
water vapor, which acts as a sink for stratospheric ozone (Myhre et al., 2013). Additionally, CH4 has an atmos-
pheric lifetime of 9.8 years, so its atmospheric abundance quickly responds to changes in its emissions (Saunois 
et al., 2016). Furthermore, there are proven and cost-effective ways to reduce emissions (UNEP, 2011). These 
characteristics make reducing CH4 emissions an attractive policy option for mitigating the effects of climate 
change in the near and intermediate term.

The US state of California is committed to reducing its CH4 emissions to 40% of 2013 levels by 2030 as part of 
its climate change policy (CARB, 2017). The state has funded specific policies to reduce its emissions, including 
from its large dairy sector, which makes up 19% of the United States’s milk production (CDFA, 2020). CH4 emis-
sions from the dairy sector are from two main sources: enteric fermentation emissions produced by dairy cows’ 
digestion process and manure management emissions created by the anaerobic decomposition of dairy waste. 
Emissions from the dairy sector are estimated by the state as 880 Gg/yr, accounting for about half of California’s 
total CH4 emissions (CARB, 2019). The dairy industry is centered in the San Joaquin Valley (SJV), which con-
tains 87% of the state's 1.7 million large dairy herd (CDFA, 2020). The SJV has also been identified as a large 
North American CH4 emissions hotspot in many studies, highlighting the global importance of the region's dairy 
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CH4 emissions (Kort et al., 2014; Turner et al., 2015; Wecht, Jacob, Frankenberg, et al., 2014; Zhang et al., 2020). 
Dairies in the SJV are also intensively managed and offer opportunities for large emission reductions, such as by 
installing digesters to capture manure emissions.

Despite the magnitude of dairy CH4 emissions, different methodologies for estimating emissions disagree on 
their size and little is known about their variability in time and space. Bottom-up methods use process-based 
emission factors with data on CH4 emitting activities in a region to estimate emissions. Uncertainty is introduced 
in these methods by uncertainties in the emission factors and activity data used to calculate them, particularly at 
regional scales (Marklein et al., 2020). California currently uses bottom-up methods to track its total emissions 
(CARB, 2019). In contrast, top-down approaches are based on measurements of atmospheric CH4 and mode-
ling the transport of CH4 emissions in the atmosphere. In California, several top-down studies have found that 
bottom-up CH4 inventories may underestimate emissions from the statewide dairy sector and in the SJV region 
specifically (Cui et al., 2017; Jeong et al., 2016; Miller et al., 2013; Trousdell et al., 2016; Turner et al., 2015; 
Wecht, Jacob, Sulprizio, et al., 2014). This discrepancy has important implications for developing baseline esti-
mates against which the state's emission reduction policies are bench-marked, underscoring the need for research 
to improve our understanding of the dairy sector's emissions as a function of season and management practices.

Dairy CH4 emissions are also thought to be seasonally variable. Temperature is known to act as a strong control 
of emissions from dairy farms' manure systems because of its effect on microbial productivity (Arndt et al., 2018; 
Husted, 1994). This is the only seasonal effect that is included in the US-wide bottom-up inventory of monthly 
dairy emissions created by Maasakkers et al. (2016), which is presently the only published US-wide, sub-annual 
CH4 inventory. However, there is evidence that other factors could significantly contribute to seasonality in dairy 
CH4 emissions. During periods of high soil moisture, dairy cows are kept inside longer, which increases the 
amount of waste entering liquid manure systems where it can be converted to CH4 (Meyer et al., 2019). The size 
of this effect is uncertain as it depends on the management choices at individual dairies as well as precipitation. 
Previous studies have also found that the build-up of waste in liquid waste systems during unfavorable CH4 pro-
duction conditions and management choices on individual dairy farms can dramatically impact their emissions 
(Leytem et al., 2017; VanderZaag et al., 2014). Other factors that cause agitation of the liquid waste systems 
such as wind, rainfall, or mechanical pumping have also been found to impact individual dairy farms' emissions 
(Leytem et  al.,  2017). Studies attempting to quantify the amplitude of the seasonal variability of SJV dairy 
emissions are limited and have shown conflicting results. Jeong et al. (2016) did not find significant seasonality 
in the statewide dairy source using ground-based in-situ measurements while Arndt et al. (2018) reported that 
emissions at two Californian dairy farms were lower in the winter than in the summer due to a temperature effect. 
Seasonality in the region, therefore, remains an important gap in our understanding of dairy methane emissions.

Atmospheric CH4 enhancements from a region of interest can be measured by remote sensing. Ground or satel-
lite based remote sensing instruments can use the absorption of sunlight through the atmosphere by a particular 
gas to derive its average mixing ratio over the entire atmospheric column (Xgas). Xgas measurements are less 
sensitive to errors in difficult-to-model phenomena such as small-scale turbulence and vertical mixing compared 
to in-situ measurements taken in the atmospheric boundary layer (McKain et al., 2012). Because they measure 
the entire atmospheric column, they are also more sensitive to fluxes at regional scales compared to in-situ meas-
urement techniques (Keppel-Aleks et al., 2011; Lauvaux & Davis, 2014). Several studies have demonstrated the 
usefulness of both ground and satellite-based Xgas measurements to provide top-down estimates of emissions 
at regional scales (km to 10s of km scales) such as urban regions (Hase et al., 2015; Hedelius et al., 2018; Jones 
et al., 2021; Makarova et al., 2021; Schwandner et al., 2017; Vogel et al., 2019; Wu et al., 2018, 2020; Wunch 
et al., 2009, 2019; Ye et al., 2020; Zhao et al., 2019), fossil fuel-producing basins (Kort et  al., 2014; Luther 
et al., 2019; Zhang et al., 2020), agricultural regions (Chen et al., 2016; Kille et al., 2019; Viatte et al., 2017) 
and in state and country-level domains (Shekhar et al., 2020; Turner et al., 2015; Wecht, Jacob, Frankenberg, 
et al., 2014). This makes Xgas measurements a good complement to other previously used techniques like aircraft 
and tower-based in-situ measurements for inferring dairy CH4 emissions in the SJV. To date, however, ground-
based remote sensing measurements have not been used to measure CH4 emissions in the SJV.

Our study aimed to measure emissions from a large grouping of dairies in the central part of the SJV (about 600 
dairy farms over approximately 9 × 103 km2) using a network of ground-based remote sensing instruments, the 
EM27/SUN, during three field measurement periods in the region (July 2019, September 2019, and January–Feb-
ruary 2020). Emissions in this part of the SJV are weakly constrained by past measurements and measuring them 



Journal of Geophysical Research: Atmospheres

HEERAH ET AL.

10.1029/2021JD034785

3 of 17

is considered a priority for understanding California's emissions because of the high concentration of agricultural 
sources in the area (Cui et al., 2019). We used these EM27/SUN measurements with the Lagrangian atmospheric 
transport model, STILT (Fasoli et al., 2018), to create top-down estimates of emissions in the region. We used 
these estimates to assess variability in the SJV's dairy CH4 emissions during our measurement days and compared 
them to published bottom-up and top-down estimates of emissions in the region. This analysis gives new inde-
pendent constraints on CH4 emissions in the SJV and demonstrates how ground-based remote sensing data can 
be used to infer regional greenhouse gas emissions.

2.  Materials and Methods
2.1.  Central San Joaquin Valley Study Area

We made our measurements in the SJV, illustrated in Figure 1. The SJV is a flat region bounded by mountains on 
its eastern, western, and southern sides. In the north, the SJV merges with the Sacramento Valley. Air typically 
enters the SJV from the northwest near the San Joaquin Delta and remains confined in the SJV for long periods 
(San Joaquin Valley United Air Quality District,  2004). This containment mixes and traps air pollutants and 
greenhouse gases in the SJV.

As an a-priori map of emissions in the area, we used the non-dairy emission inventory from CALGEM (Fis-
cher, 2017; Jeong et al., 2016) along with a new dairy CH4 inventory (Marklein et al., 2020). CALGEM is a high 
resolution (0.1°) disaggregation of California's regulatory CH4 inventory that uses detailed spatial information 
to distribute emissions from the regulatory inventory. Its total emissions are scaled to match the regulatory in-
ventory’ total statewide CH4 emissions. For the dairy sector, we used a facility level inventory of annual dairy 
emissions created by Marklein et al.  (2020) gridded at a 0.1° resolution. Their inventory draws on farm level 
permitting information and regionally specific manure management practices to estimate and localize dairy emis-
sions at a higher accuracy than CALGEM’s dairy inventory.

Our EM27/SUN measurements were focused on capturing emissions from a large grouping of dairies in Tulare 
and Kings counties in the central part of the SJV. In the a-priori inventory used in this study, these counties emit 
362 Gg CH4/year with most emissions (89%) from the dairy sector. The next largest CH4 source in this region is 
natural gas transmission and distribution emissions concentrated in urban areas. South of the area, in Kern Coun-
ty, there is also significant oil and natural gas extraction and processing related CH4 emissions, but these sources 
are typically downwind and unsensed by our instruments.

On all measurement days, one instrument was located to the northwest of the dairy grouping at Cantua Creek 
(36.445°N, −120.248°E, 86 m above sea level (a.s.l.)) and one instrument was located to the southeast of the 
diaries at Terra Bella (35.931°N, −119.036°E,153 m a.s.l.). Prevailing winds in the SJV are from the northwest 
so these instruments typically captured background air upwind of the dairies and polluted air downwind of them. 
On measurement days when we had three instruments, the third instrument was located at either a site south of 
the dairy grouping at Helm’s Corner (36.084°N, −119.644°E, 53 m a.s.l.) or at a site to the east of the dairies at 
Visalia (36.308°N, −119.194°E, 110 m a.s.l.). The specific location of the third instrument site was determined 
by the forecast winds on each measurement day. The distance between the instruments was on the order of 10s 
of kilometers which was similar to the size of the Xgas measurement networks used in Hedelius et al. (2018) and 
Vogel et al. (2019).

2.2.  EM27/SUN XCH4 Measurements

The EM27/SUN is a compact field deployable solar tracking Fourier transform spectrometer further described in 
Gisi et al. (2012). The instrument uses direct solar absorption spectroscopy to retrieve total column abundances 
of CH4, CO2, CO, H2O, and O2 along an atmospheric path from the instrument to the sun over a 9–11 s measure-
ment period. The abundances are converted to dry air mixing ratios by dividing by the retrieved oxygen column 
and using the known column average concentration of O2. The EM27’s XCH4 measurements have a precision of 
0.06% at a 10 min integration time and can be reliably tied to the World Meteorological Organization (WMO) 
trace gas scale (Chen et al., 2016; Hase et al., 2015; Hedelius et al., 2016).
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We deployed three EM27’s owned by Los Alamos National Lab (LANL), NASA’s Jet Propulsion Lab (JPL) and 
Harvard University to the SJV for 2 days during the 2019 summer (July 22 and September 12) and for 4 days in 
the 2020 winter (January 22, 27, 30, and February 3). The LANL and JPL instruments were used during both 
seasons and the Harvard instrument was used only in the winter. The LANL and JPL instruments were co-located 
with Zeno weather stations and the Harvard instrument was co-located with a Digital Instruments MHB-382SD 
weather station. These stations were used to provide accurate surface pressure values for the EM27 retrievals. 
Additionally, we used temperature, pressure and humidity profiles from the NCEP/NCAR reanalysis product 
(available at https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html) interpolated to each measurement sta-
tion for the retrievals. This was done instead of using a common meteorological profile because of the large 
distance between the sites, following Hedelius et al. (2016).

XCH4 measurements were retrieved from unaveraged double-sided interferograms using the GGG and i2s software 
distributions (Wunch et al., 2015) and the EGI tool suite (Hedelius & Wennberg, 2019). We used the absorption 
windows described by Hedelius et al. (2016) for our retrievals. Within 1–2 weeks of our field measurements, we 
calibrated our instruments by making measurements with the EM27/SUN’s at the NASA Armstrong Total Carbon 
Column Observing Network (TCCON) site (July campaign) or the Californian Institute of Technology TCCON 
site (September 2019 and January 2020). The TCCON is a network of high resolution solar Fourier transform spec-
trometers which are tied to the WMO trace gas scale using aircraft measurements of vertical concentration profiles 
(data available at https://tccondata.org/). We calculated multiplicative offsets for the EM27 XCH4 retrieval relative 
to the TCCON observations following the methodology outlined by Hedelius et al. (2016), tying our retrievals to 

Figure 1.  Map of the study area in the San Joaquin Valley. The Valley's counties are outlined in pink. EM27/SUN measurement locations are shown as black symbols 
and dairy facilities in the region are shown as blue circles, sized by their total emissions in the dairy CH4 inventory by Marklein et al. (2020). Map tiles by Stamen 
Design, under CC BY 3.0 and data by OpenStreetMap, under CC BY SA.

https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html
https://tccondata.org/
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the WMO scale. This calibration also ensured that any systematic offsets between the EM27/SUN’s were removed, 
allowing for accurate measurements of XCH4 gradients for our top-down inversions. The correlation plots between 
the EM27’s and the TCCON are shown in Figure S1 in Supporting Information S1. The XCH4 measurements 
collected by the EM27/SUN's on all the measurement days are shown in Figure 2.

2.3.  STILT: Modeling Emissions Transport

To simulate the atmospheric transport of emissions to our instruments, we used a modified version of the Sto-
chastic Time Inverted Lagrangian Transport model (STILT; Fasoli et al., 2018; Lin, 2003). STILT uses a 4D 
meteorological field to calculate back trajectories from a receptor location and then analyzes these trajectories 
to determine a sensitivity footprint. This footprint represents how sensitive a measurement at the receptor is to 
emissions from different areas and times. The modified STILT version models the Xgas measurements made by 
the EM27/SUN by creating a slant profile of receptors oriented from the instrument location to the sun (Jones 
et  al.,  2021). This creates a profile of emission sensitivity footprints along the measurement columns of the 
EM27s, F(z, t), representing the sensitivity of CH4 mixing ratios at different heights to surface emissions, E. 
Convolving F(z, t) and E create a mixing ratio enhancement profile reflecting the effect of surface emission along 
the slant EM27 measurement profile at the measurement location and time.

We ran STILT using meteorological fields generated using the WRF model (V 3.9.1) (Skamarock et al., 2008). 
These fields were run in a nested 36, 12, and 4 km resolution domain centered over western North America with 
50 vertical levels from the surface to a pressure height of 100 mb. Boundary conditions for the WRF fields came 
from the North American Regional Reanalysis forecast product. The model was configured with the MYNN 
boundary layer parametrization and other options were based on previous work by Jeong et al. (2016) and Bagley 
et al. (2017) using WRF in the SJV. We used only the MYNN model rather than changing boundary layer para-

Figure 2.  Plots showing unaveraged 11 s resolution XCH4 measurements from each EM27/SUN on the measurement days. Offsets to the TCCON are applied to the 
measurements. The error bars represent the 1 sigma precision of the XCH4 retrievals calculated by GGG.
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metrization in the winter as done in these other studies because we found that the MYNN model showed a better 
fit with our XCH4 measurements (Text S3 in Supporting Information S1).

STILT was run using the vertical profile spacing (100 m spacing in the first 3 km of the atmosphere and 500 m 
spacing above 6 km) and particle release numbers (200 at each vertical level) suggested by Wu et al. (2018) for 
modeling Xgas signals. For other model control parameters, we used the default STILT parameters described 
by Lin (2003) and Fasoli et al. (2018). We also ran STILT backwards in time for 7 days as we found that this 
was sufficient time for the particles to leave the SJV, ensuring that we captured the full influence of the region’s 
emissions.

2.4.  Calculating Background CH4

Aside from the influence of emissions, XCH4 measurements can vary due to differences in the influence of the 
far-field CH4 mixing ratios and differences in the atmospheric column caused by elevation differences (Hedelius 
et  al.,  2017). Neglecting these effects can introduce spurious XCH4 gradients which propagate into emission 
estimates derived with these measurements.

We generated a background XCH4 time series for each of our instruments to account for these effects. We did 
this using the Copernicus Atmosphere Monitoring Service near realtime model (CAMS-NRT) model which pro-
vides forecast fields for greenhouse gas mixing ratios and atmospheric variables at a 6-hr and 0.4° grid (Inness 
et al., 2019). In the first 6 km of the slant model profile, we followed STILT back trajectories from our measure-
ment locations at each measurement time to their endpoints after 7 days. These endpoints were typically over the 
Pacific. The CAMS model was interpolated to these endpoints to set a dry air CH4 mixing ratio for each back tra-
jectory. The average of these concentrations was taken as the background concentration for a specific height in the 
model profile for each measurement location and time. Above our maximum STILT release height of 6 km, we 
used the CAM-NRT model to directly set concentrations in the profile up to a pressure height of 1 hPa. Together 
this generated a set of background profiles for each measurement location and time, reflecting both the effects of 
far-field concentrations and topographic effects on the XCH4 measurements. We refer to these profiles as B(z, t).

In addition to the CAMS-derived background described above, we also implemented a background estima-
tion method that estimated a spatially constant background XCH4 time series for air entering the SJV (Jones 
et al., 2021) and created emissions estimates using the minimum observed XCH4 value as a constant background. 
These two methodologies gave similar top-down emission results as the CAMS background method and are de-
scribed fully in Text S2 in Supporting Information S1.

2.5.  Model XCH4

Adding the modeled emission enhancements from STILT, F(z, t) × E, and the background signals from the 
CAMS-NRT analysis, B(z, t), gives a model estimate of the CH4 slant mixing ratio profile at a given measurement 
location and time. We call this mixing ratio profile xsim(z, t). To create an XCH4 model estimate, XCH4,sim, for 
comparison with our measurements, we integrated xsim(z, t) vertically. The integration uses a vector of pressure 
weights, h, to capture the contribution of each profile level to XCH4,sim(t) as well as an averaging kernel vector, 
a, that accounts for the sensitivity of the XCH4 measurement to changes from the a-priori profile, xap, used in the 
EM27/SUN retrieval (Wu et al., 2018). The relation between these variables is shown in Equation 1:

𝑥𝑥sim(𝑧𝑧𝑧 𝑧𝑧) = 𝐹𝐹 (𝑧𝑧𝑧 𝑧𝑧) ⋅ (𝐸𝐸dairy + 𝐸𝐸non−dairy) + 𝐵𝐵(𝑧𝑧𝑧 𝑧𝑧)

XCH4,sim(𝑡𝑡) =
∑

level
(ℎ ⋅ 𝑎𝑎 ⋅ 𝑥𝑥sim + (1 − ℎ ⋅ 𝑎𝑎) ⋅ 𝑥𝑥ap)

� (1)

h is calculated by creating density and water profiles for our measurements using the WRF meteorological fields 
below 6 km and the CAMS-NRT model above 6 km. These profiles were converted to weights for the CH4 profile 
using the weighting function from the GGG-2014 retrieval software (Wunch et al., 2015). The a vector is based 
on a look-up table from Hedelius and Wennberg (2019) and was interpolated to the solar zenith and pressure 
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profile used for each measurement. xap was calculated from the a-priori profile calculated by GGG-2014 for the 
measurements, with the profiles rescaled to match the surface pressure observed at each measurement.

2.6.  Top-Down Emission Estimates

We used the hourly average XCH4 differences (ΔXCH4) between our instruments on each measurement day as 
an observational constraint to create top-down estimates of dairy and non-dairy emissions. Using a difference 
has advantages over XCH4 data as measurement and modeling errors that are common to two instruments cancel 
out in differences and interfering effects due to emissions outside our target region and due to variations in back-
ground CH4 concentrations should be reduced in size (Chen et al., 2016; Hedelius et al., 2018; Vogel et al., 2019; 
Zhao et  al.,  2019). Hourly averaged ΔXCH4 observations (ΔXCH4,obs) were calculated from the EM27/SUN 
measurements with the Cantua Creek measurements used as the reference on most measurement days except on 
January 22nd where Terra Bella was used as the reference instrument. This was done because on this day Terra 
Bella showed the lowest XCH4 values.

Plots of sample STILT trajectories on each measurement day show that on most measurement days air at each 
instrument enters the SJV at similar locations and times from the Pacific (see Figures S2–S7 in Supporting In-
formation S1), suggesting that background differences between them should be small. An exception to this was 
on January 22nd where air from the three instruments appear to follow different paths out of the SJV which may 
indicate that there are larger background differences on this day. We note that these interfering effects are still 
modeled in our framework through the modeling of emissions throughout California and through the use and 
optimization of the CAMS model gradient.

These gradient observations are used in a Bayesian inversion to find multiplicative scaling factors (λp) on the 
modeled gradient signals from dairy and non-dairy emissions in the a-priori inventory and from the background 
(ΔXCH4,sim,d, ΔXCH4,sim,nd, and ΔXCH4,sim,b, respectively). Because emissions are linearly related to the ΔXCH4 
model signals, λp gives the optimal amount that the emissions and background gradients should be changed from 
the a-priori to match our observations given the uncertainties in our observations, model, and in the a-priori 
emissions. Under the assumption that the model gradient is linearly related to the measured gradient and that 
all uncertainties are normally distributed, λp and its error covariance matrix, S, are given by the equation from 
Rodgers (2000):

𝐾𝐾 = [ΔXCH4,sim,d,ΔXCH4,sim,nd,ΔXCH4,sim,b]

𝜆𝜆𝑝𝑝 = 𝜆𝜆𝑎𝑎𝑎𝑎 + 𝑆𝑆𝑎𝑎𝑎𝑎𝐾𝐾𝑇𝑇 (𝐾𝐾 ⋅ 𝑆𝑆𝑎𝑎𝑎𝑎𝐾𝐾𝑇𝑇 + 𝑆𝑆𝑒𝑒)−1 ⋅ (ΔXCH4,𝑜𝑜𝑜𝑜𝑜𝑜 −𝐾𝐾 ⋅ 𝜆𝜆𝑎𝑎𝑎𝑎)

𝑆𝑆 = (𝐾𝐾𝑇𝑇𝑆𝑆−1
𝑒𝑒 𝐾𝐾 + 𝑆𝑆−1

𝑎𝑎𝑎𝑎 )
−1

� (2)

where λap represents the a-priori scaling factors on the model signals, Sap represents the covariance matrix of the 
a-priori scaling factor and Se represents the covariance matrix of the model-measurement mismatch.

Sap is taken to be a diagonal matrix, meaning we assume there is no correlation between errors in the dairy, non-
dairy, and background scaling factors. The diagonal elements were calculated using a 36% standard deviation for 
the dairy scaling based on the uncertainty in statewide dairy emissions given in Marklein et al. (2020), a 70% 
standard deviation for non-dairy emissions based on estimates of CALGEM’s uncertainty in the SJV by Jeong 
et al. (2013) and a 100% standard deviation for the background gradients, representing minimal constraints on 
changes to the background gradient.

Se is also taken as a diagonal matrix with elements taken as the sum in quadrature of the model gradient uncertain-
ty and measured gradient uncertainty. The model gradient uncertainty is dominated by transport uncertainty that 
can be divided into two parts: uncertainty due to horizontal transport and uncertainty due to vertical turbulence. 
We estimated the effect of horizontal transport uncertainty on our STILT XCH4 enhancements by calculating the 
additional variance in the enhancements introduced by a stochastic wind component parameterized to model the 
uncertainty in our WRF wind fields in the SJV (Lin, 2005). Our full methodology is outlined in Text S1 in Sup-
porting Information S1. The average horizontal error for the measurement days ranges from 2.5 to 3.6 ppb. We 
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assessed the vertical mixing error following the methodology outlined by Wu et al. (2018). In their technique, the 
STILT boundary layer is uniformly rescaled by 20% during the first 24 h of the model run time and the difference 
in the enhancements of this perturbed model run and the unperturbed run is taken as the vertical mixing error. 
This error term ranges from 0.8 to 2.9 ppb over the measurement days. We note that the 20% perturbation used 
by this method may not be directly applicable to our SJV WRF fields. However, as XCH4 measurements are less 
sensitive to boundary layer errors we did not attempt to further characterize boundary layer errors specific to our 
modeling setup. The measurement error is taken as the hourly standard deviation of the EM27/SUN's ΔXCH4 
measurements. The average measurement error over the measurement days ranges from 2 to 3.6 ppb. This stand-
ard deviation represents atmospheric variability in the measured XCH4 over the hour-long averaging time. Be-
cause of the large number of measurements used to create the average, the instruments’ retrieval uncertainty is 
relatively small. We additionally note that although we have taken Sϵ to be diagonal, there are likely covariances 
in the model errors that affect the fit and neglecting these may act to make our inversion errors too conservative.

3.  Results
3.1.  Observed Meteorology

Meteorological conditions in the SJV were recorded on all our measurement days by 15 surface weather stations 
in the ASOS network (retrieved from https://mesonet.agron.iastate.edu/request/download.phtml). A map of these 
stations is shown in Figure S8 in Supporting Information S1. We aggregated data from these stations to estimate 
average meteorological conditions and their variability over the SJV during the time periods on and preceding our 
measurement days. These variables are shown in Table 1 and are used to help interpret the EM27/SUN measure-
ments. Wind direction and speed at 10 m are reported as an SJV wide average over the night before the measure-
ment day, defined as beginning at 20:00 local time, and the end of the measurement day at 17:00 local time. This 
period was based on Figure 7 which shows that most of the XCH4 enhancements measured by the instruments 
are released over this period. Temperature, humidity and rainfall statistics are reported as SJV wide averages over 
the 7 days prior to and including the measurement days. This was based on the assumption that changes to dairy 
emissions due to these variables should occur on the order of days as they should affect conditions within the 
liquid manure systems.

As expected, temperature in the SJV is highest during the summer (July and September measurement days) and 
declines on the winter measurement days. Humidity and rainfall, in contrast, are highest on the winter measure-
ment days and. Wind speed is low on all measurement days except on February 3rd when average wind speeds are 
5 m/s. The average wind direction is from the northwest on all days except on January 22nd and 30th when it is 
on average from the east. All the meteorological variables fall within 1σ of the 30 day SJV-wide average centered 
around each measurement day except for the wind speed in February which is 2.8σ higher than the average winds.

Because the accuracy of the model wind fields is important for determining the accuracy of a transport simu-
lation, we also compared our WRF fields to the 10m wind measurements from the ASOS network in the SJV. 
This allows us to assess the quality of the STILT model on each measurement day. The comparison is shown in 
Figure 3. On most of the measurement days, there is a good correlation between the WRF and ASOS winds and 

Date Temperature (°C) Humidity (%) Wind speed (ms−1) Wind direction (°N) Precipitation (mm)

July, 22 27 ± 6 43 ± 17 2.0 ± 0.9 307 ± 28 0

September, 12 25 ± 6 47 ± 18 2.0 ± 1.0 309 ± 93 0.03

January, 22 7 ± 4 89 ± 11 1.5 ± 0.7 91 ± 69 7.8

January, 27 10 ± 3 89 ± 10 1.8 ± 1.0 313 ± 69 0.64

January, 30 10 ± 3 89 ± 11 1.4 ± 0.6 110 ± 61 0.64

February, 3 9 ± 4 84 ± 16 5.0 ± 1.3 318 ± 12 0.47

Note. Two meters temperature and relative humidity statistics are aggregated over the 7 days prior to and on the measurement 
day. Accumulated rainfall is reported as a sum averaged across ASOS stations in the SJV for the 7  days prior to the 
measurement day. 10m wind speed and direction statistics are aggregated on each measurement day.

Table 1 
Meteorological Conditions Observed by ASOS Weather Stations in the SJV During the Measurement Days

https://mesonet.agron.iastate.edu/request/download.phtml
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biases are typically small. The exceptions to this are the high bias in both wind components observed on January 
27th and the low correlation with the ASOS network on January 30th. The deficiency in the wind fields may 
indicate problems in the model signals on these days but our meterological uncertainty analysis should model the 
effect of the higher random error on January 30th.

3.2.  STILT Model Results

Comparisons between the optimized model ΔXCH4 signals and the measured EM27/SUN signals are shown 
in Figure 4 for each of the 6 sampling days. We find that on all measurement days except January 30th, there 
is a good fit between our model results and the measurements as measured by the reduction in uncertainty in 
the a-posteriori dairy emission scaling factors. Notably, our top-down inversion reduces the uncertainty on the 
emissions by a factor of 2 or more compared to the a-priori uncertainty (0.36) on most days, showing that the 
observations can constrain the emissions. The RMSE between the optimized model and the measurements varies 
over the measurement days and is smallest on the July, September, and February days. This indicates a better 
model fit and stronger constraints on emissions on these days. On January 30th, the fit was much worse by both 
metrics, with the model failing to capture the enhancements observed at the Helm’s Corner site in the morning. 
We attribute this to errors in the WRF model, evidenced by the poor correlation between the WRF 10 m winds 
and weather station observations in the SJV on this day (see Figure 3).

On the 2 summer measurement days, July 22nd and September 12th, we found top-down scaling factors on the 
a-priori dairy emissions of 84 ± 13% (95% confidence interval [CI] = 58%–110%) and 84 ± 11% (95% CI = 
62%–105%) respectively. On the winter measurement days, January 22, January 27, January 30, and February 3, 

Figure 3.  Comparison of 10m wind from our WRF meteorological fields with the ASOS network in the SJV. The comparison is done using data from 21:00 local time 
on the night before the measurements to 18:00 local on the day of the measurements. The north-south (v) and east-west (u) wind components are shown in different 
colors on the plot.
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the top-down scaling factors on dairy emissions were 106 ± 15% (95% CI = 76%–136%), 68 ± 15% (95% CI = 
39%–97%), 80 ± 23% (95% CI = 36%–125%) and 141 ± 12% (95% CI = 117%–165%), respectively.

The a-priori non-dairy emissions were not significantly changed on any of the measurement days and there is min-
imal reduction in these emissions’ uncertainty compared to the a-priori. This indicates that non-dairy emissions 
are not constrained by our measurements and this is expected given the small amount of non-dairy emissions in 
the study area. Finally, the a-priori background gradient is not significantly changed on the July 22, September 
12 (summer), and February 3 (winter) measurement days indicating that the background gradient does not have 
a strong effect on the inversion on these days. In contrast, on January 22, 27, and 30, the inversion significantly 
changes the background gradient between the instruments indicating that the CAMS model background gradient 
needs to be altered to match the measurements on these days. The adjustment to the model background gradient 
is especially large on January 22 for the Cantua Creek and Terra Bella gradient and is on the order of 500%. This 
may reflect a difficulty in CAMS-NRT modeling the differences in background XCH4 caused by the more distinct 
paths air arriving at each instrument takes entering the SJV on this day (Figure S4 in Supporting Information S1).

3.3.  Emission Sensitivity Area

Our top-down analysis gives single top-down scaling factors for dairy and non-dairy emissions but does not give 
information on the spatial region they apply to. Because of this, it is necessary to determine which locations in 
the a-priori inventory contribute to the ΔXCH4 signals before inter-comparing our results or comparing it to 
other emission estimates. We did this by creating contribution maps showing how much ΔXCH4 each grid cell 
in the a-priori emissions contributed to the STILT model signals as shown in Figure 5. They show that on all the 
measurement days a large proportion of the modeled ΔXCH4 comes from emissions from dairy farms in Tulare 
and Kings counties. This was the area that we targeted with our measurement network and the maps suggest that 

Figure 4.  Comparison of measured ΔXCH4 signal to our a-posteriori model signal after a Bayesian inversion. Error bars on the measured signal are the 1 hr standard 
deviation of our measured gradients. The error on the optimized model signal represents a bootstrap standard deviation of the a-posteriori model prediction distribution. 
Lines in the plots are colored by measurement locations. Solid lines represent measured ΔXCH4,obs and dotted lines represent the a-posteriori modeled ΔXCH4,sim. 
Times are in the local timezone (US/Pacific). The root mean square error between the optimized model and measurements as well as the a-posteriori dairy emissions 
scaling factor are also shown.
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the scaling factors on these days apply to roughly the same area. We explicitly define this area by selecting grid 
cells in the a-priori inventory that on average contribute at least 0.1 ppb to the modeled ΔXCH4 signal over the 
measurement days.

This sensitivity area is outlined in Figure 5. It contains 585 dairy farms out of 1,317 in the SJV and covers approx-
imately 3 × 103 km2. Liquid manure management in waste ponds is the predominant manure management method 
among these dairy farms and they contain a mix of freestall and dry lot animal housing (Marklein et al., 2020; Meyer 
et al., 2011). At least 60% of the modeled signal on each of these days comes from this area and at least 90% of its 
total emissions are from the dairy sector. The a-posteriori scaling factors derived from the inversion are applied only 
to a-priori emissions in this area giving top-down emission estimates for each day. These are shown in Figure 6. This 
restriction ensures that the scaling factors are applied only to areas that our measurements are sensitive to.

3.4.  Temporal Sensitivity to Emissions

Similar to the above spatial analysis, we can use our STILT footprints to estimate the time period when the CH4 
emissions we measure were released. Determining the sensitivity time of our top-down emissions is useful as 
work by Wood et al. (2013) on dairy manure emissions and Vaughn et al. (2018) on fossil fuel emissions suggest 
that differences in the time period different methods estimate emissions for can create discrepancies between 
them.

Figure 7 shows the contribution of emissions released at different times to the modeled absolute ΔXCH4 averaged 
over each measurement day. This plot suggests that our XCH4 measurements have a broad temporal sensitivity 

Figure 5.  ΔXCH4 contribution of different grid cells in the a-priori inventory to average STILT model signals on each measurement day. Black diamonds show the 
EM27/SUN measurement locations. The dashed black outline shows our emission sensitivity area defined as the region that on average contributes ≥0.1 ppb to the 
model signal on measurement days. The pink outline shows the San Joaquin Valley’s county boundaries. The Stamen Terrain base map is used.
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spanning several hours and that their peak sensitivity ranges from 02:00 on the night before the measurement 
day to 07:00 on the morning of the measurement day. Although our measurements were mostly taken in the 
afternoon, this result is not unexpected. Because of the large size of our sensitivity area (10s of km) and the low 
wind speeds and ventilation rates present in the SJV, it takes several hours from entering the SJV for air to flow 
to the downwind sites. This allows the instruments to measure emissions released overnight and in the morning. 
Interestingly, Wood et al. (2013) found that the lowest deviation from diurnally averaged emission rates in dairy 
manure lagoons is realized when the top-down emissions are sensitive to emissions released between 18:00 and 
08:00. This suggests that our measurements may have minimal bias due to diurnal variations in the dairy farms' 

Figure 6.  A-posteriori distribution of total CH4 emission in the sensitivity area for different measurement days using our 
top-down inversions. The box plot in the center of the distributions shows the 25th and 75th percentiles and outlier points 
in black. The median is shown in white. A-priori emissions based on CALGEM and Marklein et al. (2020) are shown as a 
dashed line.

Figure 7.  Modeled contribution of emissions released at different times to absolute ΔXCH4 signals averaged over each 
measurement day. On days with three instruments, the emission contribution time series of the two gradients are averaged 
together. Each measurement days’ contribution curve is shown in a different color.
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emissions. However, the broad temporal sensitivity also means that it is difficult to assess if there is coherent 
diurnal variability in the SJV’s emissions from our measurements.

4.  Discussion
Our analysis finds that the dairy emissions on the winter measurement days (January 22nd 371 ± 54 Gg/yr, Jan-
uary 27th 237 ± 52 Gg/yr, January 30th 281 ± 81 Gg/yr, and February 3rd 491 ± 43 Gg/yr) are comparable to or 
higher than dairy emissions on the 2 summer measurement days (July 22nd 291 ± 47 Gg/yr and September 12th 
292 ± 38 Gg/yr). Although temperature is an important driver of dairy CH4 emissions and would be expected 
to reduce dairies’ manure emissions in the winter, this finding suggests that other factors act to increase dairy 
emissions in our study area over the winter measurement days.

We can estimate the expected effect of temperature on manure dairy emissions over the measurement days us-
ing an Arrhenius temperature relationship (Safley & Westerman, 1988) driven by 7 day averaged SJV surface 
temperatures from the ASOS stations. The change in manure emissions can then be converted to the relative 
change in total dairy emissions using the ratio of manure emissions to total dairy emissions in the a-priori in-
ventory (47%). This analysis predicts that temperature changes should cause emissions on the winter days to be 
approximately 60% of emissions on July 22nd or 174 Gg/yr. None of our top-down emission estimates on the 
winter measurements days overlap with this value within the 1σ uncertainty and the emissions on January 22nd, 
February 3rd are higher than this value within their 2σ uncertainty. This difference from the decline in emissions 
predicted from temperature changes suggests that other factors act to control seasonality in the SJV’s dairy CH4 
emissions. Additionally, dairy emissions on the second summer day (September 12) should be 89% of emissions 
on the first summer day due to the temperature effects and this overlaps within the 1σ error with the ratio of top-
down emission we measured (100 ± 20%).

This result in the central SJV on our measurement days is in accord with other studies which showed no signif-
icant seasonality in California’s statewide dairy emissions (Jeong et al., 2016) and which showed increases in 
winter emissions in the northern SJV relative to other seasons (Johnson et al., 2016). Additionally, a study by 
Leytem et al. (2017) at a group of US dairy farms found that non-temperature factors could act to mask seasonal 
temperature effects on emissions. We note that aside from temperature changes, there are dramatic changes in 
precipitation patterns in the SJV between the summer and winter (see Table 1). Rainfall could act to increase the 
SJV’s dairy emissions by altering the input of manure to anaerobic liquid waste storage systems through man-
agement decisions (Meyer et al., 2019). Also, rainfall has been shown to increase individual dairy farms’ CH4 
emissions by enhancing the agitation of liquid manure ponds (Leytem et al., 2017) and could also increase emis-
sions by expanding the emitting area of the manure ponds (Petersen, 2018). With our time-limited campaign data 
set, we can not directly attribute the higher than expected winter emissions to any one factor. However, the result 
suggests a need for measurements at regional scales like ours as well as on individual dairy facilities to constrain 
the seasonally varying effects of temperature, moisture, and dairy management on the SJV's dairy emissions.

During the winter, the SJV’s natural gas consumption is about 3.5 times higher than in the summer (Pacific Gas 
& Electric, 2019). Higher winter natural gas emissions could contribute to total emissions in the SJV being higher 
than expected rather than dairy emissions. To assess this explanation, we ran a sensitivity test by artificially in-
creasing the size of natural gas emissions in the a-priori inventory by a factor of 5. The scaling factors recovered 
for this perturbed a-priori overlap within 1σ error with the scaling factors calculated with our unperturbed a-priori 
emissions and do not show a decline in dairy emissions in the winter. This suggests that natural gas emissions do 
not contribute to our observation of relatively high winter emissions.

Interestingly, our measurements also show evidence of interday variability in emissions. Top-down emissions on 
February 3rd are higher than emissions on all the other measurement days at the 2σ uncertainty level except on 
January 22nd where it is higher at the 1σ uncertainty level. This may be related to the anomalously high wind 
speed measured across the SJV on the night before and during February 3rd (see Table 1). Leytem et al. (2017) 
and Grant et al. (2015) both reported strong correlations between manure methane emissions and wind speed at 
individual facilities that they attributed to enhanced agitation and release of CH4 from the liquid manure ponds. 
This effect could be driving a coherent increase in emissions over all the dairy farms in our sensitivity area 
causing the higher top-down emissions. Given that we are restricted to 6 measurement days, it is difficult to fully 
assess the importance of intermittent emission events on longer term emissions or to unambiguously attribute the 
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higher emissions to wind speed. Work by Duren et al. (2019) in the SJV also found that emissions at individual 
dairies in the region were intermittent in time. This along with our regional finding suggests a need for reanalysis 
of existing long term data sets, such as the GOSAT and TROPOMI satellite XCH4 record and the CARB in-situ 
tower record as well as new long term sampling in the SJV to further investigate the drivers of interday variability 
and to determine its importance to emissions in the region.

Our top-down emissions in the sensitivity area all overlap with the bottom-up emissions in the a-priori inventory 
within their respective 1σ uncertainties. Since the a-priori was constructed with annual bottom-up emissions this 
means that both the variability in our days’ top-down estimates and their difference from the a-priori fall within the 
overall uncertainty of the annual bottom-up emissions. Our top-down emissions also overlap with the emissions 
from the CALGEM inventory within an assumed 70% 1σ error on CALGEM’s total emissions. Other bottom-up 
inventories in the region such as the EPA inventory (Maasakkers et al., 2016) have known issues in localizing emis-
sions in the SJV (Marklein et al., 2020) that preclude them from comparison to emission in our sensitivity area.

We also compared our EM27/SUN XCH4 based emissions to three other studies that estimated top-down emis-
sions in the SJV using different measurement techniques: an aircraft-based estimate by Cui et al. (2017), an in-si-
tu tower-based estimate by Jeong et al. (2016), and a satellite XCH4-based estimate by Turner et al. (2015). Cui 
et al. (2017) created emission estimates in the southern SJV (encompassing our sensitivity area) based on bounda-
ry layer CH4 mixing ratio data collected on four aircraft flights during the spring and early summer of 2010. Jeong 
et al. (2016) used near-surface mixing ratio measurements from CARB’s regional tower network from June 2013 
to May 2014 to make an estimate of the entire SJV's annual emissions. For these studies, we applied the average 
ratio between their top-down emissions and CALGEM to CALGEM’s emissions in our sensitivity area. We also 
assumed that the uncertainty they reported for these larger regions applied to the downscaled emissions. Turner 
et al. (2015) reported annual emissions across North America at a 0.5° × 0.667° resolution using XCH4 soundings 
from the GOSAT satellite from 2009 to 2011. We summed emissions in grid cells in their top-down emission map 
that overlapped with our sensitivity area for comparison with our emissions and assumed that the uncertainty they 
reported for California-wide emissions applied to this area.

We note that there are difficulties inherent in these comparisons, particularly in downscaling emissions, in the 
multi-year difference in when these measurements were collected, and in the differences in the timescales and 
time periods the top-down estimates apply to. Despite this, an error-weighted average of emissions across our 
measurement days overlaps within 1σ error with the other top-down estimates as shown in Figure 8. On individual 

Figure 8.  Comparison of emissions in our sensitivity area from different studies. An error weighted average of our EM27/
SUN emissions is shown in dark purple. Emissions from other top-down studies are shown in light purple and emissions from 
bottom-up inventories are shown in pink. Error bars on the plot represent 1σ uncertainty except for Jeong et al. (2016)* where 
the error represents a 95% CI.
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days, emissions all overlap within their respective 95% CIs with the other estimates. However, emissions on the 
summer days and January 27th fall below the 1σ uncertainty band of Cui et al. (2017) results and emissions on 
February 3rd fall above the 1σ uncertainty band of Turner et al. (2015) results. Despite this, the overall consisten-
cy of our results suggests that our EM27/SUN methodology is able to retrieve emissions correctly and suggests 
that emissions in the central SJV region we were sensitive to are similar to emissions in the wider SJV.

5.  Conclusions
We reported EM27/SUN ΔXCH4 across the SJV during the summer and winter and used them to constrain dairy 
CH4 emissions using WRF–STILT inversions. We find that our measurements capture the influence of CH4 emis-
sions from a large grouping of dairies in the central SJV, a region with low constraints on emissions, on all of our 
measurement days and are sensitive to relatively similar times of day. Our measurements also span the summer 
and winter and we find that CH4 emissions in the SJV are much higher during the winter measurement days than 
would be expected from the temperature effects used in the current national scale CH4 inventories of dairy emis-
sions. We also observe significant interday variability in our measurements. These results suggest that seasonal 
management changes in the dairies, wind agitation of manure ponds, and other biogeochemical responses in the 
region could be important factors controlling emissions. They also demonstrate a need for more long-term meas-
urements to constrain the size and causes of variability in the SJV and to determine its importance on long-term 
emissions. On average we find top-down emissions of 347 ± 46 Gg/yr in our sensitivity area in the central SJV, 
representing a scaling factor of 125 ± 17% on CALGEM’s emissions in the area. These average emissions were 
also found to fall within the uncertainty ranges of previous top-down and bottom-up inferences.

Given the importance of the SJV region for statewide CH4 emissions, our study underscores the need for longer 
term and more varied measurements of CH4 emissions in the SJV to fully characterize the factors controlling its 
emissions. In particular, reanalysis of existing long-term measurements such as the decade long XCH4 record 
from the GOSAT satellite and the CARB in-situ tower network could provide further insight into controls on 
emissions in the SJV. Further analysis at the individual dairy facility scale would also be useful for resolving 
questions about controls on emissions. Our analysis also demonstrates that the EM27/SUN instruments can con-
strain regional emissions to a relatively good accuracy compared to other techniques and suggest that they can 
play a role in further studies of CH4 emissions in the SJV.

Data Availability Statement
The EM27/SUN retrievals used in this study and the STILT footprints are available at https://osf.io/gnfb4/.
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