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Abstract 

Recent theoretical research has shown that the assumptions 
that both laypeople and researchers make about random 
sequences can be erroneous. One strand of research showed 
that the probability of non-occurrence of streaks of repeated 
outcomes (e.g., HHHHHH) is much higher than that for a 
more irregular sequence (e.g., HTTHTH) in short series of 
coin flips. This tallies with human judgments of their 
likelihood of occurrence, which have conventionally been 
characterized as inaccurate and heuristic-driven. Another 
strand of research has shown that patterns of hits and misses 
in games like basketball, traditionally seen as evidence for the 
absence of a hot-hand effect, actually support the presence of 
the effect. I argue that a useful way of conceptualizing these 
two distinct phenomena is in terms of the distribution of 
different sequences of outcomes over time: Specifically, that 
streaks of a repeated outcome cluster whereas less regular 
patterns are more evenly distributed.  

Keywords: randomness; rationality; hot hand fallacy, 
gambler’s fallacy. 

Introduction 
One of the more important things that organisms must do 

to prosper is to identify, extract, and act on patterns in the 
environment. At a perceptual level, detecting potential 
threats in a noisy and ambiguous environment is crucial for 
survival. At a higher level, the ability to detect patterns of 
events over time or space, such as the presence of absence 
of prey in different locations at times, the changes in 
temperature or weather, and so on, allows an organism to 
predict the future state of the world, and adapt behavior 
accordingly. In a more contemporary environment, anyone 
able to detect behavioral patterns in markets, organizations 
or individuals would be able to exploit that knowledge to 
their benefit. 

In order to detect patterns, an organism has to separate 
signal from noise. As such, one would expect organisms to 
accurately represent the absence of a signal, that is, 
randomness. A poor representation of what random patterns 
look like would make it harder to spot the times when 
patterns contain information.  

As such, it is surprising that across a wide range of 
research procedures, people are systematically poor at 
representing randomness (for reviews see, Nickerson, 2002, 
2004; Bar-Hillel & Wagenaar, 1991; Falk & Konold, 1997; 
Rapaport & Budescu, 1992). For example, people 
underestimate the frequency of ‘streaks’ or ‘runs’ of a 
particular outcome (such as getting five heads in a row 
when flipping a coin repeatedly), and treat such streaks 

when they appear as evidence for non-randomness. Related, 
people rate sequences of binary outcomes containing 
negative serial dependency (that is, an alternation rate 
between outcomes of greater than .5), as being more random 
than truly random sequences. 

 One reason why people may be poor is that many 
properties of random sequences are counterintuitive. For 
example, relative wait times for different sequences of 
binary outcomes violate transitivity (see, e.g., Nickerson, 
2007). 

In this paper I focus on sequences of binary, Bernoulli 
i.i.d. events such as coin flips (which could come down H or 
T), and behaviors which may be modelled by them, such as 
basketball shots (which could come down as a hit – X – or a 
miss – O).  

Representativeness and probability of 
occurrence 

One of the most influential studies to demonstrate an 
apparent bias in perception of randomness was that of 
Kahneman and Tversky (1972). In their studies, they asked 
participants about the relative frequency of occurrence of 
different birth orders of girls (G) and boys (B) in families 
with six children in a hypothetical city. They found that 
participants estimated that there would be many fewer 
examples of a precise sequence of BGBBBB relative to a 
precise sequence of GBGBBG. (Of course all precise 
sequences of birth orders are equiprobable). To examine 
whether this finding was a result of just the relative 
frequency of B and G, Kahneman and Tversky also 
compared estimates of the relative frequency of BBBGGG 
and GBGBBG, finding that the former was seen as 
significantly less probable than the latter. Thus, both the 
relative frequency of outcomes, and the order in which 
outcomes occur appear to be important in judging the 
probability of occurrence. 

Traditionally, findings of this nature have been explained 
in terms of heuristics and biases, specifically a 
misapplication of a representativeness heuristic (but see, 
e.g., Gigerenzer, 1996; Ayton & Fischer, 2004): People 
believe that the properties of short sequences of random 
outcomes should be representative of those seen in longer 
sequences (e.g., equal proportions of outcomes, an absence 
of structure or compressibility), and sequences that share 
those properties are deemed more probable. 

However, recently Hahn and Warren (2009) observed that 
in situations where one looks for patterns of outcomes in a 
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finite sequence of, for example, coin flips, different 
sequences have different probabilities of occurrence.  

To give a concrete example (used by Hahn and Warren, 
2009), compare the probability of non-occurrence of a 
HHHH vs HHHT in a sequence of 20 coin flips. The streak 
of a repeated outcome (HHHH) is around twice as likely not 
to occur relative to HHHT. The argument made by the 
authors is that if people use previous experience of merely 
the occurrence (at least once) or absence of a particular 
string to judge the probability of occurrence in the future, 
then they would be quite accurate to say that HHHH would 
be less likely to occur in a sequence of 20 coin flips than 
HHHT. 

This was also extended to account for the gambler’s 
fallacy: If experience dictates that HHHH is less likely to 
occur than HHHT, then an individual who sees HHH and is 
asked to be on whether the next observation is H or T, 
would with some justification bet on T.  

Although there is ongoing discussion about the extent to 
which or circumstances under which Hahn and Warren’s 
theory predicts judgments (Reimers, Donkin & Le Pelley, 
2017), the observation that different strings of outcomes 
have different probabilities has meant that researchers have 
needed to reconsider what normative baselines for 
randomness judgement should be, and potentially turn what 
previously appeared to be a clear bias into a slight 
misapplication of a genuine property of the environment.  

The hot-hand-fallacy fallacy 
A second challenge to researchers’ assumptions about 

normative baselines has been seen with the hot hand effect. 
The hot hand effect is a phenomenon – accepted as self-

evidence by many sports participants and spectators – that 
players go through periods when their performance varies 
consistently over time, having streaks when they are ‘hot’, 
and during that period of time their performance is 
consistently better than usual, as measured by, for example, 
the proportion of baskets or putts they manage to sink. If the 
hot hand were real, it would mean that probability of 
success had positive autocorrelation: Following a streak of 
hits, a person would be more likely to score another hit. 

Despite popular belief in the hot hand phenomenon, the 
effect has until recently been seen as a fallacy. Gilovich, 
Valone and Tversky (1985) examined the performance of 
professional and amateur basketball players, and argued that 
there was no evidence for a hot hand effect. They 
operationalized a hot hand effect in basketball shooting as a 
difference between the probability of getting a hit (scoring 
from a free throw) after a streak of k consecutive hits (X) 
and the probability of getting a hit after a streak of k 
successive misses (O), for example, p(X|XXX) > 
p(X|OOO). The logic, which appears superficially entirely 
reasonable, was that if the probabilities of a hit after k hits 
and a hit after k misses were identical in a well-power study, 
then that provided evidence for the absence of a hot-hand 
effect. Across several studies, they found no difference in 

probabilities, so concluded that the hot-hand effect was a 
fallacy.  

Recently this conclusion has been challenged. Miller and 
Sanjurjo (2016) note problems with measures traditionally 
used to support the absence of a hot hand effect (see Rinott 
and Bar-Hillel, 2015 for less technical overview of an 
earlier version). Specifically, they prove that if one were to 
calculate the strength of the hot hand effect for players 
individually along the lines of calculating p(X|XXX) / 
[p(X|XXX) + p(X|OOO)], and then take the average across 
individual, that average would be less than .50. So if a well-
powered study shows a mean proportion of around .50, then 
rather than being evidence against a hot hand effect, it is in 
fact substantial evidence for such an effect. 

Miller and Sanjurjo (2016) prove the counterintuitive 
finding that that in any finite binary sequence, the mean 
proportion of streaks of length k that are followed by a 
repetition of the same outcome is on average lower than the 
proportion of streaks of length k that are followed by the 
opposite outcome. They note that for k = 1, the effect is 
entirely driven by a sampling-without-replacement effect, 
such that in, say, a short sequence of coin flips where the 
number of heads and tails is expected to be identical, 
choosing to look at outcomes following a H removes a H 
from the sample, meaning that the probability of all other 
observations, including the next one being a T is slightly 
greater than .5.  

More relevant for this discussion is the effect where k > 1. 
Here, Miller and Sanjurjo note that the effect is driven much 
more by the extent to which sequences of outcomes can 
overlap with each other (or show autocorrelation, in the 
terminology of Guibas & Odlyzko, 1981). They note that 
some sequences of outcomes can overlap with themselves: 
For example the sequence HHH can partially overlap with 
itself such that in a series of five coin flips, it is possible to 
observe three overlapping instances: HHHHH; conversely, 
the sequence HTT cannot overlap at all, and so can only 
occur once in a series of five coin flips. They note that 
because overall the expected number of occurrence of HHH 
and HTT must be identical, HTT must be observed in a 
greater number of series of five coin flips to compensate for 
the fact that HHH can occur multiple times within a single 
series. As such, they prove that  

Variance of occurrences in short sequences 
Here, in contrast to Miller and Sanjurjo’s (2016) formal 

proof, a stochastic approach to this issue is taken, in part to 
make the relationship between the findings of Hahn and 
Warren (2009) and Miller and Sanjurjo (2016), and in part 
to attempt to show how the varying distribution of 
observations of different sequences of outcomes in a longer 
series of binary outcomes can account for both findings.  

This is not the first attempt to relate these two 
phenomena. In recent iterations of their working paper, 
Miller and Sanjurjo have attempted to account for the 
gambler’s fallacy as well as the hot hand fallacy, by 
assuming a degree of insensitivity to sample size. Sun and 
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Wang (2010) note that different forms of waiting time for 
sequences of outcomes vary differently with outcome. Thus, 
the mean inter-observation gap is the same for all sequences 
of a single length, whereas the expected waiting time from 
first flip of a coin is much greater for some sequences of 
outcome (such as HHHH) than others (HHHT), and that the 
variances in these two forms of waiting time vary 
substantially.  

The argument presented here is based on the observation 
that the variance of the number of trials between 
observations of a given sequence of outcomes varies. 
Specifically, the observations made by Hahn and Warren, 
and those made by Miller and Sanjurjo are both 
consequences of the same property of random sequences, 
specifically that within any finite sequence of equiprobable 
binary outcomes, the distribution of frequency-of-
occurrence for ‘streaks’ (i.e. repetitions of the same 
outcome, like HHHH) is much wider than that for non-
streaks (like HHHT).  

To compare the distribution of two sequences of outcome 
HHHH and HHHT, across 1,000 simulated coin flips, see 
Figure 1. As both Hahn and Warren (2009) and Miller and 
Sanjurjo (2016) note, although the total number of 
occurrences of HHHH and HHHT is approximately equal, 
HHHH tend to cluster more than HHHT, with several 
overlapping occurrences together, and then large gaps 
between them. One way of explaining this it is that we know 
that overall frequency of HHHH and HHHT must be on 
average identical. However, immediately after flipping 
HHHH, there is a 50% chance of flipping another head, 
giving another instance of HHHH, and then a 50% chance 
of another, and so on. This leads to clusters of consecutive 
overlapping instances of HHHH. Conversely, after flipping 
HHHT, it takes a minimum of four more flips to get HHHT 
again. This means that HHHT cannot cluster in the same 
way. 

The consequence is that for shorter sequences of, say, 100 
random binary outcomes, the frequency of HHHT will be 
fairly consistent, whereas the frequency of HHHH will be 
much more variable. This can be seen in Figure 2, in a 
simulation of 10,000 runs of 100 coin flips. Here, the string 
HHHT appears between 3 and 9 times on 95% of runs of 
100 flips. HHHH only appears between 3 and 9 times on 
67% of runs. 

Hahn and Warren’s theory explains the fact that people 
seem to think HHHH is less likely to occur than HHHT, by 

looking at the difference in the probability of non-
occurrence of a string (or conversely the probability of its 
occurring at least once). Although they use shorter runs for 
their examples, the same pattern is observed: In Figure 2, 
the string HHHH is much more likely not to occur than 
HHHT is. In fact, although it is hard to see from the graph, 
the probability of HHHH’s non-occurrence is around 100 
times that of HHHT. This is – of course – a consequence of 
the fact that the mean of the frequency-of-occurrence 
distribution for HHHH is the same as that for HHHT, but 
the variance is much greater. Hahn and Warren suggest that 
when making judgments, people, whose experience is 
limited to short runs of outcomes, might attend to whether a 
string occurs or not, but not attend to the number of times it 
occurred. This means that they will see HHHT occurring in 
a lot more runs than they will HHHH, and will rate it more 
probable.  

Conventional analysis of Gilovich et al.’s hot hand data 
used the logic that in the absence of a hot hand effect, the 
average proportion of players’ shooting successes would be 
the same following three successes as following three 
failures. Miller and Sanjurjo note that this is not the case. 
The observation I make here is that this is a direct 
consequence of the distribution of frequency-of-occurrence 
in 100 binary outcomes being much wider for streaks than 
non-streaks is that the proportion of XXXX from {XXXX, 
XXXO} (or, by symmetry {XXXX, OOOX}) is less than .5. 

To give a concrete example, if every day your grocer 
randomly gives you either 3, 4 or 5 apples, and either 2, 3, 
4, 5, or 6 oranges, and each day you work out what 
proportion of the fruit you were given is apples, you will 
find that, averaging across many days, the proportion of 
apples is greater than .5, even though the total number of 
apples and oranges you receive is on average identical.  

(If this is not obvious, consider the case where the grocer 
always gives you 4 apples, and also randomly gives you 
either 0 or 8 oranges. Half the time you leave with a bag that 
contains 100% apples; half the time you leave with a bag 
that contains 33% apples, so overall, the proportion of fruit 
in your bag that is apples averages 67%. However, the 
overall number of apples and oranges you receive will be 
the same.)  

Thus, in general, if one draws a sample from two 
distributions which have the same mean but different 
variances, and then looks at the proportion of the combined 
outcome that comes from each distribution, the expected 

Figure 1: Raster plot of the occurrence of strings of HHHH or HHHT across 1,000 simulated coin flips.The horizontal 
dimension gives the flip from the first on the far left to to the last on the far right.   
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proportion from the lower variance distribution will be 
greater than that for the higher variance distribution. 

This phenomenon can be seen more generally in Figure 3, 
which takes a normal approximation of the frequency-of-
occurrence distributions shown in Figure 2, with equal 

means, capping at 0, and varying the SD of the two 
frequencies-of-occurrence. The color indicates the mean 
proportion of outcome y, averaged across 50,000 simulated 
trials of each of 100 random binary outcomes.  Where SDs 
are equal, then of course p(y) = p(x) = .5. Where SD(y) > 
SD(x), p(y) < p(x), and vice versa. A circle indicates the 
approximate point where SD(x) = SD(HHHH) and SD(y) = 
SD(HHHT). 

Replacing HHHH and HHHT with XXXX and OOOX, it 
is clear that, as Miller and Sanjurjo (2016) note, it is not 
correct to assume that, in the absence of a hot hand effect, 
the expected proportion of successes following k successes, 
averaged across a large set of players, should be .5. Rather, 
it is significantly lower, as a direct consequence of the 
distribution of frequency-of-occurrence for XXXX being 
broader than that for OOOX. 

Conclusion 
The argument presented here is that both Hahn and 

Warren (2009) and Miller and Sanjurjo’s (2016) findings 
can be explained the same way: In sequences of random 
binary outcomes, streaks of the same outcome (whether 
heads, HHHH, or successes, XXXX) cluster more than non-
streaks (HHHT, OOOX); this leads to a broader distribution 
of frequency-of-occurrence of streaks in finite sequences of 
random binary events relative to non-streaks. This both 
increases the chance of the non-occurrence of a streak 
(which H&W argue makes people think justifiably that 
HHHH is less likely to occur than HHHT and other non-
streaks) and reduces the average proportion of XXXX 
among observations of {XXXX and OOOX} (which Miller 
and Sanjurjo convincingly argue means that evidence for a 
hot hand effect has been overlooked). 

Figure 2: Distribution of frequency-of-occurrence for two different strings of outcomes in 10,000 simulated sequences  
of 100 coin flips  

 

Figure 3: Simulated samples drawn from distributions 
with a common mean, Color indicates the mean 

proportion of the sum of the two samples that comes 
from the y sample 
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There are potentially interesting implications from these 
observations for the kinds of cognitive representation that 
would mediate the biases seen here. For example, an agent 
that counted the total number of occurrences of different 
strings of outcomes would see that the number of 
occurrences of, say, HHHH and HHHT were identical, so 
should rate them as equally probable. An agent that 
discarded all information about the frequency of occurrence 
of a string and recorded only whether or not it was observed 
(at least once) in a particular set of connected outcomes 
would of course perceive HHHT as more common than 
HHHH. Similarly, an agent that, rather than counting the 
number of occurrences of a string, instead encoded only the 
relative frequency of different strings, as a proportion of the 
total number of observations across occasions, would also 
conclude that HHHT was more frequently observed than 
HHHH. 

(Of course the overlapping of streaks described above 
may account for the biases seen here in more superficial 
ways. Chater (2014) argues that cognitive segmentation 
processes may differentially mask the frequency of 
occurrence of different strings. For example, a sequence of 
TTHHHHHHTT might be parsimoniously chunked as two 
tails – six heads – two tails, underplaying the three 
overlapping occurrences of HHHH within the sequence.) 

Overall it seems clear that an examination of the 
distribution of frequency-of-occurrence for different strings 
of binary outcomes, allows one to create a parsimonious and 
intuitive account for two important recent theoretical 
observations, both of which have implications for the study 
of rationality.  
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